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If binding and bending are really important for the biological function of SRY 

proteins, these features will be positively selected and conserved during evolution. 

The second part of this work demonstrates that the architecture and stability of 

nucleoprotein complexes formed by the DNA-binding domains of SRY proteins is 

indeed of primary importance. It is shown that these parameters are conserved 

amongst primates, irrespective of the time since divergence from a common ancestor 

or the number of residues which have changed during evolution. 
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INTRODUCTION 



Since 1953 (Jost, 1953) it was known that the presence of testes during mammalian 

embryogenesis resulted in male differentiation of the internal reproductive organs 

and external genitalia, while the presence of ovaries or the complete absence of 

gonads resulted in female differentiation. He deduced that the secretion of testicular 

hormones during a critical period in embryogenesis redirected differentiation of the 

reproductive tract from a female to a male pathway. Subsequently, the presence or 

absence of aY chromosome was shown to correlate with male or female phenotype: 

XY and XXY individuals are male, while XO and XX individuals are female. Yet the 

studies by Jost (1953), made clear that the Y chromosome-encoded mediator of sex 

determination needed only specific male gonadal development, and it was therefore 

called testis determining factor (TDF in humans, Tdy in mice). It is now accepted 

that, apart from the gonads, all morphological differences between male and female 

eutherian mammals result from the action of two testicular hormones, Mullerian 

inhibiting substance ( MIS or AMH) and testosterone. MIS is a member of the TGF 

beta family of growth factor, is secreted by Sertoli cells and causes regression of the 

Mullerian ducts, which would otherwise develop to form the uterus, cervix, fallopian 

tubes, and part of the vagina. Testosterone, secreted by Leydig cells, induces the 

development of male structures, derived from the Wolffian duct, including the 

epididymis, vas deferens, and seminal vesicles. The formation of male rather then 

female external genitalia requires the conversion of testosterone into 

dihydrotestosterone by steroid alpha reductase in the target tissue. The 

embryogenesis of mammalian sexual dimorphism has thus been divided into primary 

and secondary sex differentiation, the former referring to the development of the 

bipotential gonads into testes or ovaries, and the latter evocative of subsequent 

hormonal effects. 
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1.1 SRY: A SEXY STORY 

In a set of experiments, Koopman et al, (1991) demonstrated that XX mice differing 

from their sisters by addition of a single 14 Kb DNA fragment from the mouse Y 

chromosome including the SRY gene, can develop as phenotypic male. Though devoid 

of spermatogonia, the testes of these transgenic XX male mice appear to have a 

normal hormonal function; the mice display normal male secondary sexual 

differentiation and mating behavior. In contrast, XY mice differing from normal XY 

males only by the deletion of aY DNA fragment, 11 Kb including the SRY gene, 

develop as phenotypic females. These XY female mice are fertile and can transmit the 

mutant Y chromosome to their offspring (Lovell-Badge and Robertson, 1990; Gubbay 

et al., 1992). Thus, as judged by gonadal histology and hormone production, the 

presence and absence of SRY is sex determining in mice. Interpretation of the data 

from humans is less straightforward, though rare sex-reversed individuals provide 

counterparts to both XX male and XY female mice. Crossing over normally occurs 

near the short arm telomers of the human X and Y chromosomes during male meiosis, 

and aberrant recombination occurring more proximal can transfer fragments of Y- 

specific DNA (including SRY) into the genome of an otherwise XX individual. Most 

such translocations are cytologically undetectable, and the resulting XX males do not 

produce spermatozoa but have normal male internal and external genitalia. When 

small (35 Kb) fragments of Y-specific DNA are translocated, the resulting XX+SRY 

individuals invariably have genital abnormalities, sometimes despite apparently normal 

testicular histology (Palmer et. al., 1989). These abnormalities may include "sexually 

ambiguous" external genitalia (incomplete fusion of the labioscrotal folds with a 

resultant bifid scrotum or displaced urethra opening), undescended testes, or 
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ovotestes (gonads containing areas of both testicular and ovarian histology) with 

persistence of female structures derived from the Mullerian duct. There are several 

possible explanations for the phenotypic differences between these XX+SRYhumans 

and XX+SRY transgenic male mice. Perhaps the most likely scenario is that SRY 

transcription is reduced in XX+SRY humans (Palmer et. al., 1989). This could result 

from the spread of X inactivation across a nearby X; Y translocation breakpoint in 

humans. The murine SRY transgene would not be subject to this effect if it inserted at 

an autosomal locus. Alternatively, loss of regulatory sequences 5' of the human SRY 

gene might result from X; Y translocation involving only small amounts of Y-specific 

DNA. It is unclear whether reduced expression of SRY could explain the phenotype; 

presumably decreased or delayed hormonal action would have to result. It remains a 

formal possibility that, in humans, but not in mice, full development of the male 

phenotype requires expression of a second Y-linked gene, located near SRY and 

perhaps expressed outside the testis. In contrast with XY female mice, XY female 

humans are sterile; some of these individuals have mutations affecting the SRY open 

reading frame (Berta et. al., 1990). Such XY individuals fail to develop mature testes 

or ovaries and instead form poorly differentiated gonads without clear male or female 

histology. Because the gonads lack male hormonal function, Mullerian structures 

persist and female secondary sexual differentiation follows. Infertility may result in 

part from X chromosome monosomy: unlike XO mice, XO humans are sterile. 
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1.2 SEXUAL COMMITMENT AND SRY TRANSCRIPTION. 

The mammalian gonad is composed of germ cells and three types of somatic cells. 

Primordial germ cells, which are first observed in the extraembronic mesoderm 

(Ginsburg et al., 1990), migrate into the primitive gonad at 10.5-12 days post coitum 

(dpc) in the mouse. The somatic portion of the gonad is composed of supporting cells 

(Sertoli cells in the male and follicle cells in the female, thought to derive from 

common progenitors), steroidogenic cells (Leydig cells in the male and theca cells in 

the female), and connective tissue cells. When is gonadal sex determined? Though the 

sexual fate of an embryo is set at fertilisation, it is not known when gonadal cells 

become committed to male or female development. XX and XY mouse embryos are 

morphologically indistinguishable until 11.5-12.5 dpc, when pre Sertoli cells align to 

form testis cords in the XY gonad. By this time a male or female developmental 

program has clearly been initiated. Yet it is not obvious that sex determination 

(commitment) is coincident with the onset of sex differentiation (e. g. histologic 

change). When does the presence or absence of SRY protein result in irreversible 

commitment to male or female differentiation? Barring pleiotropic effects of SRY, it is 

reasonable to suppose that sex differentiation begins when SRY is first expressed. 

Initial experiments suggested that this is from 10.5 to 12.5 dpc in the murine gonads. 

Sry was previously shown to be expressed by germ cells in adult mouse testis 

surprisingly as a circular transcript that seems not to be translated (Capel et al., 1993). 

The embryonic promoter is turned on specifically in the genital ridge at about 10.5-11 

dpc, just before the morphological differentiation between sexes is observed and is 

turned off at about 12.5 dpc. Sry expression in the preimplantation mouse embryo has 

been reported (Zwingman et al., 1993). Althought there is still doubt about these 
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findings, the trancript present in pre implantation embryos may have no function and 

they could all be circular. Moreover there is no evidence for any function for Sry at 

this stage and a role in sex determination seem highly unlikely. 

If it is not compleately clear when sex determination begins, it is equally unclear when 

it finishes. By 13.5 dpc, Sry transcripts are no longer detectable by PCR of gonadal 

RNA (Koopman et al., 1990). While it is not known how long SRY protein persists, 

the function of the Y chromosome in determining the sex of the embryo appears to be 

complete by this time. Given that other proteins must be involved, sexual 

commitments could still be in flux at the time of the disappearance of SRY. 

In which cells do the initial steps in gonadal sex determination occur? Not in the germ 

cells: in mouse embryos that are defective in migration of primordial germ cells to the 

gonad, the process of gonadal differentiation is otherwise undisturbed (reviewed by 

McLaren, 1991). XY animals still develop testes, and XX animals still begin to 

develop ovaries (although follicles will not form). Sex determination must unfold in 

the somatic cell lineage of the gonad. 

In which of the somatic lineage, then, does gonadal sex determination occur? 

Experiments involving XX -- XY chimeric mice, reminiscent of mosaic analysis in 

invertebrates, have sought to identify gonadal cell lineages that become committed to 

male or female development as a direct result of the presence or absence of the Y 

chromosome. These should be the cell lineages in which sex determination initiates. If 

sex determination occurs autonomously in each gonadal cell, then all of XY cells in a 

chimeric gonad should be male and all of XX cells should be female. If, on the other 

hand, the sexual phenotype of a gonadal cell is determined in consultation with its 

neighbors, then the strict correlation of chromosome constitution with cellular 

phenotype should break down. In chimeric mice with testes, the proportion of XX and 
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XY cells in the Leydig population are similar to those seen outside the gonad, 

implying that sex determination does not occur autonomously in Leydig cell 

precursors. In contrast, most but not all Sertoli cells are XY, indicating some direct 

action by the Y chromosome, presumably by Sry (Patek et al, 1991; Palmer and 

Burgoine, 1991). The presence of a few XX Sertoli cells in XX --XY embryos 

indicates that cells lacking Sry can be recruited into the Sertoli population. The 

mechanism by which such recruitment occurs is unknown. Complementary studies in 

XX-XY chimeras with ovaries show that XY precursors can become follicle cells, the 

female counterparts of Sertoli cells. The major conclusion that can be drawn from 

these experiments is that the initial steps that commit the gonad to male or female 

differentiation likely occur in the supporting cell lineage (i. e., in pre Sertoli or 

prefollicle cells). Since Sry encodes a nuclear factor and must be expressed and 

function within the cells that carry out these steps, it is presumably expressed in pre- 

Sertoli cells. 
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1.3 PATHWAYS AND GENES INVOLVED IN SEX DIFFERENTIATION 

Apart from what was reviewed above, rather little is known about the molecular 

nature of gonadal differentiation in mammals, although there is a substantial 

knowledge of the cellular processes that occur during early testis and ovary 

development. The first cells to be differentiated by the action of SRY in the developing 

genital ridge are the Sertoli cells, and they in turn direct the differentiation of the other 

cell type in the testis (Burgoyne et al., 1988). The timing of SRY action during 

development is critical, the SRY gene is normally necessary and sufficient to determine 

testis differentiation, but nothing is known about the genes it regulates to produce this 

effect. 

Sex reversed patients have been the main source of information on candidate sex 

determination genes. The establishment of epistatic relationship between these genes 

and SRY, however, must await their analysis in the mouse. The gene for a severe 

dwarfism syndrome, campomelic dysplasia, often associated with XY female sex 

reversal, has been cloned (Wagner et al., 1994; Wright et al. 1995; Foster et al. 1994). 

The gene encodes a protein related to SRY, and has been named Sox9. The 

phenotype of these patients is associated with inactivating mutations within the open 

reading frame of Sox 9 or with translocations at some distance upstream of the gene. 

These mutations are present in only one allele of the gene, suggesting that sex reversal 

and campomelic dysplasia in these patients could be due to haploinsufficiency of the 

Sox 9 gene product. Sox9 expression was found to closely follows differentiation of 

Sertoli cells in the mouse testis and the timing and the cell type specificity of Sox9 

expression suggests that Sox9 may be directly regulated by SRY (Da Silva et al., 

1996; Kent et al., 1996). Another case of dosage sensitive sex reversal in humans is 
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found in XY females that have duplications in a region of the short arm of the X 

chromosome. One model for this effect assumes that this region contains a gene, 

termed DSS for dosage-sensitive sex reversal, with encodes a female specific function. 

Perheps this is be negatively regulated by SRY in males, but this repression fails when 

the gene is present in a double dose or not X inactivated. A gene that encodes a 

member of the nuclear hormone receptor superfamily has been cloned from this 

region. This geneis responsible for the condition known as adrenal hypoplasia 

congenital (AHC) and has therefore now been named DAX-1 for DSS-AHC critical 

region on the X chromosome (Zanaria et. at., 1994; Bardoni et al., 1994). Dax-1 is 

expressed in the genital ridge in mice at 11.5 dpc, consistent with a role in sex 

determination, but apparently at similar levels in both female and males. By 12.5 dpc, 

Dax-1 is switched off in the male gonad, but remains on in females (Swain et al 

1996). If it is a candidate for a female specific function that is negatively regulated in 

males, any repression will be post transcriptional. Studies in mice on another member 

of the nuclear hormone receptor superfamily, the steroidogenic factor I (SFI) gene, 

has shown that it is involved in gonad development and possibly in sex determination. 

The SF1 gene was first identified as a factor that regulates steroidogenic enzymes in 

the adrenal cortex and gonads (Rice et al., 1991; Lala et at., 1992; Honda et al., 

1993). However, SF1-deficient mice showed a complete absence of gonads as well as 

adrenals, implying that the gene has a function in the initial development of these 

organs before SRY is turned on (Luo et at., 1994).. SF1 has also been implicated in 

sex determination because of its sexually dimorphic expression in the gonad. In fact 

during the sexually undifferentiated stage of gonadal development (9-12 dpc), all 

embryos express SF1 in the genital ridge. As testicular cords form in males, SFI 

transcripts are diffusely expressed throughout the testes. By Northern blotting and in 
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situ hybridisation SF1 expression is shown in Sertoli cells (Ikeda et al., 1994). In 

contrast to its persistent expression in the embryonic testes, SF1 transcripts disappear 

from the ovary between 13-16.5 dpc, reappearing only during late gestation (Ikeda et 

al., 1994). Coupled with the demonstration of SF1 mRNA in Sertoli cells, these data 

suggest that SF1 plays a role in gonadal development. Indeed male and female SF1 

null mice had female internal genitalia, despite complete gonadal disgenesis. These 

studies establish that the gene coding SF I is essential for sexual differentiation and 

formation of the primary steroidogenic tissues (Luo et al., 1994). Furthermore, in 

primary Sertoli cells, SF1 regulates the MIS gene by binding to a conserved upstream 

regulatory element and can activate its transcription in cotransfection assays. In 

heterologous HeLa cells, MIS gene activation by SF I requires removal of the SF I 

ligand-binding domain, implicating a Sertoli cell-specific ligand or cofactor (Shen et 

al., 1994). Since sexually dimorphic expression of SF I during development coincides 

with MIS expression and Mullerian duct regression, SF1 is proposed to regulate MIS 

in vivo and participate directly in the process of mammalian sex differentiation (Shen 

et at, 1994). However, because it is expressed earlier and in both sexes, SF I alone 

cannot account for the testis-specific activation of MIS expression at 11.5 dpc. 

Several studies have implied that SRY does not directly activate MIS but acts through 

an unidentified factor. Differential patterns of expression in the male mouse gonad at 

the time where SRY is thought to act are found for MIS and for desert hedgehog, a 

member of a family of proteins that are known to be important in cell signalling. 

However, mice deficient in either of these genes do not show a phenotype consistent 

with a role in sex determination (Behringer et al., 1994). Recent results show that 

AMH mutations in mice modify the regression of Mullerian ducts and suggested that 

it might be involved in the control of proliferation of steroidogenic cells in the testis. 
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From all these results sex determination in mammals appears to be a puzzle of several 

genes whose function is far from completely understood. 
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1.4 SRY PROTEIN AND HMG BOX DOMAIN: A GENERAL OVERVIEW. 

The human SRY gene encodes a protein with a central high mobility group domain 

(HMG box) of about 78 amino acids. This box is also present and conserved in 

several eukaryotic proteins. It is a DNA binding domain recently discovered and first 

recognised by sequence alignments of hUBF, a transcription factor for human RNA 

polymerase I, with HMG1, an abundant and strongly conserved component of 

mammalian chromatin (Jantzen et al., 1990). Several additional members of the HMG 

family have since been described. Sequence analysis of this family indicates that the 

HMG box is a minimally stretch of about 70 amino acids, with a net positive charge 

and an abundance of aromatic residues and prolines. Among the members of this 

family the similarity of the primary sequences of HMG boxes is modest: no residue is 

absolutely conserved, and just three residues show only conservative substitutions in 

all known HMG boxes (Fig. 1). The sequence variation between HMG boxes is 

paralleled by the diversity of their presumed biochemical functions. One subgroup of 

proteins is clearly related to HMG1 and comprises structural components of 

eukaryotic chromatin. HMG1-like proteins are present in all eukaryotes and in all 

tissues of higher organisms. However their physiological function remains elusive; 

roles have been suggested in DNA replication, in nucleosome assembly and in 

transcription (reviewed by Bustin et al., 1990, and Bianchi et al., 1992a). Another 

subgroup of proteins comprises general transcription factors of RNA polymerase I 

and mitochondrial RNA polymerase; some of these proteins, such as hUBF (Jantzen 

et al., 1990), contain HMG boxes as moderately repeated elements. A third subgroup 

has recently attracted much interest: it comprises a number of fungal proteins involved 

in mating-type expression (Staben and Yanofsky, 1990; Sugimoto et al., 1991), the 
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mammalian testis determining factor SRY (Gubbay et al., 1990; Sinclair et al., 1990), 

the protein product of Sox genes and a set of lymphoid-specific enhancer binding 

factors (Travis et al., 1991; van de Wetering et al., 1991; Waterman et al., 1991). 

These proteins are most likely transcriptional regulators: protein LEF-1, for example, 

is expressed specifically in pre-B and T lymphocytes and is involved in the 

transcription of the gene for the T cell receptor alpha chain (Travis et al., 1991; 

Waterman et al., 1991). 

Up to now there is no clear evidence of the function of the portion of SRY proteins 

outside the HMG box. Also within mammals, the comparison of SRY proteins during 

evolution shows that protein segments flanking the HMG-box are highly variable in 

sequence and length and cannot be aligned (Whitfield et al., 1993; Tucker et al., 

1993). This feature is also shared within primates, where the C-terminal domain varies 

extensively. All these data may be explained by if all the functions of SRY reside in 

the highly conserved HMG-box. Another possibility is that natural selection favors the 

fast adaptive divergence of the non-box regions. In accordance with the first 

hypothesis, the importance of the HMG box is underlined by the analysis of human 

sex reversed XY females. All the single point mutations of the hSRY gene found in 

patients associated with sex reversal phenotypes fan within the HMG box. 

Both NLS motifs are conserved in the HMG-boxes of other transcription factors, and 

are supposed to act as a bipartite basic motif, both able to independently direct the 

protein into the nucleus. 
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1.5 DNA BINDING 

HMG boxes from all three subgroups have been shown to be necessary and sufficient 

to bind DNA: the two HMG boxes of HMGI have been produced in E. coli as 

separate polypeptides, which bind to DNA with about the same affinity and specificity 

as the full-length protein (Bianchi et al., 1992b); Xenopus UBF binds to DNA via its 

boxes (McStay et al., 1991); some mutations in the HMG box of human SRY can 

abolish its capacity to bind to DNA as well as its biological activity (Berta et al., 1990; 

Harley et al., 1992), and the isolated HMG box of LEF-1 retains the DNA binding 

properties of the whole protein (Giese et al., 1992). HMG boxes are therefore 

authentic DNA binding domains, which can fold independently from the rest of the 

polypeptide. The nature of the DNA targets recognised by HMG boxes, however, is 

not obvious. A common feature of all HMG boxes is that they have considerable 

affinity and specificity towards bent DNA, e. g. as cruciform structures, irrespective of 

their sequences. The HMG box chromatin proteins (subgroup 1) seem to be 

indifferent to DNA sequence information. They only share with the HMG box family 

the considerable affinity and specificity towards four-way DNA junctions and 

cruciform structures, such as those extruded from inverted repeat sequences under the 

effect of supercoiling (Bianchi, 1994; Lilley, 1992). The HMG-box proteins of 

subgroup 2 (the nucleolar and mitochondrial transcription factors), while still 

endowed with sufficient sequence discrimination to produce specific footprints, do not 

bind to DNA sites with a recognisable consensus sequence (Pikaard et al., 1990 ab; 

Parisi and Clayton, 1991). Therefore the binding to DNA does not seem to depend 

entirely on sequence recognition. The transcriptional regulators (subgroup 3) produce 

specific footprints on DNA, spanning sequences with a recognisable consensus 
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(Waterman et al., 1991; Nasrin et al., 1991; Travis et al., 1991). Human SRY can 

recognize synthetic duplex DNA fragments of the sequence AACAAAG (Harley et 

al., 1992). Methylation interference and base substitution experiments show that LEF- 

1 and the related TCF-1 proteins recognize the AACAAAG motif predominantly 

through minor groove contacts (Giese et al, 1991,1992; van de Wetering and 

Clevers, 1992), where the recognition of bases is therefore restricted. This limits their 

binding specificity; for example numerous substitutions in the target site of SRY are 

allowed (Harley et al., 1992) and specific and non-specific binding affinities differ by a 

factor of only 20 to 50 (Ferrari et al., 1992). Upon binding, these proteins distort the 

DNA to dramatic extents: SRY produces a bend of about 80 degrees centered at the 

GAACAAAG sequence in the CD3e enhancer (Ferrari et al., 1992). Genetic 

experiments have identified the weakly related sequences RAACAAAGAA and 

GAGAACAATRR as the consensus target sites of the fungal protein Stell 

(Sugimoto et al., 1991). In general, all the binding sites for the HMG-box 

transcriptional regulators are AT-rich, and the same sequences are recognised by 

several proteins of this group. HMG box transcription regulators of this family upon 

binding induce a sharp angle in their DNA consensus sequence. Although fairly low, 

the sequence specificity of each individual protein is compatible with a function in 

gene-specific transcription regulation. The role of the DNA binding and bending 

ability of the HMG box is so far elusive, at least for SRY. 
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1.6 BINDING, BENDING AND BIOLOGICAL EFFECT OF HMG BOX. 

HMGI has been recently purified as the factor able to increase the binding between 

human progesterone receptor (PR) and its DNA binding site, the progesterone 

response element (PRE). This effect appears to be highly selective for HMG I, and the 

increase in binding affinity for a partial palindromic PRE present in natural targets 

genes was greater than 10 fold. 

Because HMG boxes of HMGI stimulate the binding and can flex DNA it could be 

possible that HMG1 facilitates the binding of PR inducing a structural change in the 

target DNA (Onate et al., 1994). A similar role could be played by the protein HMG2 

in another context. This protein increases the DNA binding activity of octamer 

transcription factors (OCT proteins), supporting these factors in their role as 

transcriptional activators (Zwilling et al., 1995). 

UBF, the upstream binding factor of RNA polymerase I, can also bend linear DNA 

inducing positive supecoiling, suggesting that UBF wraps the DNA. Additional 

studies provide evidence that wrapping DNA is produced in a right handed direction, 

opposite to the nucleosome' s one. 

UBF-induced DNA wrapping could be a mechanism by which UBF counteracts 

histone mediated gene repression. 

Protein LEFI contains, like SRY, one HMG box domain that induces a sharp angle in 

the DNA. This protein recognises a DNA consensus sequence on the T cell receptor 

alpha gene enhancer; the minimal enhancer element was shown to contain binding 

sites for at least others two distinct factors, flanking the binding site of LEF 1. All 

three sites are recognised for enhancer function. A series of experiments revealed that 

mutations that alter the relative positions of the three sites inactivate the enhancer. 
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Moreover, it appeared that LEF 1 protein cannot activate transcription on its own, but 

must act in concert with factors that bind to the other two sites of the enhancer. 

By using LEF1 in a different context it is also possible to study the connection of its 

HMG box and the in vivo topology of DNA . 
This protein is in fact able to interact 

with its DNA binding site in the human HIV I enhancer. By using a nucleosome- 

assembly system derived from Drosophila embryos, it was found that the packaging of 

DNA into chromatin, in vitro, strongly represses HIV I transcription and that 

repression can be counteracted efficiently by preincubation of DNA with LEF 1 

supplemented with a fraction containing the promoter binding protein Sp l (Sheridan 

et al., 1995). This observation and additional studies of LEF1 ability to bend DNA led 

to the proposal that LEF1 acts as an architectural component in the assembly of the T 

cell enhancer complex. According to this model, LEF 1 induces a bend in DNA so 

that transcription factors bound to recognition sequences flanking the LEF I binding 

site can interact with each other. 

SRY action could be explained in the same way. Proteins bound at either side of the 

SRY binding site may then be brought into close contact and form a stable complex. 

In turn, the complex would freeze the deformation of the DNA molecule, and 

indirectly stabilise the binding of SRY. In fact, it was shown previously that SRY 

binds with high affinity to distorted DNA molecules, like four-way junctions, 

irrespective of their sequence (Ferrari et al., 1992). This possible role is supported by 

two pieces of evidence: 

1) among different species, the only part of the protein conserved is the HMG box 

domain. 

2) the only mutations in SRY known to cause sex-reversal in humans fall within the 

HMG-box domain (Berta et al., 1990, Hawkins el al., 1992, Hawkins, 1994 ). 

28 



To find evidence for a possible role of the DNA bending activity of the HMG box of 

SRY in gene expression and differentiation, and a possible correlation between an 

anomalous geometry of the DNA-protein complex and a biological effect of the 

mutation, we analysed SRY mutants associated with sex-reversal in humans. Five 

mutations with varying degrees of severity were considered. Moreover, we considered 

also the behavior of seven SRYs from different primates that, irrespective of 

substitutions occurring within the HMG box, have biological functions selected by 

evolution. 

Five mutations with varying degrees of severity were considered. Mutations F109S 

and 190M were associated with complete gonadal dysgenesis in the patients where 

they were first identified, but were also present in normal male relatives of the 

patients, including the father (Hawkins et al., 1992b; Jager et al., 1992). These 

mutations therefore have low penetrance, are transmissible, and may cause a 

differentiation defect only in specific environments or in association with specific 

genetic backgrounds. Mutations G95R and M64I were identified only in patients with 

complete gonadal dysgenesis but not in their relatives, and have arisen de novo (Berta 

et al., 1990; Hawkins et al., 1992a). Mutation K106I was also associated with 

complete gonadal dysgenesis, but no male relatives of the patient were available for 

testing (Hawkins et at., 1992b). 
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RESULTS 



2.1 PRODUCTION OF WILD TYPE AND MUTANT SRY DNA BINDING 

DOMAINS 

We first chose to compare HMG box A of rat HMGI (HMG1bA, amino acids -8 to 

81 in the numeration of figure 1) with the HMG box of human SRYs, identified on the 

basis of its sequence similarity to other HMG boxes (Sinclair et al., 1990; figure 1). 

To express and study protein mutations of HMG boxes, it was first necessary to 

subclone their DNA coding sequences. Since the SRY gene does not contain introns, 

DNA fragments coding for the HMG box of normal and mutant human SRY were 

obtained by polymerase chain reaction (PCR) of total genomic DNA with specific 

oligonucleotides. 

PCR is a method for amplifying DNA enzymatically. The first step simply entails 

mixing template DNA, two appropriate oligonucleotide primers, Taq DNA 

polymerase, deoxyribonucleoside triphosphates (dNTPs), and a buffer. The mixture is 

then cycled many times (in this case 25) through temperatures that permit 

denaturation, annealing, and synthesis in order to exponentially amplify a product of 

specific size and sequence. The PCR products are then displayed on an appropriate 

gel and examined for yield and specificity. The oligonucleotides used in our 

experiments contain two restriction enzymes sequences (NdeI-HindIII) in order to 

subclone the PCR fragments in the expression vector pT7-7. This vector (Studier et 

al, 1991) is a T7 expression vector containing the T7 promoter upstream of the gene 

to be expressed. The vector is designed for the exclusive expression of the cloned 

gene. This vector can then be used for production of intact native proteins by fusing 

coding sequences at the Mel site immediately preceding the ATG. In addition to the 

promoter, this vector contains also a ribosome binding site. In E. coli the ribosome 
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binding site includes an initiation codon (ATG) and a sequence 3-9 nucleotides in 

length located 3-9 nucleotides upstream of the initiation codon. This sequence, which 

is called the Shine Delgarno (SD) sequence, is complementary to the 3' terminus of E 

coli 16S rRNA. Binding of the ribosome to mRNA is thought to be promoted by base 

pairing between the SD sequence in the mRNA and the sequence at the 3' terminus of 

the 16S rRNA. 

Another factor required to express cloned DNA with this system is bacteriophage T7 

RNA polymerase. This polymerase recognises solely bacteriophage T7 promoters; it is 

a very processive RNA polymerase, and may transcribe sequences that are not 

efficiently transcribed by E. coli RNA polymerase; this system allows high levels of 

expression of some genes that are not expressed efficiently in other systems. T7 

polymerase is the product of bacteriophage T7 gene 1 and can be provided on an 

infecting bacteriophage lambda vector or produced from a gene copy inserted into E 

coli chromosomes. If expression of the cloned gene is toxic, then the level of 

bacteriophage T7 RNA polymerase must be kept low during cell growth. One way to 

accomplish this is to use the lysogen BL2I(DE3), in which bacteriophage T7 gene 1 is 

expressed from the LacUV5 promoter, such thatit is inducible by IPTG. 

To allow the synthesis of the HMG box in E. coli, these primers where also designed 

in order to change valine 4 (see figure 1) to methionine, to provide a translation start 

site. Also lysine 77 was changed to a stop codon. DNAs from PCRs were then 

digested with restriction endonucleases Na! and HindIII, loaded on an agarose gel, 

gel purified and cloned between the NdeI and Hind!!! sites of plasmid pT7-7. The 

resulting plasmids were then introduced in strain BL21(DE3), a host strain containing 

an IPTG inducible gene for T7 RNA Polymerase. Plasmid DNA from positive 

colonies was extracted and checked by sequencing with T7 DNA polymerase (see 

32 



L 10 20 30 40 SO 60 70 

rat HMG 1 boxA 
rat HMG t boxB 
maize HMGI4ike 
Tetrahymenä 8 
S. oereviniee NHPEA 
other proteins: 

GOPKKNRGKMSSYAFFVQTCREEHKKKHPDASVNF3£FSKKCSERMKTMSAKEKGKFEOMAKAOKARYEREMKTYIPPKGeT 
KOPNAPKRPPSAPFLFCSEYRPKIKGEHPCLSI""GOVAKKLGEMNNNTAADOKQPYEKKAAKLKEKYEKDIAAYRAKGKPU 
KDPNKPKRAPSAFFVFt1EEFRY. EFKEKNPKNKS"VAAVrKAAGORNKSLSESDKAPYVAKANKLKLEYitKAtAAYiJF:.; E; TA 
DLPSKPKRPCTGFFIYK3EVFAKRkTECPTLKV""PEIVSKISEEYKALPEF: EKQKYEEAYkKEKATYDKQNUQWr: F: KYGDI 

F: JPNAPKRALSAYMFFANENRDIVR:; ENPOITF""G: lV; KKLCEFaKALTPEEKQPYEAKAQADF. Y. RYESEKEL7NATLA 

mammalian HMG2. trout HMG-T, Tatrahymena C. yeast NHP6B 

human UBF boxt 
human UBF boxt 
human UBF box3 
human UBF box4 
mt TF1 boxA 
mt TFt box8 

human SRY 
mouse LEF"t 
S. pombe Mc 
other proteins: 

KHPDPPKKPLTPYFRFPMEiiRAKYAº: LHPEMStJ""LDLTKIL3KKYKHLPEKKF: MKYIQDFQPEKOEFERNLARFP. EDNPDL 
KKSDIPEKPKTPQVLWYTHF. i: KVYLKVRPOATT""F. EVKCSLGKQ: 4: QL3DKKRLKHIHKALEQRi: EYEEI: dRDYIQKHP: 'L 

CCSEKPKRPVSAMPIFS"r. hF: RRQLQEERPELSE""SELTRLLARMWNDLSEKKKAKYKAREAALKAQSERKP: CEF. ESR, F: L 

FDCRPTKPPPNSYSLYCAELMANM"KDVP3"""""TERMVLCSQQWKLLSQK_°KDAYHKKCDQKKFDYEVELLRFLESLPEE 
VLASCPKKPVS3YLRFSKEQLPIPKAQNPOAKT""TELIRRIAQP. WRELPOSKKwIYQDAYRA6WQVYKEEISRFKEvLTNS 
TLLCKPKRPRSAYNVYVAEF. FQEAKCDSPQ""""""EKLKTVKENWKNLS'JSEKELYIGHAKEDETRYHNEMK: iti6EQMIEV 

NVQORVKP. PMNAFIVWSROQRRF: MALENPRMP. N""SETS'r. QLJYQWKMLTEAEKWPFFOEAQKL`AMhREF. YPNYKYP. P? F. k 
PKRPHIKKPLNAF14LYMKEMRANVVAECTLKES""AAINQILGRR: ýHALSREEGALYYF. LARKEAQLH! IQLYPCWSARDt1YC 
TSTERTPRPPNAF: LYRKEKHATLLKSNPSINrr""SQVSKLVGEMWRNESKEVP.. MRYFKMSEFYKAQHQKMYPCYK"iLFkKN 

mouse SRY"tike proteins, S. carevisiae and N. crassa mating-type proteins 

Consensus PKRP.. aý. St.. 6......... P...... a65... Sa.. NK. LO ... K.. t....... K.. N...... Y 

1 10 :0 10 i+) SO 60 '0 

Fig. 1. Alignment of HMG boxes. Only proteins mentioned in the main text are 

shown, a more exhaustive compilation may be found in Bianchi et al: (1992a). The 

first group of HMG boxes are from chromatin proteins. HMGI proteins of mammals 

have two HMG boxes and are identical save conservative substitutions in the C- 

terminal acidic stretch (not shown here): plant, protozoan and yeast HMG I-tike 

proteins contain a single HMG box. The second group of HMG boxes are from 

general transcription factors for RNA polymerise I (human UBF, with four boxes) 

and mitochondrial RNA polymerases (human mtTFI, with two boxes). The third 

group of H1VIG boxes are from transcriptional regulators. Dashes indicate gaps in the 

alignment: Z indicates a stop codon in the gene. The consensus sequence for the 

1-IMG box motif was obtained from 21 protein sequences: one-letter symbols indicate 

amino acids present in 50-90% of the sequences: conservative substitutions (at least 

75% of the occurrences at a particular position) are indicated as follows: (c for 

proline, alanine, glycine, serine and threonine: % for tryptophan, phenylalanine and 

tyrosine: $ for methionine. valine, leucine and isoleucine. The numbering system starts 

from the first conserved proline and is based on FLN(IG I box A. 
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materials and methods). Bacterial cells containing the right constructs were grown up 

to O. D. 600=0.6 and then T7 protein expression was induced by IPTG for two hours. 

Part of the E. coli extract was boiled in a denaturing loading buffer (Laemmli buffer) 

and separated on SDS PAGE to verify if corresponding polypeptides were expressed 

at high levels in E. coll. The majority of the bacterial pellet was resuspended in a 

sonication buffer, sonicated until clarification, treated with DEAE cellulose to remove 

nucleic acids and then centrifuged. The supernatant containing the soluble 

recombinant protein was filtered through a cache of glass wool, applied to a Mono S 

FPLC column. This column is a strong cation exchanger with charged sulfonic groups 

which remain negative over the pH range 2-12; it was used because wt and mutated 

hSRY boxes have a high content of basic residues. Fractions were then analysed on 

SDS PAGE, and also monitored with absorbance. Purified proteins were eluted in 

fractions containing 1M NaCI (see Materials and Methods). Proteins were 99% pure 

(figure 2). 

33 



12 11 10 987654321M 

Fig. 2. Purification of E. coli HMGboxes. 

Proteins were purified by removing most E. coli proteins by precipitation with 

ammonium sulphate, and fractionation of the resulting supernatant by chromatography 

(see Materials and Methods). 

Aliquots from the mono S fractions were mixed with I p. g of BSA. to serve as an 

internal quantity standard. When electrophoresed on SDS phage. a single band with 

an apparent molecular mass of about 9 Kd appears in fraction 3 and 9. Molecular 

mass standards are shown in lane M. 
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2.2 THE AFFINITY OF WT AND MUTANT BOXES FOR BENT DNAS 

The HMG box domains of HMG1 (an abundant chromatin protein) and UBF (a 

general transcription factor for RNA polymerase I) all recognise four-way junctions 

structure-specifically and sequence-independently (Bianchi et al., 1992a, 1992b; Kuhn 

et al., 1994). The recognition of this unusual DNA structure is related to the 

functional properties of this class of proteins (Lilley, 1992), and depends on the 

structural integrity and correct folding of the HMG box domain (Falciola et al., 1994). 

To find evidence for a possible role of the stability of DNA-protein complex of the 

HMG boxes of SRY in gene expression and sex determination, we tried to compare 

their affinities for DNA. 

Binding specificity and affinity of the normal and the five purified mutant HMG boxes 

(hSRY boxes) for a bent DNA fragment were determined in band shift assays using a 

limiting amount of labelled DNA and titrating the polypeptides (see below and 

Materials and Methods). 

The gel shift assay is one of the most powerful methods for the analysis of DNA- 

protein interactions. The assay itself is simple; DNA and protein are mixed together, 

the solution subjected to vertical electrophoresis through polyacrylamide gel, and the 

gel is then analysed for DNA, usually by autoradiography of radiolabeled DNA. 

Binding of the protein to the DNA can result in a complex that has a different 

electrophoretic mobility from the free DNA. In general, the mobility of the complex is 

retarded relative to the unbound DNA and thus the assay is often called gel 

retardation. The separation of the complex from the free DNA, and therefore the 

detection of the complex, is dependent on a variety of factors. Factors that influence 

the electrophoretic mobility of DNA-protein complexes include the molecular weight 
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of the protein and the DNA, the ionic strength and the pH of electrophoresis buffer, 

the concentration of the gel matrix and the temperature. The principle of the gel shift 

assay is that the entry of the mixture of free DNA and DNA-protein complex into the 

gel matrix results in the physical separation of the two species. In the subsequent 

electrophoresis, the protein generally makes no difference to the mobility of the free 

DNA, although it has been shown that complexes reversibly dissociate and reassociate 

within the gel. However, even if the bound DNA dissociates from the protein during 

electrophoresis, it can never "catch up" with the DNA that was free at the start of the 

run. The concentration of each species can then be determined. Assays of this type 

can yield the equilibrium constant for the binding of the protein to its DNA ligand and 

also the kinetics of the interaction. 

With this technique, mutated and wt hSRY proteins were demonstrated to recognize 

with high affinity bent DNA, irrespective of its sequence. A probe with bent DNA 

structure was obtained by annealing four appropriately chosen oligonucleotide 

sequences. In this way molecules were generated with the shape of cruciform 

(cruciform c), similar to those of Holiday junctions (Fig. 3). Cruciform DNA was 

labelled with 32P and gel purified; wt and mutated SRY boxes were then incubated 

with labelled junction probe c and samples were applied to vertical polyacrylamide 

gels. Gels were electrophoresed, dried and autoradiographed for 16 hours. 

All hSRY boxes formed well defined complexes with the four-way junction probe c. 

Figure 4 shows the band shift experiment obtained with wt hSRY box. About 0.5 ng 

of peptide hSRY box (lanes 1-4) or control buffer with no protein (lane 5) were mixed 

in standard binding buffer with various concentrations of four-way junction DNA c, 

and assayed by gel electrophoresis as described before. Wt hSRY box forms well 

defined complexes with four-way junction probe c; the slower moving complexes 
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FIG. 3 
. 

Design of an artificial cruciform DNA. 

The molecule c, unlike natural cruciform DNA, has no sequence symmetry and cannot 

dissociate through branch migration. Cruciform DNA molecules were produced by 

annealing chemically synthesised oligonucleotides 1,2,3, and 4. 

I: CCCT. -ATAACCCCTGCATTGAATTCCAGTCTGATAA 

2 GT. AGTCGTGAT. -kGGTGC.. \GGGGTTATAGGG 

3 AAC. AGTTAGCTCTT. -ATTCGAGCTCGCGCCCTATCACGACTA 

-4: TTTATCAG. ACTGGAATTCAAGCGCGAGCTCG. AATAAGAGCTACTGT 
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Fib. 4 Peptide hSRY box recognises the four-way junction DNA c. About 05 

nanograrns of peptide hSRYbox (lanes I to 4) or control buffer with no protein (lanes 

5) were mixed in standard binding buffer with various concentrations of four-way 

junction DNA c, and assayed by gel electrophoresis as described in Materials and 

methods. The concentration of DNA was as follows lanes I, 1.5 nM, lanes 2. S nM: 

lanes 3,40 nM; lanes 4 and 5,200 nM. 
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formed by wt hSRY box probably contain multiple copies of polypeptide per DNA 

molecule, some bound to the high affinity sites at the base of the junction and some to 

low affinity sites on the arms of the junctions. 

In similar band shift assays mutant SRY boxes were shown to recognise four-way 

junction probe c with the same affinity as the wt protein and the same multiple 

retarded bands at high protein to DNA ratios were observed. 

To obtain convincing proof that wt and mutated hSRY boxes recognise the peculiar 

shape of four-way junctions, and not sequence-specific binding sites adventitiously 

present in the junction, binding affinities of wt and mutant SRY boxes for linear and 

junction DNA were examined in more detail by means of additional band shift assays. 

In this experiment another type of junction (z) was used, which contains sequences 

deliberately chosen as poor binding sites for SRY (Harley et al., 1992). Cruciforms c 

and z have different sequences but share the same bent structure. 

Control DNAs were obtained by synthesising linear duplex DNAs containing the same 

sequence of the arms of cruciform z (az and bz) but they will have a different shape 

(figure 5). These molecules do not have angles distorting the axis of the DNA. 

Although the artificial cruciform z has no obvious sequence similarity with cruciform 

c, it is recognised in the same way by wt and mutated SRY boxes. Control linear 

duplex DNA (az and bz) which contains the same sequence as cruciform DNA but a 

different structure are not recognised with high affinity by these proteins. Figure 6 

shows the band shift assay performed with wt hSRY box and probe junction z, versus 

linear duplex arms az and bz. Labelled junction z, duplex az and bz were mixed in 10 

microliters of standard binding buffer with the identical amounts of wt hSRY box 

peptide. Samples were applied to a vertical 6.5 polyacrylamide gel and elecrophoresed 

as described in materials and methods. 
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AGCGCTCTCACACGGGCCTCCTCCGCCCAGCTG 
TCGCGAGAGTGTGCCCGGAGGAGGCGGGTCGAC 

GGGGTTAACGTCCGCGGTAATCTGGTACA 
CCCCAATTGCAGGCGCCATTAGACCATGT 

DUPLEX az 

DUPLEX bz 

Fig. 5 Design of an artificial cruciform DNA. 

The molecule z, unlike natural cruciform DNA, has no sequence symmetry and cannot 

dissociate through branch migration. Cruciforms z and c have no obvious sequence 

similarity, but are both recognised by SRY box. Cruciform and linear duplex DNA 

molecules were produced by annealing chemically synthesised oligonucleotides. 
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Fig. 6. Peptide hSRYbox does not recognize linear control DNAs az and bz at the 

concentrations optimal for complex formation with junction z. Labeled junction z, 

duplex az and bz (0.2 mM) were mixed in 10 µl of standard binding buffer with the 

indicated amounts of hSRYbox peptide. Electrophoresis and auto radiography were 

done as described in materials and methods. 
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Peptide wt hSRY box does not recognise linear control DNAs az and bz at the 

concentrations optimal for complex formation with junction z. The identical result was 

obtained by performing the same experiment with all mutated SRY boxes associated 

with sex reversal phenotypes. 

To investigate in more detail if various single point mutations associated with sex 

reversal phenotype could slightly affect the binding affinity of a bent DNA, constants 

of dissociation of the DNA-SRYs complexes were measured and compared. 

Band shift assays are ideal for equilibrium studies, because bound DNA can rapidly 

separate from free DNA. DNA retained by the protein can be easily quantified and 

compared with free DNA. The protein DNA binding interaction can be looked at as 

an equilibrium represented by the equation: 

[PDI=[ ]+[Dl, 

so that Keq = [P][D]/[PD] 

where [P]= concentration of total protein. It corresponds to the concentration of free 

protein if the concentration of protein bound to DNA is very low; this is possible 

when the concentration of total DNA is«[P]. 

[D]= concentration of free DNA 

[PD]= concentration of protein DNA-DNA complex. 

Keq= equilibrium dissociation constant (in this case referred as the dissociation 

constant, Kd). 

The Kd of a given protein-DNA interaction is a measure of the affinity of the protein 

for that particular piece of DNA. The apparent Kd can be determined by a band shift 

assay in which protein is titrated against a known amount of DNA containing the 
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binding structure or site being tested. The half -maximal point of the resulting curve is 

equal to the Kd, since at the 50% saturation of the DNA, [PD]=[D]. 

Therefore, the equation 

Keq=Kd= [P][D]/[PD] is reduced to Kd=[P]. 

This simplification is true only if [D]«Kd. 

Therefore, as in our case, the amount of DNA used in these experiments in usually 

very small. 

This basic algebra means that in a band shift assay, under conditions of protein excess, 

the dissociation constant is equivalent to the concentration of polypeptide when half 

of the input DNA is taken up in the complexes and half is free. 

All mutant SRY boxes were then individually titrated and analysed in a band shift 

assays, with four way junction probe z. 

The affinities of the mutant SRY DNA binding domains towards junction z were 

indistinguishable from that of the wild type domain (Table 1). From these 

observations we can conclude that the various proteins were all equally active towards 

these DNA molecules, indicating that the amount of inactive polypeptide chains was 

irrelevant and that the amino acid substitutions did not cause gross misfoldings of the 

SRY proteins. 
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Fib. 7 DNA binding properties of some hSRYboxes. 

DNA binding mixtures were set up to contain 1.5 nNI labelled four way junction DNA 

z. Each panel contains the following amounts of the indicated peptides: lanes 1, no 

protein, lanes 2,5 OvI, lanes 3,10 nil, lanes 4,20 nMVl. Samples were assayed by 

electrophoresis as described in materials and methods. The faster migrating band is 

free DNA, the slower is the SRY box -junction complex. 

38B 



MUTATION TYPE 

WT 

F 109S FAMILIAL 

190M FAMILIAL 

M641 DE NOVO 

K 1061 RELATIVES UNAVAILABLE 

G95R DENOVO 

KD FOUR-WAY 
JUNCTION DNA 

10,8 IM 

10's m 

10,8 M 

10 ,gM 

10 -8 M 

10-8 M 

Table 1. SRY mutations characteristics and properties of the bent DNA-SRY boxes 

interaction. The mutations in SRY we have considered were described by Berta et al. 

(1990), Hawkins et al. (1992a, b) and Jager et al. (1992). The dissociation constants 

for complexes between the various SRY boxes and DNA were calculated by titrating 

the SRY box polypeptides against 0.25 M DNA and assaying the formation of 

complexes by electrophoretic mobility shift assays. "Four-way junction" refers to 

junction molecule z, which was chosen because the sequences it contains cannot be 

recognised sequence-specifically by SRY protein (Ferrari et al.. 1992). The reported 

values are the mean of at least two assays. 
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2.3 THE DNA-BENDING ACTIVITY OF NORMAL AND MUTANT SRY 

BOXES 

The results described in the previous sections establish that hSRY boxes can bind 

efficiently to structurally similar targets where the DNA is strongly distorted. 

It was previously shown that wt hSRY recognises a double stranded DNA consensus 

site and induces a distortion in the axis of the molecule. To test if single point 

mutations in hSRY box, associated with sex reversed phenotype, can modify the 

geometry of the DNA-protein complex, we performed a circular permutation assay to 

detect any large distortions induced in linear DNA. DNA fragments with a distortion 

in the middle of the molecule have a different shape, and hence different 

electrophoretic mobility, compared to DNA fragments of identical length and 

composition with a distortion near one end (Wu and Crothers, 1984). The bending 

angle alpha is defined as the angle by which a segment of the rod like DNA duplex 

departs from linearity. It is possible to estimate alpha by measuring the mobility of the 

complex with the protein bound at the middle of the fragment and the mobility of the 

complex with the protein bound near the end of the DNA fragment using the 

relationship reported in Materials and Methods. 

Although the relationship between electrophoretic mobility and conformation is 

complex (Levene and Zimm, 1989), the algebra allows one to map the locus of 

protein-DNA interaction and to estimate the amount of distortion introduced in DNA 

simply by measuring the rate of migration in polyacrylamide gels of complexes of 

protein with DNA fragments of circularity permuted sequence (Liu-Johnson et al., 

1986; Thompson and Landy, 1988; also see Materials and Methods). 
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To generate the probes for the permutation assay, a short sequence from the enhancer 

of the CD3e gene, containing the AACAAAG sequence and previously shown to be a 

good binding site for human SRY protein (Harley et al., 1992), was cloned between 

two directly repeated sequences in plasmid pBend2. These two duplicated circular 

permuted sequences contain the same set of 17 cloning sites for insertion of protein 

binding sequences (figure 8). The duplicated sites can be used to generate DNA 

fragments of identical length, but in which the protein binding sequence is shifted. 

Sites Xbal and Sall are unique, in the middle of the tandemly repeated sequences and 

suitable for the cloning of the protein binding sequence. 

Briefly, to subclone the CD3 epsilon site in the vector, synthetic oligonucleotides 

CTAGAGAGCGCTTTGTTCTCAG and TCGACTGAGAACAAAGCGCTCT were 

annealed, generating a double stranded molecule containing sticky ends cmplementary 

to the overhangs produced by cutting with restriction endonucleases Xbal and Sall. 

This molecule was subcloned within the Xbal and SaII sites of the vector p Bend 2; 

the recombinant vector was checked by sequencing and digested with the set of 

restriction enzymes reported in figure (8). Cleavage with restriction endonucleases 

indicated in the map of fig. 8 yielded a set of fragments of DNA (designated A-G) 

containing circular permutations of the same sequence of 141 b. p. These molecules 

therfore have identical lengths, the same sequences but each has a different distance 

from the binding site and the ends of the molecule (circular permuted sequences). 

Circular permuted fragments were gel purified and the same amount of DNA was 

labelled with 32P (see material and methods) and incubated with purified wt and 

mutated SRY boxes. Samples were applied to a polyacrylamide gel and the 

electrophoretic mobility of the resulting complexes were analysed. Figure 9 shows the 

electrophoretic mobility of the circular permuted DNA fragments complexed to the 
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Fig. 8 Circular permuted probes. Plasmid pB2CD3e, containing the CD3e site 

(stippled box) flanked by tandemly duplicated DNA sequences, was cleaved at the 

restriction sites indicated in the map. The DNA fragments obtained in this way 

(designated A to G) all contain circular permutations of the same sequence of 141 bp 
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flexure displacement 

Fig. 9. Circular permutation analysis of DNA flexure induced by binding of human 

SRY to the AACAAAG sequence. A. Electrophoretic mobility of the circularly 

permuted DNA fragments complexed to the human SRY protein. DNA fragments A 

to G (Fig 6,8 femtomoles) were mixed with sonicated salmon sperm DNA (50 n`; ) in 

9 µI of standard DNA binding buffer (see Materials and methods). To the various 

mixtures we added l µl of purified fraction (about 5 ng of protein) containing human 

SRY, or the same volume of water. Electrophoresis and autoradiography were 

performed as indicated in materials and methods. B. Mapping of the locus of flexure 

and analysis of the bending parameters. The mobilities of the protein-DNA complexes 

(Rbound) were normalized to the mobility of the corresponding free DNA (Rfree). 

The distance of the center of the CD3e site from the 5' end of the probe was divided 

by the total length of the probe (flexure displacement). The plotted points were 

interpolated with a quadratic function as described in materials and methods. The 

fitting second-order equation was y=1.117x2 - 1.13 Ix + 0. SO4 (R2 = 0.097). The 

first and second-order parameters of the equation are in close agreement and yield an 

estimate of deviation from linearity of about 83". The locus of flexure was localized to 

the center of the AACAAAG sequence, ±2 bp. 
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human SRY box. The formation of complexes was dependent on the presence of SRY 

proteins. DNA-protein complexes with the CD3e binding site in the middle (fragment 

D) migrated significantly slower than complexes with the site near the ends (fragments 

A and G). No statistically significant difference in the mobility of the free DNA probes 

was observed, indicating that the CD3e site does not distort DNA on its own. By 

analysing the data in terms of a simple geometric model (see legend of figure 9 and 

Materials and Methods), the locus of flexure was localised to the center of the 

AACAAAG site. 

We then compared the different mobilities of the nucleoprotein complexes of mutated 

SRY boxes and the angles they induced on target DNA. Figure 10 shows a 

comparison between the electrophoretic mobilities of complexes of wild type hSRY 

box and mutant F109S (panel B), mutant M641 (panel C) and mutant K1061 (panel D) 

with probes A-G containing the CD3e site GAACAAAG. Briefly, 3 fmol of labelled 

DNA probes were mixed in 9 µl of standard DNA binding buffer (see Materials and 

Methods). To the various mixtures 1 [d of purified protein was added (2 ng of 

hSRYbox wild type, 2 ng of hSRYbox F109S, 10 ng of hSRYbox M64I, 25 ng of 

hSRYbox K106I). Electrophoresis and autoradiography were performed as indicated 

in Materials and Methods; however, the autoradiography in panel D was overexposed 

to detect the faint bands of DNA complexed to hSRYbox K1061. The retarded bands 

running behind the principal protein-DNA complex band are complexes containing 

more than one polypeptide molecule per DNA molecule. No significant difference in 

the mobility of the free DNA probes can be observed, indicating that the CD3e site 

does not distort DNA on its own. By analysing the data in terms of a simple geometric 

model (see Materials and Methods), it appears that the mutant SRY boxes also flex 
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Mutation Type KD Angle Kd four way 
linear DNA junc. DNA 

WT 

F 109 S FAMILIAL 

190M FAMILIAL 

M641 DENOVO 

K1061 RELATIVES 
UNAVAILABLE 

G95R DENOVO 

2x10.8 M 760 

2.5x10 -8 M 

4x10 -8 M 

6.5x10 -6 M 

2x106 M 

>10_5 M 

76° 

750 

56° 

730 

10 -8 M 

10 -8 M 

10 -8 M 

10 -8 M 

10 -8 M 

10 -8 M 

Table 2. Summary of SRY mutation characteristics and properties of the SRY boxes. 

The mutations in SRY we have considered were described by Berta et al. (1990), 

Hawkins et al. (1992a, b) and Jager et al. (1992). The dissociation constants for 

complexes between the various SRY boxes and DNA were calculated by titrating the 

SRY box polypeptides against 0.25 nM DNA and assaying the formation of 

complexes by electrophoretic mobility shift assays (see materials and methods). 

"Linear" refers to the D probe bearing the CD3e site, "four-way junction" refers to 

junction molecule z, which was chosen because the sequences it contains cannot be 

recognised sequence-specifically by SRY protein (Ferrari et al., 1992). "Angle" refers 

to the angle calculated by the algorithm of Ferrari et al. (1992) from the' circular 

permutation assays on the set of probes bearing the CD3e site. The reported values 

are the mean of at least two assays. 
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Fig. 10 A and B. DNA bending activity of mutant SRY E-L M[G-boxes on the CD3e 

sequence. (A) DNA probes used for the circular permutation analysis. Plasmid 
pBend2CD3e, containing the CD3e site (hatched box) flanked by tandemiv repeated 
DNA sequences, was cleaved at the restriction sites indicated in the map The DNA 
fragments obtained in this way (designated A-G) all contain circular permutations of 
the same sequence of 141 bp. DNA fragments containing CD3e sequence, designated 
MUTI I, were `(venerated in the same way (B) Circular permutation analysis of DNA 
bending induced by mutant hSRY box F 109S. This panel shows a comparison 
between the electrophoretic mobilities of complexes of wild type hSRYbox and 
mutant F 109S with probes A-G containing the CD3e site GAACAAAG. Three fnol 

of labelled DNA probes were mixed in 9 ul of standard DNA binding butler (see 
Experimental Procedures). To the various mixtures I µl of purified protein was added 

ng of hSRYbox wild type and 2 ng of hSRYbox F IO9S). Electrophoresis and 
autoradiography were performed as indicated in material and methods The retarded 
bands running behind the principal protein-DNA complex band are complexes 
containing more than one polypeptide molecule per DNA molecule. No signiticant 
difference in the mobility of the free DNA probes can be observed, indicating that the 
CD3e site does not distort DNA on its own. 
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Fig. lO A and C. DNA bending activity of mutant SRY I-GV[G-boxes on the CD3e 

sequence. (A) DNA probes used for the circular permutation analysis. Plasmid 

pBend? CD3e, containing the CD3e site (hatched box) Clanked by tandemly repeated 
DNA sequences, was cleaved at the restriction sites indicated in the map The DNA 
t'ragments obtained in this way (designated A-G) all contain circular permutations of 
the same sequence of 141 bp. DNA fragments containing CD3e sequence, designated 

, MUTI I, were generated in the same way. (C) Circular permutation analysis of DNA 
bending induced by mutant hSRY box Mo41. This panel shows a comparison between 
the electrophoretic mobilities of complexes of wild type hSRYbox and mutant \16-11 
with probes A-G containing the CD3e site GAACAAAG. Three fmol of labelled DNA 
probes were mixed in 0 ul of standard DNA binding buffer (see Experimental 
Procedures). To the various mixtures I ul of purified protein was added (2 ng of 
hSRY box wild type and IO ng of hSRY box X164[). Electrophoresis and 
autoradiographv were performed as indicated in materials and methods. The retarded 
bands running behind the principal protein-DNA complex band are complexes 
containing more than one polvpeptide molecule per DNA molecule. No significant 
difference in the mobility of the free DNA probes can be observed, indicating that the 
CD ,e site does not distort DNA on its own 
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Fig. 10 A and D. DNA bending activity of mutant SRY FD, [G-boxes on the CD3e 

sequence. (A) DNA probes used for the circular permutation analysis. Plasmid 

pBend2CD3e, containing the CD3e site (hatched box) flanked by tandemly repeated 
DNA sequences, was cleaved at the restriction sites indicated in the map. The DNA 
fragments obtained in this way (designated A-G) all contain circular permutations of 
the same sequence of 141 bp. DNA fragments containing CD3e sequence, designated 
MUT II, were generated in the same way. (D) Circular permutation analysis of DNA 
bending induced by mutant hSRY box K106[. This panel shows a comparison 
between the electrophoretic mobilities of complexes of wild type hSRYbox and 
mutant K1061 with probes A-G containing the CD3e site GAACA. -AAG Three tinol 

of labelled DNA probes were mixed in I) pi of standard DNA binding butter (see 
Experimental Procedures). To the various mixtures I µl of purified protein was added 
(2 ng of hSRY box wild type and 25 nu of hSRYbox K 1061). Electrophoresis and 
auto radiography were performed as indicated in Experimental Procedures, however, 

the autoradiography in panel D was overexposed to detect the faint bands of DNA 

complexed to hSRY box K1061. The retarded bands running behind the principal 
protein-DNA complex band are complexes containing more than one polypeptide 
molecule per DNA molecule. No significant difference in the mobility of the tree DNA 

probes can be observed, indicating, that the CD3e site does not distort DNA on its 

own 
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the DNA in the centre of the AACAAAG site. Table 2 summarises results from 

circular permutation assays obtained with the complete set of mutated SRY boxes. 

Wild type SRY box bends the DNA at CD3e site by an angle of 75 degrees, while 

mutant M641 induces a significantly smaller angle, of about 56°. All other mutants, 

including K106I, bend the DNA by an angle extremely close to the wild type protein 

(Table 2 and figure 10). 

To investigate the possible relationships between binding affinity and bending 

capability of SRY mutants, the affinities of the normal and the five mutant HMG 

boxes for a DNA fragment containing the CD3e enhancer site were determined in 

band shift assays using a limiting amount of labelled DNA and titrating the 

polypeptides. As described before, under conditions of protein excess, the dissociation 

constant is equivalent to the concentration of polypeptide where half of the imput 

DNA is taken up in the complexes and half is free. 

Mutant HMG boxes varied extensively in their DNA binding ability, in accordance 

with a previous report (Harley et al., 1992). The affinity for DNA of mutant F109S 

was indistinguishable from that of the wild type, as already noted by Jager et al. 

(1992). The affinity of mutants 190M and M641 was moderately reduced in 

comparison to the wild type, whereas the affinity of K106I was reduced by more than 

two orders of magnitude, and G95R did not form any complexes under the conditions 

used (Table 2). Variations of activity in a bandshift assay can be caused by a variation 

in the intrinsic affinity of the proteins for DNA, or by the presence of a variable 

proportion of denatured or inactive protein molecules in the preparation. To rule out 

the latter alternative, we tested the DNA binding activity of various preparations of 

the same polypeptide, and found them identical. 
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Our results indicate clearly that mutant M641 bends the DNA much less than the wild 

type, but its binding affinity is reduced only mildly, whereas mutant K1061 bends the 

DNA almost as much as the wild type, although its DNA binding affinity is reduced by 

more than two orders of magnitude. Thus, contrary to a widely held preconception, 

affinity and DNA bending are not correlated, and a weakly binding protein can 

produce a large DNA distortion. 
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2.4 WILD TYPE SRY AND THE M641 MUTANT RECOGNISE THE SAME 

REPERTOIRE OF SEQUENCES IN LINEAR DNA 

The difference in the angle induced by mutant M641, viewed against the relative 

uniformity of the other mutants, appears as quite large. In comparison, the DNA 

bending properties of SRY proteins from mutations associated with a mild biological 

effect are strictly conserved. Thus, it is tempting to consider the difference in bending 

ability of the M641 mutant as a key to the biological consequences of the mutation. A 

more trivial explanation is possible, however: mutation M641 might modify the 

sequence specificity of SRY protein. In order to test this hypothesis, we performed an 

experiment of PCR-assisted binding site selection. Binding-site selection is used to 

determine the target specificity of a sequence-specific DNA-binding protein. The 

technique has a number of applications, for example to identify DNA target sequences 

for proteins with unknown DNA-binding specificities to or to provide additional 

information on the protein-DNA interactions of previously characterised DNA binding 

domains. 

As indicated in Materials and Methods, a pool of random-sequence oligonucleotides is 

used as the source of potential binding sites. The oligonucleotide pool is made double 

stranded and labelled with 32P dCTP. Several cycles of selection and amplification of 

a random population of double-stranded DNA are performed. The starting population 

consists of a family of double stranded 60 bp DNA molecules initially displaying all 

possible sequence variations at the central 10 nucleotide residues. Flanking regions are 

25 base pairs long and constant in sequence. Two EcoRI restriction sites were present 

in the two constant regions flanking the 10 bp central random sequence. The starting 

population of molecules was labelled with 32P and then incubated with different 
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amounts of M641 hSRY box protein. Samples were applied on a vertical 

polyacrilamyde gel and electrophoresed at room temperature. The shifted band, 

containing a subset of the original population of labelled molecules, was recovered by 

cutting out a gel slice, crushing it and eluting the DNA. The eluted DNA was 

amplified by PCR, using dCTP labelled with 32P. The radioactive product was gel 

purified, incubated again with M641 hSRY box and electrophoresed as described. 

Shifted band was recovered, eluted, amplified and incubated again as described 

before. Five rounds of selection/amplification were sufficient to select a population 

with maximal affinity for the protein. Additional cycles of selection/amplification did 

not increase the average affinity of the population for the protein. Selected molecules 

were digested with EcoRI, gel purified and subcloned in the Eco RI site of the vector 

pUC19. Bacteria carrying recombinant plasmids give rise to white colonies. White 

colonies were then picked at random; plasmids were extracted and selected molecules 

were sequenced (figure 11). These sequences can be aligned, are rich in A's and T's 

and the distribution of bases at seven individual positions is clearly non random. The 

consensus that can be derived matches exactly the consensus determined for 

molecules selected in selection/amplification protocol by wild type SRY protein, A/T 

AACAA A/T (Harley et al., 1994). 

We also compared the binding preferences of both mutant M641 and wild type SRY 

boxes with respect to the entire repertoires of sequences, rather than individual 

sequences. A competition between the initial (non-specific) and final (specific) 

population of DNA molecules was performed (figure 12). Labelled templates selected 

by M641 hSRY protein were purified and amplified after the first round of selection 

(first round) and after the fifth round (last round). These two families of probes were 

mixed in different ratios. Mixing the initial and final populations in different 
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I cggCATTRCRAACacg 
2 ggCGATAACTCAccga 
3 gGGTCAAACARccacg 
4 gRGRGAAACAAccacg 
5 ggCCCARTGRACccac 
6 gGACAAATCACccacg 
7 gtcggAAACACAGTGc 
8 gtggTAAACTTACCcc 
9 accCAAAGGACRAggc 

10 ggTTGAAACAAAccac 
11 ggTCCTRTCAGTccac 
12 C3CCGAAAGGAggtgc 
13 cggTAAATCTAGTcca 
14 ccCCCRAAGAGAggtg 
15 tggACAAACTCCAccg 
16 ggCATAAAGTTCccga 
17 gtcggAAAGAACTTTc 
18 gtcggAAACAAAGCTc 
19 tcggGRAACTAATTcc 
20 ggAGTAAACRTCccac 
21 cggCGAATCTAATcca 
22 ccCTTAATCTAAggct 
23 gtcggTAACAAACAAc 

A 19 22 16 - 14 13 12 
C-- -17 -58 
G -- 16122 
T41 6- 831 

comwztz A/T AACAA A/T 

Fig II The HMG boxes of wt SRY and mutant M641 recognise the same repertoire 
of sites. Sequence of some DNA molecules selected after the fifth 
selection/amplification cycle with SRY HMG-box M641. Sequences were alined 
following the algorithm of the program "Align". The lower-case bases belong to, the 
polylinker of plasmid . 

The frequency of each base at each position is indicated below 
the sample set of sequences. This consensus that can be derived matches the 
consensus for wild type SRY (Harley et at.. 1994). 
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Fig. 12. Wt SRY box and mutant M64 recognise the same repertoire of sites. A 

population of 60 bp DNA molecules initially containing all possible 10 bp sequences 

at their centre was subjected to five rounds of selection/amplification by SRY box 

M641 (see materials and methods). At the end of the procedure, labelled templates 

amplified after the first round of selection by hSRY box M64I (first round) and after 

the fifth and last round were mixed in different ratios, mixed with wt SRY box or 

M64I SRY box, and electrophoresed. The same total amount of DNA (21 fmol) was 

used as probe in every lane (last round/first round: 0/21,3/18,7/14,10.5110.5,14/7, 

18/3, and 21/0). To 9 tl of reaction mix containing the DNA probes, 20 ng of hSRY 

box M641 (panel above, right) or 5 no of hSRY box wt (panel above, left) were 

added. After incubation on ice, samples were applied to vertical 6.5% polyacrvlarnide 

gels in 0. SX TBE as described in materials and methods. As expected, the population 

of DNA molecules amplified after the fifth round of selection/amplification with the 

mutant SRY box M641 are recognised much better by mutant M641 than the initial 

population. However, the same is true if the populations are challenged with the vvt 

SRY box. Mixing the initial and final populations in different proportions is equivalent 

to performing a competition experiment between a specific binding site and aspecific 

DNA. As the figure shows, again no difference is apparent between the bandshifts 

produced by the wt SRY box and mutant \1641, an indication that their binding 

selectivity is the same 
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proportions is equivalent to performing a competition experiment between a specific 

binding site and non specific DNA. The same amount of DNA was used as a probe in 

every lane and incubated with wt hSRY box or M641 hSRYbox and elecrophoresed. 

As expected, the population of DNA molecules amplified after the fifth round of 

selection/amplification with the mutant M641 SRY box are recognised much better by 

mutant M641 than the initial population. However, the same is true if the populations 

are challenged with the wt SRY box (figure 10). As figure 12 shows, again no 

difference is apparent between the bandshifts produced by the wt SRY box and 

mutant M641, an indication that their binding selectivity is the same. Similar results 

were also obtained using defined sequences rather than populations. We conclude that 

the mutant M641 and the wild type SRY boxes recognise the same sites, and that each 

specific "preferred" sequence is recognised with similar specificity over 

"nonpreferred" sequences. 
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2.5 DNA SEQUENCE AFFECTS DNA BENDING BY SRY 

The experiments reported in the previous sections establish that one specific DNA 

sequence is molded into different configurations by mutant M641 and by the wild type 

SRY. However, there is no guarantee that the CD3e site is a true SRY binding site; in 

fact, a physiological target for SRY has not been identified so far. Moreover, the 

DNA itself is possibly the major determinant in the final conformation of the 

nucleoprotein complex, and slight variations of the DNA sequence interacting with 

SRY might affect the geometry of the nucleoprotein complex quite substantially. We 

then measured by means of the circular permutation assay the angle of deflection 

produced by wild type and mutant SRY proteins on two sequences that diverge 

slightly from the CD3e sequence. 

The sequence TAACAATG (MUT 11) has been reported to bind SRY protein with 

higher affinity than the GAACAAAG sequence present in the enhancer of the CD3e 

gene, while the sequence GAACACAG (MUTO) was reported to be a poorer binding 

site (Giese et al., 1992). The two sequences were substituted for the CD3e sequence 

in plasmid pBendCD3e. This was obtained by annealing synthetic oligonucleotides 

CTAGAGAGCGCATTGTTATCAG and TCGACTGATAACAATGCGCTCT for 

MUT 11, CTAGAGAGCGCTGTGTTCTCAG and 

TCGACTGAGAACACAGCGCTCT for MUTO. Double stranded molecules contain 

sticky ends for restriction endonucleases XbaI and Sall. 

These molecules were subcloned within the sites Xbal/Sall of the vector pBend2; 

recombinant vectors were checked by sequencing. Cleavage with several restriction 

endonucleases yields a set of fragments of DNA of identical length and sequence, but 

a different distance from the DNA binding domain and the edges of the molecules. 
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The circularly permuted fragments obtained from the two new plasmids (called 

pBendmutl1 and pBendmut0, respectively) were purified from agarose gels, labelled 

and tested electrophoretically with wild type and mutant hSRY boxes for binding 

affinity and bending features (Table 3 and figure 13), in the same way as described 

before. 

The fragments bearing the sequence TAACAATG bound every hSRY box variant 

with about twofold better affinity than the GAACAAAG sequence. The circular 

permutation assay showed that the locus of flexure was the same as for pBendCD3e 

fragments, but the bending was slightly less. 

The fragments bearing the sequence GAACACAG bound every SRY HMG-box 

variant about six fold less efficiently than the pBendCD3e fragments. Again, the 

protein-induced bending was centered around the same locus, showing that the 

GAACACAG sequence was preferred to any other sequence in the probe. However, 

the bending was dramatically reduced with the wild type SRY box, while mutant 

M641 appeared unable to induce any measurable bending of these fragments (figure 

13). 
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wt M64i 

Probe Sequence KD Angle KD Angle 

CD3e GAACAAAG 2x10-8 M 76 6.5x10-8 M 56 

mut lI TAACAATG 10-8 M 73 3x10-8 M 55 

mutO GAACACAG 10-7 M 35 3.5x10-7 M <10 

Table 3. Influence of the DNA sequence on the amplitude of the angle induced by 

SRY proteins. The dissociation constants for complexes between SRY boxes and 

DNA were calculated by titrating the SRY box polypeptides against 0.25 nM DNA 

and assaying the formation of complexes by electrophoretic mobility shift assays (see 

material and methods). "Angle" refers to the angle calculated by the algorithm from 

the circular permutation assays on the set of probes bearing the CD3e site. The 

reported values are the mean of at least two assays. 
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Fig. 13. DNA binding sites with different sequences are bent differently by SRY 
boxes. (A) Mobility shift assay of wild type and mutant SRY boxes on CD3e (e) and 
mutt I (11) binding sites. Probe D was used because it contains the DNA binding site 
(CD3e or mut 1 1) in the middle of the fragment and the differences in electrophoretic 
mobilities are maximal. DNA binding mixtures (see materials and methods) were set 
up to contain 3 fmol of CD3e D probe or mut lID probe in 9 ul. To each mixture 
containing the CD3e D probe, l ul of purified protein was added, containing 50 nix of 
hSRY box of G95R, 3 ng of hSRY box wild type, 10 no, of hSRY box 190M. 15 n`; of 
hSRY box M641,25 ng of hSRY box K1061, respectively. About a quarter as much 
wild type hSRY box and half as much for each mutant SRY box were added to 
mixtures containing the mut lID probe. Autoradiographic signals were also analysed 
with a Phosphortmager No binding activity was found for hSRY box G95R. The 
same results were obtained also when using larger amounts of purified hSRY" box 
G95R protein. (B, C) Circular permutation analysis of wild type hSRY box (panel B) 
and mutant 164[ (panel C) on CD3e and mutö binding sites. DNA probes A-G (3 
fmol) were mixed in 9 ul of standard DNA binding buffer (see materials and 
methods) To the various mixtures containing labelled DNA fragments I ul of purified 
protein solution was added. containing 2 no, of hSRY box wild type (probe CD3e), b 
n`, of hSRYbox wild type (probe mutO). 15 ng of hSRY box M64l (probe CD3e), 60 
m, of hSRY box i\, 1641 (probe mut0) The samples were electrophoresed and 
autoradiographed as described in materials and methods The retarded hands running 
behind the principal protein-DNA complex band are complexes containing more than 
one polvpeptide molecule per DNA molecule Unbound DNA probes containing mutO 
site have the same electrophoretic mobility, indicating that the mut0 site. as well as 
the CD3e site, does not distort DNA on its own. 
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2.6 THE POSITIVE CONTROL: THE EVOLUTIONARY TREE OF 

PRIMATES. 

In the first part of this work, anomalous DNA protein complexes were shown to be 

correlated to anomalous biological function of SRY protein. 

Indeed all single point mutations in the human SRY coding sequence that cause 

gonadal dysgenesis and sex reversal fall in the HMG box region (Berta et al., 1990; 

Hawkins et al., 1992 and 1994). In addition, the HMG box is the only part of SRY 

which is conserved during the evolution of mammals: the protein segments flanking 

the HMG box are variable in sequence and length and cannot be aligned exept 

between closely related species (see introduction). All the DNA binding and bending 

activity resides in the HMG box region. If binding and bending are really important for 

the biological function of SRY proteins, these features will be expected to be 

positively selected and conserved during evolution. The purpose of the second part of 

this work is then to demonstrate that the architecture and stability of nucleoprotein 

complexes formed by the DNA-binding domains of SRY proteins is of primary 

importance and therefore conserved irrespective of the time of divergence during 

primate evolution and the number of residues modified during this evolution. 
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2.7 PRODUCTION OF SRY DNA BINDING DOMAINS OF DIFFERENT 

PRIMATES. 

We first chose to compare SRY HMG boxes (SRY boxes) of different primates on 

the basis of their sequence similarity. Figure 14 shows the sequences of predicted 

SRY boxes from 8 primates (Whitfield et al., 1993). Dots indicate agreement with the 

HMG box of Human SRY. All the residues modified during evolution map to a 

different position from those associated with sex reversal phenotypes in humans. 

To study the behavior of the DNA protein complexes of SRYs boxes it was first 

necessary to express and purify the corresponding proteins. We obtained DNA 

fragments coding for SRY boxes by PCR of total genomic DNA with the same 

specific oligonucleotides used for sex reversal mutations. We amplified DNA coding 

for SRY proteins from genomic DNA of common chimpanzee (Pan troglodytes), 

pygmy chimpanzee (Pan paniscus), orang-utan (Pongo pygmaeus), gorilla (Gorilla 

gorilla), gibbon (Hylobates lar), baboon (Papio spp. ) and marmoset (Callithrix jaccus). 

Briefly, to allow the synthesis of the boxes in E. coli, the first amino acids (aa) of the 

HMG box (N in marmoset, D for all the other boxes listed in figure 14) was changed 

to M to provide a translation start codon, and the last (N for chimpanzee, pygmy 

chimpanzee and marmoset, K for all the other boxes in figure 14) was changed to a 

stop codon. The same oligos, SRY box dir and SRY box rev, used for the 

amplification of human sex reversal SRYs were used for PCR according to conditions 

already reported in the previous section. Reaction products were cleaved with NdeI 

and Hindlll, gel purified and cloned between Mel and HindlII sites of plasmid pT7- 

7. The resulting plasmids were introduced in strain B121 (DE3), as described in the 

section concerning the construction of human SRY mutant proteins. The 
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Fig. 14. Alignment of HMG-box sequences from SRY proteins of primates. Dots 

indicate agreement with the human as sequence. Upper case letters indicate non- 

synonymous mutations with the resultant as change shown. The gorilla and human 

SRY boxes are exactly identical in sequence. The last line reports some single-site 

substitutions in humans that cause sex reversal: the mutated as is indicated. 
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corresponding peptides, which are called SRY boxes, were produced efficiently as 

described in the previous section, and were soluble. Recombinant proteins were 

purified in the same way as described in the first section of this work. Briefly, nucleic 

acids were removed by batch absorption to DEAE-cellulose at 0.45 M NaCl; the 

supernatant was filtered and applied to a Mono S HR5/5 FPLC column (Pharmacia) 

equilibrated with 20 mM HEPES pH 7.9,0.2 mM EDTA. The column was eluted 

with a linear gradient from 0M to 2M NaCI in 20 mM HEPES pH 7.9,0.2 mm 

EDTA. SRY boxes were eluted in fractions containing about IM NaCI and were 

more than 99% pure. Protein concentrations were estimated by reading at 280 nm and 

by scanning protein titrations on SDS-polyacrylamide gels. 
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2.8 ARCHITECTURE OF THE DNA COMPLEXES INDUCED BY PRIMATE 

SRY PROTEINS 

To estimate the dissociation constant of the complexes between SRY boxes and 

DNA, and the deformation induced in DNA, we performed bandshift and circular 

permutation assays. 

The same short sequence, AACAAAG, cloned between directly repeated sequences in 

plasmid pBend2 shown in the previous section to be a good DNA binding site for wt 

human and mutant SRY proteins was used as a probe for bandshift and circular 

permutation assays. Experimental conditions are the same as reported with human 

SRY proteins. 

Cleavage with several restriction endonucleases yielded the same set of fragments of 

identical length and circularly permuted sequence (figure 15). Fragments D and A 

were used to estimate the affinity of the various primates SRY boxes for the 

AACAAAG binding site. Individual SRY boxes were titrated on limiting amounts of 

DNA in a band shift assay: as described in the first section, under conditions of 

protein excess, the KD corresponds to the concentration of SRY boxes where half of 

the input DNA is engaged in the specific complex. All SRY boxes had identical 

titration profiles (not shown). Figure 15 shows a bandshift assay performed using 

labelled DNA fragment D, which contains the AACAAAG binding site in the middle, 

with the same amount of pure SRY boxes from different primates. The amount of free 

and complexed DNA is very similar in all cases, and corresponds to a dissociation 

constant of 10-8 M. The different electrophoretic mobility of DNA-protein complexes 

is due to the different bend induced in the DNA (see the first section). 
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Fig. l5. DNA binding and bending properties of HMG-boxes of primate SRY proteins. 

(A) Construction of the probes for the electrophoretic mobility shift and circular 

permutation assays. Plasmid pBend2CD3e, containing the 5'-AACAAAG binding site 

(hatched box) flanked by tandemly duplicated DNA sequences, was cleaved at the 

restriction sites indicated in the map. The DNA fragments obtained in this way 

(designated A-G) contain circular permutations of the same sequence of 141 bp. (B) 

The different SRY-boxes have the same affinity for the 5'-AACAAAG binding site. 

SRY-box peptides (5 nu) of primates (BA, baboon, CH, chimpanzee. GO, gorilla. Gl. 

gibbon. OR, orang, MA, marmoset, PY, pygmy chimpanzee) were mixed with 

labelled DNA fragment D (S fmol) in 9 ul of DNA binding butter (S°'o Ficoll. 100 mil 

NaCl, 10 mVl HEPES pH 79). After incubation for 10 min on ice, 5 u1 samples were 

subjected to electrophoresis at IIV cm- I at room temperature in vertical 10° o P-A 

gels containing 45 mil Tris-borate buffer. pH 8.3 The gels were dried and 

autoradiographed with Kodak XAR-5 films at -SOC for 24-72 h. Under conditions of 

protein excess, these concentrations of SRY-boxes (IU-Sivl) cause the shift of half of 

the input DNA. and correspond to the dissociation constant of the complex. 
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We then tested the elecrophoretic mobility of the different SRY boxes with the 

complete set of labelled DNA fragments with circular permuted sequence. As 

described in more detail in the previous section, DNA fragments with a distortion in 

the middle of the molecule have a different shape, and hence a different 

electrophoretic mobility, compared with DNA fragments of identical length and 

composition with a distortion near one end; their rate of migration in polyacrylamide 

gels allows the estimations of the amount of distortion introduced in DNA. All SRY 

boxes were analysed; figure 16 shows a typical result obtained with the pygmy chimp. 

and marmoset SRY boxes. The bending centre always maps to the 5' AACAAAG 

binding site. Protein complexes with fragment A and G had identical mobility for all 

SRY boxes, while the mobility of the complex with fragment D was slightly variable. 

Moreover, the variation is small indeed, and the deduced DNA angles are very similar 

in the complex formed by all primate SRY boxes (Table 4). The small differences in 

the angles induced by SRY boxes of different primates does not correlate with the 

divergence times of the different species from the primate evolutionary tree. In fact 

the difference in the induced bend between human and chimpanzee is slightly more 

than between human and gibbon or between human and marmoset, contrary to the 

evolutionary divergence times: (chimp vs. human 7 millions of years (Myr), gibbon vs. 

human 19 Myr, marmoset vs. human 27 Myr. Nei, 1987). These data suggest that the 

differences are not significant, and that essentially the same geometry of the SRY- 

DNA complex is required for sex determination. Thus, the DNA binding and bending 

properties of the marmoset SRY box are not significantly different from those of the 

human SRY box, although it differs in 4 aas. Therefore, the alternative as in the SRY 

boxes of the different primates must be considered neutral mutations. This has to be 

contrasted with the single point mutations associated with loss of function of SRY 
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Fib. 16. Circular permutation analysis of the DNA flexure induced SRY-boxes of 

marmoset and pygmy chimpanzee. Eight fmol of circular permuted DNA fragments 

(from A to G) were mixed with 5 ng of SRY boxes (first panel, marmoset, second, 

pygmy chimpanzee). After incubation on ice, the samples were assayed as described in 

material and methods. The difference in amplitude of the two curves corresponds to 

the small difference in DNA bending, induced by the two proteins. 
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PRIMATE 

SPECIES 

HUMAN 

CHIMPANZEE 

PIGMY 

CHIMPANZEE 

GORILLA 

ORANGUTAN 

GIBBON 

BABOON 

MARMOSET 

TIME OF 

DIVERGENCE 

6.5 

6.5 

s. ý 
13 

19 

* 

27.5 

DIFFERENCE 
OF 

DEFLECTION 

0° 

-5" 

- 6.9° 

00 

Q fu 

0.1° 

0.6'º 

l. l`º 

Table 4. No correlation between the time of divergence from the human line of 

descent and the amplitude of the deflection in DNA induced by SRY. 

Time of divergence from human (expressed in Myr) as reported by Nei (1987). 

However, the exact times are subject to some controversy and it is still undecided 

for baboon (*). 

DitTerence of deflection means the difference of angles induced in DNA by SRYs of 

monkeys compared to the human one. ( angle of monkey minus angle of human). 
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protein (sex reversal) in humans. In fact, as shown before, mutations M641,190M, 

G95R, K106I in human SRY reduce the DNA binding affinity to the AACAAAG site; 

mutation M641 also reduces significantly the angle induced in the DNA (see 

discussion). 
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DISCUSSION 



3.1 HOW DOES SRY WORK? 

The product of the sex-determining SRY gene is a DNA binding protein that controls 

the differentiation of pre-Sertoli cells during embryonic life. The only conserved part 

of the SRY protein in related animals is the DNA binding domain, which recognises a 

defined repertoire of sites. However, the sequence selectivity of SRY is rather low 

and indistinguishable from that of other proteins with similar DNA-binding domains 

but very different biological functions. Both we and others have shown that SRY 

induces a large alteration of the local geometry of DNA sites it binds to, and that 

indeed DNA molecules that already contain sharp bends or kinks are actually bound 

by SRY with high affinity and selectivity, irrespective of the sequences that they 

contain (Ferrari et al., 1992; Giese et al., 1992). Such unusual properties suggest that 

the DNA bending function might be central to the biological activity of SRY, as well 

as of other protein with similar HMG box DNA binding domains (Grosschedl et al., 

1994; Bianchi, 1994). As illustrated in Figure 17, SRY would promote the interaction 

of flanking transcription factors by acting mechanically on the DNA molecule. Two 

predictions are central to the model: SRY does not promote transcription on its own, 

but depends on the presence of "left" and "right" transcription factors, which are only 

active if physically associated. In fact, known SRYs lack recognisable transcription 

activation domains, and their sequences are completely divergent outside the HMG 

box. In contrast, the existence of the predicted "left" and "right" factors rests on the 

analogy with the LEF-1/TCRa system (Giese et al., 1992; Ho and Leiden 1990; Giese 

and Grosschedl, 1993). 

The left and right transcription factors would interact only in the presence of SRY, 

but not with any other protein. This is possible only if SRY organises the 
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Fig. 17. A model for the action of SRY protein. The human testis-determining factor 
SRY is a DNA binding protein belonging to the HMG box class. SRY is most related 
to a number of gene-specific transcriptional regulators, which recognise specific 
sequences in DNA. However, the recognition takes place mainly through the minor 
groove and has a low selectivity. In addition, SRY proteins even from closely related 
mammals share similarity only within the IIG box DNA binding domain, and 
diverge considerably outside of it. This argues against the presence of additional 
domains involved in transcriptional transactivation. However, SRY bends the DNA 
considerably after binding to some sites, and this may promote protein-protein 
interactions between factors (L for "left"' and R for "right") bound to either side of the 
SRY binding site. Thus, a mechanical action on DNA may induce the formation of a 
nucleoprotein complex endowed with high specificity (requiring at least three different 
sites bound by different proteins), high stability (the protein-protein and protein-DNA 
interactions would he cooperative and reinforce each other) and biological activity 
(through domains present on the L and R proteins). The experiments reported in this 
paper support the notion that the deformation induced by SRY must be geometrically 
precise to serve as a genetic switch. 
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nucleoprotein complex in a specifically defined way, which can neither be attained 

spontaneously nor by proteins that can bind the same sites as SRY. 

The data we report test the prediction that the geometry of the SRY/DNA complex 

must be a prime determinant in sex determination. A mutation that alters the geometry 

of the nucleoprotein complex is associated with a loss of function of SRY. Moreover, 

different binding sites can be discriminated on the basis of the geometry they adopt 

when bound by SRY. 
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3.2 DISSECTION OF THE DNA BINDING AND DNA BENDING 

ACTIVITIES OF SRY PROTEIN 

The most obvious result of our analysis is that the DNA binding and DNA bending 

activities of SRY protein can be separated. The K1061 amino acid substitution in SRY 

reduces the DNA binding affinity of the protein more than 100-fold, and yet still 

allows the bending of the DNA target to the same extent attained by the wild type 

protein. Conversely, the M641 amino acid substitution reduces the DNA binding 

affinity only 3-fold, but causes a reduction in DNA bending from about 750 to about 

56°. 

The non-correlation between the binding affinity of the SRY variants and the extent of 

deformation caused in DNA is at first sight surprising. How can a weakly binding 

protein like SRY K106I cause a large deformation in DNA? The simple answer is that 

mutant K106I binds weakly precisely because it still deforms DNA significantly. The 

binding affinity of a protein to its ligand is related to the difference in free energy at 

equilibrium between the bound and unbound states of the system that comprises the 

protein, the ligand and the aqueous environment. The free energy variation between 

the bound and unbound states of the SRY/DNA system can be decomposed 

(somewhat arbitrarily) in several contributions, as shown in the diagram in figure 18. 

One contribution corresponds to the establishment of chemical hydrogen bonds 

between SRY and the nucleic acid, irrespective of the sequence or the conformation 

of the DNA, in a non-specific mode. A second contribution corresponds to the 

formation of sequence-specific contacts between SRY and a favored binding site. The 

third contribution, the deformation of the DNA site, is negative: DNA bending takes 
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Fig. 18 Thermodynamics of the binding of SRY boxes to DNA. The chemical 

potential of SRY protein and of a linear DNA molecule containing a preferred target 

site are indicated as µOP and µOD, respectively; the chemical potential of the complex 

as µODP. The difference in the energy levels µOP+gOD and gODP represents the 

kGO' variation in free energy associated with complex formation. The total free 

energy variation can be divided in several contributions: A, the free energy variation 

associated with non-specitic protein-DNA interactions; B, that associated with 

sequence-specific interactions; C, the one associated with the deformation of the 

DNA; D, the one associated with conformation-specific interactions. The formation of 

the complex is thermodynamically favored so long as A+B+D is larger in absolute 

value than C. 
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up energy. A last contribution represents shape-specific interactions between the 

protein and the DNA, once this is deformed. 

If the mutant K106I deforms the DNA in the same way as the wild type, the negative 

contribution will be the same. Then, if the mutation reduces any one of the other 

contributions, the sum of the free energy variations of all the contributions will be 

close to zero, and the protein will bind weakly to its ligand. 

A second key result of our analysis is that the affinity of the various mutated SRY box 

domains for specific sites on linear DNA is variable, but the affinity for the four-way 

junction DNA is identical. This implies that the mechanistic details of duplex binding 

and junction binding are different, at least partially. We suggest that the SRY 

mutations we have analysed do not affect the shape-recognising properties of the 

HMG box, but one of the steps by which the linear DNA molecule is moulded into a 

specific shape. On the biological level, the equal recognition of four-way junctions by 

wild type and mutant SRY proteins formally rules out distorted structures as the 

physiological target of SRY, and suggests that sequence recognition is essential 

although probably not sufficient for the action of SRY in differentiation. The model in 

Figure 19 summarises our current thinking on SRY binding to DNA. We suggest that 

the DNA binding domain of SRY contains sites that allow sequence discrimination in 

linear DNA, sites that deflect the DNA, and sites that establish conformation-specific 

contacts with bent DNA. The correspondence between sites and specific amino acid 

residues need not be unequivocal: each site will made up of several residues forming a 

surface, and a certain residue might contribute to more than one site at the same time. 

All three sites must be involved in the establishment of protein-DNA contacts in 

complexes containing the SRY box and the distorted double helix, and mutations 

affecting any of these sites have the potential to alter the affinity of the protein for a 
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Fig. 19. A schematic model for the interaction of SRY proteins with linear and four- 

way junction DNAs. The DNA-binding domain of wild type SRY is depicted here as a 
rounded object with three sites which are important for the interaction with DNA: the 
grey disc is involved in sequence-specific recognition, the zig-zag is associated with 
conformation-specific interactions, and the square with bars represents the site in the 
protein responsible for the deflection of linear DNA. In reality, each site may be 
composed of multiple residues, conversely, some residues may contribute to more 
than one of the sites that are shown here as independent. (A) Interaction with linear 
DNA. When wild type SRY interacts with a specific sequence in linear DNA (1), all 
three sites will establish contacts with the DNA in the complex, and the DNA 
deflection will be mainly determined by the burrowing of the site represented as the 
square with bars into the minor groove. The substitution of a residue in this site 
(chequered disc) will modify marginally the overall affinity of the protein for the 
DNA, but will have a profound effect on the overall geometry of the complex (2) (B) 
Interaction with four-way junctions. The affinity of SRY for four-way junctions does 
not depend on the sequence of the DNA. Moreover, the DNA already contains kinks. 
Therefore, we expect that the sequence-specific site and the DNA-deflecting site will 
not play important roles in this type of interaction, which will be mainly governed by 
the conformation-specific site. To stress this point, in the drawing the grey disc and 
the square with bars are drawn as not making contacts with the four-wayy junction, 

although of course this may not reflect the real situation. 
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specific target sequence in linear DNA. However, only amino acid substitutions in the 

DNA deflecting site will modify the geometry of the nucleoprotein complex. Thus, 

M64 must be one of the residues involved in DNA distortion. The interaction with 

four-way junctions must mimic at least partly the interaction with double-stranded 

DNA, and probably involves the same conformation-specific contacts. The site for 

sequence-specific recognition cannot contribute much to the interaction with four-way 

junctions, since this is largely sequence-insensitive (Ferrari et al., 1992). Likewise, the 

site responsible for DNA distortion might not play an important role in the interaction 

with the four-way junction, which is already distorted and is predicted to have a 

widened minor groove (Lilley and Clegg, 1993). The fact that none of the amino acid 

substitutions we examined altered the affinity of SRY for four-way junctions indicates 

that none of the affected residues belong to the conformation-specific site. 

60 



3.3 THE CONTRIBUTION OF THE DNA SEQUENCE TO THE 

ORGANISATION OF SRY-INDUCED NUCLEOPROTEIN COMPLEXES. 

As discussed in the previous paragraph, the biological activity of SRY appears to 

depend critically on the recognition of specific sequences. We have shown that target 

sites with altered sequences can still be recognised by SRY, but will be bent 

differently. This offers a solution to the puzzle of the limited sequence-specificity of 

SRY, as opposed to the required sequence-specificity of its action. A certain DNA 

sequence may turn out to be a key element in the regulation of gene expression not 

because SRY binds especially well to it, but because the SRY-induced angle is the 

correct one for the establishment of a productive complex involving other proteins 

(see figure 17). In fact, different HMG box proteins may recognise the same 

sequence, but they will produce different angles: while human SRY induces an angle 

of about 800, LEF-1 produces an angle of about 1300 (Giese et al., 1992). 

At a mechanistic level, the intrinsic bendability of specific sequences may ultimately 

dictate whether SRY will bind to them or not, as suggested by King and Weiss 

(1993), and how much the DNA will be bent in the complex. Studies on the 

adaptation of double-helical DNA to the curved path around nucleosomes have 

indicated that different sequences have indeed different flexibility (reviewed by 

Travers, 1988). In any event, it is clear that the issue of bendability and the issue of 

angle-choice taken together, amount to the likely existence of yet another 

informational level in DNA readout: one that ultimately depends on the sequence, but 

in quite indirect and complex ways. 
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3.4 CORRELATION BETWEEN THE DNA BINDING PROPERTIES OF 

THE SRY BOX MUTANTS AND THE PHENOTYPE OF THE AFFECTED 

PATIENTS 

In this study, we have adopted the classical genetic approach of understanding a 

phenomenon by considering mutations that perturb it. To what extent, however, is 

there a causal relationship between the chemical-physical properties of the DNA 

binding domains of mutant SRY proteins and the lack of testes formation? A DNA- 

binding protein must bind to DNA if it is to work, and in this respect the biological 

consequences of mutations G95R and K106I correspond well to the reduced binding 

affinity of the corresponding protein, as had already been noted in a previous study 

(Harley et al., 1992). At the other extreme, mutations F109S and 190M can be 

transmitted from father to son and are-indeed present in a number of physiologically 

differentiated males: they clearly behave as conditional mutations. From this point of 

view, it is quite logical that the mutated proteins differ little from wild type SRY with 

respect to their DNA binding and DNA bending properties. Their failure to function in 

some cases, but not all, must depend on the genetic background or the environment. It 

has already been shown that the genetic background is important in sex determination: 

in the mouse when the variant poschiavinus Y chromosome is present on a C57BL6 

background, XY females result, but the same chromosome gives males in all other 

backgrounds. 

Mutant M641 is at the same time more informative, and more difficult to interpret. 

This mutation is de novo, which suggests that it is always associated with sex- 

reversal. The 3-fold reduction in DNA binding affinity with respect to the wild type is 

unimpressive, and it is unlikely that a reduction of this extent would completely 
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subvert its function. On the other hand, a reduction in the deformation of the DNA 

translates into a significant dislocation of proteins bound a few helical turns from the 

SRY binding site. We cannot measure the exact difference in the architecture of the 

SRY-DNA complex responsible for sex determination for two reasons: circular 

permutation is a low-resolution assay and no bona fide target site for SRY has been 

identified. The first limitation is not very relevant, since in any event the differences in 

DNA distortion are large enough to be identified qualitatively. The second limitation 

is more critical, but it is clear that M641 always distorts the DNA differently from the 

wild type protein, whatever the sequence of the target site. 

There is another limit in our understanding of the role of DNA distortion in SRY 

action: we do not know how tolerant to perturbations is the system. To obtain a 

rough idea of the degree of wobble allowed in SRY-induced nucleoprotein 

complexes, we compared the deflection angles induced by human SRY and its primate 

and mouse counterparts. Primate SRY proteins (gorilla, gibbon, baboon, chimpanzee, 

pygmy chimpanzee, orang-utan, and marmoset) all bend the AACAAAG site in the 

CD3e enhancer in a very similar way to human SRY (the maximum difference is 6 

degrees), despite the accumulation of several amino acid substitutions in the DNA 

binding domain. Such evolutionary conservation suggests a very limited permissible 

wobble. On the other hand, the angle produced by mouse SRY appears to be quite 

different from that produced by human SRY (Giese et al., 1994), and this correlates 

with the inability of transgenic human SRY to cause male differentiation in mice 

(Koopman et al., 1991). The angle variation may be the key molecular defect of 

mutant M64I, although this deduction is not supported by direct experiments on 

transcriptional control. However, we have excluded the possibility that the M64I SRY 

mutant causes gonadal dysgenesis because its sequence specificity is different from 

63 



that of the wild type protein: both proteins select a comparable repertoire of binding 

sequences in selection/amplification experiments. 

In conclusion, we have shown that the DNA binding and DNA bending activities of 

SRY protein can be dissociated by mutation. The DNA bending activity of SRY is 

also strongly affected by the underlying sequence of the binding site. We have also 

shown that the defect of one mutant SRY protein might be traced to its anomalous 

DNA bending activity. Our findings are in keeping with the hypothesis of a direct role 

of protein-induced DNA bending in certain types of transcriptional control and should 

stimulate increased efforts in the study of DNA structural plasticity and in the search 

of proteins that modulate such plasticity. 
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3.5 MOLECULAR BASIS OF HUMAN 46X, Y SEX REVERSAL REVEALED 

FROM THE THREE-DIMENSIONAL SOLUTION STRUCTURE OF THE 

HUMAN SRY-DNA COMPLEX 

While this work was in progress, the solution structure of the specific complex 

between the human SRY box and its hypothetical DNA target site was determined by 

multidimensional NMR spectroscopy. The SRY box has a twisted L shape that 

presents a concave surface (made up of three helices and the N- and C- terminal 

strands) to the DNA for sequence-specific recognition (Werner et al., 1995). Binding 

of SRY to its DNA target site occurs exclusively in the minor groove and induces a 

large conformational change in the DNA. The DNA in the complex has an overall 700- 

800 bend and is helically unwound relative to classical A and B DNA (figure 18). 

The structure of the complex reveals the effects of point mutations that cause sex 

reversal phenotype at the atomic level. 

From the genetic stand point, naturally occurring point mutations in hSRY are of two 

types: inherited mutations with variable penetrance and de novo mutations with full 

penetrance (see introduction and table 1). 

Clearly, the functional effects of the former must be considerably less severe than 

those of the latter. From a structural point of view, the point mutations also fall into 

two categories: those that affect the packing of residues within the protein core and 

those that involve residues that directly contact the DNA. 

Two inherited point mutation, 190M (I 35 in Figure 21) 'and F109S (F 54 in Figure 

21) result in packing defects that would be expected to destabilise the protein, but 

they are not so crucial for the correct packing as V60 (V5 in Figure 21) that serves to 

position K 73 and Y 74 for interaction with the DNA. 
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Fib. 20 The interaction of hSRYbox with DNA (from Werner et al. ) 
Three views (A-C) are displayed. The protein is shown as a schematic ribbon drawing 

in green, and the colour coding used for the DNA bases is red for A. lilac for T, dark 

blue for G and light blue for C. Side chains that contact the DNA bases are depicted 

in yellow in (C) (D) shows the same view as in (C) with the molecular surface of the 

protein shown in grey and the DNA atoms in yellow The patches of blue on the 

protein surface indicate the location of the side chains of tour of the seven residues 

that interact with the DNA bases. 
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F 109 (F 54 of Figure 21) is a buried residue within the hydrophobic core that packs 

against A 11, V 14, W 15 and F 55 as shown in the model reported in the Figure 21. 

Substitution by the polar S at this position would be anticipated to destabilise the 

protein, but this effect, however, may not be sufficient to perturb the DNA binding 

properties of the F109S mutant, but may accelerate its degradation within the cell. 

The other packing defect point mutant, K106I (K 51 in Figure 21), plays a role in the 

interaction with the DNA binding core and the rest of the protein. The aliphatic 

portion of the side chain of K51 in Figure 21 is packed between L 46 and F 55. 

Introduction of a branched Ile side chain with two bulky methyl groups at this 

position may disrupt F 55 from the hydrophobic core and partially displace L 46, 

destabilising the packing of helices 2 and 3. 

The remaining de novo point mutations involve residues that contact the DNA. The 

G95R (Arg 7 in Figure 22) mutant removes hydrophobic contacts with the sugar of 

C4 and a salt bridge to the phosphate of A5. Owing to shortening of the side chain, 

the M641 (Met 9 Ile of Figure 22) mutant will disrupt extensive van der Waals 

contacts with the deoxyribose of A5 and A6 and with the 03 atom of A6 that is 

located at the hinge point of the bend between base pair 5 and 6 (Figure 22). 
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Fig. 21. Ribbon drawing of hSRYbox. 

The backbone ribbon is shown in green, and side chains with less than 20% and 

between 20% and 50% of their surface (relative to an extended Gly-X-Gly tripeptide 

segment) accessible to solvent are shown in red and blue. respectively. 
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Fig. 2 Summary of the contacts between hSRYbox and DNA. 

the DNA is represented as a cylindrical projection viewed in the minor groove with 

the bases depicted as thick black lines, the deoxyribose sugar rings as pentagons, and 

the phosphate as stippled circles. 
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MATERIALS AND METHODS 



4.1 ALKALINE LYSIS MINIPREP 

The alkaline lysis procedure is the most commonly used miniprep method. Plasmid 

DNA is prepared from small amounts of many different cultures (1 to 24) of plasmid- 

containing bacteria. Bacteria are lysed by treatment with a solution containing sodium 

dodecyl sulfate (SDS) and NaOH (SDS denatures bacterial proteins, and NaOH 

denatures chromosomal and plasmid DNA). The mixture is neutralized with potassium 

acetate, causing the covalently closed plasmid DNA to reanneal rapidly. Most of the 

chromosomal DNA and bacterial proteins precipitate--as does the SDS, which forms a 

complex with potassium--and are removed by centrifugation. The reannealed plasmid 

DNA from the supernatant is then concentrated by ethanol precipitation. 

Materials 

LB medium containing appropriate antibiotic. 

Glucose/Tris/EDTA (GTE) solution 

TE buffer. 

NaOH/SDS solution 

Potassium acetate solution 

95% and 70% ethanol 

10 mg/ml DNase-free RNase. 

1.5-m1 disposable microcentrifuge tubes 

Methods 
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1. Inoculate 5 ml sterile LB medium with a single bacterial colony. Grow to saturation 

(overnight). 

2. Spin 1.5 ml of cells 20 sec in a microcentrifuge at maximum speed to pellet. 

Remove the supernatant with a Pasteur pipet. 

The spins in steps 2 and 6 can be performed at 4C or at room temperature. Longer 

spins make it difficult to resuspend cells. 

3. Resuspend pellet in 100 ul GTE solution and let sit 5 min at room temperature. 

Be sure cells are completely resuspended. 

4. Add 200 ul NaOH/SDS solution, mix by tapping tube with finger, and place on ice 

for 5 min. 

5. Add 150 ul potassium acetate solution and vortex at maximum speed for 2 sec to 

mix. Place on ice for 5 min. 

Be sure mixing is complete. 

6. Spin 3 min as in step 2 to pellet cell debris and chromosomal DNA. 

7. Transfer supernatant to a fresh tube, mix it with 0.8 ml of 95% ethanol, and let sit 2 

min at room temperature to precipitate nucleic acids. 
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8. Spin 1 min at room temperature to pellet plasmid DNA and RNA. 

9. Remove supernatant, wash the pellet with 1 ml of 70% ethanol, and dry pellet 

under vacuum. 

10. Resuspend the pellet in 30 ul TE buffer and store as in support protocol. Use 2.5 

to 5 ul of the resuspended DNA for a restriction digestion. 

4.2 PREPARATION OF CRUDE LYSATE BY ALKALINE LYSIS: MAXI 

PREP 

Materials 

LB medium or enriched medium (e. g., superbroth or terrific broth) containing 

ampicillin or other appropriate selective agent . 

Plasmid-bearing E. coli strain. 

Glucose/Tris/EDTA solution. 

25 mg/ml hen egg white lysozyme in glucose/Tris/EDTA solution (prepare fresh). 

0.2 M NaOH/1% (w/v) SDS [prepare fresh from 10 M NaOH and 10% (w/v) SDS 

stocks] 

3M potassium acetate solution, pH -5.5 

Isopropanol 

70% ethanol 

Sorvall GSA, GS-3, or Beckman JA-10 rotor or equivalent 
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High-speed centrifuge tubes with >=20-ml capacity (e. g., Oak Ridge centrifuge tubes) 

Sorvall SS-34 or Beckman JA-17 rotor or equivalent 

Methods 

1. Inoculate 5 ml LB medium or enriched medium containing selective agent (most 

commonly ampicillin) with a single colony of E. coli containing the desired plasmid. 

Grow at 37C with vigorous shaking overnight. 

2. Inoculate 500 ml LB medium or enriched medium containing selective agent in a 2- 

liter flask with -1 ml of overnight culture. Grow at 37C until culture is saturated 

(OD600 4). 

To increase yields, maximize aeration using a flask with high surface area (whose 

volume exceeds the culture volume--i. e., is >2 liters) and baffles and shake at >400 

rpm. Alternatively, treat cultures of cells growing logarithmically with 

chloramphenicol to amplify the plasmids . 
Growing the bacteria in medium that 

supports higher cell densities also increases the yield. These media include M9, terrific 

broth, and LB medium containing 0.1% (w/v) glucose These media can increase 

plasmid yields 2- to 10-fold; different plasmids respond to the media differently. Most 

plasmids commonly used today, particularly derivatives of the pUC series, grow at a 

copy number high enough to routinely yield 1 to 5 mg plasmid DNA from a 500-m1 

culture grown in LB medium. 
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An important consideration when using enriched medium is the method to be used for 

final purification of plasmid DNA. Increased yield poses no problems when using 

CsCVethidium bromide or PEG purification. However, the capacity of some 

commercially available chromatography columns--e. g., the Qiagen-tip 2500 (Qiagen) 

and Wizard Maxiprep (Promega)--is easily exceeded. Therefore, the increased yield of 

plasmid DNA in the crude lysate will not result in increased recovery from the 

column. The pZ523 column (5 Prime->3 Prime) does not require that plasmid DNA 

bind to the column and can be used to purify larger amounts of DNA. 

3. Collect cells by centrifuging 10 min at 6000 xg (-6000 rpm in Sorvall GSA/GS-3 

or Beckman JA-10 rotors), 4C. 

If necessary the pellets can be stored frozen indefinitely at -20 or -70C. 

4. Resuspend pellet from 500-ml culture in 4 ml glucose/Tris/EDTA solution and 

transfer to high-speed centrifuge tube with >=20-nil capacity. 

Lyse the cells 

S. Add 1 ml of 25 mg/ml hen egg white lysozyme in glucose/Tris/EDTA solution. 

Resuspend the pellet completely in this solution and allow it to stand 10 min at room 

temperature. 

Neither glucose nor lysozyme is absolutely necessary for the success of the procedure. 

Glucose serves as a buffer in step 6 when the pH of the solution is greatly increased 
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by addition of NaOH. Glucose provides buffering in the range of pH 12 and, by 

preventing the pH from rising too drastically in step 6, increases the efficiency of 

precipitation in step 7 (when the pH is lowered by addition of potassium acetate). 

Lysozyme assists in the destruction of bacterial cell walls and subsequent release of 

plasmid DNA. Bacterial debris and soluble proteins are precipitated in step 7. One 

problem that can reduce recovery of plasmid DNA is inefficient separation of plasmid 

DNA from cellular debris. Lysozyme helps increase yield by reducing the amount of 

plasmid DNA trapped in partially degraded cell material and subsequently lost by 

precipitation at step 7. 

The effort and expense required to include glucose and lysozyme in step 5 is 

negligible. The efficiency gained in streamlining the procedure by omitting them is 

also negligible. However, the potential for loss of plasmid DNA when these 

components are not included is measurable and worth avoiding. It should be noted 

that some commercially available chromatographic systems (e. g., Qiagen) rely on 

inefficient bacterial lysis to reduce contamination of plasmid DNA with chromosomal 

DNA. Although omitting lysozyme reduces the recovery of plasmid DNA, when using 

these products the manufacturer's recommendations should be followed. 

When chromatographic methods are used for final purification of plasmid DNA, it is 

essential to degrade RNA that contaminates the lysate, and will copurify with plasmid 

DNA. Treating the lysate with RNase A is the most efficient and economical method 

for degrading RNA. This can be accomplished at any step in the preparation of crude 
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lysate, it is most convenient to do it at step 5, by adding RNase A to the 

glucose/Tris/EDTA solution to a final concentration of 50 ug/ml. 

6. Add 10 ml freshly prepared 0.2 M NaOH/1% SDS and mix by stirring gently with a 

pipet until solution becomes homogeneous and clears. Let stand 10 min on ice. 

The solution should become very viscous. 

7. Add 7.5 ml of 3M potassium acetate solution and again stir gently with a pipet 

until viscosity is reduced and a large precipitate forms. Let stand 10 min on ice. 

8. Centrifuge 10 min at 20,000 xg (13,000 rpm in Sorvall SS-34; 12,500 rpm in 

Beckman JA- 17), 4C. 

A large, fairly compact pellet will form; this contains most of the chromosomal DNA, 

SDS-protein complexes, and other cellular debris. Plasmid DNA remains in the 

translucent supernatant. 

Addition of -0.5 ml chloroform before the centrifugation can help reduce floating 

material. 

Precipitate plasmid DNA 
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9. Decant the supernatant into a clean centrifuge tube. Pour it through several layers 

of cheesecloth if any floating material is visible. Add 0.6 vol isopropanol, mix by 

inversion, and let stand 5 to 10 min at room temperature. 

If the supernatant is cloudy or contains floating material, repeat centrifugation (step 8) 

before adding isopropanol. 

10. Recover nucleic acids by centrifuging 10 min at 15,000 xg (11,500 rpm in SS-34 

rotor; 10,500 rpm in JA-17 rotor), room temperature. 

11. Wash the pellet with 2 ml of 70% ethanol; centrifuge briefly at 15,000 x g, room 

temperature, to collect pellet. Aspirate ethanol and dry pellet under vacuum. 

The pellet can be stored indefinitely at 4C. 

Materials 

Potassium acetate solution (3 M), pH -5.5 

294 g potassium acetate (3 M final) 

50 ml 90% formic acid (1.18 M final) 

H2O to I liter 

Store indefinitely at room temperature 

Sucrose/Tris/EDTA solution 

25% (w/v) sucrose 

50 mM Tris-Cl, pH 8.0 

100 mM EDTA, pH 8.0 
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Store indefinitely at 4C 

4.3 TRANSFORMATION USING CALCIUM CHLORIDE 

Escherichia coli cells are grown to log phase. Cells are concentrated by centrifugation 

and resuspended in a solution containing calcium chloride. Exposure to calcium ions 

renders the cells able to take up DNA, or competent. Plasmid DNA is mixed with the 

cells and presumably adheres to them. The mixture of DNA and cells is then heat 

shocked, which allows the DNA to efficiently enter the cells. The cells are grown in 

nonselective medium to allow synthesis of plasmid-encoded antibiotic resistance 

proteins, then plated on antibiotic-containing medium to allow identification of 

plasmid-containing colonies. 

Materials 

Single colony of E. coli cells 

LB medium 

CaCl2 solution, ice-cold 

LB plates containing ampicillin 

Plasmid DNA (pBend 2, pT7 hSRY box... ) 

Chilled 50-m1 polypropylene tubes 

Beckman JS-5.2 rotor or equivalent 

42C water bath 

All materials and reagents coming into contact with bacteria must be sterile. 
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4.4 PREPARE COMPETENT CELLS 

Method 

1. Inoculate a single colony of E. coli (DH5, B121 (DE3)) cells into 50 ml LB 

medium. Grow overnight at 37C with moderate shaking (250 rpm) 

Alternatively, grow a 5-ml culture overnight in a test tube on a roller drum. 

2. Inoculate 4 ml of the culture into 400 ml LB medium in a sterile 2-liter flask. Grow 

at 37C, shaking (250 rpm), to an OD59o of 0.375. 

This procedure requires that cells be growing rapidly (early- or mid-log phase). 

Accordingly, it is very important that the growing cells have sufficient air. A 1-liter 

baffle flask can be used instead of the 2-liter flask. Overgrowth of culture (beyond 

OD59o of 0.4) decreases the efficiency of transformation. 

3. Aliquot culture into eight 50-m1 prechilled, sterile polypropylene tubes and leave 

the tubes on ice 5 to 10 min. 

Cells should be kept cold for all subsequent steps. 

Larger tubes or bottles can be used to centrifuge cells if volumes of all subsequent 

solutions are increased in direct proportion. 

4. Centrifuge cells 7 min at 3000 rpm (1600 x g), 4C. Allow centrifuge to decelerate 

without brake. 
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We have not attempted to determine whether deceleration without braking is critical 

to this procedure. However, we do not use the brake for this step or for the 

subsequent centrifugation steps. 

5. Pour off supernatant and resuspend each pellet in 10 ml ice-cold CaCl2 solution. 

Resuspension should be performed very gently and all cells kept on ice. 

6. Centrifuge cells 5 min at 2500 rpm (1100 x g), 4C. Discard supernatant and 

resuspend each pellet in 10 ml cold CaCl2 solution. Keep resuspended cells on ice for 

30 min. 

7. Centrifuge cells 5 min at 2500 rpm (1100 x g), 4C. Discard supernatant and 

resuspend each pellet in 2 ml of ice-cold CaCl2 solution. 

It is important to resuspend this final pellet well. The suspension may be left on ice for 

several days. For many strains (e. g., DH5) competency increases with increasing time 

on ice, and reaches a maximum at 12 to 24 hr. This is not true for B121 (DE3) cells, 

which should be frozen immediately. 

8. Dispense cells into prechilled, sterile polypropylene tubes (250-u1 aliquots are 

convenient). Freeze immediately at -70C. 

Assess competency of cells 
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9. Use 10 ng of pBR322 to transform 100 ul of competent cells according to the steps 

provided below. Plate appropriate aliquots (1,10, and 25 ul) of the transformation 

culture on LB/ampicillin plates and incubate at 37C overnight. 

10. The number of transformant colonies per aliquot volume (ul) x 105 is equal to the 

number of transformants per microgram of DNA. 

Transformation efficiencies of 107-108 and 106-107 are obtained for E. coli MC 1061 

and DHS, respectively. Competency of strains decreases very slowly over months of 

storage time. 

Transform competent cells 

11. Aliquot 10 ng of DNA in a volume of 10 to 25 ul into a 15-m1 sterile, round- 

bottom test tube and place on ice. 

Plasmid DNA can be used directly from ligation reactions. When this is done, more 

DNA is usually used. However, if there is more than 1 ug of DNA in the ligation 

reaction, or if the ligation reaction is from low gelling/melting temperature agarose, it 

is wise to dilute the ligation mix 

12. Rapidly thaw competent cells by warming between hands and dispense 100 ul 

immediately into test tubes containing DNA. Gently swirl tubes to mix, then place on 

ice for 10 min. 

79 



Competent cells should be used immediately after thawing. Remaining cells should be 

discarded rather than refrozen. 

13. Heat shock cells by placing tubes into a 42C water bath for 2 min. 

Alternatively, incubate at 37C for 5 min. 

14. Add 1 ml LB medium to each tube. Place each tube on a roller drum at 250 rpm 

for 1 hr at 37C. 

15. Plate aliquots of transformation culture on LB/ampicillin or other appropriate 

antibiotic-containing plates. 

It is convenient to plate several different dilutions of each transformation culture. The 

remainder of the mixture can be stored at 4C for subsequent platings. 

16. When plates are dry, incubate 12 to 16 hr at 37C. 

Materials 

SOC medium 

0.5% yeast extract 

2% tryptone 

10 mM NaCl 

2.5 mM KC1 
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10 mM MgC12 

10 mM MgSO4 

20 mM glucose 

4.5 AGAROSE GEL ELECTROPHORESIS 

Agarose gel electrophoresis is a simple and highly effective method for separating, 

identifying, and purifying 0.5- to 25-kb DNA fragments. The protocol can be divided 

into three stages: (1) a gel is prepared with an agarose concentration appropriate for 

the size of DNA fragments to be separated; (2) the DNA samples are loaded into the 

sample wells and the gel is run at a voltage and for a time period that will achieve 

optimal separation; and (3) the gel is stained or, if ethidium bromide has been 

incorporated into the gel and electrophoresis buffer, visualized directly upon 

illumination with UV light. 

4.6 RESOLUTION OF DNA FRAGMENTS ON STANDARD AGAROSE 

GELS 

Materials 

Electrophoresis buffer (TAE or TBE ) 

Ethidium bromide solution 

Electrophoresis-grade agarose 

I Ox loading buffer 

DNA molecular weight markers 
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Horizontal gel electrophoresis apparatus 

Gel casting platform 

Gel combs (slot formers) 

DC power supply 

Method 

Preparing the gel 

1. Prepare an adequate volume of electrophoresis buffer (TAE or TBE ) to fill the 

electrophoresis tank and prepare the gel. 

To facilitate visualization of DNA fragments during the run, ethidium bromide 

solution can be added to the electrophoresis buffer to a final concentration of 0.5 

ug/mi. If buffer is prepared for the electrophoresis tank and the gel separately, be sure 

to bring both to an identical concentration of ethidium bromide. 

2. Add the desired amount of electrophoresis-grade agarose to a volume of 

electrophoresis buffer sufficient for constructing the gel. Melt the agarose in a 

microwave oven or autoclave and swirl to ensure even mixing. Gels typically contain 

0.8 to 1.5% agarose 

Melted agarose should be cooled to 55C in a water bath before pouring onto the gel 

platform. This prevents warping of the gel apparatus. Gels are typically poured 

between 0.5 and 1 cm thick. The volume of the sample wells will be determined by 

both the thickness of the gel and the size of the gel comb. 
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3. Seal the gel casting platform if it is open at the ends. Pour in the melted agarose 

and insert the gel comb, making sure that no bubbles are trapped underneath the 

combs and all bubbles on the surface of the agarose are removed before the gel sets. 

Most gel platforms are sealed by taping the open ends with adhesive tape. As an 

added measure to prevent leakage, hot agarose can be applied with a Pasteur pipet to 

the joints and edges of the gel platform and allowed to harden. 

Loading and running the gel 

4. After the gel has hardened, remove the tape from the open ends of the gel platform 

and withdraw the gel comb, taking care not to tear the sample wells. 

Most gel platforms are designed so that 0.5 to I mm of agarose remains between the 

bottom of the comb and the base of the gel platform. This is usually sufficient to 

ensure that the sample wells are completely sealed and to prevent tearing of the 

agarose upon removal of the comb. Low percentage gels and gels made from low 

gelling/melting temperature agarose should be cooled at 4C to gain extra rigidity and 

prevent tearing. 

S. Place the gel casting platform containing the set gel in the electrophoresis tank. 

Add sufficient electrophoresis buffer to cover the gel to a depth of about 1 mm (or 

just until the tops of the wells are submerged). Make sure no air pockets are trapped 

within the wells. 
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6. DNA samples should be prepared in a volume that will not overflow the gel wells 

by addition of the appropriate amount of lOx loading buffer. Samples are typically 

loaded into the wells with a pipettor or micropipet. Care should be taken to prevent 

mixing of the samples between wells. 

Be sure to include appropriate DNA molecular weight markers 

7. Be sure that the leads are attached so that the DNA will migrate into the gel toward 

the anode or positive lead. Set the voltage to the desired level, typically 1 to 10 V/cm 

of gel, to begin electrophoresis. The progress of the separation can be monitored by 

the migration of the dyes in the loading buffer. 

8. Turn off the power supply when the Bromphenol Blue dye from the loading buffer 

has migrated a distance judged sufficient for separation of the DNA fragments. If 

ethidium bromide has been incorporated into the gel, the DNA can be visualized by 

placing on a UV light source and can be photographed directly. 

Gels that have been run in the absence of ethidium bromide can be stained by covering 

the gel in a dilute solution of ethidium bromide (0.5 ug/ml in water) and gently 

agitating for 10 to 30 min. If necessary, gels can be destained by shaking in water for 

an additional 30 min. This serves to remove excess ethidium bromide which causes 

background fluorescence and makes visualization of small quantities of DNA difficult. 

REAGENTS AND SOLUTIONS 
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Agarose gel 

Gels typically contain -1% agarose in lx TAE or TBE . Electrophoresis-grade 

agarose powder is added to 1x gel buffer and melted by boiling for several minutes. 

Be sure all agarose particles are completely melted. To facilitate visualization of DNA 

fragments during the run, ethidium bromide can be added to 0.5 ug/ml in the gel. 

Materials 

Ethidium bromide solution 

1000x stock solution 0.5 ug/ml: 

50 mg ethidium bromide 

100 ml H2O 

Working solution, 0.5 ug/ml: 

Dilute stock 1: 1000 for gels or stain solution 

lOx loading buffer 

20% Ficoll 400 

0.1 M Na2EDTA, pH 8 

1.0% sodium dodecyl sulfate 

0.25% Bromphenol blue 

0.25% Xylene Cyanol (optional; runs -50% as fast as Bromphenol blue and can 

interfere with visualization of bands of moderate molecular weight, but can be helpful 

for monitoring very long runs) 
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4.7 DIGESTING A SINGLE DNA SAMPLE WITH RESTRICTION 

ENDONUCLEASES 

Restriction endonuclease cleavage is accomplished simply by incubating the enzyme(s) 

with the DNA in appropriate reaction conditions. The amounts of enzyme and DNA, 

the buffer and ionic concentrations, and the temperature and duration of the reaction 

will vary depending upon the specific application. 

Materials 

DNA sample in H2O or TE buffer. 

I Ox restriction endonuclease buffers. 

Restriction endonucleases. 

lOx loading buffer. 

0.5 M EDTA, pH 8.0. 

Method 

1. Pipet the following into a clean microcentrifuge tube: 

x ul DNA (0.1 to 4 ug DNA in H2O or TE buffer) 

2 ul lOx restriction buffer. 

18-xulH2O. 

2. Add restriction endonuclease (1 to 5 U/ug DNA) and incubate the reaction mixture 

1 hr at the recommended temperature (in general, 37C). 
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In principle, 1U restriction endonuclease completely digests 1 ug of purified DNA in 

60 min using the recommended assay conditions. However, crude DNA preparations, 

such as those made by rapid procedures, often require more enzyme and/or more time 

for complete digestion. The volume of restriction endonuclease added should be less 

than 1/10 the volume of the final reaction mixture, because glycerol in the enzyme 

storage buffer may interfere with the reaction. 

3. Stop the reaction and prepare it for agarose or acrylamide gel electrophoresis by 

adding 5 ul (20% of reaction vol) 1 Ox loading buffer. 

The reaction can also be stopped by chelating Mg2+ with 0.5 ul of 0.5 M EDTA 

(12.5 mM final concentration). If the digested DNA is to be used in subsequent 

enzymatic reactions (e. g., ligation or "filling-in" reactions), addition of EDTA should 

be avoided. Alternatively, many enzymes can be irreversibly inactivated by incubating 

10 min at 65C. Some enzymes that are partially or completely resistant to heat 

inactivation at 65C may be inactivated by incubating 15 min at 75C. When the 

enzyme(s) is completely resistant to heat inactivation, DNA may be purified from the 

reaction mixture by extraction with phenol and precipitation in ethanol. 

4.8 DNA-DEPENDENT DNA POLYMERASES. 

INTRODUCTION 
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All DNA polymerases add deoxyribonucleotides to the 3'-hydroxyl terminus of a 

primed double-stranded DNA molecule 

Synthesis is exclusively in a 5'->3' direction with respect to the synthesized strand. 

Each nucleotide that is incorporated during polymerization is complementary to the 

one opposite to it in the template (dA pairs with dT, dC with dG). The reaction 

requires the four deoxyribonucleoside triphosphates (dNTPs) and magnesium ions. 

Many DNA polymerases have a 3'->5' exonuclease inherently associated with the 

polymerase activity. The 3'->5' exonuclease activity removes a single nucleotide at a 

time, releasing a nucleoside 5' monophosphate. In the absence of dNTPs, this activity 

will catalyze stepwise degradation from a free 3'-hydroxyl end of both single- and 

double-stranded DNA. In the presence of dNTPs, the exonuclease activity on double- 

stranded DNA is inhibited by the polymerase activity. During DNA synthesis, the 

exonuclease activity performs a proofreading function by removing misincorporated 

nucleotides. 

In addition to the 3'->5' exonuclease activity, some DNA polymerases (e. g., E. coli 

DNA polymerase I) also have an associated 5'->3' exonuclease activity. This activity 

degrades double-stranded DNA from a free 5'-hydroxyl end . 

The 5'->3' exonuclease activity removes from one to several nucleotides at a time, 

releasing predominantly nucleoside 5' phosphates, but also some larger 

oligonucleotides up to 10 nucleotides in length. The 5'->3' exonuclease activity of E. 

coli DNA polymerase I enables it to initiate synthesis from nicks in duplex DNA. The 

5'->3' exonuclease degrades the DNA ahead of the synthesizing polymerase, resulting 
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in translocation of the nick. The 5'->3' exonuclease activity of E. coli DNA 

polymerase I, which is located at the N-terminus of the molecule, can be removed 

either by protease treatment or by deletion of the relevant part of the gene. The 

resulting DNA polymerase, which retains the 3' to 5' exonuclease, is referred to as the 

E. coli DNA polymerase I large fragment, or the Klenow fragment. 

An important property of DNA polymerases is their processivity. Processivity is the 

ability of a polymerase molecule to incorporate nucleotides continuously on a given 

primer without dissociating from the primer template. Most DNA polymerases (e. g., 

E. coli DNA polymerase I, Klenow fragment, T4 DNA polymerase) have low 

processivity; they dissociate from a primer template after incorporating fewer than 10 

nucleotides. In contrast, T7 DNA polymerase is highly processive; it can incorporate 

thousands of nucleotides from a given primer without dissociating from the primer 

template. This is a useful property when long stretches of DNA are being synthesized. 
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4.9 ENZYME KLENOW FRAGMENT OF ESCHERICHIA COLI DNA 

POLYMERASE I 

Introduction 

The Klenow fragment, molecular weight 76,000, consists of the C-terminal, 70% of 

E. coli DNA polymerase I. It retains the DNA polymerase and 3'->5' exonuclease 

activity of E. coli DNA polymerase I, but lacks the 5'->3' exonuclease activity. 

4.10 LABELING CIRCULAR PERMUTE PROBS AT 3' ENDS OF DNA. 

Method 

1. In a 20-ul reaction mixture, add 0.1 to I ug of digested and purified DNA 

(fragments from circular permutations have a length of about 146 bps) with a 

restriction endonuclease that generates 5' overhanging ends 

DNA fragments with blunt ends (e. g. probe D, digested with Eco RV) can be labeled 

inefficiently by replacement of the nucleotide at the 31-hydroxyl terminus. For 

endonucleases that produce 3' overhanging ends, labeling of 3' termini must be carried 

out by replacement synthesis using T4 DNA polymerase. 

2. Add 20 uCi of the desired [a-32P]dNTP (3000 Ci/mmol) and I ul of appropriate 5 

mM 3dNTP mix. If higher specific activities are required, add 80 uCi of the 

radioactive dNTP at 5000 Ci/mmol. 
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Since the Kienow fragment incorporates nucleotides that are complementary to the 

single-stranded, 5' extensions, the choice of 32P-labeled dNTP depends on the 

restriction endonuclease used to cleave the DNA. For example, labeling of BamHI 

ends (GATC, fragment A) can be accomplished with any of the radioactive 

precursors, whereas labeling of EcoRI ends (AATT, fragment G) requires either 

radioactive dATP or dTTP. 

3. Add 1U of the Klenow fragment and incubate 15 min at 30C. 

It is unnecessary to change buffers, or to repurify the DNA prior to adding the 

Klenow fragment. 

4. Stop the reaction with I ul of 0.5 M EDTA or by heating to 75C for 10 min. If 

desired, remove unincorporated dNTP precursors from labeled DNA. 

Critical Parameters of Labeling 3' Ends 

For DNA fragments that are 146 bp in length, the above procedure will generate 

DNA with a specific activity of about 200 cpm/ug. For situations where higher 

specific activities are desired, use radioactive dNTPs of higher specific activity ( 5000 

Ci/mmol). 

DNA can also be labeled selectively at one end by cleaving with two different 

restriction endonucleases and labeling with a 32P-labeled dNTP that is complementary 

to only one of the two 5' extensions. For example, if DNA is cleaved with EcoRI 
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(AATT) and BamHI (GATC), the BamHI ends can be selectively labeled by using 

32P-labeled dGTP. Alternatively, DNA can be cleaved with one enzyme, radiolabeled, 

and then cleaved with the second enzyme. In this case, it is important to inactivate the 

Klenow fragment by heating to 75C for 15 min prior to addition of the second 

restriction enzyme. 

4.11 REPAIRING 3' OR 5' OVERHANGING ENDS TO GENERATE BLUNT 

ENDS. 

For many cloning experiments, it is necessary to convert the ends generated by 

restriction endonucleases into blunt ends. 

Method 

1. In a 20-u1 reaction, digest 0.1 to 4 ug DNA with a restriction endonuclease. 

2. Add 1 ul of 0.5 mM each dNTP. 

3. Add 1 to 5U of the Klenow fragment and incubate at 30C for 15 min. 

Repair of 5' extensions is carried out by polymerase activity, whereas repair of 3' 

extensions is carried out by 3' to 5' exonuclease activity. Due to the relative inactivity 

of exonuclease, this method is not desirable in cases where extensive repair of 

overhanging 3' ends is required. In such situations, T4 DNA polymerase (a much 

more expensive enzyme) or native T7 DNA polymerase are better choices. 

4. Stop the reaction by heating to 75C for 10 min or by adding 1 ul of 0.5 M EDTA. 
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For restriction fragments produced by cleavage with different endonucleases, it is 

possible to repair one end selectively. This is done by cleaving with enzyme 1, 

repairing the ends, inactivating the Klenow fragment by heat (75C for 10 min), and 

cleaving with enzyme 2. 

4.12 ENZYME T4 DNA POLYMERASE 

Introduction 

T4 DNA polymerase, the product of gene 43 of bacteriophage T4, is either prepared 

from cells of E. coli that have been infected with the phage or has been overproduced 

from its cloned gene. T4 DNA polymerase is a single polypeptide of molecular weight 

112,000. In addition to its DNA-dependent DNA polymerase activity, it has a very 

active single-stranded and double-stranded 3'->5' exonuclease. It lacks a 5'->3' 

exonuclease activity. T4 DNA polymerase by itself has low processivity; however, in 

the presence of several T4 accessory proteins, it becomes very processive. This 

polymerase has been produced from a clone that overexpresses its gene . 

Materials 

For 50-u1 reaction: 

50 mM Tris-Cl, pH 8.0 

5 mM MgC12 

5 mM DTT 
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2 ug DNA 

100 uM 4dNTP mix 

50 ug/ml BSA 

10 U T4 DNA polymerase. 

Method 

Incubate 20 min at II C. 

Stop reaction by adding 2 ul of 0.5 M EDTA or by heating to 75C for 10 min. The 

volume of reaction, concentration of 4 dNTPs, and the temperature of the reaction 

will vary, depending upon the individual application. 

Effect of Triphosphate Concentration 

For reaction conditions that do not require radioactive labeling of the DNA, high 

concentrations (100 uM) of dNTPs are used to maximize the ratio of polymerase to 

exonuclease activity. In labeling experiments, the concentration of the labeled dNTP is 

reduced to I to 2 uM; this maximizes the specific activity of the DNA. Levels lower 

than 1 uM labeled dNTP should not be used because once the dNTPs are exhausted 

the exonuclease activity will degrade the DNA. 

Buffer Compatibility 

For most applications, T4 DNA polymerase is used following digestion with 

restriction endonucleases. For many restriction enzymes, cleavage can be carried out 
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in T4 DNA polymerase buffer, and T4 DNA polymerase can be used directly. If 

buffers for the restriction enzyme and T4 DNA polymerase are incompatible, the 

DNA should be digested with the restriction enzyme and then repurified by phenol 

extraction, ethanol precipitation, and resuspension in TE buffer prior to treatment 

with T4 DNA polymerase. 

4.13 ENZYME ALKALINE PHOSPHATASES: BACTERIAL ALKALINE 

PHOSPHATASE AND CALF INTESTINE PHOSPHATASE 

Introduction 

Bacterial alkaline phosphatase (BAP) from E. coli and calf intestine phosphatase 

(CIP) from veal are commonly used in nucleic acid research. Both enzymes catalyze 

the hydrolysis of 5'-phosphate residues from DNA, RNA, and ribo- and 

deoxyribonucleoside triphosphates. The dephosphorylated products possess 5'- 

hydroxyl termini which can subsequently be radioactively labeled using [gamma- 

32P]ATP and T4 polynucleotide kinase ( e. g., probe D, digested with EcoRV, which 

originates blunt ends). 

Both phosphatases require Zn2+ for activity. The primary difference between them is 

the stability of the two enzymes. CIP is readily inactivated by heating to 70C for 10 

min and/or extraction with phenol. On the other hand, BAP is much more resistant to 

these treatments. Thus, for most purposes, CIP is the enzyme of choice. Furthermore, 

CIP has a 10- to 20-fold higher specific activity than BAP. 

We used vectors (pT7-7) dephosphorilated to prevent self ligation. 
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4.14 CIP REACTION. CONDITION FOR DEPHOSPHORYLATION OF DNA. 

Materials 

For 50-u1 reaction: 

20 mM Tris-Cl, pH 8.0 

1 mM MgC12 

1 mM ZnC12 

I to 20 pmol DNA termini 

0.1 U CIP 

Method 

Incubate at 37C for 30 min. Stop reaction by heating to 75C for 10 min or extracting 

with phenol, and then precipitate with ethanol. NOTE: CIP is heat labile; 10 min at 

75C effectively inactivates CIP. 

The volume of reaction and concentration of DNA will vary, depending upon the 

individual application. In general, phosphatase treatment can be done directly 

following cleavage by a restriction endonuclease, thus minimizing the number of 

manipulations. 
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4.15 ENZYME T4 POLYNUCLEOTIDE KINASE 

The forward reaction of T4 polynucleotide kinase catalyzes the transfer of the 

terminal (gamma) phosphate of ATP to the 5'-hydroxyl termini of DNA and RNA. 

This reaction is very efficient and hence is the general method for labeling 5' ends or 

for phosphorylating oligonucleotides. 

The exchange reaction of T4 polynucleotide kinase catalyzes the exchange of 5'- 

terminal phosphates. In this reaction, which requires an excess of ADP, the 5'-terminal 

phosphate is transferred to ADP and subsequently rephosphorylated by the transfer 

from the gamma phosphate of [gamma-32P]ATP. The exchange reaction is less 

efficient than the forward reaction; thus, it is rarely used. 

Finally, polynucleotide kinase is a 3' phosphatase. Some commercial preparations of 

polynucleotide kinase are prepared from the phage T4 strain am N81 pseTi, which 

has a mutated pseT gene. This derivative lacks the 3' phosphatase activity. 

4.16 LABELING 5' ENDS BY THE FORWARD REACTION. 

For 30-u1 reaction: 

Materials 

50 mM Tris-Cl pH 7.5 

10 mM MgC12 

5 mM DTT 
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1 to 50 pmol dephosphorylated DNA, 5' ends (fragment D, digested with EcoRV) 

50 pmol (150 uCi) [gamma-32P]ATP (specific activity >3000 Ci/mmol) 

50ug/mIBSA 

20 U T4 polynucleotide kinase 

Method 

Incubate the above amounts of enzyme, buffer DNA and radiactive ATP at 37C for 

60 min. 

Stop the reaction by adding 1 ul of 0.5 M EDTA or by heating to 75C for 10 min. 

Extract with phenol/chloroform. 

Separate the labeled DNA from the unincorporated labeled nucleotides by filtration on 

Sephadex G-100 or by centrifugation through a spin column containing Sephadex G- 

50. 

The volume of reaction and the concentration of DNA and [y-32P]ATP will vary, 

depending upon the application. 

To phosphorilate synthetic oligonucleotides by the forward reaction, 

Materials 

for 30-u1 reaction: 

50 mM Tris-Cl, pH 7.5 

10 mM MgC12 

5 mM DTT 

1 to 10 ug oligonucleotide linker 

1 MM ATP 

50 ug/mI BSA 

98 



20 U T4 polynucleotide kinase 

Incubate at 37C for 60 min. Stop reaction by adding 1 ul of 0.5 M EDTA. If desired, 

['y -32P]ATP can be added to trace the reaction. 

4.17 LABELING 5' TERMINI BY THE EXCHANGE REACTION 

For 30-u1 reaction: 

Materials 

50 mM imidazole-Cl, pH 6.6 

10 mM MgC12 

5 mM DTT 

1 to 50 pmol phosphorylated DNA, 5' ends 

5 mM ADP 

60 pmol (180 uCi) [y -32P]ATP (specific activity >3000 Ci/mmol) 

50 ug/ml BSA 

20 U T4 polynucleotide kinase 

Method 

Incubate at 37C for 60 min. Stop reaction by adding 1 ul of 0.5 M EDTA. Extract 

with buffered phenol. Separate the labeled DNA from the unincorporated labeled 

nucleotides by either Sephadex G-100 gel filtration or centrifugation through a spin 

column containing Sephadex G-50. 

The volume of reaction and the concentration of DNA and [y -32P]ATP will vary, 

depending upon the application. 

99 



4.18 ENZYME T4 DNA LIGASE 

Introduction 

T4 DNA ligase, the product of gene 30 of phage T4, was originally purified from 

phage-infected cells of E. coli. The phage T4 gene 30 has been cloned, and the 

enzyme is now prepared from overproducing strains. Using ATP as a cofactor, T4 

DNA ligase catalyzes the repair of single-stranded nicks in duplex DNA and joins 

duplex DNA restriction fragments having either blunt or cohesive ends. It is the only 

ligase that efficiently joins blunt-end termini under normal reaction conditions. 

Materials 

For 50-ui reaction: 

40 mM Tris-Cl, pH 7.5 

10 mM MgC12 

10 mM DTT 

1 ug DNA 

0.5 mM ATP 

50 uglml BSA 

I "Weiss" U T4 DNA ligase 

Method 

Incubate at 12-30C for 1 to 16 hr. Stop reaction by adding 2 ul of 0.5 M EDTA or by 

heating to 75C for 10 min. The volume of reaction, concentration of DNA, and the 
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temperature and time of the reaction will vary, depending upon the individual 

application. One Weiss unit is equivalent to 60 cohesive-end units. 

Ligation of cohesive ends is usually carried out at 12-15C to maintain a good balance 

between annealing of the ends and activity of the enzyme. Higher temperatures make 

it difficult for the ends to anneal, whereas lower temperatures diminish ligase activity. 

Blunt-end ligations are typically performed at room temperature since annealing is not 

a factor (the enzyme is not particularly stable above 30C). Blunt-end ligations require 

about 10 to 100 times more enzyme than cohesive-end ligations to achieve an equal 

efficiency. T4 DNA ligase is not inhibited by tRNA, but it is strongly inhibited by 

NaCl concentrations >150 mM. Macromolecular exclusion molecules (e. g., PEG 

8000) have been shown to greatly increase the rate of both cohesive-end and blunt- 

end joining by T4 DNA ligase. An inherent consequence of macromolecular crowding 

is that all ligations are intermolecular; thus, this technique is not suitable for the 

ligation and circularization of inserts and vectors that are required for most cloning 

experiments. 

4.19 SUBCLONING OF DNA FRAGMENTS 

In order to construct new DNA molecules, the starting DNAs are treated with 

appropriate restriction endonucleases and other enzymes if necessary (pT7-7 was 

digested with Ndel and EcoRI, p Bend 2 was digested with Xbal and Sall). The 

individual components of the desired DNA molecule are purified by agarose or 

polyacrylamide gel electrophoresis, combined, and treated with DNA ligase. The 

products of the ligation mixture (along with control mixtures) are introduced into 
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competent E. coli cells, and transformants are identified by an appropriate genetic 

selection. DNA is prepared from the colonies or plaques and subjected to restriction 

endonuclease mapping in order to determine if the desired DNA molecule was 

created. All cloning experiments follow the steps outlined below. 

Materials 

Calf intestine phosphatase (CIP) and buffer. 

dNTP mix (0.5 mM each) 

Klenow fragment of E. coli DNA polymerase I or T4 DNA polymerase 

Oligonucleotide linkers. 

10 mM ATP 

0.2 mM dithiothreitol (DTT) 

T4 DNA ligase (measured in cohesive-end units. 

2x T4 DNA ligase buffer 

Methods 

1. In a 20-u1 reaction mixture, cleave the individual DNA components with 

appropriate restriction endonuclease. Vector pT7-7 and fragment of PCR containing 

SRY boxes were digested with endonucleases Mel and Hindff, pBend2 with Xbal 

and Sall. After the reaction is complete, inactivate the enzymes by heating 15 min to 

75C. 

Reaction mixtures can be done in any volume; 20 ul is convenient for gel 

electrophoresis. Many of the subsequent enzymatic manipulations can be carried out 

sequentially without further buffer changes. 

102 



2. To remove the 5' phosphates of vectors pT7-7 and p Bend 2 (to prevent self 

ligation), add 2 ul of lOx CIP buffer and IU CIP; incubate 30 to 60 min at 37C as 

described before. After the reaction is complete, inactivate CIP by heating 15 min to 

75C. . 

3. If one or both ends generated by a restriction endonuclease must be converted to 

blunt ends add 1 ul of a solution containing all 4 dNTPs (0.5 mM each) and an 

appropriate amount of the Klenow fragment of E. coli DNA polymerase I or T4 DNA 

polymerase; carry out the filling-in or trimming reaction. After the reaction is 

complete, inactivate the enzymes by heating 15 min to 75C. 

4. Isolate the desired DNA segments by gel electrophoresis, or by other methods if 

appropriate. 

Electrophoresis in agarose gels is the most common method. Purification is not 

essential for many cloning experiments, but it is usually very helpful. 

5. Using longwave UV light for visualization of the DNA, cut out the desired band(s) 

and purify the DNA away from the gel material using the procedures described. 

It is critical to use longwave W light sources to prevent damage to the DNA. If low 

gelling/melting temperature agarose is used, ligation reactions can usually be 

performed directly in the gel slice (see alternative protocol). 
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6. Set up the following ligation reaction: 

7 ul component DNAs (0.1 to 5 ug: the molar ratio between vector and insert is 1: 1) 

10 ul 2x ligase buffer 

1 ul 10 mM ATP 

20 to 500 U (cohesive end) T4 DNA ligase 

Incubate Ito 24 hr at 15C. 

Simple ligations with two fragments having 4-bp 3' or 5' overhanging ends require 

much less ligase than more complex ligations or blunt-end ligations. The quality of the 

DNA will also affect the amount of ligase needed. 

For simplicity, appropriate DNAs should be added to each tube (adding water if 

necessary) so that the volume is 9 ul. Immediately prior to use, premix on ice the 

remaining ingredients (2x buffer, ATP, enzyme) in sufficient amounts for all the 

reactions. To start the ligation reactions, add 11-u1 aliquots of the premix to each tube 

containing DNA. 

8. Introduce 1 to 10 ul of the ligated products into competent E. coli cells and select 

for transformants by virtue of the genetic marker present on the vector. 

9 From individual E. coli transformants, purify plasmid or phage DNAs by miniprep 

procedures and determine their structures by restriction mapping and sequencing. 
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4.20 ALTERNATIVE PROTOCOL: LIGATION OF DNA FRAGMENTS IN 

GEL SLICES 

This alternate protocol saves considerable time in comparison to the basic protocol 

because it eliminates purification of the DNA fragments away from the gel matrix. It 

is suitable for most simple cloning experiments and is particularly valuable for carrying 

out a set of hybrid constructions involving a variety of different DNA fragments. 

However, as the cloning efficiency may be reduced, this method should be employed 

only when it is desired to make one (or relatively few) specific molecules. 

Additional Materials 

Low gelling/melting temperature agarose (SeaPlaque, FMC Marine Colloids) 

TAE buffer 

Method 

1. Treat the starting DNAs with appropriate restriction endonucleases and other 

enzymes. 

2. Subject the treated DNAs to electrophoresis in low gelling/melting temperature 

agarose using TAE buffer. 

It is critical that the agarose be of high ' quality. SeaPlaque is a good choice. The 

agarose concentration should be kept as low as possible (0.7% is suitable for most 

applications). 
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3. Cut out the desired band of linear vectors and fragments in the smallest possible 

volume (20 to 50 ul) using a clean razor blade, and place the gel slice in a 

microcentrifuge tube. 

4. Melt the gel slices containing DNA at 70C for at least 10 min. 

This temperature is hot enough to melt the agarose without denaturing the DNA. 

5. In separate tubes for each ligation reaction, combine the gel slices containing 

appropriate DNAs (and water if necessary) for a total volume of 9 ul. Place the tubes 

at 37C for a few minutes. 

The gel slices should remain molten at 37C. 

6. To each tube containing DNA, add 11 ul of an ice-cold mixture containing 2x 

buffer, ATP, and T4 DNA ligase. Mix immediately by flicking the tube and place on 

ice. Then incubate the reaction mixtures 1 to 48 hr at 15C. 

DNA fragments can still be ligated even though the reaction mixture has resolidified 

into a gel. 

7. After the ligation reaction is complete, remelt the gel slices 5 to 10 min at 73C and 

add 5 ul of the ligated products to 200 ul of competent E. coli cells. 
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The remelted gel must be diluted at least 30-fold so that it does not resolidify when 

the cells are placed on ice. 

Materials 

2x T4 DNA ligase buffer 

100 mM Tris-Cl, pH 7.5 

20 mM MgC12 

20 mM DTT 

4.21 CONSTRUCTION OF RECOMBINANT DNA FRAGMENT OF SRY 

BOXES BY POLYMERASE CHAIN REACTION. 

INTRODUCTION 

Any two segments of DNA can be ligated together into a new recombinant molecule 

using the polymerase chain reaction (PCR). The DNA can be joined in any 

configuration, with any desired junction-point reading frame or restriction site, by 

incorporating extra nonhomologous nucleotides within the PCR primers. Cloning by 

PCR is often more rapid and versatile than cloning with standard techniques that rely 

on the availability of naturally occurring restriction sites and require microgram 

quantities of DNA. It is not necessary to know the nucleotide sequence of the DNA 

being subcloned by this technique, other than the two short flanking regions (--20 bp) 

that serve as anchors for the two oligonucleotide primers used in the amplification 
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process. Moreover, PCR can be performed on low-abundance or even degraded DNA 

(or RNA) sources. 

Important variables that can influence the outcome of PCR include the MgC12 

concentration and the cycling temperatures. Additives that promote polymerase 

stability and processivity or increase hybridization stringency, and strategies that 

reduce nonspecific primer-template interactions, especially prior to the critical first 

cycle, can greatly improve sensitivity, specificity, and yield. 

4.22 SUBCLONING DNA FRAGMENTS 

In this protocol, synthetic oligonucleotides incorporating new unique restriction sites 

are used to amplify a region of DNA to be subcloned into a vector containing 

compatible restriction sites. The amplified DNA fragment is purified, subjected to 

enzymatic digestion at the new restriction sites, and then ligated into the vector. 

Individual subclones are analyzed by restriction endonuclease digestion and 

sequenced. 

Materials 

Sterile H2O 

30 mM MgC12 

lOx MgC12-free PCR amplification buffer 

25 mM 4dNTP mix 

50 uM oligonucleotide primer 1: 50 pmol/ul in sterile H2O (store at -20C) 

50 uM oligonucleotide primer 2: 50 pmol/ul in sterile H2O (store at -20C) 
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Template DNA: 1 ug mammalian genomic DNA 

5 U/ul Taq DNA polymerase 

DMSO, cell culture grade 

Glycerol 

Taq DNA polymerase 

Mineral oil 

Automated thermal cycler 

MgC12-free PCR amplification buffer, lOx 

500 mM KCl 

100 mM Tris-Cl, pH 9.0 (at 25C) 

0.1% Triton X-100 

Store indefinitely at -20C 

This buffer can be obtained from Promega; it is supplied with Taq DNA polymerase. 

4dNTP mix 

For 2 mM 4dNTP mix: Prepare 2 mM each dNTP in TE buffer, pH 7.5. Store up to 1 

year at -20C in 1-ml aliquots. 

For 25 mM 4dNTP mix: Combine equal volumes of 100 mM dNTPs (Promega). 

Store indefinitely at -20C in 1-ml aliquots. 
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TE-buffered phenol and chloroform 

100% ethanol 

TE buffer, pH 8.0 

Klenow fragment of E. coli DNA polymerase I 

Vector DNA 

Calf intestinal phosphatase 

Additional reagents and equipment for enzymatic amplification of DNA by PCR, 

agarose and polyacrylamide gel electrophoresis, DNA extraction and precipitation, 

purification of DNA by glass beads, electroelution from agarose gels, or from low- 

gelling/melting temperature agarose gels, restriction endonuclease digestion, ligation 

of DNA fragments, transformation of E. coli, plasmid DNA minipreps, and DNA 

sequence analysis. 

Amplify the target DNA 

Method 

1. Prepare the template DNA. If using an impure DNA preparation, heat sample 10 

min at 1000 to inactivate nucleases. 

Genomic DNA from patients and primates provided by Goodfellow's group were 

used as the source of target DNA. 

2. Prepare oligonucleotide primers. 
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Oligonucleotides SRYboxdir (CCACATATGCAGGATAGAGTGAAGCGA)). and 

SRYboxrev (CGAAGCTTAACGACGAGGTCGATACTT) were synthesised. 

Because the purity of the oligonucleotides does not seem to affect the PCR reaction, 

primer purification may not be necessary. Sites for restriction endonucleases Ndel and 

Hindlll are underlined. 

Oligonucleotides SRYboxdir and SRYboxrev were synthesised by the phosphotriester 

method. 

3. Set up a standard amplification reaction and overlay with mineral oil. 1. Carry out 

PCR in an automated thermal cycler. PCR mixtures (50 µl) contained 50 pmol each of 

oligonucleotides SRYboxdir and SRYboxrev, 0.2 mM dNTPs, 400 ng purified total 

genomic DNA, 1 unit Taq DNA polymerase and 5 pl Taq polymerise 10 X buffer 

(Perkin-Elmer Cetus). Twenty five cycles of denaturation (30 s at 94C), annealing (60 

s at 50C) and polymerisation (60 s at 72C) were performed. Extention of an 

additional 10 min at 72C in the last cycle made products as complete as possible. 

Include negative controls of no template DNA and each oligonucleotide alone, as well 

as several different oligonucleotide: template ratios. 

Recover the amplified fragment as described . 

4. Analyze an aliquot (e. g., 4 to 8 ul) of each reaction mix by agarose gel 

electrophoresis to verify that the amplification has yielded the expected product. 
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5. Recover amplified DNA from PCR reaction mix. Remove mineral oil overlay from 

each sample, then extract sample once with buffered chloroform to remove residual 

mineral oil. Extract once with buffered phenol and then precipitate DNA with 100% 

ethanol. 

6. Microcentrifuge DNA 10 min at high speed, 4C. Dissolve pellet in 20 ul TE buffer. 

Purify desired PCR product from unincorporated nucleotides, oligonucleotide 

primers, unwanted PCR products, and template DNA using glass beads, 

electroelution, or phenol extraction of low gelling/melting temperature agarose. 

Unused oligonucleotide primers can inhibit the ability of the restriction enzymes to 

digest the amplified PCR product. 

Prepare amplified fragment and vector for ligation. 

7. Since primers contain unique restriction sites, digest half of the amplified DNA in 

20 ul with the appropriate restriction endonucleases (Hind III and Nde I for SRY 

boxes). Use an excess of enzyme, and digest for several hours. 

Reserve the undigested half for future use, if necessary. 

8. Prepare the recipient vector pT7-7 for cloning by digesting 0.2 to 2 ug in 20 ul with 

NdeI-HindLU restriction enzymes; althought not necessary, since the vector could not 

be completely digested, treat vector DNA with calf intestinal phosphatase to prevent 

recircularization during ligation. 
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9. Separate the linearized vector from uncut vector by agarose or low-gelling/melting 

temperature gel electrophoresis. Recover linearized vector from the gel by adsorption 

to glass beads, electroelution, or phenol extraction of low-gelling/melting temperature 

agarose. 

10. Ligate the PCR fragments into the digested vector. 

11. Transform an aliquot of each ligation into E. coli. Prepare plasmid miniprep DNA 

from a subset of transformants. 

Analyze recombinant plasmids 

12. Digest the plasmid DNA of the selected transformants with Mel and Hindill 

restriction endonucleases. Analyze the digestions by agarose gel electrophoresis to 

confirm fragment incorporation. 

13. Sequence the amplified fragment portion of the plasmid DNA to check for 

mutations. 

This analysis is critical because the Taq DNA polymerase can introduce mutations 

into the amplified fragment. 
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4.23 DNA SEQUENCING STRATEGIES 

INTRODUCTION 

Any double-stranded template used in dideoxy sequencing should be denatured before 

being annealed to the primer. In general practice, alkali denaturation of plasmid DNA 

works better for sequencing than heat denaturation 

4.24 ALKALI DENATURATION OF DOUBLE-STRANDED PLASMID DNA 

FOR DIDEOXY SEQUENCING 

Theoretically, it should be possible to denature double-stranded templates either by 

treating with alkali or by boiling and achieve equal results in sequencing. In practice, 

however, alkali denaturation of closed-circular double-stranded templates and I 

templates usually gives superior results for dideoxy sequencing. 

In the procedure described below, a recombinant plasmid is denatured using NaOH. 

After adjusting the pH to 7.0, the DNA is precipitated with ethanol, washed, and 

dried. The dried pellet is suitable to be added to annealing reactions prior to DNA 

sequencing reactions 

Materials 

Recombinant plasmid DNA 2M NaOH/2 mM EDTA 
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3M sodium acetate, pH 6.0 

95% and 70% ethanol 

0.5-m1 microcentrifuge tubes 

Method 

1. Add -0.5 pmol of recombinant plasmid DNA pT7-SRYbox-wt, M641, I94M, 

G95R, K1061 and F109S to a 0.5-m1 microcentrifuge tube. If the volume is >20 ul, 

ethanol precipitate the DNA and redissolve in 20 ul water. If the volume is <20 ul, 

add water to bring the volume to 20 ul. 

0.5 pmol of a 2.5-kbp plasmid is -0.8 ug. 

2. Add 2 ul of 2M NaOH/2 mM EDTA and gently mix by drawing up and down with 

a pipet. Incubate 5 min at 25-37C. 

3. Place sample on ice, add 7 ul water, and mix thoroughly by drawing solution up 

and down with the pipettor. 

4. Add 7 ul of 3M sodium acetate, pH 6.0 (to neutralize DNA solution). Mix 

thoroughly by drawing solution up and down with the pipettor. Check the pH of the 

solution by spotting 1 ul on pH paper. Add 3M sodium acetate, pH 6.0 until the pH is 

=7.0. 

5. Add 75 ul of 95% ethanol and place 10 min on dry ice. 

6. Microcentrifuge 10 min, 4C, and carefully remove and discard the supernatant. 
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Use caution when removing the ethanol because the DNA pellet may also be 

removed. 

7. Add 400 ul 70% ethanol. Microcentrifuge 10 min at 4C, then carefully remove and 

discard the ethanol layer. 

8. Dry pellet 10 min in a Speedvac evaporator. Store the pellet at 20C (up to several 

weeks) until used as template for dideoxy sequencing reactions 

4.25 LABELING/TERMINATION SEQUENCING REACTIONS USING 

SEQUENASE 

The labeling/termination sequencing protocol involves two steps. In the labeling step, 

primed DNA synthesis is initiated in the presence of limiting concentrations of all four 

dNTPs, including [a-35S]dATP, and continues until one of the dNTP pools is 

depleted. At this point, the uniformly labeled DNA chains are distributed randomly in 

length from a few nucleotides to hundreds of nucleotides. In the second step, 

synthesis resumes in the presence of additional dNTPs and one ddNTP. Elongation of 

the DNA chains in this step is rapid and processive until termination occurs at specific 

bases after incorporation of the corresponding dideoxynucleotide. In this protocol, the 

average length of the radioactively labeled oligonucleotide products is modified by 

altering the concentration of dNTPs in the first step; however, it can also be regulated 

by altering the dNTP: ddNTP ratio in the termination reaction 
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This basic protocol uses Sequenase. The labeling/termination procedure can also be 

used with other polymerases; however, because each polymerase has different buffer 

and Mg++ concentration optima, and each discriminates to a different extent against 

ddNTPs, the concentrations of these components must be modified in each case. 

Materials 

0.5 pmol single-stranded or denatured double-stranded DNA template 

0.5 to 1 pmol/ul oligonucleotide primer in water (store at -20C) 

lOx Sequenase buffer 

Sequenase termination mixes 

Sequenase/pyrophosphatase mix 

Sequenase diluent 

Labeling mixes 

10 mCi/ml [a-35S]dATP (500 to 1200 Ci/mmol) 

Stop/loading dye 

0.5-m1 microcentrifuge tubes 

Heat-resistant microtiter plates. 

Anneal primer and template 

Method 

lb. Resuspend a dried pellet containing 0.5 pmol denatured double-stranded DNA in 

the following mixture: 

1 pmol primer T7 for pT7 vector, M13 for pbend2 (pharmacia). 
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1 ul lOx Sequenase buffer 

H20 to 10 u1. 

Mix gently by pipetting up and down (avoid creation of bubbles). Incubate 30 min at 

37C, then keep at this annealing temperature until ready to proceed to step 2. 

0.8 ug of 2500-bp double-stranded DNA molecule corresponds to 0.5 pmol of 

template molecules. Double-stranded DNA templates require twice as much primer as 

single-stranded DNA templates. For more stringent annealing conditions, incubate at 

42-50C instead of 37C. 

Set up termination reactions 

2. While the primer is being annealed to the template, label four microcentrifuge tubes 

A, C, G, and T for each template to be sequenced. 

For simultaneous sequencing of a large number of templates, the reactions can be 

carried out in heat-resistant, round-bottom, 96-well microtiter plates with heat- 

resistant lids 

3. Add 2.5 ul each of A, C, G, and T Sequenase termination mixes to the bottom of 

the A, C, G, and T tubes, respectively. 

Keep tubes closed because the small volumes evaporate rapidly when open to the air. 
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Carry out labeling reaction 

4. Immediately before use, dilute the Sequenase/pyrophosphatase mix in Sequenase 

diluent to I to 2U Sequenase/ul and keep on ice. 

5. Add the following to the annealed primer and template: 

2 ul labeling mix 

0.5 to 1.5 ul 10 mCi/ml [a-35S]dATP 

2 ul diluted Sequenase/pyrophosphatase mix. 

The total volume is 14.5 to 16 ul. Incubate 5 min at 25C (room temperature). 

Choose the labeling mix appropriate for the lengths of sequencing products that are 

desired. Reaction times can be extended to 20 min without detriment, although the 

reaction is complete within 5 min, by which time the nucleotide pools are exhausted. 

This step can be performed at 37C; however, 25C limits the processivity of the 

Sequenase, an advantage during the labeling step, and maximizes its half-life during 

the sequencing reaction. 

At least 3 pmol of [a35S]dATP are required for reactions containing the short 

labeling mixes whereas 15 pmol must be added to reactions containing the long 

labeling mixes. Amounts greater than these are not incorporated during the labeling 

step, because the other three dNTPs become limiting. The concentration of [a- 

35S]dATP at 10 mCi/mI with a specific activity of 1000 Ci/mmol is 10 uM. Thus for 
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such a preparation, 0.3 and 1.5 ul are sufficient for the labeling step with the short and 

long labeling mixes, respectively. 

Carry out termination reaction 

6. Add 3.5 ul of the labeling reaction mixture to the tube containing Sequenase 

termination mix A (from step 3). Mix the solution by gently pipetting up and down. 

Repeat this addition to the C, G, and T tubes, changing pipet tips each time. Incubate 

5 to 10 min at 37C. 

Reactions are complete within 2 to 3 min but incubations can be extended to 30 min 

without problems except when using dITP under some conditions 

7. Add 4 ul stop/loading dye. 

35S sequencing reactions may be stored for up to one week at -20C before 

electrophoresis. 

8. Heat samples 2 min in a 95C water bath, then place on ice. Load 2 to 3 ul of each 

sample on a sequencing gel. Electrophorese the gel and read the sequence . 

Excessive boiling of the completed reactions in formamide/dye solution may cause 

DNA chain breakage and smeared bands on the sequencing gel. If repeated loadings 

are planned, remove a3 ul aliquot of each reaction to heat before each loading. 
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4.26 COLORIMETRIC METHODS FOR QUANTIFYING PROTEINS. 

4.27 BRADFORD METHOD 

The Bradford method depends on quantitating the binding of a dye, Coomassie 

brilliant blue, to an unknown protein and comparing this binding to that of different 

amounts of a standard protein, usually bovine serum albumin. It is designed to 

quantify 1 to 10 ug protein. 

Materials 

0.5 mg/ml bovine serum albumin (BSA) 

0.15 M NaCl 

Coomassie brilliant blue solution 

Method 

1. Into 8 microcentrifuge tubes aliquot duplicate amounts of 0.5 mg/ml BSA (5,10, 

15, and 20 ul) and with 0.15 M NaCl bring the volume in each to 100 ul. Into 2 

microcentrifuge tubes, aliquot 100 ul of 0.15 M NaCl; these are blank tubes. 

2. Add 1 ml Coomassie brilliant blue solution and vortex. Allow to stand 2 min at 

room temperature. 

3. Determine the As95 using a 1-cm pathlength microcuvette (1 ml) and make a 

standard curve by plotting absorbance at 595 nm versus protein concentration. 
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Determine the absorbance for the unknown and use the standard curve to determine 

the concentration of protein in the unknown. 

If the unknown protein concentration is too high, dilute the protein, assay a smaller 

aliquot of the unknown, or generate another standard curve in a higher concentration 

range (e. g., 10 to 100 ug). 

REAGENTS AND SOLUTIONS 

0.5 mg/ml bovine serum albumin (BSA) 

The concentration of BSA is determined using the A280 = 6.6 for a 10 mg/ml solution 

of BSA measured in a 1-cm pathlength cuvette (e. g., a 0.5 mg/ml solution will have 

anA28o=0.33). 

Coomassie brilliant blue solution 

In a 1-liter volumetric flask, dissolve 100 mg Coomassie brilliant blue G-250 in 50 ml 

of 95% ethanol. Add 100 ml of 85% phosphoric acid Bring to volume with water. 

Filter through Whatman No. 1 filter paper. Store at 4C. 

Commercial kits are available from Pierce (#23200) and Bio-Rad (#500-0006). 

122 



4.28 GEL ELECTROPHORESIS 

4.29 DENATURING (SDS) DISCONTINUOUS GEL ELECTROPHORESIS: 

LAEMMLI GEL METHOD 

One-dimensional gel electrophoresis under denaturing conditions (i. e., in the presence 

of 0.1% SDS) separates proteins based on molecular size as they move through a 

polyacrylamide gel matrix toward the anode. The polyacrylamide gel is cast as a 

separating gel (sometimes called resolving or running gel) topped by a stacking gel 

and secured in an electrophoresis apparatus. After sample proteins are solubilized by 

boiling in the presence of SDS, an aliquot of the protein solution is applied to a gel 

lane, and the individual proteins are separated electrophoretically. 2-Mercaptoethanol 

(2-ME) or dithiothreitol (DTT) is added during solubilization to reduce disulfide 

bonds. 

This protocol is designed for a vertical slab gel with a maximum size of 0.75 mm x 14 

cm x 14 cm. For thicker gels, or minigels the volumes of stacking and separating gels 

and the operating current must be adjusted. 

Materials 

Separating and stacking gel solutions 

H20-saturated isobutyl alcohol 

lx Tris-CUSDS, pH 8.8 (dilute 4x Tris-CUSDS, pH 8.8) 

Protein sample to be analyzed 
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2x and lx SDS sample buffer. 

Protein molecular-weight-standards mixture. 

6x SDS sample buffer. 

lx SDS electrophoresis buffer. 

Electrophoresis apparatus: Protean II 16-cm cell (Bio-Rad) or SE 600/400 16-cm unit 

(Hoefer Pharmacia Biotech) with clamps, glass plates, casting stand, and buffer 

chambers 

0.75-mm spacers 

0.45-um filters (used in stock solution preparation) 

25-ml Erlenmeyer side-arm flask 

Vacuum pump with cold trap 

0.75-mm Teflon comb with 1,3,5,10,15, or 20 teeth 

25- or 100-u1 syringe with flat-tipped needle 

Constant-current power supply 

Pour the separating gel 

Method 

1. Assemble the glass-plate sandwich of the electrophoresis apparatus according to 

manufacturer's instructions using two clean glass plates and two 0.75-mm spacers. 

If needed, clean the glass plates in liquid Alconox or RBS-35 (Pierce). These 

aqueous-based solutions are compatible with silver and Coomassie blue staining 

procedures. 
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2. Lock the sandwich to the casting stand. 

3. Prepare the separating gel solution degassing using a rubber-stoppered 25-m1 

Erlenmeyer side-arm flask connected with vacuum tubing to a vacuum pump with a 

cold trap. After adding the specified amount of 10% ammonium persulfate and 

TEMED to the degassed solution, stir gently to mix. 

The stacking gel is the same regardless of the separating gel used. 

The desired percentage of acrylamide in the separating gel depends on the molecular 

size of the protein being separated. Generally, use 5% gels for SDS-denatured 

proteins of 60 to 200 kDa, 10% gels for SDS-denatured proteins of 16 to 70 kDa, and 

15% gels for SDS-denatured proteins of 12 to 45 kDa 

4. Using a Pasteur pipet, apply the separating gel solution to the sandwich along an 

edge of one of the spacers until the height of the solution between the glass plates 

is-11 cm. 

Use the solution immediately; otherwise it will polymerize in the flask. 

Sample volumes <10 ul do not require a stacking gel. In this case, cast the resolving 

gel as you normally would, but extend the resolving gel into the comb to form the 

well. The proteins are then separated under the same conditions as used when a 

stacking gel is present. Although this protocol works well with single-concentration 

gels, a gradient gel is recommended for maximum resolution 
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5. Using another Pasteur pipet, slowly cover the top of the gel with a layer (-1 cm 

thick) of H20-saturated isobutyl alcohol, by gently layering the isobutyl alcohol 

against the edge of one and then the other of the spacers. 

Be careful not to disturb the gel surface. The overlay provides a barrier to oxygen, 

which inhibits polymerization, and allows a flat interface to form during gel formation. 

The H20-saturated isobutyl alcohol is prepared by shaking isobutyl alcohol and H2O 

in a separatory funnel. The aqueous (lower) phase is removed. This procedure is 

repeated several times. The final upper phase is H20-saturated isobutyl alcohol. 

6. Allow the gel to polymerize 30 to 60 min at room temperature. 

A sharp optical discontinuity at the overlay/gel interface will be visible on 

polymerization. Failure to form a firm gel usually indicates a problem with the 

ammonium persulfate, TEMED (N, N, N', N'-tetramethylethylenediamine), or both. 

Ammonium persulfate solution should be made fresh before use. Ammonium 

persulfate should "crackle" when added to the water. If not, fresh ammonium 

persulfate should be purchased. Purchase TEMED in small bottles so, if necessary, a 

new previously unopened source can be tried. 

Pour the stacking gel 
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7. Pour off the layer of H20-saturated isobutyl alcohol and rinse with lx Tris- 

HCVSDS, pH 8.8. 

Residual isobutyl alcohol can reduce resolution of the protein bands; therefore, it must 

be completely removed. The isobutyl alcohol overlay should not be left on the gel 

longer than 2 hr. 

8. Prepare the stacking gel solution. 

Use the solution immediately to keep it from polymerizing in the flask. 

9. Using a Pasteur pipet, slowly allow the stacking gel solution to trickle into the 

center of the sandwich along an edge of one of the spacers until the height of the 

solution in the sandwich is -1 cm from the top of the plates. 

Be careful not to introduce air bubbles into the stacking gel. 

10. Insert a 0.75-mm Teflon comb into the layer of stacking gel solution. If necessary, 

add additional stacking gel to fill the spaces in the comb completely. 

Again, be careful not to trap air bubbles in the tooth edges of the comb; they will 

cause small circular depressions in the well after polymerization that will lead to 

distortion in the protein bands during separation. 

11. Allow the stacking gel solution to polymerize 30 to 45 min at room temperature. 
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A sharp optical discontinuity will be visible around wells on polymerization. 

Prepare the sample and load the gel 

12. Dilute a portion of the protein sample to be analyzed 1: 1 (v/v) with 2x SDS 

sample buffer and heat 3 to 5 min at 1000 in a sealed screw-cap microcentrifuge tube. 

If the sample is a precipitated protein pellet, dissolve the protein in 50 to 100 ul of 1x 

SDS sample buffer and boil 3 to 5 min at 100C. Dissolve protein-molecular-weight 

standards mixture in lx SDS sample buffer according to supplier's instructions as a 

control. 

For dilute protein solutions, consider adding 5: 1 protein solution/6x SDS sample 

buffer to increase the amount of protein loaded. Proteins can also be concentrated by 

precipitation in acetone, ethanol, or trichloroacetic acid (TCA), but losses will occur. 

For a 0.8-cm-wide well, 25 to 50 ug total protein in <20 ul is recommended for a 

complex mixture when staining with Coomassie blue, and 1 to 10 ug total protein is 

needed for samples containing one or a few proteins. If silver staining is used, 10- to 

100-fold less protein can be applied (0.01 to 5 ug in <20 ul depending on sample 

complexity). 

To achieve the highest resolution possible, the following precautions are 

recommended. Prior to adding the sample buffer, keep samples at OC. Add the SDS 

sample buffer (room temperature) directly to the OC sample (still on ice) in a screw- 
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top microcentrifuge tube. Cap the tube to prevent evaporation, vortex, and transfer 

directly to a 100C water bath for 3 to 5 min. Let immunoprecipitates dissolve for 1 hr 

at 56C in lx SDS sample buffer prior to boiling. DO NOT leave the sample in SDS 

sample buffer at room temperature without first heating to a 1000 to inactivate 

proteases. Endogenous proteases are very active in SDS sample buffer and will cause 

severe degradation of the sample proteins after even a few minutes at room 

temperature. To test for possible proteases, mix the sample with SDS sample buffer 

without heating and leave at room temperature for 1 to 3 hr. A loss of high- 

molecular-weight bands and a general smearing of the banding pattern indicate a 

protease problem. Once heated, the samples can sit at room temperature for the time 

it takes to load samples. 

13. Carefully remove the Teflon comb without tearing the edges of the polyacrylamide 

wells. After the comb is removed, rinse wells with lx SDS electrophoresis buffer. 

The rinse removes unpolymerized monomer; otherwise, the monomer will continue to 

polymerize after the comb is removed, creating uneven wells that will interfere with 

sample loading and subsequent separation. 

14. Using a Pasteur pipet, fill the wells with lx SDS electrophoresis buffer. 

If well walls are not upright, they can be manipulated with a flat-tipped needle 

attached to a syringe. 

15. Attach gel sandwich to upper buffer chamber using manufacturer's instructions. 
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16. Fill lower buffer chamber with the recommended amount of lx SDS 

electrophoresis buffer. 

17. Place sandwich attached to upper buffer chamber into lower buffer chamber. 

18. Partially fill the upper buffer chamber with lx SDS electrophoresis buffer so that 

the sample wells of the stacking gel are filled with buffer. 

Monitor the upper buffer chamber for leaks and if necessary, reassemble the unit. A 

slow leak in the upper buffer chamber may cause arcing around the upper electrode 

and damage the upper buffer chamber. 

19. Using a 25- or 100-ul syringe with a flat-tipped needle, load the protein sample(s) 

into one or more wells by carefully applying the sample as a thin layer at the bottom 

of the wells. Load control wells with molecular weight standards. Add an equal 

volume of lx SDS sample buffer to any empty wells to prevent spreading of adjoining 

lanes. 

Preparing the samples at approximately the same concentration and loading an equal 

volume to each well will ensure that all lanes are the same width and that the proteins 

run evenly. If unequal volumes of sample buffer are added to wells, the lane with the 

larger volume will spread during electrophoresis and constrict the adjacent lanes, 

causing distortions. 
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The samples will layer on the bottom of the wells because the glycerol added to the 

sample buffer gives the solution a greater density than the electrophoresis buffer. The 

bromphenol blue in the sample buffer makes sample application easy to follow 

visually. 

20. Fill the remainder of the upper buffer chamber with additional lx SDS 

electrophoresis buffer so that the upper platinum electrode is completely covered. Do 

this slowly so that samples are not swept into adjacent wells. 

Run the gel 

21. Connect the power supply to the cell and run at 10 mA of constant current for a 

slab gel 0.75 mm thick, until the bromphenol blue tracking dye enters the separating 

gel. Then increase the current to 15 mA. 

For a standard 16-cm gel sandwich, 4 mA per 0.75-mm-thick gel will run -15 hr (i. e., 

overnight); 15 mA per 0.75-mm gel will take 4 to 5 hr. To run two gels or a 1.5-mm- 

thick gel, simply double the current. When running a 1.5-mm gel at 30 mA, the 

temperature must be controlled (10-20C) with a circulating constant-temperature 

water bath to prevent "smiling" (curvature in the migratory band). Temperatures <5C 

should not be used because SDS in the running buffer will precipitate. If the level of 

buffer in the upper chamber decreases, a leak has occurred. 

22. After the bromphenol blue tracking dye has reached the bottom of the separating 

gel, disconnect the power supply. 
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Disassemble the gel 

23. Discard electrode buffer and remove the upper buffer chamber with the attached 

gel sandwich. 

24. Orient the gel so that the order of the sample wells is known, remove the 

sandwich from the upper buffer chamber, and lay the sandwich on a sheet of 

absorbent paper or paper towels. 

25. Carefully slide one of the spacers halfway from the edge of the sandwich along its 

entire length. Use the exposed spacer as a lever to pry open the glass plate, exposing 

the gel. 

26. Carefully remove the gel from the lower plate. Cut a small triangle off one corner 

of the gel so the lane orientation is not lost during staining and drying. Proceed with 

protein detection. 

The gel can be stained with Coomassie blue or silver or proteins can be electroeluted. 
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4.30 ALTERNATIVE PROTOCOL 1: ELECTROPHORESIS IN TRIS- 

TRICINE BUFFER SYSTEMS 

Separation of peptides and proteins under 10 to 15 kDa is not convenient in the 

traditional Laemmli discontinuous gel system. This is due to the comigration of SDS 

and smaller proteins, obscuring the resolution. Two approaches to obtain the 

separation of small proteins and peptides in the range of 5 to 20 kDa are presented: 

this Tris-tricine method that follows and a system using increased buffer 

concentrations. The Tris-tricine system uses a modified buffer to separate the SDS 

and peptides, thus improving resolution. Several precast gels are available for use with 

the tricine formulations. 

Additional Materials 

Separating and stacking gel solutions 

2x tricine sample buffer 

Peptide molecular-weight-standards mixture 

Cathode buffer 

Anode buffer 

Coomassie blue G-250 staining solution 

10% (v/v) acetic acid 

Method 

1. Prepare and pour the separating and stacking gels. 
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2. Prepare the sample but make the following changes for tricine gels. Substitute 2x 

tricine sample buffer for the 2x SDS sample buffer. Dilute an aliquot of the protein or 

peptide sample to be analyzed 1: 1 (v/v) with 2x tricine sample buffer. Treat the 

sample at 40C for 30 to 60 min prior to loading. 

If proteolytic activity is a problem, heating samples to 100C for 3 to 5 min before 

loading the wells may be required. Use the peptide molecular-weight-standards 

mixture for peptide separations. 

3. Load the gel and set up the electrophoresis apparatus with the following 

alterations. Remove comb and, using the tricine-containing cathode buffer, or water, 

rinse once and fill wells. Fill the lower buffer chamber with anode buffer, assemble the 

unit, and attach the upper buffer chamber. Fill the upper buffer chamber with cathode 

buffer and load the samples. 

4. Connect the power supply to the cell and run 1 hr at 30 V (constant voltage) 

followed by 4 to 5 hr at 150 V (constant voltage). Use heat exchanger to keep the 

electrophoresis chamber at room temperature. 

5. After the tracking dye has reached the bottom of the separating gel, disconnect the 

power supply. 

Coomassie blue G-250 is used as a tracking dye instead of bromphenol blue because it 

moves ahead of the smallest peptides. 
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6. Disassemble the gel. Stain proteins in the gel for 1 to 2 hr in Coomassie blue G-250 

staining solution. Follow by destaining with 10% acetic acid, changing the solution 

every 30 min until background is clear (3 to 5 changes). For higher sensitivity, use 

silver staining as a recommended alternative. 

Prolonged staining and destaining will result in the loss of resolution of the smaller 

proteins (<10 kDa). Proteins diffuse within the gel and out of the gel, resulting in a 

loss of staining intensity and resolution. 

Materials 

Anode buffer 

121.1 g Tris base 

500 ml H2O 

Adjust to pH 8.9 with concentrated HCl 

Dilute to 5 liters with H2O 

Store at 4C up to I month 

Final concentration is 0.2 M Tris-Cl, pH 8.9. 

Cathode buffer 

12.11 g Tris base 

17.92 g tricine 

1g SDS 

Dilute to 1 liter with H2O 
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Do not adjust pH 

Store at 4C up to 1 month 

Final concentrations are 0.1 M Tris, 0.1 M tricine, and 0.1% (w/v) SDS. 

Coomassie blue G-250 staining solution 

200 ml acetic acid 

1800 ml H2O 

0.5 g Coomassie blue G-250 

Mix 1 hr and filter (Whatman no. 1 paper) 

Store at room temperature indefinitely 

The final solution is 0.025% (w/v) Coomassie blue G-250 in 10% (v/v) acetic acid. 

SDS electrophoresis buffer, 5x 

15.1 g Tris base 

72.0 g glycine 

5.0 g SDS 

H2O to 1000 ml 

Dilute to lx or 2x for working solution, as appropriate 

Do not adjust the pH of the stock solution, as the solution is pH 8.3 when diluted. 

Store at 4C until use (up to 1 month). 
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Tricine sample buffer, 2x 

2 ml 4x Tris-CUSDS, pH 6.8 (Table 10.2.1) 

2.4 ml (3.0 g) glycerol 

0.8 g SDS 

0.31 g DTT 

2 mg Coomassie blue G-250 

Add H2O to 10 ml and mix 

Final concentrations are 0.1 M Tris, 24% (w/v) glycerol, 8% (w/v) SDS, 0.2 M DTT, 

and 0.02% (w/v) Coomassie blue G-250. 

4.31 ALTERNATIVE PROTOCOL: RAPID COOMASSIE BLUE STAINING 

Protein bands stained using this protocol can be detected within 5 to 10 min after 

adding rapid Coomassie staining solution. Because the Coomassie blue concentration 

is lower than that used in the basic protocol, the gel background never stains very 

darkly and the bands can be seen even while the gel remains in the staining solution. 

Another difference from the basic protocol is that isopropanol is substituted for 

methanol in the fixing and destaining solutions. This method is slightly less sensitive 

than the basic protocol. 

Additional Materials 
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Isopropanol fixing solution 

Rapid Coomassie staining solution 

10% acetic acid 

Method 

1. Place the polyacrylamide gel in a plastic or glass container. Cover the gel with 

isopropanol fixing solution and shake gently at room temperature. For a 0.7-mm-thick 

gel, shake 10 to 15 min; for a 1.5-mm thick gel, shake 30 to 60 min. 

2. Pour out fixing solution. Cover the gel with rapid Coomassie blue staining solution 

and shake gently until desired intensity is reached, 2 hrs to overnight at room 

temperature. 

Bands will become visible even in the staining solution within 5 to 30 min, depending 

on gel thickness. The gel background will never stain very darkly. 

3. Pour out staining solution. Cover the gel with 10% acetic acid to destain, shaking 

gently 2 hr at room temperature until a clear background is obtained. 

4. If necessary, pour out 10% acetic acid and add more. Continue destaining until 

clear background is obtained. Store gel in 7% acetic acid or water, or in plastic wrap 

at 4C. 

It is usually unnecessary to add additional destaining solution. 

5. If desired, photograph or dry the gel as in step 7 of the basic protocol. 
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See steps 6 and 7 above concerning photographing or drying the gel. 

Coomassie blue staining solution 

50% methanol (v/v) 

0.05% (w/v) Coomassie brilliant blue R-250 (Bio-Rad or Pierce) 

10% (v/v) acetic acid 

40% H2O 

Dissolve the Coomassie brilliant blue R in methanol before adding acetic acid and 

water. Solution can be stored for 6 months. If precipitate is observed following 

prolonged storage, filter to obtain a homogeneous solution. 

Destaining solution 

5% methanol 

7% acetic acid 

88% H2O 

Can be stored -1 month at room temperature 

4.32 SILVER STAINING 

Detection of protein bands in a gel by silver staining depends on binding of silver to 

various chemical groups (e. g., sulfhydryl and carboxyl moieties) in proteins. The 
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detection limit is 2 to 5 ng/protein band. In this procedure, proteins separated in a 

polyacrylamide gel are successively fixed in methanol/acetic acid and glutaraldehyde. 

After exposure to silver nitrate, the gel is treated with developer to control the level of 

staining. When the desired staining intensity is reached, the gel is fixed, photographed, 

and dried. 

Materials 

Fixing and destaining solutions 

10% (v/v) glutaraldehyde (freshly prepared from 50% stock; Kodak #1200534) 

Silver nitrate solution 

Developing solution 

Kodak Rapid Fix Solution A (#8323917) 

Method 

1. Place the polyacrylamide gel in a plastic container and add 5 gel volumes of fixing 

solution. Agitate slowly 30 min on an orbital shaker. 

2. Pour out fixing solution. Fix the gel with 5 gel volumes of destaining solution for 

60 min, agitating slowly. 

No destaining is taking place in this step; fixation continues using the same solution as 

was used for destaining in the Coomassie blue staining protocol. 
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3. Pour out destaining solution. Add 5 gel volumes of 10% glutaraldehyde and agitate 

slowly 30 min in a fume hood. 

4. Pour out the glutaraldehyde. Wash the gel 4 times with water, 30 min for each 

wash and preferably overnight for the last wash. Agitate slowly with each wash. 

Washing is done by adding the water, pouring it off, and adding more water. 

5. Pour out the water. Stain the gel with -5 gel volumes of silver nitrate solution (to 

cover the gel) for 15 min with vigorous shaking. 

6. Transfer the gel to another plastic box and wash 5 times with deionized water, 

exactly I min for each wash. Agitate slowly with each wash. 

7. Dilute 25 ml developing solution with 500 ml water. Transfer gel to another plastic 

box, add enough diluted developer to cover the gel during agitation, and shake 

vigorously until the bands appear as intense as desired. If the developer turns brown, 

change to fresh developer. 

Development should be stopped immediately when gel background starts to appear. 

8. Transfer to Kodak Rapid Fix Solution A for 5 min. 

If necessary, swab gel surface with soaked cotton to remove residual silver deposits. 
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9. Pour off Rapid Fix Solution and wash the gel exhaustively in water (4 to 5 times). 

10. Photograph the gel. 

It is useful to use a blue-green filter such as a Wratten #58 filter with Kodak T-Max 

100. Gels should be photographed as soon as possible because there may be slight 

changes in color intensity and increases in nonspecific background. The silver-stained 

proteins remain clearly visible for at least 18 hr. 

11. Dry the gel to maintain a permanent record as in step 7 of the first basic protocol 

or store in sealable plastic bag (will last 6 to 12 months). 

4.33 PURIFICATION OF SRY BOXES. 

Day 1 

- Inocolare BL21(DE3) containing pT7 hSRY box in 10 ml of LB + 100ug/ml 

ampicillin + 0.4% glucose. Grow o. n. at 37 degrees. 

Day 2 

- Inoculate 1.5 ml of o. n. colture in one 1 liter flask containing 150 nil of LB + 100 

ug/ml ampicillin. Grow at 37 degrees with strong agitation. 

- Prepare mono S FPLC column (Pharmacia) : wash 2X with program 2/3 and buffers 

A and B. Pressure limit 2.0 Mpa. 
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- When A600=0.6 -0.9 add 1 mM IPTG. Grow at 370 C for 90-100 min (see results 

formore details). 

- Centrifuge cells in GSA rotor 6K rpm for 10 min. at 4° C. Resuspend pellet in 7.5 ml 

buffer L2 and transfer in 50 ml Nalgene tubes. 

- Sonicate the suspension until it clarifies partially. Keep the tube in ice and apply a 

maximum of 8 cycles of 20 seconds (power 100 W); lower amounts of cells require 

fewer cycles. 

- Add 1.5 ml of NaCl 5M and mix thouroughly. 

- Add 7.5 ml of a 50% v/v suspension of DEAE-sephadex in buffer L2 (ice 

temperature). Mix well and keep on ice 5 min. 

- Spin at lOK rpm 10 min. in SS-34 rotor at 4° C. Discard pellet and transfer the 

supernatant in a new Nalgene tube. 

-Add to the supernatant solid ammonium sulphate to final 70% solubility. Let stand 

the tube on ice 20 min. Centrifuge at 10 Krpm 10 min in SS-34 rotor at 4° C. 

- Discard the pellet; tranfer the supernatant in to a 50m1 Falcon tube. 

- Load the supernatant in a superloop of 50 ml. Run column with program 2/2. Select 

the fraction size of 1 ml. 

- At the end of the column run take tubes and transfer to fridge. 

Materials 

buffer L2 

50 mM Tris-HC1 pH 8.0 

20 mM EDTA 

0.5mM PMSF 

buffer A 

143 



20 mM HEPES pH 7.9 

0.5 mM DTT 

0.2 mM EDTA 

buffer B 

20 mM HEPES pH 7.9 

0.5 mM DTT 

0.2 mM EDTA 

2M NaCl 

program 2/3 

0.0 conc %B 
0.0 ml/min 
0.0 valve pos 
0.0 valve pos. 
0.0 nil/mark 
0.0 cm/ml 
0.0 port set 
10 conc %B 
15 conc B 

0 
0.25 
2.1 
1.1 
1.0 
0.25 
6.0 
100 
100 

program 2/2 

0.0conc%B 0 
0.0 ml/min 0.25 
0.0 valve pos 2.1 
0.0 valve pos. 1.1 
0.0 ml/mark 1.0 
0.0 cm/ml 0.50 
2.0'valve pos 1.2 
2.0 ml min. 0.2 
2+x valve pos 1.1 
4+x conc%B 100 
4+x port set 6.1 
14+x conc %B 100 
17+x conc %B 100 
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4.34 MOBILITY SHIFT DNA-BINDING ASSAY USING GEL 

ELECTROPHORESIS. 

INTRODUCTION 

The DNA-binding assay using mobility shift polyacrylamide gel electrophoresis 

(PAGE) is a simple, rapid, and extremely sensitive method for the detection of 

sequence-specific DNA-binding proteins in crude extracts. This assay also permits the 

quantitative determination of the affinity, abundance, association rate constants, 

dissociation rate constants, and binding specificity of DNA-binding proteins. Proteins 

that bind specifically to an end-labeled DNA fragment retard the mobility of the 

fragment during electrophoresis, resulting in discrete bands corresponding to the 

individual protein-DNA complexes. 

The protocol can be divided into four stages: (1) an end-labeled DNA probe 

containing a particular protein binding site is prepared; (2) a low-percentage, low- 

ionic-strength polyacrylamide gel is prepared; (3) a protein mixture is bound to the 

DNA probe; and (4) the binding reactions are electrophoresed through the gel, which 

is then dried and autoradiographed. 

MOBILITY SHIFT ASSAY USING LOW-IONIC-STRENGTH PAGE 

Materials 
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DNA with desired binding site (cruciforms DNAs, cD3e, mutl 1 or mut 0 probes). 

TE buffer 

4x binding buffer 

TBE running buffer 

30% ammonium persulfate 

TEMED (N, N, N', N'-tetramethylethylenediamine) 

DNA-binding protein 

Whatman 3MM or equivalent filter paper 

Mehod 

Prepare the DNA probe. Digest, purify and label as described before. 

Prepare enough 0.5X TBE electrophoresis buffer to fill the tank. 

Assemble washed 20-cm-long glass plates and 0.8-mm spacers for casting the gel. 

Use siliconized glass plates to aid removal of the gel after electrophoresis. Wash away 

all traces of detergent since this will disrupt protein-DNA interactions. 

. Add 100 ul of 30% ammonium persulfate and 34 ul TEMED to 40 ml low-ionic- 

strength gel mix. Swirl gently to mix. 

A large volume of premixed low-ionic-strength gel mix can be prepared and stored for 

several months at 4C. Allow the gel mix to reach room temperature before adding 

ammonium persulfate and TEMED. It is not necessary to degas the gel mix. 
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. Pour the gel mix between the plates and insert a comb. For optimal results, use a 

comb with teeth that are 4 mm wide. 

The polyacrylamide gel contains an 30: 1 ratio of acrylamide to bisacrylamide. 

. 
Allow the gel to completely polymerize for 20 min. Remove the comb and bottom 

spacer and attach the plates to the electrophoresis tank after filling the lower reservoir 

with low-ionic-strength electrophoresis buffer. Fill the upper reservoir of the tank 

with low-ionic-strength electrophoresis buffer. With a bent-needle syringe, remove air 

bubbles trapped beneath the gel and flush out the wells 

. 
Pre-run the gel at 100 V for at least 90 min. 

At 100 V the gel should initially draw a current of -22 mA, and should decrease to 

18 mA after 90 min. 

Prepare the binding buffer 4x: 

20% Ficoll, 400 mM NaCl, 40mM Hepes pH 7.9, bromphenol blue, xylene cyanol. 

In a microtiter combine the following 

10,000 cpm DNA probe 

-4/15 ng of protein from a pure fraction. 

2.5 ul of buffer 4x 
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The final reaction volume is 10 ul. 

Binding reactions must contain -5% Ficoll to minimize mixing of the sample with the 

gel electrophoresis buffer and to ensure that the samples sink to the bottom of the 

wells. While some mixing occurs during loading, this is usually not a problem since 

the electrophoresis buffer is of lower ionic strength than the reaction buffer. This 

increases the stability of most nucleic acid-protein interactions and results in even 

longer-lived complexes. 

. Incubate the binding reaction mix 5 min in ice. 

Run the gel 

. Load a small volume of IOx loading buffer into one of the wells. Allow the dyes to 

run into the gel and flush the wells before loading the samples. 

The dyes can be used to monitor the progress of electrophoresis. 

. Load each binding reaction into the appropriate well with a 10-u1 glass capillary 

pipet and a Clay-Adams screw-top loader or with a pipettor. 

. Electrophorese at -30 to 35 mA until the bromphenol blue approaches the bottom of 

the gel (-2.5 to 3 hr). 
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If electrophoresis is performed at room temperature, the glass plates should be 

allowed to become only slightly warm. Decrease the voltage if the plates become any 

hotter. For probes <70 bp, do not run the bromphenol blue to the bottom of the gel. 

To run the gel faster, put the apparatus in a cold room. Higher voltages may then be 

used without heating the glass plates. In addition, colder temperatures cause a 

contraction of the gel, increasing its sieving properties. As a result, protein-DNA 

complexes may appear as sharper bands. 

. Remove the glass plates from the gel box and carefully remove the side spacers. 

. Using a spatula, slowly pry the glass plates apart, allowing air to enter between the 

gel and the glass plate. The gel should remain attached to only one of the plates. 

Prying the plates apart too quickly may tear the gel or cause it to stick to both plates. 

If this occurs or if the gel has become distorted, squirt a stream of water underneath 

it. This will reduce the stickiness of the gel. Be careful not to let the gel slide off the 

plate. 

. Lay the glass plate (with the gel attached) on the bench with the gel facing up. Place 

3 sheets of Whatman filter paper cut to size on top of the gel. 

Support both sides with your hands and carefully flip the sandwich over so that the 

Whatman paper is on the bottom and the glass plate is on the top. 
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. 
Carefully lift up one end of the glass plate. Peel the Whatman paper with the gel 

attached to it from the plate. 

. 
Cover the gel with plastic wrap and dry under vacuum. 

. Autoradiograph the dried filter. Visualize the protein-DNA complex after overnight 

exposure without an intensifying screen or after 5-hr exposure with an intensifying 

screen. 

Low-ionic-strength electrophoresis buffer 

0.5 X T. B. E. 

Low-ionic-strength electrophoresis gel 

8% AcrylamideBisacrylamide (30/1) in 0.5 X TBE. 

Filter through 0.4-um filter 

Store at 4C for several months 

4.35 MAKING THE LABELED CROSS 

Four-way junction c is composed of four strands of 30,35,40 and 46 nucleotides. As 

controls for structure-specific binding, two linear duplex DNAs were used, called a 

and b. Details on the construction of these molecules are given in Bianchi et al. 

(1989). 

Four-way junction z is composed of the four 30-mer oligos 

1) AGCGCTCTCACACGGGCCTCCGCCCAGCTG, 
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2) CAGCTGGGCGGAGGGCGGACGTTAACCCC, 

3) GGGGTTAACGTCCGCGGTAATCTGGTAGA, 

4) TCTACCAGATTACCCCCGTGTGAGAGCGT. Control duplex az was 

constructed by annealing oligo 1 with its complement oligo 5 

(CAGCTGGGCGGAGGCCCGTGTGAGAGCGCT); the sequences contained in the 

resulting duplex were shown to be. poor binding sites for SRY ( Harley et al., 1992). 

Control duplex bz was constructed by annealing oligo 2 with its complement; the 

resulting duplex is identical to the allmut probe, which was shown previously to be a 

poor binding sites for SRY (Harley et al 

Mix 

20 pmoles of oligo 1 

2 ul of kinase bf 10 X 

12.5 ul of 32P-ATP(5000 uCi/mMmol) 

1.5 ul of T4 polynucleotide Kinase 

water to 20 ul. 

incubate 1 hr at 37° C. 

Add 

30 pmoles of oligo arm 2,3,4. 

water to 30 ul. 

Put the mix in a dry block at 100° C. To allow annealing, switch the mix off the dry 

block, cover it with a lid of polystyrene foam and let it cool until 30° C. Remove and 

throw away condensed vapour from the inner cap. 
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Make a 6.5 % polyacrylamide gel in 0.5 X TBE, 1 mm thick. Prerun at RT, 250 V2 

hours. 

Apply cruciform mix to 2 wells of prerun gel. Run at RT, 250 V for 1.5-2 hours. 

Cruciform structure will be at the level of xylene cyanol or slightly higher. 

Wrap gel in Saran wrap. Autoradiograph it for 1 min. with Fuji film. Mark the film 

with a felt tip pen; markings should extend outside the film into the Saran wrap 

around the gel. 

Cut out the band corresponding to cruciform structure associated to high level of 

radioactivity and put gel slice in Eppendorf. Autoradiograph again as a check. 

Pierce a hole with a needle in the bottom of the eppendorf tube containing the gel 

slice. Put into aa second eppendorf tube and spin a few seconds in centrifuge at 4° C. 

Add to the ground PA gel in the lower tube 600 ul of TE. On a rotary wheel shake the 

tube at4° C for 4 hours. After recover supernatant and pool. Filter the supernatant 

through glass wool in a pierced eppendorf. Filter at 4° C. Assuming the recovery is 

50%, the final cruciform concentration will be 10 nM or 10 fmoles/ul. 

4.36 CIRCULAR PERMUTATION ASSAY. 

Plasmids pBend2 containing DNA sequences CD3e, MUT11 and MUTO were 

prepared by insertion of annealed synthetic oligonucleotides 

(CTAGAGAGCGCTTTGTTCTCAG and TCGACTGAGAACAAAGCGCTCT for 

pBend2CD3e, CTAGAGAGCGCATTGTTATCAG and 

TCGACTGATAACAATGCGCTCT for pBend2MUT 11, 

CTAGAGAGCGCTGTGTTCTCAG and TCGACTGAGAACACAGCGCTCT for 

pB2MUTO) between the Xbal and Sall restriction sites in plasmid pBend2. 
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Preparation of probes, electrophoresis and data analysis were carried out as previously 

reported 

4.37 CALCULATION OF DNA BEND PARAMETERS 

For circular permutation analysis, the mobilities of protein-DNA complexes were 

normalized to the mobility of free DNA (Rbound/Rfree, vertical axis of the graph in 

the figures of results). The distances between the 5' end of the probe and the apparent 

center of flexure were normalized to the total length of the probe (flexure 

displacement, horizontal axis of the graph in the figures of results). The points in the 

graph were interpolated with a second-order equation (a parabola) by means of least 

squares algorithm (application Cricket Graph on a Macintosh computer). 

To analyze the electrophoretic mobilities of the protein-DNA complexes, we adopted 

the Lumpkin-Zimm reptation model, in which the DNA chains migrate in wormlike 

fashion among the gel fibers. The DNA chains are confined to a tube, composed of a 

sequence of segments which connect the consecutive points of contact between the 

DNA and the gel fibers. The mobility of the chain, R, is proportional to the center-of- 

mass velocity, vcm, of the chain in the direction of the electric field, such that: 

R= <vcm>/E _ <hx2/L2> Q/z (equation 1, Levene and Zimm, 1989) 

where the field of strength E is along the x axis, Q is the total charge of the DNA, z is 

the friction constant for motion along the tube, hx is the component in the x direction 

of the tube's end-to-end vector, L is the contour length of the tube, and the angle 

brackets denote an average over an ensemble of conformations. In this model, 

<hx2/L2> can be smaller than unity for two reasons: the introduction of a fixed, 

oriented bend in the DNA molecule, or the presence of an ensemble of non-fixed, 
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non-oriented bends, such as those allowed by a loose hinge. Levene and Zimm (1989) 

have computed with Monte Carlo simulations R and <hx2/L2> for straight and bent 

chains, and have compared them to the experimental electrophoretic mobilities of bent 

DNA molecules. They found that the results are closely approximated by the model if 

one introduces an additional, independently adjustable elastic force constant, Beff, 

which accounts for the relative deformability of gel and DNA. In our analysis, we 

have drastically simplified the mathematical complexity of the real situation and of the 

Levene-Zimm model by adopting the following assumptions: (1) for circularly 

permuted DNA chains of fixed length, Q and z are constant; (2) the flexure introduced 

in the DNA chain by the binding of the protein is an angle, q, with a well-identified 

vertex and a fixed amplitude (as opposed to a continuous bend and a dynamically 

averaged ensemble <q> of amplitudes) and in addition (3) due to the limited length of 

our probes and the ionic strength of the gel system, DNA chains are essentially rigid, 

so that <hx2/L2> can be approximated by hx2/L2; (4) Beff does not vary substantially 

with the displacement of the angle along the circularly permuted DNA molecules. 

Condition 2 is probably the most critical, since situations have been found in which 

the protein-induced flexure resembles more closely a loose hinge than a rigid angle 

(Gartenberg and Crothers, 1988; Kerrpola and Curran, 1991a). Conditions 2 and 4 

can be partially checked by running the complexes in gels of different polyacrylamide 

concentration: the calculated angle amplitudes should not vary significantly. Under the 

conditions specified, equation 1 reduces to: Rbound/Rfree= kbound (hxbound2/L2)/ 

kfree (hxfree2/L2)= K hxbound2/L2 (equation 2) 

where k (and hence K) are constants, and hxfree =L for a straight rod. How does 

hxbound depend on D, the distance of the vertex of the angle q from the 5' end of the 
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DNA molecule ? In a triangle, the length of the three sides a, b and c and the angle g 

subtended by a and b are related by the formula 

c2 = a2 +b2 - 2abcosg (equation 3). 

In our model: 

hxbound2 = D2 + (L-D)2 - 2D(L-D)cosq (equation 4). 

Substituting equation 4 in equation 2 yields 

Rbound/Rfree =K [D2 + (L-D)2 - 2D(L-D)cosq] / L2 = 

= 2K(1+cosq)(D/L)2 - 2K(1+cosq)(D/L) +K (equation 5). 

Thus in our model Rbound/Rfree is a quadratic function of D/L, and the experimental 

values for Rbound/Rfree can be interpolated by a parabola, whose minimum identifies 

the locus of flexure. In addition, the amplitude of q can be readily derived from the 

parameters for the second-order and first-order terms of the equation, both equal to 

2K(1+cosq); K is the zero-order parameter of the same equation. In fact, the 

comparison of the two estimates of the angle q derived from the first- and second- 

order parameters is a good test of the model. 

A similar geometrical treatment of the problem was used by Thompson and Landy 

(1988). They derived the formula pMJpE = cosa/2, which relates the angle of 

deviation from linearity of the DNA, a, to the relative mobilities of complexes with a 

flexure exactly in the middle, µM, or at the end of the molecule, RE. Empirically, the 

formula pM/µE = cosa/2 was found to give a good fit to observed values for a angles 

between 0 and 140 degrees (q angles between 180 and 40). We find that our solution 

gives results numerically similar to Thompson and Landy's and is more accurate and 

robust, since it considers many data points rather than two (pM and µE). 
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4.38 DETERMINATION OF COMPLEX DISSOCIATION CONSTANTS. 

Wild type and mutant SRY boxes were titrated into binding mixtures containing a 

fixed amount (0.25 nM) of labelled cruciform z or of labelled fragment D from 

pBend2CD3e, pBend2CD3eMUTO or pBend2CD3eMUTI 1. Samples were 

electrophoresed at 4C in 10% polyacrylamide gels as described. The radioactivity 

present in the bands was measured by exposing the wet gel to Phosphorlmager 

screens (Molecular Dynamics). Under conditions of protein excess, the dissociation 

constant is equivalent to the concentration of polypeptide where half of the input 

DNA is taken up in the complex (see Results). 

4.39 DETERMINATION OF PROTEIN-DNA SEQUENCE SPECIFICITY BY 

PCR-ASSISTED BINDING-SITE SELECTION. 

Binding-site selection is used to determine the target specificity of a sequence-specific 

DNA-binding protein. The technique has a number of applications, ranging from 

identifying DNA target sequences for proteins with unknown DNA-binding 

specificities to providing additional information on the protein-DNA interactions of 

previously characterized DNA binding domains. 

As indicated in the protocol, a pool of random-sequence oligonucleotides is used as 

the source of potential binding sites . 
The oligonucleotide pool is made double 

stranded, labelled with 32P and incubated in a binding reaction containing the DNA- 

binding protein of interest. Protein-DNA complexes are isolated by electrophoresis in 

a vertical 7% polyacrylamide gel in 0.5X TBE and elecrophoresed at 11 V cm-1 at 
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room temperature. The gel is autoradiographed with Kodak XAR-5 film at 4C for a 

few hours. Bound oligonucleotides are recovered, amplified by the polymerase chain 

reaction (PCR), and used as input DNA for a further round of binding, recovery, and 

amplification. After four rounds of selection, progress of the procedure is monitored 

again by mobility shift analysis of the selected oligonucleotide pools. After five 

rounds, individual binding site isolated from the appropriate complex on a mobility 

shift gel are cloned into plasmids and examined by sequencing. 

Materials 

Random-sequence oligonucleotide R60-mer template, 

5'CTGGTCGGGTGAATTCGTGTCGTGG(A/G/C/T) l OCCGACCCAGCGAATTC 

AGAGCATG; 

upper primer F, CTGGTCGGGTGAATTCGTGTCGTGG; 

lower primer R, ACATGCTCTGAATTCGCTGGGTCGG. 

1 Ox Taq DNA polymerase buffer 

0.5 mM 3dNTP mix (minus dCTP) 

40 uM and 0.5 mM dCTP 

10 mCi/ml [a-32P]dCTP (800 Ci/mmol) 

5 U/ul Taq DNA polymerase 

Elution buffer (see recipe) 

Glycogen carrier (e. g., Boehringer Mannheim) 

TE buffer, pH 7.5 to 8.0 

Binding buffer (see recipe), with and without 50 ug/ml BSA 

Carrier DNA: e. g., 100 ng/ul 

Purified DNA-binding proteins 
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Scintillation vials and counter 

17 x 100-mm polystyrene centrifuge tube with snap-cap 

Tumbler or rotating wheel 

Whatman 3MM paper 

Additional reagents and equipment : 

phenol/chloroform extraction and ethanol precipitation , and mobility shift DNA- 

binding assay 

Prepare labeled double-stranded random-sequence oligonucleotide 

Method 

1. Use Purified oligonucleotides R60, primer F, and primer R. Dilute R60 to 50 ng/ul 

and primers F and R to 80 ng/ul in water. 

2. Set up the following reaction in a 0.5-m1 microcentrifuge tube (20 ul total): 

2 ul 50 ng/ul oligonucleotide R76 

2 ul l Ox Taq DNA polymerase buffer 

2 ul 0.5 mM 3dNTP mix (minus dCTP) 

2 u140 um dCTP 

2 u180 ng/ul primer F 

2 ul 10 Ci/ml (3000 Ci/mmol) [a-32P)dCTP 

7 ul H2O 
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1 ul 5 U/ul Taq DNA polymerase. 

3. Carry out one PCR cycle using the following cycling parameters: 

1 min 94C (denaturation) 

3 min 55C (annealing) 

9 min 72C (extension) 

Chase extension by adding 2 ul of 0.5 mM dCTP, then heating 9 min at 72C. 

This reaction will generate double-stranded R60 oligonucleotide (dsR60) labeled to a 

specific activity of 3200 Ci/mmol, which is appropriate for use in a gel mobility shift 

assay . 

Probes with higher specific activity can be generated by increasing the ratio of labeled 

to unlabeled dCTP in the reaction. R60 may also be rendered double-stranded by 

annealing primer F and extending with Klenow fragment of E. coli DNA polymerase I 

4. Purify dsR60 on an 8% nondenaturing polyacrylamide gel visualizing it by 

autoradiography 

A clearly visible dsR60 band can be obtained after a 60- to 90-sec exposure. 

5. Excise gel slice containing labeled dsR60 using a clean scalpel and place in a 1.5-ml 

microcentrifuge tube containing 250 ul elution buffer. Incubate overnight at 37C. 
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6. Remove elution buffer to a fresh 1.5-m1 microcentrifuge tube, add 1 ug of glycogen 

carrier, and ethanol precipitate. 

7. Resuspend pellet in 10 ul TE buffer and measure 1 ul into a scintillation vial. 

Measure Cerenkov counts in a scintillation counter to determine cpm. 

Because the molecular weight and specific activity of the probe oligonucleotide are 

known, the amount of dsR60 can be quantitated by assuming that 106 cpm is 

approximately equivalent to I uCi. The double-stranding reaction in step 2 and the 

PCR amplification reaction in step 22 contain [a-32P]dCTP and unlabeled dCTP at 

concentrations such that four labeled C nucleotides are incorporated into every dsR60 

oligonucleotide. The specific activity of dsR76 is therefore four times the specific 

activity of the [a-32P]dCTP itself (4 x 3000 Ci/mmol = 12000 Ci/mmol). 

8. Prepare a 0.2 ng/ul dilution of dsR60 in TE buffer for use in binding reaction 

9. Incubate probes with proteins as describe for band shift assay. 

10. Apply the binding mix to a 7% acrylamide gel, and allow it to run for two hours at 

30 mAs. 

11. Purify dsR60-protein complex visualizing it by autoradiography 

A clearly visible dsR60 band can be obtained after two hours of exposure. 
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12. Excise gel slice containing labeled dsR60 using a clean scalpel and place in a 1.5- 

ml microcentrifuge tube containing 250 ul elution buffer. Incubate overnight at 37C. 

13. Remove elution buffer to a fresh 1.5-mi microcentrifuge tube, perform a phenol 

extraction followed by a chloroform extraction, add 1 ug of glycogen carrier, and 

ethanol precipitate. 

Determination of the proportion of the input probe associated to the protein 

compared to the unbound DNA allows quantitation of selected DNA. In addition, the 

proportion of input DNA recovered after each round of selection often gives a good 

indication of the progress of the site selection. 

Amplify selected DNA 

14. Prepare the following reaction mixture (20 ul total): 

2 ul lOx Taq DNA polymerase buffer 

3.2 ul 0.5 mM 3dNTP mix (minus C) 

2 ul 40 uM dCTP 

2 ul 80 ng/ul primer F 

2 u180 ng/ul primer R 

1u 10 mCi/ml (800 Ci/mmol) [a-32P]dCTP 

7.3 ul H2O 

0.5 ul 5 U/ul Taq DNA polymerase. 
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Add this mixture to 1 pg of selected DNA in a 0.5-ml microcentrifuge tube. 

15. Carry out 30 of the following radioactive PCR amplification cycles: 

1 min 94C (denaturation) 

1 min 55C (annealing) 

30 sec. 72C (extension) 

This step is optimized for amplification of oligonucleotide R60 with primers F and R. 

It is important to carefully calibrate the amplification reaction with respect to the 

amount of input DNA and number of PCR cycles performed particularly when using 

different random oligonucleotide/primer combinations. 

16. Dilute PCR reaction to 150 ul with TE buffer and phenol extract 

17. Add 1 ug of glycogen carrier and 1/4 vol of 5M ammonium acetate (to 1 M). 

Ethanol precipitate 

18. Purify PCR product by electrophoresis on a nondenaturing polyacrylamide gel as 

described in steps 4 to 6. 

Because maximum recovery is not absolutely essential, the elution step can be cut to 2 

brat 45C. 
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19. Following ethanol precipitation, resuspend pellet in 10 ul TE buffer and measure 1 

ul for Cerenkov counts. Quantitate selected, amplified dsR76, then resuspend at 0.1 

ng/ul. 

This procedure typically yields 10 to 20 ng labeled amplified selected dsR60 

oligonucleotide. 

20. Use the selected and amplified oligonucleotide pool in another round of binding- 

site selection. After five selection cycles, monitor the success of the binding-site 

selection procedure with a band shift assay. 

If successful, four rounds of selection should yield oligonucleotide pools that are 

capable of forming visible and abundant protein-DNA complexes on a mobility shift 

gel 

Controls are critical, and should include binding reactions in which a oligonucleotide 

containing the ipotetical binding site is incubated with the protein under investigation 

(positive control). 

Binding reactions with probes derived from consecutive rounds of selection should be 

loaded adjacent to the positive control on the mobility shift gel. This allows the 

gradual appearance of specific complexes to be easily visualized. 
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4.40 ISOLATION AND ANALYSIS OF BOUND OLIGONUCLEOTIDES 

FROM MOBILITY SHIFT GELS 

Once the success of the site selection procedure has been confirmed by mobility shift 

analysis, bound oligonucleotides are isolated from appropriate mobility shift 

complexes by direct amplification from gel slices. Bound oligonucleotides are then 

digested with restriction enzyme EcoRI and subcloned for sequence analysis of 

individual selected sites. 

Molecules are ligated into the vector and transformed into E. coli. Sequence analysis 

of individual selected sites was performed. 

Elution buffer 

0.5 M ammonium acetate 

1 mM EDTA 

0.1% SDS 

Store several months at room temperature 

Recovery buffer 

50 mM Tris-Cl, pH 8 

100 mM sodium acetate 

5 mM EDTA 

0.5% SDS 

Store several months at room temperature 
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