
Open Research Online
The Open University’s repository of research publications
and other research outputs

Reusable components for knowledge modelling
Thesis
How to cite:

Motta, Enrico (1998). Reusable components for knowledge modelling. PhD thesis The Open University.

For guidance on citations see FAQs.

c© 1998 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

-
LT(J

- e V -

31 0205097 0

liI I	 li lilt ttlIII itt

Kn o wie dge Media Ins titu te

Reusable Components for
Knowledge Modelling

Enrico Motta

KMI-TR-54

November 26th, 1997

Thesis submitted in partial fulfillment of the requirements
for a PhD in Artificial Intelligence

r.	 f-' '1L)L4-(LS
3iIJ	 119(

o irJ	 t1' /'2rL /

TheOpen
University

Abstract

In this work I illustrate an approach to the development of a library of problem solving

components for knowledge modelling. This approach is based on an epistemological

modelling framework, the Task/Method/Domain/Application (TMDA) model, and on a

principled methodology, which provide an integrated view of both library construction

and application development by reuse.

The starting point of the proposed approach is given by a task ontology. This formalizes

a conceptual viewpoint over a class of problems, thus providing a task-specific

framework, which can be used to drive the construction of a task model through a

process of model-based knowledge acquisition. The definitions in the task ontology

provide the initial elements of a task-specific library of problem solving components.

In order to move from problem specification to problem solving, a generic, i.e. task-

independent, model of problem solving as search is introduced, and instantiated in terms

of the concepts in the relevant task ontology, say T. The result is a task-specific, but

method-independent, problem solving model. This generic problem solving model

provides the foundation from which alternative problem solving methods for a class of

tasks can be defined. Specifically, the generic problem solving model provides i) a

highly generic method ontology, say M; ii) a set of generic building blocks (generic

tasks), which can be used to construct task-specific problem solving methods; and iii) an

initial problem solving method, which can be characterized as the most generic problem

solving method, which subscribes to M and is applicable to T. More specific problem

solving methods can then be (re-)constructed from the generic problem solving model

through a process of method/ontology specialization and method-to-task application.

The resulting library of reusable components enjoys a clear theoretical basis and provides

robust support for reuse. In the thesis I illustrate the approach in the area of parametric

design.

Acknowledgements

In general, it is not much fun to do things on your own. This is even more true in the

case of knowledge work: on the one hand, it is only possible to talk about knowledge, as

long as this is communicated and shared; on the other hand, knowledge work is normally

a collaborative process. As it turns out, I have been very lucky in being a member of a

very stimulating work environment, first in HCRL and now in KMI. For all this I have

to thank Marc Eisenstadt, from whom, over the years, I have learnt most of what I know

about technology and R&D, and who has always been a source of stimulus and

inspiration. Having joined Marc's group straight after university, I have held only one

job in life (actually zero, if one subscribes to my parents' view); therefore I don't have

direct work experience in any other academic (or non-academic) environment.

Nevertheless, I doubt that it will be possible to find anywhere else the same degree of

excitement and intellectual freedom which characterizes KMI (with the obvious

exceptions, of course, of the research groups run by the external examiners).

Most of the contents of this thesis (especially the parametric design technology) was the

result of a four-year collaboration with Zdenek Zdrahal, whose scientific rigour and

encyclopaedic knowledge of the Godfather trilogy have always been a constant source of

inspiration and reassurance, especially for those tricky moments in which one cannot

remember the name of the Sicilian wife of Michael Corleone, or is unsure about the

relation between the mm-conflict heuristic and Propose&Revise. In addition, I would

also like to thank Zdenek for reading and commenting on large chunks of the thesis.

A number of other people have provided comments on various parts of the thesis,

including Dieter Fensel, Arthur Stutt, and John Domingue.

I would also like to thank the friends and colleagues with whom over the years I have

collaborated on topics related to knowledge modelling and/or design. These include

Dieter Fensel, Arthur Stutt, John Domingue, Nigel Shadbolt, Kieron O'Hara, Mauro

Gaspari, Stuart Watt, Stefan Decker, Frank van Harmelen, Richard Benjamins, Bob

Wielinga, Rudi Studer and Annie Brooking. I also benefited from discussions with the

participants in the Sisyphus initiatives, especially Bill Birmingham, Karsten Poeck, Guus

Schreiber, Jay Runkel, and Gregg Yost. I'd also like to thank Simon Buckingham-

Shum, Marco Ramoni, Sabina Falasconi, Mario Stefanelli and Silvana Quaglini for useful

discussions on issues related to knowledge modelling. Special thanks to Tamara Sumner

for being a constant source of useful material on design and for helping with the tennis

development programme.

Finally, I would like to thank Stefania, for being patient while I took so long to complete

this work, and Emanuela, just for being there.

Table of Contents

1 . Knowledge, Models and Reuse 	 . 1

1.1.	 Introduction...1

1. 1. 1. The nature of knowledge modelling ...1

1.1.2.	 Context	 of the	 work..3

1.1.2.1. Contributions to research in design problem solving..............3

1.1.2.2. Contributions to research in knowledge modelling, sharing

andreuse..4

1.1.2.3.	 Knowledge, models, and reuse6

1.2. A characterization of knowledge-based systems...................................6

1.2.1. The ambiguous notion of knowledge-based system.......................6

1.2.2. The existential predicament of knowledge-based systems7

1.2.2.1.	 Knowledge as representation ...8

1.2.2.2.	 Knowledge-based systems as agents................................8

1.2.2.3. The experiential nature of problem-solving knowledge11

1.2.3. The role of knowledge-based systems.......................................11

1.3. Evolving perspectives on knowledge acquisition..................................12

1.3. 1. Knowledge acquisition as mining..13

1.3.2. Cognitive and technical problems with the mining view14

1.3.3. Multiple levels of description...15

1.3.4. Knowledge acquisition as modelling ..17

1.3.5.	 A	 minor	 caveat..19

1.4. Reuse in knowledge based systems ...20

1.4.1. Economic and scientific motivations for reusable knowledge

bases...20

1.4.2. Reuse and knowledge modelling...21

1.5. From battleground to background ...22

2.	 Approaches to Knowledge Modelling...................................23

2.1. Introduction...23

II

2.2. An overview of knowledge modelling frameworks23

2.2.1. KADS/Common KADS...24

2.2.1.1.	 Typesofcomponents..25

2.2. 1.2.	 Relations between components.......................................26

2.2.1.3.	 Model building process..26

2.2.1.4.	 Evaluation of the approach..27

2.2.2.	 Components of Expertise ...28

	

2.2.2.1.	 Types of components..29

	

2.2.2.2.	 Relations between components.......................................29

	

2.2.2.3.	 Model building process..29

	

2.2.2.4.	 Evaluation of the approach..29

	

2.2.2.5.	 Conclusions...30

2.2.3.	 Generic Tasks ..30

	

2.2.3.1.	 Types of components..30

	

2.2.3.2.	 Relations between components.......................................31

2.2.3.3.	 Model building process..31

2.2.3.4.	 Evaluation of the approach..31

2.2.4.	 Role-limiting Methods...31

	

2.2.4.1.	 Types of components..32

	

2.2.4.2.	 Relations between components.......................................32

2.2.4.3.	 Model building process..32

2.2.4.4.	 Evaluation of the approach..32

2.2.5.	 Protégé ..32

	

2.2.5.1.	 Typesofcomponents..33

	

2.2.5.2.	 Relations between components.......................................33

2.2.5.3.	 Model building process..33

2.2.5.4.	 Evaluation of the approach..33

2.2.6.	 DIDS...34

2.2.6.1.	 Typesofcomponents..34

III

2.2.6.2. Relations between components. 34

2.2.6.3.	 Model building process..35

2.2.6.4.	 Evaluation of the approach.. 35

2.2.7.	 SparklBurnfFirefighter .. 35

2.2.7.1.	 Overview.. 35

2.2.7.2.	 Evaluation...36

2.2.8.	 Summing-up..37

2.3. Approaches to library organization ..37

2.3.1. The Common KADS library: a general-purpose library for

knowledgemodelling..37

2.3.2.	 Libraries	 of ontologies...38

2.4. Problem solving methods: Organization and development........................39

2.4.1. Characterizing and developing problem solving methods.................39

2.4.2. Approaches to the organization of libraries of problem solving

methods...40

2.4.2.1. Pragmatic and fundamental limitations of local method

selectionknowledge...41

2.4.2.2.	 Lack of a clear theoretical basis.......................................42

2.5. Legacy of the review: what needs to be done.......................................42

2.5.1.	 Modelling	 framework..42

2.5.2. Development and organization of reusable method components.........43

2.5.2.1.	 Method characterization and development...........................43

2.5.2.2. The organization of a library of reusable problem solving

components...44

3. An Approach to the Organization of a Library of Problem

Solving Methods which Integrates the Search Paradigm with Task

and Method Ontologies .. 45

3. 1. From world-view to theory...45

3.2. Characterizing generic tasks..47

3.2.1.	 Types of generic tasks...47

3.2.2. Generic tasks: viewpoints over applications................................50

Iv

3.3. Generic task specification as task ontology... 50

3.4. From generic tasks to generic problem solving methods.......................... 53

3.4.1. Search as an epistemological device to integrate tasks and

methods...53

3.4.2. A search-based model for parametric design problem solving............ 54

3.4.2.1.	 Parametric design as search... 55

3.4.2.2. Identifying generic problem solving actions for parametric

design... 56

3.5. Characterizing problem solving methods ...57

3.5.1. Definition of problem solving method.......................................57

3.5.2. Modelling problem solving methods... 58

3.6. Reusable	 domain models.. 59

3.6.1. The knowledge interaction problem..60

3.6.2. Integrating domain ontologies and mono-functional models into

theframework..64

3.6.2.1. Mono-functional models as customised domain views............64

3.6.2.2.	 The role of domain ontologies..65

3.7. Conclusions ..67

4.	 Knowledge Modelling in OCML .. 68

4.1.	 Introduction...68

4.2. Language tenets..68

4.2.1. Knowledge-level modelling support...69

4.2.2. Support for the TMDA modelling framework..............................69

4.2.3. Compatibility with emerging standards......................................69

4.2.4. Integration of formallinformalloperational modelling......................70

4.2.5. Support for quick prototyping of knowledge models......................70

4.3. Types of constructs in OCML..72

4.3.1.	 Functional	 terms..72

4.3.1.1.	 Controlterms...72

4.3.1.2.	 Logical expressions..73

V

4.4. Basic domain modelling in OCML	 . 73

4.4.1.	 OCML relations ..73

4.4.1.1.	 Relation specification options...74

4.4. 1.2.	 Operationally-relevant relation options74

4.4.1.3.	 A meta-option for non-operational specifications76

4.4. 1.4.	 OCML relations: summing up..77

	

4.4.2.	 OCrvlL functions ...77

	

4.4.3.	 OCMLclasses..79

	

4.4.4.	 OCML	 instances..80

4.4.5. Object-oriented and relation-oriented approaches to modelling...........80

	

4.4.6.	 The generic Tell-Ask interface..81

	

4.4.6.1.	 Tell: a generic assertion-making primitive...........................81

	

4.4.6.2.	 Ask: a generic query-posing primitive...............................82

	

4.4.7.	 OCMLprocedures ...83

4.4.8. Rule-based reasoning in OCML..83

	

4.4.8.1.	 Backwardrules...83

	

4.4.8.2.	 Forward	 rules...84

4.5. Functional view of OCML..85

4.6.	 Mapping...85

	

4.6.1.	 Instance	 mapping...86

4.6.2. Relation mapping...88

4.7. Ontologies ..89

4.8. Comparison with other languages ...91

4.9. Conclusions ..94

5. An Ontology for Task-Method Structures.............................. 95

5.1. Basictasktypes.. 95

	

5.1.1.	 Modelling tasks in OCML... 95

5.1.2. Executable vs. goal-specification tasks......................................97

5.2. Modelling problem solving methods ..98

VI

5.2.1. Representing methods in OCML...98

5.2.2. Modelling support for library organization..................................100

5.2.3.	 Typesofmethods..101

5.3. Modelling goal expressions...102

5 .4. Roles and role values..103

5.4.1.	 Roles as meta-level concepts..103

5.4.2.	 Modelling roles in OCML...104

5.4.3. Roles as variables: issues of scope...106

5.5. Carrying out tasks ...107

5 .6. Application modelling...110

5 .7. Conclusions ..110

6. An Ontology for Parametric Design Tasks112

6 .1. The nature of parametric design applications.......................................112

6.1.1.	 Creativedesign...112

6.1.2.	 Configuration design ..114

6.1.3.	 Parametric design ..114

6 .2. Parametric design problem specifications...116

6.2.1.	 Parameters and design models..117

6.2.1.1.	 Typesofdesignmodels ...117

6.2.1.2.	 Legal	 values...118

6.2.2.	 Constraints and requirements...118

6.2.3.	 Key design parameters..119

6.2.4.	 'Better' and 'worse' solutions..120

6.2.4.1.	 Preferences..120

6.2.4.2.	 Global and preference-specific cost functions......................121

6.2.5. Summing-up...122

6.3. A graphical overview of the parametric design task ontology....................123

6.4. An OCML ontology for parametric design tasks...................................125

6.4.1. Modelling the notion of parametric design task.............................125

VII

6.4.2. Representing design models	 127

6.4.3. Representing constraints and requirements128

6.4.4.	 Modelling preferences...130

6.4.5. Modelling costs and cost functions ..131

6 .5. Comparison with other approaches..133

6.5.1. Comparison with configuration design ontology by Gruber,

Olsen, and Runkel...133

6.5.2. Comparison with DIDS approach..134

6.5.3. Comparison with work by Wielinga, Akkermans, and Schreiber........134

6.6. Conclusions ..136

7. A Generic Model of Parametric Design Problem Solving.............137

7.1	 Introduction...137

7.2 A search-based model of parametric design problem solving138

7.2.1	 Design	 as	 search..138

7.2.2	 State transitions and design operators139

	

7.2.2.1.	 The role of design operators..139

	

7.2.2.2.	 Representing design operators in OCML............................139

7.2.3	 Parameter dependencies...141

7.3 Methodological aspects of parametric design problem solving...................142

	

7.3.1	 Parameters..143

	

7.3.2	 Constraints..143

	

7.3.3	 Design Operator..144

	

7.3.4	 Cost	 Function...145

7.4 A generic model of parametric design problem solving...........................145

7.4.1 Generic tasks in parametric design problem solving.......................146

	

7.4.2	 Constructing the generic model...147

	

7.4.3	 Subtasks of Gen-design-control..150

	

7.4.4	 Design state evaluation ..150

	

7.4.5	 Design state selection..152

vifi

7.4.6 State-based design process	 . 155

7.4.7	 State generation and backtracking..156

7.4.8	 Context-centred design..158

7.4.9	 Design focus selection...160

7.4.9.1. Variable ordering heuristic and focus selection in design

extensioncontext ..161

7.4.9.2. Default parameter selection strategy for design extension

context...162

7.4.10 Collecting and prioritizing operators...164

7.4.10.1. Task sort-design-operators..164

7.4.10.2. Design extension operators ...164

7.4.11 Focus-centred design..166

7.4.12 Design operator selection..167

7.4.13 Applying a design operator ...168

7.4.14 Main aspects of the generic model for parametric design problem

solving...170

7.4.14.1. Methodological framework...170

7.4.14.2. Knowledgeroles...170

7.4.14.3.	 Generic tasks ...171

7.5	 Comparison with other approaches..173

	

7.5.1	 Comparison with DIDS toolkit...173

	

7.5.2	 Comparison with Chandrasekaran...175

	

7.5.3	 Comparison with constraint satisfaction approaches.......................175

8. Problem Solving 11ethods for Parametric Design......................177

	8.1	 Introduction...177

8.2 Characterizing problem solving methods ...178

	

8.3	 Propose&Backtrack ...180

	

8.4	 Hill-Climbing...183

	

8.5	 A*based design ...185

8.6 Beyond uniform approaches to parametric design187

Ix

8.7 Design modification operators. 188

8.8	 Propose&Improve...190

	

8.8.1	 Modelling Propose&Improve...190

	

8.8.2	 Task-method structure of Propose &Improve...............................191

8.8.2.1	 Focus collection in :improve context.................................192

8.8.2.2	 Focus selection in :improve context..................................193

8.8.2.3	 Operator collection and selection in :improve context..............193

	

8.8.3	 Analysis of Propose&Improve...194

8.9	 Propose&Revise...196

	

8.9.1	 Introduction...196

8.9.2	 Differentiating Propose&Revise..197

8.9.3	 Introducing fixes...198

8.9.4	 Task-method structure of Propose&Revise.................................199

8.9.4.1	 EMR vs. CMR architectures..199

8.9.4.2	 Modelling Propose&Revise control regimes........................200

8.9.5	 Methods for design revision..202

	

8.9.5.1	 One-step	 revision...202

	

8.9.5.2	 Focus-centred revision ..203

	

8.9.5.3	 Fix-monotonically..204

	

8.9.5.4	 Focus collection in :revise context205

8.9.5.5	 Focus selection in :revise context206

8.9.5.6	 Operator collection and selection in :revise context206

8.9.6 Characterizing the P&R-class of problem solving methods...............207

8.9.7	 P&R-Marcus..209

8.10 Conclusions ..210

8.10.1 Classifying problem solving methods.......................................211

8.10.2 Uniform view of problem solving methods.................................211

8.10.3 Modularity (Plug and Play) ...212

8.10.4 Task-independent approaches ..213

x

9. Application Development by Reuse 	 • 216

9 .1.	 Introduction...216

9 .2. A shell for parametric design problem solving.....................................217

9.2.1. Integrating knowledge-level and symbol-level constructs.................217

9.2. 1. 1.	 Integration through procedural attachments.........................218

9.2.1.2.	 Integration through classes..218

9.2. 1.3.	 Integration through functional interface.............................219

9.2.2. Symbol-level support for parametric design................................219

9.2.2.1. Replacing OCML tasks and methods with CLOS methods.......219

9.2.2.2. Optimizing knowledge-level models for symbol-level

efficiency...220

9.3. The Sisyphus-I office allocation problem...221

9.3.1. Description of the Sisyphus-I problem......................................221

9.3.2. Constructing a task model for the Sisyphus-I problem....................224

	

9.3.2.1.	 Parameters ..224

	

9.3.2.2.	 Valueranges..225

	

9.3.2.3.	 Constraints and Requirements..226

	

9.3.2.4.	 Preferences..226

	

9.3.2.5.	 Costfunction ...228

9.3.3.	 Domain	 modelling..228

9.3.4. From task to problem solving: specifying design operators230

	

9.3.4.1.	 Multiple design extension operators230

	

9.3.4.2.	 Head of group..231

	

9.3.4.3.	 Secretaries...232

	

9.3.4.4.	 Manager...233

	

9.3.4.5.	 Headofproject...234

	

9.3.4.6.	 Researchers...235

9.3.5. Modelling constraints and requirements.....................................236

9.3.6.	 Mapping Knowledge ..238

XI

9.3.7. Solving the Sisyphus-I office allocation problem..........................239

9.3.7.1.	 Solving by Gen-design-psm..239

9.3.7.2.	 Solving by HC-design...242

9.3.7.3.	 Solving by A*design	 ...242

9.3.7.4.	 Sumniingup..243

9.3.7.5. Comparison with other solutions to the Sisyphus-I

problem...243

9 .4. The KMI office allocation problem.. 245

	

9.4.1.	 Domainmodel.. 245

	

9.4.2.	 Task	 model..248

9.4.2.1.	 Parameters and value ranges..248

9.4.2.2.	 Requirements and constraints...248

9.4.2.3.	 Preferences and cost function...249

	

9.4.3.	 Design operators ... 250

9.4.4. Solving the KMI office allocation problem251

9.4.4. 1.	 Solving by Gen-design-psm..251

9.4.4.2. Solving the KMI office allocation problem by means of

Propose& Improve...252

9 .5. The VT elevator design problem...257

9.5. 1. A critique of the VT domain model provided as part of the

Sisyphus-il data set.. 258

9.5.1.1.	 Mapping procedures to constraints...................................259

9.5.1.2. Lack of knowledge about preferred or optimal solutions..........260

9.5.2. Constructing a task model for the VT problem.............................260

	

9.5.2.1.	 Parameters ..260

	

9.5.2.2.	 Requirements...261

	

9.5.2.3.	 Constraints..261

	

9.5.2.4.	 Preferences and cost function...262

9.5.3. Applying Propose&Revise to the VT domain263

	

9.5.3.1.	 Modelling the Propose step...263

XII

	

9.5.3.2.	 Modelling the Revise task...266

	

9.5.3.3.	 Experimental results ...269

	

9.5.3.4.	 Evaluation of the VT application270

	

9.5.3.5.	 Conclusions...272

9.5.3.6. Comparison with some contributions from the Sisyphus-il

initiative..272

9 .6. Conclusions ..274

10. Concluding Remarks ... 275

10.1 Legacyofthework..276

10.1.1 Epistemological foundations of knowledge-based systems...............276

10.1.2 Problem solving..277

10.1.3 Ontologies...278

10.1.4 Libraries of problem solving components...................................278

10.1.5 Software Reuse...279

10.1.6 Knowledge Acquisition...279

10.1.7 Knowledge modelling languages...279

10.1.8 Design Problem Solving..280

10.2 Open Issues for future research..280

10.2.1	 'Strategic' issues ...280

10.2.2 'Scholarly' issues..281

10.2.2.1. Validationissues ...281

10.2.2.2. Application delivery issues..281

10.2.2.3. Foundational issues..282

10.3 Concluding, Visionary, Techno-political remarks282

R eferences .. 284

Appendix 1. Additional details on the OCML language....................293

1 .1. Functional term constructors ...293

1.2. Control term constructors...295

1.3. Inheritance and default values..296

XIII

1.4. Interpreters and proof system 	 . 297

1.4.1. The OCML interpreter for functional terms.................................297

1.4.2. The OCML interpreter for control terms.....................................297

1.4.3.	 The OCML proof system..298

1.4.3.1. Procedure for proving basic goal expressions in OCML..........298

1.4.3.2. Proof rules for non-basic goal expressions298

Appendix 2. Full specification of the task-method ontology 300

Appendix 3. Full specification of the parametric design ontology........308

Appendix 4. Full specification of gen-design-psm.........................314

Chapter 1.
Knowledge, Models and Reuse

In this chapter 1 introduce the 'world view' informing this thesis.
This world view is characterised by three main themes: knowledge
(the subject of investigation), modelling (the chosen approach), and
reuse (the pragmatics of the exercise). In particular, the discussion i)
emphasizes the non-deterministic nature of knowledge-based systems,
ii) reviews the research work which has led to the emergence of the
knowledge modelling paradigm, and iii) highlights the synergistic
relationship between modelling and reuse.

1.1. INTRODUCTION

1.1.1. The nature of knowledge modelling

In this thesis I will present an approach to the specification, organization, configuration,

and development of reusable components for knowledge models. The expression

'knowledge model' is a commonly used abbreviation for 'knowledge-level model', a term

introduced by Allen Newell (1982) to indicate a description of a problem solving agent

which abstracts from implementation considerations and focuses instead on the

knowledge it embodies. The key assumption here is that 'intelligent' problem solving

behaviour can indeed be explained in terms of a body of knowledge - i.e. there is a causal

relation between the agent's knowledge and its behaviour. Newell calls this assumption

the principle of rationality. Hence, knowledge-level models a-la-Newell are knowledge-

centred descriptions of rational problem solving behaviour. For example a knowledge

level description of an engineering design program would consist of the various types of

knowledge it relies on - e.g. knowledge about the design process in general, knowledge

about specific design requirements, knowledge about the various types of applicable

constraints, etc. This description is independent of the specific data structures in which

such knowledge can be encoded. Analogously, the same type of knowledge-centred

approach can be used to describe the expertise of a human designer performing the same

or a similar task.

Thus, the object of a knowledge-level analysis is a knowledge-based system (KBS), i.e.

a system whose behaviour is defined by the principle of rationality. Consistently with

Newell's theoretical framework and usage of the term, a knowledge-based system can be

Chapter 1	 Page 2

a software system, a human being, or even an organization (Nonaka and Takeuchi,

1995). However, the term 'knowledge-based system' is normally reserved for a specific

class of software systems, i.e. those built according to a knowledge engineering approach

(Feigenbaum, 1977). Hence, to avoid confusion, in this work I will reserve the term

'knowledge-based system' to refer to knowledge-based software artefacts, and I will use

the more generic term 'problem solving agent', when I wish to emphasize that the object

of analysis is not necessarily a piece of software.

Since Newell's proposal, many researchers have pursued the idea of knowledge-level

analysis and applied it to a number a fields, such as cognitive science, education,

knowledge engineering and knowledge management (Wiig, 1994). For example, the

Soar architecture (Laird et al., 1987), which is a direct implementation of Newell's

knowledge-level framework, has now been used in cognitive science for several years, as

a testbed for trying out theories of problem solving, memory and learning (Newell,

1990). In the education area there have been experiments which show the benefits gained

by students engaged in model construction (Conlon and Pain, 1996). Stutt (1997) builds

on these results and argues that the application of knowledge modelling to education "may

provide the means for achieving some of the larger ambitions of constructivist

researchers" 1 . In knowledge engineering various knowledge modelling techniques have

been proposed to support activities in the system development life-cycle, such as domain

and task analysis (Steels, 1990; Chandrasekaran et al., 1992; Wielinga et al., 1992a;

Shadbolt et al., 1993), system specification (Jonker and Spee, 1992), knowledge

acquisition (Musen, 1989), and validation and verification (Fensel and Schoenegge,

1997a). Finally, researchers in knowledge management are adapting and developing

knowledge modelling solutions to support the identification and representation of

organizational knowledge assets (van der Spek and de Hoog, 1994). These have become

especially important in recent years, as Fordist economies are giving way to skill-

intensive, service-oriented ones, where knowledge is not so much an asset among others,

but the key competitive resource (Nonaka and Takeuchi, 1995).

In a nutshell, Newell's vision of a knowledge level which abstracts from implementation

considerations is currently being developed and applied well beyond the original idea of

providing the 'right' level of description of a problem solving agent. Today, knowledge

modelling is a mature, distinct technology whose domain of investigation is the analysis

Throughout the thesis I will use double quotes when citing from a publication. I will make use of

single quotes either when I wish to emphasize that an expression is not to be interpreted literally, or

when the object of discourse is an actual word or expression, rather than its denotation - e.g. to

indicate that the word 'cat' is three characters long.

Chapter 1	 Page 3

and construction of both 'static' (knowledge-intensive resources) and 'dynamic'

(knowledge-intensive processes) models (Motta, 1997).

1.1.2. Context of the work

In this thesis I will instantiate these broad notions concerning the nature of knowledge

modelling technology into a specific modelling framework, which will provide the basis

for i) carrying out a knowledge-level analysis of parametric design problem solving

(Wielinga et al., 1995; Motta and Zdrahal, 1996) and for ii) developing a number of

reusable technologies to support the construction of parametric design applications.

These technologies include task and method ontologies, a generic model of parametric

design problem solving and a number of problem solving methods applicable to

parametric design tasks. Thus, the work presented here should be of interest not only to

researchers and practitioners working in knowledge modelling, but also to those active in

the more general area of software reuse and to developers of design applications.

Below, I outline the main contributions of this thesis to parametric design problem

solving and to knowledge modelling, sharing and reuse.

1.1.2.1. Contributions to research in design problem solving.

The contribution of this work to design consists of a number of reusable technologies for

parametric design. These include:

• A precise specification of the class of parametric design problems - the parametric

design task ontology. This provides a generic, conceptual framework for

characterizing parametric design problems. An application-specific instantiation of

this generic task ontology can be seen as the target of an application analysis (or

requirements engineering) process.

• A generic model 2 of parametric design problem solving. This consists

of a number of generic tasks (Chandrasekaran et al., 1992) and a method ontology.

The generic tasks define a method-independent framework which can be used for i)

characterizing parametric design problem solving, ii) structuring the development

of specific problem solving methods, and iii) evaluating, comparing and

contrasting alternative problem solving methods.

• A library of problem solving methods for parametric design. These

subscribe to different paradigms: some are weak search methods; some are case-

2 Here, I use the term 'model', rather than 'method', to emphasize that this construction is not

necessarily a complete problem solving method. For instance, while it aims to cover all generic tasks

associated with parametric design problem solving, it leaves the control structure unspecified.

Chapter 1
	

Page 4

based; some are based on knowledge-intensive, heuristic approaches. However,

they have all been re-formulated in the library as refinements of the generic model

of parametric design problem solving mentioned above. This homogeneous

characterization of the heterogeneous methods makes it easier to evaluate, compare,

and contrast them and also provides structuring principles for organizing the

library.

• Examples of parametric design applications, developed by reusing and

configuring the library components. These examples illustrate and validate the

approach to application development by reuse presented in this thesis.

1.1.2.2. Contributions to research in knowledge modelling, sharing and reuse.

The novel contributions of this work to knowledge modelling, sharing and reuse can be

formulated in terms of a number of 'slogans'. These summarise the main tenets of my

approach to library and application development.

• Typologies of knowledge modules and ontologies provide the

structure for organizing libraries and applications. Both the library of

parametric design components and the applications developed by reuse are

structured in terms of different types of ontologies and knowledge modules. In

particular, I distinguish between task, method, domain and application knowledge.

This distinction is useful in that it provides a framework for structuring the

epistemologically diverse types of knowledge embedded in a library or application

model. The analogous distinction between task, method, domain and application

ontologies is also important, as it provides the 'conceptual handles' needed for

acquiring application-specific knowledge and for 'plugging-in' reusable modelling

components.

• Approaches to developing and structuring reusable problem solving

components should be theory-based. This slogan states that a library of

reusable problem solving components, which is associated with a class of

problems, say P, should be based on some kind of theory describing the problem

solving processes which are carried out when solving an instance of P. In other

words, a library should be more than a collection of methods: it should be

grounded on some theory characterizing problem solving behaviour in a (more or

less restricted) space of applications. The approach taken here advocates the

construction of a generic model of problem solving, which is specific for a class of

tasks, but independent from any particular problem solving method - see next

bullet point.

• Task-specific, method-independent problem solving model = search

+ task ontology. A generic problem solving model for a problem type (i.e. for

Chapter 1
	

Page 5

a class of applications) can be developed by instantiating a generic problem solving
paradigm 3 - e.g. search - in terms of a task ontology. This principle sloganizes the

approach taken to develop the problem solving model on which the library of

parametric design components is based. The advantage of this approach is that it

outlines a model of how to move from the specification of a problem type to a

class-specific, but method-independent model of problem solving. Thus, it is

possible to build generic theories of problem solving behaviour for a class of

applications, which closely integrate the task and method 'dimensions' and make it

possible to characterise problem solving methods precisely - see next bullet point.

• Problem solving method = refinement of task-specific, method-

independent, generic problem solving model. A problem solving method

is defined as a particular specialization of the generic problem solving model

associated with a problem type, say Gen-PSM, and its method ontology is a

refinement of the method ontology associated with Gen-PSM. This slogan

precisely defines the somewhat vague notion of problem solving method, which is

typically defined as "a way to solve a task". The approach characterises the nature

of problem solving methods, provides a basis for a method development

methodology and facilitates the process of evaluating, comparing and contrasting

alternative problem solving methods applicable to the same problem type. This

capability is especially useful when the methods are heterogeneous, i.e. subscribe

to different paradigms (e.g. case-based vs. search-based methods).

The above slogans specify the main tenets of the approach used for developing and

structuring a library of model components. Of course, in order to develop a library, one

needs not just a methodology and a modelling framework but a modelling language too.

A modelling language needs to address many, often inconsistent requirements. For

instance it should support informal modelling, provide a pathway to operationalization

and possibly have a formal semantics. Moreover, it has to address the trade-off between

the need to support the full expressiveness required by ontologies and software

specifications (Hayes and Jones, 1989) and the advantages offered by executable

specifications (Fuchs, 1992). Finally, for pragmatic reasons it is important to be

compatible with emerging standards. In this thesis I will use the OCML modelling

The term 'paradigm' refers to a "philosophical and theoretical framework of a scientific school or

discipline within which theories, laws, and generalizations and the experiments performed in support

of them are formulated" (Merrian-Webster, 1997). Here, I use the expression 'generic problem

solving paradigm' to refer to a theoretical framework providing a foundation to problem solving, be it

cognitive, semantic, philosophical, or computational.

Chapter 1	 Page 6

language (Motta, 1995). This supports informal, formal, and operational modelling;

integrates the specification of ontologies with that of reasoning components and provides

degrees of compatibility with emerging standards for ontology specification, such as

Ontolingua (Gruber, 1993), and for knowledge modelling, such as Common KADS

(Schreiber et al., 1994b).

1.1.2.3. Knowledge, models, and reuse

As I said at the beginning of this chapter, this thesis is about reusable components for

knowledge models. Another way of characterizing it is to say that it is informed by three

main 'themes': knowledge, models, and reuse. These define the area of interest

(knowledge-based systems), the world view underlying the chosen approach

(knowledge modelling) and the pragmatics of the exercise (knowledge sharing

and reuse). In the rest of this introductory chapter I will discuss these themes in detail -

thus clarifying the research context for the work described here - by i) characterizing the

class of knowledge-based systems (knowledge); ii) providing a (necessarily subjective)

reconstruction of the research process which has led to the formulation of the knowledge

modelling paradigm (models); iii) illustrating the economic and scientific factors

stimulating research on shareable and reusable knowledge bases (reuse); and iv)

emphasizing the synergistic relation between modelling and reuse (reuse as

abstraction).

1.2. A CHARACTERIZATION OF KNOWLEDGE-BASED SYSTEMS

1.2.1. The ambiguous notion of knowledge-based system

That the notion of a knowledge-based system needs to be clarified might be surprising to

some, given that knowledge-based systems have been explicitly recognised as a distinct

class of software systems for at least two decades - i.e. at least since Feigenbaum first

used the term 'knowledge engineering'. Nevertheless, both from discussions with

students and other software practitioners, and from reading the literature, it emerges that

different people have different views on what is a knowledge-based system and that many

find this notion unclear.

The main problem here is that 'knowledge' is a very fuzzy word. For instance a payroll

system requires knowledge about salary scales, tax codes, allowances, benefits, and

other specialised expertise and uses this body of knowledge in order to compute the net

salary of an employee. Hence, one could (maybe should) view a payroll system as an

example of a knowledge-based system. Nevertheless, many researchers in knowledge

engineering would not accept that the typical payroll system found in an organization is

'really' a knowledge-based system. They would point out that such a system does not

embody a 'reasoning process'. It just follows a procedure which deterministically

Chapter 1	 Page 7

generates a result. This criticism suggests that an explicit encoding of task or domain

specific knowledge is not sufficient to 'qualify' as a knowledge-based system: such a

property has more to do with the way a solution is achieved, rather than with specific data

structures. The criticism also implies that the embodied knowledge we refer to in the

context of knowledge-based systems is in fact specialised in some sense - i.e. not all

knowledge-embedding systems are knowledge-based. Of course one can also take the

view that this criticism to the 'ordinary' payroll system is not just unclear but also

unfounded. Maybe humble payroll systems are after all truly knowledge-based.

Obviously, whether a system is or is not knowledge-based is not so much a fundamental

characteristic of the system as a matter of complying with some operational definition.

Hence, my goal here is not to characterise fundamental cognitive properties, such as

'intelligence' and 'skilled problem solving', but rather to provide a pragmatic definition

which is adequate to set the context for the rest of this work.

The problem of characterizing knowledge-based systems is also compounded by the

existence of other ambiguous and controversial terms, such as expert system and

intelligent system, which are often used as synonyms for knowledge-based systems. For

example, let's consider the term 'expert system'. Is an expert system "a computer model

of expert human reasoning", which would reach "the same conclusions that a human

expert would reach if faced with a comparable problem" (Weiss and Kulikowski, 1984 -

page 1), or is it a system which embodies a model of expertise (Wielinga et al., 1992a),

but makes no claim about modelling human reasoning (Schreiber, 1992). A choice in

favour of the former view strongly situates expert system research in a cognitive science

context and raises important questions about the nature of expertise and the relationship

between human and machine intelligence. Adopting the latter view implies taking a stand

which separates expert system construction from cognitive modelling and therefore

emphasizes engineering rather than cognitive issues. Again, the point here is that as a

prerequisite to a discussion concerning knowledge-based systems one needs to try and

clarify this notion and take a stand with respect to various possible perspectives. In the

next section I will attempt to do exactly this and in the process I will introduce some

important themes informing the approach taken by my research, such as the fundamental

role of search techniques in knowledge-based problem solving.

1 .2.2. The existential predicament of knowledge-based systems

A knowledge-based system is typically described as a computer system which uses

knowledge to solve a task (Stefik, 1995). While this definition is correct, it is not very

useful on its own; it basically says that a system is knowledge-based if it makes use of

knowledge. Which is a bit of a tautology. Moreover, as illustrated by the example of the

payroll system, relying on intuitive notions of what it means to be knowledge-based leads

to confusion and disagreement. Therefore, in order to provide a more useful

Chapter 1	 Page 8

characterization of knowledge-based systems, Stefik (1995) goes one level deeper and

tries to define the meaning of the word 'knowledge' in the context of knowledge-based

systems. He says that knowledge refers to the codified experience of an agent. This

definition captures three important aspects associated not just with research in knowledge-

based systems but also with much research in the wider field of artificial intelligence (Al):

representations, agents, and experience. I will examine each one in turn.

1.2.2.1. Knowledge as representation

The definition of knowledge-based system given by Stefik points out that in order to talk

about knowledge in the context of knowledge-based systems, we need a representation,

i.e. this knowledge must be explicitly codified in the system's data structures. Such an

encoding is a necessary property of knowledge-based systems. In other words, a system

can be regarded as knowledge-based only if it contains structural ingredients that "we take

to represent a propositional account of the knowledge that the overall process exhibits"

(Smith, 1982). This emphasis on knowledge representation has historically played a

fundamental role in A! research; some researchers have argued that the requirement for an

explicit encoding of knowledge is not just a necessary feature of knowledge-based

systems, but a necessary and sufficient condition for intelligent behaviour. This thesis

was formulated by Newell and Simon (1976), who called it the physical symbol system

hypothesis. Needless to say, not everybody agrees with such a conjecture, which has

been criticised both within (Brooks, 1991) and outside (Dreyfus, 1979) Al. However, in

the context of this thesis (i.e. in the context of knowledge-based systems), this is not so

much a hypothesis as a definition: there is no knowledge-based system without explicit

knowledge representation.

1.2.2.2. Knowledge-based systems as agents

Stefik's definition also relates the notion of knowledge to that of agent. The word 'agent'

is currently much en vogue in A! and software engineering circles but unfortunately there

is little in common between the different uses of the term which can be found in the

literature (Bradshaw, 1996). Stefik uses this term to characterize two aspects of the

knowledge associated with a knowledge-based system. First of all, he wants to

emphasize that the explicitly encoded knowledge makes sense only with respect to an

agentlobserver, which is able to interpret it. In other words a representation has no

meaning per-se. Secondly, because an agent is by definition an acting entity, it follows

that the knowledge embodied by a knowledge-based system can be characterized as

potential for generating actions (Newell, 1982 - page 100). Hence, when trying to

describe knowledge-based systems, it is not enough to say that they explicitly embody

knowledge, but it is crucial to highlight the problem solving nature of the embodied

knowledge.

Chapter 1	 Page 9

In order to make this notion of problem solving knowledge more precise we need to look

at the kind of tasks which are solved by knowledge-based systems. By definition these

are complex tasks whose solution requires knowledge. From a problem solving point of

view a task is complex if there is no direct method which can effectively solve it (i.e.

given time and resource limitations). Here I use the term 'direct method' to refer to an

algorithmic, deterministic procedure, which guarantees to find a solution to the task.

Intuitively, this definition means that complex tasks are those which force a problem

solver to resort to 'guessing'. More precisely, the essential feature of complex problem

solving scenarios is that decisions have to be taken under uncertainty. As a result, there is

no guarantee that any particular decision is correct. Given this scenario we can then

define problem-solving knowledge as follows.

Problem-solving knowledge is knowledge which is brought to bear during a

problem solving process, when a system is faced with uncertainty in choosing

among a number of alternatives.

This definition implies that problem solving knowledge is more than a typical conditional

in a conventional software module. The latter specifies alternative computational options,

the choice of which depends on the case-specific input. However, each path is assumed

to be correct and to lead to a solution for a given input. In the case of knowledge-based

systems there is no such assurance. Given the uncertain context of the problem solving

process, it follows that there is no guarantee that any particular decision is correct. As a

result the problem-solving agent has to search. Newell (1990) calls this property the

existential predicament of intelligent systems.

To clarify this point and to provide a concrete instance of problem solving knowledge, I

shall illustrate an example taken from the VT elevator configuration application (Marcus et

al., 1988; Schreiber and Birmingham, 1996). The problem consists of computing the

specification of an elevator which satisfies a number of structural (e.g. number of floors)

and functional (e.g. elevator capacity) requirements. From a computational point of view

the process is one of parametric design (Motta and Zdrahal, 1996), in which values have

to be assigned to a number of parameters in a way which satisfies the problem

requirements and does not violate any constraint.

Figure 1.1 shows some of the parameters in the VT application. In particular, the

parameter cwt-to-hoistway-rear specifies the distance between the counterweight and

the rear of the hoistway. In absence of relevant domain constraints, we can assume that

the counterweight can be positioned anywhere in the space defined by the distance

between the platform and the rear of the hoistway (this space is called "counterweight

space"). However, the description of the VT application (Yost & Rothenfluh, 1996)

indicates that only two options are ever considered by the VT domain experts, when

Cwt-to-hoistway-rear I

Cwt-plate-depth
Cwt-to-
U-bracket

Cwt-to-platform-rear

Hoistway-depth

Chapter 1	 Page 10

deciding on the position of the counterweight. The preferred solution locates the

counterweight half way between the platform and the U-bracket. If this solution does not

work (because the counterweight is too close to the U-bracket), then the alternatives are:

i) to reduce the depth of the counterweight; ii) to move the counterweight closer to the

platform; and iii) to increase the counterweight space (presumably by decreasing the depth

of the platform). In practice all this means that a VT domain expert only considers two

options for positioning the counterweight: either half way between the platform and the

U-bracket, or, in case the previous approach fails, a position ensuring that its distance

from the U-bracket is more than 0.75 inches.

This example provides a nice example of the pragmatics of problem solving knowledge.

In search-oriented terms, problem-solving knowledge is knowledge which is used to

reduce or navigate efficiently the search space associated with a problem. In this case,

VT domain experts know that they can reduce the problem of finding a position for the

counterweight down to two choices (rather than an infinite number). Moreover, they also

provide an ordering of these two choices, which is based on a cost-minimization

criterion. However, in a problem solving situation neither of these choices can be

regarded as correct 'a priori'. Depending on the particular case specification it is possible

that a design system using this knowledge will have to backtrack. This situation is a

particular instance of a general case: the existential predicament of knowledge-based

systems implies that backtracking, whether chronological (Golomb and Baumert, 1965),

dependency-directed (Stallman and Sussman, 1977) or knowledge-based (Marcus et a!.,

1988), is a crucial feature of knowledge-based problem solving.

Counterweight
Cwt-space

Figure 1.1. The elevator example

Chapter 1	 Page 11

It should now be clear why the paradigmatic payroll system discussed above is not

'really' a knowledge-based system. While it can be said to encode domain knowledge, it

cannot be viewed as a system which performs search or takes decisions under uncertain

conditions. On the contrary, it employs direct methods which are guaranteed to find a

solution without searching. In other words, payroll systems do not backtrack4.

1.2.2.3. The experiential nature of problem-solving knowledge

Stefik's characterization of knowledge also emphasizes the importance of experience as

the source of knowledge. This is in line with the view of knowledge systems as expert

systems, i.e. systems which exhibit expertise in a particular area. By putting the accent

on experience, Stefik points out that problem solving knowledge tends to be experiential

in nature: it is knowledge which is learnt through problem solving, or acquired from

external sources through a process of knowledge acquisition (KA). This property is

nicely illustrated by the example discussed above. It is precisely domain expertise which

allows domain experts to choose the 'probably right' position for the counterweight and

which needs to be acquired by a software agent trying to configure the same class of

elevators.

1.2.3. The role of knowledge-based systems

The above discussion clarifies - I hope - the nature of knowledge-based systems. In a

nutshell,

Knowledge-based systems are complex decision-making systems, which use

problem solving knowledge when taking decisions under uncertain conditions.

Their search-centred behaviour is an inevitable consequence of their 'existential

predicament'.

Of course, a disadvantage of a search-oriented approach is that necessarily it is not as

efficient as an approach based on direct, procedural methods. As a result, one often gets

asked what's the point of knowledge-based systems compared to conventional systems.

Wouldn't it be better to use an algorithmic approach to solve complex problems, rather

than relying on expensive search?

The answer to this question is implicit in the discussion on complexity presented above.

For typical knowledge-intensive tasks - e.g. design, scheduling, diagnosis - it is the case

that not only i) there is no general-purpose algorithm, but ii) there cannot even be one.

The reason for this state of affairs is that these tasks are normally intractable (Bylander,

Although the problem solving agents (human or artificial) employed by the Inland Revenue do

backtrack a lot!

Chapter 1	 Page 12

1991; Bylander et a!., 1991; Nebel, 1996), i.e. there exists no effective direct method,

which can solve them in polynomial time. Hence, an alternative approach has to be

taken, which is based on the use of problem solving knowledge to tackle complexity. Of

course, if a task is intractable, it remains intractable even when a KBS approach is used.

However, the idea here is that by means of task and case-specific problem solving

knowledge a KBS can solve many cases efficiently and reduce the complexity of the

problem in the average case.

This situation leads to what I regard as the existential paradox of knowledge-based

systems. A knowledge-based system is - by definition - a system which performs

search. However, search is expensive and should be minimized. Therefore, it follows

that:

Developing knowledge-based applications requires weakening task specifications,

acquiring problem solving knowledge, and strengthening problem solvin,

methods in order to reduce search.

In other words, knowledge-based system development is about making knowledge-based

systems behave as much as possible like ordinary systems.

1.3. EVOLVING PERSPECTIVES ON KNOWLEDGE ACQUISITION

In the previous section I have discussed the nature of knowledge-based systems in

particular emphasising that is the reliance on problem solving knowledge which

distinguishes them from conventional systems. Problem solving knowledge is

experiential in nature in the sense that it is either acquired from external sources of

expertise, or learnt through problem solving. As a result knowledge acquisition is central

to knowledge engineering and is the main activity which distinguishes the development

process of a knowledge-based system from that of a conventional system. Given such a

central role, it is not surprising that at each stage of its evolution, the knowledge

engineering field as a whole tends to be characterised in terms of the knowledge

acquisition paradigm prevailing at a particular time. In particular, the mining view of

knowledge acquisition (Davis, 1979; Kidd, 1987) characterizing early expert systems has

over the years gradually given way to a view of knowledge acquisition as a modelling

activity (Breuker and Wielinga, 1989). The latter informs the work described in this

thesis and therefore in the next section I will characterise its main tenets and show how its

development was inspired by the cognitively motivated criticisms and practical difficulties

associated with first generation expert systems.

Chapter 1	 Page 13

1.3.1. Knowledge acquisition as mining

The research programme which is often taken as paradigmatic of the mining approach to

knowledge acquisition is the Mycin project on medical expert systems, which was carried

out during the seventies at Stanford University (Buchanan and Shortliffe, 1984). There

are two reasons for this. First, it is probably right to say that, among the early expert

systems, Mycin was the one which had the most impact. It generated large amounts of

literature both directly and indirectly, it tackled tasks (diagnosis and therapy of infectious

diseases) which are carried out by experts (i.e. physicians) who are highly regarded by

the society as a whole, and (shockingly) it exhibited a performance which was

comparable to that of specialised physicians. The second reason (which is basically a

consequence of the previous one) is that Mycin was thoroughly analysed (and criticised)

in two papers (Clancey, 1983; 1985), which were among the most influential in

determining a paradigm shift in knowledge acquisition research in the second half of the

eighties.

Representation Formalism	 Rules

Knowledge Categories 	 Facts and heuristic problem solving

rules

KA Methodology	 Direct encoding of elicited knowledge

in rule-based system

Levels of Descriptions	 Only one, in terms of the rule-based

representation

KA Paradigm	 Transfer of Expertise

Cognitive Paradigm	 Production systems as general problem

solving architectures for intelligence

Reuse	 Inference Engine

Table 1. Characterization of the Mycin approach.

Table 1 describes the main aspects of the mining approach to knowledge acquisition 5 , as

exemplified by the Mycin project. The Mycin performance system (Shortliffe, 1976) has

a uniform, rule-based representation, which provides the only level of description of the

system. New rules can be acquired from an expert, using an interactive knowledge

The expression 'knowledge acquisition as mining' refers to the assumption (which underlies this

approach) that discrete and distinct 'gems of expertise' can be elicited one by one from the expert and

encoded in the system.

Chapter 1	 Page 14

acquisition tool (Davis, 1979). What is reused is the underlying rule-based shell,

EMYCIN (van Melle et al., 1984), which was developed by abstracting from the rule-

based representation and deductive mechanisms used by Mycin.

The underlying knowledge acquisition methodology is therefore one in which knowledge

is directly elicited from an expert in a form suitable for computational encoding. The aim

here is to built a virtual expert, i.e. a system which can emulate the problem solving

behaviour of an expert by relying on the same body of knowledge. Hence, the approach

followed here strongly relies on the assumption that expertise does in fact consist of (or

can be at least reformulated as) a set of rules. The cognitive basis for such an assumption

can be traced back to Newell and Simon (1972) who proposed production systems as a

general computational paradigm for describing intelligent behaviour6.

1.3.2. Cognitive and technical problems with the mining view

A practical problem with this style of expert system development was recognised very

early and dubbed the knowledge acquisition bottleneck (Feigenbaum, 1977). The

expression refers to the fact that the expert system development process was often

hindered by the difficulties associated with eliciting knowledge from an expert and coding

it into the system. It is easy to see that this problem is an obvious consequence of the

approach chosen. The 'KA as mining' development scenario is one in which i) system

development is essentially incremental rule acquisition and ii) knowledge acquisition

consists of an interactive transfer of expertise from expert to system - Buchanan and

Shortliffe (1984) refer to this process as knowledge programming. Therefore, in this

scenario the expert is not just one of the players involved in a subset of the system

development life-cycle but the person who is central to the whole process - i.e. the main

bottleneck.

The knowledge acquisition bottleneck seemed to provide evidence to the arguments put

forward by those researchers (Winograd and Flores, 1986; Dreyfus, 1979), who rejected

the idea that 'true expertise' could be transferred from an expert to a software system and

reduced to a rule-based representation. These authors argue that expertise is by its nature

tacit (i.e. not all human expertise is amenable to verbalization and formalization) and

situated (human knowledge is context-dependent and this context cannot necessarily be

shared with a computer program). As a result, enterprises such as expert systems are

misguided in principle and the knowledge acquisition bottleneck an inevitable side effect

of a reductionist view of expertise.

6 It is important to note that the researchers working on Mycin were indeed aware of the cognitive

assumptions of their work (Davis and King, 1977) and that this awareness contributed to the choice of

rules as the uniform representation paradigm.

Chapter 1	 Page 15

A paradigm shift was therefore needed, in order to address these problems. The work on

knowledge representation by Newell and Brachman, and Clancey's analysis of rule-based

expert systems provided the main research breakthroughs which eventually led to the

formulation of the modelling paradigm. These are discussed in the next section.

1 .3.3. Multiple levels of description

The approach exemplified by the Mycin project considers expert knowledge and rule-

based representation as essentially equivalent - knowledge acquisition is an interactive

transfer of if-then associations. This uniform approach to representation was criticised by

Clancey (1983), who showed that - at least in the case of Mycin's knowledge base - it

fails to capture important conceptual distinctions in the acquired knowledge. In

particular, Clancey points out that Mycin's explanation facilities are not adequate to

explain its diagnostic behaviour to medical students. The reason - argues Clancey - is that

these facilities are system rather than domain oriented. They describe Mycin's reasoning

in terms of goal-driven behaviour (an implementation-level feature) rather than in terms of

the problem solving structures relevant to the diagnostic process in medicine, such as the

hierarchy of diagnoses and the underlying symptoms-diseases causal model. Mycin does

contain this knowledge, but in a 'opaque' form, as if-then associations.

Clancey's analysis is an important step forward because it shows that it is both feasible

and useful to decouple the description of problem solving structures and behaviour from

the description of system structures and behaviour. In other words even if knowledge

can be formalised as rules and effectively used in problem solving, it does not imply that

the representation really captures all relevant conceptual distinctions required in alternative

contexts (e.g. tutoring).

At approximately the same time as Clancey's analysis of Mycin empirically showed the

utility of abstract, domain-oriented system descriptions, Newell (1982) and Brachman

(1979) tried to provide clearer frameworks in which to structure the various approaches to

knowledge representation which were being pursued at the time. Consistently with

Clancey's analysis, they indicated the existence of several levels of description and

pointed out that much of the confusion in the knowledge representation area was caused

by the fact that researchers were developing (and attempting to compare) formalisms

which were situated at different levels. In particular Newell introduced the distinction

between knowledge and symbol level, thus emphasising the importance of separating the

analysis and modelling of knowledge-based problem solving behaviour from the activity

of representing it in a computationally efficient formalism. Brachman' s paper proposes a

more fine-grained breakdown, which distinguishes five representation levels,

implementation, logical, epistemological, conceptual and linguistic.

Chapter 1	 Page 16

Regardless of the differences in approach and purpose which can be found in Newell's

and Brachman's analyses, both authors essentially stress a common point. It is both

useful and necessary to provide multiple levels of descriptions of knowledge-based

systems. Blurring these distinctions leads to opaque systems - as shown by Clancey's

analysis of Mycin - and to difficulties in situating and comparing approaches to

knowledge representation - as shown by the heterogeneous answers to Brachman and

Smith's questionnaire on knowledge representation languages (Brachman and Smith,

1980).

The benefits which could be gained from applying Newell's idea of knowledge-level

analysis were illustrated by Clancey (1985), who showed that not only it was possible to

uncover from Mycin-like systems their knowledge-level (and implicit in the design)

problem solving structures, but also that these structures were common to different

systems, i.e. generic. In particular, Clancey analysed the behaviour of a dozen rule-

based systems tackling problems in various domains and found that their problem solving

behaviour could be characterised in terms of a generic heuristic classification model - see

figure 1.2.

Data	 I	 ____________________	 Heuristic __________ Solutions
Abstractions i	 Match)	 Abstractions

Abstraction	 Refinement

Data	 Solutions

Figure 1.2. Clancey' s heuristic classification model.

This model consists of three problem solving inferences which i) generate abstractions

from the given data - e.g. infer an abstract characterization of a patient, such as

'immunosuppressed', from then available data, e.g. low white blood count; ii) match

these data abstractions to possible solution types (e.g. classes of diseases) and then iii)

refine these to produce one or more solutions (e.g. a specific diagnosis).

It is difficult to overestimate the importance of this work. Here Clancey shows that a

knowledge-level analysis makes it possible to understand what a system actually does,

rather than how it does it - in the paper Clancey complains about the 'blinding effect' of

Chapter 1	 Page 17

the implementation terminology used in rule-based systems which made understanding

the problem solving competence of these systems much more difficult. Moreover, by

showing that the heuristic classification model is generic, Clancey uncovered the principle

of role differentiation, which has subsequently informed much knowledge engineering

research (Wielinga et al, 1992a; Mc Dermott, 1988; Chandrasekaran et al., 1992). Role

differentiation means that it is possible to describe problem solving agents in terms of

generic models, which impose specific problem solving roles on the domain knowledge.

For example, domain structures in different application domains, such as diseases and

book classes, actually play the same role (e.g. solution abstraction) when a heuristic

classification model is used to describe the problem solving behaviour of a pulmonary

infection and a book selection system.

1.3.4. Knowledge acquisition as modelling

Wielinga and Breuker (1984; 1986; Breuker and Wielinga, 1987) were among the first to

apply to knowledge acquisition the lessons drawn from the work carried out by Clancey,

Brachman, and Newell. In particular, they argued that the so-called bottleneck was

caused by the fact that "the mapping between the verbal data on expertise and the

implementation formalisms is not a simple, one to one correspondence". Therefore, in

developing the KADS methodology (Wielinga et a!., 1992a), they proposed an approach

in which expertise modelling and design are clearly separated. First, "in an analysis stage,

the knowledge engineer develops an abstract model of the expertise from the data.....this

model is (then) transformed into an architecture for the KBS" (Breuker and Wielinga,

1989). Thus, they made the case for the development of conceptual modelling

frameworks, addressing the issue of characterizing expertise at a level independent from

implementation. A similar approach was also taken by my colleagues and myself

working on the KEATS project (Motta et a!., 1989), in which we distinguished between

modelling "overt behaviour" (i.e. understanding problem solving behaviour) and "internal

representation" which was concerned with the realization of this behaviour on a computer

system.

Other researchers (Mc Dermott, 1988; Musen et al., 1987) set to the task of putting the

role differentiation principle into practice, by developing knowledge acquisition tools

based on task-specific, but application-independent problems solving models.

Of course there are differences between the approaches followed by all these researchers.

Nevertheless, it is possible to group all these efforts around a common paradigm, which

considers knowledge acquisition as a modelling activily. This paradigm was informed

and stimulated by the developments and the problems discussed earlier, in particular i)

Clancey's discovery of generic problem solving structures in first generation expert

systems; ii) Brachman and Newell's work on system stratification; iii) the practical

Chapter 1	 Page 18

knowledge acquisition problems associated with first generation expert systems, and iv)

the cognitively-motivated criticisms of the mining approach. Below I list the main

features of the modelling paradigm.

• Knowledge engineering is not about cognitive modelling (i.e. 'reproducing' expert

reasoning) but about developing systems which perform knowledge-based

problem solving and which can be judged on task-oriented performance criteria.

• There are enough similarities between classes of applications, which make it

possible to build generic models of problem solving.

• Knowledge acquisition should not be characterised as a process of mapping expert

knowledge to a computational representation, but is a model-building process, in

which application-specific knowledge is configured according to the available

problem solving technology. The knowledge acquisition process is partly

negotiation, part reconstruction, part context sharing between a number of

stakeholders. The goal of knowledge acquisition is to develop a model of problem

solving behaviour. In the words of Ford et al. (1990), "The mining analogy

notwithstanding, expertise is not like a natural resource which can be harvested,

transferred, or captured, but rather it is constructed by the expert and reconstructed

by the knowledge engineer".

• It is useful to describe such a model of problem solving behaviour at a level which

abstracts from implementation considerations (the knowledge level). This

approach has the advantage of separating problem solving from implementation-

related issues.

• Given that i) knowledge acquisition is about model construction and that ii) models

can be application-generic, it follows that these generic models can be used to

provide the interpretation context for the knowledge acquisition process (i.e. the

knowledge acquisition process can be model-based). In this scenario, much of the

knowledge acquisition task can be reduced to acquiring the domain knowledge

required to instantiate generic problem solving roles (Marcus, 1988).

Table 2 characterises the modelling approach in terms of the same framework I used to

characterise the mining view. In particular, the table shows a paradigm shift from an

implementation-oriented to a knowledge-oriented view of knowledge acquisition.

Multiple levels of descriptions are introduced and as a result the choice of implementation-

level formalisms becomes less important. The knowledge categories are charactensed at a

conceptual, rather than computational level. The goal is no longer to emulate an expert by

means of some kind of 'expertise mapping', but to acquire the domain knowledge

required to configure a generic problem solving model. Thus, the context and the aims of

the knowledge acquisition process are less amenable to the cognitively-motivated

Chapter 1	 Page 19

criticisms aimed at the mining approach. Researchers subscribing to the modelling

approach no longer make claims of building rule-based cognitive models of experts and

acquiring expertise by 'direct transfer'. The cognitive paradigm underlying the modelling

approach can be characterised as a pragmatic one, which is based on afunctional view of

knowledge. Knowledge is what an observer attributes to an agent to explain its problem

solving behaviour. It is neither a data structure in a system nor 'stuff' in the expert's

mind, it is what enables a knowledge-based system to handle complexity - i.e. the

medium at the knowledge level (Newell, 1982). The advantage of this approach is that it

makes it possible to characterize knowledge modelling as a distinct technology, which

focuses on knowledge-based behaviour per Se, independently of cognitive or machine-

centred biases.

Representation Formalism	 Level-dependent

Knowledge Categories 	 Differentiation is driven by generic

knowledge roles

KA Methodology	 Model-based

Levels of Descriptions	 Multiple (e.g. knowledge vs. symbol
__ level)

KA Paradigm	 Model Construction

Cognitive Paradigm	 Functional view of knowledge

Reuse Generic Task, Generic Problem

Solving Model, Generic Domain

Model

Table 2. Characterization of the modelling approach

1.3.5. A minor caveat

The above discussion, being only a short résumé of the evolution of the field, may give

the impression that the knowledge modelling and the mining approach are antithetical and

that the shift from one to another was radical and clearly marked. Of course, in reality the

process was one of slow evolution in which more and more elements of the modelling

approach were gradually assimilated in first generation expert systems. For instance, the

methodology discussed in (Hayes-Roth et al., 1983), which is often referred to in the

context of discussions about first-generation expert systems, distinguishes between a

conceptualisation stage and a formalization stage. This distinction is similar to the

knowledge vs. symbol level one. At the conceptualisation stage questions such as "what

processes are involved in problem solution" and "what types of data are available" are

Chapter 1	 Page 20

asked, which are similar to the kind of questions one would need to ask - for instance - to

build a KADS model of expertise. It is therefore fair to say that in many cases the

differences between the earlier knowledge acquisition methodologies and those based on

the modelling view have more to do with emphasis (from representation to

conceptualization) and level of detail (from simple, informal conceptualizations to

knowledge-level modelling languages) than antithetical world views. Having said so,

there is no doubt that the work by Newell and Clancey especially made explicit and

systematised notions such as 'intermediate representation' and 'abstract model' which

were only hinted at in earlier expert system literature.

1.4. REUSE IN KNOWLEDGE BASED SYSTEMS

1.4.1. Economic and scientific motivations for reusable knowledge bases

In a 1991 paper published in the Al Magazine (Neches et al., 1991) a group of American

researchers discussed the state of KBS technology at the time and pointed out that, given

the increasing complexity of knowledge-based applications, it had become of crucial

importance to move from a 'develop-from-scratch' to a reuse-centred model of KBS

development. In the opinion of Neches et al., at the end of the eighties KBS technology

had reached a stage in which the cost of building applications from scratch had become

too high and therefore "enabling technology for knowledge sharing" was required to

reduce such a cost and to make it possible to build larger, more ambitious applications.

In a sense one can say that KBS technology was going through the kind of 'coming of

age' problems, which conventional software applications had experienced about two

decades earlier, when the so-called 'software crisis' led to the development of fourth

generation languages. Incidentally, it is important to keep in mind that a reuse-oriented

approach to software development provides - at least in theory - much more than a mere

reduction of the financial cost incurred when developing an application from scratch. By

building an application out of pre-existing, robust components, developers are also

expected to reduce the costs associated with application evaluation and maintenance.

In addition to the economical case for reuse, there are also some important scientific

reasons which are stimulating research and development on shareable and reusable

knowledge bases. For example, the researchers working on the Cyc project (Lenat and

Guha, 1990) have developed a large body of common sense knowledge which - they

hope - could be used to build systems able to overcome the 'brittleness' typically shown

by knowledge-based applications. This effort can be seen both as a serious attempt at

understanding common-sense models of the world as well as an exercise in building a

large, reusable, multi-functional knowledge base. Another example of this beneficial

synergy between building reusable models and understanding fundamental knowledge

engineering issues can be found in the ongoing work on libraries of problem solving

Chapter 1	 Page 21

methods (Marcus, 1988; Le Roux et al., 1993; Benjamins, 1993; Breuker and Van de

Velde, 1994; Motta and Zdrahal, 1997; Chapter 8). While these efforts have a strong

pragmatic connotation, they also help to define the space of problem solving methods,

thus contributing to the development of an overall theory of problem solving in

knowledge engineering. As a matter of fact, given the current state of KBS technology

and the limited amount of software reuse in practice, it is probably accurate to say that

current work on KBS reuse is mainly driven by scientific, rather than commercial

reasons. Incidentally, Krueger (1992) points out that also in the conventional software

engineering area software reuse is still very limited.

The examples given above - libraries of problem solving methods and multi-functional

knowledge bases - specify two of the three main categories of reusable knowledge-based

components. The third one comprises generic task specifications, such as diagnosis,

design, etc. Steels calls these three categories the main components of expertise (Steels,

1990). Typically, individual research efforts on reusable knowledge bases have focused

on one of these three categories and in particular on the development of category-specific

libraries of reusable components. In the previous paragraph I have already mentioned a

number of approaches to developing libraries of problem solving methods. Other

researchers (Hayes-Roth et al., 1983; Clancey, 1985; Breuker and Van de Velde, 1994)

have published structured task classifications, although these are often described at a very

generic level. Research on reusable domain models is currently very vigorous, in

particular thanks to the interest in domain ontologies (Gruber, 1991). The term

'ontology' is used in knowledge engineering to indicate "a reusable specification of a

conceptualization" (Gruber, 1993). These 'conceptualizations' can be proposed to foster

consensus among researchers on the right set of concepts required to model a domain

(Valente and Breuker, 1996), or to describe formally a speciaLlised representation schema,

as in the case of the Frame Ontology available on the Ontolingua server (Farquhar et al.,

1996).

With few exceptions - e.g. see (van Heijst, 1995) - much of the work on ontologies has

had little contact with the parallel work on models of problem solving. In this thesis I

will try to integrate these two strands of research by i) introducing a language suitable for

specifying both problem solving methods and domain ontologies, and ii) using ontologies

for driving the development and the organization of problem solving libraries.

1.4.2. Reuse and knowledge modelling

Although I have introduced separately the three main themes of this thesis (i.e.

knowledge, models, and reuse), it is probably clear by now that they are strongly

interrelated. Knowledge formulation is basically a model construction process, therefore

knowledge exists as long as there is a model of it. At the same time I have shown that

Chapter 1	 Page 22

most research on knowledge models is actually about reusable knowledge models.

Researchers are interested in generic tasks, generic methods, and generic domain models.

In addition, the reverse implication also applies, i.e. reuse implies modelling. In the

words of Krueger (1992) "all approaches to software reuse use some form of abstraction

for software artefacts. Abstraction is the essential feature in any reuse technique.

Without abstractions, software developers would be forced to sift through a collection of

reusable artefacts trying to figure out what each artefact did, when it could be reused, and

how to reuse it". Thus, a modelling approach to knowledge engineering is essentially the

same as a reuse-centred approach. Both are about identifying, formalizing, specialising,

and integrating reusable, abstract models.

1.5. FROM BATTLEGROUND TO BACKGROUND

The discussion so far has identified the 'battleground' of this thesis. It has defined the

subject of enquiry (knowledge-based systems), the paradigm (modelling) and the

pragmatics of the exercise (reuse). In the course of this thesis I will instantiate the generic

modelling paradigm presented here into a particular approach and propose solutions for

constructing and representing application models and model components. First,

however, I will review existing approaches to knowledge modelling and illustrate how

the main tenets of my approach emerge as answers to some of the problems with current

proposals. This review is presented in the next chapter.

Chapter 2
Approaches to Knowledge Modelling

This chapter reviews current approaches to knowledge modelling.
The review consists of four parts. In the first one I will discuss the
most significant frameworks for knowledge modelling which have
been proposed in the literature. The second part reviews current
libraries of reusable model components. The third part focuses on
problem solving methods and discusses recent work which attempts
to provide methodological and theoretical foundations to the notion of
reusable problem solving method. Finally, in the concluding section 1
will highlight some issues emerging from the review, which will be
addressed in this thesis.

2.1. INTRODUCTION

In this chapter I will review current approaches to knowledge modelling. In contrast with

some other recent reviews of the field (Brazier and Wijngaards, 1997) I do not aim to

cover all facets of a particular approach. In particular aspects such as modelling tools and

languages will not be discussed. The reason for this choice is that I wish to focus on the

epistemology of the various approaches, i.e. on modelling frameworks. Specifically, I

will evaluate alternative approaches in terms of the support they provide for knowledge

analysis and for library and application development. Moreover, because the thesis is

mainly about problem solving components, I will look in particular detail at problem

solving methods and discuss recent work which tries to provide methodological and

theoretical foundations to the notion of reusable problem solving method. Finally, in the

concluding section I will highlight some issues emerging from the review, which will be

addressed in this thesis.

2.2. AN OVERVIEW OF KNOWLEDGE MODELLING FRAMEWORKS

A knowledge modelling framework defines the basic organization of an approach to

knowledge modelling. It distinguishes the basic types of modelling components, their

relations, and proposes a model development methodology. Typically, each modelling

framework is also associated with a number of support tools and modelling languages.

However, these are not needed when discussing the epistemology of a framework: most

modelling approaches are nowadays characterized in a tool-independent manner

Chapter 2	 Page 24

(Schreiber et al., 1994b; Shadbolt et al., 1993; Chandrasekaran et al., 1992; Steels,
1990)1.

A modelling framework will be described in terms of three main aspects.

• Types of Components. A description of the different types of generic model

structures proposed by each approach - e.g. what kinds of distinctions an approach

proposes to discriminate between generic, domain, and application specific

knowledge.

• Relations between Components. A description of the main structuring

relations between generic modelling components. In particular different

approaches take different views over the so-called interaction hypothesis (Bylander

and Chandrasekaran, 1988). This states that both the nature of the domain

knowledge required by an application and its representation are strongly

determined by the chosen task and/or method.

• Model Development Methodology. A description, drawn either from

empirical evidence or published guidelines, of the model development

methodology associated with a modelling approach.

To be useful, an evaluation process has to be task-centred; accordingly, this review will

focus on the following two activities:

• Knowledge Analysis. How well does the framework support knowledge

analysis? Does it identify distinctions which are relevant when analysing a domain

or an application? Does it provide the right level of granularity?

• Reuse-centred Model Development. How good an integration framework

(Krueger, 1992) does an approach provide? Does its epistemology provide

distinctions which are useful for knowledge sharing and reuse?

In what follows I will discuss seven knowledge modelling frameworks: KADS/Common

KADS, Components of Expertise, Generic Tasks, Role-limiting Methods, Protégé, DIDS

and Spark/Burn/Firefighter. The rationale for selecting these particular approaches was to

have a range of different 'modelling philosophies' while at the same time including all the

most influential approaches.

2.2.1. KADS/Common KADS

The KADS approach to knowledge modelling has been formulated over more than a

decade (1983-1994) during a number of large, collaborative research projects. For this

I This statement does not necessarily apply to older approaches to knowledge acquisition, whose

epistemology has often to be abstracted from the relevant tool.

Chapter 2	 Page 25

reason the ideas underlying KADS have evolved over the years in a more or less

continuous fashion and (of course) are still evolving. Nevertheless, it is possible and

useful to distinguish between two main phases of research, which correspond to the life

spans of the two EC-funded research projects on KADS. The first project (1983 - 1989)

led to the formulation of the KADS methodology for KES development, which is

described in (Wielinga et al., 1992a). The second project (1990 - 1994) developed the

KADS framework further, in particular by integrating it with other modelling approaches,

such as Components of Expertise (Steels, 1990). The revised methodology - called

Common KADS - is described in (Schreiber et al., 1994b; Van de Velde, 1994; Wielinga

et a!., 1992b) and is the one which will be reviewed here.

2.2.1.1. Types of Components

The Common KADS framework distinguishes between three categories of knowledge

which are "necessary and sufficient for the description of application-related knowledge"

(Wielinga et a!., 1992b): task, inference, and domain.

Task knowledge describes both what problem solving needs to be carried out in the

domain and how (at the knowledge-level). Therefore a task definition includes the

specification of the input, output and goal of a task, as well as its task-subtask

decomposition and control.

Inference knowledge describes primitive reasoning steps, which specify the 'leaves' of

task-subtask hierarchies. A reasoning step is considered primitive if it can be described

functionally, i.e. if its internal control structure is not relevant to a knowledge-level

analysis. Whether a step is primitive or not is a pragmatic decision of the knowledge

analyst.

Domain knowledge "specifies form, structure, and contents of domain specific

knowledge that is relevant for an application" (Van de Velde, 1994) - i.e. it specifies both

the application domain knowledge and the domain ontology.

Thus, Common KADS provides three basic views over an application, which are similar

to the data, functional and control perspectives in software engineering. In addition, the

Common KADS framework also considers two generic components, problem solving

methods and domain ontologies. The former abstract from application-specific control

and inference views and describe generic ways of "satisfying a class of task definitions"

(Wielinga et al., 1992b). The latter describes a "particular viewpoint on application

specific knowledge" (Van de Velde, 1994) which makes it possible - for example - to use

domain knowledge with a particular problem solving method. For instance, methods

such as Cover&Dzfferentiate (Eshelman, 1988) require causal models of the domain.

These can be defined generically by means of an ontology of causal relations which can

then be used to provide a particular viewpoint, often called a domain model (Steels,

Chapter 2
	

Page 26

1990), over application-specific knowledge.

2.2.1.2. Relations between components

The relations between components in Common KADS are defined by means of

knowledge roles. A knowledge role is defined as "an abstract label that indicates the role

that domain knowledge to which the label is attached, plays in an inference process"

(Aben, 1994 - p. 91). For instance, the role 'hypothesis' provides a 'handle' at the

inference layer to refer to domain structures which could (statically or dynamically) play

the role of a hypothesis during the reasoning process.

This characterization of roles as metalevel labels for domain concepts was introduced in

the KADS-1 framework and reflected the assumption that only a loose coupling was

needed between domain and problem solving knowledge. This approach was later

revised in Common KADS, which recognises that there are varying degrees of task-

domain coupling, depending on the application - "a good knowledge modelling

methodology should span the whole continuum, from weak to strong knowledge

interaction" (Wielinga et al., 1992b). This flexibility is (presumably) reflected in the use

of more or less task-dependent domain models. Hence, application configuration is

characterized as a process of building a mapping between the knowledge roles required

by the chosen task model and the application ontology which specifies the form of the

domain knowledge base. Because different viewpoints are possible over a domain, the

application ontology will normally integrate a number of different domain ontologies.

Incidentally, the KADS view of roles as meta-level labels has been criticised by some

researchers who point out that this approach does not provide enough 'structure' for

describing the properties of task-level concepts - e.g. for characterising the notion of

hypothesis (Causse, 1993).

2.2.1.3. ModelBuilding Process

In earlier papers (Wielinga and Breuker, 1986), interpretation models were produced in a

bottom-up way, by applying knowledge acquisition techniques such as protocol analysis

to build generalised models of expert problem solving behaviour. During the course of

the KADS-1 project, a library of 'ready-made' interpretation models was developed

(Breuker et al., 1987) with the aim of using these as templates for driving the knowledge

acquisition process. In practice however, it turns out that it is very rare for an

interpretation model to fit 'perfectly' an application and therefore the model development

process was later characterised either as a process of modifying and adapting a pre-

existing model (Schreiber, 1994), or as a task analysis process (Schreiber and Terpstra,

1996), carried out along the lines suggested by Steels (1990).

The main problem with task analysis and ad hoc customizations is that these are more of

an art than a set of communicable techniques. Therefore, researchers have tried to put

Chapter 2	 Page 27

some sort of methodological structure around this model configuration and adaptation

process. The approach taken in the Common KADS library (Breuker and Van de Velde,

1994) addresses this problem by constructing a library which contains not just complete

models but also modelling components and modelling operators. The latter describe how

"knowledge engineers build their model" (Valente et al., 1994). Thus, the idea here is to

store not just model components but also the 'rules of compositions', so that a structure

can be imposed on the model development process. A similar approach has been adopted

in the Acknowledge (Anjewierden et al., 1992) and VITAL (Shadbolt et al., 1993;

Domingue et al., 1993) projects, where the model development process consists of a

sequence of decomposition steps, in which, at each stage of the process, domain

knowledge is used to choose one of the available decompositions. Examples of this

approach to the development of task models can be found in (Motta et al., 1 994a; 1996).

2.2.1.4. Evaluation of the approach

The main strength of Common KADS is the fact that it provides a comprehensive

framework, addressing all the various aspects related to knowledge modelling - i.e.

epistemology, languages, reuse, library organization, tools, methodology. Moreover,

because it has evolved over many years and has been adopted by several research and

industrial groups, it has developed into a very flexible framework, able to 'accommodate'

different approaches to modelling. Therefore, while one can of course still point to a

specific, fully instantiated modelling framework, it is also the case that KADS is now also

a modelling philosophy, which different researchers have 'bent' in different ways. In a

sense one can say that the role of KADS today is similar to the role of St Thomas

theology in the middle ages: it not only provides answers to questions of doctrine, but it

also provides the framework and the language in which further questions can be asked

and different approaches can be pursued.

Nevertheless, if we stick to 'orthodox KADS' a number of (arguably minor) difficulties

arise if we evaluate it from a reuse-centred viewpoint.

Common KADS proposes a clear-cut distinction between application-specific knowledge

and generic models. In practice I have found useful to distinguish not just between

application knowledge and generic models, but also between different types of domain

knowledge. In particular, an important distinction is the one between multi-functional

(Murray and Porter, 1988) and application-specific knowledge. This distinction is useful

for knowledge analysis because it permits the separation of the application-specific

elements of a knowledge base from those which are domain-specific but not application-

specific. Moreover, it is especially important for reuse as domain-specific knowledge can

be reused in different applications which share the same domain model. For instance, the

VT domain ontology developed by Gruber et al. (1996) provides an example of multi-

functional domain model. However, as discussed in (Motta and Zdrahal, 1995),

Chapter 2	 Page 28

additional, application-specific knowledge is needed to reuse this domain model with a

Propose&Revise problem solver (Marcus and McDermott, 1989; Zdrahal and Motta,

1995; Chapter 8).

Another problem which has already been mentioned is the view of roles as labels. This

problem can be reformulated, as Guarino (1997) does, by highlighting the absence in

Common KADS of a notion such as method ontology (Gennari et al., 1994), which

specifies the ontological commitments associated with a problem solving method. These

commitments would have to be defined in Common KADS as the schema of a particular

domain viewpoint. However, a domain viewpoint necessarily integrates both the

ontological requirements imposed by the application knowledge and those imposed by the

problem solving method. Therefore the resulting ontology would be less reusable than

one associated only with the method viewpoint2.

Finally, the basic distinction used in Common KADS between tasks, inferences, and

domain does not identify distinct foci for reuse. It provides different views over an

application, much like the software engineering distinction between functional and control

views. However, from a reuse point of view the distinction between task decomposition

and inference structure is not very important: a task decomposition uniquely determines

an inference structure. The limited reuse value of the task/inference distinction is also

highlighted by the fact that the more general notion of function is used in the Common

KADS library (Valente et al., 1994), which subsumes both tasks and inferences. The

reason for introducing the notion of function is that it is only at the end of a model

construction process that a knowledge-flow component can be identified as a task or an

inference. Thus, whether a problem solving component specifies a task or an inference is

not an essential feature of the component in question but a modelling decision taken in the

context of a complete expertise model.

2.2.2. Components of Expertise

The Components of Expertise (CoE) approach was proposed by Luc Steels (1990), with

the aim of providing a comprehensive modelling framework which could subsume and

integrate a number of approaches outlined in the modelling literature of the eighties

(McDermott, 1988; Clancey, 1985; Breuker and Wielinga, 1989; Bylander and

Chandrasekaran, 1988).

2 Incidentally, the Common KADS solution to the VT problem developed by Schreiber. and Terpstra

(1996) makes use of notions such as 'task ontology' and 'method ontology'. This is an example of

the aforementioned flexibility of the Common KADS modelling framework.

Chapter 2	 Page 29

2.2.2.1. Types of Components

Steels' approach distinguishes three basic components of expertise: tasks, methods, and

domains. Tasks specify what needs to be solved; methods specify how to solve them;

and domain models specify viewpoints imposed by task models over an application

domain. This approach was later integrated in the Common KADS methodology.

2.2.2.2. Relations between components

For a given task there are in general a number of methods which can be used to solve it.

In particular Steels introduces the distinction between the conceptual and pragmatic

features of a method. The former specify what a method can do - i.e. its competence; the

latter make it possible to distinguish between different methods applicable to the same

task. For instance a diagnostic method which requires carrying out some particular

diagnostic test would not be appropriate in domains in which the cost of these tests is too

high.

2.2.2.3. Model Building Process

A model is developed through a task analysis process, in which a task model of the

application is built by starting with a task defining a problem type - e.g. diagnosis - and

then using a task-method decomposition tree to select the best method for a particular

task, until a complete task model for the application has been developed.

2.2.2.4. Evaluation of the approach

The CoE framework introduced a number of ideas which were later taken on by several

approaches to knowledge modelling: e.g. the notion of multiple domain models for an

application, the task-to-method framework for library organization, and the importance of

pragmatic aspects when deciding on the suitability of a method for a particular task.

Moreover, in contrast with the domainlinference/task decomposition used by KADS, the

three components of expertise proposed by Steels are truly orthogonal dimensions for

reuse and can be used for organizing a library of reusable components for knowledge

modelling.

On the other hand, as is the case with Common KADS, Steels' framework does not

address the distinction between domain knowledge and application knowledge. Its

domain dimension is based on generic domain models, which fulfil different reasoning

roles, as imposed by task models. So, the framework is very much method-oriented:

there are no multi-functional domain models. Thus, Steels subscribes to

Chandrasekaran's view of a use-oriented characterization of domain knowledge - see

section 2.2.3. Moreover, application-specific knowledge is only weakly characterised as

'heuristic annotations'. This characterization fails to address the fact that application

knowledge comes in different types, as mapping knowledge and as application-specific

heuristic knowledge - see next chapter.

Chapter 2	 Page 30

Finally, Steels' framework and methodology are rather software-oriented. The task

structure framework provides a kind of high level perspective on KBS design but it is not

really a level of description separated from the implementation level. Typically both

primitive methods and domain entities are directly implemented in Lisp. Therefore the

knowledge level only provides a task-centred view over the symbol level: it is not a

complete, distinct level, as for instance in Common KADS.

2.2.2.5. Conclusions

The CoE framework is historically important because it introduced a number of ideas

which influenced much later knowledge modelling research. However, it has a number

of limitations: it does not characterize domain knowledge independently of a task model

and is rather implementation-oriented, in the sense that only implementation-oriented

descriptions of components are provided. Thus, it provides only limited support for

knowledge analysis and it is probably better viewed as a tool for KBS design.

2.2.3. Generic Tasks

The Generic Tasks (GT) approach was developed over a number of years by

Chandrasekaran's group (Chandrasekaran, 1983; Bylander and Chandrasekaran, 1988;

Chandrasekaran et al., 1992). As the name suggests, it centres around the notion of

generic task. Originally, this denoted both a task (i.e. a goal specification) and a method

which could be used to accomplish it; later it developed into the notion of generic task

structure. This organizes a model of problem solving in terms of a task-subtask

decomposition mediated by the application of problem solving methods. Here I will be

commenting on the most recent formulation of the generic task approach (Chandrasekaran

et al., 1992).

2.2.3.1. Types of Components

The GT approach is an example of the use-oriented view of knowledge which - often

characterised as the procedural approach to knowledge representation - has a long and

illustrious tradition in AT (Hewitt, 1971). A use-oriented view states that both the nature

and the representation of domain knowledge is determined by the particular task (or

method) which is carried out. In other words there is no characterization of knowledge

which is independent of its use. Therefore, only tasks and methods are considered in the

GT approach. A task is specified in terms of a "problem/goal pair", essentially a relation

between an input specification and a goal. Methods are characterised in terms of the

problem space computational model (Newell, 1980) as a set of subtasks which transform

the initial state into a goal state. Search control knowledge is defined as knowledge

which controls the order in which subtasks are solved. Flexible problem solving is

supported by means of method selection knowledge, which is defined as knowledge

which allows an analyst (at design time) or a problem solving system (at run time) to

Chapter 2
	

Page 31

choose the best method for a task.

2.2.3.2. Relations between components

In accordance with the use-oriented approach to modelling only tasks and methods are

considered. Methods solve tasks either directly or by introducing new subtasks which

are then in turn solved by other methods. The problem space model is used to give a

computational meaning to a task structure.

2.2.3.3. ModelBuilding Process

The model building process consists of developing a task model for an application by

selecting the best method for each task and subtask until all subtasks are solved by direct

methods (these are methods which solve a task directly, without introducing a task-

subtask decomposition), much as in the Components of Expertise approach. Method

selection can be carried out either dynamically as in the TIPS architecture (Punch, 1989),

or statically.

2.2.3.4. Evaluation of the approach

Chandrasekaran's framework is the most complete formulation of the use-oriented view

of knowledge modelling. More or less at the same time as Steels' development of the

CoE approach, he introduced the notion of task structure as a way to organize flexible

libraries of problem solving methods and to support flexible problem solving. Moreover,

in collaboration with a number of researchers, he developed several problem solving

methods for design, diagnosis, and classification which contributed significantly to the

progress of research in problem solving methods.

An obvious limitation of the GT approach is that it does not consider task-independent

domain models, thus limiting the possibilities for reuse. Moreover, its main

epistemological distinction, between task and search control knowledge, has only a

limited value from the point of view of knowledge analysis. This distinction assumes that

application knowledge has already been digested in the relevant computational categories.

Hence, such distinction should be the target rather than the starting point of an analysis

process. Thus, it does not offer a good framework for analysing a domain; its main

purpose is to provide a computational semantics to a knowledge model (Laird et al.,

1987; Smith and Johnson, 1993).

2.2.4. Role-limiting Methods

The approach based on role-limiting methods (McDermott, 1988) was developed during

the eighties by a group of researchers at Carnegie-Mellon university, led by John

McDermott. The basic philosophy of this work stems from the role differentiation

principle (see section 1.3.3): it is possible to identify generic problem solving models,

which impose specific problem solving roles on domain knowledge. These models can

Chapter 2	 Page 32

be used to support knowledge acquisition and to produce robust systems based on

reusable problem solving methods. The book edited by Marcus (1988) contains a

number of papers describing the philosophy of the approach and five knowledge

acquisition tools which are based on different problem solving methods.

2.2.4.1. Types of Components

Like the Generic Task approach, the approach based on role-limiting methods subscribes

to the use-oriented modelling paradigm. Domain knowledge is encoded in method

specific terms and there is a simple mapping between a problem solving method and a

class of tasks for which the method is suitable. Moreover, there is no flexibility in the

specification of role-limiting methods: their interface is given solely by their domain roles.

2.2.4.2. Relations between components

There is basically only one component: a complete problem solving method. This is

instantiated by filling its knowledge roles in terms of domain knowledge.

2.2.4.3. ModelBuilding Process

This is carried out as a role-filling process which is typically driven by an associated

knowledge acquisition tool. The control regime is fixed for each method.

2.2.4.4. Evaluation of the approach

This approach was historically important because it put into practice the role

differentiation principle uncovered by Clancey's analysis of first generation rule-based

systems. Moreover on the practical side it led to the development of a number of problem

solving methods and associated knowledge acquisition tools, which have been a

significant contribution to knowledge engineering research. Obviously, in comparisons

with the more sophisticated and comprehensive modelling frameworks developed during

the nineties, the role-limited approach looks quite basic. In particular, a number of

approaches (van Heijst et aL, 1992; Chandrasekaran et al., 1992; Steels, 1990; Puerta et

al., 1992) can be seen as proposals to overcome the limits of role limiting methods and

develop flexible, configurable problem solving models.

2.2.5. Protégé

The Protégé approach has been developed by Mark Musen and his colleagues of the

Medical Informatics Laboratory at Stanford University. This work began with the Opal

knowledge acquisition tool (Musen et al., 1987), which enabled domain experts to enter

the cancer treatment plans used by the Oncocin system (Shortliffe et al., 1981) and

receive monitoring and advice on cancer treatment. The Opal system had only limited,

domain-specific scope: it had been designed to acquire chemotherapy plans for cancer

treatment. To overcome these limitations Musen developed the Protégé tool (Musen,

1989). Much like the tools based on role-limiting methods, Protégé generalises from the

Chapter 2	 Page 33

specific domain tackled by Opal and supports the development of task models for

applications which can be solved by means of the Episodic Skeletal Plan Refinement

problem solving method (Tu et al., 1992). Needless to say users of Protégé then

encountered the same problems as those who tried role-limiting KA tools. A task model

for an application rarely matches a given problem solving method, which means that

users require facilities for developing flexible, configurable problem solving methods.

These problems led to the development of the Protégé-IT architecture (Puerta et al., 1992;

Gennari et a!., 1994). This supports the configuration of a task model from a library of

methods and mechanisms, and the generation of task-specific knowledge acquisition

tools. In the rest of this section I will discuss the modelling framework underlying

Protégé-Il.

2.2.5.1. Types of Components

While the original specification of Protégé-Il appears to subscribe to a use-oriented view

of domain knowledge (Puerta et al., 1992), the most recent formulation of the Protégé-IT

approach (Gennari et al., 1994) recognises tasks, methods, and domains as three distinct

foci for reuse. However tasks are only described informally, in terms of their inputs and

outputs. Much of the action in Protégé-IT is in the specification of methods and

mechanisms. The former decompose tasks into subtasks; the latter are direct methods.

Methods are described in terms of their ontological requirements, input-output relation,

control and data flow.

2.2.5.2. Relations between components

In order to maximise reuse both method-independent domain models and domain-

independent methods can be specified independently and integrated by means of an

application ontology (Gennari et al., 1994). This integrates a method and a domain

ontology by introducing the required mapping relations.

2.2.5.3. ModelBuilding Process

Model development is driven by the library of methods and mechanisms. These are

indexed by tasks and the model building process consists of generating a task model

through a method-driven task decomposition process, much like in the Generic Tasks

approach. This task model can then be used to acquire the relevant domain knowledge.

If this already exists in a method-independent form, then the relevant mappings need to be

performed. The entire process is supported by a suite of knowledge acquisition tools,

which are customised in terms of the application ontology.

2.2.5.4. Evaluation of the approach

Protégé-TI provides the most complete formulation of the task-to-method approach to

knowledge modelling. It provides a library of tasks and methods as well as tools to

support the selection and configuration of methods. The latter is characterized as a

Chapter 2	 Page 34

process of ontology mapping. The approach I'm going to use to build a library of

methods for design subscribes to much of the Protégé-IT framework, in particular the use

of ontologies to express method requirements and the notion of ontology mapping to

bridge the gap between domain and methods. The main difference between Protégé-IT

and my approach is that I wish to give a clear theoretical basis to my library of methods,

rather than just cluster them in terms of the relevant tasks. Therefore, as discussed in the

next chapter (and, more in depth, in chapter 8), the relation between problem solving

methods and a high level task (i.e. a problem type) is mediated in my approach by the

construction of a task-specific, but method-independent problem solving model.

2.2.6. DIDS

The DIDS workbench provides a number of knowledge acquisition tools and mechanisms

supporting the development of design applications through reusable components. Here I

will review the modelling philosophy underlying the DIDS approach, as illustrated in

(Runkel et al., 1994).

2.2.6.1. Types of Components

The main goal of the DIDS project was to produce a set of reusable mechanisms which

could be used to build design applications. Therefore, the DIDS framework is essentially

task-centred, there is no notion of task-independent domain knowledge. Moreover, the

problem solving components, called mechanisms, are also task-specific. Given this task-

oriented approach, the DIDS researchers have identified the typical problem solving

actions which are carried out during configuration design problem solving and produced a

library of these (Balkany et al., 1993). Thus, an important aspect of this work is that

these problem solving components are reusable.

The approach to reuse adopted by the DIDS researchers centres on the distinction between

task and search-control knowledge. This distinction is grounded on the problem space

computational model. Task knowledge defines what the task is about (i.e. the search

space) and search control knowledge defines how to navigate this search space

efficiently. The main aspect of task knowledge is that it does not make any commitment

to a particular problem solving method. Incidentally, this characterization of search-

control knowledge is different from the one used by Chandrasekaran et al., (1992), who

use this term to refer to knowledge about ordering subtasks. Here, the problem space is

not defined by the generic (i.e. problem-type-independent) task structure, as in

(Chandrasekaran et al., 1992), but it is instantiated in terms of all possible states in

configuration design problem solving.

2.2.6.2. Relations between components

Because the framework is specific to configuration design and because all components are

expressed in terms specific to configuration design there is no relation between

Chapter 2
	

Page 35

components to speak of.

2.2.6.3. ModelBuilding Process

This consists of building a task model out of a subset of the existing problem solving

components and then acquiring the relevant domain knowledge through knowledge

acquisition mechanisms (MeKAs). Like in Protégé-Il these are forms which are

automatically constructed from the knowledge requirements of the task model.

2.2.6.4. Evaluation of the approach

Like other approaches discussed here (Generic Tasks, Role-limiting Methods) DIDS

subscribes to a use-centred view of knowledge modelling. Therefore, it does not offer

any provision for reuse of task-independent, domain knowledge bases. However, in

contrast with these other use-centred approaches, there is also no notion of applying

methods to tasks. There is only one type of task - configuration design. Moreover, in

contrast with the GT approach, developing a problem solver does not involve the

construction of a task model: a problem solver is constructed by assembling existing

mechanisms from a library. This - in my view - is an important step forward because it

replaces the relatively unstructured process of task model construction with a relatively

structured one of configuring a problem solver out of pre-existing components.

Finally, as in the case of the GT approach, the basic modelling distinction enforced by

DIDS is the one between task and search-control knowledge. As I have already pointed

out when evaluating the GT approach, such a distinction is of only limited use when

carrying out knowledge analysis.

2.2.7. Spark/Burn/Firefighter

2.2.7.1. Overview

As discussed above, the problems with knowledge acquisition architectures based on

complete problem solving methods led to the development of flexible modelling

frameworks, which supported the configuration of task models in terms of reusable

mechanisms. A similar approach was used by McDermott's group in their

Spark/Burn/Firefighter (SBF) project (Klinker et a!., 1991; 1993), where they developed

a set of tools supporting workplace analysis and automation. In particular, this second

task was carried out by i) identifying an activity in the workplace which was amenable to

automation; ii) choosing a suitable software mechanism from a library; and iii) integrating

this in the workplace model. This integration step is supported by the Burn tool, which i)

maps the data model associated with a mechanism's 110 specification to the data model of

the overall task model, ii) acquires the relevant knowledge by means of mechanism-

specific KA tools, and iii) converts the resulting software module into an agent which can

be monitored and managed by the workplace controller (Firefighter).

Chapter 2	 Page 36

What differentiates the SBF approach from almost 3 any other we have seen in this review

is the emphasis on workplace analysis and on "taking integration seriously" (Klinker et

al., 1993). The SBF researchers have not only tackled 'typical' modelling issues, such

as the identification of the appropriate reusable mechanisms (Kiinker et al., 1991), but

also the complex integration issues associated with the deployment of KBS technology

into the workplace - e.g. the issues related to the integration of human and software

agents. Thus, the research agenda addressed by the SBF approach is much more

ambitious than that of any of the other approaches discussed here. However, because in

this thesis I'm not addressing such 'additional' issues concerning workplace analysis and

the integration of human and software agents4 I will evaluate the SBF approach only with

respect to modelling issues.

2.2.7.2. Evaluation

From a modelling point of view the SBF approach is very similar to DIDS. Like DIDS, it

centres on the identification of reusable mechanisms which can be assembled and

configured to produce a task model. The main difference between DIDS and SBF is one

of methodology. The DIDS researchers focused on design problems and identified the

set of mechanisms which comprise the DIDS library by means of a bottom-up approach,

i.e. by analysing the mechanisms used by a number of design tools (Balkany et al.,

1993). In contrast with DIDS, the SBF approach is generic - i.e. it is not just confined to

a class of tasks. The mechanisms are created on demand, when a particular activity is

identified which is amenable to automation and no mechanism in the library is suitable for

the job. However, given that the SBF approach is both application-independent and

targeted to non-programmers, it is difficult to identify the right mechanisms to add to the

library. Mechanisms which are too generic are not easy to use, while mechanisms which

are too specific are not very reusable. This trade-off between usability and reusability is

addressed in Klinker et al. (1991), where the authors discuss a number of guidelines

The exception here is Common KADS which, in addition to the expertise model, also includes an

organization model. This corresponds to the workplace model considered in SBF. The main

difference between the Common KADS approach and SBF is that an organization model in Common

KADS is just a model' - i.e. it is not operational. In contrast with Common KADS, the SBF

researchers have tried to provide a set of tools to support both application development and its

integration in the workplace.

' Of course this sentence should not be understood as implying that I am not interested in these issues.

On the contrary much of my research in the early nineties focused on the interoperability and

integration issues associated with architectures which integrate software and human agents (Gaspari et

at., 1993; 1995; Gaspari and Motta, 1994).

Chapter 2	 Page 37

which they have used to determine the set of mechanisms to include in the SBF library.

These guidelines are based on heuristics such as "Define mechanisms so that only 1 or 2

configurations will cover most of the significantly different computational alternatives for

an activity". While these guidelines have their utility, they are typically too weak to

provide a robust methodology for building the SBF library. Indeed, the main problem

with the SBF approach is that it is too ambitious. It attempts to tackle modelling, KA,

and integration issues at the same time and in a problem-independent scenario. As a

result, it does not solve any of these issues in a satisfactory way. In particular, from a

modelling point of view the library of mechanisms is very much ad hoc. In contrast with

this approach, my aim is to build a library of reusable components which has a clear

theoretical basis.

2.2.8. Summing-up

In conclusion, as one would expect when carrying out reviews of a field, different

approaches have different strengths and weaknesses. Common KADS provides a very

comprehensive and flexible framework which has benefited from contributions produced

by many people, at different sites, over a number of projects. Approaches such as

Components of Expertise, Generic Tasks, and Role-limiting Methods are very important

from a historical point of view. However, they have now been subsumed by more

modern approaches, such as Common KADS and Protégé-Il, which consider different

degrees of interactivity between methods and domain knowledge, and use role mappings

and application ontologies to bridge the gap between methods and domain in a flexible,

application-dependent way. Finally, the DIDS framework is limited to configuration

design tasks, but it introduces an important approach to library organization, which is

based on the use of a method-independent, but task-specific model. In the next chapter I

will discuss my framework to knowledge modelling, in particular illustrating how it

subsumes and integrates the approaches described in this section.

First, I will take a closer look at libraries of reusable model components.

2.3. APPROACHES TO LIBRARY ORGANIZATION

Existing libraries of reusable components for knowledge modelling can be divided into

three classes: generic libraries, libraries of domain ontologies, and libraries of problem

solving methods.

2.3.1. The Common KADS library: a general-purpose library for

knowledge modelling

The most comprehensive library of generic model components is the one produced as a

result of the Common KADS project (Breuker and Van de Velde, 1994). It consists of

Chapter 2	 Page 38

three main classes of library components: modelling components, modelling operators,

and generic models. Generic models are "complete expertise models" (Valente et al.,

1994); modelling components are elements of expertise models and modelling operators

are relations between generic models. These specify a possible transformation of a

generic model. Modelling operators are included in the library to ensure that not only the

results, but also the model building steps involved in a model construction exercise are

captured by the library.

The Common KADS approach to library organization encompasses a number of

modelling approaches and is therefore very generic. A generic model can be anything

from a KADS-1 interpretation model to a role-limiting method. Moreover, various

indexing mechanisms are supported, which organize the library in terms of classes of

generic models, taxonomies of modelling components, and classes of element features.

These specify compatibility relations between model components, thus providing a way

of partitioning the library into classes of components compatible with each other and with

the current modelling context (Valente et al., 1994).

The generality of the approach taken in the Common KADS library essentially defines

both the strengths and weaknesses of the Common KADS approach. It makes it possible

to account for different approaches to modelling and to library organization but

necessarily it only provides fairly weak principles for structuring a library.

2.3.2. Libraries of ontologies

Another type of library is one which contains domain ontologies (Farquhar et al., 1996;

Falasconi and Stefanelli, 1994). The most comprehensive and best known of these is the

Ontolingua library (Farquhar et al., 1996). Typically libraries of domain ontologies are

organized in terms of an inclusion hierarchy - each ontology is built on top of a number of

sub-ontologies. The main issues associated with research on domain ontologies have to

do with characterizing their nature - what exactly is an ontology - and with the ontology

development methodology - what terms go into an ontology; what guidelines are used to

drive the ontology construction process (Gruber, 1995). In this thesis I will focus mainly

on components of problem solving methods (problem solving components) and therefore

I will not discuss the issues associated with the development of libraries of domain

ontologies. Nonetheless, I will use the notion of ontology both as part of my modelling

framework and as part of the library of parametric design components. Therefore, in the

next chapter, I will come back to the notion of ontology, in particular illustrating i) my

view on what constitutes an ontology, ii) the types of ontologies included in my

modelling framework, and iii) the specific ontologies included in the parametric design

library. Now, I will turn my attention to libraries of problem solving components.

Chapter 2	 Page 39

2.4. PROBLEM SOLVING METHODS: ORGANIZATION AND

DEVELOPMENT

The main objective of this thesis is to produce a library of reusable problem solving

components for parametric design applications. However building a library is not just a

problem of identifying and indexing reusable components. In particular a library of

problem solving components presupposes a view on the nature of problem solving

methods, the relation between methods and task specifications, and the method

development process. Therefore in this section I will look not only at existing libraries of

problem solving components, but I will also review the work of those researchers who

have tried to characterize the nature of problem solving methods and the method

development process.

2.4.1. Characterizing and developing problem solving methods.

An approach to characterizing formally the process by which a method is developed from

a task specification is illustrated in (Akkermans et al., 1993; Wielinga et a!., 1995). This

approach is based on the idea that a formal specification of a problem solving method can

be derived through a process of stepwise refinement of the competence theory (Van de

Velde, 1988) associated with a task specification. This refinement process involves both

generic operationalization steps, such as expanding a set notation into quantified

expressions and substituting provability for truth, and knowledge-intensive ones. These

include the selection of a problem solving paradigm for refining the initial, high-level task

specification and the introduction of domain relations for representing the available

domain knowledge. In particular, the example described by Wielinga et a!. attempts to

derive a formal description of a Propose&Revise method from the specification of the

class of parametric design tasks. The paradigm they select as trait d'union between the

task and method specification is Generate& Test.

This approach provides two important contributions to research in problem solving

methods. It describes a formal framework for characterizing PSM development, which

goes beyond simple guidelines such as those used in informal approaches (Benjamins,

1993). Moreover, Wielinga et a!. clearly show that this method development process

mainly consists of introducing ontological commitments, which are related to the

availability and to the properties of application knowledge.

The idea of PSM development as an assumption-driven process has been further pursued

by Dieter Fensel and his colleagues (Fensel and Straatman, 1996; Fensel and Schonegge,

1997a), who try to characterise more precisely the method specification and development

process sketched by Wielinga et al. and to semi-automate it by means of theorem proving

techniques. In particular, Fensel and Straatman (1996) propose a more structured

framework than the one used by Wielinga et al. and characterise a PSM specification in

Chapter 2	 Page 40

terms of four parts: a functional specification, a cost description, an operational

specifIcation and a list of assumptions. From a theorem-proving point of view the role of

the assumptions associated with a PSM is to provide the "missing pieces in the proof that

the behaviour of a method satisfies its goal" (Fensel and Straatman, 1996). As a result,

the acquisition of these assumptions can then be automated by identifying the reasons

which prevent the operational specification of a PSM from satisfying its goals (Fensel and

Schonegge, 1997a).

In my view the main strength of this kind of approach is that it provides a formal basis to

PSM specification and opens the way to automatic verification of problem solving

methods (Fensel and Schonegge, 1997b). However, I am not sure that this approach

succeeds in clarifying the nature of problem solving methods, in particular the nature of

the knowledge structures required by a PSM. For instance, both Wielinga et al. (1995)

and Fensel and Straatman (1996) illustrate a method development process by which a

Propose&Revise problem solver is derived from a Generate&Test. However, the

reconstruction appears to be quite artificial. Knowledge structures, such as propose and

revise knowledge, are introduced, but it is not clear where they originate from and how

they relate to other method and task concepts - e.g. what is the relation between propose

and revise knowledge and the specification of a parametric design task.

Therefore, in this thesis I will propose an alternative approach, which makes use of the

search paradigm as a way to bridge the gap between task specification and problem

solving methods and to give 'computational semantics' to the knowledge structures

required by a problem solving method.

2.4.2. Approaches to the organization of libraries of problem solving

methods

The earlier libraries of problem solving components consisted of complete methods

(Marcus, 1988; Breuker et al., 1987) and as a result came unstuck very quickly: in

general a problem solving method needs to be adapted and configured for each particular

application. For this reason, researchers tried to make problem solving methods more

flexible by representing them by means of task decomposition hierarchies (Steels, 1990;

Chandrasekaran Ct al., 1992; Puerta et al., 1992; Van Heijst et al., 1992; O'Hara, 1993,

1995). While the details of the various approaches differ in various respects, the

underlying idea was essentially the same: constructing a problem solving method for a

specific application - the resulting model is often called a task model - consists of

recursively navigating a task-method decomposition tree, and at each stage selecting one

of a number of possible methods applicable to the current task. This selection can be

done at run-time - for achieving flexible problem solving - or during the design phase.

This process is driven by the appropriate method selection knowledge, which can take the

Chapter 2	 Page 41

form of library features (Breuker and Van de Velde, 1994), pragmatic constraints (Steels,

1990), or method assumptions (Benjamins and Pierret-Golbreich, 1996).

Task-method structures provide both an economic (in terms of the ratio elements/models)

and flexible way of organizing a library of problem solving methods and have been used

in areas such as design (Chandrasekaran, 1990) and diagnosis (Benjamins, 1993).

Moreover, as shown by the work on Generalized Directive Models (GDM) (van Heijst et

al., 1992; O'Hara, 1993, 1995) it is possible to build knowledge acquisition tools

(Anjewierden et al., 1992) which use these task decomposition structures 5 to support a

flexible style of model-driven knowledge acquisition. In the GDM approach a task model

is built incrementally, by intertwining model decomposition steps with elicitation

sessions: at each stage of the process, domain knowledge is used to choose one of the

available decompositions. Examples of this approach to the development of task models

can be found in (Motta et a!., 1994a, 1996).

While task-method structures provide more flexibility than the previous generation of

complete methods, there are nonetheless problems with them. These are discussed in the

next sections.

2.4.2.1. Dfflculties with local method selection knowledge

Task-method structures rely on local guidelines/rules to drive the method selection

process. However, the complexity of these rules vary significantly. For instance the

task-method structure used by Benjamins (1993) includes simple questions such as "Is

the user able to recognise symptoms?". In other cases these questions may not be

answerable at all, e.g. "Are the hypotheses in the hypothesis set unrelated to each other?".

These examples provide instances of a general phenomenon: questions about domain

features tend to be more difficult than questions about the availability of knowledge. The

problem is compounded by the existential predicament of knowledge-based systems:

these are by definition systems that take decisions under uncertain conditions. Therefore,

no amount of method selection knowledge in a task-method structure can avoid the fact

that Al and knowledge engineering have a strong experimental connotation: often the

To be precise the 0DM approach only uses homogeneous task-subtask trees, in which every node is a

task. However, it is a trivial change to augment the approach so that the task-subtask decomposition

is mediated by the selection of a problem solving method. To some extent this is what happens

anyway, except that the choice of a method is implicit in the selection of the subtree, rather than

explicit in the decomposition structure. The lack of an explicit notion of problem solving method is

actually a limitation of the 0DM approach, given that a method provides a powerful abstraction for

clustering together both pragmatic and knowledge requirements over an application domain.

Chapter 2
	

Page 42

knowledge is available only after a system has been tested.6

Even when the method selection rules can be effectively specified, the model development

process may still be problematic, due to problems with the organization of the task-

method decomposition tree. For instance, Orsvarn (1996) discusses the problems he

encountered when attempting to reuse Benjamins' library and illustrates a scenario in

which a method selection rule is predicated on an assumption which arises somewhere

else in the task-method structure. Orsvarn suggests a number of principles which should

be applied when constructing libraries of task-method structures. The most important one

is met/zod generality: adaptation of task models is difficult and therefore should be

avoided. Hence, methods should be as generic as possible. This principle, in its

informal connotation, applies to the library of method components which I will present in

chapter 8.

2.4.2.2. Lack of a clear theoretical basis.

Another problem with published method decomposition libraries is that they do not

provide a clear framework in which all the tasks and methods are situated. Even when

these libraries are task-specific and a clear model of the task is provided - e.g. in

(Benjamins, 1993) - there is no common model underlying the tasks and methods

included in the library. As a result it is difficult to carry out comparative evaluations of

alternative methods or task structures.

2.5. LEGACY OF THE REVIEW: WHAT NEEDS TO BE DONE

2.5.1. Modelling Framework.

As discussed earlier, while Common KADS provides a comprehensive and flexible

modelling framework, its basic decomposition in tasks, inferences, and domain provides

less an integration framework than a set of viewpoints over an application. Moreover, the

Common KADS framework does not explicitly distinguish between domain and

application specific knowledge. This is - in my view - a very useful distinction, both for

knowledge analysis and component reuse. Finally, the notion of method ontology is only

'indirectly' supported in Common KADS.

These 'limitations' of the Common KADS approach are avoided by the Protégé-IT

framework, which - at least in the formulation provided by Gennari et al. (1994) -

distinguishes between tasks, methods and domains, introduces the notion of method

ontology and characterises application configuration as the construction of an application

6 Not surprisingly empirical methods are becoming increasingly popular, to identify the regions of a

problem space where it is easier to find solutions (Cheeseman et a!., 1991).

Chapter 2	 Page 43

ontology, which 'mediates' between a reusable problem solving method and a reusable

domain model.

The framework proposed in this thesis builds on the basic Protégé-IT organization and

extends it by providing a precise account of the relation between tasks, methods, and

domain knowledge, and by highlighting the different types of application-specific

knowledge which characterize an application model.

2.5.2. Development and Organization of Reusable Method Components.

2.5.2.1. Method Characterization and Development

In this review - see section 2.4.1 - I discussed two (related) approaches to method

development which characterize this as a process by which a formal task specification is

operationalized into a problem solving method by means of formal refinement steps.

As I said earlier, while I believe that this work is important for supporting formal

specification and verification of problem solving methods, it seems to me that the method

specification frameworks used by Wielinga et a!. (1995) and Fensel and Straatman (1996)

are too 'impoverished' to provide insights into the nature of knowledge-intensive problem

solvers. In particular, consistently with the existential predicament of knowledge-based

systems, I would argue that a framework which explicitly operates with search-oriented

concepts is needed to understand the nature of the knowledge structures utilized by

knowledge-based applications. For instance, in contrast with the negative results

concerning the analysis of Propose&Revise obtained by Wielinga et a!., a search-centred

analysis of this method is able to shed light on the reasons for its 'unpredictable'

competence (Motta and Zdrahal, 1996; Chapter 9).

Therefore, in this thesis I will take a different approach to characterising the development

of problem solving methods and the relation between task specifications and methods.

The main tenets of the proposed approach are as follows.

• The use of search as a mediating generic paradigm between a class of

applications (problem type) and the specification of the associated problem

solving methods.

• The use of a generic problem solving model as the 'foundation' for all problem

solving methods applicable to a class of applications.

• The characterization of problem solving methods as fully specified refinements

of the problem solving model associated with a problem type.

In particular, the use of an underlying search model provides both an epistemological

device, which makes it possible to move from a task to a method dimension, and a

computational model, which gives 'operational semantics' to the knowledge structures

Chapter 2
	

Page 44

introduced by problem solving methods.

2.5.2.2. The organization of a library of reusable problem solving components

In the above discussion I have criticised the task-method approach to library organization.

In a nutshell task-method libraries lack a theoretical basis and rely on local selection rules,

which fail to capture the complexity of the model development process.

Therefore here I will follow a different approach, which is closer 'in spirit' to the one

taken by the DIDS researchers, and I will structure a library of problem solving

components around a task-specific framework, rather than as a relatively unstructured

association of methods to tasks. However, in contrast with the bottom-up approach used

in DIDS, this task-specific model will be developed in a principled, top-down and task-

independent way, by instantiating a generic search model of problem solving in terms of a

parametric design task ontology. Thus, the resulting, task-specific model enjoys a clear

theoretical basis, while the approach itself is not specific to parametric design.

An overview of the proposed approach is presented in the next chapter.

Chapter 3
An Approach to the Organization of a Library of
Problem Solving Methods which Integrates the
Search Paradigm with Task and Method Ontologies

This chapter provides an overview of the approach to knowledge
modelling and library organization proposed in this thesis. The
starting point of the approach is given by a formalization of a class of
applications (a task ontology). This task ontology is then associated
to a generic problem solving model, which is constructed by
instantiating a task-independent model of problem solving as search in
terms of the concepts provided by the task ontology. The resulting
model, which is specific to a problem type, but method-independent,
provides the basis for constructing a library of reusable problem
solving components associated with the given problem type.
Individual problem solving methods can then be derived from the
generic problem solving model through a process of ontology
specialization and method-to-task application. The resulting library of
reusable components enjoys a clear theoretical basis and provides
robust support for reuse.

3.1. FROM WORLD-VIEW TO THEORY

As discussed by Van Heijst (1995), the basic building block of a methodological

framework is defined by the underlying world view - i.e. the fundamental principles and

assumptions characterizing the proposed approach. Thus, chapter 1 can be regarded as

introducing the world view underlying this thesis. Such a world view is informed by the

characterization of knowledge-based systems as 'systems which perform search', by the

view of knowledge acquisition as modelling, and by the emphasis on the identification

and integration of generic and reusable components - the three themes of knowledge,

models, and reuse.

In this chapter I will move on to the next layer of the methodological pyramid proposed

by Van Heijst and illustrate a particular approach - theory in Van Heijst's framework - to

the development and organization of reusable problem solving components. The

proposed approach takes as its starting point the task/method/domain partition proposed

by the CoE and Protégé-Il frameworks but refines it along a number of dimensions.

Chapter 3
	

Page 46

• The proposed modelling framework explicitly includes a component, application

configuration, which accounts for the various types of application-specific

knowledge needed to integrate generic problem solving components with domain-

specific knowledge. This component plays both an epistemological and an

application development role. From an epistemological point of view it enables the

proposed framework to account both for approaches, such as Generic Tasks,

characterized by a strong coupling' of domain and task knowledge, and for those,

such as KADS (Wielinga et al., 1992a), in which there is only a weak interaction

between domain and task layers.

• Different kinds of ontologies are used to formally specify classes of applications

(task ontologies), the knowledge requirements of problem solving methods

(method ontologies), the conceptualizations used by reusable domain models

(domain ontologies) and the application-specific concepts needed to integrate

reusable domain models with a domain-independent problem solver (application

ontologies).

• All problem solving methods applicable to a class of tasks are characterized as

refinements of a common, task-specific, but method-generic problem solving

model. The aim of this model is to provide a "clear theoretical basis" (Valente and

Breuker, 1996) to a task-specific library of methods, thus facilitating the

development, evaluation, and comparison of task-specific problem solving

methods.

• The construction of the generic problem solving model mentioned in the previous

bullet is carried out by instantiating a task-independent model of problem solving

as search in terms of a task ontology. Thus, I am able to provide a principled

account of the process required to construct the generic problem solving model and

to characterize precisely the relation between a class of methods and a problem

type. In particular, the method ontology associated with the problem solving

model specifies the minimal knowledge requirements which apply to any problem

solving method associated with the given problem type.

These ideas will be illustrated in the rest of this chapter.

1 Here I use the word 'coupling' in a sense analogous to the standard use of the term in software

engineering, as a measure of the degree of interconnection between two modules.

Chapter 3	 Page 47

3.2. CHARACTERIZING GENERIC TASKS

A task specifies a goal for a problem solver, such as producing a correct configuration for

an elevator, or diagnosing a pulmonary problem. The notion of task is crucial to

knowledge modelling, given that - as discussed in chapter 1 - knowledge systems are

essentially performance systems, i.e. they are characterized and evaluated on task-specific

criteria2 . In accordance with this view I will illustrate an approach which centres the

construction of a library of problem solving components around the specification of a

particular class of generic tasks: problem types.

3.2.1. Types of Generic Tasks

A generic task specifies a knowledge level, application-independent description of the

goal which has to be attained by a problem solver. Optionally, a generic task can also

include the specification of a task body, a mechanism which describes how to achieve the

goal of the task. In what follows I will use the term executable task to refer to this class

of tasks and the term goal specification task to indicate generic task specifications which

do not include a task body. Problem types, such as parametric design, provide a well-

known class of goal specification tasks. Executable tasks divide in turn into priFnitive and

composite tasks. The former solve a task directly, the latter by introducing a number of

subtasks.

A goal specification task is typically described by specifying its inputs and outputs, and

the associated goal (Benjamins, 1993; Steels, 1990). For instance, a parametric design

task can be informally described as shown in figure 3.1. The goal of this generic task is

to produce a complete and valid design model (i.e. a model which satisfies all given

requirements and violates no applicable constraints), given an input design specification

consisting of design parameters, design constraints, design requirements, preferences

over possible designs and a cost function.

Generic Task Parametric Design	 -________________________
Inputs:	 Parameters, Constraints, Requirements, Cost-Function, Preferences
Output: Design-Model
Goal:	 "To produce a complete and consistent design model, which satisfies the

given requirements" 	 - -

Figure 3.1. Informal specification of the parametric design task.

2 While this might sound obvious, it is not. On the contrary, as discussed in detail in chapter 1, the

old view of knowledge systems characterized these as models of human expert behaviour.

Accordingly, KBS evaluation techniques attempted to verify whether the behaviour of these systems

was consistent with that of the relevant experts. Such an anthropomorphic view of technology still

pervades much of the AT field, as shown by the recent debate on whether Deep Blue is Al.

Chapter 3
	

Page 48

A goal specification task is solved by a problem solving method. As already mentioned

in the previous chapter, decoupling the specification of a task from that of the applicable

methods has the advantage of introducing flexibility in the structure of a library and in

problem solving: in general, a task can be solved by several different methods.

However, in some cases there is no room for flexibility, a task might only admit one,

'organic' problem solving method. In this scenario it makes sense to associate a task

body directly to a task specification, to produce an executable task. For instance, figure

3.2. shows part of the task-method structure of the generic model of problem solving

associated with the class of parametric design tasks - see chapter 7 for a detailed

description of the model.

Select-design-operator

Try-design-extension-operator

Chapter 3

	
Page 49

Parametric-Design

Gen-design-psm

Gen-design-control

lnitialise-desiqn-space
	 Select-design-state

	 Design-from-state

Extend-Incomplete-state
New-design-state

Generate-successor-state

Collect-state-foci
	

Design-from-context
	

Resume-state

Order-focus-operators

Select-design-focus 	
Collect-focus-operators

:ite Task

(_PrimitIve ias_J

[
_Goal Specification Task

Generic-subtask-of

4)	 Method-mediated
Generic-subtask-of

Legend

Design-from-focus

Try-design-operator

New-design-state

Evatuate-design-state

Evaluate-consistency
	 Evaluate-completeness J I Evaluate-cost J (Evaluate-feasibility

Figure 3.2. Sample task-method structure from parametric design library.

Task-method structures, such as the one shown in figure 3.2, suggest another important

distinction, between problem types and generic subtasks. The former specify the root of

a task-method structure; the latter appear in task-method structures as intermediate or end

nodes. Some generic subtasks are related to specific problem solving methods - e.g.

revise-design occurs when using a Propose&Revise approach - others, such as evaluate-

design, are associated not with a particular method but with a problem type. The fact that

generic subtasks occur regularly in classes of applications is an important feature of

Chapter 3	 Page 50

knowledge-intensive problem solving. In particular, we can exploit this property to

construct a model of problem solving, associated with some class of applications, say T,

which comprises the problem solving actions carried out when solving an instance of T.

Such a model of problem solving can therefore be seen as specifying the space of generic

problem solving components which can be used to construct problem solvers for a class

of applications.

3.2.2. Generic tasks: viewpoints over applications

Generic tasks (and in particular, problem types) are identified by abstracting common

elements from classes of applications. Of course, the inverse process also applies and the

specification of a problem type defines a conceptual framework, which can be used to

describe a particular application. From a knowledge acquisition point of view, such a

description provides both a task-centred mechanism for validating the completeness of the

available application knowledge - i.e. completeness can be achieved by ensuring that all

knowledge required to characterize the task has been acquired - and a way to focus the

knowledge acquisition process, so that only the knowledge required by the generic task is

ever acquired.

Consistently with the view of knowledge acquisition as modelling outlined in the

previous chapter, it is important to emphasize that a problem type only provides one

particular viewpoint over an application and that different viewpoints are in general

possible. For example, the special issue on the Sisyphus-I office allocation problem of

the International Journal of Human-Computer Studies (Linster, 1994) includes both

solutions which characterize Sisyphus-I as a design problem (Balkany et al., 1994) and

solutions which model it as a classification problem (Gaines, 1994). In other words, it is

not so much that a specific application, or part of it, falls necessarily into a particular

problem type. Rather, it is a problem type which provides a conceptual framework for

characterizing an application and for focusing the knowledge acquisition process.

3.3. GENERIC TASK SPECIFICATION AS TASK ONTOLOGY

A way to precisely characterize the viewpoint expressed by a generic task is provided by

the notion of ontology (Guarino, 1997; Valente and Breuker, 1996; Gruber, 1993; 1995;

Schreiber et al., 1995; van Heijst et al., 1997). Gruber (1993) defines an ontology as an

"explicit specification of a conceptualization". This definition suggests that the role of an

ontology is to identify the entities and relations which exist in some universe of discourse

and define the conceptual vocabulary to be used to refer to and reason about them. Thus,

an ontology formalizes a viewpoint over a target domain (Gruber, 1993; Schreiber et al.,

1995).

Chapter 3	 Page 51

While the definition given by Gruber highlights the essence of what is an ontology, it is

incomplete in two respects. In particular it fails to point out that the main role of an

ontology is to provide a reusable specification and that any such specification can only be

partial (Guarino and Giaretta, 1995; Schreiber et a!., 1995). Thus, a more complete

definition can be given as follows:

An ontology is a partial specification of a conceptual vocabulary to be used for

formulating knowledge-level theories about a domain of discourse. The

fundamental role of an ontology is to support knowledge sharing and reuse.

This definition is consistent 'in spirit' with the ones proposed by Gruber (1993), Guarino

and Giaretta (1995) and Schreiber et a!. (1995), but it also exhibits some differences. As

already said, in contrast with Gruber's definition, the above definition emphasizes that

ontologies only provide partial specifications of a conceptualization. I also prefer to do

away with the term 'conceptualization' and use instead the expression 'conceptual

vocabulary'. As Guarino and Giaretta point out (1995), the term 'conceptualization' can

be ambiguous, as it can be used to refer both to the contents of a model and to the

terminology used to describe it. My definition also differs from the one given by

Schreiber et al., because I do not subscribe to their view of an ontology as a meta-level

specification. As Guarino (1997) points out, whether or not an ontology is characterized

at the meta-level is not an intrinsic property of the ontology but depends on the relation

between the ontology in question and some other modell - e.g. another ontology. Finally,

in contrast with the definition given by Guarino and Giaretta and in agreement with the

view taken by Schreiber et al., my definition emphasizes that an ontology cannot be

recognised as such only by looking at its logical properties, but it is essentially a vehicle

for supporting reuse.

Thus, in this work I will use task ontologies to formalize the reusable conceptualizations

expressed by generic tasks. A task ontology defines the universe of discourse described

by a generic task, provides a set of modelling primitives for representing task instances

and specifies the knowledge structures which need to be acquired to apply a task

viewpoint over some problem. For instance, a task ontology for parametric design

specifies a set of modelling solutions for representing the various facets of a parametric

design task - e.g. requirements, constraints, parameters - and, at the same time, identifies

these as the target of a knowledge acquisition process. Thus, a task ontology (like any

other ontology) provides two sets of definitions, external and internal. The external

definitions, sometimes called domain views (Fensel and Straatman, 1996), specify the

viewpoint defined by a generic task and the target of the knowledge acquisition process.

Internal definitions define the various entities and relations needed to circumscribe the

Chapter 3	 Page 52

meaning of the external definitions. Hence, in contrast with normal database schemas, an

ontology provides not just a modelling template but also a semantically rich specification.

A graphical sketch of a subset of the parametric design task ontology is shown in figure

3.3 - see chapter 6 for a detailed discussion of the ontology and an explanation of the

graphical notation. The concepts shown in bold in the figure indicate the external

viewpoint imposed by the ontology. This external viewpoint comprises the classes

associated with the input roles of the generic task (i.e. preferences, cost function,

parameters, constraints and requirements) and a relation, current-design-model, which is

satisfied by the particular design model which, at each stage of problem solving, is the

target of the design process.

Kappa-expression

Design-Model

Design-Prescnption J	 0	 1 Legal-prescriptive-expression I	 domain

Parameter) [egai-Vaiue]

Constraint 1 1 Requirement

Parameter-Assignment

Constraints J

Requirements
has-constraints

current-design-model J	 ,_4 Design-Model
has-requirements

Design-Task	 I	 I (Parameters J (_ Unary-functuon_J 	 INumbe	 IVector

has-parameters

Cost.functLJ1-	
range

Parametric Design
1__	

[ProotExPression)
has-preference

[Preference i	 -	 Prefer-expression
-' has expressio

Figure 3.3. A partial view of the parametric design task ontology

Chapter 3	 Page 53

3.4. FROM GENERIC TASKS TO GENERIC PROBLEM SOLVING

METHODS

3.4. 1. Search as an epistemological device to integrate tasks and methods

An important objective of this work is to develop a model providing a tighter integration

between task specifications and problem solving methods, than the one offered by the

simple 'method-solves-task' type of associations normally found in libraries of problem

solving components. Thus, in this section I will outline an approach which takes as input

i) a task ontology, say 1, and ii) a problem solving paradigm, and produces as output i) a

method-independent, but task-specific, model of problem solving, Gen-PSM, and ii) a

generic method ontology. Gen-PSM fulfils two roles: it provides a basis for comparing

alternative methods and it makes it possible to operationalize method development as a

process in which novel refinements of Gen-PSM are produced. The generic method

ontology associated with Gen-PSM specifies the minimal ontological commitments which

need to be fulfilled by a problem solving method applicable to the class of applications

denoted by T.

Specifically, I will show the approach in the context of parametric design problems and

will adopt search (Newell, 1980) as the generic problem solving paradigm - see figure

3.4.

Task Ontology

Problem Solving
as Search

Method Ontology	 Generic Problem Solving Model

_______	 --- J

Figure 3.4. Integrating tasks and problem solving methods.

In principle there are two possible objections which can be raised here: i) the search

paradigm can be seen as limiting the range of problem solving behaviours and ii) the

approach can be criticized as going back to the old view of AT as the development of

weak, general-purpose problem solvers (Newell and Simon, 1972). I believe that both

objections can be easily refuted. In chapter 11 have pointed out that search is not just a

particular problem solving paradigm but, in a sense, it provides the fundamental metaphor

for describing knowledge-based problem solving. Therefore, by adopting the search

Chapter 3	 Page 54

paradigm I am not restricting myself to a class of problem solvers smaller than the class

of knowledge-based systems, which is exactly the class of systems I am concerned with.

The second objection can be refuted 'operationally', by constructing 'strong', i.e. task-

oriented, instantiations of the search paradigm, which correspond to method-generic, but

task-specific, problem solving models.

In the next section I will briefly describe how this approach has been used to construct a

generic problem solving model for parametric design. A full description of this process

and the resulting model and ontology will be given in chapter 7.

3.4.2. A search-based model for parametric design problem solving

A task ontology specifies a task in terms of initial and goal states in the universe of

discourse. For example, in the case of parametric design the initial state is described in

terms of the parameters whose values must be calculated, the requirements which must be

satisfied and the constraints which must not be violated (Wielinga et al., 1995). Given an

initial and a goal state, the specification of a suitable PSM describes a process for

reaching a goal state from the initial one. These problem solving processes are typically

described in terms of high level inference steps - e.g. design problem solving is often

described as proposing, critiquing and modifying tentative solutions (Chandrasekaran,

1990). The problem with these descriptions is that they are defined in terms of

conceptual operations, which differ from PSM to PSM and from task to task. Moreover,

they introduce additional ontological commitments on top of those associated with a task

specification - e.g. a Propose&Revise model of design problem solving assumes the

existence of the relevant procedures and fixes. What we need here is a generic

epistemological model which allows us to characterize any generic problem solving

process, which can be applied to a given task specification. This model should generalize

from any specific PSM by not introducing ontological commitments in addition to those

associated with the relevant task ontology.

The answer to this problem is given by the notion of problem solving as search, which

characterizes problem solving as the process of navigating a state space, starting from an

initial state, to achieve one of a number of solution states - see figure 3.5. The search

model perfectly satisfies our requirements. On the one hand, given a task specification,

unless we assume additional knowledge related to the state space, the only course of

action left to a problem solver is to search (existential predicament of intelligent systems).

On the other hand all PSMs can be seen as performing search. Specialised problem

solving methods essentially increase the efficiency of the search process by making use of

additional problem solving knowledge.

Chapter 3	 Page 55

3.4.2.1. Parametric design as search

The generic search metaphor can be specialised for a parametric design problem solving

context, so that the process becomes one of navigating a design space efficiently. Each

node in the design space, i.e. each design state, say S 1 , can be characterized in terms of a

design model, D1.

so.I o

Figure 3.5. Problem space view of the design process.

A design operator, which is represented in figure 3.5 as a directed link between two states

in the design space, defines a transition between design models. A design operator is a

generic concept which describes a procedure which modifies a subset of a design model,

thus causing a move in the design space. For example, in an office allocation application

a design operator could be a rule which allocates an employee to a room; in an elevator

configuration problem it could be afix which modifies the value of a parameter - say the

position of the counterweight shown in figure 1.1 - in response to constraint violations.

Hence, the notion of design operator can be regarded as a generic way to characterize the

interaction between a parametric design problem solver and a design model. In practice -

i.e. at the application level - a parametric design problem solver can do very little other

than modifying design models. Thus, we can derive a very generic method ontology for

parametric design problem solving simply by adding the specifications of the concepts

'design space', 'design operator' and 'design state' to the existing task ontology. The

resulting ontology can be regarded as the most generic method ontology for a parametric

design problem solver which subscribes to the design space view shown in figure 3.5.

The assumption here is that any specific problem solving method will subscribe to this

ontology and typically further refine it. For instance, a Propose and Revise problem

solver will undoubtedly refine the concept of design operator by differentiating between

those design operators used during the Propose task, often called design procedures, and

those used during the Revise task, design fixes. However, it is difficult to envisage a

parametric design problem solver which can do away with the notion of design state and

Chapter 3	 Page 56

design operator at the knowledge level. In other words the assumption here is that the

proposed, task-oriented instantiation of the search metaphor is adequate to describe the

behaviour of knowledge-based, parametric design systems.

3.4.2.2. Identifying generic problem solving actions for parametric design

A method ontology specifies the knowledge roles imposed by a problem solving method

over an application domain. These are useful to drive the knowledge acquisition process,

but are not sufficient to characterize the problem solving behaviour of a method. A

description of the control structures and inference mechanisms of a method is also

required. Of course, my goal here is not to define one particular parametric design

method, but rather to develop a generic problem solving model which, can be used to

account for the variety of parametric design problem solvers which can be found in the

literature. To achieve this goal, I need to identify the generic problem solving actions

which characterize parametric design problem solving.

The approach I have taken here to formulate a generic model of parametric design

problem solving combines both top-down and bottom-up analysis. Given the design

space representation I have adopted, there are essentially only four actions which can be

carried out: selecting a design state, selecting a design operator, applying a design

operator to the selected state, and evaluating the resulting design model. The latter is

needed to assess its properties, e.g. whether it provides a solution, its cost, etc.

Although these four subtasks are adequate to describe the process of searching the design

space, an empirical analysis of existing methods shows that typically they employ a more

fine-grained breakdown. For instance, the selection of a design operator goes normally

through a number of decision-making activities, which include the selection of a design

context (e.g. design extension vs. design revision context in Propose&Revise problem

solving) and of a design focus. The latter can be seen as an abstraction mechanism which

extracts from the current design state the relevant information which is used to restrict the

field of possible operators. An example of a design focus is the constraint violation

which a Propose and Revise problem solver attempts to resolve during the application of

a particular design fix.

The result of this task analysis is a model such as the one shown in figure 3.2, which

identifies the space of generic subtasks associated with parametric design applications,

rather than with a particular problem solving method. In chapter 7 I will illustrate this

generic problem solving model in detail and provide a formal specification of both the

model and the associated method ontology.

Chapter 3
	

Page 57

3.5. CHARACTERIZING PROBLEM SOLVING METHODS

3.5.1. Definition of problem solving method

In earlier approaches to knowledge modelling (Wielinga et al., 1992a; Chandrasekaran,

1986) the notion of task was used to refer both to the definition and to the body of a task.

Later, it became clear that by making explicit the notion of problem solving method it was

possible to specify richer libraries of problem solving components and also to develop

more powerful frameworks supporting flexible problem solving (Punch, 1989; Steels,

1990; Chandrasekaran at al., 1992; Benjamins, 1993). In sum, it is useful to decouple

tasks and methods as they provide two distinct foci for reuse.

So far I have been using the notion of problem solving method informally, characterizing

it as a way to solve a class of tasks. Having introduced a significant part of the proposed

modelling framework, I can now define a problem solving method more precisely, as

follows.

A problem solving method is a domain-independent, knowledge-level specification of

problem solving behaviour, which can be used to solve a class of problems, say C. A

problem solving method can be characterized as a particular specialization of the generic

problem solving model associated with C, say Gen-PSM, and its method ontology is a

specialization of the method ontology associated with Gen-PSM.

This definition essentially brings together the various aspects of the approach I have

outlined so far. I'm interested in modelling, not implementation, and therefore I'm

interested in descriptions of problem-solving methods at the knowledge level. The

definition also emphasizes that a problem solving method is a task-centred agent. Finally,

in accordance with the approach outlined in the previous section, I characterize a problem

solving method as a refinement of the inference and control structure of the relevant, task-

specific generic problem solving model, Gen-PSM. Its ontology also refines that of Gen-

PSM.

For instance, the method ontology of a Propose&Revise method refines the default

method ontology for parametric design by (at least) differentiating between two types of

design operators, procedures and fixes. Analogously, the A*design method (a

customization of A* for parametric design) is defined by specializing six generic tasks

and the notion of design cost used in Gen-PSM.

Thus, the proposed approach makes it possible to structure a library of methods in terms

of two lattices. These specify the ontological commitments (ontology lattice) and the

subtasks and sub-methods (problem solving lattice) associated with each problem solving

method in the library. The primary role of the ontology lattice is to support knowledge

Chapter 3
	

Page 58

acquisition; that of the problem solving lattice is to support the construction of problem

solving methods through a specialization process.

3.5.2. Modelling problem solving methods

A problem solving method is described in terms of the following components.

• Name. A symbol which uniquely identifies a problem solving method in a

library.

• Input Roles. A specification of the various types of knowledge required as an

input by a method.

• Output Role. A specification of the type of output produced by a method.

• Control Roles. Additional, intermediate knowledge structures introduced by the

method during problem solving.

• Goal. The goal of the method. This field is usually left blank given that the goal

of a method is normally 'inherited' from the associated task. In some cases

however, a method may need to weaken the goal of the current task. For instance,

while the goal of a design task might be to find a globally optimal solution, such a

task might still be 'solved' (in a weaker sense of the word) by a method which

finds some solution.

• Task Structure. The task-subtask decomposition introduced by a method. This

field is empty if the method is primitive.

• Knowledge Flow. The data flow relationships between the subtasks of a

method.

• Body. The specification of a procedure which is executed when the method is

applied.

• Generic Tasks Tackled. The classes of generic tasks for which the method is

suitable.

• Applicability Condition. An expression which is verified by the task instances

to which the method can be applied. While the association between a method and a

set of generic tasks is only meant to provide a coarse-grained mechanism for

characterizing the applicability of a method, this field provides a fine-grained

criterion for deciding whether or not a method can be used to solve a particular

task.

• Method Ontology. A specification of the ontological requirements introduced

by a method. This formalizes the knowledge structures denoted by the input and

output roles of a method.

Chapter 3	 Page 59

It is important to keep in mind that a knowledge-level description of a problem solving

method is always relative to a certain grain-size. For instance figure 3.6 provides a

complete description of the knowledge flow of a Propose&Revise problem solver, but its

granularity is clearly very coarse. In general, in the rest of the thesis I will use the

expression 'complete problem solving method' to refer to a complete instantiation of the

above method specification template, for a given level of description. However, in many

cases one is interested in partial problem solving method specifications. For instance, it

is often useful to include method descriptions in a library, which do not specify a

particular control regime, thus abstracting from control issues.

Procedures i...

Fixes	
i-.-	 -S

.5-

- -

_ +Ese&Revis

I	
I

Constraints I
I-

Cost Function

- -	 Design Model

Figure 3.6. Knowledge flow in Propose&Revise

3.6. REUSABLE DOMAIN MODELS

The third component of the modelling framework proposed in this chapter deals with the

domain 'dimension' of knowledge based systems. As discussed in the previous chapter,

different approaches take different lines on the nature of domain knowledge and on its

role in knowledge modelling, sharing and reuse. In particular, of the approaches

reviewed in the previous chapter, only Protégé-Il considers domain knowledge bases

which are truly task-independent (Gennari et al., 1994). Common KADS and CoE

suggest that in general multiple domain views may be needed over an application domain.

For instance, Steels (1990) points out that in a circuit-board diagnosis application,

domain experts were using four different types of domain models: causal, structural,

functional and shift-register models. Although these domain models have a strong task-

oriented flavour, a-la-Generic-Tasks, they are - at least in theory - reusable across

applications. In the rest of the thesis I will use the term mono-functional to characterize

domain models which impose a strong, functional view over a domain. Further down the

task-centred philosophy, approaches such as Generic Tasks or DIDS take a very strong,

use-oriented line and do not consider domain models as separate from task models, but

rather see these as determining both the nature and the form of the application domain

knowledge (Bylander and Chandrasekaran, 1988).

Chapter 3	 Page 60

At the opposite end of the task-centred spectrum work on multi-functional knowledge

bases attempts to build large bodies of knowledge which, while domain-specific, are not

committed to a particular task or problem solving method. By far the most famous of

these large multi-functional knowledge bases is Cyc (Lenat and Guha, 1990), which

comprises (or aims to comprise) the millions of notions which make up 'consensus

reality'. These include common-sense notions, e.g. time and space; knowledge about the

organization of human institutions, e.g. family, school; naive physics and biology, e.g.

things fall and organisms die; and innumerable other concepts which human beings use

routinely to make sense of phenomena in the world. 3 The rationale for building multi-

functional knowledge bases is quite simple: they provide a useful focus for reuse. As

Murray and Porter (1988) point out, "The grid of potential knowledge bases has three

dimensions: domain, task, and problem solving method. Building knowledge based

systems for individual cells of this grid is both costly and short-sighted".

Unsurprisingly, the line I will take here is consistent with the reuse-oriented approach of

this work. Thus, as a first approximation, I characterize the domain component of my

framework as specifying multi-functional, reusable domain models. Having taken this

line, I need of course to solve a number of issues. First I need to address the point

concerning the interaction between task and domain knowledge. Second, I have to tackle

the relation between mono-functional and multi-functional knowledge bases. Finally, as

pointed out in the previous chapter, much of the work on reusable domain models is

actually about domain ontologies. How do these relate to domain models and what role

do they play in the proposed framework? In the next sections I will address these issues,

starting with the interaction problem.

3.6.1. The Knowledge Interaction Problem

The knowledge interaction hypothesis (Bylander and Chandrasekaran, 1988) states that

both the type of knowledge required by an application and its representation are strongly

determined by the chosen task and/or method. In terms of the framework developed so

far, this hypothesis indicates that both the knowledge acquisition process and the domain

modelling schema are determined by the method ontology associated with the current

problem solving method. In a sense this is trivially true. If I assume that a knowledge

The assumption underlying the Cyc project is that by relying on this huge body of common-sense

knowledge future Al systems will be able to overcome their current 'brittleness', i.e. their incapability

of coping with novel situations. Whether or not the Cyc approach is sound is not really the issue

here. My interest here is to understand what is domain knowledge, more precisely what

epistemologically useful types of domain knowledge do exist, and how to structure the domain

component in the proposed modelling framework.

Chapter 3	 Page 61

acquisition process starts with a pre-existing problem solving method and no domain

component, then the quickest route to complete an application model is of course to

acquire the knowledge required by the method and represent it in terms of the modelling

schema specified by the method ontology. In a parametric design problem, this process

will involve acquiring - among other things - the various parameters and constraints and

representing them in terms of the relevant constructs provided by a particular parametric

design method ontology. This approach was used by the researchers building knowledge

acquisition tools according to the role-limiting approach (Marcus, 1988) and by my

colleagues and myself when tackling the VT elevator design problem in the VITAL

project (Motta et al., 1996). A more interesting scenario is one in which I can already

select or configure from my library of reusable components not only a problem solving

method for parametric design, but also a pre-existing domain knowledge base (say a

database of employees) for the application domain in question (say office allocation). In

this case I would like to reuse not just the problem solving method but also the existing

domain model. The knowledge interaction hypothesis poses two objections here: the pre-

existing domain model will not comprise the 'right' knowledge, and its modelling schema

will be inappropriate. The second objection is easy to address. Any representation

mismatch can be addressed by adding appropriate mapping mechanisms (Gennari et al.,

1994) which allow the problem solver to retrieve and make use of the relevant definitions

from the domain model. Of course, this can be in principle inefficient. However, this is

not the issue here, as we are not looking for efficient representation solutions but for

modelling mechanisms enabling us to build knowledge-level models of applications out

of reusable components.

Method Ontology

Parameter

Mapping Mechanism

omain Ontology

Employee

Figure 3.7 Mapping domain to method ontologies.

The other objection concerns the mismatch between the knowledge required by the

method and that embedded in the multi-functional domain knowledge base. For example,

in an office allocation problem it is important to acquire knowledge about office

preferences and allocation requirements. This knowledge is very much application-

specific and therefore cannot be part of a multi-functional domain knowledge base.

Chapter 3	 Page 62

Hence, it needs to be acquired on an application-specific basis. In order to account for

these two modelling situations, formulating the relevant mapping mechanisms and

acquiring application-specific knowledge, the framework proposed here comprises a

fourth type of component, application configuration knowledge. In contrast with the

other three components this does not specify a class of reusable components. Rather, it

provides the 'glue' for integrating reusable problem solving and domain elements.

Problem Solving Paradigm

Genedc Task	 — t	 1Generic Problem Solving ModelI Specification	 I
_________	 - .-..I

Application Model

Problem Solving Method

if-instance Peter S Lecturer	 .	 Application-specific
((courses_chaired dm862)...) 	 Mapping	

Problem-SolvingKnowledge	
Knowledge

if-instance Arthur_S Reader
:ourses_chaired dm871)...)

("Iulti-functional
Domain Model

Figure 3.8. Overall Modelling Framework.

The approach described here tries to reconcile the trade-off between usability and

reusability. The more generic a model, the more reusable it is. The more specific a

model, the more usable it is, although in a restricted space of applications. The proposed

framework addresses these issues at the knowledge level, i.e. in terms of modelling

solutions, rather than efficiency considerations. At the knowledge level, the problem can

be reduced to one of different degrees of coupling between different components of a

knowledge model. In particular, the framework makes the following assumptions.

• Strong coupling between generic tasks and problem solving

methods. Problem solving methods are designed to perform efficient problem

solving and they are typically designed with a class of tasks in mind. A close

coupling between a generic method and a generic task is therefore not so much a

requirement, as a consequence of the raison d'être of problem solving methods. In

my framework I strengthen this 'natural' coupling by using the choice of a problem

Chapter 3
	

Page 63

solving paradigm as a mechanism for providing a principled approach to

developing a generic problem solving model and method ontology for a given

problem type.

• Weak coupling between generic problem solving models and multi-

functional domain knowledge. By definition, multi-functional knowledge is

domain knowledge which characterizes task independent aspects of a domain, i.e.

domain knowledge which can be used in many different ways. For the sake of

reusability this knowledge is modelled in a task and method independent way. It

follows that only weak coupling of multi-functional and problem solving

knowledge can be supported. This weak coupling is expressed by means of

mapping mechanisms.

• The knowledge interaction problem can be tackled at the knowledge

level by introducing an application-configuration component. In

particular, the assumption here is that the interaction problem can be

operationalized at the knowledge level in terms of the activities of acquiring

application-specific knowledge and establishing the appropriate mappings between

the problem solving and domain components.

Thus, the application configuration component comprises two types of application-

specific knowledge, mapping knowledge, which is required to integrate weakly coupled

components, and application-specific problem solving knowledge, which is required by

the chosen problem solving method and needs to be acquired for each application. This

second type of knowledge has often a heuristic connotation. For instance, the design

rules discussed in section 1.2.2.2 are indeed examples of application-specific, heuristic

knowledge. However, not all application-specific problem solving knowledge is

heuristic. For instance, the cost function in design applications is typically application-

specific but not heuristic. Therefore, it seems to me that the often-encountered dichotomy

between "the conceptual aspects of a domain theory and the heuristic annotations" (Steels,

1990) is of limited use. The main issue when constructing reusable models is to separate

the domain elements which can be reused across applications - i.e. multi-functional

domain knowledge - from those which are application-specific. The latter might include,

but cannot be reduced to, heuristic knowledge.

In the rest of the thesis I will refer to the model of application and library organization

shown in figure 3.8 as the TMDA (Task/Method/Domain/Application) framework.

Chapter 3	 Page 64

3.6.2. Integrating domain ontologies and mono-functional models into

the framework

Earlier I mentioned that approaches to domain modelling include not only multi-functional

models, but also domain ontologies and (what I termed) mono-functional models. How

do these fit into the proposed modelling framework?

3.6.2.1. Mono-functional models as customised domain views

Mono-functional models are abstractions of method ontologies. For instance, a causal

domain model can be regarded as fulfilling the requirements of a diagnostic method which

makes use of causal links to trace back the possible reasons for a faulty component. In

this case we can provide a more flexible scenario and make use of mapping mechanisms

to link a multi-functional domain model to several possible mono-functional models, each

providing a view required by a problem solving method. The resulting scenario is shown

in figure 3.9.

Problem Solving Paradigm

.t

Figure 3.9. Integrating multiple domain views in the modelling framework.

In particular the same configuration mechanism used to integrate a domain-independent

problem solving method with a method-independent domain model can also be used to

integrate mono-functional and multi-functional models - see figure 3.10.

f-instance Peter_S Lecturer
((courses_chaired dm862)...)

(def-instance Arthur_S Reader
((courses_chaired dm871)...)

Mapping J [
Mono-functional

Knowledge	 Mode'-specific
____________	 Knoi ledge

Chapter 3
	

Page 65

Mono-functional Domain Model__Jj

Multi-functional
	 Mono-functional Model Configuration

Domain Model

Figure 3.10. Configuring mono-functional models

In general, several levels of mappings might be required to integrate multiple domain

views with a method ontology on the one hand and a multi-functional model on the other

hand. This process can be characterized as the construction of an application ontology

(Gennari et al., 1994).

3.6.2.2. The role of domain ontologies

In the context of the proposed approach a domain ontology can be defined as a reusable

domain model, multi-functional or mono-functional, which is independent of an

application domain. In other words a domain ontology does not contain knowledge about

a particular application domain. For instance, a medical ontology could contain

definitions for the terms normally used in medical applications - e.g. therapy, disease,

diagnosis, symptom - but would not contain information about a particular application

domain, e.g. information about a particular instance of a disease which has occurred to a

particular patient.

Domain ontologies are often specified for large application domains, such as medicine

(Falasconi and Stefanelli, 1994) and law (Valente and Breuker, 1996). While it is

possible to find in the literature quite a few task-independent ontologies, it is important to

note that not all task-independent ontologies are strictly-speaking domain ontologies - in

the sense of providing a conceptualization of a class of application domains. In

particular, it is possible in the literature to find examples of the following types of task-

independent ontologies.

• Ontologies proposing a conceptualization of an application domain or application

area, which can be shared by researchers working on the same application, or class

of applications. An example of this kind of ontology is provided by the legal

ontology discussed in (Valente and Breuker, 1996).

Chapter 3
	

Page 66

• Ontologies specifying the modelling schema used by a particular knowledge base.

These ontologies are different from those discussed in the previous bullet because

here the goal of the ontology is not so much to provide a framework which can be

agreed upon by all researchers in an area, but merely to make explicit and formalise

the modelling schema used by a knowledge base. An example of this kind of

ontology is the VT-design ontology (Gruber et al., 1996), which describes the

modelling schema employed to encode the VT knowledge base (Yost and

Rothenfluh, 1996).

• Ontologies specifying a general-purpose, knowledge representation schema. For

instance the Frame Ontology in Ontolingua (Gruber, 1993) describes the primitives

characterizing frame-based knowledge representation systems.

Of these three classes of ontologies only the first one is strictly speaking a domain

ontology according to the definition of the term given in section 3.3. Ontologies such as

the frame ontology are not specifications of application domains - as is the case with a

medical or legal ontology. A frame ontology provides the layer underneath that of

conceptual specifications: it is a specification of the primitives to be used for building

conceptualizations. Therefore, following Gruber (1993), I will henceforth use the

expression representation ontology when referring to ontologies such as the frame

ontology, to distinguish them from 'proper' conceptual ontologies.

The difference between the other two classes of ontologies is much more subtle and has

to do with the aims and the nature of the ontologies. The primary aim of an ontology

such as the legal ontology discussed by Valente and Breuker is to suggest a consensus on

a terminology for modelling legal reasoning. The ontology provides a very abstract

specification, almost the topmost layer of any legal model; it essentially identifies the main

types of knowledge in legal reasoning, e.g. normative knowledge, common sense

knowledge, etc. From the discussion it is clear that the authors do not suggest that such

an ontology should be used directly to implement legal systems. Their aim is to shape a

consensus on the relevant terminology and viewpoints applicable to legal modelling.

While ontologies such as VT-design can be also regarded as suggesting a consensus on

terminology, this aim is much less in evidence than the desire to make explicit the schema

used to encode the VT knowledge base. The difficulty with this type of ontology is that

knowledge representation schemas are not the same as knowledge-level modelling

schemas. A knowledge representation schema has to strike a balance between modelling

and computational requirements. In other words these schemas have an efficiency bias

which distinguishes them from 'pure' knowledge-level ontologies, where the only issue

is the modelling of knowledge. In the rest of this thesis I will exclusively focus on (so-

called) 'pure' modelling ontologies and I'll address computational aspects separately.

Chapter 3
	

Page 67

3.7. CONCLUSIONS

In the previous chapter I have reviewed the state of the art in knowledge modelling and

highlighted a number of open issues concerning the development and organization of a

library of problem solving components. Here I will briefly illustrate how the proposed

approach addresses these issues.

• No clear theoretical basis for libraries of problem solving

components. The proposed approach characterizes each problem solving method

as a refinement of a problem solving model associated with a class of problems.

This model is constructed by instantiating a generic model of problem solving as

search in terms of a generic task ontology. The model provides a foundation for all

problem solving methods applicable to a class of tasks by specifying the minimal

ontological commitments and the set of problem solving actions associated with a

task-specific class of problem solvers.

• No clear model of the method development process. Method

development is characterized in two stages. In the first stage a generic model of

problem solving is built, which is associated with a class of applications. In the

second stage problem solving methods are defined as refinements of the given

model.

• Limits of local selection knowledge in task-method structures.

Although the proposed library is hierarchically organised, method selection and

configuration are not driven by simple decision-making rules. Methods are

organized in a specialization hierarchy and the method selection criteria are global,

rather than local.

In chapters 6-8 I will provide evidence for these claims by illustrating how the proposed

approach has been used to construct a library of reusable components for parametric

design problem solving. Before presenting the library it is however necessary to

introduce the modelling language used to model the library components.

Chapter 4.
Knowledge Modelling in OCML

This chapter provides an overview of OCML, the modelling language
I have used for formalizing the components of the parametric design
library and for building the various application models described in
chapter 9. In this chapter I illustrate the philosophy underlying
0 CML, describe the main modelling constructs it provides and
compare it to other modelling languages.

4.1. INTRODUCTION

This chapter provides an overview of OCML', the language I have used for modelling the

components of the parametric design library and for building the various application

models described in chapter 9. OCML was originally developed in the context of the

VITAL project (Shadbolt et al., 1993) to provide operational modelling capabilities for the

VITAL workbench (Domingue et al., 1993). Over the years the language has undergone

a number of changes and improvements and in what follows I will provide an overview

of the current version of the language (v5. 1), illustrate its underlying philosophy and

compare it to alternative knowledge modelling languages. Moreover, I will also illustrate

a subset of the application development interface supporting the construction of OCML

models. This interface consists of a number of Lisp macros and functions which can be

used for retrieving and modifying OCML constructs, for evaluating functional and control

terms, and for querying an OCIvIL model.2

4.2. LANGUAGE TENETS

A number of ideas/principles have shaped the development of the OCML language.

These are discussed in the following sections.

I The acronym "OCML" stands for Operational Conceptual Modelling Language.

2 Graphical interfaces to OCML also exist. These include a web-based tool for collaborative

construction of OCML models, which is currently under development (Zdrahal and Domingue, 1997).

Chapter 4	 Page 69

4.2.1. Knowledge-level modelling support.

The main goal of OCML is to support knowledge-level modelling. In practice this role

implies that OCML focuses on logical, rather than implementation-level primitives. Thus

it provides mechanisms for expressing items such as relations, functions, rules, classes

and instances, rather than arrays or hash tables. This approach is consistent with several

other proposals for knowledge modelling (Newell, 1982; Gruber, 1993; Fensel and Van

Harmelen, 1994). In the case of an operational language such as OCML this approach

causes severe limitations in the support that the language can offer for efficient execution

of application models. This problem can be (partially) addressed by providing a good

compiler and by adding extra logical mechanisms for efficient reasoning - e.g. procedural

attachments (Weyhrauch, 1980). Thus, while it is possible to specify and prototype

knowledge models in OCML, the language does not aim to support efficient delivery of

applications.

4.2.2. Support for the TMDA modelling framework

OCML is meant to support both the specification of library components and the

development of partial or complete application models, according to the TMDA

framework illustrated in the previous chapter. In particular this requirement implies the

provision of primitives supporting the specification of domain models, task and method

components and mapping knowledge. Earlier versions of the language (Motta, 1995)

provided support for task and method specification by means of special-purpose

modelling constructs. The current version does away with these task and method-specific

constructs and only provides a basic set of domain modelling facilities; the extension to

the language required to specify tasks and methods is then defined as a particular

representation ontology (the task-method ontology)3 . The advantage of this approach is

that it separates the core set of logical primitives (the OCML kernel) from additional,

framework-specific epistemological commitments. Thus, only special-purpose primitives

for defining mapping knowledge are required, in addition to 'standard' domain modelling

capabilities.

4.2.3. Compatibility with emerging standards

The development of the OCML language has been driven by several pragmatic

considerations. An important one concerns the compatibility with established or

emerging standards. In particular, OCML includes domain modelling facilities which

closely mirror a significant subset of those provided by Ontolingua (Gruber, 1993). This

property allows easy translation between OCML and Ontolingua. Moreover, these

This ontology will be described in the next chapter.

Chapter 4	 Page 70

capabilities allow Ontolingua users to use OCML as a kind of 'operational Ontolingua'

providing theorem proving and function evaluation facilities for Ontolingua constructs.

Such facilities are interactive and therefore support incremental model construction, rather

than the 'batch mode' style of interaction associated with the translation approach used for

operationalizing Ontolingua models in LOOM (Mac Gregor, 1991) or in other languages.

OCML can also be used for KADS-style modelling: the relevant modelling constructs

required for representing KADS interpretation models can be defined by configuring the

task-method ontology discussed in the next chapter for the KADS framework.

4.2.4. Integration of formal/informal/operational modelling

Different users require different modelling styles. Moreover, the same user may require

different kinds of modelling support at different stages of the KBS development process.

For instance, it is quite common to develop an informal application model first and

formalize and operationalize it at a later stage - see for instance (Motta et a!., 1994a;

1996). Therefore it is important to provide a language (or an integrated set of languages)

which can support various modelling styles, such as formal, informal and operational.

Operational modelling is supported in OCML by providing interpreters for evaluating

control and functional terms as well as theorem proving facilities. OCML can also be

used for formal specifications: formal semantics can be given to functional terms and

logical expressions by translating them to the equivalent Ontolingua expressions4.

Finally, informal modelling is supported by means of a graphical notation and the

provision of pseudo-OCML code5.

4.2.5. Support for quick prototyping of knowledge models

An important principle underlying the design of OCML concerns the provision of

facilities supporting rapid prototyping of knowledge models. This stance is grounded on

both fundamental and pragmatic reasons. The former are related to the experimental

nature of A! and, in particular, knowledge-based systems. Although much knowledge

engineering work over the past decade - e.g. the KADS (Wielinga et al., 1992a) and

VITAL (Shadbolt et a!., 1993) projects - can be seen as a reaction to the rapid prototyping

approach dominating Al in the previous decade, the complexity of Al problems and the

' No formal semantics is provided for the control language. Moreover, OCML also includes some

extra-logical facilities, such as procedural attachments.

This however is not used in this work and therefore will not be discussed here.

Chapter 4	 Page 71

exploratory nature of much Al programming 6 makes Al systems much less amenable then

conventional programs to a structured development approach based on a rigid separation

between a formal, non-executable specification and an implementation. Non-executable

specifications are of limited utility when dealing with problems which have non-

polynomial complexity. As discussed in chapter 1, Al problems are typically ill-defined,

which means that problem solvers necessarily need to search for a solution. Search is

reduced by acquiring knowledge about the search space. This knowledge can be acquired

either by doing (i.e. by navigating the search space) or by being told (i.e. by eliciting the

relevant problem solving knowledge). In both situations quick prototyping is crucial to

support knowledge acquisition in a situated problem solving context7.

Incidentally, while executable specifications are especially important for KBS, similar

arguments have been raised also in the software engineering field. Fuchs (1992) points

out that early validation is crucial to improve the problem of software reliability and

refutes the argument made by Hayes and Jones (1989) that executable specifications over-

constrain the space of possible software designs. In particular Fuchs argues that

executable, logic-based, declarative languages can adequately express functionalities at a

level of abstraction similar to that of non-executable specification languages. It is

interesting to note that Fuchs emphasizes that the key to maintain a high level of

6 Such 'exploratory nature' of Al programming is the main reason for the curious phenomenon that

happens when an Al problem is given a solution. At that point it is common to hear sceptics

pointing out that the problem in question was not an A! problem in the first place, or that the

particular solution is not an instance of Al. In my view there is a simple, generic explanation for this

phenomenon. Al is about navigating large search spaces and understanding their structure. Once a

search space has been explored and we know how to reach solutions, then it is natural to stop

perceiving the problem as A!. The debate surrounding Deep Blue provides a typical instance of the

phenomenon. For years one of the main goals of Al was to produce a chess program capable of

beating the world champion. Now that the goal has been reached (to a limited extent), then the goal

itself ceases to be A!. In a (rather perverse) sense this is true. Once Deep Blue is able to manage the

complexity of the search space involved in chess games, then the problem loses its connotation of

"decision-making under uncertain conditions", which is the defining feature of Al.

For instance it is interesting to note that several contributions to the Sisyphus-Il initiative (Schreiber

and Birmingham, 1996) report 'discoveries' related to the nature of the domain knowledge and the

behaviour of the problem solver, which emerged only after the implementation of the end system.

And this (fairly typical) phenomenon emerged in the context of an application, the VT elevator design

problem (Yost and Rothenfluh, 1996), which has been extensively analysed and reconstructed several

times!

Chapter 4	 Page 72

abstraction within an executable specification language is that this should be declarative

and able to search. In Al in general and KBS in particular this property is crucial, not just

to formalize a problem but also to model the problem solving behaviour of any feasible

implementation.

Therefore, it is, in my view, essential for a knowledge modelling language to be able to

support rapid prototyping and incremental development and testing. To this purpose

OCML provides operational modelling support and extends the language with non-logical

facilities such as procedural attachments, which can be used for carrying out efficient

proofs or evaluations, or for interfacing to pre-existing code. A simple example of the

role of procedural attachments can be seen in the case of basic modelling primitives for

list manipulation and numeric computation. While the relevant ontologies can provide

formal specifications of numbers and lists, when prototyping a model it is convenient to

extend a formal model of arithmetic with attachments which can effectively compute the

result of numerical calculations.

4.3. TYPES OF CONSTRUCTS IN OCML

OCML supports the specification of three types of constructs: functional and control

terms, and logical expressions.

4.3.1.	 Functional terms

A functional term - in short, a term - specifies an object in the current domain of

investigation. A functional term can be a constant, a variable, a string, a function

application or can be constructed by means of a special term constructor. This can be one

of the following: if, cond, the, setofall, findall, quote and in-environment 8 -

see appendix 1 for a description of the semantics of these terms. Variables are

represented as Lisp symbols beginning with a question mark, e.g. ?x is a variable.

Strings are sequences of characters enclosed in double quotes, e.g. "string'. A

function application is a term such as (fun {fun-term }*), where fun is the name of a

function and fun-term a functional term. Functions are defined by means of the Lisp

macro def-function, which is described in section 4.4.2.

Functional terms are evaluated by means of the OCML function interpreter, which is

described in detail in appendix 1.

4.3.1.1. Controlter,ns

Modelling problem solving behaviour involves more than making statements and

describing entities in the world. Control terms are needed to specify actions and describe

8 In what follows I will use this font to refer to expressions in the OCML language.

Chapter 4	 Page 73

the order in which these are executed. OCML supports the specification of sequential,

iterative and conditional control structures by means of a number of control term

constructors, such as repeat, loop, do, if, and cond9. A Lisp macro, def-

procedure, makes it possible to label parametrized control terms - i.e. to define

procedures. Control terms are evaluated by means of a control interpreter. This is

described in appendix 1.

4.3.1.2. Logical expressions

OCML also provides the usual machinery for specifying logical expressions. The

simplest kind of logical expression is a relation expression, which has the form (rel (fun-

term 1*) , where rel is the name of a relation and fun-term is a functional term. More

complex expressions can be constructed by using the usual operators - and, or, not, =>,

- and quantifiers - forall and exists. Operational semantics is provided for all

operators and quantifiers. Relations are defined by means of the Lisp macro def-

relation, which is described in section 4.4.1.

4.4. BASIC DOMAIN MODELLING IN OCML

In the previous section I have introduced the three types of constructs which are

supported by OCML. In this section I will go down at a more fine-grained level of

description and I will illustrate the various primitives which are provided in OCML to

support the specification of logical expressions, functional and control terms. In

particular, OCML provides mechanisms for defining relations,functions, classes,

instances, rules and procedures.

4.4.1. OCML relations

Relations allow the OCML user to define labelled n-ary relationships between OCML

entities. Relations are defined by means of a Lisp macro, def-relation, which takes as

arguments the name of a relation, its argument schema, optional documentation and a

number of relation options. An argument schema is a list (possibly empty) of variables.

Relation options play two roles, one related to the formal semantics of a relation, the other

to the operational nature of OCML. These roles are discussed in the next two sections.

The careful reader will have noticed that I have already mentioned if and cond when discussing

functional terms. In fact, if and cond can be used to construct both functional and control terms.

However this does not cause any problem. For instance, if an if construct is encountered when

expecting a functional term then an error will be generated if control terms are used in the body of the

if. The opposite however is not true: functional terms can always be used in place of control terms -

see appendix 1 for more details on the behaviour of the control interpreter.

Chapter 4
	

Page 74

4.4.1.1. Relation speqfication options

From a formal semantics point of view the purpose of a relation option is to help

characterize the extension of a relation. Table 4.1. shows the relation options which can

be used to provide formal relation specifications and, for each option, informally

describes its semantics. A formal semantics to these options can be given in terms of the

homonymous Ontolingua constructs.

Relation Option	 Role in Specification

iff-def	 Specifies both sufficient and necessary conditions for

the relation to hold for a given set of arguments.

sufficient	 Specifies a sufficient condition for the relation to

hold for a given set of arguments.

constraint	 Specifies an expression which follows from the

definition of the relation and must be true for each

instance of the relation.

:def	 This is for compatibility with Ontolingua: it

specifies a constraint which is also meant to provide

a partial definition of a relation.

axiom-def	 A statement which mentions the relation to which it

is associated. It provides a mechanism to associate

theory axioms with specific relations.

Table 4.1. Relation specification options in OCML

4.4.1.2. Operationally-relevant relation options

Relation options also play an operational role. Specifically, some relation options support

constraint checking over relation instances while others provide pro of mechanisms which

can be used to find out whether or not a relation holds for some arguments. Table 4.2

lists the relation options which are meaningful from an operational point of view and

informally describes their relevance to constraint checking and theorem proving.

Chapter 4
	

Page 75

Relation Option	 Supports	 Provides

constraint checking proof mechanism

:sufficient	 No	 Yes

:prove-by	 No	 Yes

:lisp-fun	 No	 Yes

:iff-def	 Yes	 Yes

:constraint	 Yes	 No

:def	 Yes	 No

Table 4.2. Operationally-relevant relation options in OCML

As shown in the table, constraint checking is supported by the following keywords:

:constraint, :def and :iff-def. While these have different model-theoretic

semantics - see table 4.1 - from a constraint checking point of view they are equivalent.

They all specify an expression which has to be satisfied by each known instance of the

relevant relation.

The relation options : if f-def, : sufficient, :prove-by and : lisp-fun provide

mechanisms for verifying whether or not a relation holds for some arguments. The first

two - : iff-def and :sufficient - also play a specification role - see table 4.1. The

others - : prove-by and : lisp-fun - only play an operational role.

Both : if f-def and : sufficient indicate logical expressions which can be used to

prove whether some tuple is an instance of a relation. From a theorem proving point of

view there is an important difference between them. Let's suppose we are trying to prove

that a tuple, say 1, satisfies a relation, say R. If a : sufficient condition is tried and

failed, the OCML proof system will then search for alternative ways of proving that T

satisfies R. If an : iff-def condition is tried and failed, then no alternative proof

mechanism will be attempted.

The relation options : prove-by and : lisp-fun are meant to support rapid prototyping

and early validation by providing efficient mechanisms for checking whether a tuple

satisfies a relation. The difference between :prove-by and lisp-fun has to do with

the expressions which are used as values to the two options: :prove-by points to a

logical expression, : lisp-fun to a non-logical one (specifically a Lisp function).

The box below provides an example of how the various types of relation options can be

used concurrently to specify a relation and to support constraint checking and efficient

proofs. The relation has-value, shown below, associates a design parameter to its value

Chapter 4	 Page 76

in a design model. The definition specifies that ?v is the value of a parameter, ?p, in a

design model, ?din, if and only if the pair (?p . ? v) is an element of ?dm (see chapter 6

for more details on the parametric design task ontology). In addition it also specifies the

constraint that the value of a parameter has to be a member of its value range, if this has

been specified. Finally, the definition includes a :prove-by option whose value is an

expression which can be used for verifying whether the relation is satisfied for a triple,

(?p ?v ?dm). This expression provides an efficient proof method (by weakening the

if f-def statement which formally defines relation has-value) but does not contribute

to the specification.

(def-relation HAS-VALUE (?p ?v ?dm)
"Parameters have values w.r.t a particular design model"
:iff-def (and (parameter ?p)

(design-model ?dm)
(element-of (?p . ?v) ?dm))

:constraint (or (and (exists ?vr
(has-value-range ?p ?vr))

(element-of ?v ?vr))
(not (exists ?vr

(has-value-range ?p ?vr))))
:prove-by (element-of (?p . ?v) ?dm))

4.4.1.3. A meta-option for non-operational speqfications

As shown above, OCML provides a number of relation options (specifically: : if f-def,

:sufficient, :def and :constraint), which play both a specification and an

operational role. However, in some cases we might want to use a keyword only for

specification and not operationally, for instance when we know that the value of the

keyword in question is a non-operational expression. To cater for these situations,

OCML provides a special meta-keyword, : no-op. which can be used to indicate that the

enclosed relation option only plays a specification role. An example of its use is shown

by the definition of relation range, which is shown below. In the example the keyword

:no-op is used to indicate that the : if f-def specification of the relation is not

operational - in particular it is not normally feasible to test the range of a function on all its

possible	 10

10 Sharp, Ontolingua-aware readers may have induced from the definition of the relation range that, in

contrast with Ontolingua, OCML does not considers functions as relations. This has to do with the

operational nature of the language: functions are dealt with by the OCML interpreter, relations by the

proof system.

Chapter 4	 Page 77

(def-relation RANGE (?f-r ?relation)
"The range of a function or a binary relation is a relation which is
true for any possible output of the function or second argument of
the binary relation"
:no-op (:iff-def (or

(and (function ?f-r)
(forall (?args ?result)

(=> (= (apply ?f-r ?args) ?result)
(holds ?relation ?result))))

(and (binary-relation ?f-r)
(forall (?x ?y)

(=> (holds ?f-r ?x ?y))
(holds ?relation ?y))))))

In the above definition it is worth highlighting the use of the special meta-relation holds.

An expression such as (holds <r> <arg>....<arg>) is satisfied if and only if the

expression (<r> <arg>....<argn>) is satisfied. Thus holds has variable arity: it can take

one or more arguments. In particular the number of additional arguments in a holds

statement reflects the arity of the relation passed as first argument. The relation holds

has a 'special status' because it is the only relation with variable arity supported by

OCML.11

4.4.1.4. OCML relations: summing up

The set of relation options discussed here aims to provide a flexible and versatile range of

modelling constructs supporting various styles of modelling. While the emphasis is on

operational modelling, OCML also supports formal specification. Moreover, it provides

facilities for integrating a specification with efficient proof mechanisms.

4.4.2. OCML functions

A function defines a mapping between a list of input arguments and its output argument.

Formally functions can be characterized as a special class of relations, as in KIF

(Genesereth and Fikes, 1992). However, in operational terms there is a significant

difference between a function and a relation: functions are applied to ground terms to

generate function values; relation (i.e. logical) expressions can be asserted or queried.

Thus, in accordance with the operational nature of OCML, functions are distinguished

from relations.

11 This constraint is only a limitation of the current implementation of the language: in principle there

is no reason why variable-arity relations should not be supported. Moreover, in contrast with

relations, OCML functions can have variable arity. To specify that a function can take an indefinite

number of arguments OCML uses the same convention as Lisp: the symbol &rest is used before the

last argument of a function argument schema.

Chapter 4
	

Page 78

Functions are defined by means of a Lisp macro, def-funct ion. This takes as argument

the name of a function, its argument list, an optional variable indicating the output

argument (as in Ontolingua this is preceded by an arrow, ->), optional documentation and

zero or morefunction specification options. These are :def, :constraint, :body and

lisp-fun.

The option : constraint provides a way to constrain the domain (i.e. the set of possible

inputs) of a function. It specifies a logical expression which must be satisfied by the

input arguments of the function. The : def option indicates a logical expression which

'defines' the function. This expression should be predicated over both (some) input

arguments and the output variable. Operationally, the expression denoted by the

constraint option provides a mechanism for testing the feasibility of applying a

function to a set of arguments; the expression denoted by : def provides a mechanism for

verifying that the output produced by a function application is consistent with the formal

definition of the function.12

Finally, the options :body and : lisp-fun provide effective mechanisms for computing

the value of a function. The former specify a functional term which is evaluated in an

environment in which the variables in the function schema are bound to the actual

arguments. The latter makes it possible to evaluate an OCML function by means of a

procedural attachment, expressed as a Lisp function. The arity of this Lisp function

should be the same as that of the associated OCML function.

(def-function filter (?1 ?rel) -> ?sub-1
"Returns all the elements in ?l which satisfy ?rel"
:def (and (unary-relation ?rel)

(list ?l))
(list ?sub-l)
(=> (and (member ?x ?sub-l)

(holds ?rel ?x))
(member ?x ?l)))

:body (if (null ?l)
?l
(if (holds ?rel (first ?l))

(cons (first ?l)
(filter (rest ?l) ?rel))

(filter (rest 71) ?rel))))

The above definition shows an example of the use of def-function. The OCML

function filter takes as arguments a list, ?l, and a unary relation, ?rel, and returns the

elements of ?l which satisfy ?rel. As illustrated by the definition, the def Option

provides a declarative way of specifying a function; the option : body an effective way of

computing its value, for a given set of input arguments.

12 These constraint-checking mechanisms can be switched off, if they are not required.

Chapter 4
	

Page 79

4.4.3. OCML classes

OCML also supports the specification of classes and instances and the inheritance of slots

and values through isa hierarchies.

Classes are defined by means of a Lisp macro, def -class, which takes as arguments the

name of the class, a list (possibly empty) of superclasses, optional documentation, and a

list of slot specifIcations, as illustrated by the definitions in the next box. These show a

number of classes taken from the domain model for the Sisyphus-I office allocation

problem (Linster, 1994; Chapter 9).

(def-class YQT-mexrber ()
((has-project :type project)
(smoker :type boolean :cardinality 1)
(hacker :type boolean :cardinality 1)
(works-with : type YQT-member)
(belongs-to-group :type research-group :value yqt)))

(def-class researcher (YQT-member))

(def-class secretary (YQT-mernber))

(def-class manager (YQT-member))

OCML provides support for the usual slot specification machinery which is found in

frame-based languages. Specifically, it provides the following slot options.

:value. A value which is inherited by all instances of a class.

: default-value. A value which is inherited by all instances of a class, unless

overridden by other values.

: type. The value of this option should be a class, say C. This option specifies

that all values of the associated slot should be instances of C.

• :max-cardinality. The maximum numbers of slot values allowed for a slot.

• :min-cardinality. The minimum numbers of slot values required for a slot.

• : cardinality. The numbers of slot values required for a slot. This option

subsumes both : min-cardinality and : max-cardinality.

• :documentation. The value of this option is a string providing documentation

for a slot.

• : inheritance. The inheritance mechanism used for dealing with default

values. If :merge is used, then all default values inherited from different ancestors

are collected. If : supersede is used, then default values inherited from more

specific ancestors override those inherited from more generic ones - see appendix 1

for more details on the inheritance mechanism in OCML.

Chapter 4	 Page 80

4.4.4. OCML instances

Instances are simply members of a class. An instance is defined by means of def-

ins tance, which takes as arguments the name of the instance, the parent of the instance

(i.e. the most specific class the instance belongs to), optional documentation and a

number of slot-value pairs. An example of instance definition, taken from the Sisyphus-I

domain model, is shown in the box below.

(def-instance harry_c researcher
((has-project babylon)
(smoker no)
(hacker yes)
(works-with jurgen_l thomas_d)))

In particular the above definition shows that a slot can have multiple values. In this case

harry_c works both with j urgen_l and thomas_d.

4.4.5. Object-oriented and relation-oriented approaches to modelling

When describing classes and instances I made use of standard object-oriented

terminology and talked about slots having values and instances belonging to classes.

This object-centred approach is in a sense orthogonal to the relation-centred one which I

used when discussing relations and logical expressions. The former focuses on the

entities populating a model and then associates properties to them; the latter centres on the

type of relations which characterize a domain and then uses these to make statements

about the world. These two approaches to modelling/representation have complementary

strengths and weaknesses and for this reason they are often combined in knowledge

representation and modelling languages, to provide hybrid formalisms (Fikes and Kehler,

1985; Yen et a!., 1988).

In the context of a knowledge modelling language (rather than a knowledge representation

one) the main advantage gained from combining multiple paradigms is one of flexibility.

Both object-oriented and relation-oriented approaches provide conceptual frameworks

which make it possible to impose a view over some domain. The choice between one or

the other can be made for ideological or pragmatic reasons - e.g. whether the target

delivery environment is a rule-based shell or an object-oriented programming

environment. In the specific context of an operational modelling language, such as

OCML, another benefit, which is gained by providing support for both object-oriented

and relation-oriented modelling, is that these approaches are naturally associated with

particular types of inferences. Object-orientation provides the structure for inheritance

and automatic classification; relation-orientation is normally associated with constraint-

based and rule-based reasoning.

Chapter 4	 Page 81

While the integration of multiple paradigms provides the aforementioned benefits, when

describing or interacting with a knowledge model, it is useful to abstract from the various

modelling paradigms and inference mechanisms integrated in the model and characterize it

at a uniform level of description. Specifically, in accordance with a view of knowledge

as a competence-like notion (Newell, 1982), it is useful to decouple the level at which we

describe what an agent knows from the level at which we describe how the agent

organizes and infers knowledge. Such an approach is used - for instance - in the Cyc

system (Lenat and Guha, 1990), which integrates multiple knowledge representation

techniques (the heuristic level), but provides a uniform interface to the Cyc knowledge

base (the epistemological level). A similar approach is also followed by Levesque

(1984), which describes a logic-based query language which can be used to communicate

with a knowledge base at a functional level, independently from the data and inference

structures present in the knowledge base.

In particular, in the case of OCML, this generic idea of providing a uniform level of

description to a hybrid formalism has been instantiated by providing a Tell-Ask interface

(Levesque, 1984), which use logical expressions (i.e. a relation-oriented view) when

modifying or querying an OCML model, independently of whether the query in question

concerns a class, a slot, or a 'ordinary' relation. The key to this integrated view is the

fact that classes and slots are themselves relations; classes are unary relations and slots are

binary ones. In addition to supporting a generic Tell-Ask interface, this property makes it

possible to provide 'rich' specifications of classes and slots. In particular, because these

are relations, it is possible to characterize them by means of the relation options discussed

in section 4.4.1. For instance, the definition below specifies the class of empty sets in

terms of an : iff-def relation option.

(def-class EMPTY-SET (set) ?set
:iff-def (not (exists ?x (element-of ?x ?set))))

4.4.6. The generic Tell-Ask interface

4.4.6.1. Tell.- a generic assertion-making primitive

OCML provides a generic assertion-making primitive, tell, which provides a uniform

mechanism for asserting facts' 3 , independently of whether these refer to slot-filling

assertions, new class instances, or simply relation instances. For example I can use tell

to add a new value to the list of projects carried out by harry_c as follows.

13 Formally a fact (or assertion) is a ground relation expression. A relation expression is an expression

such as (<r> <arg>....<arg>), where <r> is a relation and argj is a funclional term. A ground

expression (or term) is an expression (or term) which does not contain variables.

Chapter 4	 Page 82

? (tell (has-project harry_c mit))

(HAS- PROJECT HARRY_C MLT)

Analogously I can add a new instance of class researcher simply by stating:

? (tell (researcher mickey_rn))

(RESEARCHER MICKEY_M)

4.4.6.2. Ask: a generic query-posing primitive

The relation-centred view makes it possible to examine the contents of an OCML model

simply by asking whether a logical statement is satisfied. The OCML proof system will

then carry out the relevant inference and retrieval operations, depending on whether the

relation being queried is a slot, a class, or an 'ordinary' relation. The process is however

transparent to the user. For instance, I can find out about the projects in which harry_c

is involved - after the assertion shown above these are now babylon and mit - by using
the Lisp macro ask to pose the query (has-project harry_c ?c) . The resulting

interaction with the OCML proof system is shown below.

? (ask (has-project harry_c ?c))

Solution: ((HAS-PROJECT HARRY_C BABYLON))

More solutions? (y or n) y

Solution: ((HAS-PROJECT HARRY_C MLT))

More solutions? (y or n) y

No more solutions

This uniform, relation-centred view over an OCML models also provides a way to index

inferences. For instance, when answering the above query, the OCML proof system will

first retrieve and order all inference mechanisms applicable to a query of type has-
project - e.g., these might include assertions of type has-project, relation options
associated with has-proj ect and the relevant backward rules 14 - and will then try these

in sequence, to generate one or more solutions to the query (more details on the OCML

proof system are given in appendix 1).

14 See section 4.4.8.1 for a description of OCML backward rules.

Chapter 4	 Page 83

4.4.7. OCML procedures

Procedures define actions or sequences of actions which cannot be characterized as

functions between input and output arguments. For example, the procedure below

defines the sequence of actions needed to set the value of a slot. These include a

unassert statement, which removes any existing value from the slot, and a tell

statement, which adds the new value. Both tell and unassert are procedures. The

former takes a ground logical expression and adds it to the current model. The latter takes

a relation expression and removes from the current model all assertions which match it.

Note that in accordance with the uniform view of a knowledge model, slot changes are

carried out by means of generic assertion and deletion operations (i.e. in terms of tell

and unassert).

(def-procedure SET-SLOT-VALUE (?i ?s ?v)
:constraint (and (instance-of ?i ?c)

(slot-of ?s ?c))
:body (do

(unassert (list-of ?s ?i ?any))
(tell (list-of ?s ?i ?v))))

4.4.8. Rule-based reasoning in OCML

4.4.8.1. Backward rules

OCML also supports the specification of backward and forward rules. A backward rule

consists of a number of backward clauses, each of which is defined according to the

following syntax:

backward-clause	 :: (rel-expression { if {log-expression}})'5

15 use the following notational conventions when describing the syntax of OCML constructs. Braces,

and }, are used to indicate that the enclosed item is optional. For instance, the notation {x} means

that x may or may not be present but, if it is present, it can only appear once. The notation {x}+

means that x can appear 1 or more times (i.e. it must appear at least once), while the notation {xII*

indicates that x can appear 0 or more times. Moreover, I use square brackets within braces in

situations in which a number of alternatives for a non-terminal item are possible, but each alternative

can be used only once. For example, let's consider a non-terminal item, x, for which alternatives a

and b are possible. In this context the notation { {x] y } * indicates that any number of xy sequences are

possible, but a or b can only appear once (in practice this means that we can have between 0 and 2

sequences). Braces can also be nested. For instance, the notation { x { y } } means that both x and y are

optional but y can only appear if x does. Finally, I use italics to denote non-terminal items and a

vertical bar, I, to indicate mutually exclusive alternatives.

Chapter 4	 Page 84

Each backward clause specifies a different goal-subgoal decomposition. When carrying

out a proof by means of a backward rule the OCML interpreter will try to prove the

relevant goal by firing the clauses in the order in which these are listed in the rule

definition. As in Prolog depth-first search with chronological backtracking is used to

control the proof process.

Both semantically and operationally a backward chaining rule is the same as a

sufficient relation option: they both provide an expression which is sufficient to

verify that a tuple holds for a relation. Thus, one might wonder whether rules are needed

at all. In practice the advantage of including backward rules in the language is that these

provide a modular mechanism for refining existing (possibly generic) relation

specifications, for instance in cases where application-specific knowledge is needed to

complete the specification of a relation. To clarify this point let's consider an example

taken from the KMI office allocation problem (see chapter 9 for an extensive analysis of

this application).

The relation has-value-range is defined in the parametric design task ontology to

characterize the set of possible values which can be assigned to a design parameter - see

chapter 6. When building an application model the generic has-value-range

specification is usually refined to characterize exactly the type constraints over the values

of each parameter. A modular way to do this is to refine the definition of the relation by

means of the appropriate backward chaining rules. The rules shown below fulfil this

purpose for two of the classes of parameters present in the KMI office allocation domain:

professors and secretaries.

(def-rule has-value-range-i
((has-value-range-gen ?m ?i)
if
(professor (domain-reference ?m))
(= ?l (setofail ?r

(double-a-type-room ?r usable yes)))))

(def-rule has-value-range-2
((has-value-range-gen ?m ?l)
if
(secretary (domain-reference ?m))
(= ?i (setofali ?r

(and (room ?r size ?n usable yes)
(> ?n 1)
(close-to ?r kmi-entrance))))))

4.4.8.2. Forward rules

OCML also allows the user to define forward rules. A forward rule comprises zero or

more antecedents and one or more consequents. Antecedents are restricted to relation

expressions, while any logical expression can be a consequent. When a forward rule is

executed, OCML treats each consequent as a goal to be proven and attempts to prove

Chapter 4	 Page 85

them, until one fails. This mechanism makes it possible to integrate data-driven and goal-

driven reasoning and to specify arbitrarily complex right hand sides.

A special operator, exec, is provided to allow OCML users to introduce control (and

therefore functional) terms in the right hand side of a rule. In particular, two useful

procedures are tell, to assert new facts, and output, to produce output. A simple

example showing how to use these in a forward chaining rule is given below.

(def-rule foo
(has-project ?x ?y)
then
(exec (tell (project-covered-by ?y ?x)))
(exec (output 'has project -S -S' ?x ?y)))

While forward rules can be useful in a number of situations when building application

models (e.g. to define watchers, which are triggered whenever some situation arises in a

knowledge base), they are not essential to the model building process. The reason for

this is that knowledge-level modelling is mainly about constructing definitions, while

forward-chaining rules are about behaviour. Thus they can be used in place of

procedures to describe behaviour but they cannot replace relation or function specification

constructs.

4.5. FUNCTIONAL VIEW OF OCML

A functional view of a knowledge representation system focuses on the services the

system provides to the user (Levesque, 1984; Brachman et al., 1985). Basically, there

are three kinds of services provided by OCML: i) operations for extending/modifying a

model; ii) interpreters for functional and control terms; and iii) a proof system for

answering queries about a model. Extensive details on the model extensionlmodification

facilities provided by OCML were given in earlier sections. The interpreters and the

proof system are described in detail in appendix 1.

4.6. MAPPING

The constructs presented so far provide extensive support for domain modelling. In

order to fully support the TMDA framework additional constructs are needed, for task

and method specification and for mapping entities at the tasklmethod level to entities at the

domain level. As already said, the conceptual vocabulary required to model tasks and

methods is not hardwired in the language but is defined as a specialized ontology. This

will be presented in the next chapter; in the next sections I will discuss the two kinds of

mapping constructs supported by OCML: relation mapping and instance mapping.

Chapter 4	 Page 86

4.6.1. Instance mapping

In figure 3.7 I showed a simple example in which a class of concepts at the task/method

level (parameter) is mapped to a class of concepts at the domain level (YQT-member).

This is a very common situation when developing systems through reuse: a problem

solving, domain-independent model imposes a particular view over a set of domain

concepts (Fensel and Straatman, 1996).

A simple case is one in which a domain view is constructed by direct association of task

level concepts to domain level concepts. For instance, a parametric design view over the

Sisyphus-I domain can be imposed simply by creating parameter instances and

associating them to YQT members. Thus, the set of parameters and the set of YQT

members are associated but kept distinct. This solution is appealing for two reasons: it

supports reuse of modular components and does not mix two different types of concepts.

In particular, parameters and YQT members maintain different set of properties and

different semantics, thus avoiding a situation in which a design parameter has a wife and

a YQT member has a value range!

Instance mapping is supported in OCML by means of the Lisp macro def-upward-

class-mapping. This takes the names of two classes as arguments and associates each

instance of the first class to a purpose-built instance of the second class. By default the

relation maps-to is used to associate the task level instance to the domain level one.

In the Sisyphus-I application model we should then state:

(def-upward-class-mapping yqt-member yqt-parameter)

The above form iterates over each instance of class yqt-member, say I, creating a new

instance of class yqt-parameter and associating this to I. The relation used to model the

association is called maps-to. Thus, if we now ask for the mapping between parameters

and YQT members we get the following results.

Chapter 4
	

Page 87

? (ask (maps-to ?z ?x)t)

Solution: ((NAPS-TO YQT-PARTER-EVA_I EVA_I))

Solution: ((MAPS-TO YQT-PARATER-MONIKA_X MONIKA_X))

Solution: ((MAPS-TO YQT-PARANETER-ULRIKE_U ULRIKE_U))

Solution: ((MAPS-TO YQT-PARAMETER-UWE_T UWE_T))

Solution: ((MAPS-TO YQT-PARAMETER-JOACHIM_I JOACHIM_I))

Solution: ((MAPS-TO YQT-PAW1ETER-HANS_W HANS_W))

Solution: ((MAPS-TO YQT-PARM'TER-MICHAEL_T MICHAEL_T))

Solution: ((NAPS-TO YQT-PARTER-ANGY_W ?NGY_W))

Solution: ((NAPS-TO YQT-PARPNETER-JLJRGEN_L JtJRGEM_L))

Solution: ((NAPS-TO YQT-PAR?METER-KATHARINA_N KATHARINA_N))

Solution: ((MAPS-TO YQT-PARJTER-OMAS_D THOMAS_D))

Solution: ((MAPS-TO YQT-PARATER-HARRY_C HARRY_C))

Solution: ((MAPS-TO YQT-PARAMETER-NDY_L NDY_L))

Solution: ((MAPS-TO YQT-PARANETER-MARC_M MARC_N))

Solution: ((MAPS-TO YQT-PARAITER-WERNER_L WERNER_L))

The advantage of this solution is that parameters and YQT members maintain their

separate identities, as shown in the next box.

? (describe-instance 'YQT-PARZMETER-WERNER_L)

Instance YQT-PARANETER-WERNER_L of class YQT-PARATER

HAS-VALUE-RTNGE: (C5-l23 C5-122 C5-12l C5-120 C5-ll9 C5-l17 C5-1l6 C5-
113 C5-ll4 C5-ll5)

? (describe-instance 'WERNER_L)

Instance WERNER_L of class RESEARC}-R

HAS-PROJECT: RESPECT
SMOKER: NO
HACKER: YES
WORKS-WITH: ANGY_W, MARC_N
GROUP: YQT

Formally, a mapping can be characterized as an association between an object, say o, and

its meta-object, m-o, so that the entity denoted by the entity denoted by m-o is the same as

the entity denoted by o (Genesereth and NiJsson, 1988). This approach is used in the

definition of relation maps-to, shown below. This definition makes use of the function

Chapter 4	 Page 88

denotation, defined in the Ontolingua base ontology, which specifies a non-operational

association between an object and its denotation.

(def-relation maps-to (?x ?y)
"This relation allows the user to specify an association between
an object at the task layer and one at the domain layer.
Formally ?y denotes the object denoted by the object denoted by ?x'
:no-op (:iff-def (= ?y (denotation ?x))))

4.6.2. Relation mapping

Instance mapping works only in those cases in which imposing a view over a domain can

be reduced to creating task-level 'mirror images' for a finite number of domain-level

objects. A more general scenario is one in which there is some relation defined at the

task/method level which needs to be reflected to the domain level in a dynamic fashion. A

well known example is that in which domain concepts or statements are viewed as

hypotheses at the problem solving level. This association is typically dynamic, given that

hypotheses are considered as such only for a particular time-slice of the problem solving

process. These situations can be modelled in OCML by means of relation mappings.

A relation mapping provides a mechanism to associate rules and procedures to a relation,

say R, so that when a query of type R is posed, or assertions of type R are made at the

task/method level, these events can be reflected to the domain level. The purpose of these

reflection actions is to ensure that the consistency between domain and task/method levels

is maintained.

An example of an upward relation mapping is illustrated by the definition below, which is

taken from an application model developed for the Sisyphus-I problem. The mapping is

an upward one, in the sense that it is used to lift (van Harmelen and Balder, 1992) the

office allocation statements existing at the domain level to the problem solving level.

Specifically, the goal of this mapping is to associate the relation current-des ign-

model, which is used by the parametric design problem solver to indicate the design

model associated with the current design state, to the set of in-room assertions present in

the current snapshot of the domain knowledge base. Note the use of relation maps - to to

retrieve the parameter associated with each particular YQT member.

(def-relation-mapping current-design-model up
((current-design-model ?drn)
if
(= ?cIm (setofall (?p . ?v)

(and (in-room ?x ?v)
(maps-to ?p ?x))))))

An upward relation mapping ensures that when a task/method level relation is needed the

relevant information is obtained from the domain level. Of course, problem solving is

Chapter 4	 Page 89

also about inferring knowledge and retracting previously held assertions. Hence, OCML

also supports downward relation mappings. These divide into two categories, : add and
remove. The former specifies a procedure which is activated when a new relation

instance is asserted. The latter specifies a procedure which is activated when a relation

instance is removed. In the case of relation current-design-model relation mappings

are needed to ensure that when the design model considered by the problem solver is

modified, the relevant changes are reflected onto the domain model - see definition below.

(def-relation-mapping current-design-model (:down :add)
(lambda (?x)

(do
(unassert (in-room ?any-m ?any-r))
(loop for ?pair in ?x

do
(if (maps-to (first ?pair) ?z)

(tell (in-room ?z (rest ?pair))))))))

Finally, the definition below shows the : remove downward mapping associated with

relation current-design-model: it simply removes the domain level assertions

associated with the design model which is passed as argument to the relation instance

being retracted.

(def-relation-mapping current-design-model (:down remove)
(lambda (?x)

(loop for ?pair in ?x
do
(if (maps-to (first ?pair) ?z)

(unassert (in-room ?z (rest ?pair)))))))

4.7. ONTOLOGIES

OCML also provides the basic support for constructing models out of pre-existing

components. When an ontology is defined, say 0, it is possible to specify which

ontologies are included in 0 and as a result 0 will include all the definitions from its sub-

ontologies. When conflicts are detected (e.g. the same concept is defined in two different

sub-ontologies) a warning is issued. Primitives for loading and selecting ontologies are

also provided.

By default all ontologies are built on top of the OCML base ontology. This comprises

twelve sub-ontologies which include the basic definitions required to reason about basic

data types (e.g. lists, numbers, sets and strings), the OCML system itself and the OCML

frame representation. Specifically, the following sub-ontologies are provided:

• Meta. This ontology defines the concepts required to describe the OCML

language. It includes constructs such as 'OCML expression', 'functional term',

Chapter 4
	

Page 90

'rule', 'relation', 'function', 'assertion', etc. This ontology is particularly

important to construct reasoning components which can verify OCML models.

• Functions. Defines the concepts associated with functions, e.g. it includes

relations such as domain, range, unary-function, binary-function, etc.

• Relations. Defines the various notions associated with relations. These include

the universe and the extension of a relation, the definition of reflexive and transitive

relations, partial and total orders, etc.

• Sets. This ontology defines the notions associated with sets, e.g. 'empty set',

'union', 'intersection', 'set partition', 'set cardinality', etc.

• Numbers. Defines the various concepts and operations required for reasoning

about numbers and for performing calculations.

• Lists. Defines the concepts and operations associated with lists. For instance it

includes classes such as list and atom; functions such as first, rest and

append; and relations such as member.

• Strings. Specifies the concepts and operations associated with strings - e.g.

string, string-append, etc.

• Mapping. This ontology defines the concepts associated with the mapping

mechanism described earlier. It includes only three definitions: relation maps - to

and functions meta-reference and domain-reference. The former takes a

domain-level instance and returns the associated task/method level instance. The

latter performs the inverse function.

• Frames. Defines the concepts associated with the frame-based representation

used in OCML. It comprise classes such as class and instance; functions such

as direct-instances and all-slot-values; relations such as has-one and

has-at-most; and procedures such as append-slot-value.

• Inferences. The purpose of this ontology is to provide a repository for defining

functions and relations supporting the specification of KADS-like inferences. So

far only a few such inferences have been added to this ontology to support

different types of selection and sorting.

• Environment. This ontology provides a kind of 'environmental support' for the

construction of OCML models. It includes special operators like exec, which is

used to invoke procedures from rules, and procedures such as output, which

prints out a message.

Chapter 4
	

Page 91

• Task-Method. This ontology provides the concepts required to model tasks and

problem solving methods, i.e. to support the construction of task and problem

solving models.

This set of ontologies provides a rich modelling platform from which to build other

ontologies and/or problem solving models. It is natural to compare the OCML and

Ontolingua base ontologies. There are two aspects which distinguish these two sets of

ontologies: their nature and their scope.

The first difference is related to the operational nature of OCML. The Ontolingua base

ontology is not concerned with operationality and therefore includes many non-

operational definitions. The OCML base ontology is concerned with providing support

for the construction of operational models. As a result it attempts to minimize the number

of non-executable specifications. A typical approach is to weaken a non-operational

definition to make it executable. For instance let's consider the function universe. In

the Ontolingua base ontology the universe of a relation is defined as the set of all objects

for which the relation is true. Of course this is not an operational definition. However,

we can provide a weaker version of universe, called known-universe, which returns the

set of all entities which are part of a tuple satisfying the relation in question. This

function can be either defined separately from universe or attached to it to provide an

operational definition.

The second difference concerns the scope of the two base ontologies. Both the

Ontolingua and OCML base ontologies provide a rich set of definitions for domain

modelling. In order to comply with the requirements imposed by the TMDA framework,

the OCML base ontology provides support also for specifying tasks and problem solving

methods.

4.8. COMPARISON WITH OTHER LANGUAGES

In the previous section I compared the base ontologies provided by OCML and

Ontolingua and emphasized that the differences between them have mainly to do with the

conceptual requirements imposed by the TMDA framework on OCML and with its

operational nature. If we compare OCML and Ontolingua purely as modelling languages,

it is easy to see that their main difference has to do with the fact that while Ontolingua is

concerned exclusively with ontologies - i.e. term specification - OCML aims to model

behaviour as well. For this reason OCML also provides support for defining control

terms. Apart from this aspect, the current version of OCML closely mirrors many of the

constructs in Ontolingua. Thus, while OCML extends Ontolingua in various respects it is

possible (if reductive) to view OCML as an environment for prototyping Ontolingua

Chapter 4	 Page 92

models, thus moving away from the batch-oriented, translation-based operationalization

model suggested for Ontolingua (Gruber, 1993).

The design philosophy underlying the KARL language (Fensel, 1995a) has many points

in common with OCML. In particular both KARL and OCML are operational modelling

languages and are therefore suitable for rapid prototyping of knowledge level models.

Moreover, both KARL and OCML are part of comprehensive knowledge engineering

frameworks providing methodological support for KBS development. Needless to say,

there are also differences. KARL is an executable, formal specification language where

the emphasis is on formalization: its main strength is the provision of a formal semantics

for its modelling constructs. The design philosophy of OCML has more to do with

pragmatic considerations: its main goal is to provide a flexible modelling environment

able to support different approaches to modelling: rapid prototyping and structured

development, executable and non-executable constructs, formal and informal

specifications. The two languages also differ in terms of the modelling frameworks they

employ: KARL is based on the KADS four-layer framework, while OCML (more

precisely the task-method ontology) is based on the TMDA framework. An important

difference is also that while the primitives in the KARL language closely reflect the

KADS approach, the OCML kernel is approach-neutral. Its commitment to the TMDA

framework is defined by means of the appropriate ontology. This approach has the

advantage of flexibility: different modelling frameworks can then be supported through

the specification of the relevant ontologies.

Recently a new version of KARL (New-KARL) has been proposed (Angele et al., 1996)

which does away with the strong KADS-oriented approach used by KARL and focuses

instead on the specification of task-method structures and ontology mappings. Thus

New-KARL subscribes to a modelling framework which has much more in common with

the OCML task ontology than the one underlying KARL. However, in contrast with

OCML, New-KARL also 'hardwires' these task and method-centred primitives in the

language itself, rather than in a particular ontology.

Other formal specification languages exist for KADS models - see (Fensel and van

Harmelen, 1994) for an overview. While the formal details of these languages of course

vary, similar conclusions to those drawn above can be reached when comparing them to

OCML: these languages tend to emphasize formal aspects and are based on a KADS

approach. OCML emphasizes operationality and flexibility and does not presuppose

(although it can support) a KADS approach. Indeed, the original raison d'être for OCML

was to provide an operational alternative to a formal specification language, KBSSF

(Jonker and Spee, 1992), in the context of the VITAL workbench (Domingue et al.,

1993).

Chapter 4	 Page 93

Among the informal notations available for knowledge modelling the most notable is the

CML language (Schreiber et a!., 1994a), which supports ontological specifications and

the construction of Common KADS models. CML supports the definition of various

constructs, including concepts, attributes, tasks, methods, relations, structures and

expressions. Obviously, the main difference between CML and OCML is that the former

is only meant to be an informal notation while the latter is a fully operational language.

Another important difference is that CML is conmiitted to supporting the Common KADS

framework, while the kernel of the OCML language is framework-independent. In

addition to the KADS-related commitments CML also embodies other modelling

commitments: it provides primitives for representing structures and part-of relations.

This approach has both advantages and disadvantages. On the plus side it extends the

range of modelling primitives provided by the language and supports notions which occur

frequently in conceptual modelling. On the other hand there are two possible problems

with this approach. The first one has to do with embedding ontological commitments in a

conceptual modelling language. In particular different approaches to modelling structure

and aggregation can be found in the literature - e.g. compare the analysis by Martin and

Odell (1995) with that by Lenat and Guha (1990). Embedding one particular approach in

the kernel of a conceptual modelling language prevents users from extending the language

according to an alternative approach. The second problem is caused by the provision of

different levels of description - i.e. logical, epistemological and conceptual (Brachman,

1979) - within the same formalism. Much work in knowledge representation over the

past twenty years has focused on identifying the different levels at which knowledge

representation languages can be specified (Brachman, 1979; Guarino 1994). In particular

the paper by Brachman clearly illustrates that much of the confusion surrounding the field

of knowledge representation in the seventies was caused by the fact that researchers were

comparing formalisms which were situated at different levels. Thus, it seems to me that

including ontological primitives (e.g. structures) in a language characterized at the logical

level is a potential source of confusion. This is especially the case with informal

languages, given that eventual ambiguities are not explained by the underlying formal

theory.

The LOOM language (MacGregor, 1991) is strictly speaking a knowledge representation

rather than knowledge modelling language (i.e. it also includes symbol-level

representation constructs). However, its formal kernel - i.e. the terminological and

assertional components - provides purely logical and epistemological primitives and

therefore it can be used for knowledge modelling and ontology specification. The main

feature of LOOM is its powerful classification mechanism which integrates a sophisticated

concept definition language with rule-based reasoning. This approach allows a wider

range of inferences to be drawn than those available from 'traditional' frames+rules

Chapter 4	 Page 94

systems such as KEE. The existence of a powerful classifier is an important advantage

that LOOM maintains over OCML. On the other hand, viewed purely as a knowledge

modelling language, LOOM exhibits a number of limitations. 16 When building

knowledge models it may be necessary to make statements about the model being

developed, which do not have a direct inferential purpose. For this reason OCML allows

the inclusion of non-operational statements and supports the specification of axioms about

the current model. In contrast, LOOM only provides operational constructs which might

restrict the usability of this language for knowledge modelling. Another possible problem

related to LOOM is that while it supports different knowledge representation paradigms

(frames, rules, message-passing) it integrates the various constructs according to a

classification-centred viewpoint. While this approach obtains nice results in terms of

inferential capabilities, it nevertheless can be a constraint for the knowledge analyst, who

is forced to frame the current problem within a classification-centred framework. In

contrast with this approach OCML provides a number of alternative modelling constructs,

e.g. rules, functions, classes and procedures which, while integrated, are themselves

'primitive modelling components' and can be used within different modelling approaches.

4.9. CONCLUSIONS

The OCML language is meant to provide a useful tool for knowledge modelling. Its

primary purpose is to provide operational knowledge modelling facilities and to this end it

includes interpreters for functional and control terms, as well as a proof system which

integrates inheritance with backward chaining, function evaluation and procedural

attachments. While the emphasis here is on operationality, of course I recognize that

different styles of knowledge modelling ought to be supported. Therefore OCML

supports full first-order logic definitions and allows the user to explicitly distinguish non-

operational from operational definitions. Moreover, it supports an extensive set of

Ontolingua constructs and therefore can be used as an interpreter for Ontolingua

definitions.

In the rest of this work I will illustrate several models and library components which were

developed and tested using OCMIL. As they say, the proof is in the pudding!

1 6 The following points should not be construed as criticisms of the LOOM language. This is primarily

a knowledge representation language and should be of course judged with respect to knowledge

representation criteria. However, given the high-level of support provided by the language, its

'organic relationship' with the Ontolingua effort and its sound theoretical basis, it makes sense to

consider it as a plausible candidate for knowledge modelling. Indeed LOOM has recently been used for

ontological work (Swartout et al., 1996).

Chapter 5.
An Ontology for Task-Method Structures

In this chapter the task-method framework used for analyzing problem
solving methods and for organizing the librar y of parametric design
components is formalized by means of an OCML ontology.

5.1. BASIC TASK TYPES

Task

Goal-specification-task J	 I Executable-task

Problem-type J	 (Composite-task J	 (Primitive-task

Figure 5.1. Main types of tasks in task-method ontology.

The subclass-of hierarchy shown in figure 5.1 shows the main types of tasks which

are defined in the task-method ontology. These classes have already been illustrated in

section 3.2 and therefore there is no need to (re-)introduce them here. Hence, I will skip

the 'introduction formalities' and will move directly on to the representation issues which

arise when formalizing these concepts.

5.1.1. Modelling tasks in OCML

As already discussed in section 3.2.1, a generic task can be characterized in terms of its

input and output roles and a goal expression. The definition of class task given below

formalizes this approach and provides the entry point for the task-method ontology.

Chapter 5	 page 96

(def-class TASK () ?task
"An OcNL task is characterized by its
input roles, output role, and goal. The goal expression is a
kappa expression which takes as argument the task itself and a
value (which is meant to be a possible result from carrying out the
task). The goal is satisfied if the kappa expression holds for its
two arguments.
A role is a slot of a task, which admits only one value.
Tasks divide into two main subclasses:
goal-specification-task and executable-task. The former
provides only a goal specification, while the latter provides
also an 'organic' method for achieving the task"
((has-input-role :type role)
(has-output-role :type role)
(has-goal-expression : type legal-task-goal-expression

:max-cardinality 1))
:constraint (=> (has-role ?task ?role)

(and (slot-of ?role ?task)
(functional-relation ?role)))

axiom-def (exhaustive-subclass-partition
task
(set-of goal-specification-task

executable-task)))

The association between a task and a goal is modelled in the above definition by means of

the slot has-goal-expression, whose slot specification uses the option :max-

cardinality to specify that a task can at most have one goal, but does not necessarily

need to have one. This 'flexibility' in the specification ensures that all types of tasks are

subsumed by this definition. In particular, while most tasks express goal-oriented

specifications, some executable tasks only define generic control constructs, not directly

associated with a goal'. Thus, in order to account for both types of tasks the ontology

does not enforce the constraint that each task must be given a goal.

In accordance with figure 5.1 and the discussion in section 3.2.1, the above definition

partitions the class of generic tasks into two subclasses - goal-specification-task

and executable-task. Note that these two subclasses are mutually disjoint. The

former includes all task instances which have a goal and no body; the latter all task

instances which have a body and (optionally) a goal.

Finally, the definition also formalizes roles as slots of a task. In addition, the slots has-

input-role and has-output-role provide a way to distinguish explicitly the slots of a

For instance, a generic Generate&Test control construct can be used in various problem solving

models to perform search. However, the specification of such a construct does not need a goal. The

construct can be used as a plug-in component for a larger task or method, for which a goal has been

defined.

Chapter 5	 page 97

task which define roles from other, 'ordinary' ones. Roles are discussed in detail in

section 5.4.

5.1.2. Executable vs. goal-specification tasks

The class of goal specification tasks can be simply defined as a subclass of class task,

with the additional constraint that a goal but no body should be specified. The former

constraint can be imposed by setting the cardinality of slot has-goal-expression to 1.

(def-class GOAL-SPECIFICATION-TASK (task) ?task
"A goal-specification-task is a task with a goal
expression and no body"
((has-goal-expression :cardinality 1))
:constraint (not (exists ?body

(has-body ?task ?body))))

The definition of executable-task given below distinguishes this class by the existence

of a task body and partitions it into two subclasses: primitive-task and composite-

task.

(def-class EXECUTABLE-TASK (task)
"An executable task is a task with a body - i.e. a
task whose specification also includes a mechanism for
achieving it"
((has-body :type uriary-procedure :cardinality 1))
axiom-def (exhaustive-subclass-partition

executable- task
(set-of primitive-task

composite-task)))

(def-class PRINITIVE-TASK (executable-task) ?task
"An executable task which is not a composite task"
:iff-def (not (exists (?c ?subs)

(and (instance-of ?task ?c)
(has-generic-subtasks ?c ?subs)))))

(def-class COMPOSITE-TASK (executable-task) ?task
"A composite task is a task which introduces a subtask
decomposition. Something is an instance of this task if
its parent introduces a generic task-subtask
decomposition"
:iff-def (and (instance-of ?task ?c)

(has-generic-subtasks ?c ?subs)))

The distinction between primitive and composite tasks is enforced by pointing out that the

latter specify generic subtasks, while the former do not. A generic task-subtask hierarchy

is defined as one in which the nodes are generic tasks, such as parametric design, rather

than concrete ones, such as the VT task.

A problem with representing a notion such as 'generic task' in an ontology is that this

concept is typically overloaded with cognitive and modelling connotations, not all of

Chapter 5	 page 98

which can be captured in the representation. In particular, the ontology described here

does not attempt to formalize one of the main aspects of generic tasks, which is their

domain-independence. This aspect will instead be enforced methodologically, by

constructing models where generic tasks are characterized in a domain-independent style.

Once stripped of its methodological connotations, then the notion of 'generic task'

equates to 'class of tasks' and therefore I simply represent generic tasks as classes of

tasks. An important consequence of this decision is that much of the ontology building

process consists then of defining second order relations between classes of tasks. An

example of such a second order relation is has-generic-subtasks, which relates a

generic task to its generic subtasks.

(def-relation HAS-GENERIC-SUBTASKS (?task-type ?subs)
"Use this to model generic task-subtask decompositions"
:constraint (and (subclass-of ?task-type composite-task)

(every ?subs task-type)))

An advantage of this approach - i.e. equating generic tasks to task classes - is that it

allows a uniform treatment of the two distinctions between generic and concrete problems

(in the case of goal specification tasks) and between task specification and execution (in

the case of executable tasks).

Thus, in the rest I will distinguish between generic and concrete task-subtask hierarchies.

The former relate generic tasks and define the potential structure of a problem solver. The

latter specify the actual task-subtask structure constructed during problem solving.

5.2. MODELLING PROBLEM SOLVING METHODS

5.2.1. Representing methods in OCML

As shown below, a method is characterized as a special type of executable task, which is

associated - by means of a slot called tackles-task - to a goal specification task. Thus,

I characterize methods and method execution as particular cases of tasks and task

execution. The feature distinguishing methods from other executable tasks is that they

cannot be carried out independently of an associated task. In other words, the raison

d'être of a method is given by the task to which it is applied.

Chapter 5	 page 99

(def-class PROBLEM-SOLVING-ThOD (executable-task)
"A problem solving method is an executable task which
is associated with (tackles) a class of tasks.
The slot has-output-mapping specifies a function which maps
the result returned by the method to a task.
The reason for this mapping is to allow the decoupling
of the type of result returned by the method from that expected
by the task. This provides greater flexibility and also makes it
possible to specify solution conditions for a method which use
different types of output from that used by a task"
((tackles-task type goal-specification-task)
(has-output-mapping
:value '(lambda (?psm ?result)

?result))))

This characterization of methods as a special case of tasks is also informed by the view of

Al as an experimental science, already expressed in section 2.4.2.1. Because a method is

formalized as a task, it is carried out to achieve some goal. Hence, it follows that a

method can also fail - i.e. goals are not always achieved. This goal-centred formalization

is different from other approaches which describe methods in terms of their competence -

e.g. (Wielinga et a!., 1995; Angele et al., 1996). The problem here is that the notion of

competence implies an axiomatic specification of the functionality of a method.

However, such a specification might only have relative utility for heuristic search

methods. For instance, a Propose&Revise can be functionally described by stating that

its output consists of a complete and correct state (Fensel et al., 1997). However, such a

specification does not imply that in practice a Propose&Revise can achieve such complete

and correct state, or that such a state exists in the given problem space. Because

Propose&Revise problem solvers do not use domain-independent converging criteria,

their competence depends on the quality of the available heuristic knowledge (Zdrahal and

Motta, 1996; Chapter 8). More in general, as shown by recent work on empirical A!, the

effective competence of heuristic search methods has often to be assessed empirically

(Cheeseman et a!., 1991)2. For this reason I prefer to characterize methods as goal-

centred, rather than competence-centred, problem solving components.

Method application is defined by means of the procedure apply-method-to-task,

shown below.

2 Recent work on formal specifications of problem solving methods is aware of this problem and is

trying to overcome it by parametrizing a functional specification in terms of a number of assumptions

(Fensel and Schoenegge, 1997b; Fensel et al., 1997). Although this work is still at a fairly early

stage, it appears to me that it provides the most promising approach to reconciling the advantages of

formal specifications with the heuristic nature of Al.

Chapter 5	 page 100

(def-procedure APPLY-NETHOD-TO-TASK (?method-inst ?task-inst)
:body (do

(tell (tackles-task ?method-inst ?task-inst))
(in-environment
((?output-role . (the-slot-value

?task-inst
has-output-role))

(?fun . (the ?fun (has-output-mapping ?method-inst ?fun)))
(?result . (perform-executable-task ?method-inst)))

(set-slot-value ?task-inst
?output-role
(call ?fun ?method-inst ?result))

?result)))

The procedure apply-method-to-task registers the application of a method to a task by

linking them through a tackles-task relation, and then sets the output role of the task to

the result of executing the method. The procedure uses the value of slot has-output-
mapping to convert the result obtained by the method to a format which satisfies the

associated task. The reason for this mapping is to allow the decoupling of the type of

result returned by the method from that expected by the task. For instance, the definition

below uses this feature to convert the value returned by a method (a design state) into a

format appropriate to the associated task (a design model).

(def-class G-DESIGN-PSM
(problem-solving-method- for-parametric-design
decomposition-method)
((has-input-role :value has-design-operators)
(has-output-role :value has-solution-state)
(has-solution-state : type design-state)
(has-design-operators : type design-operator)
(has-output-mapping
:value '(lambda (?psm ?state)

(the ?dm (has-design-model ?state ?dm))))
(has-body :value

(lambda (?psm)
(in-environment
((?s . (achieve-generic-subtask

?psm gen-design-control
has -current-pardes - task
(the ?task (tackles-task ?psm ?task)))))

(if (design-state ?s)
?s)))))

:own-slots ((has-generic-subtasks '(gen-design-control))))

5.2.2. Modelling support for library organization

Consistently with the task-centred approach taken in the organization of the library, the

task-method ontology provides two relations for associating classes of methods to classes

of tasks, tackles-task-type and applicability-condition. The former makes it

possible to enforce the task-specificity of the problem solving methods included in the

library by providing a way to associate a method to the class of tasks to which it can be

Chapter 5	 page 101

applied. The latter can be used to specify more fine-grained applicability conditions than

is possible by means of simple links between method and task classes. Thus, when

looking for a method to solve a particular task, a meta-reasoner can check the applicability

conditions of the potentially applicable methods and filter out those methods which are

not applicable to the task in question.

It is important to note that, in contrast with the relation tackles-task, which we saw in

the previous section, the relations below are defined on method classes, rather than

method instances. The reason is that the purpose of these relations is to structure the

library, which consists of generic components (i.e. classes).

(def-relation TACKLES-TASK-TYPE (?method-class ?task-type)
'This relation provides a fairly coarse-grained indexing of the
library: each method is associated to a class of tasks to which
it can be applied"
:constraint (and (subclass-of ?method-class

problem- solving-method)
(task-type ?task-type)))

(def-relation APPLICABILITY-CONDITION (?method-class ?exp)
"This relation provides a more fine-grained test to check
the applicability of a class of methods to a specific task"
:constraint (and (subclass-of ?method-class

problem- solving-method)
(unary-relation ?exp)))

The relations given here are only meant to provide generic structuring mechanisms for

organizing the library of reusable problem solving components. In addition to these the

task-method ontology also provides mechanisms for specifying application-specific

method selection knowledge. These are described in section 5.5.

5.2.3. Types of methods

As in the case of executable tasks, methods are divided into two subclasses, primitive and
decomposition methods. The former solve a goal specification task directly, the latter

introduce a task-subtask decomposition. Thus, the generic structure of the task-method

hierarchies which can be constructed by means of the proposed ontology includes both

task-mediated and method-mediated decompositions, as shown in figure 5.2.

Chapter 5	 page 102

Problem type

- I
,	 \

Decompo tion-Method-iDecomposition-Method-n

Primitive-task-i-i Composite-task-i-rn

____.'	 -Priritive-task-n- i	 Goal-specification-task-n-i

Primitive-task-i -rn-i 	 Goal-specification-task-i -rn-k 	 I

I	 Primitive-Method-i -rn-k-i

Decomposition-Method-i -rn-k-i

Primitive-task-i -rn-k-i	Primitive-task-i -m-k-j

Figure 5.2. Generic structure of task-method hierarchies.

5.3. MODELLING GOAL EXPRESSIONS

A legal goal expression - see definition below - is a kappa expression, which takes as
argument a task instance, say ?task, and a value, say ?value. If a pair <?task,
?value> satisfies the goal expression associated with ?task, then we say that ?value is
a solution to ? task. This informal notion of 'achieving a task' is formalised by means of

the relation achieved, which is shown in the following box.

(def-class LEGAL-TASK-GOAL-EXPRESSION (kappa-expression) ?exp
"A task goal expression is a kappa expression with arity 2,
which does not contain free variables. The first argument to
the kappa expression represents a task-instance, the second
the result of the task"
:iff-def (and (= (arity ?exp) 2)

(= ?exp (kappa ?schema ?sent))
(= ?vars (all-free-vars-in-sentence ?sent))
(= (length ?vars) 2)
(member (namestring (first ?vars))

(map namestring ?scherna))
(member (namestring (second ?vars))

(map namestring ?scherna))))

Chapter 5	 page 103

(def-relation ACHIEVED (?task ?result)
"A task has been achieved if its goal holds in the current model
or if no goal has been specified.
A method has been achieved either if its goal has been achieved
or if its associated task has.
If the task has no goal expression, then it has been trivially
achieved
:iff-def (or (and (has-goal-expression ?task ?exp)

(holds ?exp ?task ?result))
(and (problem-solving-method ?task)

(tackles-task ?task ?task2)
(achieved ?task2 ?result))

(and (not (problem-solving-method ?task))
(not (has-goal-expression ?task ?exp)))))

The definition of achieved distinguishes between three cases. The first is the one in

which a goal expression has been specified for the task in question. In this case the task,

?task, is achieved with respect to a particular value, ?value, if the goal expression is

satisfied by the pair <?task ?value>. The second case is that of problem solving

methods. The execution of a method which either has no goal, or which has a goal which

has not been achieved, is declared successful if the goal of the associated task has been

satisfied. The third case is the one in which no goal expression has been declared for the

argument task. In this case the task is trivially achieved.

While the given definition specifies quite obvious conditions for achieving 'ordinary'

tasks, the case of problem solving methods is more interesting. In particular the

definition accounts for the frequent situation in which no goal is associated with a method

and therefore the method 'inherits' the goal of the task to which it has been applied. In

this case method application is successful if and only if the goal of the associated task has

been achieved.

5.4. ROLES AND ROLE VALUES

5 .4. 1. Roles as meta-level concepts

Generic reasoning roles, called metaclasses, were first identified by Clancey in his

landmark paper on heuristic classification (Clancey, 1985). The essential feature of roles,

which distinguishes them from argument schemas in software engineering, is that they

are characterized at the metalevel, in a domain-independent style. In particular the KADS

approach characterizes roles as 'labels' or 'pointers' to domain-specific knowledge

structures, indicating the role (!) these domain structures play in the reasoning process

(Wielinga et al., 1992a).

Here, I will do away with the notion of roles as labels and characterize them instead as

slots of a task or a method (i.e. as binary relations). This approach makes it possible to

Chapter 5	 page 104

provide 'semantically rich' descriptions of roles, using the relation specification

machinery afforded by OCML.

Like other approaches based on the task-method framework (Benjamins, 1993; Steels,

1990) I distinguish between input, output and control roles. The latter specify

intermediate knowledge structures which are generated and modified during problem

solving. Control roles can only be associated with composite tasks and decomposition

methods. More precisely, a role, say ?role, is a control role of a decomposition task,

?task, if i) it is the input or the output of a subtask of ?task and ii) it does not denote a

class of knowledge structures which must be acquired in order to achieve the subtask. In

other words control roles only define intermediate reasoning structures and are not meant

to introduce ontological commitments3.

5.4.2. Modelling roles in OCML

As already pointed out and as shown in the definition of task parametric-design - see

below - input and output roles in the OCML task-method ontology are represented as task

slots. Thus, an OCML role, e.g. an input role, strictly speaking does not denote the class

of knowledge structures which are input to a task, but rather a relation between these and

a task. For instance, while I might informally talk about parameters being the input to a

parametric design task, the solution used in the OCML task-method ontology implies that

the relation has -parameters is the actual input role of the task. Nevertheless, in this and

the next chapters, I will in some cases speak informally of (for instance) parameters as

roles of a parametric design task with the understanding that this is only 'informal talk'.

An ontological commitment is a specification of a requirement describing either i) a particular class of

knowledge structures which has to be acquired in order to perform a task, or ii) additional properties

which must be satisfied by already available knowledge.

Chapter 5	 page 105

(def-task parametric-design (design-task) ?task
((has-input-role :value has-parameters

:value has-constraints
:value has-requirements
:value has-cost-function
value has-cost-algebra
:value has-preferences)

(has-output-role :value has-design-model :cardinality 1)
(has-design-model :type design-model :max-cardinality 1)
(has-parameters :type list :cardinality 1)
(has-constraints :type list :max-cardinality 1)
(has-requirements :type list :max-cardinality 1)
(has-preferences :type list :max-cardinality 1)
(has-cost-function :type cost-function :max-cardinality 1)
(has-cost-algebra :default-value '(+ - <) :cardinality 1)

(has-goal-expression
type legal-parametric-design-goal
:default-value (kappa (?task ?design-model)

(design-model-solution
?des ign-model
?task))))

lisp-class-name parametric-design)

The definition of class role given below defines a role as an entity of the universe of

discourse, say ?role, for which exists a class of tasks, say ?c, such that the sentence

(has-role ?c ?role) is satisfied. This definition also enforces the constraints that

roles are task slots and that they specify functional relations, i.e. that the slot defining a

role can only have one, rather than multiple values. This constraint is imposed both in

order to simplify the retrieval and modification of role values, and also to ensure that roles

can be treated as if they were variables in a programming language - i.e. so that we can

talk about retrieving and modifying the value of a role.

(def-class ROLE (slot) ?role
"A role is a binary relation associated with a task by
means of the 'has-role' relation. The value cardinality
of a role-defining slot is 1."
:constraint (and (slot-of ?role ?task)

(forall (?i)
(=> (and (has-role ?class ?role)

(instance-of ?i ?class))
(has-one ?i ?role))))

(exists ?c	
(task-type ?c)

:iff-def	

(and (has-role ?c ?role))))

The relation has-role, whose definition is given below, associates a class of tasks or a

task instance to all its roles, thus generalizing from input, output, and control roles.

Chapter 5	 page 106

(def-relation HAS-ROLE (?thing ?role)
"Generalises from input output and control roles.
This definition applies to both task instances and task types"
:iff-def (or (and (task ?thing)

(has-role (the-parent ?thing) ?role))
(and (task-type ?thing)

(member ?role
(union (setofall ?r (has-input-role

?thing ?r))
(setofall ?r (has-control-role

?thing ?r))
(setofall ?r (has-output-role

?thing ?r)))))))

5.4.3. Roles as variables: issues of scope

While the notion of task role is intuitive enough at an informal level of description, it is

less clear how to operationalize this notion when specifying a model of task execution. In

particular, it is often the case that a subtask shares the input roles of its supertask. For

instance most subtasks of a parametric design problem solver access the value of basic

problem inputs such as parameters and constraints. One way to ensure that this is

possible is of course to specify explicitly parameters and constraints as input roles for all

relevant subtasks. However, this solution leads to much redundancy in the specification

and therefore I have opted for making the role of a task visible to each of its subtasks.

This solution corresponds to declaring that the scope of a role includes all subtasks of the

task in which the role has been specified. The ensuing benefit is that each subtask only

needs to specify those knowledge roles which have not been already specified by some of

its supertasks, thus leading to more concise specifications.

This approach is implemented by means of the function role-value, which is defined

below. The body of this function attempts first to retrieve the value of a task role locally;

if this is not found (i.e. if the role is not local to the task), then it looks for it through a

search up the task-subtask hierarchy.4

It is important to keep in mind that such task-subtask hierarchy is the concrete hierarchy developed

during problem solving, which is modelled by means of the subtask-of relation, rather than the generic

one defined in terms of task-subtask relations between generic tasks. This is modelled by means of

the relation has-generic-subtasks.

Chapter 5	 page 107

(def-function ROLE-VALUE (?task ?role)
'The value of a role is its local value if it exists.
If it does not then the subtask-of hierarchy is searched
for a value. N

:body (in-environment ((?value . (local-role-value ?task ?role)))
(if (and (= ?value :nothing)

(subtask-of ?task ?supertask))
(role-value ?supertask ?role)
?value)))

5.5. CARRYING OUT TASKS

If a task is executable, it can be carried out by evaluating its body. Otherwise a relevant

class of methods is selected, its applicability condition tested, and - in the case of a

positive result - an instance of the method is created and applied to the task - see definition

below.

(def-procedure SOLVE-TASK (?task-instance)
"A task, ?task, is executed by evaluating its body
in an environment in which the schema of the class
corresponding to the parent of ?task is bound to
?task."
:body (if (executable-task ?task-instance has-body ?body)

(execute-task-body ?body ?task-instance)
(if (= ?best-psm

(choose-best-method-class
(setofall ?psm-type

(and
(subclass-of ?psm-type

problem- solving-method)
(tackles-task-type ?psm-type ?c)
(instance-of ?task-instance ?c)
(applicable-to-task ?psm-type

?task-instance)))))
(in-environment
((?method . (instantiate-generic-subtask

?task-instance ?best-psm)))
(apply-method-to-task ?method ?task-instance)))))

The most interesting aspect of the above definition is given by the case in which multiple

methods are applicable to the current task. In this case the function choose-best-
method-class, shown below, is used to select the 'best' from all the applicable

methods.

Chapter 5	 page 108

(def-function CHOOSE-BEST-ThOD-CLASS (?psm-types)
:body (if (null ?psm-types)

nothing
(if (= (length ?psm-types) 1)

(first ?psm-types)
(if (exists ?x

(and
(member ?x ?psm-types)
(use-method ?x ?c ?m)))

(choose-from-use-method-statements ?psm-types)
(first ?psm-types)))))

Method selection conflicts are resolved by means of application- or method-specific

knowledge, which is expressed using statements of the form (use-method ?method
?task ?context). These statements indicate that ?method should be used when
tackling ?task in context ?context. A context is a task (or a method) which is above

?task in the current task-subtask hierarchy. For instance, the statement (use-method

hc-control design-from-state hc-design) indicates that the method hc-control

should be used to tackle task design-from-state in a situation in which we are using a

hill climbing approach to design (i.e. method hc-design). Relation use-method is

defined as follows.

(def-relation USE-ThOD (?sub-method ?sub-task ?thing)
"Use instances of this relation to specify which sub-method
to use when solving a generic subtask of a problem. The third
argument can be used to contextualise this statement within a
problem solving method or a particular problem.
EXAMPLE: (use-method HC-CONTROL DESIGN-FROM-STATE HC-DESIGN)"
:constraint (and (subclass-of ?sub-method problems-solving-method)

(subclass-of ?sub-task task)
(or (task ?thing)

(subclass-of ?thing problem-solving-method))))

When multiple use-method statements are applicable, the function choose- from-use-

method-s tatements selects the one which is defined in the most specific context - see

definition below5.

Strictly speaking functions choose-best-rrthod-c1ass and choose-frc n-use--xiethod-statnts are not part

of the ontology. These functions define a particular way of solving method selection conflicts, rather

than contributing to specify the task-method conceptualization. On the other hand, it is convenient to

include them here, to provide a complete overview of both the concepts and the actual functionalities

provided by the formalization of the task-method framework.

Chapter 5	 page 109

(def-function CHOOSE-FROM-USE-NETHOD-STATEMENTS (?psm-types)
:body (if (and (use-method ?x ?c (the-current-task))

(member ?x ?psm-types))
?x
(in-environment
;;try to pick the most specific use-method
;;statement for this subtask
((?psm-type . (the ?x

(and
(member ?x ?psm-types)
(use-method ?x ?c ?m)
(instance-of (the-current-method) ?m)
(not
(exists
(?m2 ?x2)
(and (member ?x2 ?psm-types)

(use-method ?x2 ?c ?m2)
(subclass-of ?m2 ?m)
(instance-of
(the-current-method)
?m2))))))))

(if (= ?psm-type :nothing)
(first ?psm-types)
?psm-type))))

The approach to dynamic method selection described here has the advantage of combining

application-specific and method-specific knowledge and also of providing a simple, but

effective, context-based mechanism for resolving conflicts. Moreover, it can be easily

generalized to take into account additional method selection knowledge, such as

environmental features (Benj amins, 1993).

It is also important to note the use of procedure instantiate-generic-subtask in the

definition of solve-task, to create an instance of a method class. This is needed

because the methods stored in the library are defined as classes (i.e. they are generic),

while only instances can be executed6.

Finally, the relation applicable-to-task is used in the definition of solve-task to

check whether an applicability condition is specified for the method and, if this is the

case, whether it is verified by the task which we are trying to solve.

(def-relation APPLICABLE-TO-TASK (?method-class ?task-inst)
:iff-def (or (not (applicability-condition ?method-class ?exp))

(holds (the ?exp (applicability-condition
?method-class ?exp))

?task-inst)))

6 As already said, it is useful to model generic methods as classes as this approach makes it possible to

distinguish between the specification of a method and its (possibly multiple) activations.

Chapter 5	 page 110

5.6. APPLICATION MODELLING

Having defined the concepts discussed in the previous sections, the task of modelling an

application does not present any major difficulty. The framework presented in chapter 3

characterises an application in terms of a domain, a task, a method and application

specific knowledge. However, the latter is not explicitly modelled in the current version

of the ontology, but it is instead integrated directly in an application model - see chapter 9

for examples of these. Thus, the current version of the task-method ontology simply

models an application in terms of task, method and domain, as shown below.

(def-class APPLICATION ()
((tackles-domain :type application-domain :cardinality 1)
(uses-method :type problem-solving-method :cardinality 1)
(tackles-task :type problem-type :cardinality 1)))

For instance, the application constructed to solve VT by means of a Propose&Revise

method can be defined as follows.

(def- instance vt-as-p&r design-application
((tackles-domain vt-domain)
(uses-method vt-propose&revise)
(tackles-task vt-pardes-task)))

Finally, application-specific problem solving can be defined simply as the process of

applying a method to an application task. This process is defined by means of the

procedure solve-application, which is shown below.

(def-procedure SOLVE-APPLICATION (?appl)
:body (if (application ?appl

uses-method ?method-inst
tackles-task ?task-inst)

(do
(unassert (current-application ?any))
(tell (current-application ?appl))
(apply-method-to-task ?method-inst ?task-inst))))

5.7. CONCLUSIONS

In this chapter I have illustrated the main aspects of the task-method ontology, which is

part of the basic set of OCML ontologies. A full description of the ontology is available

in appendix 2.

The main purpose of the ontology presented here is to give a formal basis to the informal

task-method framework illustrated in the previous chapter. In particular, the ontology

provides formal definitions of the concepts required to model libraries of reusable tasks as

well as a model of task and method execution. In the next chapters I will use the concepts

Chapter 5
	

page 111

presented here to model reusable problem solving components for parametric design

applications.

Chapter 6.
An Ontology for Parametric Design Tasks

This chapter situates parametric design applications in the context of
the wider class of Al design problems, proposes a task ontology for
parametric design and compares this to alternative proposals.

6.1. THE NATURE OF PARAMETRIC DESIGN APPLICATIONS

6.1.1. Creative Design

Design can be characterized in generic terms as the process of constructing artefacts.

Thus, the essential feature of design problem solving is its constructive nature: solutions

are constructed rather than retrieved from a pre-existing set. Non-design problem solving

is often characterized as analysis (Clancey, 1985).

In order to construct an artefact one needs some building blocks - i.e. a technology

(Chandrasekaran, 1990). These building blocks can take many different forms,

depending not only on the domain but also on the granularity of the design process. For

instance, while an architect designing a skyscraper might consider an elevator as a single

component, at some later stage the elevator itself will become the target of a more fine-

grained design process. Moreover, building blocks do not need to be physical

components. For instance, a scheduling problem can be characterized as a design

problem where the building blocks are given by time-dependent activities (Friedland and

Iwasaki, 1985).

Chapter 6
	

Page 116

• The design process itself can be seen as a way of transforming complex problems

into problems with a well-understood structure - i.e. the study of parametric design

tasks helps to clarify the structure of the output of the meta-design process.

• In practice many real-world applications can be directly modelled as parametric

design problems.

• Because of their relative simplicity, parametric design problems are more amenable

to automation than other, more complex classes of design problems.

In the next section I will discuss a conceptual framework for characterizing parametric

design applications.

6.2. PARAMETRIC DESIGN PROBLEM SPECIFICATIONS

In the previous section I informally described the design activity as the construction of an

artefact given a set of building blocks, constraints, needs, and desires. More precisely a

parametric design application can be characterized as a mapping from a six-dimensional

space <P, Vr, C, R, Pr, cf> to a set of solution designs, {D0ii........, D 0 }, where

P = Parameters = {Pi......., p};

Vr = Value Ranges	 {V1......., Va), where V1 = { v11......, v};

C = Constraints = { c1......, cm);

R = Requirements = {rj......., rk);

Pr = Preferences = {pr1........, pr);

cf = Cost Function.

In the next sections I will illustrate and formalize these concepts. Before doing this I

should however emphasize that while my concern here is with the formal design problem

- how to construct a solution design from a formal task specification - there is of course

more to design than mapping design models to input specifications. In particular task

specification is itself a complex, collaborative process during which various stakeholders

negotiate a common view of a design problem (Ehn, 1989; Greenbaum and Kyung,

1991). Moreover, this negotiation process, often called problem framing (Schoen, 1983)

is typically an iterative process, which is intertwined with both problem solving and

design evaluation (Bonnardel and Sumner, 1996). Hence, the fact that the work

presented here is concerned exclusively with the formal design problem should not be

taken as implying that the other aspects of the design process are less important or that the

design life-cycle can be characterized by means of a waterfall model where design

formulation and problem solving are carried out sequentially.

Chapter 6
	

Page 117

6.2. 1. Parameters and design models

6.2.1.1. Types of design models

In accordance with the problem space model - see figure 3.5 - the parametric design

process can be characterized as a search through a space of possible design states, where

each design state is uniquely defined by an associated design model, consisting of an

assignment of values to a set of parameters. In the rest of the paper I will use the notation

Dk = { <p, V jj>}, where p 1 P and v £ V1 , to indicate a design model. For a given

parametric design specification, <P, Vr, C, R, Pr, cf>, it is possible to define the

following types of design models.

• A design model, say Dk, is complete if each parameter in P has a value in Dk.

• A design model is consistent if it does not violate any constraint in C.

• A design model is suitable if it satisfies all requirements in R.

• A design model is valid if it is suitable and consistent.

• A design model is a solution if it is complete and valid.

• A solution design model, say D01k, is an optimal solution if there is no other

solution, say such that cf(D 0i) < cf(D 01k) - i.e. no design model has a

cost lower than D0i.

Figure 6.4 shows the taxonomy defined by the different types of design models. The

rounded rectangles in the figure indicate classes while the arrows denote subclass-of

links.

Chapter 6
	

Page 118

Figure 6.4. Taxonomy of design models

6.2.1.2. Legal values

Each parameter, say p 1 . is associated with a value range, V, which specifies the set of

legal values which can be assigned to j. Strictly speaking the concept of value range is

not needed in the specification of parametric design problems, given that a value range is

just a particular type of constraint. However, because value ranges are typically specified

separately from other types of constraints (in particular when a constraint-satisfaction

style of problem specification is used) it is convenient and quite natural to explicitly

distinguish them from other types of constraints.

In the following I will use the notation V = {V 1 U.....U V) to indicate the union of all

value ranges - i.e. the set of all legal parameter values.

6.2.2. Constraints and requirements

A constraint specifies a condition which has to be satisfied by a design. For instance, the

VT elevator design application includes constraints such as "The cab height must be

between 84 and 240 inches, inclusive". Requirements are also constraints and, as

discussed in (Wielinga et al., 1995), the difference between requirements and constraints

is conceptual rather than formal. Requirements typically have a 'positive' connotation, in

the sense that they describe the desired properties which must be satisfied by the solution,

while constraints have a 'negative' connotation, in the sense that they limit the space of

Chapter 6	 Page 119

admissible designs, by expressing the applicable technological, physical, or legal

restrictions. Moreover, constraints normally specify case-independent restrictions, while

requirements tend to be case-specific. For instance, a requirement in the VT application

specifies the desired capacity of the target elevator, which is of course case-specific. In

what follows I will use the term design prescription to refer generically to a requirement

or a constraint.

6.2.3. Key design parameters.

Assuming an average of k possible values for a parameter, and n parameters, it follows

that the size of the design space associated with a parametric design application is k.

This of course is a very large number even for relatively small applications. However, it

turns out that many parameters do not contribute to the size of the search space, given that

there is no degree of freedom associated with their assignment. This is the case when the

possible value of a parameter is functionally determined by a constraint or requirement.

For example, the value of the parameter 'door operator weight' in the VT domain (Yost &

Rothenfluh, 1996) is calculated as the sum of the door operator engine weight and the

door operator header weight. This means that from a design point of view the value of

this parameter is functionally determined by a domain constraint, and therefore a design

problem solver does not need (or indeed cannot) make any decision about it. In what

follows I will use the expression functionally bound to denote parameters whose value is

uniquely determined by a functional constraint or requirement. The parameters which are

not functionally bound are called key design parameters. Key design parameters and their

possible values define the degrees of freedom in the design process and, consequently,

the 'real' size of the design space. In other words, the essential decision-making activity

during the design process is to decide upon the values to be assigned to key design

parameters; the values of the other parameters can then be determined by propagating the

relevant functional constraints.

Requirements and constraints which functionally determine parameters are called

constructive. Non-constructive constraints and requirements are referred to as restrictive.

The role of restrictive requirements and constraints in the design process is to eliminate

certain combinations of parameter values.

It is important to point out that deciding which are the key design parameters is not just a

matter of analysing the syntactical format of constraints and requirements; domain

knowledge is needed to distinguish key parameters from others. For instance, the

expression "door operator weight = door operator engine weight + door operator header

weight" can be formulated in three different ways, each of which defines different key

Chapter 6	 Page 120

parameters. It is domain knowledge 2 which tells us that the dependent parameter in the

expression is door operator weight and not one of the other two.

The concept of key design parameter is useful both because it makes it possible to focus

the design process only on the 'important' design parameters and also because it reduces

the size of the search space. For example, only 24 of the 199 parameters given in the VT

problem specification are key design parameters, which means a reduction in the

complexity of the search space from k' 99 to k24 , assuming again that on average each

parameter has k possible values. Moreover, given a parametric design task specification,

it is possible to define an isomorphic problem, which is specified only in terms of key

design parameters. Hence, I can take advantage of this property and define parametric

design as the process of assigning values to key design parameters. A consequence of

this approach is that, with no loss of generality, I can limit the discussion to design

models comprising only key design parameters.

6.2.4. 'Better' and 'worse' solutions

The concepts presented so far (i.e. parameters, constraints, requirements, and design

models) specify the conceptual vocabulary required to characterize parametric design

applications in which the goal is to produce valid, complete designs. However, practical

parametric design tasks are not just concerned with finding valid and complete designs,

but they often introduce optimization aspects. In order to account for these the

framework proposed here includes two concepts: preferences and cost function, which

are discussed in the next two sections.

6.2.4.1. Preferences.

Preferences describe task knowledge which, given two design models, D 1 and D2 , is

used to specify which of the two - if any - is the 'better' one, in accordance with some

criterion. For instance, the specification of the Sisyphus-I office allocation problem

(Linster, 1994) includes informal statements such as "Secretaries should be as close as

possible to the head of group" and "Project synergy should be maximized". Although

one could be tempted to model these statements as requirements, a closer inspection

shows that they provide less criteria for distinguishing between solution and non-solution

models, than a way of ranking alternative solution models. In other words, to interpret

these statements as requirements would unduly restrict the space of solutions. A better

approach is therefore to consider the above statements as expressing preference

knowledge and as defining two criteria by which solutions to the Sisyphus-I problem can

2 Although in this example, one only needs common-sense knowledge to decide on the 'direction' of the

constructive constraint.

Chapter 6	 Page 121

be assessed. In particular, the first statement can be interpreted as stating that, given two

design models for the Sisyphus-I problem, say Dl and D 2, D 1 is 'better' than D 2 if the

distance between the secretaries' room and that of the head of the group in D 1 is less than

the same distance in D2.

Of course, deciding whether an element of a design specification indicates a requirement

or a mere preference is very much the result of an iterative analysis and negotiating

process between designers and clients and it is outside the scope of the present

discussion. The important aspect here is that the triadic partition of the problem

specification into preferences, constraints, and (proper) requirements provides an

adequate conceptual framework to analyse and represent a parametric design problem.

6.2.4.2. Global and preference-specific cost functions

As illustrated by the aforementioned statements concerning the Sisyphus-I problem, a

task specification typically includes a number of preferences which express different

criteria for distinguishing good from 'less good' solutions. In order to harmonize the

possible multiple preference criteria uncovered during the analysis of a design application,

it is useful to introduce the notion of global cost function, to provide a global criterion for

ordering solution designs. Such a criterion is normally constructed by combining

preference-specific cost criteria. In order to do this, it is necessary to specify preference-

specific cost functions first, expressing the cost criteria defined by each preference.

Having done this, it is then possible to define the global cost function for a parametric

design application as the combination of the preference-specific cost criteria. More

precisely, given a task specification <P. Vr, C, R, Pr, cf>, where Pr = {pri........, pr},

the global cost function is defined as cf = cf(pr i) o......o cf(prj), where cf(pr) is the cost

function associated with preference prj and the symbol 'o' indicates a 'combination'

operator. The main constraint on such combination operator is that the resulting global

cost function has to be admissible. Formally, a global cost function, say cf, is said to be

admissible if, for each local preference pr j , the extension of the partial order induced by cf

over the space of design models is a consistent superset of the extension of prj.

A simple example of a global cost function can be constructed by combining the local cost

functions associated with the two Sisyphus-I preferences discussed earlier. In particular

the degree of project synergy of a solution to the Sisyphus-I problem can be measured by

scoring negatively (say -1) each shared allocation which involves researchers belonging

to different projects and positively (say +1) each shared allocation which violates this

Chapter 6	 Page 122

criterion3 . The criterion for the other preference - minimizing the distance between the

secretaries and the head - can be measured simply by counting the number of offices

which separate them. These two local cost functions can be combined either by making

the two measures commensurable (thus producing an Archimedean cost function), or by
giving priority to one over the other (non-A rchimedean cost function). In this second

case, assuming that the 'closeness' preference is deemed to be more important than the

'project synergy' one, I can define the overall cost criterion as a two-dimensional vector,

<cf1 , cf2>, where cf1 is the cost function associated with the 'closeness' preference, and

cf2 is the cost function associated with the 'synergy' preference.

In many real-world problems the cost of a design is defined in financial terms. A simple

scenario is one in which the cost of a design is given by the sum of the monetary costs of

its design elements. More complex metrics can be devised to account for additional,

hidden costs, such as the cost of the design process itself or the expected maintenance

costs. For example, the cost criterion used by VT design experts characterizes the cost of

a solution design in terms of the 'distance' between this design and an ideal one. This

distance is computed by considering all the 'corrective steps' (fixes in the VT domain

terminology) required to produce a design solution. Each fix is given a weight - from 1

to 10 - which indicates how 'expensive' the fix is. Thus, the cost of a design is obtained

by combining the costs of each individual fix. Intuitively, the idea here is to provide a

cost function which makes it possible to integrate different types of costs, e.g. those

deriving from changes to the specification, the monetary cost of each component, and the

expected maintenance cost. In (Zdrahal and Motta, 1995) we formalized the informal

criterion given in the VT problem specification by means of a number of different metrics,

which used both Archimedean and non-Archimedean criteria for combining the cost of

each individual fix.

Formally a cost function, whether global or preference-specific, defines a mapping from a

design model to a cost. This can be a number or, in the case of non-Archimedean costs, a

n-dimensional vector.

6.2.5. Summing-up

The description of preferences and cost functions concludes the analysis of the conceptual

structure of a parametric design task. Essentially this is a design problem characterized

by a parametrized solution template. Constraints, requirements, preferences, and cost

functions provide the additional concepts required to structure the space of designs, guide

The association between good assignments (i.e. assignments which maximize synergy) and negative

numbers may sound counterintuitive. The rationale here is to score bad assignments in such a way

that they increase the overall cost of the design model.

Chapter 6	 Page 123

the design process, and distinguish solution from non-solution models and more

desirable from less desirable ones. In what follows I will formalize these concepts by

representing them as elements of a task ontology for parametric design.

6.3. A GRAPHICAL OVERVIEW OF THE PARAMETRIC DESIGN

TASK ONTOLOGY

Figure 6.5. gives a graphical representation of the main classes in the parametric design

task ontology. Double-headed arrows are used in the figure to indicate that a class is

defined as the powerset of another class. For instance, the double-headed arrow linking

class design-model to class parameter-assignment indicates that a design model is a

set of parameter assignments. A parameter assignment is in turn defined as a pair, whose

first element is a parameter, and the second is a legal value. A labelled thin arrow from

one class, say A, to another one, say B, indicates that B defines the type of the possible

values of the attribute of A indicated by the label. For instance, this notation is used to

indicate that the domain of a cost function is a design model and that its range is a cost. A

dashed arrow indicates the value of an attribute. In particular the dashed arrow shown at

the bottom of figure 6.5 indicates that the value of the attribute proves-relation of

class prefer-expression is the constant prefer. Constants and instances are

represented by means of rectangles. Finally, I use a shadow to indicate a concept which

is not part of the parametric design ontology but belongs to a different one. In this case,

all the shadowed concepts are part of the OCML base ontology.

As shown in the figure, constraints, requirements and preferences are reified, i.e. are

represented as objects, and associated with the relevant expression by means of a has-

expression link. Moreover, the ontology precisely defines the syntactic format of a

preference or prescriptive expression by introducing the classes prefer-expression and

legal-prescriptive-expression.

Chapter 6
	

Page 124

K appa-expression

(Design-Prescription J	 .	 Pl,	 Legal-prescriptive-expression J
domain	 ____________ ____________,//% %\\

	 I [[arameterJ [Legal-Value]

Constraint) (equirement ') 	 (Numbe) (Vector)

Unary-function	
[Parameters) [Parameter-Assignment

A

ConstraintsJ/	 _____________ range'"

(Requirements') C_Cost-functionj'man	 (Design-ModeI

[ProofExPressio]

[Preference]	 (reterexpressJ___ - - - -ii prefer
has-expression	 proves-relation

Figure 6.5. Main classes in the parametric design task ontology

Figure 6.6 shows the main functions and relations defined in the ontology. Both

functions and relations are represented as rounded rectangles with a thin border and a

grey fill pattern. Each relation and function is linked to the classes defining the argument

types. In the case of a function I use an arrow to distinguish its range from its input

arguments. In particular figure 6.6 shows that the range of function parameter-value

is a legal value.

An important aspect of the ontology is that the value of a parameter is not an attribute of a

parameter, but the mapping from a parameter to a value is mediated by a design model.

This approach makes it easier to reason about multiple design models. The same

approach is used to define the relations bound-parameter and unbound-parameter.

Whether a parameter is bound or not depends on a particular design model.

Chapter 6
	

Page 125

Parametnc-Design

Constraints I I Parameters

Vc__ _
design-model-consistent)	

\desiQn-model-solution J

design-model-valid] 	 (desiqnmodelcomplete
(optimal-solution

Requirements I	 (design-model-suitable

has-value)	 unbound-parameter

Legal-Value)	 I Parameter I	 I Design-Model

Design-Model

esign

Idesign-model-satisfies)

Design-Prescription

parameter-value) 	 (,_bound-parameter__j	 f
design-model-violates

Figure 6.6. Main relations in parametric design ontology

6.4. AN OCML ONTOLOGY FOR PARAMETRIC DESIGN TASKS

In this section I illustrate the OCML model of parametric design. To avoid unnecessary

prolixity, here I will only introduce a limited set of constructs, which illustrate the main

modelling decisions taken when developing the ontology. The complete ontology can be

found in appendix 3.

6.4.1. Modelling the notion of parametric design task

The obvious starting point of a task ontology is the definition of the generic task in

question, in this case parametric design. This was already given in section 5.4.2 and is
shown again below for convenience.

Chapter 6	 Page 126

(def-task parametric-design (design-task) ?task
((has-input--role :value has-parameters

value has-constraints
:value has-requirements
:value has-cost-function
:value has-cost-algebra
:value has-preferences)

(has-output-role :value has-design-model :cardinality 1)
(has-design-model :type design-model :rnax-cardinality 1)
(has-parameters :type list :cardinality 1)
(has-constraints :type list :max-cardinality 1)
(has-requirements :type list :max-cardinality 1)
(has-preferences :type list :max-cardinality 1)
(has-cost-function :type cost-function :max-cardinality 1)
(has-cost-algebra :default-value (+ - <) :cardinality 1)

(has-goal-expression
type legal-parametric-design-goal
:default-value (kappa (?task ?design-model)

(design-model-solution
?design-model
?task))))

The definition of the parametric design class given above follows straightforwardly from

the discussion in section 6.2: there are only two aspects which deserve attention. The

first one concerns the inclusion among the input roles of a cost algebra. This is a triple

which specifies the functions and relation to be used to merge and subtract design costs

and to compare the costs of different design models. The second one concerns the

specification of the goal of a parametric design problem. As pointed out earlier the goal

of a parametric design problem is to find a valid and complete design model. However,

in practical design applications optimization aspects are typically very important: given a

set of requirements and constraints we normally wish to find the cheapest design which

does the job. Therefore the above definition specifies only a default goal for parametric

design problems (to find a solution design model) and imposes a type constraint that a

parametric design goal should be a sub-relation of relation design-model-solution -

see definition of class legal-parametric-design-goal below. In other words, the

above definition only imposes a minimal requirement on the characteristics of a solution

design model. Subclasses or instances of this class are free to impose further restrictions

on the space of feasible solutions.

(def-class LEGAL-PARTRIC-DESIGN-GOAL (?rel)
:iff-def (and (binary-relation ?rel)

(subrelation-of ?rel
(inverse design-model-solution))))

Finally, as an example, in the box below I show the specification of the Sisyphus-I office

allocation task - see chapter 9 for more details on this application.

Chapter 6	 Page 127

(def-instance sisl-pardes-task parametric-design
((has-cost-function compute-sisl-cost)
(has-cost-algebra '(merge-sisi-costs

subtract-sisl-costs
cheaper-room-allocation))

(has-parameters (setofall ?X (yqt-parameter ?X)))
(has-constraints (setofall ?X (yqt-constraint ?X)))
(has-requirements (setofall ?X (yqt-requirement ?X)))
(has-preferences (setofall ?X (yqt-preference ?X)))))

6.4.2. Representing design models

As indicated by the graphical notation used in figure 6.5, a design model is a set of

parameter assignments. Sets are represented in OCML either as lists with no duplicates

or in terms of a set membership relation, which is true for any element of the set and false

for any other tuple. This approach to set representation has the advantage that it makes it

possible to represent sets of infinite cardinality.

In particular, the membership relation of a design model, say ?d, is defined as a binary

relation which is true for an assignment (?p . ? v) in ?d if and only if ?v is the value of

?p in ?d.

(def-class DESIGN-MODEL (set) ?d
"A design model is defined as a functional set of
parameter-assignments. A design model is associated with a
binary membership function, whose first arg is a parameter, and
the second is its value in the design model"
((membership-test :type binary-relation :max-cardinality 1))
:iff-def (and (= ?pairs (setofall ?pair

(element-of ?pair ?d)))
(every ?pairs parameter-assignment)))

For instance the definition of a design model for the KMI office allocation problem

defines the KMII design model in terms of the relation kmi-parameter-value. This is

satisfied by tuples of the form (?p ?v), where ?p is the name of a KMI member, ?v is

an office in KMI, and ?v has been assigned to ?p.

(def-instance kmi-design-model design-model
((membership-test kmi-parameter-value)))

A parameter assignment is defined as a pair (?p . ? v) , where ?p is a parameter and ?v

a legal value. The relation == is used in the definition to specify a 'strong' unification

test. In OCML the default unification test, =, succeeds in cases where the first argument

is an unbound variable and the second a list which does not contain the first argument.

Hence, in order to ensure that the membership condition for a parameter assignment is

satisfied only by pairs of the form (?p . ? v) the definition below uses ==, rather than =.

Chapter 6
	

Page 128

(def-class PARAMETER-ASSIGNMENT () ?pair
'A parameter assignment is a pair (?p . ?v),
where ?p is a parameter"
:iff-def (and

(== ?pair (?p . ?v))
(parameter ?p)
(legal-value ?v)))

Having defined classes design-model and parameter-assignment I can then introduce

the relation has-value, which models the assignment of values to parameters. A

parameter ?p has value ?v in a design model ?dm if and only if the pair (?p . ?v) is an

element of 7dm.

(def-relation HAS-VALUE (?p ?v ?dm)
"Parameters have values w.r.t a particular design model"
:iff-def (and (parameter ?p)

(design-model ?dm)
(element-of (?p . ?v) ?dm))

:prove-by (element-of (?p . ?v) ?dm))

6.4.3. Representing constraints and requirements

As already discussed, the difference between constraints and requirements is conceptual

rather than formal. Therefore they can share the same representation and in the ontology I

model them as distinct subclasses of a class representing a generic design prescription -

see definitions below.

Chapter 6
	

Page 129

(def-class DESIGN-PRESCRIPTION () ?c
"The definitions common to constraints and requirements.
A design prescription is characterized in terms of the associated
expression. This is a meta kappa expression predicated over a
design model"
((has-expression :cardinality 1

:type legal-prescriptive-expression)))

(def-class CONSTRAINT (design-prescription)
lisp-class-name constraint)

(def-class REQUIRThT (design-prescription)
"A requirement is characterized in the same way as a constraint.
The difference here is conceptual, rather than logical"
lisp-class-name requirement)

(def-class LEGAL-PRESCRIPTIVE-EXPRESSION (kappa-expression)
? exp
"This is an expression parametrized over one argument, which denotes
a design model"
:iff-def (and (kappa-expression ?exp)

(== ?exp (kappa ?schema ?sentence))
(= ?vars (all-free-vars-in-sentence ?sentence))
(= (length ?vars) 1)
(= (length ?schema) 1)
(= (namestring (first ?schema))

(namestring (first ?vars)))))

Both constraints and requirements are reified, i.e. they are first-class objects. This

approach, which is used in the Ontolingua model of the VT domain (Gruber et a!., 1996),

has a number of advantages. It makes it possible to reason about constraints and

requirements, to attach properties to them, and to specialize them for specific classes of

applications.

Each constraint and requirement is associated with an expression, whose truth status

indicates whether or not the associated constraint or requirement is satisfied by a design

model. The form of the expression is a kappa-expression. The class legal-

prescriptive-expression specifies the type of expressions allowed as constraint or

requirement expressions. In particular, it checks that the kappa expression is

parametrized by only one variable, which denotes a design model. This must be the only

free variable in the expression.

An example of a constraint, taken from the Sisyphus-I office allocation problem, is given

below. It specifies that smokers and non-smokers should not share.

Chapter 6
	

Page 130

(def-domain-instance smoker-constraint yqt-constraint
((has-expression (kappa (?p ?r)

(not (exists (?x ?y)
(and
(in-room ?X ?r)
(in-room ?y ?r)
(<> ?x ?y)
(yqt-member ?x smoker ?v)
(yqt-rnernber ?y smoker ?u)
(<> ?v ?u))))))))

Finally, the relations design-model-satisfies and design-model-violates

formalize the notions of satisfying/violating a design prescription.

(def-relation design-model-satisfies (?dm ?c)
:constraint (and (design-prescription ?c))
:iff-def (holds (the ?x

(has-expression ?c ?x))
?dm))

(def-relation design-model-violates (?dm ?c)
constraint (design-prescription ?c)
:iff-def (not (holds (the ?x

(has-expression ?c ?x))
7dm)))

6.4.4. Modelling preferences

A preference is also represented as a reified object associated with a preference

expression. This is a particular type of proof expression. A proof expression is best

seen as a Prolog clause. The definition of class prefer-expression - shown below -

specifies that the denotation of a prefer expression is a backward clause associated with

goals of type prefer. In practice, this means that preferences over design models are

expressed by means of the relation prefer. This is a binary relation which defines a

partial order over design models.

Chapter 6
	

Page 131

(def-class PREFERENCE () ?p
"A preference defines an order over two design models. The
difference between a preference and a constraint or requirement is
that these distinguish good from bad models, while preferences
distinguish between better and worse models."
((has-expression :cardinality 1 :type prefer-expression)))

(def-class PREFER-EXPRESSION (proof-expression) ?exp
"A prefer expression is a backward rule clause which tries to
prove a prefer relation instance"
((proves-relation :value prefer))
:constraint (and (== ?exp (?tail if . ?rest))

(== ?tail (prefer ?dl ?d2))))

(def-relation PREFER (?dl ?d2)
"Use this relation to express preferences between design models'
:constraint (and (design-model ?dl) (design-model ?d2)))

;;;Prefer defines a partial order
(tell (order-relation prefer))

The advantage of representing preference statements as proof expressions is that this

solution provides a modular way to specify conditional preferences - see discussion about

modularity and backward rules in section 4.4.8.1. For instance, the definition below

shows the OCML representation of the aforementioned Sisyphus-I preference which

states that secretaries should be as close as possible to the head of the group. Other

preferences can be added to the model by defining additional instances of class

preference.

(def-instance secretary-preference yqt-preference
((has-expression ((prefer ?dl ?c12)

if
(secretary ?sec)
(head-of-group ?head)
(element-of (?sec . ?sec-rooml) ?dl)
(element-of (?head . ?head-rooml) ?dl)
(element-of (?sec . ?sec-room2) ?d2)
(element-of (?head . ?head-roorn2) ?d2)
(< (compute-distance

?sec-roornl ?head-rooml nil)
(compute-distance
?sec-roorn2 ?head-room2 nil))))))

6.4.5. Modelling costs and cost functions

A cost function is simply a function which maps a design model to a cost. A cost can be

a real number or a vector. This definition is 'open' in the sense that it leaves open the

possibility of using alternative cost representations - e.g. qualitative values.

Chapter 6
	

Page 132

(def-class COST-FUNCTION (unary-function) ?cf
"A cost criterion is a function which takes a design model and
returns its cost. The output can be either a real number or a
vector"
:iff-def (and (domain ?cf design-model)

(range ?cf cost)))

(def-class COST () ?x
"The costs I use are always real numbers of vectors.
This definition leaves other possibilities open"
:sufficient (or (real-number ?x)

(vector ?x)))

Earlier I pointed out that a cost function is constructed by combining preference-specific

criteria. Here I formalize this requirements by introducing two axioms in the parametric

design task ontology, which ensure that i) each preference-specific order relation is

covered by the cost function (axiom cost-subsumes-preferences) and ii) that there is

no contradiction between any preference and the order over design models specified by

the cost function (axiom cost-preferences-consistency).

(def-axiom COST-SUBSUS-PREFERENCES
"This axiom states that the cost function subsumes
each preference. That is, the cost function must be
constructed by 'combining' preference-specific
cost functions"
(forall (?dl ?d2 ?pr)

(=>
(and (parametric-design ?task

has-preferences ?prs
has-cost-function ?cf)

(has-cost-order-relation ?task ?rel)
(member ?pr ?prs)
(has-expression ?pr ?exp)
(proves ?exp '(prefer ?dl ?d2)))

(cheaper-design ?rel ?dl ?d2)))

(def-axiom COST-PREFERENCES-CONSISTENCY
"This axiom states that the cost function should not
contradict any partial order expressed by preferences"
(forall (?dl ?d2)

(=>
(and (parametric-design ?task

has-preferences ?prs
has-cost-function ?cf)

(has-cost-order-relation ?task ?rel)
(cheaper-design ?rel ?dl ?d2))

(not (exists ?pr
(member ?pr ?prs)
(has-expression ?pr ?exp)
(proves ?exp '(prefer ?d2 ?dl)))))))

These definitions conclude the overview of the OCML model of parametric design tasks.

In the next section I will compare and contrast this model with alternative proposals in the

literature.

Chapter 6	 Page 133

6.5. COMPARISON WITH OTHER APPROACHES

6.5.1. Comparison with configuration design ontology by Gruber,

Olsen, and Runkel.

A number of ontologies were developed by Gruber et al. (1996), to provide a common,

formal data set to all participants to the Sisyphus-Il elevator design initiative (Schreiber

and Birmingham, 1996). These ontologies are formalized in Ontolingua (Gruber, 1993)

and include both a generic model of configuration design and a specialized ontology for

representing the VT domain. Here, I will compare and contrast my ontology for

parametric design with the configuration design ontology proposed by Gruber et al.

When describing their ontology, Gruber et al. list a number of design goals. These

include the aim to make the ontology as much as possible independent from any domain

and problem solving method, and to minimize ontological commitments - i.e. to include

only the minimal distinctions that are "necessary to specify the class of configuration

problems under consideration". These design goals also motivated the definition of my

ontology.

The ontology by Gruber et al. looks at configuration design problems rather than just

parametric design ones. For this reason it includes models of components, subparts, and

component assemblies. I did not tackle these aspects in my ontology, which treats

parameters as an unstructured collection. However, the component-related part of the

ontology by Gruber et al. is defined separately and therefore it could be possible to try

and integrate it with my ontology. On the other hand my ontology provides a more fine-

grained framework for modelling parametric design problems. For instance the ontology

by Gruber et a!. does not account for essential aspects of a parametric design task

specification, such as requirements and preferences.

From a general point of view, the main 'epistemological' difference between the two

ontologies is that mine centres on design models, while the one by Gruber et al. centres

on components. These different foci reflect my preoccupation with parametric design

problems and theirs with configuration ones.

Another important distinction between the two ontologies concerns the treatment of

parameters. Gruber et al. associate parameters directly with values. In my ontology this

association is instead mediated by the notion of design model. I believe my approach is

more flexible: it makes it easier to reason about alternative design models and

consequently to support the use of methods such as A*, which store and examine

multiple search states.

Chapter 6	 Page 134

6.5.2. Comparison with DIDS approach

The DIDS system (Balkany et al., 1994; Runkel et al., 1992; 1994; 1996) provides

domain-independent support for building design applications. The system is based on a

generic model of configuration design problem solving, which defines the generic data

structures and tasks, called mechanisms in the DIDS terminology, required for building

design applications. As in the case of the ontology developed by Gruber et a!. DIDS also

focuses on configuration, rather than parametric design problems.

The DIDS framework distinguishes between functions, parts, constraints, and

preferences. Functions and parts generalize from the notions of parameter and value

range discussed here. Parts can have connections to other parts and they can be either

abstract or concrete. Parts correspond to parametrized components in the ontology by

Gruber et al.

The main difference between the DIDS approach and mine has to do with the philosophy

underlying the two approaches. Here I am interested in building a formal framework for

characterizing parametric design applications. Therefore the proposed ontology is formal,

semantically rich, method-independent and specified at the knowledge level. The DIDS

approach has more of an engineering flavour. Their set of concepts is neither

characterized in a method-independent way nor is specified in an implementation-

independent style. Thus, there is no reusable task ontology in DIDS in the sense used

here.

6.5.3. Comparison with work by Wielinga, Akkermans, and Schreiber

Parametric design is formally analysed in (Wielinga et a!., 1995). In this paper the

authors define a parametric design task specification and refine the associated competence

theory (Van de Velde, 1988) to derive properties of a Propose&Revise problem solving

method. In chapter 3 I discussed this work extensively focusing on the aspects related to

the development of a problem solving method from a task specification. In the context of

this chapter, the relevant aspect of the work by Wielinga et a!. is their characterization of

the parametric design task and its relationship with the ontology proposed here.

The task ontology discussed by Wielinga et a!. emphasizes the role that a domain theory

plays in defining a parametric design task. A domain theory specifies the entities and the

relationship in the problem in hand and makes it possible "to derive information about the

relation between the solution, requirements and constraints". In particular a domain

theory normally implies constraints and requirements which are not part of the problem

specification. For instance, when giving a specification for a house, the client normally

does not include 'obvious' requirements, such as water and electricity.

Chapter 6	 Page 135

Wielinga et al. specify a comprehensive framework for describing design applications. It

includes requirements, constraints, design structures, parameters, assignments, and

design choices - these express preferences over preferred solutions - as well as the

general notion of domain theory.

The main difference between their approach and mine is the level of granularity. Their

approach is characterized at a very abstract level. The various concepts are informally

illustrated at some length, but their definitions are not detailed. For instance a design

structure is simply characterized as a set of tuples. The reason for this coarse granularity

is that the paper is not so much concerned with modelling these notions, as much as using

them to characterize formally the process of developing a problem solver for parametric

design. In contrast with the work by Wielinga et al., the role of the ontology presented

here is not only to provide a conceptual framework but also a practical reusable resource

for modelling parametric design problems.

In a recent paper (1997) Wielinga and Schreiber have proposed a classification of types of

configuration design tasks in terms of a 3x3 grid, parametrized by the properties of the

design components, the way the components can be arranged, and the nature of

requirements and constraints. Within this grid, they characterize parametric design as a

configuration design task characterized by a fixed set of parametrized components and a

fixed assembly. This definition appears to be over-restrictive. It is not necessary for the

assembly to be fixed as long as the structure of the solution is known in parametrized

form at the beginning of the design process. For instance, in the VT problem the

assembly is strictly speaking not fixed: some components are not required by some

solution designs.

Another problem with the classification proposed by Wielinga and Schreiber is that it

appears to subscribe to an 'objective' view of the design task. In my view, whether a

task is configuration, parametric design or assignment is not so much a property of the

types of components and the types of assembly, but rather is a function of how much

knowledge do we have about the solution. For instance, if I use plasticine as my

technology for designing, I have of course no constraints on the types of components and

on the design assembly. Bits of plasticine can be arranged together in an unconstrained

way. However, the 'open-ended' nature of the technology does not necessarily imply

that the task is a "full configuration design" one.

Some individual cells of the grid proposed by Wielinga and Schreiber also seem to be

problematic. For instance, in their view assignment problems are characterized by a

skeletal assembly, while parametric design ones are characterized by a fixed assembly.

This seems counterintuitive given that assignment is a subclass of parametric design - in

Chapter 6	 Page 136

other words I would expect that for each given dimension assignment always specializes

parametric design.

6.6. CONCLUSIONS

In this chapter I have presented a conceptual and formal framework for representing

parametric design problems. The conceptual analysis has highlighted the nature of

parametric design applications and the different types of knowledge structures which need

to be modelled to build models of parametric design problems. In particular I have

illustrated the various types of design models and claimed that the distinction between

requirements, constraints, preferences and cost function provides a rich enough

framework for capturing the output of the design formulation process. Of course, this

claim can be validated only empirically, by constructing parametric design applications.

So far this technology has been successfully applied to a number of domains, which

include elevator design (Motta et a!., 1996), sliding bearing design (Horak et al., 1995),

office allocation problems (Motta et al., 1994a), and truck cab design. In chapter 9 I will

illustrate in detail an elevator design and two office allocation applications.

The task ontology presented here consists of a set of OCML definitions which formalize

the various aspects of a parametric design problem. The ontology provides an important

focus for reuse and the basis for a strong, task-driven knowledge acquisition process. In

particular the ontology provides not only the constructs needed to model the conceptual

structure of parametric design problems - say constraints and preferences - but it also

specifies in detail the syntactic machinery required for verifying task models - e.g., the

syntax of constraint and preference expressions.

Chapter 7.
A Generic Model of Parametric Design
Problem Solving

This chapter describes a generic problem solving model for parametric
design. This model consists of a set of generic tasks and an
associated method ontology. The tasks can be seen as a set of high-
level building blocks for constructing problem solving methods for
parametric design. The ontology specifies the minimal commitments
which need to be obeyed by any problem solving method for
parametric design. In the chapter I illustrate tize model in detail and
compare it to alternative proposals.

7.1 INTRODUCTION

In the previous chapter I analysed the structure of parametric design applications. The

resulting task ontology provides the input to this chapter, where I describe a generic

framework for parametric design problem solving. This framework takes the form of a

problem solving model 1 , which decomposes the parametric design problem into a number

of generic tasks and proposes default (sub-)methods for carrying them out. The model is

associated with a highly generic method ontology, which expresses the minimal

knowledge requirements which have to be satisfied by a PSM applicable to parametric

design problems.

The claim here is that this collection of generic tasks defines the space of knowledge-

intensive, decision-making activities which are carried out when solving parametric

design problems. This claim will be validated in the next chapter, where it will be shown

that it is possible to describe a number of problem solving methods for parametric design

in terms of the proposed framework. Moreover, I will show that the differences between

alternative problem solving methods can be accounted for in terms of alternative

The term 'problem solving model', rather than 'problem solving method', is used here to emphasize

that, like generic algorithmic schemas in conventional software, this model may not be fully specified

- e.g. it may abstract from specific control regimes.

Chapter 7	 Page 138

refinements of the common method ontology or alternative solutions to one or more of the

generic tasks specified in the model.

7.2 A SEARCH-BASED MODEL OF PARAMETRIC DESIGN PROBLEM
SOLVING

In this section I introduce the basic concepts which make up the search-based problem

solving model for parametric design problem solving.

7.2. 1 Design as search

As already mentioned in section 3.4.2 and illustrated by figure 3.5, parametric design

problem solving can be characterized as the problem of navigating a design space

efficiently. A design space is defined in terms of two components: a collection of design

states - where each design state is uniquely defined by the associated design model, D 1 -

and a parametric design task. The definition below formalizes this approach.

(def-class DESIGN-SPACE () ?x
"A design space is characterized in terms of a set of design states
associated with a parametric design task"
((associated-with-task :type parametric-design :cardinality 1)
(has-states :type set :cardinality 1 :default-value nil))

:constraint (=> (member ?s (the ?set (has-states ?x ?set)))
(design-state ?s)))

(def-class DESIGN-STATE () ?c
"A design state is characterized in terms of the associated
design model"
((has-design-model :cardinality 1

type design-model)))

This definition provides a task-oriented characterization of a design space, which is

consistent with the methodological approach I have adopted to integrate task and method

ontologies. This approach is based on the assumption that it is always possible to

associate a design space to a parametric design task specification. This assumption is

trivially true, as a design space can always be generated from a parametric design task

specification by generating the powerset of all possible design models. However, no

other assumptions are introduced here, either about the structure of the design space or

the availability of search-control knowledge.

The advantage of introducing a task-oriented view of a design space is that this approach

makes it possible to move from a task-oriented perspective to a problem solving-oriented

one. Specifically, let's consider a design space about which we only know the generic

structure of a node. It follows that, in the absence of additional knowledge, a problem

solving agent can solve the relevant design task only through search. Thus, by

Chapter 7	 Page 139

introducing the notion of design space, we obtain a problem solving framework which is

completely method-independent; it only presupposes the existence of a task specification.

Given a state S 1 , associated with design model D, I will use the notation CV 1 to indicate
the set of constraints violated by D 1 . The notation cf1 = cf(D1) will be used to indicate the

cost of D1.

7.2.2 State transitions and design operators

7.2.2.1. The role of design operators

Nilsson (1980) characterizes a state space as a triple <S, 0, G>, where S is a set of initial

states, 0 is a set of operators, and G is a set of goal states. In contrast with Nilsson's

approach, my definition of design space does not consider operators. The reason for this

exclusion is that my characterization of a design space is task-oriented - i.e. it provides all

the concepts required to acquire task specifications. Operators are not needed at the task

level, their role is to support the search process - i.e. problem solving. Thus, the notion

of design operator is introduced separately, as part of the generic method ontology for

parametric design problem solving.

7.2.2.2. Representing design operators in OCML

A search step in the design space - i.e. a state transition, say from state Si to state S - is

carried out by applying a design operator. Informally, this can be described as an

inference mechanism which generates a new design model from the one given as input.

Thus, state transitions can be represented as ternary relations, which link two design

states through a design operator - see definition below.

(def-relation STATE-TRANSITION (?sl ?design-op ?s2)
"A state transition associates two design states
through a design operator. Only meaningful transitions
are allowed, where the target state is different from
the source state"

:iff-def (and (design-state ?sl has-design-model ?dl)
(design-state ?s2 has-design-model ?d2)
(design-operator ?design-op body ?fun)
(= ?d2 (call ?fun ?dl))
(not N ?d]. ?d2))))

The definition of relation state-transition restricts its extension only to meaningful

moves in the state space, where the target design state is different from the source one. A

further restriction which could be imposed here would be to narrow down state

transitions to moves in the space of key design parameters. Such a restriction does not

change the problem space, given that, as pointed out in the previous chapter, any

parametric design problem can be transformed into one specified only in terms of key

design parameters. However, here I will not impose such additional restriction, both to

Chapter 7	 Page 140

avoid unnecessary complexity in the ontology and also because not all application models

discussed in chapter 7, e.g. the VT application, obey such additional requirement.

The definition given below characterizes a design operator in terms of two slots, has -
assumption and has-body. The former specifies a statement which is expected to hold

for the application domain where the operator is meant to be used. For instance, the

operator used in the Sisyphus-I problem to allocate secretaries assumes that only one head

of group exists. The latter specifies a unary function which takes as input a design model,

say D1 , and produces as output a design model, D, which is different from D 1 . Thus, the

body of a design operator specifies a transition step indirectly, by relating two design

models.

(def-class DESIGN-OPERATOR ()
"A state transition in the state space model specifies a link
between two design states (in practice two design models). State
transitions are carried out by means of design operators."
((has-assumption :default-value (true)

type relation-expression
documentation
"This slot can be used to specify a statement that is
expected to hold for the application domain where
the operator is applied. Assumptions are expected
to remain (un-)satisfied during the design process")

(has-body : type design-operator-body)))

Formally, a design operator body is defined as follows.

(def-class DESIGN-OPERATOR-BODY (unary-function) ?fun
"A design operator body is a unary function which takes
a design model, say Di, and produces as output a design
such that Di = Dj"
:no-op (:constraint (and (domain ?fun design-model)

(range ?fun design-model)
(=> (= (call ?fun ?di) ?dj)

(not (= ?di ?dj))))))

as input
model Dj

At any stage of the design process a number of operators can be applicable. In order to

support the modelling of meta-knowledge about design operator selection, the method

ontology includes a relation, design-operator-order, whose definition is as follows.

(def-relation DESIGN-OPERATOR-ORDER (?x ?c)
"This relation can be used to specify an application specific
ordering of operators"
:constraint (and (design-operator ?x)

(design-operator ?c)
(not (= ?x ?c))))

(tell (DEFINES-PARTIAL-ORDER design-operator-order))

Chapter 7	 Page 141

In the previous chapter I associated cost with design models. However, it is useful to

generalize this notion and define the cost of design operators as well - e.g. to be able to

characterize the cost model used in the VT application. This can be achieved by defining

the cost of an operator as the difference between the cost of the successor state and that of
the predecessor state.2

(clef-function OPERATOR-COST (?op ?task)
:constraint (and (design-operator ?op)

(parametric-design ?task))
:body (if (and (has-cost-difference-function ?task ?fun)

(state-transition ?sl ?op ?s2))
(call ?fun ?s2 ?sl)))

In the following I will use the notation cf (S -> S) to indicate the cost of an operator

connecting S i to S.

7.2.3 Parameter dependencies

The task ontology described in chapter 5 formalizes parameters as the elements of a

design model and associates each parameter with a value range. From a task-oriented

point of view this characterization is all one needs to describe parameters. However, if

we adopt a problem solving perspective, it is useful to introduce the concept of

dependency between parameters. Specifically, a parameter, say pj, depends on a

parameter Pj' where p 1 ^ Pj ' if the value of Pj can only be computed when p 1 is bound.

This dependency can be physical, as in the case of functional constraints such as "door

operator weight = door operator engine weight + door operator header weight", or

heuristic, as - for example - in the case of the procedure used in the VT domain to

determine the appropriate safety beam model from the platform width.

To support the representation of parameter dependencies, the generic method ontology

includes two relations, depends-on and affects. These are defined as follows.

(def-relation DEPENDS-ON (?pl ?p2)
"This relation models parameter dependencies.
A parameter, p1, depends on p2 if p2
has to be bound in order to cortpute p1."
:constraint (and (parameter ?pl)

(parameter ?p2)))

(def-relation AFFECTS (?pl ?p2)
"The inverse of depends-on"
:constraint (and (parameter ?pl)

(parameter ?p2))
:iff-def (depends-on ?p2 ?pl))

2 When two design states, say Si and S, are linked by a design operator pointing to S, Si is said to be

the predecessor of SJ and S the successor of S1.

Chapter 7	 Page 142

Definitions such as the ones given above exemplify the basic epistemological difference

between task and method ontologies. A task ontology defines the problem to be solved

and does not subscribe to any particular problem solving approach. A method ontology

introduces the distinctions which are relevant to the problem solving model associated

with the ontology. In particular, design operators introduce dependencies between

parameters. Therefore it is useful to make these dependencies explicit, by introducing the

relevant modelling primitives. However, it is important to emphasize that providing

modelling support for expressing dependencies does not imply that only methods which

explicitly reason with dependencies can make use of such an ontology. Some methods

might ignore this information, others might derive it automatically, others might require it

to be asserted explicitly. Thus, formalizing the notion of 'parameter dependency' does

not impose additional ontological commitments - in the sense discussed by Gruber (1995)

- but rather provides modelling support for those problem solving scenarios which are

implied by ontological commitments introduced elsewhere in the ontology (i.e. by the

definition of design operators).

The two definitions shown below exploit the dependency network i) to decide when a

parameter can be computed and ii) to retrieve all computable, unbound parameters.

(def-relation COMPUTABLE (?parain ?dm)
:iff-def (and (parameter ?pararn)

(design-model ?dm)
(= ?l (setofall ?x (depends-on ?param ?X)))
(every ?l (kappa (?x)

(bound-parameter ?x ?dm)))))

(def- function ALL-COMPUTABLE-PARATERS (?pararns ?dm)
:body (setofall ?x (and (member ?x ?params)

(unbound-parameter ?x ?drn)
(computable ?x ?dm))))

7.3 METHODOLOGICAL ASPECTS OF PARAMETRIC DESIGN

PROBLEM SOLVING

The definitions given in the previous section provide a basic method ontology to discuss

parametric design problem solving. This extends the parametric design task ontology by

introducing the concepts of 'design state', 'design space', 'design operator', and 'state

transition'. While this ontology is obviously still very coarse-grained, it nevertheless

provides a starting point for characterizing parametric design problem solving. In

particular, the search paradigm and the notion of design operator introduce a problem

solving viewpoint into a 'static' task ontology.

Chapter 7	 Page 143

Before refining the method ontology it is useful to look at the methodological aspects of

design problem solving, in particular discussing how task-level concepts are mapped into

method-level concepts.

Figure 7.1 shows the main transformations which occur between task and method

concepts. These are discussed in the following sub-sections.

Parameters	 Parameters

Constraints

Requirements
Operator Preferences

Preferen

Value Ra
	 Design Operators

Cost Function	 Cost Function

Figure 7.1. Mapping from task concepts to method concepts

7.3.1 Parameters.

The set of parameters acquired when defining a task model normally remains the same

when constructing an application model. However, the method ontology introduces

additional structure, by organizing parameters into a dependency network. This structure

makes it possible to provide general purpose heuristics for deciding which parameter to

assign or modify next.

7.3.2 Constraints.

In the previous chapter I distinguished between consistent and suitable models and

defined a valid design model as one which is both suitable and consistent. Here I will

remove this task-level distinction and I will treat requirements as constraints. The reason

for doing this is that while such a distinction is important during the task specification and

requirements engineering activities, it is less important during problem solving. When

designing we are interested in finding solution models. Unless we are prepared to

weaken our requirements, in which case they should be modelled as preferences, there is

no operational difference between requirements and constraints.

Some authors, e.g. (Wielinga et al., 1995), point out that one important difference

between constraints and requirements in design problems is that the former may or may

not be applicable to a particular design solution, while the latter must always be satisfied.

While this statement is true for design problems in general, it does not necessarily apply

to the class of formal parametric design problems considered here, in which solution

Chapter 7
	

Page 144

designs are always complete. Moreover, from a modelling point of view it is quite easy

to avoid this 'incompleteness of solution' problem, either by explicitly including

applicability conditions in the representation of constraints or by providing default values,

e.g. : not-needed, to those parameters/components which are not required by a solution.

Finally, the value range associated with each parameter, say Vi, becomes a restrictive

constraint on the legal values of the relevant parameter in the problem solving model.

7.3.3 Design Operator

A design operator can be constructed in four possible ways. I will label these with A-D

letters so that it will be easy to refer to these categories when discussing specific operators

in the rest of the thesis.

Type A. If the value range, say V, of a parameter, p, is enumerable, then a design

operator for p1 can be defined as a generator which, given a design state in which p1 is

unbound, produces alternative design extensions where p1 is bound to a different

element of V1.

Type B. Functional constraints and requirements can be operationalized into design

operators. For instance a functional constraint such as "door operator weight = door

operator engine weight + door operator header weight" can be transformed into a

design operator which calculates the value for parameter door operator weight.

Type C. If there is a preference, pr j , which suggests a value for parameter p 1 . say

vij, then this preference can be transformed into a design operator extending the input

design model with one which includes the assignment (pj . Vjj). When multiple

operators exist for a particular parameter, then the relation design-operator-order

can be used to specify context dependent control knowledge. In particular, this

mechanism makes it possible to transform preference ratings into control knowledge.

Type D. Heuristic, problem solving knowledge can be brought in to construct an

operator. An example is the operator discussed in section 1.2.2.2, taken from the VT

application, which positions the counterweight half way between the platform and the

U-bracket. In relation to the VT task specification, this operator does not define a

constraint or requirement. It could be possibly characterized as a preference, on the

basis that locating the counterweight in a central position has some cost advantages -

because less strain is put on the cables, cheaper motors can be employed. Another

possibility is that the role of this operator is simply to codify experiential problem

solving knowledge - i.e. a central position is a 'good default' for the counterweight.

In a nutshell, the knowledge expressed by operators is not necessarily related to the

task specification: operators can also be defined by means of application-specific,

problem solving knowledge.

Chapter 7	 Page 145

7.3.4 Cost Function

As discussed in the previous chapter a cost function provides a global criterion for

ranking solutions and its definition is expected to combine the multiple criteria expressed

by different preferences. A cost function should not be method-specific and therefore a

task-centred cost function is 'inherited' by a problem solver from the relevant task

specification. Having said so, when constructing method ontologies it is useful to

introduce efficiency-related refinements of the definitions associated with cost evaluation,

e.g. commitments which allow the incremental calculation of costs during the design

process.

7.4 A GENERIC MODEL OF PARAMETRIC DESIGN PROBLEM

SOLVING

In this section I discuss the structure of a generic model of parametric design problem

solving. This model takes the form of a partially specified problem solving method

which makes use of the method ontology defined earlier in this chapter. The model is

described in terms of the task-method framework presented in chapter 5 (i.e. tasks,

methods and roles) and is informed by the search-centred view of problem solving

illustrated in chapter 1.

There are two main objectives related to this section: i) to identify the main generic tasks

which characterize parametric design problem solving, and ii) to provide the 'root node'

of a library of methods for parametric design.

The first objective is based on the assumption that there exists a set of generic tasks which

is common to different methods for parametric design. This assumption is justified both

by theoretical and empirical evidence. From a theoretical point of view the adoption of a

search-centred framework constrains the number and the type of feasible problem solving

activities. Empirical evidence is provided by existing surveys of design problem solvers

(Balkany et al., 1993), which have uncovered generic problem solving activities which

are common to different approaches. The idea is that, once an appropriate collection of

generic tasks for parametric design problem solving has been abstracted, this will provide

i) a set of dimensions to analyse and differentiate problem solving methods for parametric

design and ii) a high-level toolkit for constructing new methods.

The second objective has to do with developing a problem solving method for parametric

design which subscribes to the given task and method ontologies, exhibits enough

complexity to uncover the space of parametric design subtasks but at the same time avoids

unnecessary control and ontological commitments. This method, named gen-design-

psm, provides a kind of 'method template', from which more specialized problem solving

methods can be generated. In particular, in the next chapter I will illustrate a number of

Chapter 7	 Page 146

methods which were constructed by refining and augmenting the generic problem solving

model and which subscribe to a common, generic control structure.

7.4.1 Generic tasks in parametric design problem solving

Given the design space model, there are essentially only four actions which can be carried

out: selecting a design state, selecting a design operator, applying a design operator to the

selected state, and evaluating the resulting design model. The latter is needed to assess its

properties, e.g. whether it provides a solution, its cost, etc. Although these four subtasks

are adequate to describe the process of searching the design space, surveys of design

applications show - not surprisingly! - that several dozens of different tasks exist which

are carried out during design problem solving. For example, the researchers working on

the DIDS project (Balkany et al., 1993) have analysed a number of configuration design

systems, and classified the various mechanisms used by these systems into a number of

generic categories: select design extension, make design extension, detect constraint

violation, select fix mechanisms, make fix mechanisms, and test if-done. For example

they list forty-one "make design extension" mechanisms. While there are, in my view,

problems with such a bottom-up approach - see section 7.5 at the end of this chapter for a

review of this and other related work - it is clear that a four-task framework is much too

coarse-grained. Intermediate concepts are required, which can provide additional

structure to the framework and therefore better 'conceptual handles' for representing

different problem solving methods in a homogeneous way.

The notions of design context and design focus serve this purpose and 'bridge the gap'

between the selection of a state and the selection of an operator, by introducing

intermediate decision-making tasks. Moreover, they provide abstraction mechanisms

which make it possible to generalize from different, but essentially isomorphic, method-

specific behaviours. For instance, as I will show in the next chapter, the 'propose' and

'revise' phases of a Propose&Revise method essentially exhibit the same inference

structure and control regime. The difference is that in the propose phase the design

context is design extension, in the latter it is design revision.

Thus, a design context is an abstraction mechanism which, given a design state, provides

a generic viewpoint to drive the selection of a design focus and an operator. Another way

of looking at a design context is as a description of the generic goal which a problem

solver decides to pursue when designing in a particular design scenario (i.e. state).

While the notion of design context makes it possible to abstract problem solving

behaviour from the generic properties of a design state, a design focus provides a more

fine-grained mechanism to model the design process. In particular, when analysing the

behaviour of different design problem solvers, it is easy to see that, at each stage of the

design process, a particular element of the design model - e.g. a part, a parameter or a

Chapter 7	 Page 147

constraint violation - is selected and becomes the focus of the design process. The

selection of a design focus depends on the given design context. For instance, a

Propose&Revise problem solver focuses on parameters or constraint violations,

depending on whether the context is 'propose' or 'revise'.

As in the case of design contexts, the notion of design focus makes it possible to abstract

from different but essentially isomorphic problem solving behaviours. Moreover, it also

provides an intermediate decision-making step, which increases the granularity of the

framework and makes it easier to configure it for specific problem solving methods.

In the rest of this chapter I will illustrate the components of the proposed generic model

for parametric design. For each component (task or method) I will provide an informal

description and highlight the relevant modelling or problem solving issues. Moreover, I

will also include in the description the OCML definitions of the most 'interesting' tasks

and methods. The complete specification of the model is given in appendix 4.

7.4.2 Constructing the generic model

Given the model of design as search presented in section 7.2, I can then define a

generically applicable control regime, which provides the main control structure of the

generic model. This control regime introduces four subtasks, initialise-design-.

space, select-design-state, design-from-state and reflect-design-state.

The resulting task-method structure is shown graphically in figure 7.2. The figure also

shows the 'root method' of the library, gen-design-psm, whose OCML definition is
given below. This method simply invokes task gen-design-control.

(def-class G-DESIGN-PSM
(problem-solving-method- for-parametric-design
decomposition-method)
((has-input-role :value has-design-operators)
(has-output-role : value has-solution-state)
(has-solution-state : type design-state)
(has-design-operators : type design-operator)
(has -output-mapping
:value (lambda (?psm ?state)

(the ?dm
(has-design-model ?state ?dm))))

(has-body :value
(lambda (?psm)

(in-environment
((?s . (achieve-generic-subtask

?psm gen-design-control
has -current-pardes - task
(the ?task (tackles-task ?psm ?task)))))

(if (design-state ?s)
?s))))

:own-slots ((has-generic-subtasks '(gen-design-control))))

Chapter 7
	

Page 148

Parametric-Design

Gen-design-psm

Gen-design-control

Select-design-state){ Design-from-stateInitialise-design-space

(ite Task

GoaSpecification Tas

Legend

J(ig-state

Generic-subtask-of

Method-mediated
Generic-subtask-of

Figure 7.2. Task-Subtask decomposition introduced by generic control task.

An informal specification of task gen-design-control is given below. The task takes

as input a set of design operators and the specific parametric design task which is being

tackled. Its output is a solution design state, i.e. a design state whose associated design

model satisfies the goal of the relevant parametric design task. The slot 'control' in the

task description template indicates the task's control roles (in this case, Design-space).

GenericTask Gen-design-control --_______________________________
Inputs:	 Design-operators, Current-task
Output:	 Design-state
Control: Design-space
Goal:	 "To return a state which satisfies the goal of the current task"
Sub tasks: Initialise-design-space, Select-design-state, Reflect-design-state,

Design-from-state
Body:	 Initialise-design-space (Current-task) -> Design-space

Repeat
Select-design-state (Design-space) -> Design-state
If "Select-design-state fails"

then Return -> Fail
else

If "Design-state satisfies the goal of the current task"
then Return Q-> Success
else

Do
Reflect-design-state (Design-state)
Design-from-state (Design-state)

As shown above, the body of gen-design-control first invokes task initialise-

design- space, which returns the initial design space. This consists of a single design

Chapter 7
	

Page 149

state, which is associated with an empty design model. Then, tasks select-des ign-

state, reflect-design-state, and design-from-state are executed cyclically, until

either a solution state is reached, or state selection fails. This informal definition can be

precisely specified in OCML as follows.

(def-class GEN-DESIGN-CONTROL (composite-task)
((has-input-role :value has-design-operators

:value has-current-task)
(has-output-role :value has-solution-state)
(has-solution-state : type design-state)
(has-design-operators : type design-operator)
(has-current-task : type parametric-design)
(has-goal-expression
'(kappa (?self ?result)

(and (design-state ?result)
(has-design-model ?result ?dm)
(achieved (role-value ?self has-current-task) ?dm))))

(has-body :value
(lambda (?self)

(in-environment
((?design-space . (achieve-generic-subtask

?psm initialise-design-space
has-current-task
(role-value ?self

has-current-task))))
(REPFAT
(in-environment
((?state . (achieve-generic-subtask

?psm Select-design-state
has-design-space ?design-space)))

(if (= ?state :nothing)
(RETURN :nothing)
(if (achieved ?self ?state)

(design-succeeds ?state)
(DO

(achieve-generic- subtask
?psm reflect-design-state
has-design-state ?state)
(achieve-generic-subtask
?psm design-from-state
has-design-state ?state))))))))))

:own-slots ((has-generic-subtasks
'(initialise-design-space
design-from-state
reflect-design-state
select-design-state))))

Task gen-design-control provides a very generic control loop, which is shared by all

problem solving methods which are included in the library. This approach makes it

possible to differentiate between different methods only on the basis of specific solutions

to design subtasks, rather than in terms of the overall control regime. The advantage of

this solution is that it is much easier to reason about functionally characterized behaviours

than about different control regimes.

Chapter 7	 Page 150

7.4.3 Subtasks of Gen-design-control

Task initialise-design-space initialises the design space by creating its root state,

which by convention is associated with an empty design model. The creation of a design

state is carried out by means of task new-design-state, which takes as input a design-

model and produces as output a design state associated with the model. Once created, a

state is evaluated to assess its properties - e.g. cost, consistency, etc. The resulting task-

subtask hierarchy is described in figure 7.3.

InitialIse-design-space

New-design-state

Evaluate-design-state

Evaluate-consistency) (Evaluate-completeness J (Evaluate-cost
	

Evaluate-feasibility

site Task
Generic-subtask-of

[_Primitive Task)

Legend
	

lSpeclfication Task

Figure 7.3. Subtasks of task initialise-design-space.

The goal of task reflect-design-state is to reflect problem solving inferences down

to the domain level, by carrying out the necessary mapping actions. These mapping

actions are not related to the nature of parametric design problem solving and therefore I

will not discuss this task here. Examples of mapping knowledge will be given in chapter

9.

Tasks evaluate-design-state, select-design-state, and design-from-state

are discussed in the next three sections.

7.4.4 Design state evaluation

The role of task evaluate-design-state is to assess a design state by producing the

relevant problem solving information. As shown in figure 7.3, there are four main types

of knowledge which are inferred when evaluating a design state: consistency (whether a

state violates some constraints), cost, completeness (whether any parameter is unbound in

the current state), and feasibility (i.e. whether a state can lead to a solution). This

breakdown is meant to provide maximal coverage - i.e. in my experience these four

Chapter 7	 Page 151

classes provide all the knowledge required to make decisions about the current design

state. However not all problem solvers would require all four classes of knowledge. For

example, problem solvers which are not concerned with cost issues do not need to

compute it during the state evaluation process.

In the context of the formal parametric design framework introduced in chapter 6, the

assumption here is that a model is defined in terms of parameters and that all the relevant

constraints are part of the problem specification. In such a scenario constraint and

completeness evaluation are not problematic. Checking for completeness requires finding

out whether any parameter is unbound in the current design model, while constraint

evaluation is carried out by applying the set of problem constraints to the current model

and then returning all those which have been violated. However, it is important to

emphasize that this is obviously an idealized scenario. In practice, problem constraints

are often acquired incrementally, when design states which had not been anticipated are

encountered, or when designers and clients realise that some problem constraints had

been left unspecified. The same applies to completeness, as not all parts of a solution are

in general known beforehand - in contrast with our scenario - and therefore checking for

completeness might be non-trivial. An additional, important element, which is often not

realized by researchers working in this area, is that even in relatively structured problems

- such as, for instance, the VT elevator design problem - the set of problem constraints is

normally incomplete. In the best case it would be complete with respect to the chosen

problem solving approach. For example, it is very simple to generate design models

which satisfy the VT set of constraints, but which are obviously wrong with respect to

basic spatial geometry. The rationale for the missing constraints is that such situations

would simply never arise when solving VT by means of a Propose&Revise problem

solver.

Cost does not raise important decision-making issues. Having made the assumption that

a cost function is provided with the model of the problem, cost evaluation reduces to

applying the given cost function to the design model in question.

More complicated is to evaluate the feasibility of a design state. A number of techniques

have been developed in the constraint satisfaction literature - e.g. see (Haralick and

Elliott, 1980; Gaschnig, 1977) - which provide domain-independent mechanisms to

assess whether the current, consistent state lies on a solution path. Although these

techniques are of course relevant to parametric design applications, they are not included

in the generic model of parametric design problem solving. The main reason for this

exclusion is that while the model aims at being 'maximally generic' (i.e. it makes as few

assumptions as possible on the available domain knowledge) the techniques developed in

the constraint satisfaction literature typically make quite strong assumptions both on the

representation of the domain knowledge (e.g. binary instead of n-ary constraints) and on

Chapter 7	 Page 152

the problem solving process (e.g. the backniarking approach (Gaschnig, 1977) assumes a

fixed parameter assignment order, which is not required by the model described here).

Therefore these techniques are not part of the model, although of course it is easy to

imagine specific refinements of the model where such techniques can be applied3.

7.4.5 Design state selection

At any stage of the design process, a problem solver (be it human or artificial) knows

about a number of design states which are relevant to the problem in hand. Typically,

these are the states which have been explored during the current design process, i.e. the

states included in the portion of the design space searched so far. However, human

designers are of course capable of reusing past designs and the same applies to problem

solvers which make use of case-based reasoning techniques when solving design

applications (Zdrahal & Motta, 1996). Therefore, in general the current design space

includes all the states known to the problem solver, either because they have been

explored during the current design process, or because the problem solver has access to

other relevant design knowledge (e.g. a case-based library of design states).

Assuming that a rational problem solver would not normally select a design state known

to be unfeasible (a dead end), it follows that state selection is carried out in terms of the

other three main criteria discussed in the previous section: contents of the design model,

constraint violations, and cost. This state-centred approach to parametric design problem

solving affords both analytical and engineering leverage.

On the engineering side I will show that it is possible to construct alternative (and better

behaved) versions of Propose&Revise by enforcing state selection policies which are

based on converging criteria. In particular I will compare different refinements of a

generic Propose&Revise architecture and show that those employing cost-centred state

selection policies behave better than those employing consistency-centred state selection

policies.

In addition to the aforementioned, reuse-related aspects there is also a more fundamental difference

between the knowledge-centred approach I am taking here and the work in the constraint satisfaction

literature. My objective here is to identify all the knowledge types and problem solving components

that are relevant to parametric design problem solving, so that the resulting generic framework can be

applied to (and specialized for) all possible parametric design application domains. In other words my

aim is to identify and characterize the slots to be filled by application-specific knowledge. Researchers

in the constraint satisfaction literature focus instead on domain-independent search-control

mechanisms, which can be directly applied (i.e. with no need for application-specific knowledge) to an

application domain.

Chapter 7
	

Page 153

On the analytical side I will show that a state-centred analysis of problem solving makes it

possible to give 'semantics' to apparently idiosyncratic problem solving structures. In

particular I will show that the fix combinations (Yost and Rothenfluh, 1996) used in the

VT application are essentially search-control structures which enforce a cost-conscious

search mechanism. Reformulating fix combinations in terms of a state selection policy

makes explicit the search control regime adopted by the VT application.

The OCML definition of task select-design-state, which is shown below, simply

specifies the input (a design space) and the output (a design state) of the task and states

that the goal of the task is to select (in practice, return) one of the states included in the

input design space.

(def-class SELECT-DESIGN-STATE (goal-specification-task) ?task
((has-input-role :value has-design-space)
(has-output-role :value has-design-state)
(has-goal-expression
:value (kappa (?task ?s)

(and (design-state ?s)
(has-design-space ?task ?space)
(has-states ?space ?states)
(member ?s ?states))))

(has-design-space : type design-space)
(has-design-state :type design-state)))

The definition given in the next box shows the state selection method specified for gen-

design-psm.

Chapter 7
	

Page 154

(def-class DEFAULT-STATE-SELECTION (primitive-method)
((has-body

:value (lambda (?psm)
(in-environment
((?cost-algebra . (role-value ?psm has-cost-algebra))
(?cost-rel . (third ?cost-algebra))
(?design-space . (role-value ?psm has-design-space)))

(if (= ?candidates
(setofall ?state

(and (member ?state
(design-space-states
?space))

(not (deadend-state ?state))
(not (constraint-violations

?state ?cs)))))
(if (= ?maximal-states

(setofall
?state
(and (member ?state ?carididates)

(= ?dm (the ?dm (has-design-model
?state ?dm)))

(= ?l (length ?dm))
(not
(exists
?state2
(and (member ?state2

?candidates)
(has-design-model ?state2

?dm2)
(= ?12 (length ?dm2))
(> ?12 ?l))))

(the ?state
(and (member ?state ?maximal-states)

(state-cost ?state ?cost)
(not (exists

?state2
(and (member ?state2

?maximal-states)
(state-cost ?state2 ?cost2)
(holds ?cost-rel

?cost2
?cost))))))))))))

:own-slots ((tackles-task-type select-design-state)))

Table 7.1 shows the criterion used by the default state selection method: the state selected

is one which does not violate any constraint, maximizes the extension of the design model

and minimizes the cost. These (sub-)criteria are applied sequentially. Thus, first all

consistent states are collected, then all the non-maximal ones are removed, and then the

cheapest one (or one of the cheapest, in case one or more states score equally on these

three criteria) is returned.

Violated Constraints 	 Design Model	 Cost

No	 Max	 Mm

Table 7.1. Criteria for state selection in default state selection method

Chapter 7	 Page 155

This selection criterion is the one typically used by problem solvers which are not

concerned with cost issues (as for instance most constraint satisfaction engines) and

which deal with inconsistencies by backtracking to an earlier state. These include both

methods which make use of simple control regimes, such as depth-first search with

chronological backtracking (Runkel et al., 1996), as well as more sophisticated regimes

based on techniques such as backjumping (Gaschnig, 1978; Dechter, 1988). Given the

framework discussed here, the differences between these methods - e.g. backjumping vs.

depth-first search with chronological backtracking - are therefore explained in terms of

different notions of feasibility, rather than in terms of different state selection policies.

Clever backtracking techniques, such as backjumping, can propagate unfeasibility

'backwards', to nodes which precede an inconsistent state. Hence, even though different

methods may use the same state selection policy, they can still exhibit different search

behaviours.

7.4.6 State-based design process

The top-level control regime specified by task gen-design-control is method-generic;

method-specific control is defined by providing the appropriate control method associated

with task design-from-state. Such a method defines the main design strategy of a

parametric design problem solver. More precisely, it specifies its strategy for navigating

the design space.

The method below describes a simple control regime, which does nothing when applied

to inconsistent or unfeasible states, and calls task generate-state-successor in an

extend context, when applied to incomplete states. This control regime is the one used

by methods which do not use special search-control knowledge to deal with inconsistent

states and do not attempt to improve solution states. One example is the method used by

the DIDS researchers to solve the Sisyphus tasks (Balkany et a!., 1994; Runkel et al.,

1 996).

To be precise, Runkel et al. (1996) actually discuss two problem solving methods for the VT task,

one which uses fixes and one which does not. Only the latter makes use of the extend- incomplete-

State control regime.

Chapter 7	 Page 156

(def-class EXTEND-INCOMPLETE-STATE (decomposition-method)
((has-input-role :value has-design-state)
(has-output-role :value generates-design-state)
(has-design-state type design-state)
(generates-design-state : type design-state)
(has-goal-expression
:value (kappa (?task ?s)

(design-model-extends
(the ?dm (has-design-model ?s ?dm))
(the ?dm (has-design-model

(role-value
?task has-design-state)

?dm))
(has -body
:value
(lambda (?psm)

(in-environment
((?state . (role-value ?psm has-design-state))
(?design-model . (the ?dm (has-design-model

?state ?dm)))
(?constraints . (role-value ?psm has-constraints))
(?parameters . (role-value ?psm has-parameters)))

(if (deadend-state ?state)
nothing
(if (constraint-violations ?state ?constraints)

(tell (deadend-state ?state))
(if (state-complete ?state ?parameters)

(tell (solution-state ?state))
(achieve-generic-subtask
?psm
generate-state-successor
has-design-state ?state
has-design-context :extend))))))))

own-slots ((tackles-task-type design-from-state)
(has-generic-subtasks generate-state-successor)))

The reason for proposing the above method as the default way of carrying out task

design-from-state is that this method employs minimal commitments. No knowledge

roles in addition to those specified in the parametric design task ontology are used here,

no actions are performed in the face of inconsistent states, and cost factors do not affect

problem solving. In the next chapter I will show that it is easy to model the problem

solving approach of more knowledge-intensive problem solving methods, by adding

more conditions and ontological commitments to this basic control regime.

7.4.7	 State generation and backtracking

Task generate-state-successor is a generic control task which 'mediates' between

design-from-state and design-from-context. Its role is essentially to abstract a

generic control pattern, which is common to all states and contexts. Specifically, this task

collects the design foci relevant to the current state and context and then calls task

design-from-context to select the appropriate focus and operator.

Chapter 7	 Page 157

Generic Task Generate-state-successor
Inputs:	 Design-state, Design-context
Output:	 Successor-state
Control: Foci, Record
Goal:	 "Output is a state"
Sub tasks: Resume-state, Design-from-context , Collect-state-foci,

New-search-control-record
Body:	 If "Search control record exists for Design-state"

then
Resume-state (Design-state, Design-context) -> Successor-state
If "Resume-state succeeds"

then Return -> Successor-state
else Design-from-context (Design-state, Design-context)

else
Do

Collect-state-foci (Design-state, Design-context) -> Foci
New-search-control-record (Design-state, Foci) -> Record
Design-from-context (Design-state, Design-context)

The above definition - formalized in appendix 4 - is complicated by the fact that in general

task generate-state-successor can be given as input a state which has already been

(partially) explored - i.e. we might be backtracking to this state. In such a case, the

control body of the task invokes task resume-state.

Whether a not a state has already been explored is determined by checking whether a

search control record exists for the state in question. A search control record is a

structure associated with a design state, which records dynamic, state-related problem

solving information. This includes the current design focus and those operators and foci,

which are applicable to a design state, but have not yet been used to generate a successor

state.

The rationale for introducing search control records as a separate construct in the model,

rather than adding this information directly to the specification of a design state, is to

ensure that a design state is defined 'functionally', i.e. independently of the current

(control) state of the problem solver. Moreover, while different problem solving methods

can add more information to this definition of a search control record, the given definition

of design state remains independent of a particular problem solving method.

The box below shows the definition of a search control record and a function which

retrieves the record associated with a state.

Chapter 7
	

Page 158

(def-class SEARCH-CONTROL-RECORD ()
"This structure records the control information associated
with a state. It is necessary to be able to support
generic control regimes"
((has-design-state :type design-state :cardinality 1)
(has-design-focus :type design-focus :cardinality 1)
(has-design-operators :type list :cardinality 1)
(has-design-foci :type list :cardinality 1)))

(def-furiction THE-STATE-SEARCH-CONTROL-RECORD (?state)
:body (the ?record (and (search-control-record ?record)

(has-design-state ?record ?state))))

Finally, the next box shows the specification of task collect-state-foci and that of a

method, collect-computable-parameters, which carries out the task in a design

extension context. The method uses the notion of parameter dependency, introduced

earlier, to retrieve all unbound, computable parameters.

(def-class collect-state-foci (goal-specification-task) ?task
((has-input-role :value has-design-context

:value has-design-state)
(has-output-role :value has-design-foci)
(has-design-foci :type list)
(has-design-state : type design-state)
(has-design-context :type design-context)))

(def-class collect-computable-parameters (primitive-method)
((has-body

:value (lambda (?psm)
(all-computable-parameters
(role-value ?psm has-parameters)
(the ?dm (has-design-model

(role-value ?psm has-design-state)
?dm))))))

:own-slots ((tackles-task-type collect-state-foci)
(applicability-condition
(kappa (?task)

(= (role-value ?task
has-design-context)

:extend)))))

7.4.8	 Context-centred design

Task design-from-context is invoked in a problem solving scenario in which a state

has been evaluated and selected, and a context abstracted. Given this input scenario, the

task provides a generic control regime - parametrized in terms of the abstract notions of

design focus and design context - which abstracts from the behaviours employed by

different problem solvers in apparently different, but essentially isomorphic design

scenarios. For example, in a Propose&Revise problem solver, the context could be

'revision' (and the focus a specific constraint violation) or it could be 'extension' (and the

focus a specific design parameter). Thus, given this generic control regime, differences

Chapter 7
	

Page 159

between problem solving methods can be achieved either by instantiating the generic

notions of 'context' and 'focus' by means of specific design structures, or by associating

different methods to some of the subtasks of design-from-context - e.g. by exploiting

different focus selection strategies.

The task-subtask decomposition introduced by task design-from-context and the data

flow between the task's subtasks are shown in figure 74 and 755

Design-from-context

Order-focus-operators

Select-design-focus

Collect-focus-operators
Design-from-focus

Update-search-control-record-on-focus-selection

Update-search-control-record-on-focus-failure

Figure 7.4. Subtasks of task design-from-context.

I operator-preferences I

focus-operators b	 Order-focus-operatorJ

4r
desiqn-operators	 Collect focus operatoI) 	

ordered-f ocus-operators

-	
design-focus	 -	 gn-from-focus

I_current-design-state

I	 design-state
design-foci	 ________________

Figure 75. Data flow relations between subtasks of design-from-context

The two subtasks which deal with updating the search control record associated with the current design

state are not included in figure 7.5.

Chapter 7	 Page 160

The OCML specification of task design-from-context is quite complicated and is

given in appendix 4. A simplified6, informal description of the task is shown in the box

below.

Generic Task Design-from-context
Inputs:	 Design-state, Design-context, Design-foci
Output:	 Successor
Control: Focus, Ops 1, Ops2, Operator-preferences
Goal:	 "Output is a state"
Sub tasks: Select-design-focus, Collect-focus-operators, Sort-design-operators,

Design-from-focus
Body:	 Repeat

Select-design-focus (Design-foci) -> Focus
If "Select-design-focus fails"

then Return -> Fail
else

Do
Collect-focus-operators (Focus) -> Ops 1
Sort-design-operators (Opsi, Operator-preferences) -> Ops2
Design-from-focus (Design-state, Focus, Ops2) -> Successor

until "Design-from-focus succeeds"

As shown by the above definition, the body of task design-from-context consists of

the following actions: i) selecting a design focus; ii) collecting all the operators relevant to

the selected focus; iii) ordering them according to application-specific meta-knowledge

and iv) invoking task design-from-focus. These actions are carried out iteratively until

either i) there are no more possible design foci to try or ii) a useful result (i.e. a new

design state) is returned by task design- from- focus.

7.4.9 Design focus selection

Selecting a design focus is the most important task in parametric design problem solving.

As shown by much theoretical and empirical research on constraint satisfaction and

design problem solving, selecting the right focus is crucial for efficient problem solving

when using complete search methods, and for efficiency and competence when using

incomplete methods. For this reason several domain-independent heuristics for variable

ordering or selection have been developed in the constraint satisfaction literature (Dechter

and Meiri, 1989; Sadeh and Fox, 1996; Keng and Yun, 1989; Minton et al., 1992),

6 In particular, the complete definition takes care of updating the search control record associated with

the input design state and also checks that subtask collect-focus-operators actually returns some

operators.

Chapter 7	 Page 161

which have been shown to perform orders of magnitude better than simple depth-first

search with chronological backtracking.

These techniques can be easily integrated with the framework proposed here, to provide

domain-independent focus selection techniques in a design extension context. Moreover,

it is often the case that application-specific knowledge is available, which can be used for

focus selection. For instance, the VT specification (Yost and Rothenfluh, 1996) states:

"If more than one constraint can be processed at the same time, pick one arbitrarily. One

exception to this is that if both MACHINE GROOVE PRESSURE and HOIST CABLE

TRACTION RATIO constraints are violated at the same time, try to fix the MACHINE

GROOVE PRESSURE violation first.". In terms of the framework proposed here, this

statement can be interpreted as stating that if the context is 'revise' and MACHINE

GROOVE PRESSURE and HOIST CABLE TRACTION RATIO are two possible design

foci, then the former should be selected, rather than the latter.

In what follows, I will only discuss focus selection techniques which are relevant to a

design extension context. Focus selection techniques for alternative contexts will be

introduced in chapters 8 and 9.

7.4.9.1. Variable ordering heuristic and focus selection in design extension context

As I said above, much work on variable ordering which exists in the constraint

satisfaction literature is relevant here. However, it is also important to emphasize that

constraint satisfaction methods are almost often based on frameworks which are not as

'rich' as the one being developed here. In particular they typically consider binary

constraint networks and do not tackle cost-related aspects. These restrictions imply that it

is difficult to express parameter selection criteria purely in terms of constraint-related

heuristics. I'll clarify this point with an example taken from the Sisyphus-I office

allocation problem.

The problem specification given in (Linster, 1994) shows the following sequence of

office allocation steps: head-of-group, secretaries, manager, heads of projects,

researchers. It is easy to see that this sequence of assignments can be reproduced almost

completely, simply by using the dynamic search rearrangement (DSR) heuristic (Dechter

and Meiri, 1989) at each stage of the parameter selection process. In simpler terms, what

happens here is that the Sisyphus-I domain expert (Siggi) always focuses on those YQT

members who have the smallest number of possible rooms available. However, the DSR

heuristic does not completely account for Siggi's strategy. In particular it does not have

enough discriminatory power to distinguish between the manager and the head of the

projects. The problem here is that from a constraint satisfaction point of view these two

classes of personnel offer the same degrees of freedom - they both require single rooms.

However, when deciding whom to allocate next, Siggi also applies an element of

Chapter 7	 Page 162

seniority: if two elements are equally easy (or difficult) to allocate, then the most

important one is allocated first. In particular, the manager is allocated before the heads of

project.

This seniority element can be captured in the task specification, by representing the

appropriate preferences and cost function, and in the method ontology, by specifying

appropriate preferences about focus selection. It cannot be represented purely in terms of

constraints or emulated by means of heuristic selection techniques which do not reason

about cost aspects.

Focus selection preferences can be expressed by means of relation design-focus-
order, whose OCMIL definition is shown below.

(def-relation DESIGN-FOCUS-ORDER (?x ?c)
"This relation can be used to specify an application specific
ordering of design foci"
:constraint (and (design-focus ?x)

(design-focus ?c)
(not (= ?x ?c))))

(tell (DEFINES-PARTIAL-ORDER design-focus-order))

7.4.9.2. Default parameter selection strategy for design extension context

The default parameter selection strategy provided with the library (for a design extension

context) combines the DSR strategy with focus selection preference knowledge. Its

OCML definition is given below.

(def-class DEFAt3LT-PARAI'ETER-SELECTION (primitive-method)
((has-input-role

value has-design- focus-order-relation
:value has-possible-values-relation)
(has-design- focus-order-relation
default-value design-focus-order)

(has-possible-values-relation
default-value possible-value)

(has-body
:value (lambda (?psm)

(if (= ?foci (role-value ?psm has-design-foci))
(select-most-preferred-focus
(collect-most-restricted-parameters
?foci
(role-value ?psm

has-possible-values-relation))
(role-value ?psm

has-design-focus-order-relation))))))
own-slots ((tackles-task-type select-design-focus)

(applicability-condition
(kappa (?task)

(every (the ?foci
(has-design-foci
?task ?foci))

parameter)))))

Chapter 7	 Page 163

The body of method default-parameter-selection first calls function collect-
most-restricted-parameters on the set of possible foci, to collect all the parameters

with the most restricted range of values in the current problem solving scenario. Then, it

uses focus selection preference knowledge to discriminate between eventual ties. The

definition of function collect-most-restricted-parameters is as follows.

(def-furiction COLLECT-MOST-RESTRICTED- pARAI.IETERS (?l ?rel)
body (in-environment

((?pairs . (sort (map '(lambda (?p)
(list-of
?p (setofall

?v (holds ?rel ?p ?v))))
?l)

'(kappa (?x ?y)
(< (length (second ?x))

(length (second ?y)))))))
(map first (filter

?pairs
(kappa (?pair)
(= (second ?pair)

(second (first ?pairs))))))))

The definition above assumes that the relation possible-value is used to model the

relation between a parameter, say ?p, and a value, say ?v, which can be assigned to ?p in

the current problem solving context. Thus, the above function i) constructs a list by

associating each parameter in the current pool with its effective value range, ii) sorts this

list in terms of range size and then iii) returns all the parameters which are associated with

the smallest number of possible values.

Finally, the definition below shows the OCML representation of function select-most-
preferred-f ocus. This function takes as input a list of design foci and a focus

preference relation and returns the most preferred design focus in the input list.

(def-function SELECT-MOST-PREFERRED-FOCUS (?l ?rel)
"The most preferred focus is one which is in
the input list (i.e. which is a possibility in the
current scenario) such that there is no other focus
which is preferred to it"
:body (the ?focus

(and (member ?focus ?l)
(not (exists ?focus2

(and (member ?focus2 ?l)
(<> ?focus2 ?focus)
(holds ?rel ?focus2 ?focus)))))))

As will be demonstrated by the application examples discussed in chapter 9, this

combination of a generic DSR strategy with additional, typically cost-related, preference

knowledge for focus selection provides a very powerful mechanism to improve the

efficiency of a problem solver and to facilitate the generation of optimal solutions.

Chapter 7	 Page 164

However, it is important to emphasize that such local parameter selection knowledge is

subject to horizon effects (Ste fik, 1995). Problem solving approaches which are able to

reason 'globally' about cost-related aspects, such as global hill climbing or A*, are
needed if such horizon effects are to be avoided.

7.4.10 Collecting and prioritizing operators

7.4.10.1.	 Task sort-design-operators

Once a design focus has been selected, the relevant operators are collected and sorted.

The latter task is very simple. We can use the applicable operator preference knowledge

to decide which is the most 'preferred' operator. As discussed in section 7.3, this

knowledge operationalizes preference knowledge acquired as part of the application

specification. The definition of task sort-design-operators is as follows.

(def-class sort-design-operators (primitive-task) ?task
((has-input-role :value has-design--operators

:value has-operator-order-relation)
(has-design-operators :type list)
(has-operator-order-relation
default-value design-operator-order)

(has-body
:value (lambda (?task)

(sort (role-value
?task has-design-operators)
(role-value ?task

has-operator-order-relation))))))

Collecting design operators is also conceptually simple: we want all the design operators

which are relevant to the current focus and context. For example, if the context is

revise and the focus a constraint violation, say ?c, then we want to retrieve all

operators which can be used to fix ?c. If the context is : extend, then the current focus

is a parameter which is unbound in the current design model, say ?p. In this case we

need operators which can generate a value for ?p.

As in the earlier section on focus selection, I will confine the discussion about operator

collection to the design extension context. Operator collection in contexts other than

extend will be discussed in chapters 8 and 9.

7.4.10.2.	 Design Extension Operators

The rationale for applying an operator in a design extension context is of course to assign

a value to a currently unbound parameter. Given this context-specific rationale, it is clear

that the definition of design operator given in section 7.2.2 is much too general. A design

extension operator does not generate an arbitrary output model from an arbitrary input

model. Given an input design model and a parameter, say ?p, it generates an output

model which differs from the input model only with respect to ?p. Thus, I can specialize

Chapter 7	 Page 165

the notion of design operator for a design extension context, by defining a class of design
extension operators.

(def-class DESIGN-EXTENSION-OPERkTOR (design-operator)

"The body of a design extension operator is a unary function
which takes as argument an unbound parameter, ?p, and the
current design model, ?dm, and produces as a result a
new value, ?z, which is taken to specify the value of
?p in a design model, which extends ?dm with respect to ?p.
The values of all the other design parameters should
not be affected by the application of the operator.'

((applicable-to-parameters
:default-value '(setofall ?x (parameter ?x))
type function-expression
:documentation "An expression which returns the set

of parameters whose value can be computed
by means of this operator')

(body : type design-extension-operator-body)))

A design extension operator is an operator, whose body takes a parameter and a design

model as input and returns a new value for the parameter. The body of a design

extension operator is formally defined as follows:

(def-class DESIGN-EXTEI1SION-OPERATOR-BODY (lambda-expression) ?x
'A basic design extension operator body is a unary function which
takes an unbound parameter, say ?p and produces a result, ?z,
which belongs to the value range of ?p. ?z is taken as the new
value of ?p in the successor design state"
:no-op (:constraint (and (nth-dornain ?x 1 parameter)

(nth-domain ?x 2 ?dm)
(=> (= ?z (call ?x ?p))

(and (has-value-range ?p ?range)
(member ?z ?range))))))

The slot applicable-to-parameters in the definition of class design-extension-
operator makes it possible to specify the range of parameters to which a design

extension operator can be applied. The value for this slot defaults to all currently defined

parameters.

Having defined the class of design extension operators it is now quite simple to define a

default operator collection method for a design extension context. As shown by the

OCML definition below, the method collects all the design extension operators which are

applicable to the current parameter.

Chapter 7
	

Page 166

(clef-class DEFAULT-OPERATOR-COLLECTION (primitive-method) ?psm
((has-body

:value (lambda (?psm)
(setofall ?op

(and (design-operator
?op
applicable-to-parameters ?l)
(member (role-value

?psm 'has-design- focus)
(eval ?l)))))))

own-slots ((tackles-task-type collect-focus-operators)
(applicability-condition
(kappa
(?task)
(and (= :extend

(role-value
?task has-design-context))

(parameter
(role-value
?task 'has-design-focus)))))))

7.4.11 Focus-centred design

Task design-from-focus is similar to task design-from-context in the sense that,

like the latter, it provides a generic control mechanism which abstracts from superficially

different, but essentially isomorphic problem solving mechanisms. In particular, the

purpose of this task is to define the abstract select-design-operator/apply-design-operator

control regime, which is independent of the specific nature of the current focus.

As shown below, task design-from-focus is modelled as a composite task, whose

subtasks are try-design-operator and select-design-operator. The body of the

task is specified in terms of a repeat statement, which selects and applies a design

operator, until a result other than : nothing is returned. The body of the task also takes

care of updating the search control record associated with the current state, so that it is

possible to resume this state and try a different operator application.

Chapter 7
	

Page 167

(def-class DESIGN-FROM-FOCUS (composite-task)
((has-input-role :value has-design-state)
(has-output-role :value has-output-design-state)
(has-control-role : value has-design-model

:value has-design-operator)
(has-design-state type design-state)
(has-output-design-state : type design-state)
(has -body
:value
(lambda (?task)

(REPEAT
(in-environment
((?state . (role-value ?task has-design-state))
(?record . (the-state-search-control-record

?state))
(?focus . (the-slot-value

?record 'has-design-focus))
(?ops . (the-slot-value

?record 'has-design-operators))
(?sub . (instantiate-generic-subtask

?task select-design-operator
has-design-focus ?focus
has-design-operators ?ops))

(?op . (solve-task ?sub)))
(if (achieved ?su ?op)

(DO
(set-slot-value
?record
has-design-operators
(remove ?op ?ops))

(in-environment
((?sub2 . (instantiate-generic-subtask

?task try-design-operator
has-design-operator ?op
has-design-focus ?focus
has-design-model (the-slot-value

? state
'has-design-model)))

(?result . (solve-task ?siib2)))
(if (achieved ?sub2 ?result)

(RETURN ?result))))
(RETURN :nothing)))))))

:own-slots ((has-generic-subtasks '(select-design-operator
try-design-operator))))

7.4.12 Design operator selection

Given that the operators applicable to the current focus have been ordered in terms of the

operator preference knowledge, design operator selection normally consists of picking the

next operator on the ordered list. Therefore the default operator selection method is very

simple - see definition below.

Chapter 7	 Page 168

(def-class SELECT-DESIGN-OPERATOR (goal-specification-task)
((has-input-role :value has-design-operators

value has-design- focus)
(has-output-role :value has-selected-operator)
(has-design-operators :type list)
(has-selected-operator type design-operator)
(has-design-focus :type design-focus)))

(def-class DEFAULT-OPERATOR-SELECTION (primitive-method) ?psm
((has-body

:value (lambda (?psm)
(first (role-value ?psm

'has-design-operators)))))
:own-slots ((tackles-task-type select-design-operator)))

Because parametric design is often concerned with finding optimal or sub-optimal

solutions, preference knowledge is used to drive the selection of a design operator. This

type of knowledge is often called local preference knowledge (Poeck and Puppe, 1992)

and is defined as knowledge which can be used to make locally optimal decisions. The

use of local preference knowledge leads to greedy algorithms, such as hill-climbing,

which can get stuck in local maxima. In the next section I will discuss a problem solving

method called Propose & Improve, which tries to avoid getting stuck in local maxima by

applying a 'global hill-climbing' kind of approach.

Finally, it is important to highlight that, in contrast with the focus selection case, the

techniques developed in the constraint satisfaction literature, i.e. value ordering heuristics

(Dechter and Pearl, 1988), are of only limited use here. These techniques try to find at

each stage of the variable assignment process the least constraining values - i.e. the values

which are less likely to cause backtracking at a later stage of the constraint solving

process. Unfortunately these heuristics are only practical in binary constraint networks

with fixed variable ordering. As discussed by Sadeh and Fox (1996), these heuristics do

not perform very well in the presence of dynamic variable ordering, which is the scenario

assumed here. Moreover, Sadeh and Fox also demonstrate that these heuristics do badly

in tightly connected constraint networks.

7.4.13 Applying a design operator

The last task which is left to discuss is the application of a design operator. This is a

simple task which does not require any decision making. The box below shows how this

task is carried out in the case of design extension operators. Basically, the chosen

operator is applied to the current focus (i.e. parameter) and design model. If the value is

something other than : nothing, then a new state is created arid returned.

Chapter 7	 Page 169

(def-class TRY-DESIGN-OPERATOR (goal-specification-task) ?task
((has-input-role :value has-design-operator

:value has-design-focus
:value has-design-model)

(has-output-role value generates-design-state)
(has-design-focus type design-focus)
(has-design-operator : type design-operator)
(has-design-model : type design-model)
(generates-design-state type design-state)
(has-goal-expression
:value (kappa (?task ?s)

(and (design-state ?s)
(generates-design-state ?task ?s))))))

(def-class TRY-DESIGN-EXTSION-OPERATOR (primitive-method)
((has-body

:value
(lambda (?psm)

(in-environment
((?dm . (role-value ?psm 'has-design-model))
(?focus . (role-value ?psm 'has-design-focus))
(?value . (apply-design-extension-operator

?focus ?dm (role-value ?psm
'has-design-operator))))

(if (not (= ?value :nothing))
(achieve-generic- subtask
?psm new-design-state
has-design-model (cons

(cons ?focus ?value)
?dm))))))

:own-slots ((tackles-task-type try-design-operator)
(applicability-condition
(kappa
(?task)
(design-extension-operator
(role-value
?task has-design-operator))))))

The method try-design-extension-operator makes use of the function apply-

design-extension-operator , which is defined as follows.

(def-function apply-design-extension-operator (?param ?drn ?op)
:constraint (and (parameter ?param)

(design-model ?din)
(design-extension-operator ?op))

:body (call (the ?body (has-body ?op ?body)) ?param ?clm))

With this definition I have concluded the description of a generic model for parametric

design problem solving. This model identifies the main subtasks and knowledge roles

which characterize parametric design problem solving and proposes default methods for

carrying out these tasks. In the next section I will summarize the main aspects of the

proposed model and I will then conclude the chapter by comparing it to alternative

proposals.

Chapter 7	 Page 170

7.4.14 Main aspects of the generic model for parametric design problem

solving

In this section I will highlight the main aspects of the model discussed in this chapter.

These are: methodological framework; knowledge types and generic tasks.

7.4.14.1.	 Methodological framework.

The model presented in this chapter builds on the task ontology discussed in chapter 6

and on the view of problem solving as search discussed in chapter 1. Thus, it instantiates

the generic notions of search space, search state and state transition in the context of the

parametric design ontology, generating the concepts of design space, design state, and

design operator. It also introduces the notions of design context and design focus to

decompose the problem of selecting a design operator into a number of intermediate

subproblems. In addition, I have also discussed how task knowledge is operationalized

during the problem solving process, by illustrating the mapping between task and method

concepts.

7.4.14.2.	 Knowledge Roles

Table 7.2 shows the main classes of problem solving knowledge associated with the

generic parametric design model. The classes shown in bold indicate the main domain

roles associated with the framework. These roles can be filled by means of the

appropriate application-specific knowledge, much as in the role-limiting method

approach. However, the framework has been designed so that only design operators and

mapping knowledge are required in order to instantiate the problem solver in a domain.

All the other types of domain knowledge, which are shown in bold italics, denote

optional roles, which are useful to improve the efficiency of the problem solving process,

but are not essential. Finally, the roles shown in plain text indicate intermediate

knowledge structures generated during problem solving.

Chapter 7
	

Page 171

Knowledge Classes	 Description

Design Operator	 Knowledge for modifying design models

Design Extension Operator	 Knowledge for extending design models

Design Space	 The space of all design models considered by a

problem solver

Design State	 An element of the design space

Success State	 A state which denotes a solution model

Deadend State	 A state which does not lead to a solution state

Incomplete State	 A state which is associated with an incomplete

___ design model

Inconsistent State	 A state in which some constraints are violated.

Search Control Record 	 Problem solving control knowledge associated

with a design state

Mapping Knowledge	 Knowledge which relates the problem solving

notion of design model to domain-specific

structures (e.g. to room allocations)

Design Context

	

	 Abstract label associated with a design state

which can be used to decide the next problem

___ solving step.

Design Focus	 Abstract notion which denotes the main design

element driving the selection of a design operator.

Focus Selection Knowledge	 Knowledge used to select a design focus

Operator Selection Knowledge	 Knowledge used to select a design operator

Available Parameter Values	 Knowledge which supports the generation of the

values available for an unbound design parameter.

Table 7.2. Problem solving knowledge for parametric design

7.4.14.3.	 Generic tasks

Figure 7.6. below shows the overall task-subtask structure of the generic design model.

This consists of 23 tasks, which divide into 11 goal specification tasks, 5 primitive tasks,

and 7 composite tasks. For each goal specification task I discussed one or more default

methods, thus providing a complete problem solver, gen-design-psm. This problem

Design-from-focus

Try-design-operator

New-design-state

Evaluate-design-state

Composite Task)

[primitive Tas)

oaI Specification

Generic-subtask-of

+

Method-mediated
Generic-subtask-of

Legend

Select-design-operator
- .-	 -

Try-design-extension-operator

Chapter 7	 Page 172

solver implements a simple depth-first control with chronological backtracking and uses

both application-specific knowledge and domain-independent heuristics to guide focus

(i.e. parameter) and operator selection.

Parametric-Design

Gen-design-psm

Gen-design-control

Initialise-design-space	 Select-design-state	 Design-from-state	 Reflect-design-state
.	 .-.

Extend-incomplete-state
New-design-state

Generate-successor-state

Collect-state-foci 	 Design-from-context	 (Resume-state j

Select-design-focus
	 Order-focus-operators

Update-search-control-record-on-focus-selectjon	 Collect-focus-operators

U pdate-search-control-record-o ri-locus-failure

Evaluate-consistency__J (luate-cornpleteness J	 luate-cost	 (_Evaluate-feasibility

Figure 7.6. Overall task-method hierarchy in generic design model.

Ultimately, reusable components can be validated in one of two ways: either by showing

that the proposed components subsume and therefore account for existing work in the

literature (i.e. the new components provide analytical leverage), or by showing that it is

possible to effectively reuse these components in different applications (engineering

Chapter 7	 Page 173

leverage). In the next two chapters I will provide empirical evidence that the components

developed in this work fulfil both the analytical and engineering roles, by showing that i)

it is possible to model a number of existing problem solving methods as refinements of

the proposed generic model; ii) it is possible to characterize task models of well known

applications in terms of the parametric design ontology given in chapter 5 and iii) that the

problem solving components developed in this work can be effectively reused to build

parametric design applications.

7.5 COMPARISON WITH OTHER APPROACHES

7.5.1 Comparison with DIDS toolkit

The task-centred aspects of the DIDS framework have already been discussed in section

6.5.2, where I compared the parametric design task ontology presented in the previous

chapter with the framework underlying the DIDS approach. In this section I will look at

the method-related aspects of the DIDS model and, in particular, I will compare the

problem solving model presented in this chapter with the library of DIDS mechanisms

and the overall 'design philosophy' characterizing the DIDS model.

The work presented here has a number of similarities with the DIDS approach. Both

frameworks are based on a view of design as search through a design space, and both the

DIDS researchers and I share the goal of generating a set of reusable components for

design applications. The set of knowledge types provided in the DIDS library is also

consistent with the one discussed here. It includes ordering knowledge which is a subset

of what I call focus selection knowledge, and preference knowledge which corresponds

to operator selection knowledge. In addition, the DIDS library includes connection and
arrangement knowledge, which is not included in my model.

A difference between the model presented here and the D1DS library of mechanisms is

that the latter aims to support full configuration design problem solving, while here I only

focus on parametric design problems. On the other hand I believe that both the approach

and the model presented here provide a number of advantages compared with the DIDS

approach and library of mechanisms. Specifically, the differences are as follows.

• The generic design model presented here is meant i) to subsume specific problem

solving methods for parametric design, and ii) to provide the basis for

implementing a shell supporting rapid development of applications through reuse.

The same claim cannot be made for the DIDS framework, which plays essentially

an engineering role. It is easy to see the difference by looking at the integration of

fixes in the DIDS framework and in the one presented here. Fixes can be

integrated in DIDS by adding a suitable mechanism - add-part-using-fixes (Runkel

Ct al., 1996). The problem with this solution is that the proposed mechanism

Chapter 7
	

Page 174

carries out several functions: it adds a value to a parameter and checks whether a

constraint is violated; if this is the case, then it applies fixes to remove the

inconsistency. This approach of course raises questions about the granularity of

the mechanisms, and about the design principles underlying the DIDS library.

More importantly, it makes it harder - for example - to experiment with different

variants of propose and revise. For instance, we might want to fix the constraint

violations only after the model has been completed - CMR architecture (Motta et

al., 1996). In order to do this we would need to change the DIDS mechanism,

even if it is only a change to the control regime: the basic fix application procedure

remains the same. In contrast with the DIDS approach, my framework makes it

possible to characterize a fix as a specialization of a design operator, which is

invoked when designing from an inconsistent state. Thus, adding fixes to the

model only requires specializing the class of design operators and specifying the

conditions under which fixes should be applied. As a result, it becomes easier to

experiment with alternative control regimes. Moreover, the fix mechanism is

provided a clear computational semantics in terms of the search paradigm.

• The framework proposed here is 'rich' in the sense that it is formulated through a

process of ontological engineering. This 'richness' affords several advantages:

the framework can support verification of application knowledge and provides a

formal basis for reuse.

• A third important difference between my approach and the DIDS one is that we

seem to subscribe to alternative views of what constitutes reuse. For the DIDS

researchers reuse consists of providing a very general problem solving model.

However, the price for such generality is inefficiency - see solution #1 to VT

problem (Runkel et al., 1996). In contrast with the DIDS approach, I believe that

supporting reuse consists of providing a rich set of reusable mechanisms, which

can be used in different problem solving scenarios to develop efficient problem

solvers. This set is not meant to be minimal. On the contrary, it is meant to be

maximal and provide adequate leverage for developing efficient reasoners. For this

reason my framework proposes a much more fine-grained breakdown of

parametric design tasks than afforded by the DIDS tools. Moreover, as I will

discuss in the next chapter, I have expanded the set of reusable problem solving

components presented here by generating additional components as required by

more specific problem solving methods.

• Finally, although the DIDS researchers claim to have based their framework on a

model of design as search, it is not clear what are the principles which underline

the DIDS approach to identify reusable mechanisms. As discussed above in the

case of add-part-with-fixes, some of these mechanisms seem to be quite coarse-

Chapter 7	 Page 175

grained. Moreover, while the DIDS researchers give the impression that

mechanisms are essentially functionally defined components, the DIDS library

includes mechanisms such as "chronological-backtrack", which provide simple

control. In contrast with DIDS, here I have followed a top-down approach, which

started with the task ontology and the search paradigm, and was then refined by

introducing the notions of design context and design focus.

7.5.2 Comparison with Chandrasekaran

In a very influential paper, Chandrasekaran (1990) carried out a task analysis of design

problem solving in which he discusses a generic Propose-Verify-Critique-Modify class of

methods (PVCM) and constructs a task-method hierarchy, which associates a number of

methods to each subtask of the generic PVCM class. For instance he discusses

simulation methods for design verification and the application of case-based and

constraint satisfaction techniques to design extension. For each method, Chandrasekaran

briefly describes its knowledge requirements and computational properties.

The main difference between Chandrasekaran's analysis and mine is of course one of

granularity. His analysis is carried out at a much higher level of abstraction than the one

adopted here. While my goal is to provide a fine-grained, formally specified reusable

problem solving model for parametric design, Chandrasekaran's analysis is concerned

with characterizing the topmost level of the task-method structure of design problem

solving. Nevertheless, the basic philosophy which underlines Chandrasekaran's work

also applies to the work presented here. Specifically, this can be seen as an attempt to

instantiate some of Chandrasekaran's ideas - e.g., the use of task analysis to study

problem solving, the knowledge-intensive nature of design problem solving - in a

precisely defined subset of the space of design applications.

7.5.3 Comparison with constraint satisfaction approaches

Design problems in general and parametric design problem in particular can be viewed as

constraint satisfaction problems and solved by means of constraint satisfaction techniques

(Flemming et al., 1992).

The main difference between the approach formulated here and constraint satisfaction

techniques is that, in contrast with the latter, the former subscribes to a knowledge-based

view of problem solving, where knowledge is brought in to tackle complexity

(Feigenbaum, 1977). Thus, the main goal of the proposed model is to identify the

knowledge-intensive tasks and types of application-specific knowledge, which can be

exploited during parametric design problem solving. In contrast with this approach,

researchers in constraint satisfaction develop efficient algorithms, which can be directly

applied to solve problems formulated as networks of constraints. Thus, there is a

Chapter 7	 Page 176

fundamental distinction in the goals driving research in knowledge modelling and

research in constraint satisfaction. Of course, like other researchers who subscribe to the

knowledge-centred paradigm, I believe that "the combinatorics of complex problems can

best be handled through the use of domain-specific knowledge" (Wielinga and Schreiber,

1997).

Nevertheless, as demonstrated throughout the chapter, it is possible to integrate the

results from the constraint satisfaction literature within a knowledge-intensive framework.

For instance, I have shown that - assuming that the relevant knowledge about possible

values for unbound parameters is available - techniques such as DSR, which have been

developed in the constraint satisfaction literature, can be used to support domain-

independent, least commitment strategies.

Chapter 8.
Problem Solving Methods for Parametric Design

In this chapter I discuss a number of problem solving methods for
parametric design, constructed by specializing the generic problem
solving model presented in the previous chapter. Thus, the proposed
model is proven adequate for characterizing a number of approaches
to parametric design problem solving. Moreover, the resulting,
uniform view of parametric design provides i) a generic framework
suitable for comparing and contrasting different methods, ii) an
organizational schema providing the overall structure of a library of
reusable problem solving components and iii) a search-centred
interpretation model which can be used to understand the problem
solving role played by the mechanisms and knowledge structures
employed by problem solving methods - e.g. the fix mechanism in
Propose &Revise.

8.1 INTRODUCTION

In the previous chapter I illustrated a model of parametric design problem solving, which

is informed by the parametric design task ontology and by the view of design as search.

This model comprises a number of generic tasks, which provide useful building blocks

for re-engineering existing problem solving methods for parametric design and for

constructing new ones. Moreover, the proposed model also fulfils a practical role, as it

can be configured to provide a particular problem solving method for parametric design,

Gen-design-psm'.

In this chapter I will substantiate the claim concerning the analytical leverage provided by

the generic problem solving model, by constructing a number of problem solving

methods for parametric design as specializations of the model. In particular the goal here

1 In what follows I will use the term 'Gen-design-psm' both to refer to the 'generic problem solving

model' (i.e. the set of generic tasks for parametric design introduced in the previous chapter) and to

refer to the problem solving method which can be constructed by solving the goal specification tasks

included in the generic model by means of the (specific) methods discussed in the previous chapter. In

general, it should be apparent from the context of the discussion whether the term is being used to

refer to the model or the problem solving method.

Chapter 8	 Page 178

is to show that this uniform view of problem solving methods provides a number of

advantages, including: i) a generic framework suitable for comparing and contrasting

different methods, ii) an organizational schema providing the overall structure of a library

of reusable problem solving components and iii) a search-centred interpretation model

which can be used to understand the problem solving role played by the mechanisms and

knowledge structures employed by problem solving methods - e.g. the fix mechanism in

Propose&Revise.

8.2 CHARACTERIZING PROBLEM SOLVING METHODS

In order to facilitate the analysis and comparison of alternative problem solving methods,

I will make use of a method description framework, which is based on the model

presented in the previous chapter. The framework highlights the main types of

application-specific knowledge required by a problem solving method, say M, as well as

the strategies used by M to carry out the main knowledge-intensive tasks presented in the

previous chapter. Specifically, the framework consists of the following thirteen fields.

• Problem Solving Knowledge. The generic classes of application-specific

knowledge required by a method. For the sake of brevity this field does not

include the knowledge roles associated with the specification of the parametric

design generic task - e.g. constraints. That is, I will assume that each method

subscribes to the parametric design task ontology presented in chapter 6.

Moreover, when describing this field I will not consider either mapping knowledge

or design operators. The reason for excluding mapping knowledge is that this

knowledge is not brought in to tackle problem solving complexity, but is rather a

consequence of the domain-independence of the method specifications. Because

all methods are characterized in a domain-independent style, they all require

mapping knowledge. Thus, this type of knowledge does not help distinguishing

between different methods and, in any case, plays a methodological rather than

problem solving role. Design operators are also, in a sense, 'special', given that

all methods require them. Thus, they will be treated in a separate field - see below

- which indicates the kinds of design operators used by a method. If a method

does not require some knowledge role introduced in the parametric design task

ontology, e.g. some methods do not require a cost function, this aspect will be

explicitly highlighted in the description of this field.

• Constraint Types. The types of constraints identified by a method. For

instance, Propose&Revise distinguishes between fixable and non-fixable

constraints.

Chapter 8
	

Page 179

• Additional Subtasks. The subtasks introduced by a method which are not

present in Gen-design-psm.

• State-Based Control. The control regime used to carry out task design-

from-state.

• Contexts. The contexts considered by a method.

• Focus Types. The types of design foci considered by a method.

• Focus Selection Policy. The strategy used to select a design focus.

• Design Operator Types. The types of design operators considered by a

method.

• Design Operator Order Policy. The strategy used to decide the order in

which the design operators applicable to the current focus are tried.

• Available Design Space. This field indicates what subset of the design space

is used as an input to the state selection task. For example, the design space

considered by a design method based on a 'strict' hill climbing strategy (i.e. one

admitting no backtracking) can be characterized as comprising all and only the

maximally extensive design states. Other methods, for instance A*, consider the

total search space explored so far, with no additional filtering. When

characterizing the design space considered by a method I will make an assumption

of rationality, i.e. I will implicitly assume that all the states marked as 'dead ends'

are not part of the input space.

• State Selection Policy. The strategy used to decide which state to expand, at

each cycle of the selectlexpand/evaluate control regime.

• Completeness. Is the method complete? That is, will it guarantee to find a

solution if this exists?

• Optimality. Does it take into account cost-related aspects?

Table 8.1 shows the result of applying the method description template to Gen-design-

psm. This problem solving method makes use of focus and operator selection

knowledge, as well as knowledge which allows a problem solver to determine

dynamically, for an unbound parameter, the set of feasible assignments. It is interesting

to note that, as a consequence of the state-based control regime used by Gen-design-psm,

this method does not require a global cost function. At each cycle of the design process,

the state selection mechanism always returns at most one consistent and maximal state.

Therefore, any further, cost-based discrimination is unnecessary.

Chapter 8
	

Page 180

Method Class	 Gen-design-psm

Problem Solving Knowledge Focus Selection Knowledge

Operator Selection Knowledge

Available Parameter Values (required by DSR strategy)

(Cost Function not needed)

Constraint Types	 Constraint

Additional Subtasks	 None

State-Based Control	 Extend Incomplete State

Contexts	 Extend

Focus Types	 Parameter

Focus Selection Policy	 DSR strategy + Focus Selection Knowledge

Design Operator Types 	 Design Extension Operator

Design Operator	 Operator Selection Knowledge

Order Policy

Available Design Space	 All feasible states generated by the depth-first search

_________________________________ algorithm.

State Selection Policy	 1) Violated Constraints: No

_______________________________ 2) Design Model: Max

Completeness	 Yes

Optimality	 Local

Table 8.1. Synoptic description of Gen-design-psm

8.3 PROPOSE&BACKTRACK

Propose&Backtrack is the method used by Runkel et al. (1996), to solve the VT problem

without resorting to the use of fixes. This method implements a simple, depth-first

control regime in which, at each step of the design process, unassigned parts are selected

and assigned. The assignment is carried out by selecting a value from the value range of

the selected part. If the assignment results in an inconsistency, a different value for the

part is tried. If there are no values left, chronological backtracking is used to go back to a

consistent state. When deciding which value to assign to a part, Propose&Backtrack

assumes the existence of local preference knowledge, which is used to rank the available

Chapter 8
	

Page 181

parameter values. In the case of the VT application, this knowledge is based on the costs

assigned to the relevant procedures and fixes.

Method Class	 Propose&Backtrack

Problem Solving Knowledge Value Range Preference Knowledge

(Cost Function not needed)

Constraint Types	 Constraint

Additional Subtasks 	 None

State-Based Control	 Extend Incomplete State

Contexts	 Extend

Focus Types	 Parameter (Part)

Focus Selection Policy	 ?? (not enough information provided in the literature)

Design Operator Types 	 Design Extension Operator

Design Operator	 Use Value Range Preference Knowledge

Order Policy

Available Design Space 	 All feasible states generated by the depth-first search

_________________________________ algorithm.

State Selection Policy	 1) Violated Constraints: No

2) Design Model: Max

Completeness	 Yes

Optimality	 Local

Table 8.2. Synoptic description of Propose&Backtrack

Table 8.2 shows the main features of Propose&Backtrack in terms of the proposed

framework. These are discussed below.

Problem Solving Knowledge. Propose&Backtrack makes use of preference

knowledge to prioritize the values available for a given parameter. This knowledge

can be seen as a special case of the operator preference knowledge discussed in

section 7.2.2.2.

Constraint Types. Propose&Backtrack uses constraints only to check whether an

assignment is consistent. The definition of class constraint included in the

parametric design task ontology is sufficient to guarantee this functionality.

Additional Subtasks. None required.

Chapter 8
	

Page 182

State-Based Control. Propose&Backtrack uses the same control regime as Gen-

design-psm. If the current state is incomplete, then a successor state is generated by

means of a design extension operator. If a constraint violation is encountered, then

the method backtracks to the previous state.

Contexts. Only one context is considered by Propose&Backtrack, : extend.

Focus Types. Only one type of foci is needed by Propose&Backtrack: parameters.

Focus Selection Policy. The available descriptions do not provide enough

information on this aspect of the method. Given the constraint satisfaction viewpoint

adopted by the DIDS researchers it is expected that techniques like DSR are exploited

to choose which part to assign next.

Design Operator Types. Only design extension operators are required by

Propose&Backtrack. In practice there is a one-to-one mapping between operators and

parameter values.

Design Operator Order Policy. Operators map to parameter values and these are

prioritized by means of value range preference knowledge.

Available Design Space. This comprises all the feasible states generated by

means of the depth-first search control regime.

State Selection Policy. At each cycle of the design process Propose&Backtrack

selects the maximally extensive consistent state in the design space. Because of the

state-based control regime used by the method, only one consistent and feasible state

can exist at each moment, for a given size of design model. Therefore there is no

need for a cost-based state selection mechanism.

Completeness. Propose&Backtrack employs a complete, depth-first search

method, which will eventually find a solution, if this exists.

Optimality. Propose&Backtrack is a greedy algorithm which uses local preference

knowledge about parameter values to make locally optimal steps. Of course, this

local optimality is subject to horizon effects.

In summary Propose&Backtrack is a simple refinement of Gen-design-psm. Like the

latter, Propose&Backtrack relies on local preference knowledge, to perform 'good'

design extensions, and on chronological backtracking, to explore alternative paths, in

case an inconsistency or a dead end is encountered. Therefore, its performance relies on

two crucial aspects of the problem: i) that the available local preference knowledge is

effective in guiding the search process and ii) that the problem exhibits only a weakly
connected (Sadeh and Fox, 1996) constraint network. These are pretty strong

assumptions, which are rarely jointly satisfied, except in relatively simple parametric

Chapter 8	 Page 183

design problems (like, for instance, the Sisyphus-I office allocation problem). For

example, the control regime used by Propose&Backtrack, chronological backtracking, is

too weak to tackle VT efficiently (Runkel et al., 1996). Moreover, experimental results

from the KMI office allocation problem - see next chapter - suggest that the available local

control knowledge (e.g. focus and operator selection knowledge) does not provide

enough guidance to achieve good solutions by means of a Propose&Backtrack approach.

8.4 HILL-CLIMBING

A straightforward refinement of Gen-design-psm can be constructed by replacing its

state-based control regime (extend-incomplete-state) with one based on a hill

climbing approach - see definition of method hc-control in the box below.

(def-class HC-CONTROL (decomposition-method)
((has-input-role :value has-design-state

:value has-design-context)
(has-output-role : value has-successors)
(has-design-state : type design-state)
(has-successors :type list

:default-value nil)
(has-design-context : type design-context

default-value extend)
(has-goal-express ion
:value (kappa (?task ?s)

(state- fully-expanded
(role-value ?task has-design-state))))

(has-body
value
(lambda (?psm)

(in-environment
((?state . (role-value ?psm has-design-state))
(?design-model . (the ?dm (has-design-model

?state ?dm)))
(?constraints . (role-value ?psm has-constraints))
(?parameters . (role-value ?psm has-parameters)))

(if (deadend-state ?state)
nothing
(if (constraint-violations ?state ?constraints)
(tell (deadend-state ?state))
(if (state-complete ?state ?paraineters)

(tell (solution-state ?state))
(achieve-generic-subtask

?psm generate-all-successors
has-design-state (role-value ?psm has-design-state)
has-design-context (role-value

?psm has-design-context)))))))))

own-slots ((tackles-task-type design-from-state)
(has-generic-subtasks (generate-all-successors))))

As shown by the above definition, the difference between the state control required to

model a hill climbing approach and the one used by Gen-design-psm is simply that the

former generates all successors of the current state, while the latter generates just one. In

Chapter 8	 Page 184

particular, given the control regime defined by method Hc-control, the 'hill climbing-

type' behaviour can be achieved by using cost evaluation as the final criterion to choose

from all the states generated at a particular cycle of the design process - see 'state selection

policy' field in table 8.3.

Hence, it is easy to see that both Gen-design-psm and hill climbing follow a similar

philosophy: a 'good' (if not optimal) solution can be in some cases achieved by

repeatedly making locally optimal steps. The difference between Gen-design-psm and

hill climbing concerns the approach taken to make these locally optimal steps. The former

relies on application-specific knowledge and domain-independent heuristics; the latter on

a more expansive (and expensive) search policy. Specifically, Gen-design-psm provides

slots for specifying focus and operator selection knowledge. If such knowledge is

assumed to be perfect, then the next best state will be selected. Hill climbing achieves the

same result by evaluating all possible successor states and then choosing the best one

according to the given evaluation function. Thus, it can be seen as an alternative to Gen-

design-psm for those application domains where local preference knowledge is not

available.

Table 8.3 summarizes the main features of the proposed hill climbing adaptation of the

generic parametric design model. In what follows, the resulting problem solving method

will be referred to as Hc-design.

As shown in the table (and already pointed out), the main difference between Hc-design

and Gen-design-psm is that the former does not require local preference knowledge,

replacing it with a more expensive state-based control regime. On average, this control

regime increases the size of the search space by a factor ((k - 1)! 2)d, where d is the depth

of the search tree and k is the average branching factor. On the one hand this situation is

paradigmatic of the trade-off between knowledge and complexity; on the other hand, this

comparison does not take into account the time spent deciding on the appropriate focus

and operator selection. If these tasks require a complex domain analysis, or if such

knowledge is not available, then hill-climbing becomes a feasible alternative.

The close connection between Gen-design-psm and Hc-design can also be seen by noting

that the two methods essentially subscribe to the same state selection policy. The main

difference is that, in the case of Gen-design-psm, the third step (minimizing cost) is

redundant as the first two are guaranteed to provide enough discriminatory power.

Nevertheless, if we assume that the local preference knowledge used by Gen-design-psm

always selects the next best state, then the two methods generate exactly the same search

space and explore it in the same sequence.

Chapter 8	 Page 185

Finally, it is easy to see that Hc-design can be transformed into a best-first search

algorithm (Rich and Knight, 1991) simply by swapping steps (2) and (3) in the state

selection policy.

Method Class	 He-design

Problem Solving Knowledge	 None (but uses Cost Function for evaluating state)

Constraint Types	 Constraint

Additional Subtasks	 HC-Control

State-Based Control	 HC-Control

Contexts	 Extend

Focus Types	 Parameter

Focus Selection Policy	 None (not needed)

Design Operator Types	 Design Extension Operator

Design Operator	 None (not needed)

Order Policy

Available Design Space 	 All feasible nodes generated so far.

State Selection Policy	 1) Violated Constraints: No

2) Design Model: Max

3) Cost: Mm

Completeness	 Yes

Optimality	 Local

Table 8.3. Synoptic description of 1k-design

8.5 A*BASED DESIGN

The A* algorithm (Rich and Knight, 1991) is another search strategy which can be easily

integrated into the given framework, to produce a problem solving method for parametric

design. This algorithm substitutes the state selection strategy used by hill climbing with

one attempting to achieve global optimality. Specifically, the A* algorithm makes use of

a heuristic cost function to estimate the distance between the current state and a solution.

The result is a generalized notion of state cost, which adds this heuristic estimate to the

result obtained by means of the 'ordinary' cost function. Thus, it is possible to avoid the

horizon effects typical of locally optimal search approaches, such as Gen-design-psm and

hill climbing.

Chapter 8	 Page 186

The box below shows the cost evaluation method used by an A*style design method (A-
star-design). This definition assumes the existence of an input role, has-cost-
estimate-function, defining the heuristic state evaluation function. The method

simply computes the current state cost and the estimated distance to a goal node and adds

these two measures by means of the relevant cost merging function. This is defined as

part of a parametric design task specification and is retrieved from the current parametric

design problem by means of the relation has-cost-sum- function.

(def-class A*_COST_EVALUATION (primitive-method) ?psm
((has-input-role :value has-cost-estimate-function)
(has-cost-estimate-function : type cost-function)
(has-body
:value (lambda (?psm)

(in-environment
((?task . (role-value ?psm has-current-task))
(?state . (role-value ?psm has-design-state))
(?design-model . (the ?dm (has-design-model

?state ?dm)))
(?cost-fun . (role-value ?psm has-cost-function))
(?h-cost-fun . (role-value

?psm has-cost-estimate-function))
(?add-fun . (the ?rel (has-cost-sum-function

?task ?rel)))
(?cost . (call ?add-fun

(call ?cost-fun ?design-model)
(call ?h-cost-furi ?design-model))))

(do
(tell (state-cost ?state ?cost))
?cost)))))

:own-slots ((tackles-task-type evaluate-cost)))

As shown in table 8.4, there are two main differences between A-star-design and Hc-

design, which are associated with cost evaluation and state selection. In both cases A-

star-design uses a global approach, while Hc-design uses a local one. In particular the

state selection criterion used by A* gives priority to cost over size of design model, in

contrast with hill climbing. This approach is of course much more expensive in principle

and therefore A* relies on the heuristic cost function - normally called the h function - to

try and focus the search process. The main requirement imposed on the h function is that

this should be 'optimistic' - i.e. it should never overestimate the distance to a goal node.

A heuristic function for which this property holds is called admissible. Gaschnig (1979)

analysed the behaviour of A* with various degrees of errors in the heuristic function and

found that, unless very precise heuristics are used, the complexity of the search space

becomes exponential in the worst case. The problem with A* is that such precise

heuristics are in practice very difficult to achieve, unless much is known about the

structure of the search space. As a result, it is very difficult to apply A* effectively to a

parametric design problem. However, as in the case of hill climbing it is possible to

make use of A*_style strategies to solve specific sub-problems, for which a good

Chapter 8	 Page 187

heuristic function can be defined. For example, in (Zdrahal and Motta, 1995) we discuss

a modification of a Propose&Revise problem solver, which applies A* to the design
revision process.

Method Class	 A-star-design

Problem Solving Knowledge	 Heuristic Cost Function

Constraint Types	 Constraint

Additional Subtasks	 HC-Control

State-Based Control 	 HC-Control

Contexts	 Extend

Focus Types	 Parameter

Focus Selection Policy	 None (not needed)

Design Operator Types	 Design Extension Operator

Design Operator	 None (not needed)

Order Policy

Available Design Space	 All feasible nodes generated so far.

State Selection Policy	 1) Violated Constraints: No

2) Cost: Mm

_______________________________ 3) Design Model: Max

Completeness	 Yes

Optimality	 Global

Table 8.4. Synoptic description of A-star-design

8.6 BEYOND UNIFORM APPROACHES TO PARAMETRIC DESIGN

The methods described in the previous sections (with the possible exception of Gen-

design-psm) only require limited amounts of application-specific knowledge. While this

property has the advantage of facilitating the knowledge acquisition process and the

applicability of the method in question, it often leads to poor performance - see e.g.

applications discussed in next chapter and also discussion by Runkel et al. (1996) on the

performance of Propose&Backtrack. Moreover, in the case of A-star-design, such

'limited knowledge' takes the form of a heuristic evaluation function, which is in practice

very difficult to define for a problem of some complexity. As pointed out when

discussing the role of search in problem solving, search is inevitable if we don't know

Chapter 8	 Page 188

how to reach a solution node directly. But typically, the reason for being unable to reach

a solution node directly is because our knowledge about the problem space is limited. In

these cases it is unlikely that we would be able to meet the requirements imposed by A*.

A second problem with the three methods discussed earlier concerns the reliance on a

uniform problem solving approach. As Stefik (1995) points out, "Seldom does a single

search method provide an adequate problem-solving framework for a complex task." In

particular a uniform problem solving approach inevitably restricts the types of problem

solving knowledge which can be applied to the problem. For this reason researchers

have developed problem solving methods which distinguish between multiple phases and

introduce a richer variety of knowledge structures. A famous example of such a method

(more precisely class of methods) in the design area is Propose&Revise (Marcus and

McDermott, 1989), which differentiates between design extension and revision and

introduces the appropriate knowledge roles for both phases.

In the next sections I will discuss two methods which are part of the parametric design

library, and which rely on a dual-context problem solving strategy. One of them is the

aforementioned Propose&Revise, the other is called Propose &Improve and can be used

for parametric design problems which require to achieve, or at least approximate, an

optimal solution. In order to model these methods I will introduce a second type of

design operators, called design modification operators. These are operators (such as

fixes) which modify, rather than extend, design models - i.e. which replace the values of

already bound parameters.

8.7 DESIGN MODIFICATION OPERATORS

Although it is possible to represent all kinds of operators in a homogeneous way, as

functions which map an input design model to an output one, it is useful to distinguish

between operators which play different roles in a problem solving model. For example,

in section 7.4.10.2 I defined a class of operators which model design extension steps.

Here, I will introduce a second class of operators, design-modification-operator,

which is meant to be used to 'correct' or 'improve' the values of bound parameters, in

cases where these parameters lead to inconsistencies or sub-optimal solutions.

The box below shows the basic type of design modification operator. Its body is defined

as a function which takes as inputs a design model, say ?dm, and a parameter, say ?p,

which is bound to some value, say ?v, in ?dm. The output is a design model, in which

?p is bound to a value other than ?v.

Chapter 8
	

Page 189

(def-class DESIGN-MODIFICATION-OPERATOR (design-operator)
"The body of a basic design modification operator is a
lambda expression which takes two arguments, a parameter
and a design model.
The output is a design model which differs from the input model
at least with respect to the input parameter"
((applicable-to-parameters
:default-value (setofall ?x (parameter ?x))
type function-expression
:documentation "An expression which returns the set

of parameters which can be modified
by means of this operator")

(body :type design-modification-operator-body)))

(def-class DESIGN-MODIFICATION-OPERATOR-BODY
(lambda-expression) 7x
:no-op (:constraint

(and (nth-domain ?x 1 parameter)
(nth-domain ?x 2 design-model)
(=> (= ?z (call ?x ?p ?d))

(and (design-model ?z)
(has-value ?p ?v ?d)
(not (has-value ?p ?v ?d)))))))

In order to integrate this class of operators with the problem solving model discussed in

the previous chapter we need a new method for task try-design-operator, applicable

when the selected operator is a design modification one. This method is defined in the

next box.

(def-class TRY-DESIGN-MODIFICATION-OPERATOR (primitive-method)
((has-body

value
(lambda (?psm)

(in-environment
((7dm . (role-value ?psm 'has-design-model))
(?focus . (role-value ?psm 'has-design-focus))
(?dm-new . (apply-design-modification-operator

?focus ?dm (role-value ?psm
has-design-operator))))

(if (not (= ?value :nothing))
(achieve-generic - subtask
?psm new-design-state
has-design-model ?dm-new))))))

:own-slots ((tackles-task-type try-design-operator)
(applicability-condition
(kappa (?task)

(design-modification-operator
(role-value
?task has-design-operator))))))

(def-function apply-design-modification-operator (?param ?dm ?op)
:body (apply-design-extension-operator ?param ?drn ?op))

Chapter 8	 Page 190

8.8 PROPOSE&IMPROVE

The basic idea underlying the Propose&Improve method is that global optimality can be

achieved or approximated by dividing the problem solving process into two phases: a first

one, which is concerned with finding a solution, and a second one, which attempts to

improve it. The method described here is similar 'in spirit' to approaches such as genetic

algorithms (Goldberg, 1989) or simulated annealing (Kirkpatrick et al., 1983), which

first generate (or attempt to generate) a solution quickly and then modify it to produce a

better one (or to add to the pooi of current solutions in the case of genetic algorithms).

Here I will instantiate this generic (and admittedly vague) idea of dividing problem

solving into a 'propose' and an 'improve' phase in the context of the proposed problem

solving framework for parametric design. In particular, in contrast with approaches such

as simulated annealing, which base the solution modification process on a random

perturbation of the solution parameters, the method proposed here grounds this process

on a detailed cost analysis of the current best solution. More precisely, it identifies the

solution components (i.e. parameters) which are currently most expensive, and then uses

specific improvement operators to modify their values.

8.8.1 Modelling Propose&Improve

As shown by the definition given in the following box, the Propose&Improve class of

problem solving methods refines Gen-design-psm in two ways: it introduces a new role -

has-parameter-cost-fun - and specializes the goal of a generic parametric design task

(which is to find a complete and valid design model), by introducing a criterion of p&i-

optimalily. This criterion provides a method-specific, operational interpretation of the

notion of optimal design model, which is expressed in non-operational terms in the task

ontology. In particular a solution state is said to be p&i-optimal if the method is unable to

find a better solution with limited computational resources. This criterion is represented

by stating that, if the current solution state cannot be improved, i.e. if this state has been

fully expanded, then the current solution is p&i-optimal.

Chapter 8	 Page 191

(def-class p&i-psm (gen-design-psm)
"The goal of a p&i method is to find a solution
which is 'p&i-optimal'. By this we mean that
the solution cannot be further improved by means of
the p&i method"
((has-input-role :value has-parameter-cost-fun)
(has-parameter-cost-fun type parameter-cost-fun)
(has-goal-expression
:value (kappa (?psm ?state)

(and (tackles-task ?psm ?task)
(p&i-optimal ?state ?task))))))

(def-relation p&i-optimal (?state ?task)
"We define a p&i-optimal state as a solution state which
has been fully expanded. If this is the case then it means we
have tried to improve it and failed"
:iff-def (and (has-design-model ?state ?dm)

(achieved ?task ?dm)
(state-fully-expanded ?state)))

Role has-parameter-cost--fun, in the definition of class p&i-psm, refers to

application-specific knowledge which can be used to identify the parameter (or set of

parameters) which is expensive in the current solution. That is, this definition states the

requirement for a detailed cost model, expressed in terms of the cost of each component.

A problem solver subscribing to this requirement is then able to use the detailed cost

model to identify which parts of the design model to try and improve.

The class of parameter cost functions is formally defined as follows.

(def-class parameter-cost-fun (binary-function)
"A parameter cost function computes the cost of
a parameter in a design model"
:constraint (and

(nthdomain ?fun 1 ?parameter)
(nthdomain ?fun 2 ?design-model)
(range ?fun ?cost)))

8.8.2 Task-method structure of Propose&Improve

The control method p&i-control, shown below, defines the state-based control of the

Propose&Improve method. This control regime is very similar to the one used by Gen-

design-psm. The only difference is that, when faced with a complete and consistent state,

P&i-design will try to improve on it, rather than simply declaring it a 'success' state. To

improve the current state, p&i-control simply calls the generic task generate-state-
successor in an : improve, rather than : extend context. Thus, both the design

extension and the design improvement phases are carried out by means of the same

sequence of subtasks; the differentiation between these two phases is achieved by

parametrizing a uniform control regime in terms of different design contexts. The

advantage of this approach is that it allows us to specify different focus and operator

(def-class P&I-CONTROL (decomposition-method)
((has-input-role :value has-design-state)
(has-output-role :value generates-design-state)
(has-design-state : type design-state)
(generates-design-state type design-state)
(has -body

:value
(lambda (?psm)
(in-environment
((?state . (role-value
(?design-model . (the

?psm has-design-state))
?dm (has-design-model

?state ?dm)))
(?constraints . (role-value ?psm has-constraints))
(?pararneters . (role-value ?psm has-parameters)))

(if (deadend-state ?state)
nothing
(if (constraint-violations ?state ?constraints)

(tell (deadend-state ?state))
(if (state-complete ?state ?parameters)

Chapter 8
	

Page 192

selection and collection mechanisms in a modular style, while keeping the same control

structure in both phases.

;;current model is complete, lets improve it
(achieve-generic-subtask
?psm
generate-state-successor
has-design-state ?state
has-design-context : improve)

;;current model is incomplete, lets extend it
(achieve-generic-subtask
?psm
generate-state-successor
has-design-state ?state
has-design-context : extend))))))))

own-slots ((tackles-task-type design-from-state)
(has-generic-subtasks generate-state-successor)))

In order to complete the task structure of the Propose&Improve design method it is

necessary to specify the mechanisms for carrying out focus and operator collection and

selection, which are relevant to an : improve context. These are described in the next

sections.

8.8.2.1 Focus collection in : improve context

All parameters are potentially foci for improvement, and therefore the default method for

foci collection simply returns all design parameters.

Chapter 8
	

Page 193

(def-class collect-all-parameters (primitive-method)
((has-body
:value (lambda (?psm)

(role-value ?psm has-parameters))

own-slots ((tackles-task-type collect-state-foci)
(applicability-condition
(kappa (?task)

(= (role-value ?task 'has-design-context)
:improve)))))))

8.8.2.2 Focus selection in improve context

In general, application specific knowledge is needed to infer which part of the design to

try and improve, without increasing the overall cost of the design. If this knowledge is

not available, a good default is to select the currently most expensive part.

(def-class SELECT-MOST-EXPENSWE-PARPTER (primitive-method)
((has-body

:value (lambda (?psm)
(the-most-expensive-parameter
(role-value ?psm has-design-foci)
(the ?dm (has-design-model

(role-value ?psm has-design-state)
?dm))

(role-value ?psm has-parameter-cost-fun)))))
own-slots ((tackles-task-type select-design-focus)

(applicability-condition
(kappa (?task)

(= (role-value ?task has-design-context)
:improve)))))

8.8.2.3 Operator collection and selection in : improve context

Given a specific parameter, say p, the operators which are potentially useful are the

design modification operators which are applicable to p.

Chapter 8
	

Page 194

(def-class Collect-design-modification-operators (primitive-method)
((has-body

:value
(lambda (?psm)

(setofall ?op
(and (design-modification-operator

?op
applicable-to-parameters ?l)
(member (role-value ?psm 'has-design-focus)

(eval ?1)))))))

:own-slots ((tackles-task-type collect-focus-operators)
(applicability-condition
(kappa
(?task)
(and (= :improve

(role-value
?task 'has-design-context))

(parameter
(role-value
?task 'has-design-focus)))))))

As far as operator selection is concerned, there is no need to provide a specialized method

for an : improve context. We can assume that application-specific, operator preference

knowledge is available both for design extension and design modification operators.

8.8.3 Analysis of Propose&Improve

As shown in table 8.5, the design-centred adaptation of Propose&Improve presented here

provides a greater range of knowledge roles than any of the methods described in the

previous sections. It divides the design process in two phases. The first phase consists

of a straightforward extend-and-backtrack process, which is modelled on Gen-design-

psm. This process guarantees that a solution is found, if it exists, and uses local

preference knowledge to try and approximate an optimal solution. Once a solution is

reached, a (global) hill climbing-type approach is adopted, which tries to improve the

solution until one is generated which cannot be bettered by means of the available

operators. However, it is important to note that, in contrast with Hc-design, the strategy

used by P&i-design does not backtrack during the design improvement phase. If it is not

possible to improve on the current best solution, then the method stops and returns it.

The reason for this strategy is that to allow backtracking during the improvement phase is

essentially the same as carrying out a complete search over the space of possible

improvements. Of course, this would be normally very inefficient, given the large space

of parameters and the small probability that improvements will be found by modifying all

but a small subset of expensive parameters. For this reason, the specification proposed

here does away with backtracking. However, it is possible also to envisage alternative

solutions, which allow limited backtracking, by introducing tighter foci collection policies

Chapter 8	 Page 195

(e.g. considering only the parameters over a certain threshold) and improvement cut-off

limits (e.g. rejecting all improvements which fall below a certain threshold).

Propose&Improve is particularly suitable for parametric design problems in which

optimality is an important solution criterion and which are characterized by a dynamic cost

function - i.e. a cost function in which the cost of an assignment can only be fully

evaluated once a number of other assignments have been completed. This situation often

arises in resource assignment problems, such as timetabling and office allocation (Poeck

and Puppe, 1992). In the next section I will illustrate this point by discussing the

application of P&i-design to the KMI office allocation problem, an application

characterized by a dynamic cost function and by a strong optimaJity criterion.

Chapter 8
	

Page 196

Method Class	 Propose&Improve

Problem Solving Knowledge Focus Selection Knowledge

Operator Selection Knowledge

Available Parameter Values

Detailed Cost Function

Constraint Types	 Constraint

Additional Subtasks	 Improve-design

State-Based Control	 Extend-design + Improve-design

Contexts	 Extend, Improve

Focus Types	 Parameter

Focus Selection Policy	 Open (Extend)

Most expensive (Improve)

Design Operator Types	 Design Extension Operator

________________________________ Design Modification Operator

Design Operator	 Operator Preference Knowledge

Order Policy

Available Design Space	 All feasible nodes generated so far (Propose)

_________________________________ Currently best state (Improve)

State Selection Policy	 1) Violated Constraints: No

2) Design Model: Max

_______________________________ 3) Cost: Mm

Completeness	 Yes (solution)

No (optimal solution)

Optimality	 Both local and global (not guaranteed)

Table 8.5. Synoptic description of Propose&Improve

8.9 PROPOSE&REVISE

8.9.1 Introduction

Propose&Revise is one of the role-limiting methods included in the library developed at

the end of the eighties by McDermott's group (Marcus, 1988). This method informed the

architecture of the SALT knowledge acquisition tool (Marcus and McDermott 1989) and

Chapter 8	 Page 197

was used for solving i) the VT elevator design application (Marcus et a!., 1988; Yost and

Rothenfluh, 1996) and ii) a flow-shop scheduling problem (Stout et al., 1988).

In this section I will carry out a 'rational reconstruction' of Propose&Revise,

characterizing it in terms of the generic model of parametric design problem solving

presented in the previous chapter. However, in contrast with other analyses of

Propose&Revise which exist in the literature (Fensel, 1995b; Wielinga et al., 1995; Motta

et al., 1994b), my aim here is not just to produce a knowledge-level description of

Marcus' role-limiting method, but rather to tease out and formalize the essential elements

of a generic Propose&Revise problem solver. Hence, rather than producing the

specification of a particular method, the analysis conducted here will characterize a class

of methods, the P&R-class, whose elements share the essential properties of a

Propose&Revise model of problem solving and are distinguished on the basis of finer-

grained properties. The advantage of this approach is twofold: i) it helps clarifying the

nature of Propose&Revise problem solving, in particular abstracting from the sometimes

idiosyncratic design decisions which were included in Marcus' original method and ii)

provides a generic template which can be instantiated in several different ways, to

produce alternative P&R-type methods. As a result this analysis affords a better

understanding of the space of Propose&Revise methods. For instance it highlights the

reasons for choosing alternative modelling solutions and the trade-offs between different

approaches.

To avoid possible terminological confusion, in what follows I will use the term

Propose&Revise as a generic name for a method in the P&R-class and P&R-Marcus to

refer to the original role-limiting method.

8.9.2 Differentiating Propose& Revise

The basic feature of a Propose&Revise method is that it divides the design process into

two main subtasks, propose and revise. The former is carried out in order to extend

incomplete, but consistent designs; the latter to restore consistency (i.e. to remove the

relevant constraint violations). Obviously, given that all the methods discussed

previously also include a design extension activity (i.e., a propose task), it is clear that the

main difference between Propose&Revise and other classes of methods is related to

design revision. Specifically, all the methods presented in sections 8.3-8.8 follow the

same consistency-centred approach to problem solving: when an inconsistent state is

encountered, this is marked as no good and an alternative, consistent state is selected. In

contrast with these methods, a Propose&Revise problem solver operates on inconsistent

states directly, by means of special-purpose design modification operators, usually called

fixes. Thus, at a coarse-grained level of description, we can differentiate the P&R-class

from other classes of methods in terms of three different viewpoints.

Chapter 8
	

Page 198

• Knowledge Viewpoint. From a knowledge-centred point of view the main

difference between Propose&Revise and other methods is that this introduces a

class of design modification operators which operate on inconsistent states and

whose purpose is to remove constraint violations. All the other methods discussed

so far simply discard inconsistent states.

• Control Viewpoint. From a control viewpoint Propose&Revise can be seen as

performing knowledge-based (Marcus et al., 1988), rather than general-purpose

backtracking.

• State-centred Viewpoint. All the approaches discussed in the previous

sections assume that only consistent states can be found on a solution path (i.e. a

path from an initial to a goal state). Propose&Revise does away with this

assumption, by providing mechanisms which support state transitions from

inconsistent to consistent states.

Of the three viewpoints presented above, the state-centred one is a particularly interesting

one, as it highlights the fact that a Propose&Revise problem solver does away with the

consistency-centred approach used by all the other methods. This aspect is important also

from a cognitive point of view given that consistency-first approaches are at odds with

much literature on design problem solving, which characterizes this process as one in

which partially correct designs are iteratively revised (Chandrasekaran, 1990; Cross et

a!., 1993).

In summary a preliminary, coarse-grained analysis of Propose&Revise shows that, by

introducing fixes and a design revision task, this class of methods introduces the

important novel principle that inconsistent states can also be the object of the design

process. This principle of constraint violation tolerance opens up a number of possible

strategies for design problem solving. For instance this principle can be instantiated in

case-based design by relaxing the constraint that only consistent design models need to be

stored in a library of cases. In such a scenario, a case-based design problem solver could

select the design model in the library which most closely match the current specification

(Zdrahal and Motta, 1996), regardless of consistency issues, and then repair eventual

inconsistencies by means of repair methods (Minton et a!., 1992).

In the next section I will introduce the basic modelling constructs required to define a

Propose&Revise problem solver as a refinement of the Gen-design-psm model.

8.9.3 Introducing fixes.

The box below shows ontologically minimal definitions of fixes and fixable constraints: a

fix is simply a design modification operator associated with one or more constraint

violations; a fixable constraint is a constraint for which a fix has been defined. This

Chapter 8	 Page 199

definition specifies that the only important aspect of a fix is its association to a constraint

and does not introduce any further modelling commitments.

(def-class DESIGN-FIX (design-modification-operator)
((applicable-to-constraints

type function-expression
:documentation "An expression which returns the set

of constraints which can be solved by
this fix")))

(def-class FIXABLE-CONSTRAINT (constraint) ?x
"A fixable constraint is a constraint which
can be fixed by some relevant design fix"
:iff-def (exists

(and (design-fix ?f)
(member ?x (the ?l

(applicable-to-constraints ?f ?l))))))

8.9.4 Task-method structure of Propose&Revise

8.9.4.1 EMRvs. CMR architectures

The control regime used by P&R-Marcus attempts to fix inconsistencies as soon as these

are encountered. In particular, any transition between two inconsistent states is

considered 'nogood', unless it monotonically reduces the number of constraint

violations.2 A diagrammatic representation of the behaviour of P&R-Marcus is shown in

figure 8.1. Here I use white-filled circles, to indicate consistent design states, and black-

filled ones, to indicate inconsistent ones. The diameter of a black-filled node gives an

indication of the number of constraints violated by the associated state. As shown in the

figure, fix applications which do not decrease the number of constraint violations are

rejected - these are marked with a square. Thus, in a sense, the P&R-Marcus approach

only 'timidly' moves away from consistency-centred approaches; while inconsistent

states can be part of a solution path, the method tries to minimize their occurrence in a

solution path.

2 This is only an approximation of the behaviour of Marcus' EMR architecture, which rejects any fix

application which either fails to resolve the currently selected constraint violation or introduces a new

violation (Yost and Rothenfluh, 1996). Thus, it is possible in principle to construct scenarios in

which EMR rejects fix applications which monotonically reduce the number of constraint violations.

For instance let's consider a situation in which two constraint violations, cv 1 and cv2, are violated in

state s1 and the application of a fix produces a new state, Sj where cvi and cv2 are satisfied but a third

constraint, cv3 , is violated. In such a case EMR will discard Sj despite the fact that the State

transition has monotonically decreased the number of constraint violations.

Chapter 8
	

Page 200

'0—v
soc<

S
soil

0ssoi2

)35s03

Figure 8.1. Design space in P&R-Marcus problem solving.

In (Motta et al., 1994b) we dubbed this control regime Extend-Model-then-Revise

(EMR). An alternative to EMR is the Complete-Model-then-Revise (CMR) approach, in

which revision only takes place once the design model has been completed. An

advantage of CMR is that, because all constraint violations are tackled after the

completion of the design extension process, it is therefore possible to reason about the

relations between constraints, parameters and fixes, and about the fix application process

itself. For instance it is possible in a CMR approach to make use of techniques such as

the mm-conflict heuristic, which improve the efficiency of the constraint satisfaction

process in the average case (Minton et al., 1992). In particular we used a CMR approach

when developing a solution to the Sisyphus-Il VT elevator design problem (Motta et a!.,

1994b; 1996).

8.9.4.2 Modelling Propose &Revise control regimes

The EMR and CMR control regimes can be modelled by introducing a new subtask,

revise-design, and modifying the control regime used by gen-design-psm, so that

this new subtask is invoked when constraint violations occur. Here I will only give the

definition of ernr-control; crnr-control can be defined trivially by swapping the order

in which the completeness and constraint violations checks are carried out.

:value
(lambda (?psm)

(in-environment
((?state . (role-value
(?design-model . (the

(?constraints . (role-
(?parameters . (role-v

Chapter 8
	

Page 201

(def-class emr-control (decomposition-method)
((has-input-role :value has-design-state)
(has-output-role :value generates-design-state)
(has-design--state : type design-state)
(generates-design-state type design-state)
(has -body

?psm has-design-state))
?din (has-design-model

?state ?dm)))
value ?psm has-constraints))
alue ?psrn has-parameters)))

(if (deadend-state ?state)
nothing
(if (constraint-violations ?state ?constraints)

;;if constraints are violated we invoke task revise-
design

(achieve-generic-subtask
?psm
revise-design
has-design-state ?state)

(if (state-complete ?state ?pararneters)
(tell (solution-state ?state))

;;if no constraints are violated and the design is
;;incomplete, we extend it.

(achieve-generic-subtask
?psm
generate-state-successor
has-design-state ?state
has-design-context : extend))))))))

own-slots ((tackles-task-type design-from-state)
(has-generic-subtasks generate-state-successor

revise-design)))

Design revision is about moving from a consistent to an inconsistent state: the definition

below captures this goal-centred specification of the task, which is independent of

specific design revision strategies.

(def-class REVISE-DESIGN (goal-specification-task)
"The goal of the task revise-design is to
move to an output state which is consistent"
((has-input-role :value has-design-state)
(has-output-role :value has-output-state)
(has-output-state : type design-state)
(has-design-state : type design-state)
(has-goal-express ion
:value (kappa (?task ?s)

(and (design-state ?s)
(not (constraint-violations

?task

?s ?any))))))

Chapter 8	 Page 202

8.9.5 Methods for design revision

In general there are a number of approaches which can be taken when carrying out design

revisions. The mechanisms presented in this section provide i) different ways of

searching a revision space and ii) alternative success criteria. By the term 'revision space'

I indicate the sub-design space defined by the application of fixes. Obviously it could be

possible to define this library of design revision methods in a functional style, as

inferences which do not introduce local search control. In this case the search control

mechanism defined by the state selection policy used by a problem solver would apply to

the design revision phase as well. However, it is advantageous to decouple the search

policy used during design revision from that used for the overall problem solving

method. This approach provides for a more flexible framework for Propose&Revise

problem solving, which makes it possible to mix and match revision strategies and

generic search methods - e.g. to mix an A*type approach for the overall problem solver

with different methods for design revisions.

8.9.5.1 One-step revision

This approach consists of applying all the relevant fixes until a consistent successor state

is generated. That is, the method succeeds only if the inconsistency can be solved with

one move over the state space. In general this method is appropriate only if there is just

one constraint violation associated with the current state. If multiple constraint violations

occur, then a number of state transitions are usually needed to restore consistency.

Hence, this method is quite primitive: normally sequences of inconsistent states are

acceptable if, for instance, the trend is positive - i.e. the number of constraint violations

decreases with each state transition. This method can be defined as follows.

Chapter 8
	

Page 203

(def-class ONE-STEP-REVISION (primitive-method)
((has-body

:value (lambda (?psm)
(REPEAT
(in-environment
((?input . (role-value ?psm has-design-state))
(?output . (achieve-generic-subtask

?psm
generate-state-successor
has-design-state ?input
has-design-context :revise)))

(if (achieved ?psm ?output)
(RETURN ?output)))))))

:own-slots ((has-generic-subtasks (generate-state-successor))
(tackles-task-type revise-design)
(applicability-condition
;;this method is only useful if there is only one
;;constraint violation in the current design state

(kappa (?task)
(in-environment
((?input . (role-value

?task has-design-state)))
(= (cardinality

(the ?cs (constraint-violations
?state ?cs)))

1))))))

8.9.5.2 Focus-centred revision

The previous method is applicable to scenarios where there is only one constraint

violation, say ?c, and succeeds only if there exists a fix, whose application removes ?c

without causing new constraint violations. This method can be generalized to situations

in which multiple constraints are violated, by replacing its halting condition with one

which stops the fix application process as soon as the current focus is solved. This new

method, called try-fix-focus, can therefore be used in situations in which there are

multiple constraint violations. The idea is that as long as we can fix one of these, then a

state transition in the revision space is acceptable. The method is defined as follows.

Chapter 8	 Page 204

(def-class TRY-FIX-FOCUS (primitive-method)
((has-body

:value (lambda (?psm)
(REPEAT

(in-environment
((?input . (role-value ?psm has-design-state))
(?output . (achieve-generic-subtask

?psm
generate- state-successor
has-design-state ?input
has-design-context :revise)))

(if (design-state ?output)
(in-environment
((?record . (the-state-search-control-record

?state))
(?focus . (the-slot-value

?record 'has-design-focus))
(?drn . (the-slot-value

?output has-design-model)))
(if (design-model-satisfies ?drn ?focus)

(RETURN ?output)))))))))
:own-slots ((has-generic-subtasks ' (generate-state-successor))

(tackles-task-type revise-design)))

8.9.5.3 Fix-monotonically

The problem with the focus-centred approach is that in some cases we might not be

prepared to accept state transitions which fix the current focus but, for instance, introduce

two new constraint violations. For instance P&R-Marcus rejects any fix application

which either fails to fix the current focus or introduce new constraint violations. The

rationale for this approach is that unless some convergence criterion is introduced on the

constraint fixing process then the search process becomes open to potential combinatorial

explosion.

The criterion used by P&R-Marcus can be generalized by defining a method which

considers successful any fix application which decreases the number of constraint

violations. The OCML definition of this method, which is called fix-monotonically,
is given below.

Chapter 8	 Page 205

(def-class FIX-MONOTONICALLY (primitive-method)
((has-body

:value (lambda (?psm)
(REPEAT
(in-environment
((?input . (role-value ?psm has-design-state))
(?output . (achieve-generic-subtask

?psm
generate-state-successor
has-design-state ?input
has-design-context :revise)))

(if (design-state ?output)
(DO

(achieve-generic-subtask
?psm
evaluate-consistency
has-design-state ?output
has-design-context : revise)
(if (< (cardinality

(the ?cs (constraint-violations
?output ?cs)))

(cardinality
(the ?cs (constraint-violations

?input ?cs))))
(RETURN ?output)))))))))

:own-slots ((has-generic-subtasks I (generate-state-successor
evaluate-consistency))

(tackles-task-type revise-design)))

Thus, the approach followed by P&R-Marcus combines and strengthens the criteria used

by fix-monotonically and try-fix-focus: it requires the current focus to be fixed

and also rejects any move which produces new constraint violations.

As in the case of Propose&Improve, in order to complete the task structure of the

Propose&Revise class of methods it is necessary to specify the relevant mechanisms for

carrying out focus and operator collection and selection. These are described in the next

sections.

8.9.5.4 Focus collection in :revise context

The possible foci in a : revise context are all the fixable constraint violations.

Chapter 8
	

Page 206

(def -class collect-all-cvs (primitive-method)
((has-body

:value (lambda (?psm)
(setofall
?cv
(and (fixable-constraint ?cv)

(member ?cv
(the ?cs (constraint-violations

(role-value
?psm has-design-state)

?cs))))))))
own-slots ((tackles-task-type collect-state-foci)

(applicability-condition
(kappa (?task)

(= (role-value ?task
has-design-context)

:revise)))))

8.9.5.5 Focus selection in :revise context

A good heuristic for focus selection in a : revise context is the mm-conflict heuristic

proposed by Minton et al. (1992). This suggests to try and modify the value of the

parameter which is associated with the maximum conflict set (i.e. which is associated

with the highest number of violated constraints). While this is a simple heuristic to

specify, in order to model it in the current ontology I need to introduce a number of

additional ontological commitments, concerning the ability of retrieving the parameters

which contribute to a particular constraint. For the sake of brevity I will therefore skip

the definition of this part of the Propose&Revise model.

8.9.5.6 Operator collection and selection in :revise context

The fixes which are potentially useful to a focus in a : revise context are simply those

associated with the focus in question.

(def-class Collect-applicable-fixes (primitive-method)
((has-body

:value
(lambda (?psm)

(setofall ?op
(and (design-modification-operator

?op
applicable-to-constraints ?l)
(member (role-value ?psm has-design-focus)

(eval ?l)))))))

own-slots ((tackles-task-type collect-focus-operators)
(applicability-condition
(kappa
(?task)
(and (:revise

(role-value
?task has-design-context))

(fixable-constraint
(role-value
?task 'has-design-focus)))))))

Chapter 8
	

Page 207

Finally, as in the case of Propose&Improve, there is no need to define a specialized

operator selection method for a : revise context. We can assume that application-

specific operator preference knowledge is available as in the case of : extend and
improve contexts.

8.9.6 Characterizing the P&R-class of problem solving methods

Table 8.6 shows the main features of the P&R-class of problem solving methods defined

as a refinement of Gen-Design-psm. This characterization is independent of the actual

revision strategy used by a specific instantiation of this class.

Chapter 8	 Page 208

Method Class	 Propose&Revise

Problem Solving Knowledge Focus Selection Knowledge

Operator Selection Knowledge

Available Parameter Values

Constraint Types	 Fixable Constraint

Constraint

Additional Subtasks	 Revise-design

State-Based Control	 Extend-design + Revise-design (EMR or CMR)

Contexts	 Extend, Revise

Focus Types	 Parameter (Extend)

Constraint (Revise)

Focus Selection Policy 	 DSR strategy + Focus Selection Knowledge + Mm-

conflict heuristic

Design Operator Types	 Design Extension Operator

Fix (Design Modification Operator)

Design Operator	 Operator Selection Knowledge

Order Policy

Available Design Space	 All feasible states (Propose)

Revision Space (Revise)

State Selection Policy	 1) Design Model: Max

2) Violated Constraints: Mm

_________________________________ 3) Cost: Mm

Completeness	 Yes

Optimality	 Local

Table 8.6 Synoptic description of P&R-type methods.

In particular there are two aspects which are worth emphasizing here.

The first one concerns the integration of knowledge-based and chronological

backtracking. In contrast with the control regime used by P&R-Marcus, knowledge-

based backtracking in the P&R-class does not replace chronological backtracking but is

rather added 'on top' of it. Thus when a constraint violation is encountered, the revision

space is explored according to the chosen design revision strategy and, if this fails, then

the behaviour 'gracefully degrades' to chronological backtracking. This approach has

Chapter 8	 Page 209

two advantages: it avoids the brittleness exhibited by the application of P&R-Marcus to

VT (Motta & Zdrahal, 1996; Zdrahal & Motta, 1996; Chapter 9) and combines the

advantages in terms of reuse and modularity associated with Propose&Backtrack (Runkel

et a!., 1996) with the efficiency provided by the local search through a space of fixes.

Another important aspect of the P&R-class concerns its unique state selection policy,

which gives priority to the size of design models over cost and consistency. Intuitively,

the idea of a Propose&Revise approach is that backtracking needs to be avoided: the

currently most complete model should be operated on, even if it is inconsistent. It is

interesting to note that this philosophy lends itself naturally to a CMR-type approach.

That is, given a no-backtracking philosophy, then an approach like CMR, which

privileges quick model completion over constraint fixing, is the most natural for this class

of problem solving methods.

8.9.7 P&R-Marcus

Having defined a generic P&R-class, it is straightforward to characterize P&R-Marcus as

an instantiation of this class - see table 8.7. In particular P&R-Marcus subscribes to the

same state selection policy defined for the generic P&R-class. However, P&R-Marcus

does not allow any form of backtracking outside the revision space and therefore adopts

an incomplete search policy. As already said, P&R-Marcus makes use of a EMR-style

control regime and therefore carries out revisions as soon as inconsistencies occur. The

revision space is searched in a cost-conscious style: cheaper fixes are tried before more

expensive ones. Finally it uses a focus-centred, monotonic design revision policy.

Chapter 8
	

Page 210

Method Class	 P&R(Marcus)

Problem Solving Knowledge Operator Cost

Operator Selection Knowledge

(cost-centred operator selection)

Constraint Types	 Fixable Constraint

Constraint

Additional Subtasks	 Revise-design

State-Based Control 	 Extend-design + Revise-design (EMR control)

Contexts	 Extend, Revise

Focus Types	 Parameter (Extend)

Constraint (Revise)

Focus Selection Policy	 Open

Design Operator Types 	 Procedure (Design Extension Operator)

Fix (Design Modification Operator)

Design Operator	 Select cheapest

Order Policy

Available Design Space	 Maximal Design Model (Propose)

Revision Space (Revise)

State Selection Policy	 1) Design Model: Max

2) Violated Constraints: Mm

_________________________________ 3) Cost: Mm

Completeness	 No

Optimality	 Local

Table 8.7 Synoptic description of Marcus' Propose&Revise.

8.10 CONCLUSIONS

The characterization of the Propose&Revise class of problem solving methods concludes

the description of the current version of the OCML library of problem solving methods

for parametric design. In the remaining of this chapter I will restate the main points

concerning the design of the library while in the next chapter I will illustrate a number of

applications developed by reusing and configuring the problem solving methods

presented here.

Chapter 8	 Page 211

8.10.1 Classifying problem solving methods

The methods examined so far can be classified into three groups - see table 8.8 -

depending on the state selection policy they use.

• Consistency-centred approaches. These methods emphasize consistency-

related aspects. They only operate on consistent nodes and attempt to construct a

consistent solution path. Either local preference knowledge or complete state

expansion followed by successor evaluation is used to select next best state.

• Cost-centred approaches. These methods (i.e. A*_design) emphasize cost-

related aspects. They sacrifice quick convergence criteria (choosing the maximal

design state) for cost minimization.

• Completion-centred approaches. The main criterion used by these methods

is to minimize backtracking. Like the consistency-centred approach, they use local

preference knowledge to select the next best state.

Approach	 Consistency-centred	 Cost-centred	 Completion-centred

Methods	 Gen-design-psm	 A*design	 P&R-class

Propose&Backtrack

He-design

Propose&Improve

State	 1) Constraints: Mm	 1) Constraints: Mm	 1) Design Model: Max

selection	 2) Design Model: Max	 2) Cost: Mm	 2) Constraints: Mm

policy	 3) Cost: Mm	 3) Design Model: Max 3) Cost: Mm

Table 8.8 Method characterization by state selection policy.

This classification provides a coarse-grained selection criterion to guide an initial method

selection. For instance, if a task model does not specify too large a problem space and

cost minimization is the paramount criterion, then it makes sense to attempt to configure

an A*type problem solver. Vice versa, if the problem space is large and the constraint

network tightly connected, then a Propose&Revise approach may be appropriate. Of

course, these generic selection criteria are only meant to provide heuristic rules for initial

method selection. Nevertheless, they provide a useful starting point from which to begin

the method configuration process.

8.10.2 Uniform view of problem solving methods.

An important feature of the approach taken to develop the library is the fact that this is

grounded on a uniform, search-centred view of problem solving. As already pointed out,

the adoption of this view is important to provide a foundation both to the overall

Chapter 8	 Page 212

modelling framework and to the library. In addition, this uniform view of problem

solving (which is based on a restricted number of concepts, such as states and operators)

makes it easier to compare and differentiate methods. For instance, while the

Propose&Backtrack and Hc-design methods superficially appear to be very different, the

synoptic descriptions of these methods show that they basically follow the same

philosophy and would normally exhibit similar competence. The difference between

them is that Propose&Backtrack relies on local preference knowledge to select the next

best state, while Hc-design relies on state expansion and evaluation to achieve the same

result.

Another example of the advantages deriving from adopting a search-centred paradigm is

given by the analysis of Propose&Revise presented in section 8.9. A number of

researchers have published knowledge-level descriptions of Propose&Revise (Fensel,

1995b; Wielinga et al., 1995; Motta et al., 1994b), which try to clarify the role of fixes

and describe the revision strategy used by P&R-Marcus. A problem which is common to

all these approaches is that (in one way or another) they all get somehow 'stuck' with the

details of the non-monotonic revision strategy used by Marcus et al. In contrast with

these approaches, the description of P&R-Marcus given here emphasizes that i) fixes are

simply a kind of design modification operators, ii) various ways of searching the revision

space are possible and iii) P&R-Marcus employs a cost-centred criterion, which combines

a monotonic approach to constraint fixing with a focus-centred approach. This is all we

need to know for a knowledge-level analysis of P&R-Marcus: at this level the details of

the (rather idiosyncratic) fix combination mechanism are irrelevant, as long as the

knowledge-level description is functionally equivalent to the revision strategy used by

P&R-Marcus. In particular, as I will discuss in the next chapter when illustrating the VT

problem, it is possible to characterize fix combinations in different ways, either as a

search strategy or as composite design modification operators.

8.10.3 Modularity (Plug and Play)

Another important feature of the approach followed here is that, because the different

methods are specified out of a common set of building blocks, it is possible to construct

'hybrid' problem solvers which integrate different features from different methods. For

example, it is quite easy to define a Propose-Revise-Improve problem solver, simply by

i) defining a control method which combines the control regimes used by P&R-class and

P&I-psm, and ii) selecting the state selection policy associated with the P&R-class. No

other customization is necessary.

A control method integrating an EMR-style approach with Propose&Improve is defined

in the following box.

Chapter 8
	

Page 213

(def-class emr+improve-control (decomposition-method)
((has-input-role :value has-design-state)
(has-output-role : value generates-design-state)
(has-design-state : type design-state)
(generates-design-state : type design-state)
(has -body
value
(lambda (?psm)

(in-environment
((?state . (role-value ?psm has-design-state))
(?design-model . (the ?dm (has-design-model

?state ?dm)))
(?constraints . (role-value ?psm has-constraints))
(?parameters . (role-value ?psm has-parameters)))

(if (deadend-state ?state)
nothing
(if (constraint-violations ?state ?constraints)

;; some constraint is violated, we revise
(achieve-generic-subtask
?psm
revise-design
has-design-state ?state)
(if (state-complete ?state ?parameters)

;; solution state reached, we try improving it
(achieve-generic-subtask
?psm
generate-state-successor
has-design-state ?state
has-design-context : improve)

;; consistent, incomplete state, we try extending it
(achieve-generic- subtask
?psm
generate-state-successor
has-design-state ?state
has-design-context :extend))))))))

own-slots ((tackles-task-type design-from-state)
(has-generic-subtasks generate-state-successor

revise-design)))

Thus, the approach described here attempts to combine the advantages gained from the

availability of a set of complete problem solving methods (method generality) with those

deriving from constructing the methods out of a common set of generic building blocks

(component modularity). Method generality is required to avoid the problems

encountered by Orsvärn (1996), when trying to reuse task-method libraries. Component

modularity is essential in order to make problem solving methods more flexible (Poeck

and Gappa, 1993).

8.10.4 Task-independent approaches

In recent years there has been renewed interest in task-independent specifications of

PSMs, on the ground that the "task specific formulation of PSMs unnecessarily limits the

Chapter 8	 Page 214

applicability of PSMs" (van Heijst and Anjewierden, 1996). While it is not at all obvious

that task-independent approaches provide any benefits when tackling the knowledge

acquisition problem, it is clear that they are appealing from a reuse point of view.

The approach to library and application development presented here enjoys a dual

foundation: i) a task-specific one, defined by a task ontology and a task-centred

instantiation of a search model of problem solving; and ii) a task-independent one,

defined by the use of search to underpin the problem solving components in the library.

Thus, the approach integrates the results associated with task-independent libraries of

search algorithms (Stefik, 1995) with the task-oriented approaches to library

construction, which are common to 'modern' knowledge engineering libraries (Breuker

and van de Velde, 1994; Benjamins, 1993; O'Hara, 1995). Hence, the methods

described here can be understood both in terms of their knowledge requirements and in

terms of their search behaviour.

An advantage of the dual foundation enjoyed by the library is that it provides a natural

starting point for pursuing task-independent specifications of problem solving methods.

In particular, it is possible 'to strip' the methods of their task-specific aspects and

characterize them exclusively in terms of their search behaviours and task-independent

commitments. Such an exercise was carried out in a recent paper, written in collaboration

with a number of colleagues (Fensel et al., 1997), where we provide a task-independent

characterization of a Propose&Revise method. Specifically, we characterize

Propose&Revise as a search algorithm which makes use of two types of state transition

operators: the first type is applied to correct and incomplete states, the second one is

applied to incorrect ones.

Such task-independent specification of Propose&Revise puts into question the

'traditional' dichotomy of strong vs. weak methods. In particular, let's consider the view

expressed by McDermott (1988), who points out that "a weak method is more open with

respect to control than a role-limiting method can be; a weak method does not put any

limits on the nature or complexity of the task-specific control knowledge it uses". Our

description of Propose&Revise shows that this view is problematic: a task-independent

characterization of Propose&Revise is not more "open to control" than a task-specific

one. Moreover, a (so-called) weak method, such as A*, makes precise assumptions

about the existence of heuristic knowledge, which allow the method to converge to an

optimal solution. Therefore it is not more "open to control" than a (so-called) strong

method, such as Propose&Revise. On the contrary it actually imposes stronger

requirements on the availability of domain knowledge than Propose&Revise.

Thus, all methods can in principle be specified in a task-independent (i.e. weak) or task-

dependent (i.e. strong) fashion. Hence, the weak vs. strong dichotomy does not provide

Chapter 8
	

Page 215

much leverage with respect to method characterization. What is important is to

characterize the functionalities provided and the requirements imposed by a method. By

describing these requirements and functionalities in a common framework (which can be

task specific or task independent) we can then compare, contrast and combine them, to

build knowledge-based applications.

Chapter 9.
Application Development by Reuse

In this chapter 1 illustrate a number of application models constructed
by applying the library of problem solving components described in
the previous chapters to three application domains. These are the
Sisyph us-I and KMI office allocation problems, and the VT elevator
design problem. The purpose of this exercise is to validate the
various technologies presented in the previous chapters - e.g. the
library, the OCML modelling language, the various ontologies, the
TMDA framework - by showing that they provide effective support
for KBS development by reuse.

9.1. INTRODUCTION

The purpose of this application-centred chapter is to validate empirically the various

epistemological and conceptual structures presented in the previous chapters, by showing

that they provide excellent leverage for building applications by reuse. Specifically, my

aim here is to validate the following components:

• The overall application development framework. By showing that it

provides the appropriate distinctions required to support KBS development by

reuse.

• The parametric design task ontology. By showing that it provides the

appropriate conceptual distinctions for characterizing parametric design tasks.

• The problem solving methods described in chapter 8. By showing that they

can be effectively used to construct parametric design applications.

In particular I will discuss three application domains: the two sample problems tackled in

the first two Sisyphus initiatives (Linster, 1994; Schreiber and Birmingham, 1996) and

the KMI office allocation problem. The former are well-known benchmarking problems

and their inclusion is especially useful as it makes it possible to compare my

approach/framework to alternative ones on an application-specific basis. The latter is a

Chapter 9	 Page 217

real-world office allocation problem which our institute faced when moving to a new

building'.

The application models described here were partially coded using a simple, task-specific

shell, which implements in an object-oriented style the generic tasks for parametric design

included in the Gen-design-psm problem solving model. This shell is briefly described in

the next section.

9.2. A SHELL FOR PARAMETRIC DESIGN PROBLEM SOLVING

Although OCML is a fully operational language, its main purpose is not to support the

efficient implementation of KBS but rather the development of knowledge models. In

other words, its operational capabilities are meant to support the verification and

validation of knowledge models, rather than the implementation of efficient artefacts. For

this reason, in parallel with the development of the OCML library of parametric design

methods, I have implemented a rather basic object-oriented shell, which mirrors the

structure of the generic model of parametric design problem solving described in chapter

7 and supports rapid prototyping of parametric design models.

This task-specific shell is not meant to replace an OCML application model completely,

but rather to improve its efficiency by providing symbol-level mechanisms corresponding

to the generic tasks used by a problem solving method. Thus, task, method and domain

ontologies remain typically unchanged, unless efficiency reasons make it necessary to

replace ontological components defined in OCMIL with symbol level analogues.

9.2.1. Integrating knowledge-level and symbol-level constructs

Like OCML, the parametric design shell is implemented in the Common Lisp Object

System (Kiczales et al., 1991). As discussed in chapter 4, the OCML system provides a

number of mechanisms for integrating OCML models with Lisp modules. In particular,

in the implementation of the parametric design shell I have taken advantage of three

mechanisms which support the integration of OCML models and Lisp programs. These

mechanisms are discussed in the next three sections.

In addition to these domains, the library has been tested on a number of real-world application

domains in the context of the CEC-funded Encode project on configuration design (Copernicus

Programme, Project 0149). These domains include sliding bearing design, simple mechanics

problems (Hatala, 1997), initial vehicle (truck) design, design and selection of casting technology and

sheet metal forming technology for manufacturing mechanical parts (Valasek & Zdrahal, 1997).

Chapter9	 Page 218

9.2.1.1. Integration through procedural attachments.

These are specified through the : lisp-fun keyword. This mechanism makes it possible

to augment an ontological definition by attaching to it a piece of Lisp code. This is used

to verify whether a statement is satisfied (in the case of relations), or to compute the value

of a function or control expression (in the case of procedures and functions).

9.2.1.2. Integration through classes.

An OCML class is implemented as a CLOS object and the def-class primitive for

defining OCML classes also allows the user to specify additional information about the

CLOS object associated with an OCML class. For instance it is possible to specify

additional class slots which are not part of the definition but only serve a symbol-level

purpose. An example of the use of these additional class slots is given by the definition

below, which augments the OCML class parameter with two additional, symbol-level

slots which are used by the shell to cache the links between parameters and design

operators and between parameters and constraints. These links support efficient operator

and constraint collection mechanisms.

(def-class PAR?METER () ?p
'This modifies the definition given in the parametric
design task ontology. It adds symbol-level slots to cache
the links between parameters and the relevant operators and
constraints"
((has-value-range :type set)
:iff-def (exists ?task (and (parametric-design ?task)

(has-parameters ?task ?l)
(member ?p ?l)))

:lisp-slots ((relevant-operators :accessor relevant-operators
:initfonrt nil)

(relevant-constraints : accessor relevant-constraints
:initform nil))

lisp-class-name parameter)

The keyword : lisp-class-name is also a symbol level option, which makes it possible

to specify the name of the CLOS object associated with an OCML class. This option is

used, for instance, to allow the user to specify CLOS methods parametrized over an

OCML class. For example, the following definition shows a CLOS method parametrized

over class parameter. The method returns the operators applicable to the parameter

which is the current focus.

(de fmethod FILTER-OPERATORS-APPLICABLE-TO-FOCUS

(intersection (state-operators state)
(relevant-operators focus)))

((method
design-method)

(state design-state)
(focus parameter))

Chapter 9	 Page 219

9.2.1.3. Integration through functional interface.

The OCML system provides a functional interface which makes it possible to create,

access and modify OCML definitions from other Lisp modules. This interface includes

entity-creating Lisp macros, such as def-class, def-relation and def-function;

support for a tell-ask interface - e.g. findall, findany, seto fall, ask, tell; and

macros to evaluate control and functional expressions - i.e. ocml-eval and procedure-

eval.

9.2.2. Symbol-level support for parametric design

The parametric design shell essentially provides two classes of efficiency-enhancing

definitions: it i) replaces the task-method structure with a set of CLOS methods and ii)

provides a simple caching mechanism which constructs a network of relations between

parameters, constraints and operators, to speed up the selection, filtering and evaluation

processes. These two types of mechanisms are discussed in the next two sections.

9.2.2.1. Replacing OCML tasks and methods with CLOS methods

As discussed in the previous chapters, the problem solving methods in the library are

modelled in terms of tasks and methods. For example, in chapter 8 I showed four control

methods for task design-from-state, each of these specifying a different approach to

state-based design. When multiple methods are applicable to the same task, then the most

specific one is chosen, where 'specificity' is interpreted in accordance with the rules

given in chapter 5.

A similar mechanism is provided at the symbol level, where generic tasks and methods

are mapped to generic functions in CLOS. For example, task design-from-state is

mapped to a generic function of the same name, which is defined as follows:

(defgeneric design-from-state (application method state)
(:documentation "A generic function which implements the

task-method structure associated with task
design-from-state"))

Having defined the appropriate generic function, individual control methods for task

design-from-state can be defined by means of defmethod statements. For instance,

the definition below specifies the control regime used by Propose&Backtrack.

Chapter 9	 Page 220

(defmethod DESIGN-FROM-STATE (appi
(method propose&backtrack)
(state design-state))

(extend-evaluate-select-control appi method state))

(defun extend-evaluate-select-control (appi method state)
(if (violated-constraints state)

(state-fails state)
(if (state-feasible? state)

(if (state-complete? state)
(design-succeeds state)
(extend-design appi method state))

(state-fails state))))

As shown by the above definition, the CLOS method design-from-state takes three

arguments: an application, a class of problem solving methods and a type of design state.

The first argument, application, provides a placeholder to define application-specific

method customization. The second and third argument make it possible to specialize a

generic function for a class of problem solving methods. Thus, an alternative approach to

state-based design, for instance the one used by HC-design, can be implemented as

follows.

(defmethod DESIGN-FROM-STATE (appl
(method HC-DESIGN-THOD)
(state hc-design-state))

(if (violated-constraints state)
(state-fails state)
(if (state-feasible? state)

(if (state-complete? state)
(design-succeeds state)
(expand-state appi method state))

(state-fails state))))

As shown by the definitions presented here, symbol-level specifications of problem

solving methods can be associated with different types of design states. This is in

contrast with the knowledge level models, where a state is specified in terms of the

associated design model and task, and a search control record is defined for each state.

For efficiency reasons I have merged the notions of design state and search control record

in the parametric design shell. As a result, symbol-level design states tend to be large

structures, comprising several, efficiency-related types of slots. Moreover, these

structures are customized for different classes of problem solving methods.

9.2.2.2. Optimizing knowledge-level models for symbol-level efficiency

The other main difference between the structure of the shell and the model of parametric

design discussed in chapter 7 concerns the use of symbol-level optimization mechanisms,

such as caching. In particular, before a design application is executed, the shell creates a

network of links between the main components of a design specification (i.e. parameters,

Chapter 9	 Page 221

constraints and design operators). This network of links makes it possible to speed up

significantly the tasks of collecting, filtering and selecting appropriate design foci and

operators.

In conclusion, the shell provides a set of Lisp structures, which support the efficient

execution of application models for parametric design. The set of generic functions

implemented in the shell mirrors the generic problem solving model for parametric design

presented in chapter 7. This approach to KBS design, based on the idea of enforcing a

structural consistency between knowledge level and symbol level architectures, is often

called structure-preserving design (Schreiber, 1992). However, given the operational

nature of the knowledge level model and the prototypical nature of the shell, the latter

does not entirely replace a knowledge-level model; only the problem-solving-intensive

components (generic tasks).

In the rest of this chapter I will illustrate how the shell was used to benchmark various

problem solving methods on three application domains.

9.3. THE SISYPHUS-I OFFICE ALLOCATION PROBLEM

9.3.1. Description of the Sisyphus-I problem

The Sisyphus-I office allocation problem (Linster, 1994) was the first of a series of test

applications which have been used by the knowledge acquisition community to compare

different approaches to building knowledge-based applications. The problem consists of

allocating the members of the YQT research group to rooms in a new building. The

problem specification consists of a four-page document, which describes the layout of the

building, provides the relevant data about the fifteen members of the group and includes a

protocol describing the steps taken by a (virtual) domain expert, Siggi, when solving the

problem. A limitation of the problem description is that there is no requirement

specification as such. The constraints and requirements applicable to the problem have to

be elicited indirectly from the protocol, which is shown in table 9.1.

Chapter 9
	

Page 222

I) Thomas in C5-1 17	 a) The head needs a central office, so that he is close to
all members of the group. This should be a large office.

b) This assignment is defined first, as the location of the
office of the head restricts the possibilities of the
subsequent assignments.

2) Monika and Ulrike in C5-1 19	 a) The secretaries' office should be located close to the
office of the head. Both secretaries should work together
in one large office. This assignment is executed as soon
as possible, as its possible choices are extremely
constrained.

3) Eva in C5-1 16	 a) The manager must have maximum access to the head
and the secretariat. At the same time she should have a
centrally located office. A small office will do.

b) This is the earliest point where this decision can be
taken.

4) Joachim in C5-l15 	 There is no reason for the sequence of assignments of
Joachim, Hans and Katharina

a) The heads of large projects should be close

5) Hans in C5-l14	 a) The heads of large projects should be close to the head
and the secretariat.

6) Katharina in C5- 113	 a) The heads of large projects should be close to the head
and the secretariat.

7) Andy and Uwe in C5-l20	 a) Both smoke. To avoid conflicts with non-smokers
they share an office. Neither of them is eligible for a
single office. This is the first twin-room assignment, as
the smoker/non- smoker conflict is a severe one.

8) Werner and Jurgen in C5-123 	 a) The are both implementing systems, both non-
smokers. They do not work in the same project, but they
work on related subjects. Members of the same project
should not share offices. Sharing with members of other
projects enhances synergy effects.

b) There really are no criteria for the sequence of these
twin room assignments.

9) Marc and Angi in C5-l22 	 a) Marc is implementing systems, Angi isn't. This
should not be a problem. Putting them together would
ensure good cooperation between the RESPECT and the
KR1TON projects.

10) Harry and Michael in C5-l21 	 a) They are both implementing systems. Harry develops
object systems, Michael uses them. This creates synergy.

Table 9.1. Problem solving protocol for Sisyphus-I office allocation problem.

The data about the YQT members are given in a tabular format, part of which is shown in

table 9.2 - see (Linster, 1994) for the complete description.

Chapter 9
	

Page 223

Name	 Role	 Project	 Smoker	 Hacker	 Works with

Werner	 researcher	 RESPECT	 No	 Yes	 Angi, Marc

Marc	 researcher	 KRITON	 No	 Yes	 Angi, Werner

Andy	 researcher	 TU'I'OR	 Yes	 No	 -

Hany	 researcher	 BABYLON	 No	 Yes	 Jurgen, Thomas

Thomas	 researcher	 EULISP	 No	 No	 Jurgen, Harry

Ulrike	 secretary	 -	 No	 No	 Thomas,

_____________ ______________ ______________ 	 Monika, Eva

Eva	 manager	 -	 No	 No	 Thomas, Ulrike,

Monika

Monika	 secretary	 -	 No	 No	 Thomas, Ulrike,

Eva

Table 9.2. Data about YQT members

In addition, we also know that Thomas is the head of the group and that Hans, Katharina

and Joachim are heads of large projects. As shown by the protocol given in table 9.1,

this information is used by Siggi during the allocation process. Finally, figure 9.1 shows

the layout of the YQT building - shaded offices cannot be used for the room allocation

process; rooms c5-113, c5-114, c5-115 and c5-116 are single offices, the others are

double ones.

Chapter 9
	

Page 224

C5-123	 C5-122	 C5-121	 C5-120

Figure 9.1. Layout of the YQT building

In what follows, I will develop an application model for the Sisyphus-I problem in

accordance with the modelling framework presented in chapter 3. Thus, I will define a

task model of the problem, select and configure a domain-independent problem solver,

construct a domain model and then link domain and problem solving components by

means of mapping and application-specific knowledge. Of course, the artificial nature of

the problem and the 'behavioural' style of the protocol impose strong limits on the

knowledge acquisition process. The development of a task model for a problem is in

reality a dialectic, multi-stage process during which all the relevant stakeholders negotiate

a common view of the problem. In this case, there is no stakeholder to negotiate with and

the goal is therefore to interpret Siggi's protocol in terms of the components of the

parametric design task ontology described in chapter 6.

9.3.2. Constructing a task model for the Sisyphus-I problem.

The parametric design task ontology characterizes parametric design problems in terms of

parameters (with their value ranges), constraints, requirements, preferences and cost

function.

9.3.2.1. Parameters

The problem is one of assigning rooms to YQT members. Thus, it can be modelled as a

parametric design problem in which the set of parameters correspond to the set of YQT

members. The value of a parameter is given by the corresponding room. Note that the

inverse approach - i.e. characterizing rooms as parameters and YQT members as

Chapter 9	 Page 225

parameter values - does not work, given that a room can have multiple values in an

allocation model. Hence, the problem consists of finding a valid and complete set of

assignments for the fifteen design parameters.

9.3.2.2. Value ranges

Given the homogeneous nature of the parameter set, one could just assign the same value

range to all parameters: the set of all usable rooms. However, in order to be able to make

effective use of heuristics such as DSR, it is useful to try and restrict the value range of a

parameter as precisely as possible, so that this information can help with the focus

selection process. Therefore, each parameter is assigned a value range that reflects quite

closely the problem's set of requirements and constraints.

In particular, it is clear from Siggi's protocol that the problem's requirements and

constraints are associated with classes of YQT members, rather than with specific

individuals. Thus, I can generate the following set of value ranges for the various classes

of YQT members.

Type of YQT member	 Value Range	 Justification

head of group	 all large, central offices "The head needs a central office...this

should be a large office"

secretary	 all large offices	 "..secretaries should work together in one

large office"

manager	 a centrally located office "..should have a centrally located office"

head-of-project	 a single office	 Siggi allocates them in single offices.

researcher	 any office	 Siggi does not indicate any kind of

constraints on the type of rooms which

can be given to researchers

Table 9.3. Value ranges for classes of parameters in Sisyphus-I

The value ranges shown in table 9.3. were derived by means of a two-stage process: i)

identifying the constraints and requirements (indirectly) indicated by Siggi's utterances

and ii) abstracting from them static restrictions on the possible values associated with a

class of YQT members. The first step relies to a large extent on judgement. Given that I

have no access to a real Siggi, any decision on whether a statement in a protocol is meant

to be interpreted as a constraint, a requirement, or a preference is essentially a guess -

although see section 9.3.2.4 for a discussion on the criteria adopted to distinguish

between requirements, constraints and preferences. The second step reflects the role of

value ranges in the task ontology: these are not meant to express dynamic constraints, but

Chapter 9
	

Page 226

merely a set of values which are feasible for a particular parameter, or class of

parameters. Therefore, when specifying the value ranges for the Sisyphus-I parameters,

I did not consider dynamic constraints such as "secretaries should be close to the office of

the head".

9.3.2.3. Constraints and Requirements

The following set of requirements and constraints were identified from the protocol.

Requirements	 Constraints

R 1. head of group in large, central 	 Cl. do not exceed room size;

office;	 C2. smokers cannot share with non-

R2. the secretaries' office has to be close 	 smokers.

to the office of the head;

R3. manager, head of group, and heads

of project do not share;

R4. secretaries share the same room;

R5. manager goes into a central office.

Table 9.4. Requirements and constraints in Sisyphus-I

As already pointed out, this characterization of requirements and constraints is somewhat

subjective, given that certain requirements, e.g. "manager goes into a central office",

could easily be regarded as preferences. On the other hand, given the artificial nature of

the problem, to ask whether or not this is the right model is not a meaningful question.

The purpose of the exercise is to show that the proposed task ontology for parametric

design is adequate to capture the relevant conceptual distinctions, regardless of whether

these effectively mirror those held by the original domain expert.

It is important to note that the distinction between constraints and requirements shown in

table 9.4 reflect the conceptual distinction discussed in section 6.2.2. Requirements

specify properties of the solution design, while constraints limit the space of solutions.

9.3.2.4. Preferences

Table 9.5 lists the preferences identified from the protocol and provides a justification for

each of them. Not having access to real domain experts or clients, I used two general

criteria for identifying preferences in the protocol. The first criterion was that any

requirement violated by Siggi in fact denotes a preference, rather than a requirement. This

criterion was used to identify P3 and P4. The second criterion identifies as a preference

any requirement which can be more or less satisfied by a design model, rather than

definitely satisfied or definitely violated. This is the case for preference P2. Having

Chapter 9	 Page 227

"maximum access" to somebody can be interpreted as being as close as possible to that

person: the closer the better. Thus, I can model this informal requirement as a preference

stating that different design models should be ranked in terms of the distance between the

manager and the head and secretaries. Finally, I also added P1 to complete the set of

'closeness' preferences expressed by Siggi. This preference is not redundant, nor it is

inconsistent with R2 The latter specifies that secretaries should be close to the head; P1

gives higher ranking to those models which minimize this distance.

Preferences	 Comments

P1. head as close as possible to	 The requirement specifies that they

secretaries;	 should be close. However, it makes

sense to also add a preference so that

solutions where the distance between the

head and secretariat is minimized are

___________________________________ given a higher ranking.

P2. manager as close as possible to head Siggi talks about having maximum

and secretaries; 	 access to the head and the secretariat. I

model this as a preference stating that

models which minimize the distance

between the manager and the head of

group and secretaries are 'better'.

P3. heads of large projects as close as	 Siggi actually talks about "heads of

possible to head and secretaries; 	 projects being close". However, his

solution does not satisfy his own

requirement. Therefore I model this as a

preference, rather than as a requirement.

P4. members of the same project should Siggi states that members of the same

not share.	 project should not share. However, his

solution does not fully enforce this

requirement (Harry and Michael are

allocated together despite the fact that

they work in the same project).

Therefore I model this as a preference,

Table 9.5. Preferences in Sisyphus-I

Chapter 9	 Page 228

9.3.2.5. Cost function

As discussed in chapter 5, a cost function provides a global ordering criterion which is

used to distinguish better from worse solutions. This criterion typically subsumes all

preferences, although in those cases where the preferences are not mutually consistent

some decision making is needed to decide how to define a global criterion out of mutually

inconsistent, local criteria.

In this case the preferences are mutually consistent and therefore the only issue concerns

how to harmonize them. The solution I have taken is to characterize the output of the cost

function as a four-dimensional vector, <n , 2, fl3 n4>, where n 1 measures the distance

between the room of the head of the group and that of the secretaries; 2 the distance

between the manager's room and the rooms of the head of the group and the secretaries;

ri the distance between the heads of projects and the head of group and the secretaries;

and fl4 provides a measure of the 'project synergy' afforded by a solution. The latter is

computed as 1 minus the ratio between all shared assignments which maximize synergy

and all shared assignments2.

The use of a vector of partial costs to represent the global cost of a design model has two

main advantages: it avoids the problem of trying to harmonize measures which are not

obviously commensurable (in particular n is not the same kind of measure as the others)

and it makes it possible to define a cost order relation which ranks the four preferences,

from the most important (P1) to the least important (P4). The rationale for this ranking is

that preferences associated with senior members of an organizational hierarchy tend to

have priority over those associated with junior members. More formally, the ordering

relation over design models in the Sisyphus-I problem is defined as follows.

Definition 9.1. A design model in the Sisyphus-I domain, dl, with cost < n il, l2,

l3, n 14>, is cheaper than a design model d2, with cost <n21, n22, p23, n24> if and only

if one or more of the following conditions are satisfied:

i) n ii <n21;

ii) n il = 2l and n12< n;

iii)nli =n andnl2=n22andnl3<n23.

iv) n il = 2i and n12=n22 andn13=n23 and n14<n24.

9.3.3. Domain modelling

According to the framework presented in chapter 3, a domain model consists of a multi-

functional knowledge base. In this case, there is no pre-existing knowledge base and

2 If there are no shared assignments, then 114 is 0.

YQT-member

has-head

Researcher

Basic -Researcher
	

Head-of-Qroup

Chapter 9
	

Page 229

therefore the domain model consists of the domain knowledge provided by the Sisyphus-

I documentation. This body of knowledge covers the layout of the building and provides

some information about the members of the YQT research group.

Figure 9.2 shows the main classes used to model the Sisyphus-I domain. This

organization is quite straightforward and reflects the information provided with the

domain documentation.

Room-set
	 er

size

(1 Room	 next-to
	

Room

/ usable
central

Boolean

smoker

[YQT-member)

works-with

Project	 has-project-

has-secretary

has-manager

has-head	 I\	 I Manager

Head-of-roiect

Figure 9.2. Main classes in Sisyphus-I domain

Figure 9.3. shows the main relations and functions defined in the Sisyphus-I domain.

Much of the action in the Sisyphus-I application consists of reasoning about the relative

distance between rooms in the YQT building. Therefore the domain model comprises a

number of functions and relations which can be used to reason about the layout. In

particular, the function compute-distance computes the distance between two rooms;

the function compute_distance* generalizes the notion of distance to list of rooms: it

computes the distance between a room and a list of rooms; relation in—room associates a

Chapter 9	 Page 230

YQT member to the office he or she occupies; relation closest-to is satisfied by a triple

<room, room-set, room-list> if room is the closest room in room-set to the rooms

in room-list. Finally, relation closer-than is satisfied by a triple <room1 , room2,

room-list> if and only if room1 is closer than room2 to the rooms listed in room-list.

Figure 9.3. Main relations and functions in Sisyphus-I domain

9.3.4. From task to problem solving: specifying design operators

As shown in figure 7.1, moving from a task to a method dimension involves defining

design operators and operator preferences from the set of constraints, requirements and

preferences defining a task specification. In this section I discuss the design operators

defined for the Sisyphus-I application. These operators specify part of the application-

configuration component of the application model. Because the parameters in the

Sisyphus-I application are characterized in terms of their type (e.g. head of group,

manager), design operators are associated with classes, rather than with individual

parameters. Thus, I will structure the discussion in terms of the types of YQT members.

9.3.4.1. Multiple design extension operators

The operators used for the Sisyphus-I application are instances of a class of design

operators, which is called multiple-design-extension-operator. The instances of

this class are design extension operators which can be called repeatedly, each time

Chapter 9
	

Page 231

generating a different assignment. That is, they collapse several operators into one. This

class of operators is defined as follows.

(def-class MULTIPLE-DESIGN-EXTENSION-OPERATOR (design-extension-
operator multiple-operator)

'The body of a multiple design extension operator is a binary
function which takes as argument an unbound parameter, ?p, and a
set of values, ?values, and produces as a result a new value, ?z,
which is taken to specify the value of ?p in the next design
state. The values of all the other design parameters should not
be affected by the application of the operator. A multiple
design operator can be invoked repeatedly to spawn alternative
successor states"
((has-body : type multiple-design-extension-operator--body))
lisp-class-name multiple-design-extension-operator)

(def-class multiple-design-extension-operator-body
(lambda-expression) ?x
"A multiple design extension operator body is a binary function
which takes a parameter, say ?p, and a list of values, say
?values, and produces a result, ?z, which belongs to the value
range of ?p but is not a member of the list ?values. ?z is taken
as the new value of ?p in the successor design state"
:no-op (:constraint (and (nth-domain ?x 1 parameter)

(nth-domain ?x 2 ?y)
(=> (= ?z (call ?x ?p ?values))

(and (has-value-range ?p ?range)
(forall ?v

(=> (member ?v ?values)
(member ?v ?range)))

(member ?z ?range)
(not (member ?z ?values)))))))

The main feature of a multiple design extension operator is that its body takes two

arguments: a parameter and a list of values. The latter can be used to pass the operator the

list of values which have been tried and failed. This mechanism makes it possible to

backtrack to an already tried operator and generate a different value.

I can now discuss the specific operators defined in the Sisyphus-I application.

9.3.4.2. Head of group

The main requirement on the head of the group is that this should have a large, central

office. We also know that his office should be close to that of the secretaries. Thus, I

define two operators which deal with the allocation of the head of group in the two cases

in which some secretary has or has not been allocated. The first one, assign-head-of-

groupi, deals with the case in which a secretary has been allocated.

Chapter 9
	

Page 232

(def-instance assign-head-of-groupl yqt-design-operator
"If one or more secretaries have been allocated, put
the head in a large, central room, as close as possible
to the secretaries'
((applicable-to-parameters (map meta-reference

(setofall ?x (head-of-group ?x))))
(has-body (lambda (?x ?rooms)

(if (and (secretary ?y)
(in-room ?y ?sec-room))

(the ?rl
(and (room ?rl size 2 central yes usable yes)

(not (member ?rl ?rooms))
(empty ?rl)
(not (exists

? r2
(and (room ?r2 size 2 central yes

usable yes)
(<> ?r2 ?rl)
(not (member ?r2 ?rooms))
(empty ?r2)
(closer-than
?r2 ?rl (?sec-room))))))))))))

This operator selects an empty, central room, of size 2, which is the closest to that of the

secretaries. If no secretary has been allocated, then a different operator is applicable,

which is shown in the following box.

(def-instance assign-head-of-group2 yqt-design-operator
"If there is no secretary allocated, then put the head
in a large, central room"
((applicable-to-parameters ' (map meta-reference

(setofall ?x (head-of-group ?x))))
(has-body (lambda (?x ?rooms)

(if (not (exists ?y
(and (secretary ?y)

(in-room ?y ?sec-room))))
(the ?room

(and (room ?room size 2 central yes usable yes)
(empty ?room)
(not (member ?room ?rooms)))))))))

This operator simply returns a room suitable for the head of group.

9.3.4.3. Secretaries

Secretaries should be allocated together in a large room, which should be close to the

head of the group. This requirement is operationalized by means of two design

operators. The first one deals with the case in which the head of the group has already

been allocated and there are at least two more secretaries to allocate; the second one is

used in those cases in which the previous one is either not applicable or fails. These

operators are shown in the following box. Note the use of the design-operator-order

statement to indicate that the first operator has to be tried before the second one.

Chapter 9
	

Page 233

(def-instance assign-secretariesl yqt-design-operator
"If at least 2 secretaries need to be allocated, we want
to put them in a large room, as close as possible to the
head of the group. The assumption here is that there is only
one head of group"
((assumption (< (cardinality (setofall ?y (head-of-group

2))
(applicable-to-parameters ' (map rneta-reference

(setofall ?x (secretary ?x))))
(has-body (lambda (?x ?rooms)

(if (and (head-of-group ?y)
(in-room ?y ?head-rooin)
(> (cardinality

(seto fall
? sec
(and (secretary ?sec)

(not (in-room
?sec ?any))

1))
(the ?rl

(and (room ?rl size 2 usable yes)
(not (member ?rl ?rooms))
(empty ?rl)
(not (exists

? r2
(and (room ?r2 size 2 usable yes)

(not (member ?r2 ?rooms))
(<> ?r2 ?rl)
(empty ?r2)
(closer- than
?r2?rl (?head-room))))))))))))

(def-instance assign-secretaries2 yqt-design-operator
"This operator simply puts a secretary in a room partially
occupied by another secretary'
((applicable-to-parameters ' (map meta-reference

(setofall ?x
(secretary ?x))))

(has-body (lambda (?x ?rooms)
(if (and (secretary ?y)

(in-room ?y ?roorn)
(not (full ?room))
(not (member ?room ?rooms)))

?room)))))

(tell (design-operator-order assign-secretaries2
assign-secretariesl))

9.3.4.4. Manager

The manager should have her own central office, as close as possible to the head and the

secretaries. The operator below operationalizes this requirement.

Chapter 9
	

Page 234

(def-instance assign-manager-central yqt-design-operator
'Manager to have her own office as close as possible to
secs and head of group. Small office ok for manager"
((applicable-to-parameters '(map meta-reference

(setofall ?x (manager ?x))))
(has-body (lambda (?x ?roorris)

(if (and (not
(exists
? sec
(and (secretary ?sec)

(not (in-room
?sec ?some)))))

(head-of-group ?head)
(in-room ?head ?head-room))

(the ?rl
(and (= ?s-rooms

(setofall ?sec-room
(and (secretary ?y)

(in-room ?y ?sec-room))))
(room ?rl usable yes central yes)
(not (member ?rl ?rooms))
(empty ?rl)
(not (exists ?r2

(and (room
?r2
usable yes
central yes)
(not (member ?r2 ?rooms))
(<> ?r2 ?rl)
(empty ?r2)
(closer-than
?r2 ?rl
(cons ?head-room

?s-rooms))))))))))

9.3.4.5. Head ofproject

Heads of projects should have their own office, as close as possible to the head of the

group and the secretaries. The following operator implements this requirement.

Chapter 9	 Page 235

(def-instance assign-head-of-proj ect yqt-design-operator
"Heads of projects should have their own office as close
as possible to the head of the group and the secretaries.
This office does not have to be central"
((applicable-to-parameters (map meta-reference

(setofall ?x (head-of-project ?x))))
(has-body (lambda (?x ?roorns)

(if (and (not
(exists ?sec

(and (secretary ?sec)
(not (in-room

?sec ?some)))))
(head-of-group ?head)
(in-room ?head ?head-room))

(the ?rl
(and (= ?s-rooms

(setofall ?sec-room
(and (secretary ?y)

(in-room ?y ?sec-room))))
(room ?rl usable yes)
(not (member ?rl ?rooms))
(empty ?rl)
(not (exists ?r2

(and (room ?r2 usable yes)
(not (member ?r2 ?rooms))
(<> ?r2 ?rl)
(empty ?r2)
(closer-than
?r2 ?rl
(cons ?head-room

?s-rooms))))))))))))

9.3.4.6. Researchers

No requirements apply to researchers. Siggi prefers to maximize project synergy. These

conditions are met by the combination of the next two operators and the operator ranking

specified by the design-operator-order statement.

(def- instance ass ign-researcherl yqt-design-operator
"maximize synergy between projects"
((applicable-to-parameters (map meta-reference

(setofall ?x
(basic-researcher ?x))))

(has-body (lambda (?x ?rooms)
(the ?a-room

(and
(room ?a-room)
(not (member ?a-room ?roorns))
(in-room ?a ?a-room)
(can-share ?a)
(has-project ?a ?pl)
(has-project (domain-reference ?x) ?p2)
(<> ?pl ?p2)
(not (full ?a-room))))))))

Chapter 9
	

Page 236

(def-instance assign-researcher2 yqt-design-operator
"any empty room will do"
((applicable-to-parameters ' (map meta-reference

(setofall ?x
(basic-researcher ?x))))

(has-body (lambda (?x ?rooms)
(the ?rl

(and (room ?rl usable yes)
(not (member ?rl ?rooms))
(empty ?rl)))))))

(tell (design-operator-order assign-researcherl
assign-researcher2))

9.3.5. Modelling constraints and requirements

As discussed in section 7.3.2, the distinction between requirements and constraints is

enforced only when constructing the task specification. During problem solving they are

treated in the same way, as constructs specifying design prescriptions.

In order to improve the efficiency of the constraint checking process, when building an

application model I make use of a more 'operational' representation of constraints, which

links these to the relevant parameters and parametrizes the constraint expression with

respect to an assignment, rather than a design model. Thus, at each cycle of the design

process only the constraints affected by the changes to the previous model need to be

checked. This 'parameter-oriented' class of constraints is called parametric-

constraint. Its definition is shown in the box below.

Chapter 9
	

Page 237

(def-class PARAMETRIC-CONSTRAINT (constraint)
"A parametric constraint provides a more 'problem solving
oriented definition of constraints. Both the precondition and
the expression are binary kappa expressions, which take as
argument a parameter arid a value (i.e. an assignment). The idea
here is that this assignment-oriented approach makes possible to
limit the number of constraints to be tested at each stage of the
design process to those relevant to the modified assignments"
((applicable-to-parameters

type function-expression
:documentation "An expression which returns the set

of parameters to which this constraint
is applicable")

(has-expression
:cardinality 1
type legal-parametric-constraint-expression)

(has-precondition
:default-value '(kappa (?p ?d)

(true))
type kappa-expression
:documentation "This expression can be used to determine whether

a constraint makes sense for a given parameter
assignment"))

symbol-level definitions
lisp-class-name parametric-constraint
:Lisp-slots ((effective-parameter-list

:initform nil
:accessor effective-parameter-list)))

As shown by the above definition, a parametric constraint is described in terms of three

slots: applicable-to-parameters, has-expression, and has-precondition. The

latter specifies an expression which checks whether a parameter is relevant to the current

assignment. Slot has-expression specifies the constraint expression associated with

the constraint instance. This expression is parametrized in terms of a parameter

assignment. Finally, slot applicable-to-parameters defines an expression indicating

the set of parameters to which the constraint is applicable.

In order to clarify the purpose of the slots defining a parametric constraint I show below

the definition of the constraint smoker-constraint from the Sisyphus-I application

model. Slot applicable-to-parameters specifies that this constraint is applicable to

all the parameters denoting YQT members who can share; slot has-precondition

specifies that this constraint has to be checked for all shared allocations and slot has-

expression checks that the assignment passed as input satisfies the constraint.

Chapter 9	 Page 238

(def-domain-instance smoker-constraint yqt-constraint
((applicable-to-parameters '(map meta-reference

(setofall
?x (and (yqt-member ?x)

(can-share ?x)))))
(has-precondition (kappa (?p ?r)

(> (length
(setofall
?x (in-room ?x ?r)))

1)))
(has-expression (kappa (?p ?r)

(not (exists (?x ?y)
(and
(in-room ?x ?r)
(in-room ?y ?r)
(<> ?x ?y)
(yqt-member ?x smoker ?v)
(yqt-member ?y smoker ?u)
(<> ?v ?u))))))))

9.3.6. Mapping Knowledge

In the previous sections I have discussed the representations of design operators and

constraints in the Sisyphus-I model. These constructs are not part of the Sisyphus-I

domain model but are instead part of the application configuration component. In other

words these constructs specify application-specific knowledge and are modelled in a

method-oriented style.

Hence, there are only two mappings which need to be performed to integrate a domain-

independent design problem solver with the Sisyphus-I domain model. The first one

associates the concept of parameter at the problem solving level with the concept of YQT

member at the domain level. The second one maps the relation used by the problem

solver to represent the current design model, called current-design-model, to the

relation used to represent office assignments at the domain level, in-room.

The mapping between parameters and YQT members is specified by means of the macro

def -upward-class-mapping - see definition below. This macro takes two classes, one

defined at the domain level, the other at the problem solving level, and associates each

instance of the domain class to a newly-created instance of the method class. The

functions meta-reference and domain-reference can then be used to retrieve the

corresponding method-level instance from a domain-level one and vice versa. This form

of mapping is useful when only a simple association between problem solving and

domain concepts is needed.

(def-class yqt-parameter (parameter)
"The class of YQT specific parameters")

(def-upward-class-mapping yqt-member yqt-parameter)

Chapter 9	 Page 239

The mapping between the relation current-design-model at the problem solving level

and in-room at the domain level is more complicated, because it is necessary to create a

bi-directional mapping to ensure the consistency between the view at the problem solving

level and that at the domain level. This mapping can be realized by means of the set of

definitions shown in the box below. The first one provides a way to lift at the problem

solving level the set of in-room statements asserted in the domain knowledge base. The

other definitions are used to reflect down to the domain level assertions and deletions of

type current-design-model.

(def-relation-mapping current-design-model : up
((current-design-model ?dm)
if
(= ?drn (setofall (?p . ?v)

(and (in-room ?X ?v)
(maps-to ?p ?x))))))

(def-relation-mapping current-design-model (:down :add)
(lambda (?x)

(loop for ?pair in ?x
do
(if (maps-to (first ?pair) ?z)
(tell (in-room ?z (rest ?pair)))))))

(def-relation-mapping current-design-model (:down :remove)
(lambda (?x)

(unassert (in-room ?x ?y))))

With this discussion of the relevant mapping knowledge I have concluded the description

of the main aspects of an application model for the Sisyphus-I problem. In the next

section I will discuss the results obtained by trying out different problem solving methods

on this application domain.

9.3.7. Solving the Sisyphus-I office allocation problem

9.3.7.1. Solving by Gen-design-psm

The first method I applied to solving the Sisyphus-I problem was a configuration of the

Gen-design-psm method described in chapters 7 and 8. This method enhances a simple

depth-first control regime by the use of focus selection and design operator knowledge, to

decide which state transition to perform. In particular, the method was configured as

follows.

• Focus selection. This task was carried out by employing a DSR strategy. This

analyses i) the value ranges associated with each parameter and ii) the current

design model, to select, at each stage, the most constrained parameter. Although

the method ontology associated with Gen-design-psm also provides a mechanism

for stating application-specific, focus selection knowledge (by means of the

appropriate design-focus-order statements), no such knowledge was required.

Chapter 9
	

Page 240

• Operator selection. Operator preference knowledge was specified by means of

the design-operator-order statements shown in the earlier sections.

Thus, hardly any method configuration was necessary to apply Gen-design-psm to

Sisyphus-I.

Table 9.6 shows the result of applying Gen-design-psm to Sisyphus-I. The column

labelled 'efficiency' gives an indication of the performance of the method. The score is

computed as the ratio between the size of the minimal search space required to solve the

task and that of the search space effectively navigated to reach a solution. Methods which

go 'straight to the solution', without performing any backtracking, get a 100% efficiency

score.

Solution	 Cost	 Efficiency

THOMAS_D in C5-1 17 	 (4 10 106 0)	 78%

LJLRIKE_U in C5-1 19

MONIKA_X in C5-1 19

EVA_I in C5-116

KAThARINA_N in C5-1 15

HANS_W in C5-1 14

JOACHIM_I in C5-1 13

WERNER_L in C5-120

MARC_M in C5-120

ANDY_L in C5-121

HARRY_C in C5-122

JURGEN_L in C5-122

ANGY_W in C5-123

MICHAEL_T in C5-123

UWE_T in C5-121	 __________________________

Table 9.6. Siggi's solution by Gen-design-psm

The solution shown in table 9.6 is isomorphic to the one generated by Siggi. This is

interesting because it shows that Siggi basically applies a simple DSR heuristic to decide

the order of the assignments. That is, the problem solver does not require any additional

knowledge about focus ordering, in order to emulate Siggi. Moreover, the resulting

performance is very good. The design system only backtracks four times, in each case

because of assignments which violate the smokers-related constraint. This backtracking

Chapter 9
	

Page 241

could be easily avoided by modifying the operator ass ign-researcherl, to ensure that
it takes into account the smokers-related constraint when generating an assignment.

However, the solution given in table 9.6 is not optimal; an alternative, optimal solution is

shown in table 9.7.

Solution	 Cost	 Efficiency

THOMAS_D in C5-119	 (125 1870)	 78%

ULRIKE_U in C5-120

MONIKA_X in C5-120

EVA_I in C5-1 16

KATHARINA_N in C5-1 15

HANS_W in C5-1 14

JOACHIM_I in C5-1 13

WERNER_L in C5- 117

MARC_M in C5-117

ANDY_L in C5-121

HARRY_C in C5-122

JURGEN_L in C5- 122

ANGY_W in C5-123

MICHAEL_T in C5-123

UWE_T in C5-121

Table 9.7. Optimal solution by Gen-design-psm

While Gen-design-psm can in principle find the optimal solution shown in table 9.7, it is

not necessarily able to generate it. The reason is shown in figure 9.4: operator assign-
head-of-group2 can equally generate any of two possible design extensions:

<thomas_d, c5-117> or <thomas_d, c5-119>. If the second one is chosen then the

problem solver will reach the optimal solution. Otherwise it will reach the same solution

as Siggi's.

td-of-group2

thomas_d c5-1 19

assign-hc

thomas_d c5-1 17

Chapter 9
	

Page 242

Figure 9.4. Alternative state transitions by means of assign-head-of-group2

9.3.7.2. Solving by HG-design

Another method I tried on the Sisyphus-I domain was HC-design. Like Gen-design-psm

this method was able to generate both solutions shown in tables 9.6 and 9.7. Like Gen-

design-psm, it could not guarantee to derive one rather than the other. The reason is

shown in figure 9.5: the two possible expansions of the root state have the same cost.

Therefore, I-IC-design does not have enough information to select the optimal solution

path.

(000)
	

(000)
thomas_d c5-1 17
	

thomas_d c5-119

Figure 9.5. State space after expansion of root node in Sisyphus-I by HC-design

Thus, HC-design and Gen-design-psm exhibit the same competence. However, Gen-

design-psm is much more efficient than HC-design, which has only a 10% efficiency.

9.3.7.3. Solving by A*design

9.3.7.3.1.	 Defining the heuristic function

In order to configure A*design for the Sisyphus-I domain, I defined a heuristic function

which, for a given state - say s, computes the estimated cost required for reaching a

solution state from Si. This heuristic function is conceptually quite simple. The estimated

cost is a quadruple, <hc 11 , hc12 , hc13 , hc14>, which is defined in terms of the following

rules.

i) hc11 = 0 if both head of group and secretaries are allocated in s1;

ii) hci = h 1 (d1) if head of group or some secretary is not allocated in s;

iii) hc12 = 0 if head of group, secretaries and manager are allocated in Sj;

iv) hc 12 = h2 (d1) if head of group, manager or some secretary are not allocated in

Si;

Chapter 9
	

Page 243

v)	 hc1 3 = 0 if head of group, heads of projects and secretaries are allocated in Sj;

vi) hc1 3 = h3 (d1) if head of group, some head of project or some secretary are not

allocated ifl Si;

vii) hc1 4 = 0 if all researchers have been allocated in s;

viii) hc14 = h4 (d 1) if some researchers have not been allocated in s1.

The h1 functions take as input a design model and produce as output an estimate of the

cost of the relevant allocations. Because it is important to get these estimates as accurate

as possible, the details of these functions can be quite complicated and therefore I won't

describe them in detail. The basic idea is that the h functions try to estimate the minimal

distance that can be achieved for the relevant group of YQT members in the current

problem solving state. For instance, if neither the head of the group nor the secretaries

are allocated, then the best we can hope for is to have them in adjacent rooms, i.e. the

best estimate of the relevant distance is 1.

9.3.7.3.2.	 Performance of A*design

Naturally, A*design is able to find the optimal solution and its efficiency is comparable

to that of HC-design (about 10%). Of course, its competence is better than HC-design,

given that A*design guarantees to find the optimal solution.

9.3.7.4. Summing up

The Sisyphus-I application is quite a simple one. As shown by the above results, a

straightforward configuration of Gen-design-psm is able to solve the problem very

efficiently and can also find a solution which is better than the one generated by the

domain expert. No domain-specific heuristic are needed, a DSR-style focus selection

strategy combined with the implicit dependency network defined by the preconditions of

the design operators suffices. As a result, there is no need for hill-climbing-type design:

the extra search effort required to make locally optimal decisions is unnecessary. The

dependencies between classes of parameters enforced by the task specification strongly

constrain the design process and therefore very little degrees of freedom exist when

evaluating alternative design steps. The simplicity of the problem also means that there is

no need for non-uniform approaches to design, e.g. Propose&Revise or

Propose&Improve.

Finally, if an optimal solution is required, then the problem space is small enough to be

tackled by means of A*type search.

9.3.7.5. Comparison with other solutions to the Sisyphus-I problem

The special issue of the International Journal of Human-Computer-Studies edited by Marc

Linster (Linster, 1994) includes a number of solutions to the Sisyphus-I problem. Here I

Chapter 9	 Page 244

will compare the solutions presented in this section to some of those discussed in the

special issue.

The solution provided by the DIDS researchers (Balkany et el., 1994) is closest to the

approach followed here. They characterize the problem as a design one and describe it in

terms of constraints, functions, part and preferences. Each person is modelled as a

function, while rooms are modelled as parts. The problem solver exploits a constraint

satisfaction engine, which, at each stage, selects the locally optimal assignment.

Preferences are statements of the form "a is close to b". No ranking of preferences is

imposed. Unfortunately, Balkany et el. do not provide precise figures on the

performance of their problem solver, other than generic measures of complexity in the

worst case. As a result, it is difficult to provide a detailed comparison between the two

approaches. In general, I would expect their problem solver to exhibit a performance

similar to the one shown by Gen-design-psm.

The solution presented by Schreiber follows a KADS approach and builds an abstract

interpretation model from the problem solving behaviour exhibited by Siggi. This model

characterizes Siggi's task as a plan assembly one. Problem solving begins by

formulating a plan, i.e. specifying the order in which the various components (i.e. YQT

members) should be assigned resources (i.e. rooms). Once a plan has been produced,

then the various plan elements are designed, by carrying out the allocation of resources to

components. The model tries to emulate Siggi's behaviour by allocating shared resources

to groups of components, rather than performing each component allocation separately.

These shared allocations are carried out by generating all possible consistent groupings

for sets of components and then filtering those which satisfy the problem constraints.

Multiple solutions are then achieved by merging together all mutually consistent

groupings.

There are a number of differences between my application model and that developed by

Schreiber, which concern the underlying approach to reuse and the specific method used

to solve the problem.

Reuse. My approach to reuse is based on specifying reusable components which are

quite rich in nature and can be directly instantiated to produce operational models. As

a result these components are very usable. The approach used by Schreiber (which is

essentially the KADS approach) formulates library of components at a higher level of

abstraction. My experience with these libraries (Motta et al., 1994a; l994b; 1996) is

that while they provide strong support for the early stages of knowledge acquisition,

they only afford limited support for detailed conceptual modelling. It is easy to see

the problem when reading Schreiber's account of the model building process. Much

work is needed to flesh out and instantiate the model. In contrast, my library of

Chapter 9
	

Page 245

problem solving methods provides 'ready-made' components which can be directly

applied to a domain.

Problem solving. The method used by Schreiber appears to be very inefficient in

general. Generating all possible groupings is subject to combinatorial explosion. The

method works for the Sisyphus-I problem only because of the limited complexity of

this domain.

The solution by Motta et a!. also follows a KADS-based approach, although applies a

different formulation, which is based on the VITAL methodology (Shadbolt et a!., 1993).

In particular, it uses a library of Generalized Directive Models (O'Hara, 1995) to drive the

model building process. The comments made above concerning the KADS approach to

reuse apply to this solution as well. Moreover, while the problem solving method used

by Motta et a!. is more efficient that the one used by Schreiber, it is much less generically

applicable. Essentially, both approaches try to build generic models which emulate

Siggi's problem solving. In my view this strategy reflects the weak support provided by

the libraries used by the ViTAL and KADS groups.

In contrast with these approaches, the solutions presented in the earlier sections are not

concerned with 'emulating Siggi'. The process I used was in fact the opposite one. I

characterized the problem in terms of the parametric design task ontology, configured a

method from the library, and then executed it. The results showed that Siggi's behaviour

could be emulated by a simple DSR heuristic. Thus, I did not try to abstract from Siggi's

behaviour to build a model; I used a pre-existing model to give semantics to Siggi's

problem solving.

9.4. THE KMI OFFICE ALLOCATION PROBLEM

In August 1997 the Knowledge Media Institute moved to a new building and therefore I

had the opportunity to try out the parametric design technology on a real-world office

allocation problem. The resulting application models are discussed in this section.

9.4.1. Domain model

The layout of the new KMI building is shown in figure 9.6. It comprises eighteen single

offices (7 m2), one double office (room-9-1O) and six triple offices (21 m 2). There is also

a meeting room and two other rooms which are not available to the allocation process

(these are shaded in the figure).

Chapter 9
	

Page 246

3-tO	 7	 5	 5	 4	 3	 1-2	 Entrance	 31-32	 30 29	 27-28

II - 12

113

14	 15 16 17	 18-19	 o kmi-meeting-room	 2 1-22	 23	 24	 25-26

Figure 9.6. Layout of the KMI building

The personnel considered in this problem comprises thirty-three people, each of which

belongs to one of fourteen different categories of staff members. These categories are

shown in figure 9.7. The ovals in the figure represent classes of KMI members and all

links denote subclass-of relations.

Multi-media-Designer J	 I	 Project-Officer J	 (Phd-Student

Editor	 Consultant

KMI-member
Secretary
	 Researcher

Lecturer

Professor

Manager	 J I	 Visitor

Director

Senior-Visitor
Business-Manager

System-Manager J	 Junior-Visitor

Figure 9.7. Taxonomy of KMI members.

Chapter 9
	

Page 247

Each member of the group is involved in a number of projects/activities. Hence, clusters

of 'affinity groups' can be defined, which are important for the allocation process.

Figure 9.8 shows a subset of the overall cluster of affinity groups for the Kivil domain3.

Grzeda	 -	
- - Rose

	

Walton	 Eisenstadt
J

I Freeman I
I	 I

I-

__	 r	 / __

Masterton	 remote-presentation-media	 Scott

/
\	 ____

Watt - — A teathin 4 - -j Mulholland 1 \\
I

\\
/ ___/ __ _ 4

	

I Ramoni I	 I Domingue
/	 I	 1	

I Prolog

	

I	 I	 ____ ____ _______________	 Course

4'V'p	 __ __
_____	 I	 I

Course
KBSI	 uncertainty	

ema	 Collins	 I

Motta F:--	 ______________________	 ______________ ________	 I

configuration-design__F"- - -i Zdrahal

Stutt

Figure 9.8. A subset of the network of affinity groups.

The function shown below uses the information about the clusters of activities in KMI to

derive the collaborators of each member of the department.

Of course the figure is only meant to give an idea of the various multidimensional clusters of 'affinity

groups' which exist in KMI and to emphasize the difference with the simple 1-to-i mapping of

projects in Sisyphus-I. It is not meant to be a faithful representation of the KMI research web, either

now or in the past.

Chapter 9
	

Page 248

(def-function collaborators (?x)
:body (remove ?x

(in-environment
((?activities . (setofall ?a (activity ?x ?a))))
(setofall ?y

(and (activity ?y ?aa)
(member ?aa ?activities))))))

9.4.2. Task model

9.4.2.1. Parameters and value ranges

As in the case of Sisyphus-I, the KMI office allocation problem can be modelled as a

parametric design problem in which the set of parameters maps to the set of Kivil

members. The value range of a parameter is specified in terms of the offices in which the

corresponding member can be allocated. These are shown in table 9.8.

Type of KMI member	 Value Range

Professor	 all large offices

(there are six of these)

Secretary	 all large offices next to the entrance
___________________________________ (room-3 1-32)

Research Fellows, Lecturers and 	 all single offices

Business Manager

All others	 any office

Table 9.8. Value ranges for classes of parameters in KMI application.

9.4.2.2. Requirements and constraints

The following set of requirements and constraints were elicited from the KMI director.

Chapter 9
	

Page 249

Requirements	 Constrairts

Ri. Professors are entitled to a very	 Cl. do not exceed room size;

large office (21 m2).

R2. The secretaries' office has to be next

to the entrance.

R3. The director's office should be close

to the secretaries'.

R4. Professors, research fellows,

lecturers and the business manager

should not share

R4. Secretaries should not share with

non-secretaries.

Table 9.9. Requirements and constraints in the KMI office allocation task.

As in the Sisyphus-I problem, the requirements and constraints express simple design

prescriptions about sharing and space entitlement. A total ban on smoking means that

there is no need to separate smokers from non-smokers.

9.4.2.3. Preferences and cost function

The requirement specification for the KMI problem includes a number of preferences

which are similar in nature to the ones which make up the Sisyphus-I specification (e.g.

director as close as possible to secretaries, media people as close as possible to media

preparation room, etc.). These preferences concern a subset of the parameter set and are

static in nature; therefore they can be treated locally during the allocation process.

Much more interesting is a global preference criterion which specifies that "people

working on similar activities should be near each other". This can be rephrased as stating

that the distance between each KMI member and all his collaborators should be

minimized. A cost function based on this criterion can be formalized in OCML as

follows.

Chapter 9
	

Page 250

(def-function compute-kmi-cost (?clm)
:body (I (apply + (map (lambda (?assignrnent)

(cornpute-kmi-assignment-cost
(first ?assignment)
(rest ?assignment)
?dm))

?dm))
(length ?dm)))

(def-function compute-kmi-assignment-cost (?p ?v ?d)
body (in-environment

((?Iani-mernber . (domain-reference ?p))
(?l . (filter (collaborators ?kmi-member)

(kappa (?c)
(has-value
(meta-reference ?c)
?vv ?d)))))

(if (null ?l)
0
(I (compute_distance*

?v (findall ?vc
(and (member ?x ?l)

(has-value
(meta-reference ?x)
?vc ?d))))

(length ?l)))))

The function compute-kmi-cost defines the cost of a design model as the average cost

of each assignment. Function compute-kmi - assignment - cost defines the cost of each

assignment, say related to parameter ?p, as the average distance between the KIVII

member denoted by ?p and his/her collaborators.

The important feature of this cost function is that it specifies a global, non-monotonic

criterion which may or may not increase with the size of the design model. This means

that it is difficult to apply to the KMI domain a method such as HC-design, which

requires a converging monotonic criterion.

9.4.3. Design operators

Six design operators were defined, which follow quite straightforwardly from the design

prescriptions and preferences. Two of them deal with the allocation of secretaries, one

allocates the director as close as possible to the secretaries, another one ensures that

professors get a large room. The other two deal with the remaining classes of KMI

members. The first one, assign-shared, deals with those KMI members who can

share; the second one, assign-single, deals with those KMI members who go into a

single office. Both these operators try to minimize the distance between a member and

his/her collaborators, in accordance with the global cost function. Of course, given the

non-monotonic nature of the global cost function there is no guarantee that a sequence of

locally optimal assignments will lead to a global optimum. If no collaborators of the

currently selected KMI member have been allocated, then the operators assign-shared

Chapter 9	 Page 251

and assign-single use a simple heuristic, which consists of allocating the KMI member

in question as far as possible from any current cluster of allocations. Thus, these

operators are heuristic in nature and therefore different from all other operators discussed

in earlier sections, which are derived from constraints, requirements, value ranges, and

preferences - see section 7.3.3 for an analysis of the generic types of operators.

9.4.4. Solving the KMI office allocation problem

9.4.4.1. Solving by Gen-design-psm

Solving the problem by means of Gen-design-psm was very simple and efficient. It turns

out that the space of solutions is very dense and the problem can be solved with hardly

any search. The set of operators defined for the application could find a solution without

ever violating a constraint, thus achieving 100% efficiency. Unfortunately, the

application of Gen-design-psm to KMI does not produce particularly good solutions.

The dynamic nature of the cost function means that a strategy based on locally optimal

steps easily ends up generating a not-so-good solution. To see whether this problem

could be addressed heuristically I tried out different focus selection strategies. The results

of these different configurations of Gen-design-psm can be seen in table 9.10.

Focus Selection Strategy	 Cost

widest range + max allocated collaborators + loneliest	 5.19

DSR + mm allocated collaborators + mm collaborators + loneliest 	 5.46

widest range + mm allocated collaborators + loneliest	 5.6

widest range + max allocated collaborators + max collaborators + 	 5.7

loneliest

DSR + max allocated collaborators + max collaborators + loneliest 	 6.2

widest range + mm allocated collaborators + mm collaborators + 	 7.2

loneliest

Table 9.10. Performance of different configurations of Gen-design-psm.

The heuristic strategies used were as follows.

• Allocated collaborators (max or mm). Selects the parameter with the

maximum (or minimum) number of allocated collaborators.

Collaborators (max or mm). Selects the parameter with the maximum (or

minimum) number of collaborators.

• DSR. Selects the parameter with the minimum number of possible values.

Chapter 9
	

Page 252

• Widest range. Selects the parameter with the maximum number of possible

values.

As shown by table 9.10, in this problem it is not crucial to use a DSR strategy to obtain a

good solution. The reason is that the problem is heavily under-constrained. This

situation is in contrast with the Sisyphus-I problem, where we saw that a DSR strategy

could emulate the problem solving behaviour of the domain expert.

Another clear indication of the table is that best results are obtained when consistent

criteria (max or mm) are chosen for the value-range-centred and for the collaborators-

centred strategies. If a DSR strategy is used, then it is better to minimize the collaborator-

centred selection criterion. If a widest range approach is used, then it is better to

maximize the collaborator-centred selection criterion. This rule seems to be violated by

the third row of the table which shows a good performance of an application model

integrating a widest range policy with a strategy which minimizes the number of allocated

collaborators. However, this result may be caused by the fact that a widest range strategy

reduces the discriminating power of the allocated collaborators heuristic.

In any case, none of these models is particularly good. Hence, there is a need for a

different approach which can produce better solutions. This approach is discussed in the

next section.

9.4.4.2. Solving the KMI office allocation problem by means of Propose&Imp rove

We have seen that Gen-design-psm does not lead to very good solutions, despite the fact

that it is able to make local optimal steps at each parameter assignment cycle. In order to

improve the quality of the solution some other method must be used, which is able to

reason about global, rather than local optimality. Of course, one such method is A*,

which can guarantee an optimal solution, as long as the appropriate heuristic function is

defined. The problem with the KMI office allocation problem is that it is very difficult to

formulate an admissible and efficient heuristic function. Again, the non-monotonic nature

of the global cost function implies that it is very difficult to predict the cost of the final

solution from an incomplete model. As a result, only weak heuristic functions can be

defined, which fail to prune the search space significantly.

An alternative to A* is HC-design. This method however suffers from the same problem

as Gen-design-psm: it is only able to make local optimal steps. Moreover, it exhibits a

worst-case complexity of O(k), where k is the size of the average value range and n is

the number of parameters (Stefik, 1995). These figures are much more expensive than

those exhibited by the various configurations of Gen-design-psm shown in table 9.10.

The relevant focus selection heuristics can be compiled very efficiently, so that the

effective complexity of the various problem solvers is 0(n).

Chapter 9	 Page 253

Methods such as Propose&Revise are designed to deal efficiently with severely

constrained problems and therefore are of little or no use here.

The approach I took to improve on the solution achieved by Gen-design-psm is based on

the idea of global hill climbing. A global hill climbing process takes as input a complete

model and repeatedly performs a hill climbing algorithm until the required goal is

achieved. In the KMI domain this approach can be implemented by repeatedly improving

a solution by modifying part of the model until no more improvements are possible.

Thus, we can avoid the problems caused by the non-monotonicity of the global cost

function.

This approach was realized by configuring a Propose&Improve method for the KMI

domain. The basic idea was to use a suitably configured Propose module for reaching as

good a solution as possible and then performing a hill-climbing strategy which, at each

cycle, chooses the best possible improvement to the current solution model. To keep the

search space manageable, the only improvements I consider are those which can be

achieved by swapping the values of two parameters in the current model.

Implementing such a configuration of the Propose&Improve method was rather trivial, as

it consisted of defining only four CLOS methods. In particular, I defined a foci collection

method which retrieved all possible pairs of parameters which could be tried during the

state expansion process and an operator collection method which simply created a design

modification operator which performed the selected swap.

The box below shows a synoptic trace of the behaviour of a Propose&Improve problem

solver for the KMI domain. As shown by the trace, the method quickly (four moves)

achieves a 20% improvement on the quality of the solution and then slowly converges to

a method-optimal solution.

Chapter 9
	

Page 254

Propose phase completed.. .cost is now 5.194492544492546

Starting Improve phase......

Swapping }I - PARAMETER- SUMNER and }CII - PARAMETER-MOrA. . . cost is now
4.74485329485395

Swapping KMI- PARAMETER-THOMAS and }C'41 -PARAMETER-REILLY. . . cost is now
4.335942760942761

Swapping I - PARAMETER- PROIECT-OFFICER- 1 and KMI-PARANETER-
COLLINS. . .cost is now 4.200300625300626

Swapping KMI-PARAMETER-LEWIS and KMI-PARAMETER-THOMAS. . . cost is now
4.091534391534391

Swapping I - PARAMETER- PROJECT-OFF ICER-2 and KMI-PARAMETER-
MtJLHOLLAND. . .cost is now 4.014862914862916

Swapping KMI-PARAMETER-PRICE and KMI-PARAMETER-STOREY. . . cost is now
3.970670995670996

Swapping I-PARAMETER-DOMINGUE and I - PA METER-MASTERTON. . . cost is
now 3.9514790764790764

Swapping }4I - PARAMETER-BUCKINGHAN- SHUM and KMI- PARAMETER-SUMNER. . . cost
is now 3.939357864357865

Swapping fl'II-PARAMETER-WHALLEY and KMI-PARAMETER-MOTTA. . . cost is now
3.9385882635882634

Swapping KMI-PARAMETER-HAWKRI1YE and KMI -PARAMETER-FREEMAN.. . cost is
now 3.9329605579605587

No more improvements are possible

Figure 9.9. Trace of global hill climbing process from optimal propose model.

The above trace reflects the behaviour of a fairly 'brutal' hill-climbing approach which at

each cycle generates and examines all possible swap pairs. As a result, its efficiency is

very low (0.3%). Moreover, its complexity grows exponentially with the number of

parameters.

An alternative configuration of the Propose&Improve method for the KMI domain limits

the size of the search space by only considering swap pairs which include one of the five

most expensive parameters in the current design model. This heuristic drastically prunes

the search space, as it considers only 25% of the nodes which can be possibly examined

at each stage of the hill climbing process. This kind of search is often called beam search

(Stefik, 1995).

Chapter 9	 Page 255

Propose phase completed.. .cost is now 5.194492544492546

Starting Improve phase......

Swapping II - PARANETER- SUER and }"II - PARAMETER-MOTTA. . . cost is now
4.744853294853295

Swapping KMI - PARAMETER-ThOMAS and KMI-PARAMETER-REILLY. . . cost is now
4.335942760942761

Swapping KNI- PARANETER-MULHOLLAND and KMI- PARAMETER- ZDRAHAL. . . cost is
now 4.314297739297739

Swapping KNI-PARAMETER-LEWIS and KNI-PARAMETER-THOMAS. . . cost is now
4.205531505531506

Swapping KNI- PARAMETER-StJMNER and KNI - PARAMETER- ZDRAHAL. . . cost is now
4.202837902837904

Swapping KMI-PARAMETER-EUCKINGHAM-SHUM and KNI - PARAMETER-
ZDRAHAL. . .cost is now 4.196103896103896

Swapping KMI-PARAMETER-WHALLEY and KMI -PARAMETER-MOTTA. . . cost is now
4.195334295334295

Figure 9.10. Trace from optimal propose model with beam width = 5

Figure 9.10 shows the trace obtained by carrying out a global hill climbing process

narrowed down to the five most expensive parameters. The starting model for the

improve phase is the same as the one used for the trace in figure 9.9. Figure 9.10 shows

that the restriction only marginally affects the quality of the solution. However its

efficiency is about an order of magnitude better (2%).

An important aspect of the Propose&Improve method is that by imposing a converging

criterion on the design process it is able to achieve drastic improvements on the quality of

the design models. This means that when using a Propose&Improve method it is not

necessary to achieve very good solutions at the end of the propose phase. Any

reasonable solution suffices. This point can be clearly illustrated by showing the trace

obtained by applying the restricted hill climbing strategy to the worst model in table 9.10.

This trace, which is shown in figure 9.11, indicates that the algorithm is eventually able

to achieve a solution which is even better (although by a very small margin) than the one

obtained by applying the unrestricted hill climbing process to the best solution which

could be obtained at the end of the propose phase.

Chapter 9
	

Page 256

Propose phase completed. . .cost is now 7.219420394420394

Starting Improve phase

Swapping }4I-PAR TER-PROJECT-OFFICER- 1 and KMI-PAR?METER-
REILLY. .cost is now 6.299518999519

Swapping II-PARATER-FOSTER and KMI-PARMETER-GRZEDA. . cost is now
5.921452621452621

Swapping 14I-PARATER-St3ER and KMI-PARAMETER-SCOTr. . cost is now
5.588335738335739

Swapping KMI-PARANETER-PRICE and KMI-PARAMETER-COLLINS. .cost is now
5.38505291005291

Swapping KMI-PARETER-QUICK and KMI-PARPMETER-FREEMN. . cost is now
5.199194324194324

Swapping KMI-PARAMETER-TAYLOR-M-J and I-PARTER-HAWKRIDGE. . cost is
now 4.647318422318422

Swapping KMI-PAIW'IETER-WHALLEY and KMI-PARANETER-SCOTT. . cost is now
4.619035594035594

Swapping }'II-PARMTER-WATI' and KMI-PAR?METER-WHALLEY. . cost is now
4.469805194805194

Swapping KMI-PARAMETER-MASTERTON and I-PARTER-WRIGHT. . cost is now
4.248544973544974

Swapping KMI-PARAMETER-DOMINGUE and I-PARM'TER-WHLLEY. . cost is now
4.223220298220298

Swapping KMI-PA ANETER-BUCKINGHM- SHUN and KMI-PARAMETER-WHPLLEY. . cost
is now 4.0441438191438195

Swapping KMI-PARPNEThR-ZDRAHAL and KMI-PARPMETER-WHALLEY. . cost is now
4. 022787397787398

Swapping KMI-PAR?METER-STUTI' and KMI-PAR?METER-WHALLEY. . cost is now
3.9882275132275122

Swapping KMI-PARPMETER- ZDR?HL and KMI -PARAMETER-WHALLEY. . cost is now
3.9121572871572874

Swapping KMI -PARAMETER- DOMINGUE and }I- PARAMETER-WHALLEY. . cost is now
3.8963564213564217

Figure 9.11. Trace from worst propose model with beam width = 5

The resulting allocation model is shown in figure 9.12.

Chapter 9
	

Page 257

Figure 9.12. Allocation model with cost 3.89...

To recap, in this section I have discussed the KMI office allocation problem and shown

that the dynamic nature of its cost function implies that the problem cannot be

satisfactorily solved by means of methods which use greedy strategies. Therefore I

tackled the problem by means of suitable configurations of Propose&Improve and

showed that these can obtain very good solutions.

9.5. THE VT ELEVATOR DESIGN PROBLEM

The third application domain I am going to discuss in this chapter is the VT elevator

design problem which was chosen as the common data set in the Sisyphus-Il

benchmarking initiative (Schreiber and Birmingham, 1996). The problem consists of

configuring an elevator in accordance with a set of requirements. These are specified in

terms of an initial assignment of values to a subset of the parameter set. The VT

application knowledge is informally described in a document (Yost & Rothenfluh,

1996), which describes the various parts of an elevator, the applicable constraints and

the problem solving knowledge required to solve the problem by means of a

Propose&Revise approach. In addition to the Yost document, the data set for the

Sisyphus-Il initiative also includes a formal ontology, which characterizes (or attempts to

characterize) the application knowledge in a method-independent style (Gruber et al.,

1996).

In the earlier sections on the Sisyphus-I and KMI office allocation problems, I showed

how these application domains could be solved by applying a reuse-centred process and I

discussed the relative pros and cons of alternative application models, which make use of

different problem solving methods. Here, I will take a different approach and I will carry

out a 'rational reconstruction' of the Propose&Revise-type solution to the VT design

problem, originally developed by Marcus eta!. (1988). The purpose of this exercise is to

In the rest of this chapter I will refer to this document simply as 'the Yost document'.

Chapter 9	 Page 258

show the analytical leverage provided by the modelling framework and library

components presented in this thesis: these can be used to re-engineer an existing

application, to clarify the nature of the embedded knowledge and to explain its problem

solving behaviour in terms of a search-centred problem solving model.5

9.5.1. A critique of the VT domain model provided as part of the
Sisyphus-Il data set.

The description of the VT application given in (Yost and Rothenfluh, 1996) can be termed

'method-oriented', as it is based on the Propose&Revise model developed by Marcus et

al. (1988). Specifically, the document describes the following types of knowledge.

Knowledge about design components. This includes a description of the

model components relevant to the VT domain (i.e. the design parameters), their

value ranges and the formulas used to compute their values.

• Knowledge about constraints and fixes. This section lists the constraints

applicable to the problem and the fixes which can be applied to restore consistency

when one or more constraints have been violated.

• Knowledge about the problem solving process. This part of the

document informally describes the Propose&Revise architecture developed by

Marcus et al. - i.e. the P&R-Marcus problem solving method described in section

8.9.7.

• Knowledge about the structure of a VT requirement specification.

This consists of an initial assignment of values to a subset of the parameter set.

• Knowledge about preferences. This knowledge is expressed implicitly by

means of an association between costs and fixes. Given this association of costs to

fixes it is possible to define a global cost function which characterizes the cost of a

VT design model, say ?dm, as a ten-place vector, <do.......ci>, where each c1

represents the number of fix applications of cost i required to generate ?din (Motta

et al., 1996).

The other resource provided as part of the Sisyphus-Il data set consisted of a set of

formal ontologies developed by Gruber et al. (1996)6. These ontologies attempt to move

away from the method-centred description provided by the Yost document (VT-Yost), to

Those readers who are interested in the application of other problem solving methods to the VT

domain are referred to the following papers: (Zdrahal and Motta, 1995; 1996; Motta and Zdrahal,

1996; Runkel at al., 1996).

6 In the rest of this chapter 1 will refer to this formal model of the VT domain knowledge as 'VT-Onto'.

Chapter 9	 Page 259

produce a model of the problem (a task model in my terminology) which can be

expressed independently of any problem solving method. In order to achieve this result

Gruber et a!. reformulated the knowledge provided by Yost, according to the mapping

schema shown in figure 9.13.

	

Parameters	 Parametric Components

	

Value Ranges
	

Constraints

Procedures

Constraints

Requirements

Fixes

Preferences

Figure 9.13. From VT-Yost to VT-Onto

If we analyse this mapping in terms of the framework discussed in chapter 7, some

problems emerge quite clearly.

9.5.1.1. Mapping procedures to constraints.

Procedures are design extension operators. As discussed in section 7.3.3., design

operators can be generated from value ranges, requirements and constraints. Which

means that in some cases it is correct to map design operators to constraints. However,

design operators can also be derived from preferences or from heuristic knowledge.

Therefore the transformation shown in figure 9.13 is only correct if no operators of type

C and D (see section 7.3.3) exist in the VT application. Unfortunately this is not the case.

From the Yost document it is easy to see that the values of twenty-two parameters are

computed by means of mechanisms which express either heuristic knowledge or

preferences. Seventeen of these twenty-two procedures are trivial: they express default,

initial or preferred values for parameters, which can be later modified by means of fixes.

The remaining five are much more interesting: they describe mechanisms for deriving the

values of some parameters from already bound ones. The five procedures associated

with these parameters (Safety-Beam-Model, Car-Buffer-Blocking-Height, Cwt-Bottom-

Reference, Car-Return-Left and Cwt-To-Platform-Rear) are erroneously modelled as

constraints in VT-Onto.

It is interesting to note that the Yost document implicitly indicates that the procedures

associated with two of these parameters (Car-Buffer-Blocking-Height and Cwt-Bottom-

Reference) do not express constraints. In particular the document states: "When fixing

constraint violations, some of the values the initial CAR BUFFER BLOCKING HEIGHT

Chapter 9	 Page 260

is computed from may change. If this happens, the blocking height should NOT be

recomputed from the changed values" (Yost & Rothenfluh, 1996 - page 22). The

rationale for this statement is that the car buffer blocking height is computed initially by

means of a procedure which does not define a functional constraint. A similar statement

is made at page 24 in relation to the counterweight bottom reference.

In practice, mapping procedures to constraints overconstrains the problem. In particular

the solution to the test case given in the Yost document does not satisfy the additional set

of constraints introduced by the mapping.

9.5.1.2. Lack of knowledge about preferred or optimal solutions

Another problem with the VT-Onto model is that it cannot alone provide the basis for

building application models for the VT problem. The main reason for this problem is that

an essential aspect of task knowledge for parametric design problems, knowledge about

preferences, is missing from the set of VT ontologies. This absence cannot be attributed

to the lack of such knowledge in the Yost document, which clearly discusses a fix-based

cost assignment mechanism. Hence, it is possible that this knowledge was 'thrown

away', together with the knowledge about fixes, in order to produce a method-

independent problem specification. Of course, this approach would be incorrect given

that knowledge about preferences is related to a task rather than a method.

Finally, it is also possible that the designers of the VT ontologies did not aim to provide a

complete, formalized problem specification, but simply a reusable domain model. This is

of course a possibility, although in the paper published in the IJHCS special issue

(Gruber et al., 1996) the authors explicitly say that their aim was to provide "a common

specification of a problem".

To summarize, while the set of VT ontologies provide a common resource to develop

reusable domain models, the VT domain model suffers from two problems: it

overconstrains the space of solution designs and it does not provide a complete task

specification. These two problems can clearly be seen by analysing the mapping from

VT-Yost to VT-Onto in terms of the model discussed in section 7.3.3. Hence, in the next

section I will illustrate an alternative task model for the Vi' problem.

9.5.2. Constructing a task model for the VT problem.

9.5.2.1. Parameters

The VT problem is characterized in terms of a number of components which are

organized in a part-subpart hierarchy. Because each component is described in terms of a

number of parameters it is quite natural to model the problem as a parametric design task.

Such an approach is in a sense 'reductive', given that it fails to account for the

component-centred structure of an elevator design. A more 'principled' approach would

Chapter 9	 Page 261

require an explicit modelling of the structure of the VT components and the space of

component assemblies. Such a component-centred approach informs the VT ontologies,

which include modelling primitives to structure hierarchies of components and

components assemblies. In general, this type of knowledge is very important in

configuration design problems, because it helps to reduce the combinatorics of

parameters. On the other hand, the space of solutions to the VT problem is homogeneous

and very little component-related problem solving knowledge is provided in the Yost

document. Therefore both the solution I developed with a number of colleagues in the

context of the Sisyphus initiative (Motta et al., 1996) and the one I will discuss here do

away with component hierarchies and characterize the VT problem as one of assigning

values to 230 design parameters, in accordance with the relevant design prescriptions.

Each parameter is associated to a value range which describes either a discrete set of

possible values (e.g. motor model) or a continuous interval (e.g. the position of the

counterweight).

9.5.2.2. Requirements

A VT requirement specification is formulated as an initial assignment of values to 26

parameters, which defines the input to a particular configuration problem. However, not

all these assignments are, strictly speaking, requirements, given that it is possible to have

solutions which violate some of them.

Specifically, the modifiable parameters in a requirement specification are divided into two

categories: major and minor contract specflcations. Fixes which modify a major contract

specification have a very high cost (10); fixes which modify a minor contract specification

have cost 6. Thus, I have modelled these modifiable requirements as preference

knowledge and the remaining ones as 'proper' requirements.

9.5.2.3. Constraints

The Yost document lists 50 constraints. To these it is necessary to add the procedures

which express functional constraints - there are 176 of them. Therefore the total number

of constraints included in the VT problem is 226. Of course this number depends on the

way constraints are modelled. In some cases it is easier to split a single constraint

definition described in the Yost document into a number of different constraints. This

means that the number of constraints varies with different formalizations. My model

includes 239 constraints, while the VT domain theory lists 366. However, this number

also comprises many specifications of value ranges which I represent separately in my

task model. If I also count value ranges, then my model comprises 438 constraints. The

discrepancy between these numbers is due to several factors: not all value ranges are

modelled in the VT-Onto domain theory; some erroneous constraints included in the VT-

Onto model are not included in mine and in many cases a single constraint described in

Chapter 9	 Page 262

VT-Yost is represented by means of two or more constraints, either in my model, or in

VT-Onto, or in both.

9.5.2.4. Preferences and costfunction

The Yost document specifies preferences indirectly, by associating a cost measure to each

fix, and none to procedures. Hence, we can assume that the ideal design solution is one

which does not involve any revision step during the design process. In other words,

preferences are expressed procedurally, by associating costs to design operators, rather

than declaratively.

Of course, it could be possible to abstract a set of declarative preferences from the

procedural model described in Yost by analysing the mapping between fixes and

parameters and writing the appropriate expressions indicating that, for parameter x,

certain values (i.e. those which can be obtained by means of a fix application) are less

preferred than those obtained by applying a procedure. However, this exercise would be

laborious, tedious and quite unnecessary: the method ontology discussed in chapter 7

provides adequate constructs for representing the VT procedural cost model directly. In

particular, as indicated earlier, one possible formalization of the VT cost model, which is

consistent with the procedural description given in the Yost document, formalizes the cost

of a design model as a ten-place vector, <doci>, where each c 1 represents the

number of applications associated with a fix of cost i (Motta et al., 1996). This cost

model can be formalized in OCML as follows, using the notion of state transition

discussed in chapter 7.

Chapter 9
	

Page 263

(def-function compute-vt-cost (?dm)
"This function computes the cost of a design model, ?dm, in the VT
application. If ?dm has no predecessor, then the cost is a
10-place vector with all zeros. This specifies the cost of an
empty model. Otherwise the cost is computed by adding the cost
associated with the operator to the cost of the predecessor."
body (in-environment

((?state . (the ?state
(and (design-state ?state)

(has-design-model ?state ?dm)))))
(if (state-transition ?pred ?op ?state)

(add-vt-operator-cost
(compute-vt-cost (the ?pred-dm

(has-design-model
?pred ?pred-drn)))

(the ?c (has-cost ?op ?c)))
'(0 0 0 0 0 0 0 0 0 0))))

(def-function add-vt-operator-cost (?vector ?op-cost)
"Adding the cost of an operator to a VT cost vector consists of
increasing by 1 the field in the vector corresponding to the cost
of the operator."
body (in-environment

((?v-pos . (- 10 ?op-cost)))
(if (= ?op-cost 0)
?vector
(append (sublist ?vector ?v-pos)

(list-of (+ 1 (elt	 ?v-pos ?vector)))
(nthrest ?vector (+ 1 ?v-pos))))))

9.5.3. Applying Propose&Revise to the VT domain

9.5.3.1. Modelling the Propose step

9.5.3.1.1.	 A classification of VT procedures

When discussing the application models developed for the KMI and Sisyphus-I domains,

I illustrated an application development process which followed the completion of a task

model with the specification of the design operators relevant to the application. Because

of the artificial nature of the VT problem and the method-oriented problem specification

given in the Yost document, the inverse process is necessary here: the construction of a

task specification from a problem solving oriented description of the VT application.

Thus, the step of defining the operators needed for the VT model is rather simple. For

each parameter in the VT domain the Yost document specifies a procedure to compute its

values. These procedures can be modelled as design extension operators. Specifically,

my application model specifies 202 procedures, which are grouped as follows.

• Operators for handling invariant parameters. The VT domain specification

comprises five parameters which are not part of the requirement specification, nor

Chapter 9
	

Page 264

can they be modified during the configuration design process. An operator of type

B 7 takes care of associating them with their values.

• Operators for handling modifiable parameters in the requirement specification. The

requirement specification for a VT design comprises twenty-six parameters. Seven

of these can be modified during the revision process. This means that these initial

assignments should be characterized as preferences rather than requirements. The

resulting operator is therefore of type C.

• Operators for handling prescriptive parameters in the requirement specification.

This type B operator initializes the values of the parameters given in the

requirement specification, which cannot be modified during the design process.

There are 19 of these.

• Operators for initializing default values of fixable parameters. These type C

operators initialize the values of parameters which can be modified during the

revision process. The expressions associated with these operators do not depend

on the values of any parameter. There are 16 of these operators.

• Operators expressing preferred or heuristic problem solving knowledge. There are

six procedures in the Yost document which superficially look like expressing

functional constraints but on closer inspection indicate preferred or heuristic values

for some parameter. These procedures are associated with the following

parameters: Cwt-To-Platform-Rear; Safety-Beam-Model; Cwt-B ottom-Reference;

Car-Return-Left; Car-Buffer-Blocking-Height and Motor-Model. Without access

to domain experts it is difficult to conclude whether these operators should be

classified as type C or D.

• Operators expressing functional constraints. These operators express functional

constraints which can be used to compute the values of parameters (type B). There

are 177 of these.

Thus, my model comprises 202 procedures, which are used to compute 230 parameters.

9.5.3.1.2.	 Modelling VT procedures

A VT procedure is represented as a subclass of class vt-design-operator. A VT

design operator refines the definition of design operators given in chapter 7 by means of

two additional slots: has-cost and depends-on. The former is needed to model the

association between costs and operators discussed in the Yost document. Here, I

generalize the notion of 'cost of a fix' given by Yost to VT operators in general, by

associating zero cost to procedures. The second slot, depends-on, is used to represent

Here I use the classification of design operators discussed in section 7.3.3.

Chapter 9	 Page 265

explicitly the dependencies between parameters enforced by an operator. These

dependencies of course do not need to be given 'by hand' but can be automatically

derived from the operator expressions. Finally, some procedures are also constraints:

these procedures are represented as instances of class Vt- functional-constraint arid

are associated with a constraint object specifying the relevant constraint expression.

(def-relation HAS-COST (?op ?n)
"This relation models the assignment of costs to operators
in the VT domain"

:iff-def (and (integer ?n)
(^ ?n 0)
(^ ?n 10)))

(def-class VT-DESIGN-OPERATOR (design-operator)
((depends-on :type list :default-value nil)
(has-cost)))

(def-class VT-PROCEDURE (vt-design-operator
design-extension-operator)

((has-cost :value 0))
lisp-class-name vt-procedure)

(def-class VT-FUNCTIONAL-CONSTRAINT (vt-procedure)
((associated-constraint :type vt-constraint))
lisp-class-name vt-functional-constraint)

9.5.3.1.3.	 Configuring the Propose task for the VT application

If a CMR-type approach is used, then there is no need to worry about design focus

selection in a design extension context. Given that i) the dependency network specified

by the VT procedures is acyclic and ii) only one procedure exists for each parameter, it

follows that the same design model is produced at the end of the Propose task, regardless

of the order in which the parameters have been assigned.

Less straightforward is the situation in an EMR-type scenario, in which different

sequences of parameter assignments lead to different solutions. In particular only a very

specific (and statistically unlikely) sequence of design extension steps leads to the optimal

solution discussed in the Yost document8 . This sequence of constraint violations can be

obtained by adding the appropriate focus selection knowledge to the VT knowledge base.

8 Specifically, this sequence requires that i) the constraint violation concerning max-machine-groove-

pressure is uncovered before computing the values associated with the max-traction-ratio constraint

and that ii) the latter is fixed before all the values affecting constraint min-machine-beam-section-ndu1us

have been computed.

Chapter 9	 Page 266

However, such knowledge is not expressed in the system documentation 9 . Given that

this knowledge is essential to achieve the solution discussed in the test case, it is likely

that it was embedded in the original elevator design system, albeit in a compiled form.

In my model I addressed this problem simply by adding the appropriate focus ordering

knowledge to the VT application knowledge base. In particular this knowledge ensures

that the parameters participating in the max-machine-groove-pressure constraint are

computed as soon as possible and that those participating in the mm-machine-section-

beam-modulus are computed as late as possible. A sample rule modelling part of the

focus ordering knowledge is shown below. This rule states that parameter machine-

groove-pres sure should be selected before any parameter but those which participate in

constraint max-machine-groove-pressure.

(def-rule design-focus-order-in-vt-i
((design-focus-order machine-groove-pressure ?x)
if
(not (member ?x '(HOIST-CABLE-DThMETER

SPEED
MACHINE-GROOVE-MODEL)))))

This body of application-specific knowledge ensures that EMR reaches the optimal

solution when applied to the test case given in the VT specification. Of course, this is

quite an ad hoc solution and therefore not completely satisfactory. However, without

additional knowledge about the VT domain it is not possible to do better than this.

Finally, when discussing the KMI and Sisyphus-I applications I showed that domain-

independent heuristics could be effectively used to drive the focus selection process.

However, these heuristic techniques do not perform very well in the VT domain. The

complexity of the interconnections between parameters, fixes and constraints requires

application-specific focus selection knowledge.

9.5.3.2. Modelling the Revise task

9.5.3.2.1.	 Modelling fixes and fix combinations

In the previous chapter I pointed out that fixes are design modification operators directly

associated with constraints. However, a quick comparison of the definition of class

The Yost document specifies that if constraints max-machine groove pressure and max-traction ratio are

violated at the same time then max-machine groove pressure should be attempted first. Unfortunately

there are two problems with this statement: i) t does not say that an EMR problem solver jijj

ensure that these two constraint violations arise in this order and ii) this sequence is only a necessary

rather than sufficient condition (i.e. it is possible to construct non optimal solution paths in which

max-machine groove pressure is tIded befc max-traction-ratio).

Chapter 9	 Page 267

design-fix given in the previous chapter with the description of the fix mechanism

given in the Yost document suggests that fixes in VT are much more complicated than

those discussed in the previous chapter. Yost distinguishes between incremental and
non-incremental fixes and indicates that each individual fix is a specific instance of a more
general notion of fix combination. This is a structure comprising a number of fixes

which are applied simultaneously. For a given constraint violation a number of fix

combinations can be available and these should be tried according to a particular criterion.

This is given by Yost informally, by showing how to order a four element combination

comprising two fixes at desirability level 1 and two at desirability level 2. In (Motta et

al., 1996) we formalized this criterion, by assigning a 'cost' to each fix combination.

This is defined as follows. Let's suppose we have a fix combination Fc, comprising

individual fixes f1....., f. We know already that each f 1 has an associated cost. The

cost of Fc is then defined as a 10 element vector <xo......, xi>, where x 1 is the number

of individual fixes in Fc, with cost i. Fix combinations are then tried in order, from the

cheapest to the most expensive.

Incremental fixes are defined as a subclass of class multiple-design-fix, which, in

turn, is a subclass of multiple-design-modification-operator. This is analogous

to multiple-design-extension-operator. Both describe operators which can be

applied repeatedly to a state, to generate multiple state successors from the same operator.

Class vt-incremental-fix is defined as follows.

(def-class vt-incremental-fix (vt-design-operator
multiple-design- fix)

((has-counter :default-value 0)))

The slot has-counter is needed to emulate the non-functional behaviour of incremental

fixes. When an incremental fix has to be applied, a copy of the fix is created and the

counter is increased after each application. This solution requires a VT-specific

customization of method collect-operators-applicable-to-focus.

Strictly speaking, fix combinations are not a different kind of data structure but rather a

way of expressing a particular search strategy through the revision space. In particular,

the notion of fix combination and the particular fix application ordering policy presented

in the Yost document define a search strategy for navigating the revision space in a cost-

conscious manner. This point can be illustrated by considering the revision space

associated with an inconsistent state s 1 , which can be solved by means of three fixes,

f 1 <f2<f3 , where f 1 is the cheapest and f3 is the most expensive.

Chapter 9
	

Page 268

Si

Figure 9.14. Cost-conscious search strategy in VT

Figure 9.14 shows the order in which the states in the revision space of s should be

derived, in accordance with the cost-conscious policy informally expressed in the Yost

document. Thus, it is not essential to model fix combinations explicitly; ordinary fixes

suffice as long as the appropriate state selection strategy is defined. If fix combinations

are explicitly modelled, then the state selection policy used by completion-centred

methods - see section 8.10.1 - precisely captures the behaviour of an EMR problem

solver.

9.5.3.2.2.	 Focus selection in a : revise context

The set of design foci in a : revise context consists of the constraints violated by the

current design model. If an EMR approach is used, then constraint violations are dealt

with on a first-come, first-served basis; therefore, focus selection is trivial. If a CMR

approach is used, then 'clever' focus selection is only needed if the problem solver is not

allowed to select an alternative constraint violation, after failing to fix the previously

selected one. Of course, this would be an unnecessarily restrictive policy. Nevertheless,

as already pointed out in section 9.5.3.1.3, it is interesting to note that different

sequences of constraint violation fixing lead to different solutions (and if no backtracking

to alternative foci is allowed, then many sequences lead to a deadend). This aspect is

illustrated by figure 9.15 - taken from (Motta et al., 1996) - which shows a discrimination

tree induced by trying out all admissible sequences of constraint fixing in the VT test

case. The figure clearly shows that, out of 360 possible sequences, only 150 lead to a

solution. Moreover, a finer-grained analysis - see (Motta et al., 1996; pages 364-367) -

Chapter 9
	

Page 269

shows that only 10% of the possible sequences of constraint fixing lead to the cheap

solution documented in the test case.

before(LV-MM, MAX-TR)

No solution	 before(LV-MM, MAX-MGP)

(120)	
No

before(MIN-HCSF, MAX-MGP)
I	 I

(120)

before(MAX-TR, MIN-HCSF) 	
No solution

(60)

Solution	 No solution

(30)	 (30)

Figure 9.15. Solution and non-solution paths in the VT domain

9.5.3.2.3.	 Modelling the VT dependency network

The VT parameters are structured according to a dependency network defined by the

chain of 177 functional constraints which are used to compute parameter values. The

dependency network is modelled using the relations depends-on and affects, which

are part of the generic method ontology for parametric design. No special customization

was needed when implementing the VT system.

9.5.3.3. Experimental results

I run a number of trials applying both CMR and EMR to the VT knowledge base and I

was able to reproduce the solution to the test case given in the Yost document with both

models. In addition I was also able to generate other, more expensive solutions. The

sequence of constraint fixing steps which produced the optimal solution is shown in the

box below.

Chapter 9
	

Page 270

-- Focus on LEGAL-VALUE-MOTOR-MODEL

-- Current operator is INC-MACHINE-MODEL-5-14-9

-- New assignment is <MACHINE-MODEL 28>

- - Focus on MIN- PLATFORM-TO-HOISTWAY-LEFT

-- Current operator is INC-OPEMING-TO-HOISJAY-LEFT

-- New assignment is <OPENING-TO-HOISIWAY-LEFT 33>

-- Focus on MAX-VERTICAL-RAIL-FORCE

-- Current operator is INC-CAR-RAIL-UNIT-WEIGHT

-- New assignment is <CAR-RAIL-UNIT-WEIGHT 11>

-- Focus on MAX-MACHINE-GROOVE-PRESSURE

-- Current operator is INC-HOIST-CABLE-QUANTITY-2

-- New assignment is <HOIST-CABLE-QUANTIr 5>

-- Focus on MAX-TRACTION-RATIO

-- Current operator is COMBINED-FIX-FOR-MTR

-- New assignment is <CAR-SUPPLEMENT-WEIGHT 500>

-- New assignment is <CWT-TO-PLATFORM-REAR 1.75>

-- New assignment is <COMP-CABLE-MODEL 3/16-CHAIN>

- - Focus on MIN-MACHINE-BEAN- SECTION-MODULUS

-- Current operator is INC-MACHINE-BEAN-MODEL

-- New assignment is <MACHINE-BEAN-MODEL S10x35.O>

-- Design is now complete. Solution cost is (0 0 1 0 2 0 4 1 0 0)

The EMR method proved to be on average more than twice more efficient than CMR (0.5

vs. 0.2). The main reason for this result is that EMR fixes most constraints in a subset of

the overall space of parameters, thus reducing the number of constraint checks and

dependency propagation steps compared to CMR.

9.5.3.4. Evaluation of the VT application

The VT application is specified in a highly optimized and method-oriented style in the

Yost document. Such viewpoint provides both the strength and the weakness of the data

set. On the plus side, the method-oriented specification makes it possible to implement

Chapter 9	 Page 271

very efficient problem solvers for a complex problem such as VT. On the minus side this

'procedural' specification is both opaque and brittle. Given that I have already discussed

the 'opacity' of the specification (in relation to focus ordering knowledge), I will now

focus on the aspect of brittleness.

The brittleness of the VT knowledge base can be easily seen by trying out input

specifications different from the one given in the Yost test case. In (Zdrahal and Motta,

1996) we presented some results, derived by testing a Propose&Revise problem solver

on 25 input specifications. These were generated by combining all possible values of

parameters speed and capacity. Table 9.11 shows that the knowledge base of fixes

and procedures only allows us to fix less than 50% of the possible cases.

Speed [ft/mini

Capacity [pound] 	 200	 250	 300	 350	 400

2000	 Success Success	 Fail	 Success Success

2500	 Fail	 Fail	 Success Success Success

3000	 Fail	 Success Success Success Success

3500	 Success	 Fail	 Fail	 Fail	 Fail

4000	 Fail	 Fail	 Fail	 Fail	 Fail

Table 9.11. Competence of the Propose&Revise solution to VT

Clearly these results are not consistent with our intuition that, if a solution (i.e. motor) is

found for a certain speed and capacity, then some solution will also be found for the same

speed and lower capacity, and for the same capacity and lower speed. For instance,

while our VT problem solver can fix the test case given in Yost, [speed=250;

capacity=3000], it cannot solve the apparently simpler case, [speed=200; capacity=3000].

Even worse, it is easy to verify that the solution to the case [speed=250; capacity=3000]

is also a solution to the case [speed=200; capacity=3000].

The main reason for such brittle behaviour is the incompleteness of the knowledge base

of fixes: not all potentially fixable constraints have fixes associated and not all possible

fixes are associated to fixable constraints. A solution to this problem is to allow the

behaviour of the VT problem solver to 'gracefully degrade' to dependency-directed

backtracking when all fixes for a constraint have been tried. Another is to add the

missing fixes. Both these approaches were able to solve the 'problematic' input

specification, [speed=200; capacity=3000], by generating the solution model which also

solves the [speed=250; capacity=3000] case. However, solving the [speed=200;

capacity=3000J test case required more design revision steps than in the other case and

Chapter 9	 Page 272

therefore it turns out that the cost of solving the input specification, [speed=200;

capacity=3000], was higher than that required to solve [speed=250; capacity=3000J.

This is of course counter-intuitive - even more so given that the two models are absolutely

identical!

9.5.3.5. Conclusions

The VT problem is normally regarded as a complex design application (Stefik, 1995).

Nevertheless, I was able to build several application models for it, by means of reusable

library components. Very little configuration effort was required - only 10 additional

definitions were needed in total, for building both CMR and EMR VT problem solvers.

The rational reconstruction discussed here has clarified the nature of various aspects of

the VT application knowledge (e.g. the role of fix combinations; the nature of the 'breaks'

in the dependency network mentioned in the Yost document; the opaque focus selection

knowledge).

Finally, the discussion has also highlighted the brittleness of the VT application

knowledge and the counter-intuitive results which can arise as a result of the method-

oriented cost model described in the Yost document.

9.5.3.6. Comparison with some contributions from the Sisyphus-lI initiative.

In what follows, I will briefly compare my analysis of the VT application with three

alternative approaches proposed in the context of the Sisyphus-Il initiative: Protégé-TI

(Rothenfluh et a!., 1996), Common KADS (Schreiber and Terpstra, 1996) and DIDS

(Runkel et al., 1996).

9.5.3.6.1.	 Protégé-lI solution

The approach taken by the Protégé-il group is quite bottom-up. Rothenfluh et al. analyse

the knowledge structures presented in the Yost document (e.g. fixes and constraints) and

classify them in various categories (e.g. they distinguish three types of fixes). However

this analysis only produces limited insights into the domain knowledge. For instance,

they fail to note the heuristic nature of some of the 'constraints' present in the VT domain

theory (i.e. in VT-Onto). Moreover, they also fail to address the cost-related aspects of

the problem specification and the problem solving method. This seems to me a

consequence of the limited modelling leverage provided by their task analysis - e.g. there

is no notion of preference and cost. In contrast with their approach, my task analysis is

driven by a rich task ontology, which makes it possible to characterize the nature of the

VT task knowledge and identify eventual 'holes' in the specification.

Another important difference between the two approaches is at the methodological level.

My framework distinguishes between task, method and domain ontologies and divides

application configuration knowledge into mapping and application-specific knowledge.

Chapter 9	 Page 273

Rothenfluh et al. define application knowledge as an application-specific, method-

independent customization of a reusable domain model and they use mapping relations to

link application and method ontologies. Thus, in their framework application knowledge

is method independent. It seems to me that this view is problematic. The knowledge

requirements imposed by a method cannot necessarily be satisfied by means of mapping

knowledge. For instance, the heuristic nature of some design extension and fix

knowledge cannot be envisaged in an application model unless a Propose&Revise method

is selected. Another clear example is the heuristic function required by an A* method: it

is difficult to imagine a method-independent body of application knowledge which

includes the knowledge required to define such a function. Therefore, it seems to me that

it is more appropriate to consider application configuration knowledge as the 'glue' which

integrates reusable problem solving methods and domain models.

Finally, it is interesting to note that the Protégé-Il solution uses a CMR-style approach -

i.e. a complete solution model is generated before any revision is attempted. The revision

strategy itself appears to pursue a hill-climbing approach in which all available fixes are

applied in parallel and the best state (according to a state evaluation function) is chosen.

A nice feature of this approach is that it does away with the notion of fix combination. A

possible drawback of this approach is that the revision space is explored in a non-cost-

conscious style (although, paradoxically, this search strategy appears to derive the

optimal solution!).

9.5.3.6.2.	 Common KADS solution

The paper by Schreiber and Terpstra (1996) provides a very good description of a

structured KBS analysis and design process, carried out in accordance with the Common

KADS approach (Schreiber et a!., 1994b). In particular, Schreiber and Terpstra clearly

distinguish between the task-oriented aspects of the VT specification and the method-

oriented description of a Propose&Revise problem solver, and propose ontology

mappings to integrate the two. This approach is different from mine - in which a method

ontology specializes a task ontology in accordance with a generic problem solving

paradigm - and is, in principle, more flexible and modular.

Another interesting aspect of the Common KADS solution is that it effectively reuses the

VT domain model provided as part of the Sisyphus-Il data set. This reuse was

accomplished by defining the appropriate representation mappings to translate between

Ontolingua and Prolog, which is the language used by the SIADL environment (Terpstra,

1994) used to implement the VT system. Thus, the KBS development process described

by Schreiber and Terpstra comprises a number of different mappings and transformations

which are necessary for integrating the three modular specifications of the task, method

and domain components. The resulting model can be seen as a generalization of the

Chapter 9	 Page 274

modelling framework I have used to develop my library and the various application

models.

However, while I like the 'big picture' constructed by Schreiber and Terpstra, I have

some problems with the fine-grained aspects of their model; in particular with their

approach to reusing VT-Onto. Specifically, it is difficult to reconcile their reuse of VT-

Onto with the fact that their system solves the sample test case, given that the VT-Onto

formalization overconstrains the problem. However, if we look more closely at their

construction, we can see that not all constraints in VT-Onto are effectively used as

constraints in the Common KADS model. In fact, this uses only the fifty constraints

listed in the Yost document. The other constraints in VT-Onto, which correspond to

procedures in VT-Yost, are not reused as constraints, but as procedures. Given that no

distinction between these two classes of constraints is made in VT-Onto, it seems to me

that such 'selective reuse' is somewhat unprincipled.'0

9.5.3.6.3.	 DIDS solution

I have already written extensive comparisons between my approach and the DIDS one in

earlier sections (6.5.2 and 7.5.1). These comparisons, especially section 7.5.1, draw

heavily on the VT example and therefore I refer the reader to them.

9.6. CONCLUSIONS

The acid test of any approach to KBS reuse is the construction of effective problem

solvers. The term 'effectiveness' in this case refers not just to the quality of the end

system, but also to the rapidity of the system development process. The application

models discussed in this chapter score highly on both criteria. They were developed by

reusing the problem solving components from the library and very little configuration

effort was needed. Nevertheless, i.e. despite the relatively low effort required to build

the application models, all three application domains were tackled successfully, in each

case achieving high-quality solutions, both in terms of competence and performance.

From an analytical point of view, the models presented in this chapter have provided a

number of novel insights into the nature of the domain knowledge in the various

application domains. These insights were obtained thanks to the use of i) rich task and

method ontologies, which structure task and application analysis, and ii) the search

10 In (Motta and Zdrahal, 1995) we have discussed this point more in detail and criticized the approach

taken by Schreiber and Terpstra, who distinguish between 'real' constraints and procedures in VT-Onto

by looking at the syntactic structure of the associated expressions. It seems to us that this approach

goes against the idea of a reusable ontology providing a semantic basis for reuse, i.e. a "content-

specific agreement" (Gruber, 1993).

Chapter 9
	

Page 275

paradigm as a basis for understanding the role of problem solving components expressed

in task-specific terminology.

Hence, on the basis of the evidence presented in this chapter, the following claims can be

made.

• The TMDA framework provides a useful epistemology for characterizing the

generic components of an application model.

• The OCML language effectively supports the specification and prototyping of

knowledge models.

• The use of search as a foundational basis for problem solving makes it possible to

understand the computational role of problem solving components specified in

task-specific terms.

• The parametric design task ontology provides a rich conceptual structure, which

supports an effective, model-based knowledge acquisition process for developing

task models.

• The library of generic problem solving components for parametric design provides

effective support for KBS development by reuse. The dual principles of

component modularity and method generality both limit the need for method

configuration and, at the same time, facilitate it.

In a nutshell, the examples discussed in this chapter suggest that the proposed

technologies afford both engineering and analytical leverage. Both kinds of leverage are

needed, given that the goals of understanding knowledge-intensive problem solving and

constructing effective problem solvers are tightly coupled.

Chapter 10.
Concluding Remarks

In this final chapter 1 restate the main contributions of this thesis, in
particular discussing the relevance of the results presented here to a
number of generic research areas, such as knowledge acquisition,
ontologies, problem solving and software reuse. Having emphasized
what I regard as the main strengths of the proposed research, I will
then discuss a number of open research issues, which arise directly
from the work described here, or are closely associated with it. Some
of these issues are essentially scholarly in nature, in the sense that
they pertain to the future research work which needs to be carried out,
in order to further evaluate and enhance this research. In addition to
these 'scholarly issues', I will also look at the broader issues
concerning knowledge modelling technology and, in particular, I will
discuss the problems which need to be tackled, if we wish to lower
the high entry barriers which currently prevent the diffusion of
knowledge modelling technology on a large scale.

10.1 LEGACY OF THE WORK

In this thesis I have illustrated an approach to the development of a library of reusable

components for knowledge modelling and to the construction of application models by

reuse. This approach has been applied to parametric design problem solving, thus

producing a number of reusable technologies and several fully configured application

models. Hence, as discussed in section 1.1.2, this thesis can be seen as contributing to

research in both knowledge modelling and design problem solving. More generally, the

results presented here are relevant to a number of research areas, such as knowledge

acquisition, ontologies, problem solving, and software reuse. In what follows, I will

restate the main contributions of the thesis, in relation to several research areas.

10.1.1 Epistemological foundations of knowledge-based systems.

In chapter 3 I presented the TMDA modelling framework, which characterizes the generic

classes of knowledge-based components which constitute an application model. While

the TMDA framework has much in common with other proposals - e.g. VITAL, KADS,

Protégé-IT - in this thesis I have argued that it provides the 'right' set of distinctions,

which are needed for structuring library construction and application development. This

claim has been validated empirically, by showing that the application models developed

Chapter 10
	

Page 277

according to the TMDA framework exhibit advantages in relation to both application

analysis and development. In particular, I argued these points by comparing the

application models I developed for the Sisyphus applications with alternative proposals.

The positive results in terms of reuse and quality of application models provide evidence

for the validity and utility of the TMDA framework.

10.1.2 Problem solving.

Generally speaking, there has been very little intersection between research on symbol-

level algorithms and research on knowledge-level models. 1 The consequences of

maintaining such a dichotomy have been negative for both knowledge modelling and

symbol-level Al. In particular, the following problems can be identified.

• While several weak methods can be usefully applied in knowledge engineering and

integrated with knowledge-intensive problem solvers (as shown in chapters 7 and

8), the traditional antithesis between strong and weak method has posed a kind of

'ideological barrier' to a fruitful transfer of results and techniques from symbol-

level Al (in particular search methods) to knowledge engineering.

• Deprived of task-independent computational foundations, problem solving

methods have been formulated in task-specific terms. As a result, they are only

meaningful in a restricted context, thus limiting the possibilities for reuse (van

Heijst and Anjewerden, 1996).

• While symbol-level Al enjoys established computational foundations, e.g. search,

foundational studies for knowledge modelling, e.g. the competence theory

(Wielinga et a!., 1995), have so far achieved only limited results. Thus, only task-

specific foundations are normally available for knowledge models - see, e.g.,

(Benjamins, 1993). Unfortunately, as discussed in chapter 9 when analysing the

Propose&Revise problem solver developed by Marcus et al. (1988), without a

sound computational basis, problem solving methods may end up being both

opaque and brittle.

A notable exception is the work on Soar, which i) characterizes search and knowledge-level analysis as

two distinct levels of system description (Smith and Johnson, 1993) and ii) proposes a framework for

integrating them. The main difference between my approach and that used in Soar is that while I use

search as a methodological device, to mediate between task and method dimensions, Soar uses search

as a distinct, fully fledged computational architecture - i.e. as a kind of high level Turing machine. In

contrast with Soar, my emphasis is on identifying the generic problem solving components -

ontologies and generic tasks; search only provides a problem solving foundation, rather than an actuai

problem solving architecture.

Chapter 10	 Page 278

Thus, the work presented here goes beyond the simple dichotomies used in the past and

shows how libraries of problem solving components can be given a dual foundation: a

task-independent one provided by the search paradigm and a task-specific one provided

by a task ontology. As shown by the discussion in chapters 7, 8, and 9, once such a dual

foundation is in place, it becomes possible to construct problem solvers which capitalize

on the results from the 'weak method' literature, while subscribing to task-specific,

knowledge-intensive paradigms.

10.1.3 Ontologies.

In this thesis I have contributed to the area of ontological engineering both by

constructing practical, reusable ontologies and - more importantly - by showing how the

notion of ontology can be integrated with a modelling framework. The results of such

integration include: i) a methodology for defining reusable components; ii) a methodology

for building well-structured applications out of reusable components; and iii) a typology

of ontologies, which defines a generic epistemology for knowledge-based systems.

10.1.4 Libraries of problem solving components.

The contribution of this work to the development of libraries of problem solving

components is both practical and theoretical. From a practical point of view I have

developed a set of reusable components for parametric design (as well as the OCML base

ontology) which can be effectively used to perform model-based knowledge acquisition,

to specify and configure problem solving methods, and to develop application models.

More generally, in this work I have outlined a principled approach to the construction of a

task-specific library of problem solving components. In the proposed approach, which is

based on the TMDA framework, a class of problems is described by means of a task

ontology. Then, a generic, method-independent, but task-specific problem solving model

is defined, by instantiating a search model of problem solving in terms of the concepts in

the task ontology. This generic problem solving model provides the foundation from

which alternative problem solving methods for a class of tasks can be defined.

Specifically, the generic problem solving model provides i) a generic method ontology; ii)

a set of highly generic building blocks for specifying problem solving methods, and iii)

an initial, minimally conmiitted problem solving method. More specific problem solving

methods can then be (re-)constructed from the generic problem solving model through a

process of ontology specialization and method-to-task application.

In contrast with general-purpose, coarse-grained libraries, such as CommonKADS and

VITAL, the library presented here provides components which can be directly applied to

produce fully configured problem solving methods. Moreover, the library is not just a set

of task-specific definitions, but it enjoys both a task-specific and a task-independent

foundation.

Chapter 10	 Page 279

10.1.5 Software Reuse.

In this thesis I have proposed a framework for KBS reuse, which is based on the TMDA

framework, and I have shown how different types of ontologies can be used to support

the development of reusable model components. Moreover, I have discussed the

epistemological basis for KBS reuse and emphasized the application-specific nature of

problem solving knowledge. As a result, application development involves both a

process of knowledge acquisition and one of ontology mapping. This view subsumes

both the approach taken by those in the strong interaction camp as well as that taken by

those in the weak interaction camp. Each of these two views tells a partial story. The

framework proposed here shows the complete picture.

10.1.6 Knowledge Acquisition.

Although the term 'knowledge acquisition' nowadays covers a wide range of activities to

do with knowledge elicitation, modelling and management, 'traditionally' the term has

been used to refer to the problem of acquiring the knowledge needed for performing

expert problem solving. As discussed in chapter 1, an important step forward in

knowledge acquisition was provided by the emergence of the modelling view and the use

of generic models of problem solving to drive the knowledge acquisition process.

Although some evaluation studies have cast doubts on the effectiveness of model-based

knowledge acquisition (Corbridge et al., 1995), it is fair to say that the majority of

researchers and practitioners in the knowledge acquisition community still subscribe to

the assumption that the contextualized nature of knowledge requires the use of strong

models for supporting effective knowledge acquisition and for constructing robust and

maintainable performance systems. In a nutshell, knowledge acquisition is effective if we

know what are we looking for, i.e. if the right distinctions are enforced. Given this

perspective, I can highlight two contributions of this thesis to knowledge acquisition: i) at

the epistemological level, the TMDA framework provides a set of generic distinctions

which can be used to structure the knowledge acquisition process; ii) at the conceptual

level the proposed task and method ontologies for parametric design provide conceptual

templates which guide the construction of a task model and the configuration of generic

problem solvers. In particular, the validity of the proposed epistemological and

conceptual frameworks was demonstrated by comparing the quality of the task and

application models developed here with that of alternative proposals in the literature.

10.1.7 Knowledge modelling languages.

The current library of OCML models comprises several hundred definitions and has been

used to construct dozens of ontologies and application models. In particular, the

integration of operational and non-operational features in the language has proven very

important. As a result, the definitions in the library are semantically rich, while, at the

Chapter 10	 Page 280

same time, they can be verified by means of rapid prototyping. This property of

operationality, together with the provision of several mechanisms for integrating OCML

models with other software components, also facilitates the development of application

systems. As discussed in the previous chapter, it was possible to build reasonably

efficient prototypical applications, simply by defining symbol level mechanisms

implementing the task structure of problem solvers, with no need for re-coding the entire

OCML model.

10.1.8 Design Problem Solving.

While the main aim of this work was to illustrate a principled approach to library and

application development, the application of the approach to design problem solving has

produced a number of useful and novel results in this area. In particular, the library of

parametric design components illustrated in this thesis includes: i) task and method

ontologies; ii) a set of building blocks for constructing parametric design problem solvers

and iii) a number of fully configured problem solving methods. These technologies

provide a useful set of resources for parametric design, as illustrated by the application

models discussed in chapter 9.

10.2 OPEN ISSUES FOR FUTURE RESEARCH.

10.2.1 'Strategic' issues

The knowledge modelling techniques and resources discussed in this thesis are fairly

specialized technologies, which can only be applied by a relatively small number of

reasonably skilled knowledge engineers. As a result, without additional research and

development, the technology discussed here, just like so much 'intelligent' technology

developed in three decades of knowledge engineering research, will only have a very

limited impact on the software industry and on 'ordinary' computer users.

Thus, I believe it is appropriate to begin the discussion about outstanding research issues

by focusing on the problems which need to be overcome, if we wish to lower the high

entry barriers, which currently prevent the diffusion of knowledge modelling technology

on a larger scale than is currently the case. In particular, both the access costs and the

level of specialized skill, required to exploit knowledge modelling technologies, can be

significantly reduced by providing intelligent tools supporting the kind of application

development by reuse illustrated in this thesis. A newly set up, collaborative research

project (IBROW 3 , 1997) aims to address these issues, by developing an intelligent

brokering service enabling third party knowledge-component reuse through the World-

Wide Web. In particular, the parametric design library presented in this thesis will

provide the baseline resource for the initial pilot study. More generally, the scenario

envisaged by the project is one in which suppliers will provide libraries of knowledge

Chapter 10	 Page 281

components, according to some standard specification format, and customers will be able

to consult these libraries - through intelligent brokers - to configure a knowledge system

suited to their needs, through a process of method selection and adaptation. Because the

service will be web-based and will rely on the intelligent brokering service, it is hoped

that it will make knowledge modelling technology more accessible and cost effective.

In order to make the lB ROW 3 vision a reality, a number of research topics will need to be

addressed, which include: the specification of a standard PSM description language, the

specification of an application description language, protocols allowing the

interoperability of knowledge components at both the knowledge and symbol levels, and

intelligent configuration software supporting semi-automated method selection and

application configuration.

Another line of research - also related to making knowledge modelling technology more

accessible to 'ordinary' computer users - concerns the development of task-specific

application configuration shells, which can integrate the problem solving technology

described here - ontologies and problem solving methods - with sophisticated user

interfaces and knowledge acquisition front ends, to provide intelligent problem-solving

services. For example, a resource assignment application configuration toolkit could be

developed with relatively little effort, by customizing the parametric design technology

presented here for resource assignment problems and building the relevant front ends.

Again, the provision of such products would make this kind of technology accessible to

large, non-specialist user bases, thus contributing to the diffusion of the technology.

10.2.2 'Scholarly' issues

In addition to the issues discussed above, which are, in a sense, strategic to the whole

knowledge modelling area, there are also (of course!) a number of important, 'scholarly'

issues, which need to be addressed, in order to validate and improve on the approach

presented here.

	

10.2.2.1.	 Validation issues

In order to fully validate the approach proposed here, this will have to be tested on a

different class of tasks, e.g. diagnosis, to show that the ideas presented here are

applicable to problems other than parametric design. For instance, an interesting research

exercise would be to carry out a rational reconstruction of the diagnostic library developed

by Benjamins (1993), in accordance with the approach proposed here.

	

10.2.2.2.	 Application delivery issues

The technology presented here only provides limited support for the efficient delivery of

high performance end systems. The simple shell for parametric design used in this work

is not adequate to support large scale, industrial strength system delivery. Hence,

Chapter 10	 Page 282

powerful tools, supporting efficient system delivery from robust application models, are

needed. These tools will need to provide smart compilation facilities to generate efficient

code from knowledge models, as well as support the design and maintenance of the

application. While several of these tools exist in the software engineering area, to my

knowledge none is currently available for KBS development.

10.2 .2 .3.	 Foundational issues

On the theoretical side, more work needs to be carried out to produce a 'complete theory'

for the knowledge engineering field. Such a theory should characterize both the nature

and the development process of problem solving methods. The approach presented here

provides an initial basis for such a theory: problem solving methods are characterized in

task-oriented terms, as specializations of a task-specific model of problem solving - see

discussion in section 3.5.1. This model has a dual foundation, provided by a task

ontology and the search paradigm.

As discussed in section 8.10.4, the task-specific framework proposed here can be easily

generalized to provide task-independent specifications of problem solving methods

(Fensel et al., 1997). Such a generalization provides another dimension for reuse. If we

further generalize, we can characterize method specification as a process of navigating a

three-dimensional space consisting of problem-solving paradigms, e.g. search; problem

spaces, i.e. task ontologies; and domain assumptions, i.e. method ontologies (Fensel and

Motta, 1998). This navigation process can be carried out by formulating the relevant

adapters (Fensel, 1997). As discussed in (Fensel and Motta, 1998), we aim to develop

this framework to provide a comprehensive theory of problem solving methods,

subsuming both task-independent and task-specific approaches, and integrating

knowledge-based development with 'conventional' software engineering approaches.

The aforementioned paper provides an initial formulation of the theory.

10.3 CONCLUDING, VISIONARY, TECHNO-POLITICAL REMARKS

Stutt (1997) has suggested that the new knowledge age, which is characterized by

knowledge economies, global communication, cyberspaces, and the episternifi cation of

technology (Stutt and Motta, 1997), will require a new educational trivium, comprising

knowledge engineering ontologies, constructivist epistemology, and computer rhetoric.

Of course, many may regard this suggestion as an intellectual provocation (they would

probably point out that only a very small percentage of the people on the planet have

access to the Internet and that illiteracy is still with us, and not just in the third world).

Nevertheless, it is clear that the emerging new world will require new forms of literacy.

In particular, in (Stutt and Motta, 1997) we argue that knowledge modelling will become

an organic (i.e. essential and fundamental) technology for the new knowledge age. If

such a prediction turns out to be correct, then it will be crucial that not just the means of

Chapter 10
	

Page 283

knowledge fruition (e.g. web browsers), but also the means of production (e.g.

knowledge modelling technology) will be available to the cyber users. Otherwise, a

potentially democratic technology will turn out to be yet another form of intellectual

imperialism - much as Latin was in the middle ages.

Hence, the human-centred development of knowledge modelling and the introduction of

this technology as part of a basic computer curriculum for the knowledge age will be - at

some point in the future - essential, not just to ensure the success of the technology, but

also to ensure democratic forms of knowledge production.

References

Aben, M. (1994). Canonical Functions: Common KADS Inferences. In J. A. Breuker and W. Van de
Velde (Editors), The CommonKADS Library for Expertise Modelling. 105 Press, Amsterdam,
The Netherlands.

Akkermans, J. M., Wielinga, B. J. and Schreiber, A. T. (1993). Steps in constructing problem-solving
methods. In N. Aussenac, G. Boy, M. Linster, J-G Ganascia and Y. Kodratoff (Editors).
Knowledge Acquisition for Knowledge-Based Systems - EKA W '93. Lecture Notes in Artificial
Intelligence, LNCS 723, Springer-Verlag. 1993.

Angele, J., Decker, S., Perkuhn, R. and Studer, R. (1996). Modeling Problem Solving Methods in New
KARL. In B. Gaines and M. Musen (Editors), Proceedings of the 10th Banff Knowledge
Acquisition for Knowledge-Based Systems Workshop. Banff, Alberta, Canada.

Anjewierden A., Wielinga B. and Shadbolt N. (1992). Supporting knowledge acquisition: The
ACKnowledge project. In B. Lepape and L. Steels (Editors), Enhancing the Knowledge
Engineering Process -- Contributions from ESPRIT, pp. 143-172. Elsevier Science,
Amsterdam, The Netherlands.

Balkany A., Birmingham W.P. and Runkel J. (1994). Solving Sisyphus by Design. International
Journal of Human-Computer Studies, 40(2). pp. 221-24 1.

Balkany A., Birmingham W.P., and Tommelein J. (1993). An Analysis of Several Configuration Design
Systems. Artificial Intelligence in Engineering, Design, and Manufacturing, 7(1), pp. 1-17.

Benjamins, R. (1993). Problem Solving Methods for Diagnosis. PhD Thesis, Department of Social
Science Informatics, University of Amsterdam.

Benjamins, R. and Pierret-Golbreich, C. (1996). Assumptions of Problem Solving Methods.
Proceedings of the 6th Workshop on Knowledge Engineering Methods and Languages. Gif-sur-
Yvette, France, January 15-16.

Bonnardel, N. and Sumner, T. (1996). Supporting Evaluation in Design. Acta Psychologica, 91, pp.
221-244.

Brachman, R. J. (1979). On the Epistemological Status of Semantic Networks. In N. V. Findler
(Editor), Associative Networks: Representation and Use of Knowledge by Computers. Academic
Press, New York, pp. 3-50.

Brachman, R. J., Fikes, R. E. and Levesque, H. J. (1985). KRYPTON: A Functional Approach to
Knowledge Representation. In R. J. Brachman and H. J. Levesque (Editors). Readings in
Knowledge Representation. Morgan Kaufmann, Los Altos, CA.

Brachman, R. J. and Levesque, H. J. (Editors) (1985). Readings in Knowledge Representation. Morgan
Kaufmann, Los Altos, CA.

Brachman, R. J. and Smith, B. C. (Editors) (1980). Special Issue on Knowledge Representation.
SIGART Newsletter, 70. February 1980.

Bradshaw, J. (1996). An Introduction to Software Agents. In Bradshaw, J. (Editor), Software Agents.
AAAI Press/MIT Press, Menlo Park, California.

Brazier, F. and Wijngaards, N. (1997). A purpose driven method for the comparison of modelling
frameworks. Proceedings of the 7th Workshop on Knowledge Engineering: Methods and
Languages - KEML '97. The Open University, 22-24 January, 1997.

Breuker, J. A. and Van de Velde, W. (1994). CommonKADS Library for Expertise Modelling. lOS
Press, Amsterdam, The Netherlands.

Breuker J. and Wielinga B.J. (1989). Models of Expertise in Knowledge Acquisition. In 0. Guida and C.
Tasso (Editors), Topics in Expert Systems Design, North-Holland.

Breuker J., Wielinga B.J., van Someren M., de Hoog R., Schreiber 0., de Greef P., Bredeweg B.,
Wielemaker 3., Billault J.-P., Davoodi M. and Hayward S. (1987). Model Driven Knowledge
Acquisition: Interpretation Models. Deliverable Dl, Esprit Project P1098, KADS. University
of Amsterdam.

Brooks, R., A. (1991). Intelligence without Representation. Artificial Intelligence, 47(1-3), pp. 139-
160. January 1991.

Buchanan, B. 0. and Shortliffe, E. H. (1984). Rule-Based Expert Systems. Addison-Wesley, Reading,
MA.

Bylander, T. (1991). Complexity Results for Planning. Proceedings of the 12th International Joint
Conference on Artificial Intelligence - IJCAI '91, Sidney, Australia.

References	 Page 285

Bylander, T., Allemang, D., Tanner, M. C., and Josephson, J. R. (1991). The Computational
Complexity of Abduction. Artificial Intelligence 49.

Bylander, T. and Chandrasekaran, B. (1988). Generic Tasks in Knowledge-Based Reasoning: The Right
Level of Abstraction for Knowledge Acquisition. In B. Gaines and J. Boose (Editors),
Knowledge Acquisition for Knowledge-Based Systems - volume 1, pp. 65-77. Academic Press,
London.

Causse, K. (1993). Heuristic Control Knowledge. In N. Aussenac, G. Boy, M. Linster, J-G Ganascia
and Y. Kodratoff (Editors). Knowledge Acquisition for Knowledge-Based Systems - EKAW '93.
Lecture Notes in Artificial Intelligence, LNCS 723, Springer-Verlag. 1993.

Chandrasekaran, B. (1983). Toward a taxonomy of problem solving types. A! Magazine, 4(4), pp. 9-17.
Chandrasekaran, B. (1986). Generic Tasks in Knowledge-based Reasoning: High-Level Building Blocks

for Expert System Design. IEEE Expert 1(3), pp. 23-30.
Chandrasekaran, B. (1990). Design Problem Solving: A Task Analysis. Al Magazine, Winter Issue,

11(4), pp. 59-71.

Chandrasekaran, B., Johnson, T.R. and Smith, J.W. (1992). Task-Structure Analysis for Knowledge
Modelling. Communications of the ACM 35(9), pp. 124-137.

Cheeseman, P., Kanefsky, B and Taylor, W. M. (1991). Where the really hard problems are.
Proceedings of the 12th International Joint Conference on Artificial Intelligence - IJCAI '91.
Sidney, Australia, pp. 33 1-337.

Clancey W. J. (1983). The epistemology of a rule-based expert system: A framework for explanation.
Artificial Intelligence, 20(3), pp. 215-251.

Clancey W. J. (1985). Heuristic Classification. Artificial Intelligence, 27, pp. 289-350.
Conlon, T. and Pain, H. (1996). Persistent collaboration: A methodology for applied AIED. Journal of

Artificial Intelligence in Education, 7(3/4), pp. 2 19-252.
Corbridge, C., Major, N. P., and Shadbolt, N. R. (1995). Models exposed: an empirical study. In B.

Gaines and M. Musen (Editors), Proceedings of the 9th Banff Knowledge Acquisition Workshop,
Banff, Canada, January 26th -February 3rd, 1995

Cross, N., de Vries, M., and Grant, D. (1993). Design Methodology and Relationships with Science.
Kluwer Academic Publishers, Dordrecht.

Davis, R. (1979). Interactive Transfer of Expertise: Acquisition of New Inference Rules. Artificial
Intelligence 12, pp. 12 1-158.

Davis, R. and King, J. J. (1977). The Origin of Rule-Based Systems in AT. In Elcock, E. W. and
Michie, D. (Editors), Machine Intelligence 8: Machine Representations of Knowledge. Ellis
Horwood Ltd., Chichester, England.

Dechter, R. (1988). Constraint Processing Incorporating Backjumping, Learning and Cutset-
Decomposition. Proceedings of the 4th Conference on Artificial Intelligence Applications -
CA/A '88, pp. 312-319.

Dechter, R., and Meiri, I. (1989). Experimental Evaluation of Preprocessing Techniques in Constraint
Satisfaction Problems. Proceedings of the jjth International Joint Conference on Artificial
Intelligence - IJCAI '89, pp. 27 1-277. San Mateo, CA, Morgan-Kaufman.

Dechter, R., and Pearl, J. (1988). Network-based Heuristics for Constraint Satisfaction Problems.
Artificial Intelligence Journal, 34, pp. 1-3 8.

Domingue, J., Motta, E. and Watt, 5. (1993). The Emerging VITAL Workbench. In N. Aussenac, G.
Boy, M. Linster, J-G Ganascia and Y. Kodratoff (Editors). Knowledge Acquisition for
Knowledge-Based Systems - EKAW '93. Lecture Notes in Artificial Intelligence, LNCS 723,
Springer-Verlag. 1993.

Dreyfus, H. (1979). What Computers Can't do: A Critique of Artificial Reason. Freeman.
Ehn, P. (1989). Work-Oriented Design of Computer Artifacts. Arhetslivscentrum, Stockholm.

Eshelman, L. (1988). MOLE: A Knowledge Acquisition Tool for Cover-and-Differentiate Systems. In
S. Marcus (Editor), Automating Knowledge Acquisition for Expert Systems, pp. 37-80. Kluwer
Academic Publishers.

Falasconi, S. and Stefanelli, M. (1994). A library of medical ontologies. In N. Mars (Editor),
Proceedings of the ECAI-94 Workshop on Comparison of Implemented Ontologies, pp. 81-91.
Amsterdam, 8-10 August 1994.

Farquhar, A., Fikes, R., and Rice, J. (1996). The Ontolingua Server: A Tool for Collaborative
Ontology Construction. In B. Gaines and M. Musen (Editors), Proceedings of the 10th Banff
Knowledge Acquisition for Knowledge-Based Systems Workshop. Banff, Alberta, Canada.

References	 Page 286

Feigenbaum, E. A. (1977). The Art of Artificial Intelligence: Themes and Case Studies of Knowledge
Engineering. Proceedings of the Ffth International Joint Conference on Artificial intelligence,
Cambridge, MA.

Fensel, D. (1995a). The Knowledge Acquisition and Representation Language KARL. Kiuwer,
Dordrecht.

Fensel, D. (1995b). Assumptions and Limitations of a Problem Solving Method: A case study. In B.
Gaines and M. Musen (Editors), Proceedings of the 9th Banff Knowledge Acquisition Workshop,
Banff, Canada, January 26th -February 3rd, 1995

Fensel, D. (1997). The Tower-of-Adapter Method for Developing and Reusing Problem-Solving
Methods. In R. Benjamins and E. Plaza (Editors). Knowledge Acquisition, Modeling, and
Management. Proceedings of the 10th European Workshop, EKAW '97. Lecture Notes in
Artificial Intelligence 1319, Springer-Verlag.

Fensel, D. and Motta, E. (1998). Dimensions for Method Refinement. Submitted to the 11th Workshop
on Knowledge Acquisition, Modeling and Management (KAW98). Banff, Canada, April 18th -
23rd.

Fensel, D., Motta, E., Decker, S., and Zdrahal, Z. (1997). The use of Ontologies for Specifying Tasks
and Problem Solving Methods: A Case Study. In R. Benjamins and E. Plaza (Editors).
Knowledge Acquisition, Modeling, and Management. Proceedings of the 10th European
Workshop, EKAW '97. Lecture Notes in Artificial Intelligence 1319, Springer-Verlag.

Fensel, D. and Schoenegge, A. (1997a). Specifying and Verifying Knowledge-Based Systems with KIV.
Proceedings of the European Symposium on the Validation and Verification of Knowledge Based
Systems - EUROVA V-97, Leuven Belgium, June 26-28, 1997.

Fensel, D. and Schoenegge, A. (1997b). Hunting for Assumptions as Developing Method for Problem-
Solving Methods. In Proceedings of the Workshop on Problem-solving Methods for
Knowledge-based Systems. Workshop held in connection with the Fifteenth International Joint
Conference on Artificial Intelligence (IJCAI-97). Nagoya, Japan, August 23-25, 1997.

Fensel, D. and Straatman, R. (1996). Problem solving methods: Making Assumptions for Efficiency
Reasons. In N. Shadbolt, K. O'Hara, and Schreiber, 0. (Editors). Advances in Knowledge
Acquisition - EKAW '96. Lecture Notes in Artificial Intelligence, 1076. Springer-Verlag,
Heidelberg.

Fensel, D. and van Harmelen, F. (1994). A Comparison of Languages which Operationalize and
Formalize KADS Models of Expertise. The Knowledge Engineering Review, 9(2).

Fikes, R. E. and Kehler, T. (1985). The Role of Frame-Based Representation in Reasoning.
Communications of the ACM, 28(9), September 1985.

Flemming, U., Baykan, C. A., Coyne, R. F., and Fox, M. S. (1992). Hierarchical generate and test vs
constraint-directed search. In J. S. Gero (Editor), Artificial intelligence in Design '92, pp. 817-
838. Kluwer Academic.

Ford, K., Stahl, H., Adams-Webber, J., Novak, J., Canas, A. and Jones, J. (1990). ICONKAT: A
Constructivist Knowledge Acquisition Tool. In Proceedings of the fifth Banff Knowledge
Acquisition Workshop, pp. 7.1-7.20. Banff, Canada.

Friedland, P. and Iwasaki, Y. (1985). The Concepts and Implementation of Skeletal Plans. Journal of
Automated Reasoning 1, pp. 16 1-208.

Fuchs, N. E. (1992). Specifications are (preferably) executable. Software Engineering Journal. pp. 323-
334. September 1992.

Gaines, B. R. (1994). A situated classification solution of a resource allocation task represented in a
visual language. international Journal of Human-Computer Studies, 40(2). pp. 243-271.

Gaschnig, J. (1977). A General Backtracking Algorithm that Eliminates Most Redundant Tests.
Proceedings of the Fifth International Joint Conference on Artificial intelligence, Cambridge,
MA.

Gaschnig, J. (1978). Experimental case studies of Backtrack vs. Waltz-type vs. new algorithms for
satisficing assignment problems. Proceedings of the 2nd Biennal Conference of the Canadian
Society for Computational Studies of Intelligence. Toronto, July 1978.

Gaschnig, J. G. (1979). Performance Measurement and Analysis of Certain Search Algorithms. Doctoral
Dissertation, Department of Computer Science, Carnegie-Mellon University, 1979.

Gaspari, M., and Motta, E. (1994). Symbol-level Requirements for Agent-level Programming.
Proceedings of the 11th European Conference on Artificial intelligence, ECAI '94. Amsterdam,
August 1994.

References	 Page 287

Gaspari, M., Motta, E, and Stutt, A. (1993). Inferring in Lego-land: an architecture for the integration of
heterogeneous inference modules. In P. Torasso (Editor), Advances in Artificial Intelligence,
Lecture Notes in Artificial Intelligence, LNCS 728, Springer-Verlag, pp. 142-153.

Gaspari, M., Motta, E, and Stutt, A. (1995). An Open Framework for Cooperative Problem Solving.
IEEE Expert, 10(3), pp. 48-55. June 1995.

Genesereth, M. R. and Fikes, R. E. (1992). Knowledge Interchange Format, Version 3.0. Technical
Report Logic-92-1, Computer Science Department, Stanford University.

Genesereth, M. R. and Nilsson, N. J. (1988). Logical Foundations of Artificial Intelligence. Morgan
Kaufmann, Los Altos, CA.

Gennari, J. H., Tu, S. W., Rothenfluh, T. E. and Musen, M. A. (1994). Mapping Domains to Methods
in Support of Reuse. Proceedings of the 8th Banff Knowledge Acquisition Workshop, Banff,
Canada.

Gero, J. S. (1990). Design Prototypes: A Knowledge Representation Schema for Design. Al Magazine,
11(4), pp. 26-36.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley, Reading, MA.

Golomb, S. W. and Baumert, L. D. (1965). Backtrack Programming. JACM 12, pp. 5 16-524.
Greenbaum, J. and Kyung, M. (1991). Design at Work: Cooperative Design of Computer Systems.

Lawrence Erlbaum Associates, Hilisdale, NJ.

Gruber, T. R. (1991). The Role of Common Ontology in Achieving Shareable, Reusable Knowledge
Bases. In Allen, I. A, Fikes, R., and Sandewall, E. (Editors), Principles of Knowledge
Representation and Reasoning: Proceedings of the 2nd International Conference, pp. 60 1-602.
Morgan-Kaufmann, Cambridge, MA.

Gruber, T. R. (1993). A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 5(2).

Gruber, T. R. (1995). Toward Principles for the Design of Ontologies Used for Knowledge Sharing.
International Journal of Human-Computer Studies 43(5/6), pp. 907-928.

Gruber, T. R., Olsen, G. R., and Runkel, J. (1996). The configuration design ontologies and the VT
elevator domain theory. International Journal of Human-Computer Studies 44 (3/4).

Guarino, N. (1994). The Ontological Level. In R. Casati, B. Smith and G. White (Editors), Philosophy
and the Cognitive Science. Holder-Pichler-Tempsky, Vienna, Austria.

Guarino N. (1997). Understanding, Building and Using Ontologies. A Commentary to "Using Explicit
Ontologies in KBS Development", by van Heijst, Schreiber, and Wielinga. International
Journal of Human-Computer Studies, 46(2/3), pp. 293-3 10.

Guarino, N. and Giaretta, p. (1995). Ontologies and Knowledge Bases: Towards a Terminological
Clarification. In N. Mars (Editor), Towards Very Large Knowledge Bases: Knowledge Building
and Knowledge Sharing. lOS Press, Amsterdam, pp. 25-32.

Haralick, R. M. and Elliott, 0. L. (1980). Increasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence, 14, pp. 263-3 13.

Hatala M. (1997). The OCML terminal. Technical Report. Knowledge Media Institute, The Open
University.

Hayes-Roth, F., Waterman, D. A. and Lenat, D. B. (1983). Building Expert Systems. Addison-Wesley,
New York.

Hayes, I. J. and Jones, C. B. (1989). Specifications are not (necessarily) executable. Software
Engineering Journal, 4(6), pp. 330-33 8. November 1989.

Hewitt, C. (1971). PLANNER: A Language for proving theorems in robots. Proceedings of the 2nd
International Joint Conference on Artificial Intelligence - IJCAI '71, London, UK.

Horak J., Valasek M. and Bauma V. (1995). Knowledge Level Analysis of Bearings Design. TR-
Encode-CVUT-1-95 (Encode Project Report). Czech Technical University, Faculty of Mechanical
Engineering. Prague.

IBROW3 (1997). IBROW3 : An Intelligent Brokering Service for Knowledge-Component Reuse on the
World-Wide Web. Esprit Open LTR proposal, #27 169.

Jonker, W. and Spee, J. W. (1992). Yet Another Formalization of KADS Conceptual Models. In Th.
Wetter, K.-D. Aithoff, J. Boose, B.R. Gaines, M. Linster and F. Schmalhofer (Editors) Current
Developments in Knowledge Acquisition - EKAW '92, pp. 112-32. LNAI 599, Springer-
Verlag, Berlin.

References	 Page 288

Keng, N. and Yun, D. Y. Y. (1989). A planning/scheduling methodology for the constrained resource
problem. Proceedings of the jjth International Joint Conference on Artificial Intelligence -
IJCAI '89, pp. 998-1003. San Mateo, CA, Morgan-Kaufman.

Kiczales, G., des Rivieres, J., and Bobrow, D. G. (1991). The Art of the Metaobject Protocol. MIT
Press, Cambridge, MA.

Kidd, A. (Editor) (1987). Knowledge Acquisition for Expert Systems. Plenum Press, New York.
Kirkpatrick, S., Gelatt, Jr. C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing.

Science, 200, pp. 671-680.

Klinker, G., Bhola, C., Dallemagne, G., Marques, D., and McDermott, J. (1991). Usable and Reusable
Programmin Constructs. Knowledge Acquisition 3, pp. 117-136.

Klinker, G., Marques, D., McDermott, J., Mersereau, T., and Stinson, L. (1993). The Active Glossary:
Taking Integration Seriously. Knowledge Acquisition 5, pp. 173-197.

Krueger, C. W. (1992). Software Reuse. ACM Computing Surveys 24(2), pp. 13 1-183.
Laird, J., Newell, A., and Rosenbloom, P. (1987). Soar: An Architecture for General Intelligence.

Artificial Intelligence 33, pp. 1-64.

Le Roux, B., O'Hara, K., Shadbolt, N., Outtandy, S., Laublet, P., and Motta, E. (1993). The VITAL
Library for Knowledge Modelling. VITAL Project Report DD215, August 1993.

Lenat, D.B. and Guha, R.V. (1990). Building Large Knowledge-Based Systems: Representation and
Inference in the Cyc Project. Addison-Wesley, Reading, MA.

Levesque, H. J. (1984). Foundations of a functional approach to knowledge representation. Artificial
Intelligence 23(2), pp. 155-2 12.

Linster, M. (1994). Problem Statement for Sisyphus: Models of Problem Solving. International Journal
of Human- Computer Studies 40(2), pp. 187-192.

MacGregor, R. (1991). Using a Description Classifier to Enhance Deductive Inference. Proceedings of
the 7th IEEE Conference on AlApplications. Miami, Florida, February 1991.

Marcus S. (Editor) (1988). Automatic Knowledge Acquisition for Expert Systems. Kluwer Academic,
Boston, MA.

Marcus, S. and McDermott, J. (1989). SALT: A Knowledge Acquisition Language for Propose and
Revise Systems. Journal of Artificial Intelligence, 39(1), pp. 1-37.

Marcus, S, Stout, J., and McDermott, J. (1988). VT: An Expert Elevator Designer that uses Knowledge-
Based Backtracking. A/Magazine, 9(1), pp. 95-112, Spring 1988.

Martin, J. and Odell, J. J. (1995). Object-Oriented Methods: A Foundation. Prentice-Hall, Englewood
Cliffs, New Jersey.

McDermott, J. (1988). Preliminary steps toward a taxonomy of problem-solving methods. In S. Marcus
(Editor), Automating Knowledge Acquisition for Expert Systems, Kluwer Academic.

Merrian-Webster. (1997). The Merrian-Webster English Dictionary. Available online at URL
http://www.m-w.com/home.htm.

Minton S., Johnson M.D., Philips A.B. and Laird P. (1992). Minimising conflicts: a heuristic repair
method for constraint satisfaction and scheduling problems. Artificial Intelligence 58. (1992).
pp. 161-205.

Mittal, S. and Frayman, F. (1989). Towards a Generic Model of Configuration Tasks. Proceedings of
the jjth International Joint Conference on Artificial Intelligence - IJCAI '89, pp. 1395-1401.
San Mateo, CA, Morgan-Kaufmann.

Motta, E. (1995). KBS Modelling in OCML. Proceedings of the fifth Workshop on Modelling
Languages for KBS, Vrije Universiteit Amsterdam, 30-31 January, 1995.

Motta, E. (1997). Trends in Knowledge Modelling: Report on the 7th KEML Workshop. The
Knowledge Engineering Review, Vol. 12(2), June 1997.

Motta E., O'Hara, K., and Shadbolt, N. (1994a). Grounding GDMs: A Structured Case Study.
International Journal of Human-Coniputer Studies 40(2), pp. 3 15-347.

Motta, E., O'Hara, K., Shadbolt, N., Stutt, A., and Zdrahal, Z. (l994b). A VITAL Solution to the VT
Elevator Design Problem. Proceedings of theKnowledge Acquisition for Knowledge Based
Systems Workshop, Banff, Canada, February 1994.

Motta, E., Rajan, T. and Eisenstadt, M. (1989). A Methodology and Tool for Knowledge Acquisition in
KEATS-2. In G. Guida and C. Tasso (Editors), Topics in Expert Systems Design, North-
Holland.

References	 Page 289

Motta E., Stutt A., Zdrahal Z., O'Hara K. and Shadbolt N. (1996). Solving VT in VITAL: a Study in
Model Construction and Knowledge Reuse. International Journal of Human-Computer Studies
44(3/4), pp. 333-371.

Motta E., Zdrahal Z. (1995). The Trouble with What: Issues in method-independent task specifications.
In B. R. Gaines and M. Musen (Editors), Proceedings of the 9th Banff Knowledge Acquisition
for Knowledge-Based Systems Workshop, pp. 30-1 - 30- 17.

Motta, E. and Zdrahal, Z. (1996). Parametric Design Problem Solving. In Gaines, B. and Musen, M.
(editors), Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-Based System
Workshop (KAW96), Banff, Canada, November 9th-l4th, 1996.

Motta, E. and Zdrahal, Z. (1997). An approach to the organization of a library of problem solving
methods which integrates the search paradigm with task and method ontologies. Submitted for
publication. Available from http://kmi.open.ac.uk/-enrico/papers/ijhcs_psm.ps.gz . July 1997.

Murray, K. and Porter, B. (1988). Developing a Tool for Knowledge Integration: Initial Results.
Proceedings of the 3rd Banff Knowledge Acquisition Workshop, Banff, Canada.

Musen, M. A. (1989). Automated Generation of Model-Based Knowledge Acquisition Tools. Research
Notes in Artificial Intelligence, Pitman, London.

Musen, M. A., Fagan L. M., Combs, D. M., and Shortliffe E. I-I. (1987). Use of a Domain Model to
Drive an Interactive Knowledge-Editing Tool.. International Journal of Man-Machine Studies
26, pp. 105-121.

Nebel, B. (1996). Artificial Intelligence: A Computational Perspective. In G. Brewka (Editor), Essentials
in Knowledge Representation, Springer-Verlag.

Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T. and Swartout, W. (1991). Enabling
Technology for Knowledge Sharing. Al Magazine 12(3), pp. 37-56.

Newell A. (1980). Reasoning, Problem Solving, and Decision Processes: The Problem Space as a
Fundamental Category. In R.S. Nickerson (Ed.), Attention and Performance VIII, Lawrence
Erlbaum Associates, Hilisdale, New Jersey.

Newell A. (1982). The knowledge level. Artificial Intelligence, 18(1), pp. 87-127.

Newell A. (1990). Unified Theories of Cognition. Harvard University Press.

Newell, A. and Simon, H. A. (1972). Human Problem Solving. Prentice Hall, Englewood, NJ.

Newell, A. and Simon, H. A. (1976). Computer Science as Empirical Enquiry: Symbols and Search.
Communications of the ACM, 19(3), pp. 113-126, March 1976.

Nilsson, N. J. (1980). Principles of Artificial Intelligence. Morgan Kaufmann, Los Altos, CA.

Nonaka, I. and Takeuchi, H. (1995). The Knowledge Creating Company: How Japanese Companies
Create the Dynamics of Innovation. New York, Oxford University Press.

O'Hara, K. (1993). A Representation of KADS-I Interpretation Models Using a Decompositional
Approach. In C. Löckenhoff, D. Fensel and R. Studer (Editors), Proceedings of 3rd KADS
Meeting, pp.147-69. Siemens AG, Munich.

O'Hara, K. (1995). The GDM Grammar, v.4.6. VITAL Project Report N0777T252.3.3. Available
from the author at Al Group, Department of Psychology, University of Nottingham, UK.

Orsvärn, K. (1996). Principles for Libraries of Task Decomposition Methods - Conclusions from a Case-
study. In N. Shadbolt, K. O'Hara, and G. Schreiber (Editors). Advances in Knowledge
Acquisition - EKAW '96. Lecture Notes in Artificial Intelligence, 1076. Springer-Verlag, pp.
48-65.

Poeck, K. and Gappa, U. (1993). Making Role-Limiting Shells More Flexible. In N. Aussenac, 0.
Boy, M. Linster, J-G Ganascia and Y. Kodratoff (Editors). Knowledge Acquisition for
Knowledge-Based Systems - EKA W '93. Lecture Notes in Artificial Intelligence, LNCS 723,
Springer-Verlag. 1993.

Poeck, K. and Puppe, F. (1992). COKE: Efficient Solving of Complex Assignment Problems with the
Propose-and-Exchange Method. 5th International Conference on Tools with Artificial
Intelligence. Arlington, Virginia.

Puerta, A. R., Egar, J. W., Tu, S. W., and Musen, M. A. (1992). A multiple-method knowledge-
acquisition shell for the automatic generation of knowledge-acquisition tools. Knowledge
Acquisition, 4(2), pp. 171-196.

Punch, W. (1989). A diagnosis system using a task integrated problem solver architecture (TIPS),
including causal reasoning. PhD Thesis, Ohio State University.

Rich, E. and Knight, K. (1991). Artificial Intelligence. McGraw-Hill, USA.

References	 Page 290

Rothenfluh, T. E., Gennari, J. H., Eriksson, H., Puerta, A. R., Tu, S. W., and Musen, M. A. (1996).
Reusable Ontologies, Knowledge-Acquisition Tools, and Performance Systems: PROTEGE-Il
Solutions to Sisyphus-Il. International Journal of Human-Computer Studies 44 (3/4), pp. 303-
332.

Runkel J. T., Birmingham W.P., Darr, T. P., Maxim, B. R. and Tommelein, I. D. (1992). Domain-
Independent Design System. In J. S. Gero (Editor), Artificial Intelligence in Design '92, pp. 21-
40. Kluwer Academic Publishers.

Runkel, J. T., Birmingham, W. B., Balkany, A. (1994). Separation of Knowledge: a Key to Reusability.
Proceedings of the 8th Banff Knowledge Acquisition Workshop. Banff, Canada, 1994.

Runkel, J. T., Birmingham, W. B., Balkany, A. (1996). Solving VT by Reuse. International Journal of
Human-Computer Studies 44 (3/4), pp. 403-433.

Sadeh, N. and Fox, M. S. (1996). Variable and value ordering heuristics for the job shop scheduling
constraint satisfaction problem. Artificial Intelligence, 86(1), pp. 1-41, September 1996.

Schoen, D. A. (1983). The Reflective Practitioner: How Professionals Think in Action. New York,
Basic Books.

Schreiber, A.T. (1992). Pragmatics of the Knowledge Level. PhD Thesis, University of Amsterdam.
Schreiber, A. T. (1994). Applying KADS to the office assignment domain. International Journal of

Human-Computer Studies, 40(2), pp. 349-377.

Schreiber, A.T. and Birmingham W.P. (Editors) (1996). Special Issue of the International Journal of
Human-Computer Studies, 44(3/4). March/April 1996.

Schreiber, A. T. and Terpstra, P. (1996). Sisyphus-VT: A CommonKADS solution. International
Journal of Human-Computer Studies, 44(3/4), pp. 373-402, March/April 1996.

Schreiber, A.Th., Wielinga B. J., Akkermans, H., van de Velde, W., and Anjewierden, A. (1994a).
CML: The CommonKADS Conceptual Modelling Language. In L. Steels, A. T. Schreiber, and
W. van de Velde (Editors), A Future for Knowledge Acquisition, Proceedings of the 8th
European Knowledge Acquisition Workshop. Springer Verlag, LNAI 867, pp. 283-300.

Schreiber, A. T., Wielinga B. J., de Hoog, R., Akkermans, H., van de Velde, W., and Anjewierden, A.
(1994b). CommonKADS: A Comprehensive Methodology for KBS Development. IEEE
Expert, December 1994, pp. 28-37.

Schreiber, A.Th., Wielinga B. J. and Jansweijer, W. H. J. (1995). The KACTUS View on the '0' Word.
In J. C. Bioch and Y.-H. Tan (Editors). Proceedings of the 7th Dutch National Conference on
Artificial Intelligence - NAIC '95. EURIDIS, Erasmus University, Rotterdam, The Netherlands,
pp. 159-168.

Shadbolt, N., Motta, E., and Rouge, A. (1993). Constructing Knowledge Based Systems. IEEE
Software, 10(6), pp. 34-38.

Shortliffe, E. H. (1976). Computer-Based Medical Consultations: Mycin. American Elsevier, New
York.

Shortliffe, E., Scott, A., Bischoff, M., van Melle, C., and Jacobs, W. (1981). ONCOCIN: An Expert
System for Oncology Protocol Management. Proceedings of the Seventh International Joint
Conference on Artificial Intelligence, 1981.

Smith, B. C. (1982). Reflections and Semantics in a Procedural Language. PhD Thesis, Massachusetts
Institute of Technology, MiT-TR-272. Prologue reprinted in (Brachman and Levesque, 1985).

Smith, J., W. and Johnson, T., R. (1993). A Stratified Approach to Specifying, Designing, and Building
Knowledge Systems. IEEE Expert, June 1993.

Stallman, R. M. and Sussman, 0. J. (1977). Forward Reasoning and Dependency-directed Backtracking
in a System for Computer-aided Circuit Analysis. Artificial Intelligence, 9, pp. 135-196.

Steele, 0. (1992). Common Lisp: The Language. Digital Press.

Steels, L. (1990). Components of Expertise. Al Magazine, 11(2), pp. 29-49.

Stefik M. (1995). Introduction to Knowledge Systems. Morgan Kaufmann, San Francisco, CA.
Stout, I., Caplain, 0., Marcus, S. and McDermott, J. (1988). Toward Automating Recognition of

Differing Problem-Solving Demands. International Journal of Man-Machine Studies, 29(5), pp.
599-611.

Stutt, A. (1997). Knowledge Engineering Ontologies, Constructivist Epistemology, Computer Rhetoric:
A Trivium for the Knowledge Age. ED-MEDIA '97. Calgary, Canada, 14-19 June, 1997.

Stutt, A. and Motta, E. (1997). Knowledge Modelling: The Organic Technology for the Knowledge Age.
Technical Report, Knowledge Media Institute, The Open University, UK. November 1997.

References	 Page 291

Swartout, B., Patil, R., Knight, K. and Russ, T. (1996). Toward Distributed Use of Large-Scale
Ontologies. In B. Gaines and M. Musen (Editors), Proceedings of the 10th Banff Knowledge
Acquisition for Knowledge-Based Systems Workshop. Banff, Alberta, Canada.

Terpstra, P. (1994). An environment for application design. Common KADS Project Deliverable
DM7.5a. University of Amsterdam, The Netherlands.

Tu, S. W., Shahar, Y., Dawes, J., Winkles, J., Puerta, A. R., and Musen, M. A. (1992). A problem
solving model for episodic skeletal-plan refinement. Knowledge Acquisition 4(2), pp. 197-2 16.

Valasek M. and Zdrahal Z. (1997) Experiments with Applying Knowledge Based Techniques to
Parametric Design. ICED 97. Tampere. Finland.

Valente, A. and Breuker, J. A. (1996). Towards Principled Core Ontologies. In B. Gaines and M. Musen
(Editors), Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-Based Systems
Workshop. Banff, Alberta, Canada.

Valente, A., Breuker, J. A. and Van de Velde, W. (1994). The CommonKADS Expertise Modelling
Library. In J. A. Breuker and W. van de Velde, The CommonKADS Library for Expertise
Modelling. lOS Press, Amsterdam, The Netherlands.

van de Velde, W. (1988). Inference structure as a basis for problem solving. Proceedings of the 8th
European Conference on Artificial Intelligence, pp. 202-207, London, Pitman.

van de Velde, W. (1994). An Overview of CommonKADS. In J. A. Breuker and W. van de Velde
(Editors), The CommonKADS Library for Expertise Modelling. lOS Press, Amsterdam, The
Netherlands.

van der Spek, R. and de Hoog, R. (1994). Towards a Methodology for Knowledge Management.
Technical Note, Knowledge Management Network, CIBIT, Utrecht, The Netherlands.
http://www.cibit.hvu.nllwebfkmn/pospapers.nsf.

van Harmelen, F. and Balder, J. R., (1992). (ML)2 : A Formal Language for KADS Models of
Expertiese. Knowledge Acquisition, 4(1), pp. 127-16 1.

van Hcijst, 0. (1995). The Role of Ontologies in Knowledge Engineering. PhD thesis, University of
Amsterdam, May 1995.

van Heijst, G. and Anjewerden, A. (1996). Four Propositions Concerning the Specification of Problem-
Solving Methods. In Shadbolt N., O'Hara, K., and Schreiber, G. (Editors), Supplementary
Proceedings of the 9th European Knowledge Acquisition Workshop - EKA W-96. Nottingham,
England, 14-17 May, 1996.

van Heijst, G., Schreiber, A. T. and Wielinga, B. J. (1997). Using explicit ontologies for KBS
development. International Journal of Human-Computer Studies, 46(2/3), pp. 183-292.

Van Heijst 0., Terpstra P., Wielinga B. and Shadbolt N. (1992). Using Generalized Directive Models in
Knowledge Acquisition. In Th. Wetter, K.-D. Althoff, J. Boose, B. R. Gaines, M. Linster and
F. Schmalhofer (Editors), Current Developments in Knowledge Acquisition - EKA W '92.
Lecture Notes in Artificial Intelligence (LNAI) 599, Springer-Verlag, pp.112-32.

van Melle, W., Shortliffe, E. H., and Buchanan, B. 0. (1984). EMYCIN: A Knowledge Engineer's Tool
for Constructing Rule-Based Expert Systems. In Buchanan, B. G. and Shortliffe, E. H.
(Editors), Rule-Based Expert Systems, Addison-Wesley, Reading, MA.

Weiss, S. M. and Kulikowski, C. A. (1984). A Practical Guide to Designing Expert Systems. Rowman
and Allanheld Publishers.

Weyhrauch, R. W. (1980). Prolegomena to a theory of mechanized formal reasoning, Artificial
Intelligence (13)1-2, pp. 133-170

Wielinga B. J., Akkermans J. M.. and Schreiber A. T.. (1995). A Formal Analysis of Parametric Design
Problem Solving. In B. Gaines and M. A. Musen (Editors), Proceedings of the 9th Banff
Knowledge Acquisition Workshop, pp. 37-1 - 37- 15.

Wielinga B. J. and Breuker J. A. (1984). Interpretation Models for Knowledge Acquisition. In T. O'Shea
(Editor), Advances in Artificial Intelligence (ECAI '84, Pisa), North-Holland, Amsterdam.

Wielinga B. J. and Breuker I. A. (1986). Models of Expertise. In B. du Boulay, D. Hoggs and L. Steels
(Editors), Advances in Arty'Icial Intelligence (ECAI '86, Brighton), North-Holland, Amsterdam.

Wielinga B.J. and Schreiber, A.,Th. (1997). Configuration-design problem solving. IEEE Expert, 2.
Special issue on Al and design.

Wielinga B. J., Schreiber A.T. and Breuker J., (1992a). KADS: A Modelling Approach to Knowledge
Engineering. Knowledge Acquisition 4(1), pp. 5-53.

References	 Page 292

Wielinga, B., Van de Velde, W., Schreiber, 0. and Akkermans, H. (1992b). The CommonKADS
Framework for Knowledge Modelling. Proceedings of the 7th Banff Knowledge Acquisition
Workshop. Banff, Alberta, Canada.

Wiig, K. M. (1994). A Knowledge Management Framework. Practical Approaches to Managing
Knowledge. Schema Press, Arlington, Texas.

Winograd, T. and Flores, F. (1986). Understanding Computers and Cognition. Ablex Publishing.
Yen, J., Neches, R. and MacGregor, R. (1988). Classification-based Programming: A Deep Integration

of Frames and Rules. Technical Report ISI/RR-88-213. USC/Information Science Institute,
March 1988.

Yost G.R. and Rothenfluh T.R. (1996). Configuring elevator systems. International Journal of Human-
Computer Studies, 44(3/4), pp. 52 1-568.

Zdrahal, Z. & Domingue, J. (1997) The World Wide Design Lab: An Environment for Distributed
Collaborative Design. In Proceedings of the 11th International Conference on Engineering
Design. 19-21 August, 1997, Tampere, Finland.

Zdrahal Z., Motta E. (1995). An In-Depth Analysis of Propose & Revise Problem Solving Methods. In
B. R. Gaines and M. Musen (Editors), Proceedings of the 9th Banff Knowledge Acquisition for
Knowledge-Based Systems Workshop, pp. 38-1 -38- 20.

Zdrahal Z., Motta E. (1996). Improving Competence by Integrating Case-Based Reasoning and Heuristic
Search. In B. Gaines and M. Musen (Editors), Proceedings of the 10th Banff Knowledge
Acquisition for Knowledge-Based Systems Workshop. Banff, Alberta, Canada.

Appendix 1
Additional details on the OCML language

In this appendix I provide additional information on the OCML
language. In particular I describe the informal semantics of the primitive
constructors for functional and control terms; the OCML inheritance
mechanism; the interpreters and the proof system.

1.1. FUNCTIONAL TERM CONSTRUCTORS

A BNF specification of each term constructor is provided as well as an informal
description of its operational semantics.

Setofal].

setofall-term	 seto fall template basic-log-expression

template	 ::= nil I (term . term)

term	 ::= constant I variable I string I (fun {term}*) I
findall-term I the-term I
in-env-term I quote-term I
if-term I cond-term

fun	 ::= the name of a function or a term constructor

constant
	

A symbol whose first character is not '?'

variable	 ::= A symbol whose first character is '?'

string	 ::= A lisp string, e.g. "string".

log-expression	 :	 quant-log-expression I basic-log-expression

quant-log-expression : := (foral 1 schema-or-var log-expression)l
(exists schema-or-var log-expression)

basic-log-expression

schema-or-var

schema

rel-expression

::= (and {log-expression}) I
(or {log-expression}) I
(=> log-expression log-expression) I
(<=> log-expression log-expression)
(not log-expression) I
rel-expression

::= schema I variable

::= (variable . schema) I nil

::= (rel {ter,n}*)

rel	 ::= a symbol naming a relation

setofall finds all solutions (i.e. environments) to basic-log-expression and then returns
the list obtained by instantiating template in all the returned environments, ensuring that

Appendix I	 page 294

the list contains no duplicates. If no solutions are found then the empty list (i.e. nil) is
returned.

Findall

findall-term	 : := f indal 1 template basic-log-expression

findall is the same as setofall except that it does not remove duplicate solutions.

The

the-term	 ::= the template basic-log-expression

the finds one solution (i.e. environment) to basic-log-expression and then returns the list
obtained by instantiating template in the returned environment. If no solutions are found
then the constant : nothing is returned.

In-environment

in-env-term	 ::= in-environment pairs body

pairs	 ::= nilI(pair.pairs)

pair	 ::= (variable . term)

body	 ::= term

The primitive in-environment takes a list, possibly empty, of pairs ((varj . term])...)
and a body, and returns the result of evaluating this in an environment in which each var
is bound to ter1n.

Quote

quote-term	 ::= 'term I (quote term)

The value of an expression such as (quote term) is term.

If

jf-term	 ::= (if log-expression then-term (else-term))

then-term	 term

else-term	 ::= term

The first action which is carried out when evaluating an f. term is to check whether log-
expression is satisfied. If this is the case, then then-term is evaluated in the environment
which satisfies log-expression. If log-expression cannot be satisfied in the current
model, then there are two possibilities. If else-term is specified, then this is evaluated,
and the value obtained is returned as the value of the if-term. If else-term is not present
and log-expression cannot be proved, then the constant : nothing is returned.

Cond

cond-term	 ::= (cond {condclause}+)

cond-clause	 ::= (log-expression term)

The interpreter iterates through each clause of a cond-term, until it finds one whose log-
expression is satisfied. If none is found, then :nothing is returned. Otherwise, let's
assume cond-clause,. is the first clause whose log-expression is satisfied. In this case the
value of the cond-term is obtained by evaluating the term associated with cond-clause1.

Appendix 1	 page 295

1.2. CONTROL TERM CONSTRUCTORS

A BNF specification of each control term constructor is provided as well as an informal
description of its operational semantics.

In-environment

in-env-control-term

pairs

pair

control-body

in-environment pairs control-body

::= nilI(pair.pairs)

::= (variable, term)

::= control-term

control-term	 ::= term I in-env-control-term I if-control-term I
cond-control-term I do-control-term I
loop-control-term I repeat-control-term I
return-control-term

if-control-term

then-control-term

else-control-term

cond-control-term

cond-control-clause

loop-control-term

do-control-term

repeat-control-term

end-test

test

::= (if log-expression then-control-term {else-control-term})

:= control-term

::= control-term

:= (cond { cond-control-clause } +)

(log-expression control-term)

::= (loop for variable in term do
{ control-term } +)

(do - actions { control-term })

(repeat-actions { end-test} { control-term }) I
(repeat-actions { control-term } { end -test})

::= while test I until test

:= log-expression

return-control-term	 ::= (return term)

The primitive in-environment takes a list, possibly empty, of pairs ((van . termj)...)
and a control-body, and returns the result of evaluating this in an environment in which
each var1 is bound to term1.

If

if-control-term	 ::= (if log-expression then-control-term {else-control-term})

The first action which is carried out when evaluating an if-control-term is to check
whether log-expression is satisfied. If this is the case, then then-control-term is evaluated
in the environment which satisfies log-expression. If log-expression cannot be satisfied
in the current model, then there are two possibilities. If else-control-term is specified,
then this is evaluated, and the value obtained is returned as the value of the if-control-
term. If else-control-term is not present and log-expression cannot be proved, then the
constant : nothing is returned.

Cond

cond-control-term	 : := (cond { cond-control-clause 1+)

Appendix 1	 page 296

The interpreter iterates through each clause of a cond-control-term, until it finds one
whose log-expression is satisfied. If none is found, then :nothing is returned.
Otherwise, let's assume cond-clause. is the first clause whose log-expression is
satisfied. In this case the value of the cond-control-term is obtained by evaluating the
control-term associated with cond-clause.

Loop

loop-control-term	 :: (loop for variable in term do
{ control-term }+)

The control construct loop provides a simple mechanism for iterating over lists. It first
evaluates a term, which should return a list, say L. Then it iterates over each element of
L, say I, and evaluates control-term in an environment in which variable is bound to I.

Do

do-control-term	 : := (do-act ions (control-term })

The control construct do is a simple sequencing primitive. The control terms in its body
are evaluated sequentially, once only.

Repeat

repeat-control-term	 ::= (repeat-actions {end-test} {control-term}) I
(repeat-actions (control-term } { end-test})

The control term constructor repeat repeats the control term(s) specified in its body until
the end test is satisfied, if the test has the form 'until test'. Otherwise, if the test has the
form 'while test', then repeat-actions stops as soon as the test fails. If the end test is
specified after the control terms, then the control terms are carried out at least once - i.e.
the end test is verified at the end of each cycle. If the end test is specified before the
control terms, then the test is verified at the beginning of each cycle. If no test is
provided, then all control expression in the body of a repeat-actions are repeated ad
infinitum.

Return

return-control-term	 ::= (return term)

This is a simple way of exiting from the body of a loop or repeat construct. When a
control term such as (return term) is encountered, the most specific loop or repeat
construct in the current execution stack is exited and the value obtained from evaluating
term is returned.

1.3. INHERITANCE AND DEFAULT VALUES

Generally speaking default values are values which apply unless other alternatives can be
used. In the OCML language the notion of default value is operationalized as follows.

Instances inherit values and default values from their superclasses down the inheritance
hierarchy specified by instance-of and subclass-of links. For a given slot, say s, of
a sample instance, say I, the following scenarios can arise:

i) i has not inherited any default value.
all the values I has inherited from
specified for slot s of I.

In this case the value of s in I is given by
its superclasses, plus any value locally

ii) I has inherited some default values as well as non-default ones. In this case the
default values are ignored and rule (i) is applied. We say that the default values
are overridden by the non-default ones.

Appendix 1	 page 297

iii) I has inherited only default values and local values have been specified. As in the
previous case, the default values are ignored and only the local values are
considered.

iv) I has inherited only default values and no local values have been specified. In
this case there are two possibilities. If the : inheritance facet has not been
specified, or it has been specified and it is : merge, all default values apply. If
the inheritance facet has been specified and it is : supersede, then the value
of s in I is obtained by (i) ranking the ancestors of I according to the class
precedence order of the parent of I, and (ii) retrieving the default value of the first
class in the class precedence order which specifies a (default) value for s. The
details of the algorithm used to compute the class precedence order are given at
pp. 782-786 of the Common Lisp specification (Steele, 1992). This algorithm
produces a total order (if this exists) based on two ordering principles: (i) a class,
say C, precedes all its direct superciasses, and (ii) a direct superclass of C
precedes the direct superciasses of C specified to its right in the list of direct
superclasses of C.

1.4. INTERPRETERS AND PROOF SYSTEM

1.4.1. The OCML interpreter for functional terms

The OCML interpreter is implemented by means of a Lisp macro, ocml-eval.

The evaluation of a functional term, term, in an environment, env, is carried out
according to the following rules.

i) If term is a variable, then the binding of term in env is returned.

ii) If term is a string or a constant, then term is returned.

iii) If term has the format (pfun termo....., term,), with n ^ 0, where pfun is a
primitive term constructor, then term is evaluated in env, according to criteria
which depend on pfun.

iv) If term has the format (fun term0....., term,), with n ^ 0, where fun is the name
of a function, and a Lisp body associated withfun exists, then ocrnl-eval returns
the value obtained by applying the Lisp body to the values obtained by evaluating
each term, in env.

v) If term has the format (fun term0....., term,), with n ^ 0, where fun is the name
of a function, and no Lisp body associated with fun exists, then ocml-eval
returns the value obtained by applying the body of fun to the values obtained by
evaluating each term, in env.

vi) In all other cases ocml-eval signals an error.

1 .4.2. The OCML interpreter for control terms

Control terms are interpreted in a manner analogous to functional terms. The control term
interpreter is implemented by a Lisp macro, ocml-control-eval, which has the
following behaviour.

i) If term is a functional term, then it is evaluated according to the rules given in
section 4.5.1.

ii) If term has the format (proc term0....., term), with n ^ 0, where proc is a
primitive control operator, then term is evaluated in env, according to criteria
which depend on proc.

iii) If term has the format (proc term0....., term), with n ^ 0, where proc is the
name of a procedure, and a Lisp body associated with proc exists, then ocml-
control-eval returns the value obtained by applying the Lisp body to the values
obtained by evaluating each term, in env.

Appendix 1	 page 298

iv) If term has the format (proc term0....., term), with n ^ 0, where proc is the
name of a procedure, and no Lisp body associated with proc exists, then ocml-
control-eval returns the value obtained by applying the body of proc to the
values obtained by evaluating each term, in env.

vi) In all other cases ocml-control-eval signals an error.

1.4.3. The OCML proof system

1.4.3.1. Procedure for proving basic goal expressions in OCML
Let's suppose we want to find all solutions to a basic goal expression, say G, with format
(rel {fun-term)), where rel is the name of a relation and fun-term a functional term. In
general we might be interested in one, some or all solutions. Therefore the order in
which solutions are generated might be important. The algorithm used by the OCML
proof system is as follows.

1. If rel is not a defined relation, then signal an error. Otherwise initialize SOLJ,
SOL2, SOL3, SOL4, SOL5 and SOL6 to the empty set and go to step 2.

2. Retrieve all the assertions present in the current model, whose type (i.e. first
element) is rel. Match each assertion with G. All successful matches, we call this
set SOLJ, provide solutions to G. Go to step 3.

3. If a Lisp attachment exists for rel, then evaluate it in the Lisp environment to find
eventual additional solutions to G, say SOL2. Go to step 8.

4. If a : prove-by proof condition, say prove-rel-expression, has been specified for
relation rel, then compute all solutions to prove-rel-expression, say SOL3. Each
of these is also a solution to G. Go to step 8.

5. If a : if f-def proof condition, say iff-rel-expression, has been specified for
relation rel, then compute all solutions to iff-rel-expression, say SOL4. Each of
these is also a solution to G. Go to step 8.

6. If a : sufficient proof condition, say suff-rel-expression, has been specified
for relation rel, then compute all solutions to suff-rel-expression, say SOL5.
Each of these is also a solution to G. Go to step 7.

7. If a backward chaining rule has been specified, associated with relation rel, then
invoke it to find all other solutions to G, say SOL6. Go to step 8.

8. The set of all solutions to query G is obtained by appending the lists SOL1,
SOL2, SOL3, SOL4, SOL5 and SOL6.

The algorithm shown above provides an operational semantics for the various relation-
forming constructs provided by OCML. In particular the following two points should be
highlighted.

Assertions inherited through an isa hierarchy are always cached at definition time.
This means that they are retrieved at step 2, when the goal is matched against the
current set of known facts.

• The results returned by non-logical mechanisms such as Lisp attachments and
prove-by are only merged with the results obtained by simple assertion-matching

(step 2). In other words they are meant to provide efficient proof mechanisms
which override those provided by definition-forming options, such as : if f-def
and :sufficient.

1.4.3.2. Proof rules for non-basic goal expressions
The bullet points below describe how non-basic goal expressions are proven in OCML.

(and A B). This expression is satisfied if both A and B can be proven in the
current model.

(or A B). This expression is satisfied if either A or B can be proven in the
current model.

Appendix 1
	

page 299

• (=> A B). This expression is satisfied if either A cannot be proven, or, if B can be
proven in each environment which is a solution to A.

• (<=> A B). This expression is satisfied if both (=> A B) and (=> B A) can be
proven.

• (not A). This expression is satisfied if A cannot be proven in the current model.

• (exists schema-or-var A). This expression is satisfied if A can be proven in the
current model.

• (forall schema-or-var (=> A B)). This expression is satisfied if either A cannot
be proven, or, if B can be proven in each environment which is a solution to A.

Thus, the proof mechanism supported by OCML is not complete with respect to first-
order logic statements. In particular, disjunctions can only be proved by proving each
clause separately and negated expressions are only proved by default.

Appendix 2
Full specification of the task-method ontology

This appendix provides a complete specification of the task-method
ontology.

(in-ontology base-ontology)

,, , , F FF11 lll	 FillillIl IIllFIII lFlll

;; ;Task-related definitions
illilF ill FlIlIlIlll ,,,F,,,F, 1111

(def-class TASK () ?task
"An OcMLJ task is characterised by its
input roles, output role, and goal. The goal expression is a
kappa expression which takes as argument the task itself and a
value (which is meant to be a possible result from carrying out the
task. The goal is satisfied if the kappa expression holds for its
two arguments.
A role is a slot of a task.
Tasks divide into two main subclasses:
goal-specification-task and executable-task. The former
provides only a goal specification, while the latter provides
also an 'organic' method for achieving the task"
((has-input-role :type role)
(has-output-role :type role)
(has-goal-expression : type legal-task-goal-expression))

:constraint (=> (has-role ?task ?role)
(and (slot-of ?role ?task)

(functional-relation ?role)))
axiom-def (exhaustive-subclass-partition

task
(set-of goal-specification-task

executable-task))
:lisp-class-narne task)

(def-class TASK-PE () ?x
:iff-def (subclass-of ?x task))

(def-class LEGAL-TASK-GOAL-EXPRESSION (kappa-expression) ?exp
"A task goal expression is a kappa expression with arity 2,
which does not contain free variables. The first argument to
the kappa expression represents a task-instance, the second
the result of the task"
:iff-def (and (= (arity ?exp) 2)

(= ?exp (kappa ?schema ?sent))
(= ?vars (all-free-vars-in-sentence ?sent))
(= (length ?vars) 2)
(member (nainestring (first ?vars))

(map namestring ?schema))
(member (namestring (second ?vars))

(map namestring ?schema))))

Appendix 2	 page 301

(def-class GOAL-SPECIFICATION-TASK (task) ?task
"A goal-specification-task is a task with a goal
expression and no body"
((has-goal-expression :cardinality 1))
:constraint (not (exists ?body

(has-body ?task ?body))))

(def-class PROBL4-TYPE (goal-specification-task)
"A problem type is a goal specification task which defines a
generic class of applications - e.g. parametric design")

(def-class EXECUTABLE-TASK (task)
"An executable task is a task with a body
task whose specification also includes a
achieving it"
((has-body :type unary-procedure))
axiom-def (exhaustive-subclass-partition

executable-task
(set-of primitive-task

composite-task))
lisp-class-name executable-task)

- i.e. a
mechanism for

(def-class COMPOSITE-TASK (executable-task) ?task
"A composite task is a task which introduces a subtask
decomposition. Something is an instance of this task if
its parent introduces a generic task-subtask
decomposition"
:iff-def (and (direct-instance-of ?task ?c)

(has-generic-subtasks ?c ?subs)))

(def-relation HAS-GENERIC-SUBTASKS (?task-type ?subs)
"Use this to model generic task-subtask decompositions"
:constraint (and (subclass-of ?task-type composite-task)

(every ?subs task-type)))

(def-class PRIMITIVE-TASK (executable-task) ?task
"An executable task which is not a composite task"
:iff-def (not (exists (?c ?subs)

(and (direct-instance-of ?task ?c)
(has-generic-subtasks ?c ?subs)))))

(def-procedure ACHIEVE-GENERIC-SUBTASK (?supertask
?task-type
&rest ?actual-role-pairs)

:body (in-environment ((?name . (new-symbol ?task-type)))
(tell (append (list-of ?task-type ?name)

?actual-role--pairs))
(tell (subtask-of ?narne ?supertask))
(solve-task ?name)))

(def-procedure INSTANTIATE-GENERIC- SUBTASK
(?supertask ?task-type &rest ?actual-role--pairs)
body (in-environment

((?name . (new-symbol ?task-type)))
(tell (append (list-of ?task-type ?name)

?actual-role-pairs))
(tell (subtask-of ?name ?supertask))
?name))

Appendix 2	 page 302

(def-relation ACHIEVED (?task-inst ?result)
"A task has been achieved if its goal holds in the current model.
A method has been achieved either if its goal has been achieved or
if its associated task has."
:iff-def (or (and (= ?exp (role-value ?task-inst has-goal-

expression))
(holds ?exp ?task-inst ?result))

(and (problem-solving-method ?task-inst)
(tackles-task ?task-inst ?task-inst2)
(achieved ?task-inst2 ?result))))

(def-procedure PERPORM-EXECUTABLE-TASK (?task-instance)
:body (if (has-body ?task-instance ?body)

(execute-task-body ?body ?task-instance)))

This is the same as PERFO}M-EXECUTABLE-TASK. . here only for
;;;compatibility with the previous versions of the ontology
(def-procedure EXECUTE-PRIMITIVE-TASK (?task-instance)

:body (if (has-body ?task-instance ?body)
(execute-task-body ?body ?task-instance)))

(def-procedure EXECUTE-TASK-BODY (?body ?task-instance)
:body (call ?body ?task-instance)
lisp-fun #' execute-task-body)

(def-relation SUETASK-OF (?instl ?inst2)
"This relation is used to model the specific
task-subtask hierarchy constructed at
execution time"
:constraint (and (executaiDle-task ?instl)

(task ?inst2))
:sufficient (and (problem-solving-method ?instl)

(tackles-task ?instl ?inst2)))

Fl,l,:I,IF,,;t;I Ill,,

;Role-related definitions
F1tFIIIfI	 ll Iltitlil! I 111111111Itll

(def-class ROLE (slot) ?role
"A role is a binary relation associated with a task by
means of the 'has-role' relation. The value cardinality
of a role-defining slot is 1."
:constraint (forall (?i)

(=> (and (has-role ?class ?role)
(instance-of ?i ?class))

(has-one ?i ?role)))
:iff-def (exists ?c

(and (task-type ?c)
(has-role ?c ?role))))

Appendix 2	 page 303

(def-relation HAS-INPUT-ROLE (?class ?role)
"This definition generalises the notion of
having an input role' to classes as well
as tasks instances. If ?class is a method, then
it also 'inherits the input roles from the task type
to which it is applicable"

:sufficient (and (subclass-of ?class task)
(or (and (slot-of has-input-role ?class)

(member ?role (all-class-slot-values
?class has-input-role)))

(and (subclass-of ?class
problem- solving-method)

(member ?task-type (all-class-slot-values
?class
tackles-task-type))

(has-input-role ?task-type ?role)))))

(def-relation HAS-OUTPUT-ROLE (?class ?role)
"This definition generalises the notion of
'having an output role' to classes as well
as tasks instances. If ?class is a method, then
it also 'inherits the output role from the task type
to which it is applicable"

:sufficient (and (subclass-of ?class task)
(or (and (slot-of has-output-role ?class)

(member ?role (all-class-slot-values
?class has-output-role)))

(and (subclass-of ?class
problem-solving-method)

(member ?task-type (all-class-slot-values
?class
tackles-task-type))

(has-output-role ?task-type ?role)))))

(def-relation HAS-CONTROL-ROLE (?thing ?role)
:sufficient (or (and (instance-of ?thing composite-task)

(has-control-role (the-parent ?thing) ?role))
(and (subclass-of ?thing composite-task)

(or
(member ?role (all-class-slot-values

?thing has-control-role))
(and (has-generic-subtasks ?thing ?subs)

(member ?sub ?subs)
(has-output-role ?sub ?role))))))

(def-relation HAS-ROLE (?thing ?role)
"Generalises from input output and control roles"
:iff-def (or (and (task ?thing)

(has-role (the-parent ?thing) ?role))
(and (task-type ?thing)

(member ?role
(union (setofall ?r (has-input-role

?thing ?r))
(setofall ?r (has-control-role

?thing ?r))
(setofall ?r (has-output-role

?thing ?r)))))))

(def-function TASK-ROLES (?class) -> ?roles
:constraint (and (task-type ?class)

(every ?roles role))
:body (setofall ?x (has-role ?class ?x)))

Appendix 2
	

page 306

(def-function CHOOSE-FROM-USE-METHOD-STATEMENTS (?psm- types)
:body (if (and (use-method ?x ?c (the-current-task))

(member ?x ?psm-types))
?x
(in-environment
;;try to pick the most specific use-method
;;statement for this subtask
((?psm-type . (the ?x

(and
(member ?x ?psm-types)
(use-method ?x ?c ?m)
(instance-of (the-current-method) ?m)
(not
(exists
(?m2 ?x2)
(and (member ?x2 ?psm-types)

(use-method ?x2 ?c ?m2)
(subclass-of ?rn2 ?m)
(instance-of
(the-current-method)
?rn2)))))

(if (= ?psm-type :nothing)
(first ?psm-types)
?psm-type))))

(def-relation use-method (?sub-method ?sub-task ?thing)
"Use instances of this relation to specify which sub-method
to use when solving a generic subtask of a problem. The third
argument can be used to conte.xtualise this statement within a
problem solving method or a particular problem.
EX2NPLE: (use-method HC-CONTROL DESIGN-FROM-STATE HC-DESIGN)"
:constraint (and (subclass-of ?sub-method problems-solving-method)

(subclass-of ?sub-task task)
(or (task ?thing)

(subclass-of ?thing problem-solving-method))))

;;;;;;;;;;;;;;,,,, II 1111111FF

;Applications
I I 11111IIfll 1111111 IllIllIll lIIIlII

(def-class APPLICATION-DOMAIN)

;APPLICATION
(def-class application ()

((tackles-domain :type application-domain)
(uses-method : type problem-solving-method)
(tackles-task :type goal-specification-task))
lisp-class-name application)

(def-procedure SOLVE-APPLICATION (?appl)
:body (if (application ?appl

uses -method ?method- inst
tackles-task ?task-inst)

(do
(unassert (current-application ?any))
(tell (current-application ?appl))
(apply-method-to-task ?method-inst ?task-inst))))

(def-function the-current-task ()
:body (if (current-application ?appl)

(the ?x (tackles-task ?appl ?x))))

Appendix 2	 page 307

(def-function the-current-method ()
:body (if (current-application ?appl)

(the ?x (uses-method ?appl ?x))))

(def-procedure APPLY-METhOD-TO-TASK (?method-inst ?task-inst)
:body (do

(tell (tackles-task ?method-inst ?task-inst))
(in-environment
((?output-role	 (the-slot-value

?task-inst
has-output-role))

(?fun . (the ?fun (has-output-mapping ?method-inst ?fun)))
(?result . (execute-primitive-task ?rnethod-inst)))

(set-slot-value ?task-inst
?output-role
(call ?fun ?method-inst ?result))

?result)))

Appendix 3
Full specification of the parametric
design ontology

This appendix provides a complete specification of the parametric design
task ontology.

(def-ontology parametric-design
"This ontology defines parametric design tasks, which are design
tasks where the solution is expressed in terms of an assignment
of values to parameters.")

(in-ontology parametric-design)

;;; DESIGN-TASK ---This is just a token class. We do not characterize
;;;it in this ontology
(def-task design-task (goal-specification-task))

;; ; PARMTRIC-DESIGN
(def-task parametric-design (design-task) ?task

((has-input-role :value has-parameters
value has-constraints
value has-requirements
:value has-cost-function
value has-cost-algebra
value has-preferences)

(has-output-role :value has-design-model :cardinality 1)
(has-design-model :type design-model :max-cardinality 1)
(has-parameters :type list :cardinality 1)
(has-constraints :type list :max-cardinality 1)
(has-requirements :type list :max-cardinality 1)
(has-preferences :type list :max-cardinality 1)
(has-cost-function :type cost-function :max-cardinality 1)
(has-cost-algebra :default-value '(+ - <) :cardinality 1)

(has-goal-expression
type legal-parametric-design-goal
:default-value (kappa (?task ?design-model)

(design-model-solution
?design-model
?task))))

(def-class LEGAL-PARTRIC-DESIGN-GOAL (?rel)
:iff-def (and (binary-relation ?rel)

(subrelation-of ?rel
(inverse design-model-solution))))

(def-class PARAMETER () ?p
"A parameter is something which plays the role of 'parameter
in a parametric design task"
((has-value-range :type set))
:iff-def (exists ?task (and (parametric-design ?task)

(member ?p (has-parameters ?task ?1)))))

Appendix 3	 page 309

(def-relation HAS-VALUE (?p ?v ?dm)
"Parameters have values w.r.t a particular design model"
:iff-def (and (parameter ?p)

(design-model ?drn)
(element-of (?p . ?v) ?dm))

:constraint (or (not (exists ?vr
(has-value-range ?p ?vr)))

(element-of ?v ?vr))
:prove-by (element-of (?p . ?v) ?dm))

(def-relation BOUND-PARANETER (?x ?dm)
"True if ?x has a value in ?dm"
:iff-def (exists ?v (has-value ?x ?v ?dm)))

(def-relation UNBOUND-PARAMETER (?x ?drn)
"True if ?x has not a value"
:iff-def (not (bound-parameter ?x ?dm)))

(def- function PARAMETER-VALUE (?x ?dxn)
:constraint (and (parameter ?x)

(design-model ?dm))
:body (the ?value (has-value ?x ?value ?dm)))

(def-class DESIGN-PRESCRIPTION () ?c
"The definitions comminon to constraints and requirements.
A design prescription is characterised in tes of the associated
expression. This is a kappa expression predicated over a design
model"
((applicability-condition :default-value (kappa (?d)

(true))
type legal-prescriptive-expression)

(has-expression :cardinality 1
:type legal-prescriptive-expression)))

(def-relation DESIGN-PRESCRIPTION-APPLIES (?c ?dra)
:iff-def (holds (the ?x (applicability-condition ?c ?x))

?dm)

(def-class LEGAL-PRESCRIPTIVE-EXPRESSION ()
?exp
"This is an expression parametrized over one argument, which denotes
a design model"

:iff-def (and (kappa-expression ?exp)
(== ?exp (kappa ?schema ?sentence))
(= ?vars (all-free-vars-in-sentence ?sentence))
(= (length ?vars) 1)
(= (length ?schema) 1)

•	 (= (namestring (first ?schema))
(namestring (first ?vars)))))

(def-relation design-model-satisfies (?&n ?c)
:constraint (and (design-prescription ?c))
:iff-def (holds (the ?x

(has-expression ?c ?x))
?drn))

(def-relation design-model-violates (?dm ?c)
constraint (design-prescription ?c)
iff-def

(not (holds (the ?x
•	 (has-expression ?c ?x))

•	 ?dm)))

Appendix 3	 page 310

CLASS CONSTRAINT
(def-class constraint (design-prescription)

lisp-class--name constraint)

(def-class REQUIR.ENT (design-prescription)
"A requirement is characterised in the same way as a constraint.
The difference here is conceptual, rather than logical"
lisp-class-name requirement)

(def-class COST-FUNCTION (unary-function) ?cf
"A cost criterion is a function which takes a design model and
returns its cost. The output can be either a real number or a
vector"
:iff-def (and (domain ?cf design-model)

(range ?cf cost)))

(def-class COST () ?x
"The costs I use are always real numbers of vectors.
This definition leaves other possibilities open"
:sufficient (or (real-number ?x)

(vector ?x)))

(def-relation HAS-COST-ORDER-RELATION (?pardes-task ?rel)
:iff-def (= ?rel (third (has-cost-algebra ?pardes-task ?alg))))

(def-relation HAS-COST-DIFFERCE-FUNCTION (?pardes-task ?rel)
:iff-def (?rel (second (has-cost-algebra ?pardes-task ?alg))))

(def-relation HAS-COST-SUM-FUNCTION (?pardes-task ?rel)
:iff-def (?rel (first (has-cost-algebra ?pardes-task ?alg))))

(def-relation CHEAPER-DESIGN (?rel ?dml ?drn2)
"A design model, ?dml, is cheaper than ?dm2 according to a cost
order relation, ?rel, if (?rel ?drnl ?dm2) is provable."
:constraint (and (order-relation ?rel)

(design-model ?dml)
(design-model ?drri2))

:iff-def (holds ?rell ?dml ?dm2))

(def-function ADD-VECTOR-COSTS (?cl &rest ?other-costs)
:constraint (and (= (length ?cl) ?n)

(every ?other-costs (kappa (?c)
(= (length ?c) ?n))))

:body (if (null ?cl)
nil
(cons (apply + (map first (cons ?cl ?other-costs)))

(apply add-vector-costs
(map rest (cons ?cl ?other-costs))))))

(def-function SUBTRACT-VECTOR-COSTS (?cl &rest ?other-costs)
:constraint (and (= (length ?cl) ?n)

(every ?other-costs (kappa (?c)
(= (length ?c) ?n))))

:body (if (null ?cl)
nil
(cons (apply - (map first (cons ?cl ?other-costs)))

(apply subtract-vector-costs
(map rest (cons ?cl ?other-costs))))))

Appendix 3	 page 311

(def-relation CHEAPER-VECTOR-COST (?cl ?c2)
:iff-def (and (not (null ?cl))

(not (null ?c2))
(or (< (first ?cl)

(first ?c2))
(cheaper-vector-cost (rest ?cl) (rest ?c2)))))

(def-class PREFERENCE () ?p
"A preference defines an order over two design models. The
difference between a preference and a constraint or requirement is
that these distinguish good from bad models, while preferences
distinguish between better and worse models."
((has-expression :cardinality 1 :type prefer-expression)))

(def-class PREFER-EXPRESSION (proof-expression) ?exp
"A prefer expression is a backward rule clause which tries to
prove a prefer relation instance"
((proves-relation :value prefer))
:constraint (and (== ?exp (?tail if . ?rest))

(== ?tail (prefer ?dl ?d2))))

(def-relation PREFER (?dl ?d2)
"Use this relation to express preferences between design models"
:constraint (and (design-model ?dl) (design-model ?d2))
:axiom-def (defines-partial-order prefer))

(def-axiom COST-SUBSUMES-PREFERENCES
"This axiom states that teh cost function subsumes
each preference. That is, teh cost function is
constructed by 'combining' preference-specific
cost functions"
(forall (?dl ?d2) =>
(and (parametric-design ?task has-preferences ?prs

has-cost-function ?cf)
(has-cost-order-relation ?task ?rel)

(member ?pr ?prs)
(has-expression ?pr ?exp)
(proves ?exp '(prefer ?dl ?d2)))

(cheaper-design ?rel ?dl ?d2)))

(def-axiom COST-PREFERENCES-CONSISTENCY
"This axiom states that the cost function should not
contradict any pratial order expressed by preferences"
(forall (?dl ?d2)

(=>
(and (parametric-design ?task has-preferences ?prs

has-cost-function ?cf)
(has-cost-order-relation ?task ?rel)
(cheaper-design ?rel ?dl ?d2))

(not (exists ?pr
(member ?pr ?prs)
(has-expression ?pr ?exp)
(proves ?exp '(prefer ?d2 ?dl)))))))

Appendix 3	 page 312

(def-class DESIGN-MODEL (set) ?d
"A design model is defined as a functional set of parameter-
assignments.
Thus a design model is associated with a binary membership
function, whose first arg is a parameter, and the second is its
value in the design model"
((membership-test :type design-model-membership-relation

:max-cardinality 1))
:iff-def (and (= ?pairs (setofall ?pair

(element-of ?pair ?d)))
(every ?pairs parameter-assignment)))

DESIGN-MODEL-ERSHIP-RELATION
(def-class design-model-membership-relation (binary-relation)

((domain :value parameter)
(range :value legal-value)))

(def-class DESIGN-MODEL-TYPE () ?c
:iff-def (subclass-of ?c design-model))

(def-class PARAMETER-ASSIGNMENT () ?pair
"A parameter assignment is a pair (?p . ?v),
where ?p is a parameter"
:iff-def (and

(== ?pair (?p . ?v))
(parameter ?p)
(legal-value ?v)))

(def-class LEGAL-VALUE () ?v
"This is a weak definition of legal value. Anything which does not
contain variables will be allowed as value. Of course, specific
design applications might want to specialise this by restricting
the legal values for each parameter"
:iff-def (ground-thing ?v))

(def-relation OPTIMAL-SOLUTION (?dml ?task)
"A solution design model, ?dml, is an optinal solution to a
parametric design task, ?task, if there is no other solution design
model, ?dm2, which is cheaper - according to the task cost function
- than ?dml"
:iff-def (and (design-model-solution ?dml ?task)

(not (exists ?din2
(and (design-model-solution ?drn2 ?task)

(has-cost-order-relation
?task ?rel)
(cheaper-design ?rel ?dm2 ?dml))))))

(def-relation DESIGN-MODEL-SOLUTION (?dm ?task)
:iff-def (and (design-model-complete

?dm
(role-value ?task has-parameters))

(design-model-valid
?dm
(role-value ?task has-constraints)
(role-value ?task has-requirements))))

(def-relation DESIGN-MODEL-COMPLETE (?dm ?parameters)
"A design model is complete if all the parameters are bound"
:iff-def (not (exists ?x

(and (member ?x ?parameters)
(unbound-parameter ?X ?dm)))))

Appendix 3	 page 313

(def-relation DESIGN-MODEL-VALID (?dm ?constraints ?reqs)
:iff-def (and (design-model-consistent ?dm ?constraints)

(design-model-suitable ?drn ?reqs)))

(def-relation DESIGN-MODEL-CONSISTENT (?dm ?constraints)
"A design model is consistent if no constraint is violated'
:iff-def (not (exists ?x

(and (member ?x ?constraints)
(design-model-violates 7dm ?x)))))

(def-relation DESIGN-MODEL-SUITABLE (?dm ?reqs)
"A design model is suitable is all requirements are
applicable and satisfied. ?drn is assumed to be complete"
:constraint (design-model-complete ?drn ?reqs)
:iff-def (every ?reqs

(kappa (?req)
(and (design-prescription-applies ?req ?dm)

(design-model-satisfies ?dm ?req)))))

(def-relation DESIGN-MODEL-EXTENDS (?dml ?dm2)
"A design model, ?dml, extends a design model, ?dm2,
if every parameter bound in dm2 is also bound
in ?dml and there is some parameter which is bound
in ?drnl and unbound in ?dm2"
:iff-def (and (forall ?p

(=> (bound-parameter ?p ?dm2)
(bound-parameter ?p ?dml)))

(exists ?p2
(and (bound-parameter ?p2 ?dml)

(unbound-parameter ?p2 ?drri2)))))

Appendix 4
Full specification of gen-design-psm

This appendix provides a complete specification of the most generic
method in the library. This method acts as a kind of 'generic method
template', from which all the other methods in the library can be
constructed through a method specialization process.

(def-class PROBL-SOLVING-ThOD-FOR-PARP,1vETRIC-DESIGN
(problem-solving-method)
own-slots ((tackles-task-type parametric-design)))

(def-class G-DESIGN-PSN
(problem-solving-method- for-parametric-design
decomposition-method)
((has-input-role :value has-design-operators)
(has-output-role : value has-solution-state)
(has-solution-state : type design-state)
(has-design-operators : type design-operator)
(has -output-mapping
:value '(lambda (?psm ?state)

(the ?dm
(has-design-model ?state ?dm))))

(has-body :value
'(lambda (?psm)

(in-environment
((?s . (achieve-generic-subtask

?psm gen-design-control
has -current-pardes- task (the ?task

(tackles-task
?psm ?task)))))

(if (design-state ?s)
?s)))))

:own-slots ((has-generic-subtasks '(gen-design-control))))

Appendix 4	 page 315

(def-class GEN-DESIGN-CONTROL (composite-task)
((has-input-role :value has-design-operators

:value has-current-pardes-task)
(has-output-role :value has-solution-state)
(has-solution-state : type design-state)
(has-design-operators : type design-operator)
(has-current-pardes-task : type parametric-design)
(has-body :value

(lambda (?psm)
(in-environment
((?design-space . (achieve-generic-subtask

?psm initialise-design-space
has-current-pardes- task
(role-value
?psm
has-current-pardes-task))))

(REPEAT
(in-environment
((?state . (achieve-generic-subtask

?psrn Select-design-state
has-design-space ?design-space)))

(if (= ?state :nothing)
(RETURN :nothing)
(if (achieved (the-current-method) ?state)

(return ?state)
(do

(achieve-generic- subtask
?psm reflect-design-state
has-design-state ?state)
(achieve-generic--subtask
?psm design-from-state
has-design-state ?state
has-design-space ?design-space))))))))))

:own-slots ((has-generic-subtasks
'(initialise-design-space
design-from-state
reflect-design-state
select-design-state))))

(def-class SEARCH-CONTROL-RECORD ()
"This structure records the control information associated
with a state. It is necessary to be able to support
generic control regimes"
((has-design-state :type design-state :cardinality 1)
(has-design-focus : type design-focus cardinality 1)
(has-current-operator :type design-operator :max-cardinality 1)
(has-design-operators :type list :cardinality 1)
(has-design-foci :type list :cardinality 1)))

(def-function THE-STATE-SEARCH-CONTROL-RECORD (?state)
:body (the ?record (and (search-control-record ?record)

(has-design-state ?record ?state))))

Appendix 4	 page 316

(def-relation STATE-FULLY-EXP?NDED (?state)
:iff-def (arid (= ?record (the-state-search-control-record ?state))

(has-design-foci ?record nil)
(has-design-operators ?record nil)))

(def-class DESIGN-SPACE () ?x
"A design space is a set of design states associated
with a parametric design task"
((associated-with-task :type parametric-design :cardinality 1)
(has-states :type set :cardinality 1 :default-value nil))

:constraint (=> (member ?s (the ?set (has-states ?x ?set)))
(design-state ?s)))

(def-function DESIGN-SPACE-STATES (?space)
:constraint (design-space ?space)
:body (the ?states (has-states ?space ?states)))

(def-class INITIALISE-DESIGN-SPACE (composite-task) ?psrn
"Creates an initial design state (which is empty) and
then returns a list containing only this state"
((has-input-role :value has-current-pardes-task)
(has-output-role :value has-design-space)
(has-control-role :value has-design-model)
(has-current-pardes-task type task)
(has-design-space : type design-space)
(has-body :value (lambda (?psm)

(in-environment
((?name . (new-symbol 'design-space)))
(tell (design-space

?name
has-states nil
associated-with-task
(role-value
?psm
has-current-pardes-task)))

(achieve-generic-subtask
?psm
new-design-state
has-design-model nil
has-design-space ?name)
?name))))

:own-slots ((has-generic-subtasks '(new-design-state))))

Appendix 4
	

page 317

(def-class NEW-DESIGN-STATE (composite-task) ?psm
"Creates a design state"
((has-output-role :value has-design-state)
(has-input-role :value has-design-model

:value has-design-space)
(has-design-space : type design-space)
(has-design-state : type design-state)
(has-design-model type design-model)
(has-body
:value (lambda (?psm)

(in-environment
((?design-model . (the ?dm2

(has-design-model
?psm ?dm2)))

(?design-space . (role-value
?psm has-design-space))

(?name (new-symbol 'design-state)))
(tell (design-state ?name

has-design-model
?design-model))

(append-slot-value
?design-space has-states ?name)
(achieve-generic-subtask ?psm

evaluate-design-state
has-design-state ?naxne)

?name))))
:own-slots ((has-generic-subtasks '(evaluate-design-state))))

(def-class SELECT-DESIGN-STATE (goal-specification-task) ?task
((has-input-role :value has-design-space)
(has-output-role :value has-design-state)
(has-goal-expression
:value (kappa (?task)

(exists ?s
(and (design-state ?s)

(has-design-state ?task ?s)))))
(has-design-space : type design-space)
(has-design-state :type design-state)))

(def-function filter-feasible-consistent-states (?states)
:body (setofall ?state

(and (member ?state ?states)
(not (deadend-state ?state))
(not (constraint-violations

?state ?cs)))))

(def-function filter-maximal-states (?states)
:body (setofall

? state
(and (member ?state ?states)

(has-design-model ?state ?dm)
(= ?l (length ?dm))
(not
(exists
?state2
(and (member ?state2 ?states)

(has-design-model ?state2 ?dm2)
(= ?l2 (length ?drn2))
(> ?12 ?l)))))))

Appendix 4
	

page 318

(def-function filter-cheapest-states (?states ?cost-order-rel)
:body (setofall ?state

(and (member ?state ?states)
(state-cost ?state ?cost)
(not (exists

?state2
(and (member ?state2 ?states)

(state-cost ?state2 ?cost2)
(holds ?cost-order-rel

?cost2 ?cost)))))))

(def-class CONSISTENT-MAX-CHEAPEST-STATE-SELECTIOM (primitive-method)
((has-body

:value (lambda (?psm)
(in-environment
((?cost-algebra	 (role-value ?psm has-cost-algebra))
(?cost-rel . (third ?cost-algebra))
(?space . (role-value ?psm has-design-space))
(?states . (design-space-states ?space)))

(first
(filter-cheapest-states
(filter-maximal-states
(filter-feasible-consistent-states ?states))

?cost-rel))))))
:own-slots ((tackles-task-type select-design-state)))

(def-class CONSISTENT-MAX-STATE-SELECTION (primitive-method)
((has-body

:value (lambda (?psm)
(in-environment
((?cost-algebra . (role-value ?psm has-cost-algebra))
(?cost-rel . (third ?cost-algebra))
(?space . (role-value ?psm has-design-space))
(?states	 (design-space-states ?space)))

(first
(filter-maximal-states
(filter-feasible-consistent-states ?states)))))))

:own-slots ((tackles-task-type select-design-state)))

(def-class CONSISTENT-CHEAPEST-MAX-STATE-SELECTION (primitive-method)
((has-body

:value (lambda (?psm)
(in-environment
((?cost-algebra	 (role-value ?psm has-cost-algebra))
(?cost-rel . (third ?cost-algebra))
(?space . (role-value ?psm has-design-space))
(?states	 (design-space-states ?space)))

(first
(filter-maximal-states
(filter-cheapest-states
(filter-feasible-consistent-states ?states)
?cost-rel)))))))

own-slots ((tackles-task-type select-design-state)))

Appendix 4	 page 319

(def-class DESIGN-FROM-STATE (goal-specification-task) ?task
"This task provides a place to define the main strategy
to move from a state which is not a solution to one
which is 'better'. Of course, criteria are method-dependent.
The :constraint option below states that the input state
is not a solution to the current problem"
((has-input-role :value has-design-state

:value has-design-space)
(has-output-role :value has-output-state)
(has-output-state : type design-state)
(has-design-state type design-state)
(has-design-space type design-space)
(has -goal-expression
:value (kappa (?task ?s)

(design-state ?s))))
:constraint (and (has-design-state ?task ?s)

(has-design-model ?s ?dm)
(= ?pd-problern (role-value

?task has-current-pardes-task))
(not (achieved ?pd-problem ?dm))))

(def-class EXmW-INCOMPLETE-STATE (decomposition-method)
((has-input-role :value has-design-state)
(has-output-role :value generates-design-state)
(has-design-state : type design-state)
(generates-design-state : type design-state)
(has-goal-expression
:value (kappa (?task ?s)

(design-model-extends
(the ?dm (has-design-model ?s ?dm))
(the ?drn (has-design-model

(role-value
?task has-design-state)

?drn)))))
(has-body
value
(lambda (?psm)

(in-environment
((?state . (role-value ?psm has-design-state))
(?design-model . (the ?dm (has-design-model

?state ?dxn)))
(?constraints . (role-value ?psm has-constraints))
(?parameters . (role-value ?psm has-parameters)))

(if (deadend-state ?state)
nothing
(if (constraint-violations ?state ?constraints)

(tell (deadend-state ?state))
(if (state-complete ?state ?parameters)

(tell (solution-state ?state))
(achieve-generic-subtask
?psm
generate-state-successor
has-design-state ?state
has-design-context extend))))))))

own-slots ((tackles-task-type design-from-state)
(has-generic-subtasks generate-state-successor)))

Appendix 4	 page 320

(def-relation deadend-state (?state)
"True if a state is a failure'. Failure is a
PSM-related concept. For instance many psms
work in a consistency-first style, and therefore
regard inconsistent states as failure"

:constraint (design-state ?state))

(def-relation state-complete (?state ?parameters)
:iff-def (and (has-design-model ?state ?design-model)

(design-model-complete ?design-model ?parameters)))

(def-relation constraint-violations (?state ?cs)
"Associates a state to the constraints violated by
the design model associated with the state"
:constraint (and (design-state ?state)

(list ?cs)
(every ?cs constraint)))

(def-class EVALUATE-DESIGN-STATE (composite-task) ?task
((has-input-role :value has-design-state)
(has-design-state : type design-state)
(has-body
:value (lambda (?task)

(in-environment
((?state . (role-value ?task has-design-state)))
(achieve-generic-subtask ?task reflect-design-state

has-design-state ?state)
(achieve-generic-subtask ?task evaluate-consistency

has-design-state ?state)
(achieve-generic-subtask ?task evaluate-completeness

has-design-state ?state)
(achieve-generic-subtask ?task evaluate-cost

has-design-state ?state)
(achieve-generic-subtask ?task evaluate-feasibility

has-design-state ?state))))))

(def-class REFLECT-DESIGN-STATE (goal-specification-task) ?task
((has-input-role :value has-design-state)
(has-design-state :type design-state)))

(def-class EVALUATE-COMPLETENESS (primitive-task) ?task
((has-input-role :value has-design-state)
(has-design-state : type design-state)
(has-body
:value (lambda (?task)

(in-environment
((?state . (role-value ?task has-design-state))
(?design-model . (the ?dm

(has-design-model ?state ?dm)))
(?parameters . (role-value ?task has-parameters)))

(if (design-model-complete ?design-model ?parameters)
(tell (state-complete ?state))))))))

(def-class EVALUATE-COST (goal-specification-task) ?task
((has-input-role :value has-design-state)
(has-output-role :value has-cost)
(has-design-state type design-state)
(has-cost :type cost)
(has-goal-expression
:value (kappa (?task ?cost)

(and (cost ?cost)
(has-cost ?task ?cost)))))

Appendix 4
	

page 321

(def-class DEFAULT-COST-EVALUATION (primitive-method) ?psm
((has-body

:value (lambda (?psm)
(in-environment
((?state	 (role-value ?psm has-design-state))
(?design-model . (the ?drn (has-design-model

?state ?dm)))
(?cost-furi	 (role-value ?psm has-cost-function))
(?cost	 (call ?cost-fun ?design-model)))

(do
(tell (state-cost ?state ?cost))
?cost)))))

own-slots ((tackles-task-type evaluate-cost)))

(def-class EVALUATE-CONSISTENCY (primitive-task) ?task
((has-input-role :value has-design-state)
(has-design-state : type design-state)
(has-body
:value (lambda (?task)

(in-environment
((?state . (role-value ?task has-design-state))
(?design-model . (the ?drn (has-design-model

?state ?dm)))
(?constraints	 (role-value ?task has-constraints))
(?vs	 (setofall ?c (and (member ?c ?constraints)

(design-model-violates
?design-model ?c)))))

(if (not (null ?vs))
(tell (constraint-violations ?state ?vs)))

?vs)))))

(def-class EVALUATE-FEASIBILITY (primitive-task) ?task
((has-input-role :value has-design-state)
(has-design-state : type design-state)
(has-body :value (lambda (?task)

true))))

Appendix 4
	 page 322

(def-class generate-state--successor (composite-task)
((has-input-role :value has-design-state

:value has-design-context)
(has-output-role :value generates-design-state)
(has-design-context : type design-context)
(has-design-state : type design-state)
(generates-design-state : type design-state)
(has-body :value (lambda (?task)

(in-environment
((?state	 (role-value ?task has-design-state))
(?params	 (role-value ?task has-parameters))
(?context . (role-value ?task has-design-context)))

(if (search-control-record ?record
has-design-state ?state)

;we are effectively backtracking to ?state
(in-environment
((?result	 (achieve-generic-subtask

?task resume-state
has-design-state ?state
has-design-context ?context)))

(if (design-state ?result)
?result
(achieve-generic-subtask
?task
design- from-context
has-design-state ?state
has-design-context ?context)))

;;?state is a newly-created state
(in-environment
((?foci . (achieve-generic-subtask

?task collect-state-foci
has-design-state ?state
has-design-context ?context)))

(new-search-control-record ?state ?foci)
(achieve-generic- subtask
?task design-from-context
has-design-state ?state
has-design-context ?context)))))))

:own-slots ((has-generic-subtasks (resume-state
design- from-context
collect-state-foci))))

(def-class collect-state-foci (goal-specification-task) ?task
((has-input-role :value has-design-context

:value has-design-state)
(has-output-role :value has-design-foci)
(has-design-foci :type list)
(has-design-state : type design-state)
(has-design-context : type design-context)))

Appendix 4	 page 323

(def-class collect-computable-parameters (primitive-method)
((has-body

:value (lambda (?psm)
(all-computable-parameters
(role-value ?psm has-parameters)
(the ?dm (has-design-model

(role-value ?psm has-design-state)
?dxn)))))

:own-slots ((tackles-task-type collect-state-foci)
(applicability-condition
(kappa (?task)

(= (role-value ?task
'has-design-context)

:extend)))))

(def-procedure new-search-control-record (?state ?foci)
:body (tell (search-control-record

(new-symbol 'state-search-control-record)
has-design-state ?state
has-design-foci ?foci)))

Appendix 4	 page 324

(def-class DESIGN-FROM-CONTEXT (corrosite-task) ?task
((has-input-role :value has-design-state

:value has-design-context)
(has-output-role :value generates-design-state)
(has-control-role :value has-design-foci

:value has-search-control-record)
(has-design-context : type design-context)
(has-design-state : type design-state)
(generates-design-state : type design-state)
(has -body
value
(lambda (?task)

(REPEAT
(in-environment

	

((?state	 (role-value ?task has-design-state))
(?record . (the-state-search-control-record

?state))
(?foci . (the-slot-value ?record

has-design-foci))
(?sub . (instantiate-generic-subtask

?task select-design-focus
has-design-foci ?foci))

	

(?focus	 (solve-task ?sub)))
(if (achieved ?sub ?focus)

(do
(achieve-generic-subtask
?task
update-search-control-record-on- focus-selection
has-search-control-record ?record
has-design-focus ?focus)
(in-environment
((?ops . (achieve-generic-subtask

?task collect-focus-operators
has-design-focus ?focus))

(?sorted-ops . (achieve-generic-subtask
?task sort-design-operators
has-design-operators ?ops)))

(if (null ?sorted-ops)
(achieve-generic-subtask
?task
update-search-control-record-on-focus- failure
has-search-control-record ?record
has-design-focus ?focus)

(do
(set-slot-value ?record

has-design-operators
?sorted-ops)

(in-environment
((?result . (achieve-generic-subtask

? task design-from-focus
has-design-state ?state)))

(if (design-state ?result)
(return ?result)))))))

(do
(tell (deadend-state ?state))
(return :nothing))))))))

:own-slots ((has-generic-subtasks
'(select-design-focus
collect- focus-operators
sort-design-operators
update-search-control-record-on- focus- failure
update-search-control-record-on- focus-selection
design-from-focus))))

(set-slot-value ?record
(remove

(set-slot-value ?record

Appendix 4
	

page 325

(def-class UPDATE-SEARCH-CONTROL-RECORD-ON-FOCUS-FAILURE
(goal-specification-task) ?task

((has-input-role :value has-search-control-record
value has-design- focus)

(has-design-focus : type design-focus)
(has-search-control-record : type search-control-record)))

(def-class DEFAULT-SEARCH-CONTROL-RECORD-ON-FOCUS-FAILURE-UPDATE
(primitive-method) ?psm

((has-body
:value (lambda (?psm) :nothing)))

:own-slots ((tackles-task-type update-search-control-record-on-
focus-failure)))

(def-class UPDATE-SEARCH-CONTROL-RECORD-ON-FOCUS-SELECTION
(goal-specification-task)

((has-input-role :value has-search-control-record
:value has-design-focus)

(has-design-focus : type design-focus)
(has-search-control-record : type search-control-record)))

(def-class DEFAULT-SEARCH-CONTROL-RECORD-ON-FOCUS-SELECTION-UPDATE
(primitive-method) ?psrn

((has-body
:value (lambda (?psm)

(in-environment
((?focus . (role-value ?psm has-design-focus))
(?record . (role-value ?psm

has-search-control-record)))
has-design-foci
?focus
(the-slot-value
?record has-design-foci)))

has-design-focus ?focus)))))

:own-slots ((tackles-task-type
update-search-control-record-on-focus-selection)))

(def-class RESU-STATE (goal-specification-task)
((has-input-role :value has-design-state

value has-design-context)
(has-output-role : value has-output-design-state)
(has-design-state type design-state)
(has-design-context : type design-context)
(has-output-design-state : type design-state)
(has-goal :value (kappa (?task ?s)

(and (design-state ?s)
(not (= ?s (role-value

?task
has-design-state))))))))

Appendix 4
	

page 326

(def-class TRY-DIFFERT-STATE-OPERATOR (primitive-method) ?psm
((has-body

:value (lambda (?psm)
(achieve-generic-subtask
?psm design- from- focus
has-design-state (role-value ?psm has-design-state)))))

:own-slots ((tackles-task-type resume-state)
(applicability-condition
(kappa
(?task9)
(basic-operator
(the ?op

(has-current-operator
(the-state-search-control-record
(role-value
?task9 has-design-state))

?op)))))))

(def-class RETRY-STATE-OPERATOR (primitive-method) ?psm
((has-body

:value (lambda (?psm)
(in-environment
((?state	 (role-value ?psm has-design-state))
(?record	 (the-state-search-control-record ?state))
(?op . (the ?op2 (has-current-operator ?record ?op2))))

(if (has-design-focus ?record ?focus)
(in-environment
((?sub (instantiate-generic-subtask

?psm try-design-operator
has-design-operator ?op
has-design-focus ?focus
has-design-model (the-slot-value

?state
'has-design-model)))

(?result	 (solve-task ?sub)))
(if (achieved ?sub2 ?result)
?result
(achieve-generic- subtask
?psm design-from-focus
has-design-state ?state))))))))

:own-slots ((tackles-task-type resume-state)
(applicability-condition
(kappa
(?task9)
(multiple-operator
(the ?op

(has-current-operator
(the-state-search-control-record
(role-value
?task9 has-design-state))

?op)))))))

Appendix 4	 page 327

(def-class DESIGN-FROM-FOCUS (composite-task)
((has-input-role :value has-design-state)
(has-output-role value has-output-design-state)
(has-control-role : value has-design-model

:value has-design-operator)
(has-design-state :type design-state)
(has-output-design-state : type design-state)
(has-body
value
(lambda (?task)

(REPEAT
(in-environment
((?state . (role-value ?task has-design-state))
(?record	 (the-state-search-control-record

?state))
(?focus . (the-slot-value

?record 'has-design-focus))
(?ops . (the-slot-value

?record 'has-design-operators))
(?sub . (instantiate-generic-suiDtask

?task select-design-operator
has-design-focus ?focus
has-design-operators ?ops))

(?op	 (solve-task ?sub)))
(set-slot-value ?record has-current-operator ?op)
(if (achieved ?süb ?op)

(DO
(set-slot-value
? record
has-design-operators
(remove ?op ?ops))

(in-environment
((?sub2 . (instantiate-generic-subtask

?task try-design-operator
has-design-operator ?op
has-design-focus ?focus
has-design-model (the-slot-value

? state
'has-design-model)))

(?result	 (solve-task ?sub2)))
(if (achieved ?sub2 ?result)

(RETURN ?result))))
(RETURN :nothing)))))))

:own-slots ((has-generic-subtasks ' (select-design-operator
try-design-operator))))

(def-class TRY-DESIGN-OPERATOR (goal-specification-task) ?task
((has-input-role :value has-design-operator

value has-design-focus
value has-design-model)

(has-output-role :value generates-design-state)
(has-design-focus : type design-focus)
(has-design-operator : type design-operator)
(has-design-model : type design-model)
(generates-design-state : type design-state)
(has-goal-expression
:value (kappa (?task8 ?s)

(and (design-state ?s)
(generates-design-state ?task8 ?s))))))

Appendix 4	 page 328

(def-class TRY-DESIGN-EXTENSION-OPERATOR (primitive-method)
((has-body

value
(lambda (?psm)

(in-environment
((?dm . (role-value ?psm 'has-design-model))
(?focus	 (role-value ?psm 'has-design-focus))
(?value . (apply-design-extension-operator

?focus ?dm
(role-value ?psm has-design-operator))))

(if (not (= ?value :nothing))
(achieve-generic-subtask
?psm new-design-state
has-design-model (cons

(cons ?focus ?value)
?drn)))))))

:own-slots ((tackles-task-type try-design-operator)
(applicability-condition
(kappa
(?task5)
(design-extension-operator
(role-value
?task5 has-design-operator))))))

(def-function apply-design-extension-operator (?param ?dm ?op)
:constraint (and (parameter ?param)

(design-model ?dm)
(design-extension-operator ?op))

:body (call (the ?body
(has-body ?op ?body))

?param
?dm))

(def-class SELECT-DESIGN-OPERATOR (goal-specification-task) ?task
((has-input-role :value has-design-operators

value has-design-focus)
(has-output-role :value has-selected-operator)
(has-design-operators :type list)
(has-selected-operator : type design-operator)
(has-design-focus : type design-focus)
(has-goal-expression
:value (kappa (?task ?op)

(and (design-operator ?op)
(has-selected-operator ?task ?op))))))

(def-class DEFAULT-OPERATOR-SELECTION (primitive-method) ?psm
((has-body

:value (lambda (?psrn)
(first (role-value ?psm

'has-design-operators)))))
:own-slots ((tackles-task-type select-design-operator)))

(def-class COLLECT-FOCUS-OPERATORS (goal-specification-task) ?task
((has-input-role :value has-design-focus)
(has-design-focus : type design-focus)))

Appendix 4
	

page 329

(def-class DEFAULT-OPERATOR-COLLECTION (primitive-method) ?psm
((has-body

:value (lambda (?psm)
(setofall ?op

(arid (design-operator
?op
applicable-to-parameters ?l)
(member (role-value

?psm has-design- focus)
(eval ?l)))))))

own-slots ((tackles-task-type collect-focus-operators)
(applicability-condition
(kappa
(?task)
(and (= :extend

(role-value
?task has-design-context))

(parameter
(role-value
?task has-design-focus)))))))

(def-class SORT-DESIGN-OPERATORS (primitive-task) ?task
((has-input-role :value has-design-operators

value has-operator-order-relation)
(has-design-operators :type list)
(has-operator-order-relation default-value design-operator-order)
(has-body
:value (lambda (?task)

(sort (role-value
?task has-design-operators)
(role-value ?task has-operator-order-relation))))))

(def-class SELECT-DESIGN-FOCUS (goal-specification-task) ?task
((has-input-role :value has-design-foci)
(has-output-role :value has-design-focus)
(has-design-foci :type list)
(has-design-focus : type design-focus)
(has-goal-expression
:value (kappa (?task ?focus)

(has-design-focus ?task ?focus))))

Appendix 4
	 page 330

(def-class DEFAULT-PARTER-SELECTION (primitive-method)
((has-input-role

value has-design- focus-order-relation
:value has-possible-values-relation)

(has -design-focus-order-relation
default-value design-focus-order)

(has-possible-values-relation
default-value possible-value)

(has -body
:value (lambda (?psm)

(if (= ?foci (role-value ?psm has-design-foci))
(select-most-preferred-focus
(collect-most-restricted-parameters
?foci
(role-value ?psm

has-possible-values-relation))
(role-value ?psm

has-design-focus-order-relation))))))
:own-slots ((tackles-task-type select-design-focus)

(applicability-condition
(kappa (?task)

(every (the ?foci
(has-design-foci
?task ?foci))

parameter)))))

;; ;USE-ThOD STATTS
(tell (use-method consistent-max-state-selection

select-design-state
gen-design-psm))

	DX202524_1_0001.tif
	DX202524_1_0003.tif
	DX202524_1_0005.tif
	DX202524_1_0007.tif
	DX202524_1_0009.tif
	DX202524_1_0011.tif
	DX202524_1_0013.tif
	DX202524_1_0015.tif
	DX202524_1_0017.tif
	DX202524_1_0019.tif
	DX202524_1_0021.tif
	DX202524_1_0023.tif
	DX202524_1_0025.tif
	DX202524_1_0027.tif
	DX202524_1_0029.tif
	DX202524_1_0031.tif
	DX202524_1_0033.tif
	DX202524_1_0035.tif
	DX202524_1_0037.tif
	DX202524_1_0039.tif
	DX202524_1_0041.tif
	DX202524_1_0043.tif
	DX202524_1_0045.tif
	DX202524_1_0047.tif
	DX202524_1_0049.tif
	DX202524_1_0051.tif
	DX202524_1_0053.tif
	DX202524_1_0055.tif
	DX202524_1_0057.tif
	DX202524_1_0059.tif
	DX202524_1_0061.tif
	DX202524_1_0063.tif
	DX202524_1_0065.tif
	DX202524_1_0067.tif
	DX202524_1_0069.tif
	DX202524_1_0071.tif
	DX202524_1_0073.tif
	DX202524_1_0075.tif
	DX202524_1_0077.tif
	DX202524_1_0079.tif
	DX202524_1_0081.tif
	DX202524_1_0083.tif
	DX202524_1_0085.tif
	DX202524_1_0087.tif
	DX202524_1_0089.tif
	DX202524_1_0091.tif
	DX202524_1_0093.tif
	DX202524_1_0095.tif
	DX202524_1_0097.tif
	DX202524_1_0099.tif
	DX202524_1_0101.tif
	DX202524_1_0103.tif
	DX202524_1_0105.tif
	DX202524_1_0107.tif
	DX202524_1_0109.tif
	DX202524_1_0111.tif
	DX202524_1_0113.tif
	DX202524_1_0115.tif
	DX202524_1_0117.tif
	DX202524_1_0119.tif
	DX202524_1_0121.tif
	DX202524_1_0123.tif
	DX202524_1_0125.tif
	DX202524_1_0127.tif
	DX202524_1_0129.tif
	DX202524_1_0131.tif
	DX202524_1_0133.tif
	DX202524_1_0135.tif
	DX202524_1_0137.tif
	DX202524_1_0139.tif
	DX202524_1_0141.tif
	DX202524_1_0143.tif
	DX202524_1_0145.tif
	DX202524_1_0147.tif
	DX202524_1_0149.tif
	DX202524_1_0151.tif
	DX202524_1_0153.tif
	DX202524_1_0155.tif
	DX202524_1_0157.tif
	DX202524_1_0159.tif
	DX202524_1_0161.tif
	DX202524_1_0163.tif
	DX202524_1_0165.tif
	DX202524_1_0167.tif
	DX202524_1_0169.tif
	DX202524_1_0171.tif
	DX202524_1_0173.tif
	DX202524_1_0175.tif
	DX202524_1_0177.tif
	DX202524_1_0179.tif
	DX202524_1_0181.tif
	DX202524_1_0183.tif
	DX202524_1_0185.tif
	DX202524_1_0187.tif
	DX202524_1_0189.tif
	DX202524_1_0191.tif
	DX202524_1_0193.tif
	DX202524_1_0195.tif
	DX202524_1_0197.tif
	DX202524_1_0199.tif
	DX202524_1_0201.tif
	DX202524_1_0203.tif
	DX202524_1_0205.tif
	DX202524_1_0207.tif
	DX202524_1_0209.tif
	DX202524_1_0211.tif
	DX202524_1_0213.tif
	DX202524_1_0215.tif
	DX202524_1_0217.tif
	DX202524_1_0219.tif
	DX202524_1_0221.tif
	DX202524_1_0223.tif
	DX202524_1_0225.tif
	DX202524_1_0227.tif
	DX202524_1_0229.tif
	DX202524_1_0231.tif
	DX202524_1_0233.tif
	DX202524_1_0235.tif
	DX202524_1_0237.tif
	DX202524_1_0239.tif
	DX202524_1_0241.tif
	DX202524_1_0243.tif
	DX202524_1_0245.tif
	DX202524_1_0247.tif
	DX202524_1_0249.tif
	DX202524_1_0251.tif
	DX202524_1_0253.tif
	DX202524_1_0255.tif
	DX202524_1_0257.tif
	DX202524_1_0259.tif
	DX202524_1_0261.tif
	DX202524_1_0263.tif
	DX202524_1_0265.tif
	DX202524_1_0267.tif
	DX202524_1_0269.tif
	DX202524_1_0271.tif
	DX202524_1_0273.tif
	DX202524_1_0275.tif
	DX202524_1_0277.tif
	DX202524_1_0279.tif
	DX202524_1_0281.tif
	DX202524_1_0283.tif
	DX202524_1_0285.tif
	DX202524_1_0287.tif
	DX202524_1_0289.tif
	DX202524_1_0291.tif
	DX202524_1_0293.tif
	DX202524_1_0295.tif
	DX202524_1_0297.tif
	DX202524_1_0299.tif
	DX202524_1_0301.tif
	DX202524_1_0303.tif
	DX202524_1_0305.tif
	DX202524_1_0307.tif
	DX202524_1_0309.tif
	DX202524_1_0311.tif
	DX202524_1_0313.tif
	DX202524_1_0315.tif
	DX202524_1_0317.tif
	DX202524_1_0319.tif
	DX202524_1_0321.tif
	DX202524_1_0323.tif
	DX202524_1_0325.tif
	DX202524_1_0327.tif
	DX202524_1_0329.tif
	DX202524_1_0331.tif
	DX202524_1_0333.tif
	DX202524_1_0335.tif
	DX202524_1_0337.tif
	DX202524_1_0339.tif
	DX202524_1_0341.tif
	DX202524_1_0343.tif
	DX202524_1_0345.tif
	DX202524_1_0347.tif
	DX202524_1_0349.tif
	DX202524_1_0351.tif
	DX202524_1_0353.tif
	DX202524_1_0355.tif
	DX202524_1_0357.tif
	DX202524_1_0359.tif
	DX202524_1_0361.tif
	DX202524_1_0363.tif
	DX202524_1_0365.tif
	DX202524_1_0367.tif
	DX202524_1_0369.tif
	DX202524_1_0371.tif
	DX202524_1_0373.tif
	DX202524_1_0375.tif
	DX202524_1_0377.tif
	DX202524_1_0379.tif
	DX202524_1_0381.tif
	DX202524_1_0383.tif
	DX202524_1_0385.tif
	DX202524_1_0387.tif
	DX202524_1_0389.tif
	DX202524_1_0391.tif
	DX202524_1_0393.tif
	DX202524_1_0395.tif
	DX202524_1_0397.tif
	DX202524_1_0399.tif
	DX202524_1_0401.tif
	DX202524_1_0403.tif
	DX202524_1_0405.tif
	DX202524_1_0407.tif
	DX202524_1_0409.tif
	DX202524_1_0411.tif
	DX202524_1_0413.tif
	DX202524_1_0415.tif
	DX202524_1_0417.tif
	DX202524_1_0419.tif
	DX202524_1_0421.tif
	DX202524_1_0423.tif
	DX202524_1_0425.tif
	DX202524_1_0427.tif
	DX202524_1_0429.tif
	DX202524_1_0431.tif
	DX202524_1_0433.tif
	DX202524_1_0435.tif
	DX202524_1_0437.tif
	DX202524_1_0439.tif
	DX202524_1_0441.tif
	DX202524_1_0443.tif
	DX202524_1_0445.tif
	DX202524_1_0447.tif
	DX202524_1_0449.tif
	DX202524_1_0451.tif
	DX202524_1_0453.tif
	DX202524_1_0455.tif
	DX202524_1_0457.tif
	DX202524_1_0459.tif
	DX202524_1_0461.tif
	DX202524_1_0463.tif
	DX202524_1_0465.tif
	DX202524_1_0467.tif
	DX202524_1_0469.tif
	DX202524_1_0471.tif
	DX202524_1_0473.tif
	DX202524_1_0475.tif
	DX202524_1_0477.tif
	DX202524_1_0479.tif
	DX202524_1_0481.tif
	DX202524_1_0483.tif
	DX202524_1_0485.tif
	DX202524_1_0487.tif
	DX202524_1_0489.tif
	DX202524_1_0491.tif
	DX202524_1_0493.tif
	DX202524_1_0495.tif
	DX202524_1_0497.tif
	DX202524_1_0499.tif
	DX202524_1_0501.tif
	DX202524_1_0503.tif
	DX202524_1_0505.tif
	DX202524_1_0507.tif
	DX202524_1_0509.tif
	DX202524_1_0511.tif
	DX202524_1_0513.tif
	DX202524_1_0515.tif
	DX202524_1_0517.tif
	DX202524_1_0519.tif
	DX202524_1_0521.tif
	DX202524_1_0523.tif
	DX202524_1_0525.tif
	DX202524_1_0527.tif
	DX202524_1_0529.tif
	DX202524_1_0531.tif
	DX202524_1_0533.tif
	DX202524_1_0535.tif
	DX202524_1_0537.tif
	DX202524_1_0539.tif
	DX202524_1_0541.tif
	DX202524_1_0543.tif
	DX202524_1_0545.tif
	DX202524_1_0547.tif
	DX202524_1_0549.tif
	DX202524_1_0551.tif
	DX202524_1_0553.tif
	DX202524_1_0555.tif
	DX202524_1_0557.tif
	DX202524_1_0559.tif
	DX202524_1_0561.tif
	DX202524_1_0563.tif
	DX202524_1_0565.tif
	DX202524_1_0567.tif
	DX202524_1_0569.tif
	DX202524_1_0571.tif
	DX202524_1_0573.tif
	DX202524_1_0575.tif
	DX202524_1_0577.tif
	DX202524_1_0579.tif
	DX202524_1_0581.tif
	DX202524_1_0583.tif
	DX202524_1_0585.tif
	DX202524_1_0587.tif
	DX202524_1_0589.tif
	DX202524_1_0591.tif
	DX202524_1_0593.tif
	DX202524_1_0595.tif
	DX202524_1_0597.tif
	DX202524_1_0599.tif
	DX202524_1_0601.tif
	DX202524_1_0603.tif
	DX202524_1_0605.tif
	DX202524_1_0607.tif
	DX202524_1_0609.tif
	DX202524_1_0611.tif
	DX202524_1_0613.tif
	DX202524_1_0615.tif
	DX202524_1_0617.tif
	DX202524_1_0619.tif
	DX202524_1_0621.tif
	DX202524_1_0623.tif
	DX202524_1_0625.tif
	DX202524_1_0627.tif
	DX202524_1_0629.tif
	DX202524_1_0631.tif
	DX202524_1_0633.tif
	DX202524_1_0635.tif
	DX202524_1_0637.tif
	DX202524_1_0639.tif
	DX202524_1_0641.tif
	DX202524_1_0643.tif
	DX202524_1_0645.tif
	DX202524_1_0647.tif
	DX202524_1_0649.tif
	DX202524_1_0651.tif
	DX202524_1_0653.tif
	DX202524_1_0655.tif
	DX202524_1_0657.tif
	DX202524_1_0659.tif
	DX202524_1_0661.tif
	DX202524_1_0663.tif
	DX202524_1_0665.tif
	DX202524_1_0667.tif
	DX202524_1_0669.tif
	DX202524_1_0671.tif
	DX202524_1_0673.tif
	DX202524_1_0675.tif
	DX202524_1_0677.tif
	DX202524_1_0679.tif
	DX202524_1_0681.tif
	DX202524_1_0683.tif
	DX202524_1_0685.tif
	DX202524_1_0687.tif
	DX202524_1_0689.tif
	DX202524_1_0691.tif

