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Abstract

Science Technology Engineering and Mathematics Faculty

Knowledge Media Institute (KMi)

Doctor of Philosophy

by Tracie Marie Farrell

Learning analytics acceptance and adoption is a socio-technological endeavour. Under-

standing how learning analytics impact practice is an important part of demonstrating

their value. In the study presented in this thesis, “Mediated Learning” provides a frame-

work through which to describe how learning analytics can impact psychological, social

and material aspects of learning, from the perspective of educators and learners. It also

offers a structure through which to make recommendations for improving the mediatory

effects of learning analytics. A qualitative research design, based on “Grounded Theory”

was implemented and 10 educators from 3 European universities were recruited through

convenience and purposive sampling for exploratory interviews. A subsequent case study

of the Open University provided critical perspectives from both educators (n=18) and

learners (n=22) about the institutional, departmental, domain-related and epistemolog-

ical factors that broadly influence perceptions of learning analytics. The study applied

“Affordance Theory” to identify what participants were most easily able to recognise

as beneficial to their own practice. Participant contributions were open-coded to un-

cover emerging themes and then organised into thematic categories and subcategories.

Respondent validation, as well as triangulation of data between the exploratory in-

terviews and focus groups support the validity of the study. Findings suggested that

domain-related epistemological assumptions and previous experience influence how and

why an individual could make use of learning analytics insights. Gaining stakeholder

acceptance involves targeting the right training and opportunities at the appropriate dis-

ciplines. Findings also indicate that learning analytics has the strongest mediatory effect

for learners when the technology is capable of exposing them to other learners’ strate-

gies, or when it assists them personally, and continually in goal orientation adoption.

The implications of the study are important for higher education institutions looking to

implement large-scale learning analytics initiatives, in particular, those with a diverse

student body.

http://stem.open.ac.uk/
http://kmi.open.ac.uk/
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Definitions

Learning Analytics Measuring, collecting, analysing, and reporting on data for

understanding and improving learning.

Social Learning Ana-

lytics

Measuring, collecting, analysing, and reporting on social

data (interactions, participation, networks, etc.) for under-

standing and improving learning.

Multimodal Learn-

ing Analytics

Measuring, collecting, analysing, and reporting on sensor

data (eye-movements, heart rate, sound, etc.) for under-

standing and improving learning.

Unknown-unknowns Potential knowledge gaps that inevitably cannot be antici-

pated.

Mediated Learning A theory of learning that addresses the many (social and

cultural) interactions that contribute to learning success and

challenges. In particular, the theory examines how these

dynamic relationships influence or “mediate” learning and

how this impact can be facilitated.

Mediatory Agent An entity that stands between the learning and the object of

learning, and facilitates the learner’s engagement with that

object.

Affordance An action possibility that an individual is able to perceive,

given the properties of the object that are most readily ap-

parent.

Metacognition An understanding of one’s own thinking process.

Pedagogy The broad aim of education, in terms of what is valued and

what should be achieved.
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Psychological Tools The signs and symbols that human beings use to construct

meaning. Psychological tools represent different ways of

thinking, inside of which certain concepts are more or less

accessible, depending on to which system of psychological

tools the individual subscribes. Psychological tools are de-

veloped over time through exposure and reinforcement.
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Chapter 1

Introduction

Time, presence and physical attentiveness are our most basic proxies for

something ultimately unprovable: that we are understood. - Tom Chatfield

“Learning Analytics” is a broad term used to describe the tools, technologies, methods

and outputs involved in the “collection, measurement, analysis and reporting of data” to

“understand and optimise learning” [3]. The term “data” refers to information that can

be gathered in educational settings, such as demographic information, digital traces from

any activities in which a learner might participate online (in the process of interacting

with digital tools or platforms for learning), and performance data (including marks on

assignments and exams) [1][3].

Theory and research on learning analytics focus on defining a “closed-loop system”:

awareness promotes reflection, which leads to action, which then feeds back into fu-

ture decision-making processes [4]. Learning analytics are intended to shed light on

behaviour, helping students to be more autonomous in their learning [5] and contribut-

ing to a deeper understanding of the complex interplay between cognition, motivation

and behaviour in learning [6]. The potential of learning analytics is seductive for insti-

tutions that are searching for innovative ways to empower their staff in providing high

quality, accessible education with limited resources. However, the literature shows that

the research community investigating learning analytics does not understand

well enough what a quality educational experience really means in practice.

The following sections of this chapter present a motivating example for this research,

which will be expounded upon in chapters 2 and 3. Transition and change are presented

as proxies for learning that can help to mitigate this challenge and act as a central

hub around which the activity, cognition and emotion of learners can be organised. In

addition, the context of contemporary education is briefly introduced, to highlight the

1
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necessity of identifying new ways of understanding learners’ experiences. In particular,

the focus is higher education, as a common environment for learning analytics research,

including that which is presented in this thesis. Finally, the chapter summarises the

research questions, the chosen learning framework, and primary objectives of this thesis

as an entry point to subsequent chapters. The last section presents the structure of this

thesis.

1.1 Motivating Example

The literature suggests that learning analytics research still relies heavily on proxies,

such as retention and learner marks, as benchmarks for optimisation [7]. Though they

are important indicators of learning, what they represent is the performance of learning,

which is different from learning itself. Without the ability to peer into learners’ minds

and see what knowledge they have acquired, it is useful to look at such proxies. Retention

and marks indicate the presence of requisite competencies to achieve adequate results

and complete one’s studies [8]. This is useful for understanding some aspects of learning.

Others, however, may require more investigation.

For example, retention is a macro figure, relating to the “big picture”. At the macro

level, one can improve retention through improving processes that have macro level re-

sults, such as improving a learning design [9][10][11] or assessment procedure [12]. These

are decisions that are made at the institutional or faculty level that involve changes to

the structure around the learning process, such as which materials are most useful or

which assignments cause the most difficulty. At the micro level, however, factors influ-

encing retention include various attitudes, behaviours and contextual realities that have

different types of impacts, such as lack of orientation, poverty, illness, other employment

or family commitments, and learning disabilities that have gone unnoticed or ignored

[13].

1.2 Change as Proxy for Learning

In learning analytics research, it is difficult to document impact [4]. Learning is personal,

and difficult to define and represent [14], which is why the reliance on proxies is so

important. In addition, learners can be difficult to access and understand, given the

private nature of their motivations and personal assessments of their own learning [3]

[15]. Without understanding the motivations and goals of learners, it is difficult to use

learning analytics to influence their behaviour more directly. Moreover, it is challenging

to examine emotional or psychological factors in learning analytics research.
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For example, in the Learning Analytics Acceptance Model [2], issues related to defining

value in learning and resistance to change appear to be dealt with in terms of technology

acceptance and pedagogical role within the institution. The model has mostly been

validated with individuals working in computer science. In addition, the psychology

and emotion around learning analytics is reduced to one influencing factor of “perceived

usefulness”.

This thesis argues that perceived usefulness is a more complex category that

warrants further qualitative investigation in the field. What factors influence

perceived usefulness? Starting this investigation from the point at which learning ana-

lytics does or would change behaviour, it is possible to distil what aspects of learning

analytics are inspiring to different stakeholders and hold significant value for their prac-

tice. Uncovering trends or patterns in perceived usefulness may help to target learning

analytics approaches and identify blind-spots within the field.

1.3 Research Questions

As the subsequent chapters will demonstrate, educator and learner perspectives have

been underrepresented in the literature. Thus, the central research question of this

thesis addresses this gap explicitly:

What impact is learning analytics having on practice and

how can it be improved for educators and learners?

This question involves an exploration of how impact is currently understood (described

in chapter 2), and how that compares with perceptions of what should or could be

done with learning analytics tools and technologies (presented in chapter 3). At the

heart of the question, however, is uncovering the aspects of learning analytics tools

and technologies, or the environments in which they are implemented, which appear to

enhance or increase positive impacts.

The challenges in learning analytics research are accurately measuring impact, ensuring

relevance, avoiding unnecessary complexity and gaining stakeholder acceptance. To help

gain a wider perspective on these issues, the additional guiding questions of this research

are the following:
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How does what learners perceive as being important fit with other

stakeholders’ perceptions? How do wider institutional perspectives

fit in?

What of different stakeholders’ perceptions is shared? What can be

agreed upon as useful for practice?

When do learning analytics really assist educators and learners with

their work as they describe it? How do learning analytics actually

support teaching and learning?

How do educators and learners view their role in learning analytics

research? Do they view themselves as partners? As experiments?

All of these questions surround learning analytics research, but do not make up a large

part of its process of self-reflection in the literature. The purpose of asking these ques-

tions is to provide orientation on the issue of optimisation and some direction

to institutions, educators and learners on how to make the best of the power

of learning analytics.

1.4 Introducing Mediated Learning and Affordances

To address difficulties in assessing impact and exploring psychological and emotional

factors, the study presented in this thesis focuses on transition and change in learning,

applying Mediated Learning [16][17] as a framework for examining impact po-

tential. Mediated Learning has a long history in both philosophy and education that

involves capturing dynamic relationships between humans, materials and the

different ways of thinking they develop to make sense of one another and

the world around them [16]. It is an appropriate theory of learning for examining

transition and change, but it also provides a structure to assess the potential of learning

analytics.

The protagonists of Mediated Learning, whose work is presented in this thesis, are

Lev Vygotsky and Reuven Feuerstein, whose respective contributions were grounded

in understanding the influence of others on our learning processes [16][17][18] and the

necessary mechanisms to produce fruitful outcomes of this influence [19][20]. Mediated

Learning was determined to be appropriate for organising the ways in which learning

analytics can illuminate certain patterns, identify important relationships, and act as
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an intermediary between the goals of the learner and their achievements. The purpose

of this application was to test learning analytics as a potential mediatory agent

in learning, delivering transition and change toward achievable goals.

To help gather information about the current and potential impacts of learning analytics

on practice, Affordance Theory [21] guided the development of the research design, in

terms of how to address the subject of learning analytics with its stakeholders. “Affor-

dances” are properties of an object that are perceived by a potential user, presenting

action potential for what can be done with that object[21]. Using a hammer as an ex-

ample, one can perceive the qualities of a hammer, that it is hard, that it is heavy, that

it can be held in one hand. What can be done with that hammer is limited by its prop-

erties, but also by the creative observation and consideration of the user. Affordance

Theory made it possible to understand and categorise what different stakehold-

ers perceive as being the recognisable action potential in learning analytics

tools and technologies.

1.5 Thesis Objectives

Given the complexity of the research question and the context in which it is situated,

this thesis has the following objectives:

• To explore learning analytics more concretely from the perspective of educators

and learners, drawing from their own experiences of practice.

• To investigate the action potential that educators and learners can perceive in

having access to different types of educational data, and how this would improve

their practice.

• To analyse the potential of learning analytics tools and technologies toward meet-

ing the expressed needs of educators and learners.

• To translate the needs of educators and learners into software requirements and

metrics, which learning analytics developers and researchers can consider in the

development of learning analytics platforms or tools.

1.6 Potential Impact

These objectives were pursued within the context of contemporary developments in ed-

ucation. First, the learner-as-consumer model, brought about by changes to university
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funding structures, has both shifted learner expectations of the learning experience and

institutional perspectives on what retention means to the institution’s financial sustain-

ability [8]. Second, university degrees “no longer last a lifetime” [22]. The pace of a

knowledge-based society requires more and more professionals to return to educational

environments for retraining and other types of certification [22].

The personal nature of retention and performance, and the pace of change and develop-

ment in education, are confounding factors in learning analytics research. This thesis

explores learning analytics from an entirely different perspective, less con-

nected to traditional benchmarks like retention or performance. Rather, the

study presented in this thesis emphasises the recognition of choice, transition

and change.

This thesis will demonstrate that it is important to be able to understand and utilise

learning analytics in more subtle, sophisticated ways. Building trust and widening the

scope of learning analytics research and development, increases the value of affordances.

1.7 Thesis Structure

This chapter has already presented some of the challenges that impact learning analytics

research and development. In chapter 2, these issues are outlined in further detail,

alongside a critical review of the literature related to the genesis of learning analytics,

contemporary educational challenges, and the differentiation between learning analytics

and its close companion, Educational Data Mining [1]. In addition, the chapter presents

some of the techniques and outputs of learning analytics that are relevant for the higher

education context, in which the research presented in this thesis was conducted. Finally,

the chapter closes with a discussion on the Open Learner Model [23] and the potential

contribution of learning analytics to support the future direction of education toward

increased personalisation.

Chapter 3 explores the motivations for the research presented in this thesis, including

a lack of attention to contemporary educational theory [11] and the socio-technological

factors involved in learning analytics research and deployment [24]. It also explores

difficulties related to the assessment of impact and the attempts within the field to

record and catalogue experiences with learning analytics [25]. In particular, the thesis

addresses the issues of relevance and evaluation as two key problems of learning analytics

research. Finally, the chapter addresses learning analytics acceptance, including actual

use and the development of learning analytics literacy.
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In chapter 4, Mediated Learning is presented as a theoretical framework for examining

impact potential. As has been discussed above in the introduction, the thesis incorpo-

rated the theories of Vygotsky and Feuerstein to explore how learning analytics could

contribute to raising the awareness of learners and driving action toward transition and

change. The chapter focuses on exposure to the “other” [18][26] and human cognitive

modifiability [19][20] as the primary forces of transition and change, along with a set

of universal criteria [16] that all experiences of mediation in learning should share. In

addition, the chapter includes a discussion on technology mediated learning as a con-

temporary addendum to the philosophies of Vygotsky and Feuerstein, which helps to

shape the discussion around learning analytics acceptance. Finally, the chapter closes

with a vision of learning analytics as a mediatory agent, acting as a more knowledgeable

entity that can scaffold learning experiences.

Chapter 5 presents the research question in more detail, alongside arguments for inves-

tigating learning analytics within the qualitative research paradigm. It introduces the

use of Grounded Theory and the “Case Study” [27] as a way of avoiding repetition of

themes in learning analytics research and giving way to participants’ perspectives, while

acknowledging the perspective of the researcher. The chapter concludes with an intro-

duction to Affordance Theory [21] and its contribution to capturing perceptions around

action potential, which is relevant for understanding impact.

Chapter 6 builds on the previous chapter to go deeper into the methods that were used

to implement the research approach and design. In particular, it presents qualitative

interviewing and focus groups as the chosen mechanisms for harvesting data from the

participants. It also describes the analytic procedures that were performed on the data

to produce reliable evidence.

Findings from the exploratory interviews are presented in chapter 7, which helped to

guide the subsequent case study. The chapter describes the participants, procedures

and analyses that resulted in a tentative suggestion that departmental epistemology

was impacting learning analytics acceptance. In addition, it begins the discussion on

the indicators that educators use to recognise that they are successful in their endeav-

ours (i.e. that students are learning). The chapter explores affordances of learning

analytics in terms of both actual and imagined use, connected to authentic challenges

that educators experience. The last sections of the chapter outline how the exploratory

interviews informed the design of the subsequent case-study.

Chapters 8 and 9 present the findings from the case study, in which educators and

learners from the Open University participated in focus groups and “focused interviews”

to share their experiences with learning analytics. Chapter 8 deals with the context-

related features of the participants that were relevant for making sense of the affordances
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they perceived, which are then presented in chapter 9. In particular, these chapters

explore learner goal orientation, and the ways in which learning can be recognised to

develop a picture of the different indicators that are used. Affordances are presented in

terms of the utility of certain types of data to illustrate the indicators that educators

and learners use.

Finally, chapter 10 summarises and presents the main conclusions that can be drawn

from the findings. Starting from what the study was able to highlight about how learners

develop, the chapter guides the reader through how learners appear to shift their thought

processes and strategies to accommodate any number of factors including their personal

goals, circumstances and desires. Each section includes a set of recommendations for

learning analytics research and development, summarised in terms of the data which

should be collected, the necessary analytic procedures and communication strategies

around learning analytics or learning analytics outputs. The chapter also presents the

findings as sets of software requirements and associated metrics that the findings suggest

are important to educators and learners. In addition, it includes some informal evidence

collected from colleagues who are involved in the development of learning analytics tools

and platforms about the feasibility of these requirements or the implications made about

what this information could communicate about learning processes. Finally, the chapter

closes with an evaluation of Mediated Learning as a framework, the limitations of the

study and some suggestions for future research on the basis of these.

Chapter 11 offers a review of each chapter along with an outlook on learning analytics

research and development.



Chapter 2

Learning Analytics in Higher

Education: A Critical Review

The real problem is not whether machines think but whether men do. - B. F.

Skinner

As mentioned in chapter 1, “Learning Analytics” describes the tools, technologies, meth-

ods and outputs involved in the “collection, measurement, analysis and reporting of

data” to “understand and optimise learning” [3]. The expected feedback loop that should

exist between understanding how learning occurs and developing appropriate interven-

tions is the major contribution of the field [4]. Thus, it is a complex socio-technological

domain, with strong roots in distance education and educational data mining, as this

chapter will demonstrate. It differentiates itself through attention to the human lever

as an agent of change. The subject of learning analytics is not neutral, in that there

are pedagogical, instructional, and social values implicit in how learning analytics are

developed and implemented. It is important to consider the effects of the origins of a

field on its further development and application.

This chapter explores the developmental background of learning analytics and some

common applications. 2.1 describes the emergence of learning analytics with a particu-

lar focus on higher education, the context of this thesis. 2.2 describes several learning

analytics approaches and themes that are particularly relevant to that context. Illus-

trating what learning analytics can achieve is necessary for preparing the foundation for

the next chapter, which addresses what might be missing in learning analytics research

and development.

9
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2.1 Background

This section describes how learning analytics emerged as a “decision relevant science”

[28], differentiating itself from other types of academic analytics or data mining tech-

niques. 2.1.1 discusses how data has driven development of technology for the classroom.

2.1.2 describes the main differences between learning analytics and one of its closest com-

panions, Educational Data Mining (EDM). The section demonstrates how differentiating

the two fields is important in considering how to evaluate and measure their impact on

learning.

2.1.1 Learning Analytics in the Digital Age

The field of learning analytics has been bolstered by the large volumes of data produced

by students in higher education [29] [30]. It is not surprising that providers of distance

education have been particularly instrumental in driving current theory and practice in

learning analytics. As interaction is now predominantly “computer mediated”, providers

of distance education can aggregate large amounts of student and institutional data [31].

Educators and learners involved in contemporary distance education are examples of

what Williamson described as “prosumers”, stakeholder groups that both produce and

consume benefits from data analysis, including learning analytics [32].

Over the past ten years, the impact of learning analytics on higher education, even in

traditional brick-and-mortar Universities, has been growing [29]. Research indicates that

this is influenced by extensive research in the field of “Technology-enhanced Learning”

(TeL) [33], and motivated by both economic and pedagogical factors [34] [35].

To be successful in the contemporary educational contexts, learners in higher educa-

tion must be more self-directed and independent in their learning [36]. These

characteristics have always been valued by providers of distance education. TeL is “the

study of how we learn and teach with interactive technologies, and how to design and

evaluate effective technologies for learning” [33]. Learning theories in TeL, because of

their strong connection to distance education and computer-mediated learning, empha-

sise learner autonomy and mobilisation of existing resources (including other people and

technology) [37][33]. TeL also tends to focus on transferring learning from theory to

practice [36] [38].

For example, Self-regulated Learning (SRL), a learning theory commonly coupled with

TeL, is about developing awareness for one’s own learning strategies, so that they can be

self-monitored and controlled [39]. Self-regulation, while an individual process, can also

be socially influenced and guided [40]. Strong self-regulated learners are able to optimise



Chapter 2 Learning Analytics in Higher Education: A Critical Review 11

their own potential in a knowledge economy. Higher Education Institutions (HEIs) are

thus motivated to help learners gain skills in self-regulation, for both pedagogical and

pragmatic reasons. TeL has contributed toward developing tools that can assist learners

in recognising and changing behaviour [41], notifying students when their strategies are

not working [42], even helping them organise and monitor their behaviour online [43].

Steiner et al argued that the focus on learner autonomy can have the conse-

quence that some learners are left behind, lacking the skills necessary for

recognising, understanding and regulating their learning strategies [44]. Re-

search has indicated that students often have limited or faulty mental models of how

they process information, which affects their strategies in learning [45]. The issue of

how to correct those models and support students’ understanding of their own learning

processes has become a central issue for contemporary education [39].

TeL aims to contribute to this through the development of tools and technologies for

independent, problem-based, inquiry-based and social learning. Problem-based and

inquiry-based learning are about mobilising relationships with others to learn in situ,

rather than a potentially inauthentic classroom setting [46]. TeL tools for collaborating

in problem-based and inquiry-based learning online have complemented existing strate-

gies, especially through computer simulation of problems, use of multimedia resources

and virtual learning environments [47]. There has also been a natural connection to

game-based learning in the Digital Age [48]. Learning analytics, as a part of TeL, ap-

pears to share these motivations.

2.1.2 The Emergence of Learning Analytics from Educational Data

Mining

Learning Analytics emerged from a branch of computer science that concerns itself with

processing “big data” in educational contexts. This field, referred to as Educational Data

Mining (EDM), is focused primarily on automating certain processes with limited human

support [3] [1]. The contributions EDM has made to educational science are therefore

largely about“discovery with models”, in which a model is “developed and applied to

data, and then used as a component in other analyses, typically to discover aspects of

the construct in the model” [49]. This has illuminated some of the unknown-unknowns

that shroud contemporary educational contexts [3]. Ferguson, Baker and Siemens have

argued that while there has always been an understanding of human agency in EDM

research, learning analytics research adopts a more holistic approach to understanding

the complex system of education [3] [1]. From Figure 2.1, one can see that Siemens and

Baker summarised the primary differences between learning analytics as it is understood
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Figure 2.1: Learning Analytics and EDM (from Siemens and Baker, 2012 [1])

by the Learning Analytics and Knowledge (LAK) community1 and EDM as having to do

with the rationale, origins and techniques that characterise the two fields. In particular,

the lever of human judgement is applied at different moments in the process

of analysis, and for different reasons. In learning analytics, the goal is to empower

students and educators to intervene. In EDM, the goal is to perfect classification and

clustering processes to improve models and consequently, automated adaptation in the

system [1].

1LAK stands for Learning Analytics and Knowledge, the annual learning analytics conference held
in cooperation between the Society for Learning Analytics Research (SoLAR) and the Association for
Computing Machinery (ACM).
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Papamitsiou and Economides noted that this relationship between EDM and learning

analytics can be viewed as complementary, with particular attention to the role of human

agents, responding to and interacting with technologies to support their efforts [50]. As

the two are particularly close in structures and processes, it is important to focus on

the human actors involved in learning analytics, to truly ensure a differential

analysis.

2.2 Learning Analytics and the Human Lever

The subsections below outline some of the specific contributions that learning analyt-

ics have made to higher education, focusing particularly on how those contributions

directly involve the human agency which specifically defines learning analytics in the

literature. More specifically, each subsection addresses an important theme in learning

analytics, along with an evaluation through the literature of its impact on education

and educational policy.

2.2.1 Predictive Learning Analytics

Perhaps one of the most widely reported uses of learning analytics in formal education

is for predicting learner attainment and retention [30]. There are several examples of

institutional, large-scale prediction and intervention analytics initiatives to identify at-

risk students and provide them with the necessary support to improve learner retention

and progress [42][51]. Predictive analytics was originally a field of business intelligence,

meant to help organisations make customer-relevant decisions about future business op-

erations based on predictive models of customer activity in relation to key performance

indicators. In education, predictive learning analytics involve uncovering actionable

information through large data sets of student and organisational informa-

tion and activity, so that it can inform institutional response to student needs

[52]. Case studies from the past 5-8 years have provided evidence that learning analyt-

ics have been successful in validating predictive models, carrying out effective

interventions with students and illustrating the benefits of a “data-driven

approach to higher education provision” [30].

However, there are also institutional risks associated with predictive analytics. First,

the premises of the prediction must be very well understood. Asking the wrong

questions or having the wrong data to answer the question can significantly

impact the accuracy and utility of a prediction [30]. Predictive analytics are

most useful when they can answer a rather direct query, such as whether or not a
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specific intervention resulted in any behavioural change or cognitive improvement for

the student. In higher education, predictions are typically calibrated toward retention

and performance (as determined by grade) [30]. Such a narrow line of inquiry can make

it difficult to understand more complex relationships within the data.

The appeal of predictive algorithms to provide actionable insights is already impacting

educational structures. This is an area of concern, both in considering how to inter-

pret data currently and in shaping how educational settings are designed in the future.

For example, Williamson has argued that predictive analytics have contributed to the

emergence of digital education governance:

“digital technologies, software packages and their underlying standards, code

and algorithmic procedures are increasingly being inserted into the adminis-

trative infrastructure of education systems” [32, p 2]

The “datafication” of education, according to Williamson, is driving educational tech-

nology toward a real-time, “future-tense” analysis of educational settings, in which the

necessity for counting certain events or behaviours leads to a necessity for

monitoring an ever widening selection of data [32]. Selwyn has cautioned that

this creates a reciprocal relationship between technology and educational settings that

ought to be seriously questioned [53]. He argues that educational technology is not sim-

ply a tool that can be applied with a clear outcome. Technology has a wider social

context that is continuously exerting influence over how the technology is un-

derstood and applied, which also shapes the context itself [53, p 9]. Williamson

references the National Pupil Database (NPD) and the Education DataLab in the UK

to illustrate how data-driven approaches have become critical policy instruments, pri-

marily through providing evidence that can be presented, audited and actioned [32, p

129]. Williamson argues that this has shifted power toward individuals involved in these

processes:

“the new managers of the virtual world of educational data are the technical,

statistical, methodological and graphical experts” [32, p 138]

In fact, data management and a standardised data collection rationale are now two key

areas of educational policy [29].

Predictive analytics can also shape course design itself. With regard to the

Course Signals initiative at Purdue University[42], for example, the need for collecting

data from the Virtual Learning Environment (VLE) was determined to be of such im-

portance that many humanities courses were required to be redesigned “to have more
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frequent assignment points and more use of VLEs in order to generate more learning ac-

tivity data” [30]. In this way, even just the context of learning analytics’ research

has shaped the pedagogy and didactic approach of those courses.

Predictive analytics has developed from a very different theoretical foundation (Infor-

mation Systems) than the field that it is intending to support (Education). Information

Systems Theory could be viewed as behaviourist, in that it seeks to explain behaviour

through a stimulus-response line of inquiry, which is more observable and measurable [54]

[55]. For example, the “Course Signals” initiative at Purdue University [42] and “OU

Analyse” at the Open University UK (OU) [51] both track a combination of learner

characteristics, effort (which is measured by behaviour in the Virtual Learning Envi-

ronment, or VLE), performance and academic history to predict learning success and

identify learners who are “at-risk”. The impact of such initiatives is typically measured

using the bottom line of performance and retention with the following question: did

intervention result in at-risk learners staying enrolled and performing better?

Clow’s description of the “closed loop” suggests that it is the action after prediction

that makes an impact [4]. What was done to intervene and how did the intervention

work? Kuzilek et al do not describe a strong evaluation of interventions based on

recommendations from the system. For example, some of the of OU Analyse predictions

involved using the k-Nearest Neighbour (k-NN) model to compare at-risk students with

their “nearest neighbours”, or students whose characteristics and overall behaviours most

resemble that of the at-risk student in question. By examining k-NN in more granularity,

the authors assert that it is possible to identify and suggest some behaviour changes or

resources that might assist the at-risk student moving forward. However, Kuzilek et

al did not provide information on whether or not this information was actioned by the

educator or whether the information was able to change learner behaviour or attitudes

toward learning. The authors also note that the dynamic changes involved in course

preparation from presentation to presentation remain a persistent challenge for making

certain types of predictions and understanding the wider impact [51].

Temporal and social factors around prediction, as well as the consequences for educa-

tional policy and development are worth considering. Selwyn claimed that the parsimo-

nious idea of making learning observable and measurable has led to an overly optimistic

view of learning analytics, and in particular prediction. He argued that it is neces-

sary to explore institutional responses to learning analytics more deeply, to

understand the social factors involved [56].
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2.2.2 Social Learning Analytics

Social Learning Analytics are an interesting counterweight to predictive learning ana-

lytics, particularly in the early literature from 2011-2013. In prediction analytics, edu-

cational data is ordered by the passage of time and stabilisation across several variables.

This strengthens the power of the predictions. Ferguson and Buckingham Shum noted

in 2012 that inside of this approach, there is “little mention of pedagogy, theory, learning

or teaching” [15, p 5]. Because of its roots in business analytics and data mining, which

tend to be outcome-based, predictive learning analytics may ignore important

interaction processes that are relevant to learning [3]. The authors proposed

social learning analytics as a “distinctive subset” of learning analytics that deals with

the process of learning, which is not simply an individual endeavour. Rather, learning

is a contextualised experience, shared with others and influenced by their presence [15].

Learning analytics based on the analysis of social networks, social content, discourse and

learner disposition have been identified as sources of key knowledge for educators on the

context and process of learning [15][3]. As such, research on social analytics draws on

data extracted from a variety of sources, some of which are institutional (such as the

learner’s activity on the VLE or their demographic data) and some of which may be

more informal (such as a learner’s profile on social media) [57].

For example, SNAPP (Social Networks Adapting Pedagogical Practice) has been used

in learning analytics research to analyse and visualise forum contributions as a network

diagram so that educators and learners can learn more about social dynamics, the

flow of information, the gate keepers and isolated students [57] [58]. Other tools

focus on leveraging this data to help students understand their own “learning

power” [59]. Learning power can be described as the aggregate of certain factors and

characteristics that make a “good learner”. The ELLI (Effective Lifelong Learning

Inventory) is a self-report questionnaire that explores individual learning power across

several dimensions. Researchers have used the ELLI to develop a tool that gathers and

aggregates data related to each dimension of the inventory and presents it as disposition,

in the form of a spider graph. The analytics allow for exploring dispositions on the

individual and cohort level. This tool has been successful in promoting “self-growth”,

“personal experience” and “self-awareness” in education [59].

However, social learning analytics have not particularly materialised as a seri-

ous pedagogical tool within higher education. It is difficult to integrate data

between different learning platforms and social media sources, and tools that

are built-in to the learning management system often have very limited functionality

[60].
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Commercial learning analytics platforms such as Knewton 2, do have the capability of

drawing in extensive data from a large variety of sources (including social media), but

the size and scale of its approach drives its services more in the direction of prediction

through comparison, once again. Williamson writes

“Learning analytics transforms comparison by enabling the individual stu-

dent to be compared with global data-sets in a recursive fashion. As the

individuals performance on a particular task is monitored, it is continually

compared with norms algorithmically inferred from a global database, and

then used for customizing future instruction. The big data logics of social me-

dia are firmly articulated into the governing practices of education through

such instruments. Learning analytics functions through the same principles

of recommender systems such as those found in consumer/prosumer spaces

such as Facebook and Trip Advisor. In this way, the governing logic of

global comparison becomes a real-time event concentrated to the scale of the

individual among the global masses.” [32]

Tufekci has called attention to some of the methodological and conceptual issues around

using social media behaviour to infer anything about society. She warns that structural

biases of platforms and general ignorance of social “field effects” (large-group

shared experiences) can risk oversimplifying or misunderstanding certain behaviours.

She also notes that “human reflexivity,” that humans will change their be-

haviour based on metrics, must be assumed and “built into the analysis”

[61].

2.2.3 Multimodal Learning Analytics

One of the more recent areas of learning analytics research is in using sensors and wear-

able technology to understand more about the classroom experience [62]. Multimodal

analytics diversify data sources by aggregating and integrating information

from the both the physical and digital learning environment. This includes

“logs of computer activities, wearable cameras, wearable sensors, biosensors (e.g., skin

conductivity sensors, heartbeat, and EEG), gesture sensing, infrared imaging, and eye

tracking” [62]. One of the applications of this type of data, for example, has been in

understanding classroom orchestration. Orchestration is the flow of classroom

instruction, from individual to group work, and any other actions that the teacher

provides to support these processes [63][64]. Orchestration has been studied using eye-

tracking, EEG, accelerometer, audio and video recordings to study teacher interaction

2https://www.knewton.com/
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with students. Using a machine-learning approach, one study showed that the “plane

of interaction” (whether the teacher is engaging with one student, a small group of stu-

dents or the whole class) can be detected with high accuracy using sensors [64]. The

vision is that multimodal analytics of this kind will help illustrate what types of

activities seem to drive student learning from a pedagogical standpoint [65],

a closer application of learning analytics to constructivist learning theory .

However, “concrete teaching activities” are more challenging to detect [64]. In

addition, Blikstein and Worsley note that many Universities are not in the position to

pursue experimental pilot studies with multimodal analytics.

“ The direct instruction approach is inherently easier to test and quan-

tify using currently available tools that include mass-production of content

and decades of research concerning psychometrics and standardized testing

strategies. Meanwhile, the constructivist side counts on laborious interven-

tions, and complex mixed-mode research methods. The result of this asym-

metry is that public systems, more dependent on high-profile research results,

are left, by inertia, to the designs of the proponents of traditional approaches,

while only affluent schools, private or public, who can experiment more, can

afford to implement modern, constructivist approaches to learning” [66].

One of the concerns, as with any technological advancement, is the length of time it

will take for the benefits of learning analytics to reach the most disadvan-

taged stakeholder. In education, this can become an ethical concern if it means that

only private, wealthy institutions will be the primary beneficiaries of advancements in

educational theory, while less fortunate schools will be continuously asked to do more

with less, in terms of both money and data.

2.2.4 Process Learning Analytics

As mentioned previously, what distinguishes learning analytics from other types of ed-

ucational analytics is the attention to human agency and interactive processes. This

suggests that impact in learning analytics is based on their ability to influence

human decision-making. Preparation and delivery of learning experiences are two

areas of education where decision-making is most readily apparent. It also provides

a useful backdrop for connecting learning analytics with clear impact [11]. Lockyer,

Heathcote and Dawson have suggested that aligning learning analytics with “pedagogi-

cal intent” would provide a strong context for understanding learning analytics’ impact

on teaching and the environments in which learning occurs [10].
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The term “instructional design” was a post-war, behaviourist educational con-

cept. Behaviourism was the dominant psychological approach from the end of the 19th

century to the beginning of the 20th century [54] in which learning was viewed as a sys-

tem that could be analysed and interpreted. Structured approaches to learning, based

on what was known about that system, were viewed as the most effective foundations

for teaching [67]. Learning design, in the sense that it has been defined since the early

2000s, can be viewed as a cognitivist and constructivist equivalent, in which the

system itself is part of the overall evidence considered. Cognitivism and constructivism

are differentiated from behaviourism in that the complexity of human psychology began

to be more clearly understood [68]. Educators are responsible for properly interpreting

that context in the process of designing learning experiences within it [69] [10]. In par-

ticular, this field has developed alongside the permeation of technology into education

and the use of Learning Management Systems (LMS), to track the activities of educators

and learners and make them machine readable [69].

Learning analytics can apply the marriage of technology and pedagogy to

interrogate the efficacy of different instructional approaches. This is particu-

larly useful when scaling learning analytics approaches [70]. For example, Toetenel et al

applied a learning analytics approach to understand which types of learning activities

tend to have the greatest impact on learner performance and satisfaction. Their taxon-

omy describes assimilative activities, information handling, communication, production,

experience, interaction, and assessment. Their results indicate that learning designs

that include many assimilative activities appear to be negatively correlated with learner

outcomes. While the authors concede that more research is necessary before it would

be possible to generalise, it could be a significant discovery to have concrete, measurable

evidence of the impact of certain learning designs on students [71].

Lockyer et al describe learning design as an expression of “pedagogical intent”,

which is possible to operationalise and assess using technology. They argue that ana-

lytics that are aligned with the instructional context can enable educators to measure

progress toward certain specific, pre-defined goals and milestones. They refer

to this as “process and checkpoint analytics”, which describe the learning jour-

ney in terms of the relationships between resources, tasks and support mechanisms.

[10]. Lockyer et al provide the example of using social network analysis to understand

whether the educator’s intended aim of increased learner interaction could be detected

in the communication patterns, or to illustrate student engagement [10, p 1448]. As

mentioned previously, there are also many smaller learning analytics applications that

can guide educators in looking at specific issues around social networks to identify and

assess learner isolation [58], or provide more meaningful comparisons with peers [72].

However, much like social analytics, process and checkpoint analytics have not
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been meaningfully implemented, as of the preparation of this thesis, in the

higher education context.

2.2.5 Learning Analytics Dashboards

Learning analytics involves not only collecting and analysing data, but also interpreting

information and presenting it to potential stakeholders. This typically occurs

through an interface (or dashboard) that allows a user to explore and interact with

the data. Learning analytics dashboards can be targeted at educators, administrators or

learners [73]. As tools for exploring learning and teaching, learning analytics dashboards

are one of the most significant contributions of learning analytics to higher education.

As mentioned above, the Purdue University Course Signals initiative had a student-

facing dashboard to communicate analytic insights to students, allowing them

to compare themselves against standards and their peers [42]. In HEIs, how-

ever, learning analytics initiatives with student-facing dashboards are not particu-

larly common. As Schwendimann et al discovered, most learning analytics dashboards

are targeted toward educators in higher education settings for predicting student per-

formance. The primary named purpose for student-facing dashboards is typically to

promote awareness and reflection [74]. One example of a student-facing dashboard

that explores these affective areas is the Automated Wellness Engine (AWE) piloted

at the University of New England. The AWE dashboard allows learners to track their

emotional states through a series of self-reports using emoticons, which then form the

basis for learner interventions. The project appeared to have cut attrition from 18-12%

[72] [30].

Comparison with classmates is another interesting feature that has been debated in the

literature on student-facing dashboards. Continued concerns about the impact of

comparisons on student motivation, as well as the difficulty in determining

who and what to compare [73] represent two moderating effects in why student-

facing dashboards have not seen the same level of development as educator-facing or

administrative dashboards. It is worth noting that the Course Signals study did not

find strong evidence of the signals having a demotivating effect on students. Only

2 students of 1500 that participated in the Course Signals evaluation mentioned any

negative effects of the intervention [42]. Still, the paucity of evidence in the area of

student-facing dashboards, especially in authentic settings, indicates a need

for more research in this area.

Bodily and Verbert also found that they could distinguish between two general types

of systems, those that provided recommendations to the student based on data-mining
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techniques, and those that provided visualisations based on descriptive statistics. Very

little is known about how these two different types of systems affect different classes

of learners engaging with the system. The authors recommend that future research

“should ask students what effect they believe the reporting system had on

them and what feature of the reporting system led to that effect” [73] to help

understand more about how learners understand the information that is being presented

to them.

2.2.6 Learning analytics for Personalised Learning

As mentioned in 1, the current trends, both in education and technology, are toward mo-

bilising the social to improve the individual. In formal education, and particularly

in computer-mediated learning of any kind, learning analytics tools can be incorporated

into Personal Learning Environments (PLEs) to support individual learning strategies

[37][75]. PLEs attempt to recreate the “socio-academic context” of learning,

which is made up not only of institutionally provided materials, but also of

information sourced elsewhere, from other colleagues and incidental experi-

ences [37, p 897]. Analytics can increase the power of that socio-academic context. For

example, the software nStudy that was developed at Simon Frasier University is a kind

of note-taking, research and reference plug-in that is able to track and support student

learning activities. It collects a large volume of trace data, both from within the VLE

and the personal web environment as a learner is researching and annotating resources

[43]. Tools like nStudy aggregate data from many sources, some of which are within the

domain of the educational institution (like the VLE) and some, such as a social media

profile, which are typically more a part of a student’s private life. They aim to identify

more concrete student behaviours and outcomes. This is done by improving

the granularity of what technology can currently identify using more limited

data [6] [76].

2.3 Learning Analytics and The Open Learner Model

With the trust that is required in such a transaction, researchers anticipate that learners

will expect a lot in return. Chatti et al argue that learning analytics tools of this type are

contextualised within discussions about ethics, data privacy, “real time” feedback and

“mobile learning analytics” as the smartphone learning analytics dashboard equivalent

[76]. Chatti et al found that “effective analytics tools are thus those, which

minimize the time frame between analysis and action” [77].
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Learning analytics dashboards themselves are interesting objects for the subject of per-

sonalisation [78], much in the way that Lockyer et al described with the concept of

process and checkpoint analytics [10]. The vision is that individual stakeholders will

be able to set and monitor a particular pathway toward a chosen outcome and, using

the dashboard features, mobilise relevant data toward that end. The direction of the

discourse is toward an evermore flexible conceptualisation of learning, referred to as the

“open learner model” [79][77] [76]. The open learner model was described by Bull and

McKay as “a model of the knowledge, difficulties and misconceptions of the individual”

that are continuously monitored through technology and “updated to reflect their cur-

rent beliefs” [23]. In contrast with Williamson’s comments, Bull and McKay view the

idea of global comparison as providing an ever more personalised and authentic experi-

ence, rather than a homogenising one. As learning gain becomes more personal

and concrete, needs around educational assessment would also move in this

direction [76]. As Chatti et al have noted, however, learning analytics systems

tend to be “data rich but information poor”, without more pedagogically driven

indicators, predictions and recommendations to help parse potentially useful information

[77][76].

The convergence of educational philosophy and technological advancement in using

learning analytics for self-regulation and personalised learning represents the most sig-

nificant constructivist contribution of learning analytics research toward understanding

and optimising learning. For example, the Open Learner Model and the concept of Open

Assessment do not replace the role of teaching with technology. Rather, they allow for

a softening of the lines between who is a teacher and who is a learner. Open

learner models also emphasise how the social environment around the individ-

ual can be captured to understand how resources, tasks and support systems

within that environment are perceived. Through technology, the learner will be

guided through awareness toward relevant action, similar to what Harasim envisioned

with Online Collaborative Learning [38] and what Siemens described as “Connectivism”

[80].

2.4 Chapter Summary

The improved mediation of learning through technology is the red thread that is inter-

woven through learning analytics research and its envisioned future.

This chapter described the field of learning analytics through the lens of its develop-

mental background and applications in higher education. The chapter began with an

examination of the connection between learning analytics and other advancements in
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digital tools for education. 2.1 described how technology is shifting the focus toward

learner autonomy, why it is necessary to support learners in building those skills, and

how learning analytics fits broadly into that goal. 2.1.2 delved more deeply into the

conceptual history of learning analytics and its differentiation from educational data

mining, highlighting the role of the human being as a facilitator.

The second section, 2.2, explored some of the more commonly described applications of

learning analytics, as well as those that are emerging. 2.2.1 discussed the appeal and

concerns around predictive analytics, which are already shaping educational practice. It

concluded that the dynamic nature of the classroom and a lack of orientation around

institutional or educational response can threaten the value of predictive analytics. 2.2.2

discussed the emergence of social analytics as a tool for both educators and students,

supporting educators in understanding the social dynamics of their classrooms, and pro-

viding learners with opportunities for reflection and awareness. However, it argued that

social analytics are not as useful if they have limited functionality and fall short of de-

livering what they promise. In addition, they require more support in terms of how

they should impact decision making. 2.2.3 described more recent developments in using

sensor technology to record and present information as multimodal analytics. While

multimodal analytics were determined to be useful in understanding some aspects of

the classroom experience, granularity is difficult to achieve and the technology may be

financially prohibitive to acquire for some institutions. The impact of learning analyt-

ics on learning design was discussed in 2.2.4. In particular, it explored how learning

analytics and learning design emerged as complementary concepts from their more be-

haviourist counterparts. It focused on pedagogical intent and how the educator could

best communicate those intentions, using learning analytics as a guide. In 2.2.5, learning

analytics dashboards were presented as the intermediary between learning analytics and

the stakeholder. It argued that while student-facing dashboards could help contempo-

rary students to make meaningful comparisons with their peers, they are not particularly

common in higher education. The subsection concluded that consultation with students

could most efficiently quell worries about impacts on student motivation, and improve

knowledge about which types of comparisons are most useful and why. Finally, 2.2.6

examined how personal learning environments have the potential to transform digital

education in ways that reflect the best of face-to-face and digital interaction. In particu-

lar, it discusses how learning analytics are contributing to the development of the Open

Learner Model and Open Assessment, and determines that this development coincides

with contemporary educational theory.

While several concerns and potential gaps in the literature have already been explored

in this chapter, chapter 3 drills down into some of the underlying assumptions that

are made about education and educational processes in learning analytics research. It
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also examines some of the factors that frustrate evaluations of impact. Understanding

the current limitations of learning analytics is important in understanding how to make

improvements, which is the primary aim of this study.



Chapter 3

Motivation: Learning Analytics,

what’s missing?

“Relevance is a search engine’s holy grail. People want results that are closely

connected to their queries.” - Marc Ostrofsky

The future direction of learning analytics, based on the previous chapter, is one in which

a) more and more data will be captured in order to increase granularity of findings, b)

filters, automation and recommender systems will be so finely tuned that a stakeholder

will not be overwhelmed by the data and c) the decision-making processes on the basis

of that information will provide specific evidence of impact. From a machine-learning

perspective, that vision is coherent. More data, plus the ability to know which data

matters to whom, will equal better outcomes for students. However, it is important to

ask - how will we get there? How are decisions actually made with regard to learning

analytics? What are the steps between awareness and action?

The constructivist psychological approach, which currently dominates the field of educa-

tion, is distinguished from its cognitivist and behaviourist relatives in one very important

way; rather than viewing humans as acquiring meaning from the world around us, con-

structivism purports that we create it [68]. In a sense, learning analytics is a field with

a past and a future that looks constructivist in nature, but no present. The motiva-

tion for the body of work described in this thesis is based on the following four concerns

around learning analytics research: Firstly, the development and primary applications of

learning analytics within higher education do not appear to fully represent contem-

porary development in learning or educational theory. This makes it difficult

to contextualise any decision-making on the basis of learning analytics findings. Sec-

ond, learning analytics are already influencing educational research and policy,

25
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as well as attitudes about educational theory, without fully understanding

the real impact of learning analytics on practice. Third, evaluations of learning

analytics, because they are computer-mediated, are difficult to separate from the

tools created to collect and communicate information. In addition, the activities

associated with learning analytics pilots and eventual adoption are not aligned nec-

essarily with the typical daily actions of the educator. Finally, all of the above

is impacting acceptance of learning analytics for large-scale, wide adoption. Without

addressing these concerns first, it will be very difficult to obtain stakeholder buy-in

at the institutional level, in particular for some of the more innovative and important

contributions of learning analytics research.

The following sections address each of these concerns briefly, by reviewing and expanding

on the critical review of learning analytics presented in the previous chapter. Once again,

the purpose of examining these issues in more detail is to create a more accurate picture

of when, how and why learning analytics are likely to impact practice.

3.1 Learning Analytics and Contemporary Education

Contemporary learning theory is increasingly focused on the learner and on the social

context of learning experiences [81] [35]. Building upon the behaviourist, cognitivist and

constructivist traditions, learning theory is now articulated within the context of what

is called the Knowledge Age,“a time in which knowledge has key social and economic

value” [38, p 2] and the Digital Age, a time when digital literacy is not only about tools

but about metacognitive awareness and good judgement [48].

This reality calls into question the purpose(s) of education in the Digital Age. Peters

asserted that distance education was “industrialised education”, focusing on the form of

mass production and making comparisons with the auto-motive industry [82]. Rumble,

conversely, argued that distance education can resemble whatever theory upon which it

is based [82]. Providers of distance education can and should decide to which end are

students meant to be educated at University? What is the most efficient way

to get there? How do we get there without compromising learning? Learning

analytics are presented as a solution for answering all three of those questions. This

section addresses some of the ways in which learning analytics are currently helping to

define the answers to those questions and some of the concerns involved.
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3.1.1 Efficiency and Optimisation

Though learning and technology have always been connected, Harasim argues that our

relationship to technology has become more consistent in the Digital Age. She claims

that in education, this relationship has been leveraged primarily to make learning more

efficient, rather than to gain deeper insights about teaching or learning [38]. Research

implicates the technology in part, which is new and requires a familiarisation phase, es-

pecially for those with less experience in digital technologies [24]. It is worth consid-

ering whether or not the two are connected and if different attitudes toward

learning analytics would change if the technology itself (the software) and

its application (efficiency or optimisation) were not a factor.

3.1.2 Skilled and Unskilled Users

Learning analytics are also shaping the requirements institutions have of educators and

educational researchers. The vision of open learning analytics includes a caveat that tools

must have a complex range of capabilities without requiring the end users have “extensive

knowledge of the techniques underlying these tools” [77]. However, the transition toward

this has not been fully realised and, as Williamson argued, many influential actors

in education are now data managers, analysts and visualisers [32]. This has

an impact on learners. The focus on learner autonomy that characterises contemporary

education, and the tools created to support it, are leaving some learners behind. Many

learners lack the skills necessary for recognising, understanding and regulating their

learning strategies. They need educators and support staff that can help them do that

[44].

3.1.3 Socio-Technological Factors

Perotta and Williamson cautioned that contemporary education requires “educational

researchers to develop new methodological repertoires that can both (a) critically ac-

count for the social power of technical devices and artefacts, and (b) provide detailed

analyses of the technical and mathematical mechanisms of such devices.” [83].

For MacFadyen and Dawson, context is the one factor often absent in analysis and

interpretation of educational data [24].The authors argued that researchers must

“delve into the socio-technical sphere to ensure that learning analytics data

are presented to those involved in strategic institutional planning in ways that

have the power to motivate organizational adoption and cultural change”[24]
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In this one statement, MacFadyen and Dawson name institutional power, organ-

isational culture, change and strategy as moving social-targets of learning

analytics research. They place the onus on the learning analytics community to de-

velop analytics that “surprise and compel, and thus motivate behavioural change” [24].

However, as Schwendimann et al found, many learning analytics studies did not appear

to have any particular pedagogical approach [74]. Bodily et al recommended that “more

systems should consider bridging the gap between these fields by including both what

has happened as well as what to do because of what has happened.” [73]. Having to

think about and prepare for the actions that could result from having a piece of in-

formation requires the system to create the necessary connection between the idea of

pedagogical intent and a given behaviour. Gas̆ević argues that this includes developing

learning analytics themselves from more “theoretically established instruc-

tional strategies, especially those related to provision of student feedback.”

[11].

3.1.4 What and Why Questions

Even the most holistic learning analytics initiatives, with both educator and learner

dashboards and intervention strategies, such as Course Signals, have not been able to

produce much concrete data around the timing, frequency, or content of student feed-

back and its impact on student performance [30]. The JISC evaluation of Course Signals

indicated that certain strategies seemed to be more effective, such as instructional rather

than motivational feedback and comparison to peers rather than standards [30]. How-

ever, this thesis argues that such evidence is not sufficient for shaping educational policy

or instructional design, because it is not framed within learning theory. Understanding

how and in which ways such feedback enhances student learning is important to meet the

expectations of learning analytics’ contribution to theory.

3.2 Learning Analytics and Impact on Practice

Learning Analytics can provide a powerful lens through which to interpret learner be-

haviour, or, at the very least, contribute to the partial picture that educators and insti-

tutions have currently [3]. Yet, as the previous section argued, a considerable amount of

learning analytics research is not pedagogically contextualised or evaluated in authentic

environments. The majority of papers surveyed by Schwendimann et al on learning

analytics and data mining research had “no evaluation whatsoever” [74, p 2]. Chatti et

al claim that “researchers need to find pedagogically useful indicators, predictions and
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recommendations by evaluating the quality of analytics results in practice.” [77]. This

section looks at some of the current ways of measuring impact and the problems that

arise with regard to evaluation and relevance.

3.2.1 Collecting and Cataloguing Evidence

Researchers have recognised that impact is studied within specific learning contexts in

which many other variables may be involved. To address this issue, at least in part, the

Learning Analytics Community Exchange (LACE) project http://www.laceproject.eu/

offers a richer description of outcomes in the contexts in which they occurred. The

LACE Evidence Hub encourages researchers and practitioners to share their authentic

experiences of applying learning analytics in the classroom, so that others can appropri-

ate and adapt useful approaches. This evidence is delineated with regard to the LACE

projects four major propositions that learning analytics a) improve learning outcomes,

b) improve learning support and teaching, c) are taken up and used widely and d) are

used in an ethical way 1. The LACE project represents a significant contribution to

learning analytics research and development in investigating impact.

In addition to promoting what works, the learning analytics community is open to dis-

cussing what did not work. In consecutive years of the Learning Analytics and Knowl-

edge conference, researchers have hosted a workshop on learning analytics failures and

what could be learned from those experiences. The “Fail-a-thon” as it was titled, was

intended to mitigate the biases of the literature toward positive results [84][25].

However, as Schwendimann et al discovered in investigating learner dashboards, the field

still “lacks comparative studies” that help to differentiate exactly what did or did not

work in different settings [74, p 2].

3.2.2 Measuring Impact

The education research community has always had difficulty in assessing the impact of

interventions on learner outcome and this difficulty has been projected onto the study

of learning analytics:

• How do we define and measure success?

• How do we get this information to educators?

• How do we get it to learners?

1http://evidence.laceproject.eu/

http://evidence.laceproject.eu/
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• How do we know if it has worked?

The Joint Information Systems Committee (JISC) has published two overviews of avail-

able evidence on supporting student learning through learning analytics [30] [85]. These

publications cite evidence that learning analytics have been effective at improving grad-

uation rates, course completion rates, drop-out rates and overall retention, as well as

increasing attendance, final marks and grade point average (GPA) [85]. In addition,

their research indicates that learners feel generally positive toward learning analytics

and respond well to learning analytics initiatives [30]. However, it should be noted that

many of the studies involve the use of predictive analytics, and generic proxies for learn-

ing, such as retention, course completion and GPA. Without understanding exactly

which processes of learning are in play, it is difficult to move past prediction

toward diagnosing and prescribing certain interventions in higher education.

The fact that predictions are successful, however, may build an expectation that under-

standing is “just around the corner”. This optimism can create a bias [86] around how

learning analytics techniques and tools are evaluated.

For example, Caulfield reviewed several anomalies he had discovered in the Course Sig-

nals data and found that “the experiment may suffer from a ’reverse-causality’ problem”

[87]. He found that claims about participation in Course Signals classes influencing re-

tention could also be explained by a reduction in the over all number of classes being

taken as other students drop out over time. He also cautioned against being too opti-

mistic about the overall effect of Course Signals on student grades. He points out that

students also have limited time and that better grades associated with Course Signals

classes could also be at the expense of their performance in other classes. While he

recognises that some explanations are more plausible than others, Caulfield was con-

cerned that the Course Signals study had never been properly peer reviewed, despite

the study’s inclusion as a key citation in many learning analytics papers. Caulfield’s ar-

gument illustrates the importance of researchers properly contextualising their results,

as intervention is not a simple cause and effect relationship.

Ferguson had already noted in 2012 that work on cognition, metacognition and peda-

gogy was under-represented in learning analytics research [3]. The more recent findings

of Schwendimann et al and Bodily et al suggest that a deficiency in understanding how

to close the loop between awareness and action still exists as of writing this thesis[73].

The silver lining is that qualitative evidence demonstrates that educators still feel gen-

erally positive about learning analytics, if they can have more input in research and

development [88].
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3.2.3 The Problem with Relevance

Part of the problem in understanding learning with learning analytics is in parsing and

interpreting vast amounts of data. Researchers have acknowledged the abundance of

data with which institutions and educators are currently burdened [89]. In education,

technology can be used to gather trace data about learners’ activities almost anywhere

online: on the Web more generally [43], or within a VLE [42][51]. Multimodal analytics

can use sensors to collect data about a number of physiological responses that learn-

ers have to certain stimuli during learning experiences [62]. Social Learning Analytics

can use forum data and peer interaction to gather information about the kinds of re-

lationships that learners have with one another and with certain types of content [15].

Such advancements in technology offer many potential opportunities for educators and

learners to understand more about teaching and learning. This is especially true in the

context of distance education, where contact with learners is limited. However, these

few examples already highlight the breadth and complexity of the types of data that

are possibly available, which can be overwhelming for educators. It can also make it

difficult for institutions to decide on holistic tactics for collecting, measuring, analysing

and reporting on analytic data for their stakeholders. Deciding what is important

to whom is a complexity that requires unravelling.

For example, in the development of their support tool eLAT for understanding and

visualising analytic data for educators, Dyckhoff et al discovered that teachers were

most interested in using analytic data to interrogate the efficacy of specific interventions

that they implement in their classrooms. However, most of the tools teachers were

given were too complex and tended to overshoot their requirements [9]. These results

indicate a necessity for deeper investigation into what kinds of data matter, to whom

they matter and why they matter to support the search for relevance in the broad

landscape of information.

With regard to what learners require, this thesis has already discussed some of the po-

tential for learning analytics to support learner strategies and provide an early warning

system for quick intervention [42] [85]. In addition, some recent qualitative studies have

explored learner perspectives on what they hope to gain from learning analytics [90] [91].

Schumacher and Ifenthaler conducted a mixed methods study into the requirements of

students and found that the majority of learners saw learning analytics as an opportu-

nity to help them plan their studies and perform self-assessment. Students disagreed on

several features about comparing their progress with others, leading the authors to con-

clude that a highly customisable interface would be required [91, p 70]. However, Khan

concluded that learners (and educators) may still lack foundational knowledge about

learning analytics and their significance, and that more research was needed to promote
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a shared understanding at the institutional level, across stakeholder groups [90]. Both

studies indicate that there are differences in the way that individual learners

may approach the topic of learning analytics and that there is something

deeper to be understood about those differences.

3.2.4 The Problem with Evaluation

Challenges of relevance are also manifested in problematic attempts to investigate how

real impacts on practice are evaluated. When data is overwhelming, evaluations

are likely to be either too broad or too narrow to get an accurate picture of an

educators’ real intentions to use a given tool, their understanding of its utility and their

actual use of the tool in an authentic environment.

For example, Judith Schoonenboom’s research on disparities in how Learning Manage-

ment System (LMS) tools are used, support the findings expressed by Dyckhoff et al that

educators can have difficulty finding relevance in learning analytics tools [92]. Applying

an extended Technology Acceptance Model (TAM), Schoonenboom analyzed educators’

use of LMS tools to perform 18 different instructional tasks, such as preparing for an

exam, moderating discussion, or providing learners with feedback. Schoonenboom found

that the TAM factors of usefulness and ease of use did, indeed, correlate with intention

to use a given tool. However, most reasons provided by educators for using or not using

a specific LMS tool, were related to specific tool, task and interface combinations. As

a result of these findings, Schoonenboom posited that it is inappropriate to apply a

Technology Acceptance Model at the level of the LMS system as a whole, because this

is not how educators’ engage with them [92].

At the other end of the spectrum, many evaluations of learning analytics ap-

proaches and methods are too “tool-specific”, rather than a more general evalua-

tion of educators’ ideas and motivations related to using analytic data for their practice.

For example, in a 2013 survey of 15 learning analytics dashboard applications for ed-

ucators and learners, Verbert et al [93] found that evaluations of tools were primarily

organised around usability studies and efficacy in controlled environments. This con-

nects the potential impact of analytic data on learning outcomes with usability and

satisfaction.

Usability studies are a very useful (and necessary) mechanism for understanding whether

or not the user is able to perform the activities intended by a specific tool to reach a

specific outcome. However, Greenberg and Buxton have argued that usability studies

on new and radically innovative ideas can limit their creative development, as well as

put the validity of the evaluation at risk [94]. The authors suggest that the focus on
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usability shapes the research question to the method and not the other way around

[94, p 113]. The knock-on effect of this tendency is that the research community

knows much more about how tools could and should work, than how they

do work. This finding is supported by a 2016 review of available research literature

on the impact of big data and learning analytics within blended learning environments,

which present unique challenges to gathering and utilising data. In their attempt to

study the impacts of learning analytics on learning strategy and reflection, the authors

discovered tendencies in the literature toward exposing organisational aspects

of learning analytics adoption or technological capability, rather than impacts

on learner behaviour and cognition [95].

3.3 Learning Analytics Acceptance

Wide-scale adoption of Learning Analytics tools remains a problem for institutions [96].

The technology itself, as well as the “presage aspects” of the technology (preconceived

notions and experience) will influence stakeholder perceptions and eventual use of a

system [97]. In addition, individual goals and priorities will influence intentions and

actual use of learning analytics tools and technologies.

This section describes each of these challenges in more detail and presents some reflection

questions that helped to guide the methodological choices that are presented in the

following two chapters.

3.3.1 Presage Factors

Recognising that there was limited empirical research on factors that influence the adop-

tion of learning analytics tools, Ali et al developed and validated the Learning Analytics

Acceptance Model (LAAM), to examine more fully how perceived ease of use and per-

ceived usefulness correlates with behavioural intention to use a learning analytics tool

(see Figure 3.1).

The authors found that pedagogical knowledge also influenced beliefs about learning

analytics and the perceived usefulness and ease of use, relative to specific tools. Peda-

gogical factors were gathered through looking at the role of the individual and the years

of experience that individual had in their role [2].

However, one could argue that this is not sufficient to understand the role of pedagogy

in influencing beliefs about learning analytics. As Ferguson and others have noted, stud-

ies on cognition, metacognition and pedagogical intent are missing to explain exactly
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Figure 3.1: The Learning Analytics Acceptance Model[2]

how such factors impact perceptions of learning analytics and learning analytics accep-

tance. What is the relationship between learning analytics and pedagogy? How can it be

managed?

3.3.2 Intention to Use

To gain stakeholder support within institutions, researchers have been motivated to

clearly demonstrate useful solutions that address both real educational problems and

institutional concerns. For example, one research group developed a “Rapid Outcome

Mapping Approach” to uncover the most important barriers to adoption and to develop

a policy around learning analytics adoption that addresses those concerns [98]. Others

have attempted to convince their stakeholders through concrete frameworks for testing

and evaluating interventions that are proposed through learning analytics [99]. The

results of such inventories generally lead toward the assessment that it is necessary to

obtain more accurate, specific information about learner and educator goals [100]. How

can learning analytics help to detect and optimise those goals?

3.3.3 Actual Use

Once those two hurdles have been surmounted, there is the issue of actual use in an

authentic environment. Herodotou et al gathered insights from educators using learn-

ing analytics in the context of an institutional pilot study at the Open University UK.

Their research concluded that teachers tended to use learning analytics tools in
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very diverse ways that complement their existing strategies [101]. For exam-

ple, if a teacher was already interested in identifying at-risk students and improving

their achievement, use of the system either “systematised” their existing approaches or

prompted them to be more “proactive”. The actual impact of teacher interventions,

however, remained unclear in their analysis.

This is troubling because teachers represent a large part of student experience. Multi-

level models of classroom dynamics indicate that teacher behaviours can explain much of

the variance in classroom outcomes, “mediated by the perceptions of the learners them-

selves.” [102]. Learning analytics has confirmed this as well in studies of the impact

of different learning designs on learner outcomes [10] [11] [70]. In fact, it is not just a

teacher’s behaviours, but also their attitudes, which impact what different stakeholders

agree is a “good” teacher. A recent study on perceptions of physics teachers showed

that learners view teachers’ enthusiasm and excitement for a subject as being one of

the primary influencing factors on their achievement over time [103]. How can learning

analytics capture these kinds of detailed relationship features?

Muijs makes two recommendations that are relevant for this thesis. Firstly, instruments

or methods to establish efficacy should be related to the specific goal involved and should

not be chosen on the basis of “convenience or familiarity”. Secondly, he discusses briefly

the “expanding role” of teachers and how researchers must consider how to describe

and measure these roles, as well as their impact on “differential teacher effectiveness”

relative to the subject or domain [102].

3.3.4 Developing Learning Analytics Literacy

Learning analytics literacy among educators is relatively low [104].This presents practical

and ethical questions. For example, how does learning analytics literacy impact an

educators’ ability to perform their function and deliver the outcomes expected by the

institution?

A recent paper by Ochoa et al proposed that the above issues be dealt with by seek-

ing common ground, methodologically, ideologically and practically [105]. The authors

suggested that convergence in the field can be gained through the development of a col-

lective body of knowledge, sub-working groups and communities that assist one another

in exploring the development of learning analytics as a field [105, p 3]. They also caution

developers and researchers to remain diverse in their working teams and to challenge

the field, expanding more firmly in the socio-technological character of learning analytics

[105, p 4]. How can educators and learners help to bootstrap the development
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of effective learning analytics by contributing the data that researchers really

need?

3.4 Chapter Summary

This chapter addressed challenges outlined by the research community in understand-

ing exactly what kinds of impacts learning analytics can and does have. Section 3.1.4

addressed inconsistencies involving learning theory and how best to achieve a high qual-

ity education. In particular, it discussed efficiency and optimisation as subtly different

concepts, and how the technology itself creates skilled and unskilled users. It also sup-

ported the argument that learning analytics require more attachment to “theoretically

established educational strategies” [11]. More specifically, it proposed that educational

theory is necessary to get beyond asking what learners and educators need from learning

analytics, to why they need it. 3.2 supported this assessment, in describing challenges

around collecting and analysing data, knowing what to measure and how, as well as

what will be important to whom. Finally, 3.3 addressed the issue of wide-scale, ethical

adoption of learning analytics and the ways in which the research community is currently

prompting this trajectory.

The chapter concluded with some questions that the literature review helped to highlight.

• What is the relationship between learning analytics and pedagogy? How can it be

managed?

• How can learning analytics help to detect and optimise goals?

• How can learning analytics help capture and optimise the learner-educator rela-

tionship?

• How important is learning analytics literacy in the every day performance of the

educator?

These questions remain unclarified or open in the literature. As such, they helped

to guide theoretical and methodological choices involved in the study design. In the

following chapters, those choices will be described in more detail. Building up to what

the study actually illuminated about learning analytics, it is important to clarify what

is being discussed and at which level the conversation is happening. The next chapter

on Mediated Learning is intended to provide that framework.



Chapter 4

Mediated Learning as a

Theoretical Framework

“Through others we become ourselves.” - Lev Vygotsy

This thesis is motivated, as described by the previous chapter, by certain open questions

in learning analytics research. A framework that is appropriate for addressing these

deficits must be a) attentive to education and learning theory in learning analytics

research, b) aware of the optimism that is influencing policy before impact has been

adequately vetted and c) sceptical of conflating technology acceptance and learning

analytics acceptance.

This chapter proposes “Mediated Learning” as the framework for the study presented

in this thesis. “Mediated Learning” provides not only a comprehensive picture of the

various actors and relationships that are theoretically involved in learning experiences,

but also a way to categorise them through a set of demanding criteria. These criteria

form the basis of assessing whether or not a successful learning experience can potentially

take place. “Mediated Learning” was a revolutionary perspective on learning, that

learning is social, psychological and technological in nature. Amongst those levels, there

are multiple relationships perpetually in motion, between humans and tools, or humans

and their belief structures, mediating the experience of learning. Understanding those

relationships and how they work provides a lever for the human agent to impact teaching

and learning [17].

Learning analytics, as a field of educational science, has the potential to contribute to

the process of mediating learning by providing evidence of those relationships and their

impacts on the learning experience. The research presented in chapter 2 illustrated

this potential. However, learning analytics, as a concept, may have a more reciprocal

37
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relationship with mediating learning. The challenges in learning analytics research are

accurately measuring impact, ensuring relevance, avoiding unnecessary complexity and

gaining stakeholder acceptance. These are all issues of human interpretation and com-

pliance, signalling that learning analytics are educational propositions that are

not uniformly perceived in the same way. The framework of “Mediated Learning”

makes it possible to distil what those propositions are and how they are perceived by

those who interact with them.

The sections below describe first the components of “Mediated Learning”, as described

by Vygotsky and the universal criteria of a “Mediated Learning Experience” proposed

by Feuerstein. The final sections explore “Technology Mediated Learning” and its rela-

tionship to the “Mediated Learning Experience”. They also introduce learning analytics

as a mediatory agent with psychological, social, and technological aspects. This chapter

will lay the foundation for explaining the expected theoretical and methodological con-

tributions of this thesis in the following chapters. It will also briefly explain what this

theoretical framework offers that others cannot.

4.1 Vygotsky’s Mediated Learning

Vygotsky viewed psychological function as an integrated output of both natural and

social processes, which were moderated by culture in a process he called “Mediated

Learning”. While human beings, as organisms, have a natural progression of psycholog-

ical function that is developed with age, Vygotsky believed that human development is

also heavily influenced by those around us, as well as the material and symbolic tools

we use to interact and construct meaning. Vygotsky referred to such signs and symbols

as “psychological tools”, and proposed them as one of three classes of mediatory

agents: material tools, psychological tools and other human beings. Accord-

ing to Vygotsky, activity mediated through these agents can produce “higher

mental processes”, which can facilitate the individual’s transition from one

set of tools to another. [17] [18].

This section describes Vygotsky’s theoretical contributions to understanding the inter-

actions between learners, tools and belief structures. The final subsection deals with

Vygotsky’s particular contribution to this research study and how his work contributes

to the framework.
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4.1.1 Self-awareness through contact with the other

Perhaps the most basic principle of Vygotsky’s “Mediated Learning” is the idea that

self-awareness arises through contact with the “other”. This idea hearkens back to the

Hegelian concept of “mediation” (“Vermittlung”). Hegel wrote:

“The philosophical notion of mediation already suggests a whole range of

possible mediating agents. First, work presupposes material tools interposed

between the human individual and the natural object. These tools, though

directed at natural objects, also have a reciprocal influence on the individ-

ual, changing his/her type of activity and cognition. Secondly, since work

is nearly always work for somebody else, then social and psychological char-

acteristics of the other person also enter the equation. Finally, since work

is impossible without symbolic representations, they and the means of their

transmission become two additional mediatory agents.” [16, p 8]

From the previous passage, one can distil three “mediating agents” of learning: material

tools, people and the symbolic representations they negotiate (psychological tools).

A human mediatory agent has one of two courses of influence: direct or indirect. The hu-

man agent will either a) help an individual to internalise inter-psychological interactions

with others, or b) directly mediate through example or guidance [16]. Vygotsky sug-

gested that each person has a “Zone of Proximal Development” (ZPD), which describes

a learners potential for learning “where that learning is culturally shaped by the social

environment in which it takes place” [106, p 193]. Kozulin has further argued that the

Zone of Proximal Development delivers an opportunity to focus on emerging

skills and “assisted performance”, to describe the difference between actual ability

and learning potential [26]. Smagorinsky argues that Vygotsky’s work on ZPD is often

misinterpreted as simply a person’s learning potential with or without assistance from a

more knowledgeable person. A “more knowledgeable person” could include people who

are more knowledgeable, but who are situated inside of a value system that is harmful

to development. He gives the hyperbolic, but effective, example of a child raised in the

pornography industry, who might be surrounded by “more knowledgeable others”, but

in an environment that is unlikely to lead to development of learning potential [106]. In

Smagorinsky’s view, the idea of proximity includes proximity to values, structures and

experiences that promote psychological development. This adds a qualifying feature to

the process of self-awareness through contact with the “others”, namely that learning

potential is more likely to be positively impacted by contact with the “other”

when the environment is conducive to development.
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4.1.2 Psychological Tools

A part of that environment is the system of psychological tools that are available to a

person, to make sense of the world around them. Vygotsky’s concept of psychological

tools represents a significant contribution to the new paradigm. Inside of that term he

packaged many abstractions, “those symbolic artifacts signs, symbols, texts, formulae,

graphic organizers that when internalized help individuals master their own natural

psychological functions of perception, memory, attention” [26, pp 15-16]. Essentially,

what Vygotsky is referring to is the cognitive structure of the human mind, the episte-

mological assumptions and knowledge that propel (and limit) thought.

4.1.3 Vygotsky’s Contribution to this Thesis

Vygotsky argued that both material and psychological tools are developed and negoti-

ated through cultural systems of belief and interaction [17] [18], such that, when these

different systems collide, the sociocultural facet becomes emphasised and must be recog-

nised. The reciprocal relationships between tools, symbols and people, which shape an

individual’s understanding of the world, became the cornerstone of Vygotsky’s theory of

“Mediated Learning”. For the purposes of this study, Vygotsky’s theories will help to

frame how learning analytics impact learning, by unpacking the psychology

of users relative to learning analytics technologies.

4.2 Feuerstein’s Mediated Learning Experiences

Vygotsky’s theories went on to form the basis for Activity Theory, which [107] which

explored psycho-social relationships from a systemic perspective. Activity Theory how-

ever, looks at authentic action in authentic settings to describe those relationships and

also does not appear to suggest a clear pathway forward, to mobilise the theory into a

practice that can be implemented. Feuerstein fills this gap with a more socio-cultural

perspective on mediated learning, which includes a range of criteria he proposes as

essential for producing an impactful Mediated Learning Experience (MLE)

[16] [20].

The contribution of Feuerstein’s criteria is that their successful application should fa-

cilitate the transition to new systems of psychological tools. As Smagorinsky

suggested, an environment conducive to development has to be achieved in order to pos-

itively impact the potential for reaching other levels and systems of psychological tools
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[106]. The criteria provide a mechanism for evaluating the learning environ-

ment in this regard.

The following section describes Feuerstein’s universal criteria for a “Mediated Learning

Experience” and how these criteria can be used to examine learning analytics as a

mediatory agent.

4.2.1 Cognitive Modifiability

Like Vygotsky, Feuerstein argued that interactions between human beings within their

social and cultural contexts illustrated our “cognitive modifiability” and that under-

standing these interactions was key to improving learning skills [20]. More specifically,

Feuerstein studied the interactions that effect a child’s “propensity to learn,” in partic-

ular with respect to “differential cognitive development” [16].

Feuerstein argued that differences among individuals could be attributed to deficits in

one or more of three key areas: “cognitive structure, knowledge base, and operational

functioning” [16]. To understand the source of these deficits, Feuerstein examined me-

diating factors that are able to positively modify a learner’s “propensity to

learn”. He developed 12 criteria to operationalise this concept of a Mediated Learning

Experience [16].

4.2.2 Universal Criteria

Feuerstein proposed three universal criteria that all Mediated Learning Experiences

(MLEs) will share. The first criterion of an MLE is “Mediation of Intentionality and

Reciprocity,” by which Feuerstein refers to the point at which the learner is aware that

something is being transmitted and that their response to that object is the “primary

target of mediation,” not the object itself [16, p 13]. The mediation of “Intentionality

and Reciprocity” is the “deliberate attempt to influence [a person’s] performance and

[a person’s] willingness to accept influence” [108]. This might involve activities such

as integrating a learner’s perspective directly into the organisation of the classroom

routines or negotiating rules of communication. What is important is that the learner

understands that learning is a mutual process and that the way they learn

is as important as what they learn.

The second criterion is “Mediation of Transcendence”, which refers to information that

is made available to the learner with broader context than their actual query [16]. For

example, a language learner might ask a teacher to define a given verb. The teacher could

simply provide a definition, but this would not mediate transcendence. Transcendence is
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mediated when the learner is guided in the process of categorising information

and incorporating it into known models. For example, the language teacher might

also offer the student a way to classify the verb on the basis of its ending or remind

the student if it is a regular or irregular verb. This is an important factor in ensuring

that learners can transfer what they have learned onto different contexts, which is an

important skill that many learners find difficult to master [109].

The final criterion that is universal to all MLEs is “Mediation of Meaning”. Presseisen

and Kozulin summarised meaning as “the questions of why, what for, and other reasons

for which something is to happen or be done” [16, p 15]. In any given learning experience,

the mediation of meaning involves ensuring that the agent of learning, the student

for example, is capable of grasping why a given object should be learned and

for what it may be useful. The philosophy of Italian educator and philosopher Maria

Montessori was based on the founding principle that all subjects may be introduced

meaningfully to children at any developmental age. A Montessori approach, for example,

leverages the learner’s attention in order to prime them for input, so that whatever object

of learning may make a more lasting “impression”. Montessori believed that the stronger

this initial impression is, the better it may be used to anchor subsequent learning objects.

As such, Montessori advocated that children have the liberty to “freely choose activities

in the service of their education.” [110, p 79]. If the child was responsible for assigning

value to the task, this could be mobilised to support the child’s cognitive development.

Other areas of mediation that impact “propensity to learn”, according to Feuerstein, are

the following: a feeling of competence (a sense of self-efficacy), regulation and control of

behaviour, sharing behaviour (between and among peers), individualism and psycholog-

ical differentiation, all goal-related activity (including goal-seeking, planning, achieving,

etc.), a desire for challenge, an appreciation for novelty and complexity, optimistic alter-

natives, a feeling of belonging and a sense of the human being as a “changing entity” [16].

While this list is not exhaustive, it provides a picture of a positive, mediated learning

experience.

4.2.3 Feuerstein’s Contribution to this Thesis

Vygotsky and Piaget believed that the presence of information that contradicts or ques-

tions existing ideas will lead to insight [111][112]. Critiques of Vygotsky’s early theories

questioned this assumption and expanded on it. Activity Theory, for example, asserted

that contradictions must be made conscious through studying organised activity within

a given system, which highlights stress points and makes them relevant for the learner

[113].
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Presseisen and Kozulin sought to investigate this assumption as well and found that

without “mediation of meaning”, the mere presence of a contradiction is not

enough to improve cognitive development. Presseisen and Kozulin argue that

Feuerstein’s universal criterion of mediation of meaning is critical for helping learners

and educators understand how to understand and modify their approaches

[16]. In the context of this thesis, Feuerstein offers a way of diagnosing whether a

given learning analytics approach is more likely to be productive in mediating

learning or not. The universal criteria provide an heuristic mechanism to test ideas

and assumptions.

4.3 Technology Mediated Learning

In the context of contemporary education, technology has become an important me-

diatory agent; a tool, with both material and psychological implications. However, as

Marshall and Cox argued, competing epistemological approaches have frustrated at-

tempts to study the impact of technology on education [114]. A lack of standards in

research and “underpinning theory”, as well as inattentiveness to the reciprocal relation-

ships between the technology and how it is applied, contribute to the complexity [114, p

997-998]. Ochoa et al highlighted this same challenge for learning analytics specifically,

in expressing the need for minimal common ground [105].

This section explores some of the ways in which technology is examined as a mediatory

agent and some of the challenges associated with this. In particular, it explores technol-

ogy acceptance and acceptance modelling, as well as their limitations in exposing layers

of social influence.

4.3.1 Technology Acceptance

At the material level of the tool, technology acceptance modelling is one way to investi-

gate the most salient aspects of technology integration. Modelling technology acceptance

helps to describe influencing factors and predict certain behaviours in a reciprocal fash-

ion. It is one of the most developed fields of Information Systems research [115]. The

Technology Acceptance Model (TAM) described by Davis in 1989 is still one of the

most widely referenced and refers primarily to two constructs: perceived ease of use

and perceived usefulness [116], which still form the basis of current models. Subsequent

revisions of the model further refined and described these constructs in terms of more

specific “cognitive instrumental processes” (perceptions such as job relevance, output

quality, result demonstrability) and social influence.
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4.3.2 Expanding Technology Acceptance

Venkatesh and Davis have suggested that harnessing the social influence factors

in technology acceptance is more effective than compliance-based approaches that

institutions (of higher education, for example) might propose. In addition, they argued

that organisations should do more to demonstrate comparatively how the innovations

a technology provides stand up to existing solutions. Understanding how a user is

able to match their own goals to the consequences of a system is a particular

challenge and would present a significant contribution to the state of the

research [116]. Finally, the authors suggest that the factors influencing how perceptions

are formed, which they refer to as “determinants of perceived usefulness” and

“determinants of perceived ease of use”, are important to identify for technology

acceptance, but are overlooked in traditional models [116, p 199].

To address these concerns, Venkatesh et al put forth a Unified Theory of Acceptance

and Use of Technology (UTAUT), which emphasises four major constructs: performance

expectancy, effort expectancy, social influence and facilitating conditions [115]. Despite

its improved success in predicting behaviour and intent to use, the authors concede that

the theory is lacking in “meso-level formulations” of the model, by which

they refer to investigations of technology acceptance on the organisational

level, examining the layers of technology acceptance within an institution. The au-

thors propose a “paradigm shift” as a necessary instrument of innovation in the field of

technology acceptance, particularly in the direction of theorising about the context of

technology acceptance as a contribution to knowledge [115, p 338]. The work presented

in this thesis will address this gap.

4.4 Learning Analytics as Mediatory Agents

As Harasim noted, the contemporary educational climate is moving toward increasingly

collaborative problem-solving, facilitated by technology including the Web [38]. This is

a reciprocal relationship, mobilising the social for the enrichment of the individual, who

will then enrich society. In this reciprocal relationship, it is necessary and recommended

[105] to develop a common language, or at least a way to decode what is meant by

learning inside of learning analytics research. This is particularly important for entities

with a mediatory role that is supposed to facilitate the acquisition of knowledge.

This section outlines how learning analytics can be viewed as mediatory agents. The

first subsection maps the field of learning analytics to the theories of Mediated Learning

presented earlier in this chapter. The second subsection proposes the identification of
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metacognition in learners as a parsimonious signal of higher mental processes resulting

from a given stimulus (a new idea, piece of information, etc.). The final subsection

describes how to evaluate the potential of learning analytics as a mediatory agent.

4.4.1 Locating Learning Analytics in the Theory

Learning analytics include symbolic representations, socially-interpretative and techno-

logical dimensions. They involve material tools of software and hardware. They evoke

psychological tools, such as belief systems and values. They are also shaping and shifting

psychological tools. As such, an examination of learning analytics as a media-

tory agent lies between the concepts of technology-mediated learning and the

more human-centred, philosophical construct of mediated learning described

by Vygotsky and Feuerstein.

Educational philosophers Vygotsky, Dewey and Piaget, argued that learning is an ac-

tive process in which we build knowledge through engaging with our environment and

manipulating it, the tangible and intangible [111] [117] [112]. Unlike the tabula rasa, or

“blank slate” conceptualisation of human learning that characterised the behaviourist

school of educational theory, social constructivists position learners as contextualised

beings, an embodiment of social and cultural norms, psychological and physical struc-

tures that require consideration [17] [112]. For the individual learner, new knowledge is

formed when preconceptions and new observations clash or are thrown off balance, an

event most likely to occur in a social context with many different agents acting according

to their own set of beliefs and motivations [118, p 68].

Learning analytics are perceived as a way of bringing awareness to potential moments

like these and to facilitate the “clash”. However, how do learners make sense of the

“clash” and what do they do with it? The previous chapter highlighted that the inner-

workings of decision-making remain largely unearthed by the most common applications

of learning analytics in higher education. How can learning analytics support learners

in knowing what to do? How can we recognise conscious decision making?

4.4.2 Metacognitive activity as a higher mental process

Capturing metacognitive activity is key to understanding how learning analytics me-

diate learning by driving awareness toward action. The term “metacognition” is often

accredited to American Psychologist John Flavell, who used the term from the mid-

1970s to describe “cognition about cognition” and awareness of cognitive phenomena in

young children [119]. Flavell wrote:
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“Metacognitive experiences are any conscious cognitive or affective experi-

ences that accompany and pertain to any intellectual enterprise. An example

would be the sudden feeling that you do not understand something another

person just said.” [119, p 906]

Flavell’s description of metacognition is quite open and intuitive. It involves cognitive,

behavioural and affective components of awareness, which should result in an evalua-

tion of the self. In the context of social constructivist learning theory, metacognition

is now understood as a building block in monitoring and controlling think-

ing, a gateway to learning through exposure to new ideas and influences

[120]. Attention to metacognition, and the external and internal forces that drive

metacognitive activity, is a hallmark of many social constructivist educational theo-

ries, if not the centrepiece. Metacognition plays a key role in developing constructs such

as self-efficacy [121] and motivation in social environments [39]. Learners compare them-

selves against their own expectations, external standards and other learners. Vygotsky

described this in terms of knowing ourselves through knowing others [17].

4.4.3 Evaluating Learning Analytics as Mediatory Agents

Learning analytics should be examined in relation to their mediating effects on all

aspects of the learning experience, from the tools and technologies, to the

attitudes, beliefs and structures around learning analytics acceptance and

their role in educational policy. This includes psycho-social and technological fac-

tors, which can be captured through analysis of metacognitive activity. Meaningful

interactions that produce metacognitive activity about learning, those that

positively impact “propensity to learn” [16], will meet the criteria described by

Feuerstein [16][20]. In addition, analysis of metacognitive statements will provide evi-

dence for “determinants of perceived usefulness” [116, p 199].

4.5 Chapter Summary

A theoretical framework provides a lens through which to examine and structure data.

This chapter outlined how the framework of Mediated Learning could be applied to the

field of learning analytics. In particular, it examined the mediatory potential of learning

analytics technologies on the learning and teaching process. The philosophies of Vygot-

sky and Feuerstein provided two avenues for investigating mediated learning. Section 4.1

discussed Vygotsky’s perspective on learning from the “other” and the impact of psy-

chological tools on learning. In addition, it addressed Vygotsky’s concept of the Zone of
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Proximal Development, which models learning potential with assistance. For the study

presented in this thesis, Vygotsky’s theories were determined to be useful in examin-

ing the psycho-social experiences of the potential learning analytics user. Section 4.2

presented Feuerstein’s elaborations to the theory with a description of cognitive modifi-

ability and the universal criteria for Mediated Learning Experiences. More specifically,

the section outlined how the criteria provide a mechanism for exploring “what counts”

as a mediated learning experience. This thesis applied these criteria as a checklist to

evaluate the mediatory potential of learning analytics tools and technologies. Section

4.3 explored the unique landscape of Technology Mediated Learning. It discussed how

various technology acceptance models attempt to identify what really drives behaviour,

discovering that social influence is very significant to this process. Finally, section 4.4.1

focused the theory onto learning analytics as mediatory agents. The first subsection de-

scribed how learning analytics fits into the concept of psychological tools and mediation

more generally. Subsection 4.4.2 addressed difficulties in capturing awareness and inten-

tion. It proposed identifying metacognitive activity as a way of demonstrating learning

and action potential. Section 4.4.3 described how learning analytics as mediatory agents

should be evaluated, and how the different viewpoints presented in the chapter should

be regarded in the analysis.

The subject of Mediated Learning will be revisited in the discussion chapter, following

the findings presented in chapters 7, 8 and 9. The next chapter describes the approach

that was determined to be most appropriate for addressing the questions evoked by the

research literature presented in chapter 2.
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Research Approach

The scope of this research is to examine in more detail the different perspectives of

educators and learners toward learning analytics and to understand more about how they

would or do actually use learning analytics to support everyday aspects of their practice.

As the study concerns itself with individual perspectives and everyday experiences, a

qualitative investigation [122] [123] is an appropriate choice of research design. This

chapter describes the theoretical assumptions involved in that choice in more detail.

5.1 Research Question and Objectives

This research was originally motivated by a rather simple, but timely, question that

was evident in the research literature: What impact is learning analytics having

on practice and how can it be improved? [4][89][96]. However, as has been dis-

cussed previously in this thesis, impact is a complex measurement with many moving

parts within the dynamic context of learning and teaching. Important gaps in our under-

standing of the individuals involved in education and their metacognitive processes limit

what we can know about their decisions around teaching or learning [96]. Therefore,

the question was further refined to reflect this gap:

What impact is learning analytics having on practice and

how can it be improved for educators and learners?

Chapter 2 described how impact is currently understood and measured within learning

analytics research. It presented the challenges associated with recognising and evaluating

impact, as well as issues of data overload and interpretation. Chapter 3 explored this

48
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more deeply in terms of what is missing in learning analytics research and how that

compares with expectations. The purpose of this study is to uncover and investigate

ways of enhancing and increasing positive impacts. The following sections of this chapter

describe how the research questions should be answered and the different considerations

that were involved.

5.2 Epistemological and Ontological Considerations

The qualitative research paradigm, as described by Flick, makes explicit its epistemo-

logical and ontological assumptions:

“...qualitative research uses text as empirical material (instead of numbers),

starts from the notion of the social construction of realities under study,

is interested in the perspectives of participants, in everyday practices and

everyday knowledge referring to the issue under study.” [124]

The following sections describe how those assumptions fit with the context of the study

presented in this thesis. More specifically, they illustrate how the literature on learning

analytics circumscribes a gap in understanding around what educators and learners are

trying to achieve. This chapter lays the foundation for later methodological choices

presented in the following chapter.

5.2.1 Learning Analytics as a Subject for Qualitative Research

Though often grounded in constructivist educational philosophy, learning analytics re-

search still applies many methodologies that are positivist or behaviourist in nature.

This has led to some epistemological and ontological tension in the field [125].

As was discussed in earlier chapters of this work, the insecurity around proof of impact on

practice can be traced back to a surfeit of conceptual rather than empirical studies [89],

as well as a lack of available contexts in which to evaluate learning analytics approaches

in an authentic environment [9]. MacFadyen and Dawson have cautioned that

“Interpretation and meaning-making, however, are contingent upon a sound

understanding of the specific institutional context. As the field of learning

analytics continues to evolve we must be cognizant of the necessity for en-

suring that any data analysis is overlaid with informed and contextualized

interpretations.” [24].
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To move forward, researchers acknowledge that educator and learner perspectives have

been neglected or underutilised, and are important to help define, frame and test our

assumptions about learning and learning analytics [96].

In addition, learning analytics are often coupled with a specific tool, making it difficult to

separate the tool itself from the kind of information it is able to provide when evaluating

impact on decision making [9]. If the educator cannot connect with the tool itself or

the design decisions involved in creating it, for example, it is difficult to know whether

the information the tool provided was unimportant or irrelevant, or if it was just the

technology to deliver that information that was insufficient [9][92].

Finally, the lack of evidence of impact has meant that learning analytics have not yet

been able to inform institutional planning meaningfully [24]. Researchers have begun

to collect evidence of impact from disparate studies around the globe [96][65]. However,

institutional planning is not only about evidence of impact. It is also about people and

culture, and attitudes toward learning analytics remain mixed [126] [127].

5.2.2 Justifications for Qualitative Work

The conditions above appeal to a qualitative approach. First, qualitative research is

exploratory and interpretative, and intended to help generate new theory rather than

test it or generalise [128] [129] [130]. Flick described qualitative research as stemming

from the “pluralization of life worlds,” a disintegration of current categories into a “new

diversity” [123]. When the existing categories stop explaining reality, Flick described

that a “disenchantment with objectivity” [123] arises, carving a path for qualitative

research. The failure to inform institutional planning, the established need to discover

new patterns and relationships, and the difficulty in proving impact are all evidence of

a “disenchantment with objectivity” in learning analytics research, which appeal to a

need for qualitative investigation.

Second, qualitative researchers are “naturalists” [128]. They do not conduct controlled

lab experiments. Rather, they attempt to study phenomena in the environments in which

they occur [129]. This allows a qualitative researcher to register emotional, behavioural

and cognitive responses around the real phenomenon. Within the context of the research

question relevant to this thesis, the phenomenon is essentially the lack of knowledge

about educator and learner perspectives on learning analytics in their own practice.

To explore this, a qualitative researcher must investigate learning analytics in the real

context of educators’ and learners’ everyday practice. This means that the research

design must allow for a close examination of the challenges educators and
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learners face, and an analysis of the ways in which they currently deal with

those real challenges.

It is important to note that qualitative research is not intended to prove valid or invalid

the assumptions of learning analytics research. Rather, it creates an ”interpretative

portrayal” of practitioner perspectives on learning analytics [131] meant to expand our

assumptions and test some of their boundaries. In terms of understanding mediatory

effects of learning analytics, qualitative evidence can be used to inform future investi-

gations [128] that operationalise, for example, some of Feuerstein’s more elusive criteria

of mediated learning experiences, such as mediation of intentionality and reciprocity,

mediation of transcendence and mediation of meaning [16]. This is discussed further in

chapter 10.

5.3 Qualitative Research Design

Within the qualitative research paradigm1 research designs have subtle differences that

are meant to harmonise with the type of knowledge or evidence the researcher is looking

to collect. Creswell et al [122] provide a rather simple reference for each of the five most

commonly applied designs: Narrative approaches, for example, are applied typically for

questions about life experience or chronology of events. Phenomenology addresses ques-

tions of essence and the nature of human experiences. Participatory Action Research

is typically applied to community-based questions to drive future action. Grounded

Theory, the design that was chosen to investigate the research questions presented in

this thesis, is a systematic procedure for analysing textual data using an inductive logic.

In Grounded Theory, data is collected and analysed simultaneously following two pro-

cedures called “coding” and “constant comparison” (described further in chapter 6),

whereby new conceptual categories that appear to be relevant for the research partic-

ipants can emerge [130]. Finally, Case-Study allows for a deep-dive into a given issue

through the lens of different perspectives on the same phenomenon [132].

This section explains in more detail why Grounded Theory has been chosen as the best

way to explore educator and learner perspectives on learning analytics, and how Case

Study was applied to provide an organisational, contextual investigation of learning

analytics use and acceptance.

1It should be noted that the research designs presented in this chapter are not exclusively qualitative.
For example, Grounded Theory and Case Study are general methods.
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5.3.1 Grounded Theory and Learning Analytics

Suthers et al described learning analytics as occupying a “middle space” between learn-

ing and computer science. They argued that learning analytics needed “boundary ob-

jects”, flexible yet meaningful concepts that can be interoperable between different dis-

ciplines and communities [133]. The “middle space” describes the socio-technological

aspects of the research context, which includes multiple individuals with agency, as well

as ontological and epistemological tensions within learning analytics research. At the

time of writing, no theories of perception with regard to learning analytics were avail-

able to explain how these tensions within research might be felt within practice as well.

Grounded Theory has the flexibility to co-occupy that “middle space” by not impos-

ing predefined categories on the data. Rather, the researcher documents what emerges

and identifies places of agreement and disagreement among the participants and their

statements through constant comparison of the data and analyses [131]. What sepa-

rates Grounded Theory from other types of content analysis is that Grounded Theory

recognises human agency as an important aspect of knowledge production. Its purpose

is to develop substantive, multidimensional, conceptual theory about the data rather

than categorise it [134].

In Grounded Theory, the researcher must make some epistemological decisions about

the data. What does knowledge look like? How does it evolve? When Grounded Theory

was first developed by Glaser and Strauss, they intended it to “bridge the gap between

the theoretically ‘uninformed’ empirical research and empirically ‘uninformed’ theory”

[135]. The tendency toward both theoretically uninformed empiricism and empirically

uninformed theory in learning analytics research was presented in chapter 2. Gašević et

al reminded the learning analytics research community that “the computational aspects

of learning analytics must be well integrated within the existing educational research”

[11].

Glaser and Strauss, however, disagreed on a few key aspects of what it means to do

Grounded Theory. Glaser believed it could actually describe reality through a multidi-

mensional approach. Strauss, on the other hand, viewed reality as extremely contextu-

alised. For Strauss, that context must be a part of any analysis of the data it produces

[136]. Charmaz’s approach to Grounded Theory offers a suitable balance between the

more open-ended approach of Glaser and the more systematic approach of Strauss and

Corbin (who later joined Strauss) [130] [131]. While Glaser was never able to fully

reconcile how the researcher’s preconceived notions impact the evidence, Charmaz felt

that exposing these realities improves rigour and validity. Like Strauss and Corbin, she

asserts that a robust methodology can absorb at least some of the risk of misinterpreta-

tion. However, instead of attempting to erase the researcher from the process, Charmaz
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incorporates them through constant comparison and reflection on the interpretation of

evidence [131].

Charmaz wrote of Grounded Theory “An emergent method begins with the empirical

world and builds an inductive understanding of it as events unfold and knowledge ac-

crues.” [27, pg 155]. Like Strauss and Corbin, Charmaz has a set of rules that should

guide Grounded Theory, but the most important is that the rules should be seen as

flexible, so long as the following conditions of analysis are met: “(1) the systematic, ac-

tive scrutiny of data and (2) the successive development and checking of categories”[27,

pg 161]. This becomes key during the process of Qualitative Analysis described in the

chapter on Methodology.

5.3.2 Case Study as a Structure for Qualitative Evidence

According to Creswell et al, Case Study and Grounded Theory are two of the most popu-

lar qualitative research designs and they are often used in concert [132], perhaps because

they compliment one another in terms of the questions they can help answer. Grounded

Theory examines processes and Case Study provides structure to define the context of

the phenomenon one is examining.The research literature indicates some disagreement

about whether a Case Study is actually a design, a method or a methodology, as it does

not provide a “prescriptive guide for how to proceed with the business of collecting,

analysing and interpreting data” [137, pg 83]. However, in conjunction with Grounded

Theory, it can also be viewed as a strategy for inquiry, a decision on “what is to be

studied” [138]. In the context of this research project, the Case Study is an extension of

the research process in Grounded Theory, to help “explain a phenomenon in a specific

context and suited to its supposed use” [134].

5.4 Affordance Theory

Charmaz asserted that researchers using Grounded Theory should investigate qualitative

data for “action and analytic possibility”, what participants are doing, feeling or thinking

about a given phenomenon [27, pg 163]. The research questions that guided this study

imply that “data collection” consists of gathering “perceptions” from educators and

learners about learning analytics and to identify metacognitive activity around those

perceptions. To understand how this process contributes to answering the research

question, it is important to consider what counts as “perception” and how it will be

recognised within the data. Charmaz would argue that looking for actions provides
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the best evidence for making a meaningful interpretation of the data [130]. Affordance

Theory provides a framework for connecting action with perception.

Affordance Theory has become a popular lens through which to interpret human under-

standing of information systems [139]. Affordances are the “actionable properties” that

an individual perceives of a given object [21]. To provide a simple example, one might

see a handle and, through its properties, perceive that it affords grasping, lifting, pulling,

etc. with limited guidance from anyone else. Affordance Theory has gained considerable

attention in the field of Human-Computer-Interaction (HCI), because it offers a different

perspective on object utility. Affordance Theory uncovers the “actionable properties”

that a potential user can perceive in a given object to perform certain functions [21].

Affordance Theory has several advantages over the usability study approach described

earlier in chapter 2. Instead of analysing the usability of a specific tool for some specific

tasks, this study focuses on analytics as a general object and the affordances that educa-

tors perceive in using analytic data in general to support their practice. At the time of

writing, we were unable to identify any qualitative studies that approach the subject of

learning analytics in this more general sense, unattached to a particular tool or project

that has been developed to perform a certain function or reach specific objectives. Ask-

ing educators to reflect more generally on the properties of analytic data and its uses

allows for them to vocalise their specific or individual interests, rather than prompting

them into an evaluative role.

In addition, asking participants to provide affordances of learning analytics prompts

them to consider what a particular tool, methodology or idea is offering to their existing

strategy, a future strategy, or even an imagined strategy. Metacognitive activity will be

identified within the data as any statement that reflects “cognition about cognition” as

Flavell described [119], which includes cognition about thoughts, feelings, behaviours,

and the context of learning as well [16].

5.5 Chapter Summary

This chapter provided a solid orientation for the methodological and epistemological

choices that were made in the development of the study presented in this thesis. Section

5.1 reviewed the research question that guided the present study and the motivation to

improve or enhance the impact of learning analytics on practice. Section 5.2 described

the qualitative research paradigm and the reasons why this approach was chosen as the

most appropriate for the type of research question presented in this thesis. Section 5.2.1

presented an argument for why qualitative research is particularly necessary at this point
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in the development of learning analytics as a research field, to understand the culture,

attitudes and barriers to learning analytics acceptance. It also presented Grounded

Theory as the underlying research framework that influenced methodological choices

presented in the next chapter. Finally, section 5.4 connected the process of qualitative

research with the decision to use Affordance Theory, to understand what educators and

learners can actually perceive and how this might drive their decision making. In the

following chapter, the research approach is translated into the concrete methodology

used to gather, analyse and validate evidence.



Chapter 6

Methodology

In conducting a study based on Grounded Theory, the methodology is structured such

that data collection and analysis are concurrent [131].

Grounded theorists explore theoretical categories in the data and look for relationships

between them. The categories and processes are then refined during iterative cycles of

analysis and further data collection [131]. Because of the impact on interpretation, this

process needs to be made transparent so that it can be coherently followed. Grounded

Theory includes intermediary reflections on the data and the process of analysis to serve

this purpose [27] [131].

However, in order to improve readability and to structure this section, the methods for

data collection are presented first, followed by the methods for analysis.

6.1 Qualitative Interviews

To gather information on educator and learner perceptions of learning analytics, inten-

sive interviewing was chosen as the primary method of data collection. Intensive inter-

viewing is a common method that grounded theorists rely upon. An in-depth, discursive

interview is a rich source of qualitative data [27][131]. To assist with the interviewing

process, an interview guide with a set of open-ended, intermediate and closing questions,

was developed before the interviews took place [131].

56
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6.1.1 Sampling

A convenience sampling strategy was used at the beginning stages of this research to

gain access to educators and learners from various types of institutions (formal and non-

formal), who have different roles within the institution (staff tutors, associate lecturers,

facilitators, module chairs, tutors, etc.). A convenience sample is simply those research

participants to whom one has the best access [140]. As mentioned previously, the term

“educator” is defined broadly as any individual involved directly in the process of work-

ing with learners or developing their curriculum. “Learner”, refers to anyone currently

enrolled at a learning institution. This wide sampling strategy made it possible to avoid

determinations about categories of interest before the data was collected [131]. This

strategy was narrowed and focused toward purposive sampling, as theoretical categories

emerged and the study progressed. A purposive sample involves finding research par-

ticipants that represent potential perspectives that should be drawn into the research,

based on what is emerging in the data [131][141]. As “constant comparison” (see 6.3.1)

among the transcripts and the emergent theoretical categories no longer produces new

insights, saturation is determined to have been achieved [130].

6.1.2 Procedure

Before each interview, participants signed a consent form stating clearly that the inter-

view would be recorded, transcribed and used for research purposes. Participants were

also made aware of data protection measures. Interviews were conducted both by Skype,

Web-Ex and face-to-face at the convenience of the participant. Though scheduling online

interviews can result in absenteeism and a loss of rapport, it is a useful tool when face-

to-face interviewing is otherwise impossible [142]. An informal, conversational interview

style was adopted to collect rich data while allowing the participant to enter and exit

the interview easily [131] [140]. Each interview was expected to take approximately 60

minutes with educators and 15-25 minutes with students (due to the fact that learners

do not tend to have much exposure to learning analytics [89]). Extensive field notes

were taken both during and after the interview.

6.2 Focus Groups

Focus Groups were chosen as a method to collect social information on learning ana-

lytics by studying verbal and non-verbal interactions among participants with different

backgrounds. Focus Groups provide insight that cannot be gathered through a survey

or even an in-depth interview [143]. According to Charmaz, conducting Focus Groups
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is also an understandable choice when “researchers face limited resources for qualitative

work” [140, pg 354]. As a PhD student, with limited time and resources, Focus Groups

were both an effective and efficient methodological choice.

Charmaz recommends that researchers should still follow an inductive, iterative, com-

parative and interactive data collection, as well as analysis. Researchers should expose

and analyse how their questioning changes across focus groups and what impacts their

choices have on subsequent decision-making in research [140]. This information is pro-

vided through the thesis in the reflections sections that accompany each findings chapter.

6.2.1 Sampling

Designing the Focus Groups also involved a multi-stage, convenience sampling strategy

followed by purposive sampling across subsequent Focus Groups [140] [141]. Participants

were either emailed about participating in the study, or they were informed through

other means, for example, another key participant. To strengthen the analysis through

comparison, learners who were active in the same modules/courses as the educators

who had taken part were particularly a focus of recruitment. Educators were asked to

voluntarily share the details of the project with their students.

While the profile of participants remained mostly the same as with the qualitative inter-

views, the Focus Groups were intended to concentrate on the Case Study of the Open

University UK. Therefore, recruitment for the Focus Groups was limited to educators

at the OU UK and learners currently enrolled in a module at the OU UK. The target

was to recruit the recommended 6-10 individuals for each Focus Group [143].

Focus groups were not designed to mix educators and learners. This decision was made

because it was an important aspect of the research question to see how these two differ-

ent groups approach the topic of learning analytics without interference from the other.

However, within focus groups of educators or learners, the study aimed to host both

homogenous and heterogenous groups in terms of domain, background and level of ex-

perience, to test the strength of emerging categories [140]. This is intended to highlight

the most salient and thought-provoking issues [143].

Saturation was achieved through constant comparison among the transcripts and the

emergent theoretical categories [130].
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6.2.2 Procedure

Focus groups were scheduled for both face-to-face and online, according to participant

convenience. Online Focus Groups are subject to the same considerations as online

interviews concerning potential loss of rapport and the risk that technology alienates the

participants [144]. Still, suitable alternatives to a Focus Group could not be identified

at the time of writing, which would provide data rich enough for a grounded analysis.

The same interview guide used in the interviews was re-purposed for the first part of the

Focus Group, the assumptions and theoretical categories from previous interviews and

focus groups could be tested. In the second part of the Focus Group, participants were

given a basic description of some of the more common types of information collected in

learning analytics research. The affordances they perceived in using that information

were documented.

Focus Groups were planned for 1.5-2 hours, to ensure enough time to get through both

parts of the Focus Group procedure. Extensive field notes were taken before, during and

after the Focus Group.

6.3 Qualitative Analysis

In qualitative analysis “evaluative criteria...should be commensurable with the aims, ob-

jectives, and epistemological assumptions of the research project” [145]. The paragraphs

below describe methods of qualitative analysis that are used in research conducted using

Grounded Theory.

6.3.1 Coding and Constant Comparison

Charmaz described initial coding as “attaching labels to segments of data that depict

what each segment is about” [131, pg 4]. In Grounded Theory, the unit of analysis is

initially as granular as partial sentences or utterances, as one reviews the transcript.

This becomes more organised as the research progresses and segments are more broadly

delineated, to include the theoretical categories that the initial codes might represent

[27]. As the categories emerge, the transcripts are continuously examined using con-

stant comparison. This may include comparisons within a single transcript or across

transcripts, to look for signs of coherence in the theoretical categories. A lack of co-

herence indicates a need for additional sampling and data collection, or a revision of

the theoretical codes [27]. Coherence between evidence, analysis and collection is the
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hallmark of validity in Grounded Theory to which Charmaz subscribes [27][130] and

which is discussed in more detail below.

6.4 Validity

The concept of validity in qualitative research, and especially in Grounded Theory,

is a point of contention within the discipline [27][146]. Barbour has cautioned that

mixing concepts of validity from qualitative and quantitative research threatens validity

and attempts to remove the subjectivity from critical review [146]. However, there are

guidelines that researchers can establish to help lend weight to their interpretations of

the evidence they collect. The following sections discuss the ways in which validity is

addressed this study based on Grounded Theory.

6.4.1 Triangulation

Denzin originally proposed triangulation as a way to establish validity, where triangu-

lation referred to gathering data from multiple sources, at different times and places,

from the perspective of more than one individual, and through the lens of multiple

theories and hypotheses [147]. However, responding to criticisms that this approach

would lead more to “extreme eclecticism” [148] and less toward validity, Denzin refined

his approach toward triangulation. As a tool for analysis, triangulation in the means

previously described does more to establish the deeper context of the issue, rather than

affirm hypotheses along the way [147]. Still, there are valid arguments for asserting

that cohesion within that deeper context and with the interpretation of the evidence,

is a kind of internal validity in itself. Triangulation is incorporated into the research

presented in this thesis as a way of checking the boundaries of emerging arguments and

refining arguments, rather than black and white “confirmation or refutation of internal

validity [146].

6.4.2 Constant Comparison

The concept of constant comparison, proposed by Charmaz [130], contributes to estab-

lishing validity by seeing patterns within the evidence that fit together with what has

already been observed and recorded, and with the body of evidence and the wider con-

text itself. Constant comparison is incorporated in the analysis presented in this thesis

as contributing to validity by comparing the evidence with itself, with previous evidence

and with expectations of the evidence. Barbour suggested that constant comparison is
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only useful with a closer examination of how the themes were established and built up

over the course of the analysis [146]. These comparisons are reflected, for example, in

the frequency distributions presented in chapter 7 and the reflections presented at the

end of each of the findings chapters.

6.4.3 Participant Checking

Participant checking is another feature of Grounded Theory that is relevant for rigour

and validity. An initial analysis was returned to the participants for their comments

and additions, a important aspect of data collection in Grounded Theory, as well as

analysis and validity [27]. Participant checking is referred to at two stages in the study

presented in this thesis: after the exploratory interviews and after the focus groups. A

random selection of participants received a short summary of insights and were asked

to further elaborate or correct any assumptions. Rather than take these corrections

“at face value”, as Barbour cautioned [146], they were used to help refine the different

themes that emerged within the findings.

6.4.4 Inter-rater agreement

Initially, the research design included multiple coding to establish inter-rater reliabil-

ity. Inter-rater reliability is the level of agreement that can be achieved among multiple

coders working with the same data using kappa statistics [146]. However, it is uncer-

tain what this process contributes to improving the quality and validity of qualitative

research. Inter-rater agreement is most useful when the “rates of misclassification” in-

forming kappa values are already established in the literature [149]. This presented a

problem, as the level of kappa appropriate for qualitative educational research was diffi-

cult to define. Additionally, Barbour has proposed that inter-rater reliability may be an

inefficient and ineffective way of establishing validity in certain contexts, as it is not the

agreement that is important, but the discussions that emerge from the disagreement,

which are relevant for establishing validity [146]. For this reason, rather than employing

a strategy of multiple coding, the findings presented in this thesis were discussed with

different experts in the field of learning analytics and learning theory. Those discussions

are presented in the final reflection section of each findings chapter, and once again in

the discussion.
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6.5 Chapter Summary

This chapter described the methodological choices that were made in the preparation of

this study. It introduced the sampling procedures for both interviews and focus groups

and provided a basic description of the procedures, which will be discussed in more

detail in the findings chapters. In addition, the chapter presented choices made with

regard to the analysis of data and validation of findings. In particular, the chapter

promoted constant comparison among the different transcripts, triangulation with other

data collected in the course of the study and participant checking as contributing to the

“comprehensiveness” of the study, which Barbour believed to be a more “realistic goal

for qualitative research” [146].



Chapter 7

Findings: Exploratory Interviews

I don’t know anybody who said, ’I love that teacher, he or she gave a really

good homework set,’ or ’Boy, that was the best class I ever took because those

exams were awesome.’ That’s not what people want to talk about. It’s not

what influences people in one profession or another. - Neil de Grasse Tyson

As the previous chapters have outlined, the aim of the study presented in this thesis

was to understand how the positive impacts of learning analytics may be understood

and amplified in higher education. As a new technology that is touching upon many

ideological and practical assumptions, learning analytics is a socio-technological field of

study, with the potential to impact the psychological, social and educational lives of

learners. Due to the complexity of the topic of education in general, and the dynamic

development of learning analytics tools and technologies, it was necessary to identify the

most salient issues that may impact how learning analytics are perceived and utilised.

The exploratory interviews conducted early on in the study were intended to guide the

research toward areas of focus that are relevant to educators and learners. During in-

depth, semi-structured interviews, participants with different roles and from different

institutions discussed the particular challenges of delivering online education. They de-

scribed their perceptions of learning analytics and their experiences of using any learning

analytics tools and technologies in their practice.

The research findings that are presented in this chapter are based on the analysis of those

interviews, as well as publicly available documents about the participants’ universities

or educational institutions, as well as the modules with which they were involved. The

chapter includes a background section, describing the context of the interviews, the

actual participants and the procedure as it was finally implemented. The following

section discusses the context of the participants, their various goals and intentions. The

63
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remaining sections address specific affordances that participants mentioned during the

interviews. The chapter concludes with observations made during the data collection

process, which provide a context for the focus groups discussed in chapters 8 and 9. It

should be noted that some of the work presented in this chapter was published in [150]

as part of a conference paper for the European Conference on Technology Enhanced

Learning (ECTEL).

7.1 Background

7.1.1 Participants

The initial interviews attracted participants from fully online and blended-learning pro-

grams in Germany, the Netherlands and the UK. Email correspondence and telephone

calls to potential research participants were successful in recruiting enough candidates

for the exploratory interviews. 10 research participants were recruited from 3 European

universities that are involved in online education, either fully online (n=7) or as part

of blended learning programs (n=3). The class sizes of the entire group of participants

ranged from 15 to 2000+ students. 2 of the participants were female and 8 of the par-

ticipants were male. 1 of the female participants was a chair of her department as well

as an instructor and 3 of the male participants were either module chairs or senior aca-

demics. The rest of the participants were associate lecturers and tutors, or facilitators

in non-degree awarding institutions. All of the participants who were senior members

of staff had more than 5 years of experience. Tutors and Associate Lecturers generally

had less than 3 years of experience in teaching, with the exception of one participant

who had been a teacher, before retraining in a different field.

The participants were all interested in learning analytics, as such, though with various

degrees of interests and motivations.

7.1.2 The Procedure

To prompt educators in articulating affordances, interviews required them to reflect on

their current experience and efforts in the online or blended classroom. Educators were

asked to express their perceptions of challenges they believed were unique or particular

to their practice, their ideas of a successful learning experience and the steps they take to

achieve that. In describing this process, learning analytics could be directly referenced

by participants, in terms of affordances, as a resource for understanding or improving
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specific aspects of their teaching practice, as well as student learning. The questions

guiding this portion of the investigation were as follows:

1. To which extent are educators able to perceive specific affordances of learning an-

alytics without prompting?

2. Will affordances be uniform across participants?

5 of the interviews took place in a face-to-face setting and 5 interviews took place over

Skype.

7.2 The Participants’ Contexts

In the first part of the interviews, all participants made explicit reference, unprompted,

to the goal of education as they perceived it. Though participants expressed many goals,

there were some to which they returned again and again, to underline the importance

of calibrating practice toward that goal. These discussions help to frame the context in

which the different participants are working and reflecting on learning analytics. This

section outlines that context, to which the following sections refer in reporting on the

affordances that participants could perceive in using learning analytics for their practice.

In the contextual analysis, these goals were classified as having 1 of 3 main priorities:

Learner Satisfaction, Developing Strong Minds, or Preparing Learners for Practice. A

goal statement was coded as “Developing Strong Minds” when the educator focused on

the general skills in thinking and productivity that education should provide. Consider

the quotes below from Andreas1 and Ingrid:

“The whole point of education is to make you a self-reflecting person.” -

Andreas

“They should be able to think critically, speak intelligently and according to

scientific principles, contribute to the discourse.” - Ingrid

These statements can be contrasted with those that were coded as “Preparing Learners

for Practice” in which the end-goal of future work was explicitly mentioned.

“They’ve got to make it work. Ultimately, that’s what we’re trying to do,

prepare them for working.” - Gary

1All participants’ names have been changed to protect their anonymity
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Goals of “Preparing Learners for Practice” were more often closely associated with

the statements about students as independent agent, who “choose to absorb” (Gary,

Preparing for Practice). Educators typically viewed themselves as a resource that a

learner is responsible for exploiting.

“I have a certain expertise. I am here to offer that to the students and they

have the responsibility to learn how to talk about it, how to contribute, how

to find meaning inside of it. That is education.” - Harry

Not surprisingly, a goal statement was coded as “Learner Satisfaction” when the primary

focus was on whether or not students would appreciate the educational experience.

In both cases that were noted in the evidence, the participant is able to differentiate

stakeholder perspectives.

“It depends on which side of this you’re on. I mean, if I am the University,

I am thinking ’I want the students to stay, I want them to give us their

money.’ If I am a lecturer, I am thinking, ’I want the students to learn and

have fun.” - Richard

7.2.1 Connections Between Goals and Disciplines

In the analysis of the transcripts and the background of each educator, perceptions of

the goal of education appear to be related to the type of course or module

with which an educator is involved. Figure 7.1 shows the percentage of participants’

statements, from each major faculty group, expressing sentiments that were coded as one

of three main goals identified through in the transcript. Domain differences were partic-

ularly noted for goals associated with developing strong minds and preparing learners

for practice. One can see from the bar chart that preparing learners for practice

was a common goal of educators in the STEM faculty. The goal of developing

strong minds was more likely to be expressed by educators in the Arts and

Humanities or Social Sciences.

For the code “Learner Satisfaction”, it is worthwhile to note that all educa-

tors with this goal had class sizes of 1000+ students. The analysis of the type

of platform of delivery 2 and educational goal did not yield any specific insights, nor did

the domain of instruction.

2such as futurelearn.com, coursera.com, or udemy.com
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Figure 7.1: Goal of Education by Professional Domain

7.2.2 Consistency in Goals and Learning Designs

From an analysis of the participants’ course and module designs, teaching goals appeared

to be consistent with the type of classroom orchestration and learning design activities

chosen by the educator. Orchestration describes an educator’s awareness, forethought,

planning and regulation of the classroom experience for learners, including the educa-

tor’s perception of their own role and the structure of learning [63]. Learning design

is the pedagogical companion to orchestration and expresses an educator’s intentions

for learner success [70]. Information on module designs and orchestration was drawn

from how educators described the classroom experience in the interview evidence, as

well as available institutional data, (including activity reports for VLE data, as well as

assessment and learner performance data). Each module was manually assessed accord-

ing to the learning design taxonomy provided by the Open University Learning Design

Initiative [70]. This taxonomy describes assimilative activities, information handling,

communication, production, experience, interaction, and assessment. Goals to develop

strong minds generally accompanied more assimilative, communication and productive

activities, with opportunities for learners to work alone and with others to engage in

sense-making.

Figure 7.2 illustrates that having a goal of Learner Satisfaction was connected most often

to assimilative activities, which supports recent research that identified the same positive

correlation that learners appear to appreciate assimilative activities in the classroom

[70]. Developing strong minds was a goal heavily associated with communication and
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Figure 7.2: Learning Design by Goal

interaction activities, with much fewer assessment activities in comparison to learning

designs aiming at other goals.

7.2.3 Current Challenges

A first pass of the transcripts using open coding [130] resulted in the emergence of 26

distinct types of challenges, which could be classified into 9 larger themes. The table in

appendix A shows the thematic categories and some examples of subcategories related

to the question of challenges in online teaching.

The 3 main educational goals in the data (see Figure 7.1) provided a lens through

which to interpret the evidence referenced in Appendix C. Interview data suggested

that educators with different goals had significantly different priorities and viewpoints

on challenges.

For example, educators who were coded as developing strong minds tended to focus on

challenges related to the lack of visual referencing, decentralised discussion, and difficulty

creating a sense of community among participants, more than other instructors.

“In a real classroom, you would see people looking at you or even raising

their hands, but in the virtual classroom, there is this awkward silence all

the time. Even thought you have the option of raising your hand in [name

of software], nobody ever does that” - Uwe, Developing Strong Minds
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Educators coded as “Preparing for Practice” tended to focus on the importance of

understanding learner prior knowledge and educational background, as well as how to

encourage self-direction and self-regulation among students.

“You just don’t know anything about them and it’s very frustrating. I sup-

pose you have to hope that they’ve managed to gain some ability to manage

their own learning.” - Harry, Preparing for Practice

To triangulate these findings, a frequency analysis of the open codes related to challenges

from each transcript was conducted and and is presented as a radar graph in Figure 7.3.

Instances in which the educator initiated the discussion about the challenge or referred

to it after the conversation had moved on were included in the frequency analysis. The

purpose of this is to better illustrate what was important to the educator, rather than

the researcher. The frequency analysis supports and expands the interpretation of the

data.
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Figure 7.3: Perceived Challenges by Educational Goal

From the graph, challenges related to the code of “Developing Strong Minds” were most

closely associated with problems in communication and interaction, which is consistent

with that goal and its accompanying tendencies in learning design. Likewise, chal-

lenges associated with “Preparing Learners for Practice” had to do with understanding

more about how to gain more information on learner background and how to accu-

rately measure progress toward real goals. “Learner Satisfaction”, as an educational

goal, shares some of the same challenges as educators with both types of other goals.

More specifically, in matters of the dynamic agency of learners and in understanding
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learner background, educators with this goal share some of the same challenges with

educators “Preparing Learners for Practice. With regard to creating community and

student support networks, they share a common perspective with educators developing

strong minds.

7.2.4 Desired States and Indicators

After being asked to describe the challenges they experienced as online educators, the

participants were asked what they hope to achieve in their classrooms and how they

determine whether or not they are “doing a good job”. To assist with comparison

to participants’ stated challenges, desired states were first organised under the same

thematic categories as challenges (see 7.4).

Figure 7.4: Codes for Desired States

With regard to what educators hoped to achieve, or the “desired state” of the classroom,

analysis indicated that educators who are coded as “Preparing for Practice” focus sig-

nificantly more on the notion of progress than other educators. They tended to connect

performance with having a strong motivation for learning and identification with the

future career objective.
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“You see their assignments being handed in, you can see good work. You

can see progress. You can see, even if somebody started at 90% and slowly

squeaked up to 94%. That’s doing really well. You see the person who

started off at 40 and managed to make it to 60...and it’s just relative to

them, you spot that.” - Gary, Preparing for Practice

Educators who felt they were responsible for developing strong minds tended to deter-

mine their success through energy and euphoria, particularly in the presence of lively,

rich discussion.

“I can sense the energy. Someone will write something and I will think,

’Whoa, that’s going to get some commentary’ and the next thing, 10 students

have responded within an hour. They’re writing these little mini-essays to

one another about it, arguing back and forth. That’s how it should look.

That speed. That exchange. I can see it anyway, but if you could measure

that, it would be helpful” - Richard, Developing Strong Minds

“When they ask follow-up questions, when they show that they understand

how a technique works and then ask when it wouldn’t work, or what the

alternatives are or why it works in a particular way...for me, that’s an indi-

cation that they know at least roughly how it works” - Ingrid, Developing

Strong Minds

These two quotes illustrate how educators with this goal operationalise complex con-

cepts like “energy” and self-regulation. Richard describes energy in terms of the speed of

response, and the length and quality of those contributions, as arguments and counter

arguments. Ingrid mentions inquiry as a sign of learning, including help-seeking be-

haviour, and a demonstration of wider transfer of the concept. “Learner Satisfaction”

as both a primary goal and an explicit secondary goal of 8 of the 10 participants was

verified through self-report from learners, the educator’s own emotional responses and

learner interaction.

“Of course you get to see what they’ve written on their evaluations. However,

it rarely comes as a surprise. I find I like the students who like me and

it’s a sign of a reciprocal relationship that’s working.” - Michael, Learner

Satisfaction

Educators focused on learner satisfaction, as mentioned previously, tended to have 1000+

students, regardless of whether or not this was a University or continuing education
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platform. They often expressed doubts or worries about creating coursework that would

appeal to the greatest number of students.
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Figure 7.5: Desired States by Educational Goal

Figure 7.5 illustrates the frequency distribution of how and how much participants spoke

about their desired state. From the graph, the connection between the concept of

“Progress” and “Preparing for Practice” is apparent. The code “Developing Strong

Minds” is most often connected with the desired state of euphoria and interaction.

“Learner Satisfaction”, once again, shares characteristics with both other code groups.

When asked to further operationalise some of their success markers, participants pro-

vided 22 unique indicators for how they know they are doing a good job, which were

organised under the thematic categories of learner willingness, retention, cohesion of

learner work, social presence, demonstration of skill, positive learner feedback, positive

institutional environment, positive personal emotional response, excitement or energy

in the group, and emergence of discourse. Figure 7.6 illustrates this operationalisation

process.

One can see from Figure 7.6 that educators can have some clear and precise ways of

operationalising complex concepts, such as euphoria or emerging discourse in the class-

room. Interaction appears to be measured by educators in terms of the regularity,

intensity and longevity of contact, as well as reciprocity in the classroom (in terms of

providing additional resources or asking questions). This is contrasted with the code for

“Demonstration of Skill” in which assessment over time provides a more concrete metric

of learning.

“Communication,” as a code, was distinguished from interaction codes in the presence of

a concrete message that is intended to be delivered. For example, in delivering feedback
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Figure 7.6: Indicators for Recognising the Desired State

or asking concrete questions and help-seeking. Educators that participated in the study

universally had confidence in their own emotions and intuitions as a measurement of

the “desired state”. Reflecting on their own thoughts and feelings about their students

helped to confirm and adjust their strategies.

While many participants mentioned elements from each category, the frequency analysis

of participants’ statements allowed for a more detailed examination of which measure-

ments might be more or less important to educators with shared educational goals.

Figure 7.7: Indicators of Learning by Educational Goal

Figure 7.7 illustrates the percentage of each group’s statements, which corresponded to

each indicator. The graph shows that each goal has one overarching indicator of success
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that differentiates itself from the other in terms of priorities. Educators “Preparing

for Practice” measure their success predominantly in terms of demonstrated learner

progress, typically in the form of performance in class and learner marks. This is identical

to the desired state that educators with this goal described and therefore, is not a proxy.

Educators “Preparing for Practice” had more concrete ideas about successful learning

and more pragmatic ways of determining success.

Learner Satisfaction was unsurprisingly strongly linked to communicated statements of

learners about their level of satisfaction, but also in terms of the level of interaction

that the educator could perceive in the classroom among learners. In fact, interaction

appears to be even stronger as an indicator of learner satisfaction for educators than

retention.

”Of course you don’t always hear back from the students and even when

they’re a bit grumpy, sometimes the feeling of satisfaction is more than a

feeling of happiness. It’s a feeling of having purpose or some other broader

idea of fulfilment.” - Michael, Learner Satisfaction

Michael’s statement recognises that learners may not always enjoy what they are doing,

even if they might view it as useful or necessary for their learning. He also recognises

that without an actual feedback from the learner, having a proxy, such as interaction,

may provide a good sense of how the student is feeling about their experience.

The emergence of emotions and intuition as indicators was a surprising finding in the

data. However, given the difficulties in assessment that were voiced by participants with

the goal of “Developing Strong Minds,” it is consistent with a lack of other appropriate

measurements. However, it is also consistent with the goal itself. Educators with this

goal, as mentioned previously, viewed success in the classroom as resulting in a euphoric,

dynamic energy in the classroom, of which the educator is a part. The educator’s

ability to sense this (as a participant in the classroom) is therefore a credible, if only

partial measurement of whether or not learning is taking place. It also makes sense that

challenges associated with isolation from the learner and a lack of visual referencing are

so serious for educators that rely on their “intuitions”. Those intuitions are based on

their participation in the learning experience, alongside learners.

7.2.5 Current Information Needs and Sources

Finally, participants were asked about their information needs and how they gather data

to help them understand if the “desired state” has been achieved. For example, if learner
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interaction was a success factor for a participant, how did they gather information about

interaction and from where? Referring back to the guiding questions mentioned at the

beginning of this chapter, the study intended to capture specific affordances of learning

analytics as a tool for understanding or improving practice. If learning analytics were a

source of information for participants, this was noted during this portion of the interview.
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Figure 7.8: Sources of Information by Educational Goal

Figure 7.8 shows how educators’ data needs map to their perceived goals of education.

“Preparing for Practice” involved focusing more on hard evidence that the educator can

see, e.g. if the learner is able to demonstrate skill, or if the learner is active in the VLE

and looking at the appropriate resources. While they showed interest in the personal

lives of their learners, it was typically to the extent that it could impact stress and time

management. They did not see many opportunities for gathering data about learner

emotions, unless the learner provided it directly through self-report. However, support-

ing learners through the course or module, so that they can progress toward their future

employment, was a part of their responsibility as educators. Thus, educators coded as

“Preparing for Practice” more often relied on institutionally provided descriptive and

predictive analytics, for example, those that inform them of learners who might be at

risk. Educators that expressed the goal “Developing Strong Minds” focused much more

on their intuitions about learners, what the learner has communicated to them and

what they can observe in the class (referred to as “Qualitative Data” in the coding).

Educators in this goal category tended to have more sincere reservations about how

their learners are assessed and whether or not it is a meaningful measure of what they

have learned. Educators reported that as class sizes have grown, their concerns about

appropriate assessment have been amplified.

“I have relied so unconsciously on my own judgement, which I only realised

once I was working with hundreds of students at once. I used to have a
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sense of all of my students and now I find that more difficult. How are you

supposed to teach hundreds of students about how to interact meaningfully

with other human beings on a subject, when the environment is so clearly

not about that.” - Richard, Developing Strong Minds

Educators with the goal to “Develop Strong Minds” tended to express doubts about

whether or not institutional analytics could collect enough relevant data. However, this

was not necessarily an aversion to analytics as such. One educator described how he

keeps his own records, tracking a combination of indicators alongside personal notes.

“I have a list where I have different categories like participation. Logging

into a system and being logged in and watching a movie, just being logged

in to me is no sign of active participation. Active participation is if you

ask questions, if you propose answers to some questions, if you engage with

other students. I take that down. I can tell at some point if people are on

a constant level of participation or are getting more or less active. I try to

track that. I don’t use some kind of sophisticated tracking machine. I just

make my notes in a simple spreadsheet and that’s it.” - Andreas, Developing

Strong Minds

This statement represents an important reminder that the idea of tracking and analysing

behaviour and the actual tools that are used to accomplish this are two different aspects

of learning analytics that need to be explored. Andreas has clear metrics for how he

will observe and recognise participation, most of which could potentially be enhanced

through technology, but he may not have the experience with technology to understand

how it could better support his existing strategies. These kinds of individual method-

ologies were referred to as “Homegrown Analytics” in the coding procedure.

Finally, educators focused on “Learner Satisfaction” shared data needs with both other

groups, relying almost equally on self-report and VLE data.

Learning Analytics appeared as a resource for information seeking and processing in

four of the categories described above, gathering VLE data, utilising analysis from in-

stitutional tools, homegrown analytics and self-report. The following sections relate to

specific statements about learning analytics, in terms of general attitudes, actual use,

intended use and imagined use of learning analytics for understanding and optimising

learning.
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7.3 Attitudes and Experience

The first category in describing participant statements about affordances of learning

analytics relates to triggers and attitudes, those ways in which educators came to be

involved with or interested in learning analytics and how they feel about them. Through

asking the participants about their background and their interest in participating in the

study, it was possible to examine valuable information about motivations to use learning

analytics (or not to use learning analytics). This is an important middle space, in which

attitudes are mediating what educators are doing with analytics, and are also mediated

by interaction with analytics.

This section reports findings from the interviews related to attitudes and triggers around

learning analytics, and the factors that appear to influence acceptance. The section

also addresses some observed connections with the “Context” described in the previous

section.

7.3.1 Computing Experience

For half of the participating educators, their background or interest in computers is

what led them to online teaching and to take part in the study. For those who were

familiar with learning analytics, computing experience was also cited as being

the primary reason for their early adoption of learning analytics as a tool to

help them understand and improve their practice. Of these educators, half are

module chairs or directors of their course of study and learning analytics has become a

part of their job.

Figure 7.9 shows a breakdown of positive and negative statements about learning an-

alytics according to whether or not the participant has experience with computing.

“Experience with Computing” was determined through either an expressed personal in-

terest in computing, a professional title or job description involving computing, or a past

course of study in computing. Regardless of educational goal, experience with

computing seemed to be the single most important determinant of someone’s

interest in learning analytics. One can also perceive the depth of an educator’s argu-

ments in favour of or against learning analytics, by reviewing the diversity and balance

of comments. Educators with little to no experience in computing voiced many more

negative, surface-level opinions of learning analytics than positive sentiments.

Conversely, educators with experience in computing have more nuanced perspectives on

learning analytics. Their sentiments were widely varied in terms of positive and negative

sentiment. They tended to be more concrete as well.
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Figure 7.9: Sentiments Toward Learning Analytics

7.3.2 Fear and Ignorance

For participants with no background in computing whatsoever, learning an-

alytics were often described purely in terms of Big Data and prediction. This

is an indication that the finer points of learning analytics research, and the potential for

other types of output than predictions have not yet trickled down to those who are not

working or interacting in a context of computing. All participants that expressed fear

and ignorance around learning analytics mentioned worries that online education and

analytics are a push in the direction of replacing educators’ work.

“What if lecturers lose their own ability to assess the health of their students?

I mean, who can remember anymore how to, I don’t know, use a map to find

out where they are going? We have always had a difficult relationship with

technology, but we must admit that there is always a loss of skill when we

allow it to take over a job that involved us using our intellect.” - Ingrid,

Developing Strong Minds

Two participants felt that collecting analytic data on the activities of learners was an

ethical concern and worrying in general.

“As a student, I wouldn’t want my instructor to really see all of my per-

formance data, like one of those Champion League football players.” - Uwe,

Developing Strong Minds
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“The very first thing that comes into my mind is the data. This just wouldn’t

be possible in some contexts. The students would protest” - Ingrid, Devel-

oping Strong Minds

The comments above illustrate a general fear among educators of losing agency

and privacy. However, the arguments provided above show that many educators

still do not understand the basic premises of learning analytics enough to

understand what the actual state-of-research shows, in particular about student

reactions to analytics [30], the purpose of predictive analytics [51][42] or what learning

analytics actually aims to achieve in terms of empowering human agents [1].

Ethical concerns are shared by those with experience in computing as well. However,

findings indicate that those with experience in computing are more comfortable

with what they view as a partial solution and one that can be improved upon

and developed in the future.

“[VLE] data is only partially helpful. We can’t quite figure how they re-

spond to the teaching materials from the videos, the TMAs, the occasionally

online activity and forum activity. I haven’t dug into that in a lot of depth,

partly because it has a low-priority because we can’t reconfigure the module.

We haven’t got the resource, basically, to do that. The big VLE stuff is

going to be very important for on-going module design.” - Michael, Learner

Satisfaction

“That’s good information [predictive analytics], but it doesn’t mean that -

let’s say it gives a profile of a weak student. It doesn’t mean they’re going

to be a weak with me, because lucky them, they might have found the right

subject at last.” Gary, Preparing for Practice

Michael’s statement mirrors the pragmatism found in other participant statements about

promising conceptual work and the backlog of efforts that could be made in the future to

implement some of what is already known or predicted to be helpful. Gary’s statement

illustrates that he is aware of what kinds of information are missing from predictive

algorithms, but he is still able to view it as “good information.”

7.4 Actual Use

Half of the participant group had direct experience with applying learning analytics to

understand or optimise learning. Three of the participants were involved at the time



Chapter 7 Findings: Exploratory Interviews 80

of their interview in an institutional pilot for learning analytics that was focused on

predicting at-risk learners. Two additional participants had gained experience in using

analytics data provided through educational platforms like Blackboard3 and Coursera.

Of the five participants who were familiar with using any kind of learning analytics, two

participants taught class sizes of over 1000 students and shared the goal of “Learner

Satisfaction”, two were teaching some kind of a STEM course and one was teaching a

course in Social Science.

Each educator was asked to describe the ways in which they were currently using learning

analytics. As affordances were more personal and unique, a frequency analysis was not

appropriate. The participants’ statements resulted in the development of 11 codes that

organised into 2 major categories, affordances for course creation and development,

and affordances for understanding more about learner context and disposition. This

section describes these two major categories in more detail, describing participants’

contributions not only in terms of the affordance, but its expected impact as well.

7.4.1 Affordances for Course Creation and Development

A significant number of the individual affordances offered by educators were in the

area of course creation and development. Six thematic categories emerged as specific

affordances of learning analytics in this area with two other codes as related concerns

or ongoing debates (“dumbing down” and “cohort influences”).

Figure 7.10: Categories and Subcategories of Affordances for Course Development

Figure 7.10 illustrates these thematic categories and describes the questions that educa-

tors were using learning analytics to answer, relative to each aspect of course develop-

ment. Their experiences showed that learning analytics were helpful in revealing

3Blackboard is an educational technology company that provides many types of institutional solutions
for learning management systems. http://www.blackboard.com
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weaknesses in the educators’ learning designs, identifying problems with scope

and key concepts, understanding which parts of content were most important to under-

stand in order to be successful (coded as “critical path”), interrogating cognitive load

more generally, and investigating successful patterns in learning. Some partici-

pants felt that learning analytics helped them to triangulate data and they combined

analytic data in different ways to look at clusters of skills or behaviours that

influence learning.

Course development affordances were typically perceived by participants who were mod-

ule chairs or high-level academics in their department. All participants described the

context of course creation as one of high pressure – pressure to engage students, to fix

broken modules, to roll out new modules. Learning analytics were described as tools

that help sift through the data and identify the most salient aspects of the very complex

issue of retention.

The impetus for wanting to fix [the module]...the educational premises were

exactly right. It was a really correct and very clear, skills strategy connected

to assessment, with a clearly scaffolded assessment strategy that built up

these abilities gradually. But it was overloaded. For years people tried to

address it. They would play the marginal game. They would make little

tweaks and see if they made a difference. Nothing shifted it.” - Michael,

Learner Satisfaction

Michael describes how learning analytics allowed the department to see when students

were dropping out of the course, and to identify the pinch points in the module where

students are struggling. This information allowed them to make some marginal but

effective changes to the module.

“We cut it down to 10 hours per week. We gave people a lot of furlough

time in between...we tried to wind down the usage complexity quite a bit.

Effectively, we redesigned the module so that the students came in and had

an access-level experience in the first half of the module.” - Michael, Learner

Satisfaction

Module chairs and tutors appeared occasionally to have different points of view on

course development, especially with regard to the accessibility and difficulty of content.

The subject of “dumbing down” courses was brought up in 7 of the 10 interviews, by

participants who instruct in fully or mostly online classrooms, whether they had actually

used learning analytics or not. Module chairs and academics with high-standing tended
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to view the simplification and restructuring of modules as an “ethical issue” of inclusion,

making content more straightforward for their students to increase their chances of

success. Conversely, tutors tended to express worries that the variety of students might

lead to diluting course content to an extent that learning is compromised.

Interestingly, more than half of participants referred to an achievement in the past in

creating or modifying a module successfully, using learning analytics as a tool. Two

participants referred to the resulting module as a “work of art”. This indicates that the

effects of prior (and perhaps early) success or failure with learning analytics

could be an important factor requiring further investigation.

In terms of the success or failure of specific learning interventions, participants all seemed

to agree that the efficacy of interventions is inconsistent. What worked in a previous

year, might not work in a subsequent year, which 6 participants said was related to

populations of students and different needs/relationships that emerge within them.

“I am interested as a teacher, not necessarily because I think I would know

how to parse all of that, but I can see the appeal, the crystal ball, letting

you peer into things that you wouldn’t normally. I would be most interested

in seeing how the numbers are affected by different things. But, as I’ve said

before, it’s probably just going to shift around, that satisfaction. One pre-

sentation you will make this group of students happy, the next presentation

you make others happy. There are so many variables.” - Richard, Developing

Strong Minds

Three participants felt that this tends to stabilise over time, indicating that at some

point, there is some type of “sweet spot” in which the majority of learners’ needs are

met and the tutor has a handle on their pedagogical practices.

However, despite what educators can see about the improvements to their courses, find-

ings indicated that the impact of learning analytics on improving learning, more

directly or in shifting retention, had not yet materialised. One explanation that

educators provided for this phenomenon was that tutors lacked guidance on what to do

with the information they were receiving.

“The tutors were preoccupied with the data, not with the intervention strate-

gies. The outcomes were, they said ‘we didn’t save anyone. We had more

contact with people and we combined the predictive data with other stuff we

knew and it didn’t work’” - Michael
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On two separate occasions, Michael mentions worries that tutors will not know how to

appropriately intervene. However, Michael goes on to say that he feels that successful

interventions are actually very simple and the tutors were reading much more into the

data than was necessary.

“I suppose the thing I’ve learned about intervention is how unremarkable it

is. It really is like when you say ‘Hi’. It was very much relationship-based.

Sometimes, students just want to be heard.” - Michael, Learner Satisfaction

Findings indicated that participants had the most concerns around the variabil-

ity of data and how this could impact the decisions being made as a result

of learning analytics insights.

7.4.2 Affordances for Understanding Learner Context and Disposition

All of the participants agreed that gathering information on what learners need and want,

with or without the help of learning analytics, improves the quality of education. Half of

the participants expressed the desire to be able to “tweak” course materials for individual

students, depending on what they could learn (possibly from analytics) about their

learning needs and habits. Educators with this affordance are aware that those needs and

habits change, but they still believe it is possible to offer more personalised instruction.

Figure 7.11 shows the categories and subcategories that emerged with regard to exploring

learner context and disposition as an affordance category of learning analytics. The

first two codes, “Learner Background” and “Goal of the Learner” have to do with

specific affordances of learning analytics. The subcategories underneath represent the

information educators need to make their judgements about dispositions more effective.

For example, learning analytics could analyse data related to a learner’s background,

including any previous studies (to understand competency), barriers to learning (to

understand needs), or previous professional experience (to understand exposure and

expertise). With regard to the category “Goal of the Learner”, participants seemed

to agree that they need more information on what a learner wants to get out of the

educational experience, what they need to get out of it and what they appear to be

prepared to do to get it. The last category, “Change”, was noted as a major factor for

all participants; Learners’ goals are not stable. Thus, they need tools for recognising and

documenting subtle changes in learner behaviours, attitudes and performance to better

understand learning processes. This is an interesting conceptual companion to what

Shum et al discussed in using the ELLI tool to evaluate learning dispositions, based on

students’ self-report statements about their learning process [59]. In their statements,
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the educators participating in the study are offering a type of “road map” for how they

detect, and even prepare for, certain attitudes about learning.

Figure 7.11: Categories and Subcategories for Learner Context and Disposition

Educators who discussed the importance of learner context and disposition were typically

motivated by having to prepare coursework for “everyone and their mother”, which was

a term used on three separate occasions by three different participants. This indicates

an overall pressure to fulfil too many needs. Rather than succumb to that pressure,

educators are using learning analytics to make it easier for learners with different goals

to take what they need from the learning experience.

“We’re actually using the data to see if we can classify learners. One of

the things for this analytics, but I think also for the teaching that’s really

important is - what’s the goal of the student? That’s really important to

know, because I think that’s what really determines how you should guide

them and what you should offer them.” - Hendrick, Learner Satisfaction

As mentioned previously, one tutor was using analytic data to classify his online learn-

ers in terms of what he perceived as their learning goals. He described the main classes

of students as voyeurs (those who are just there to have a look), dabblers (those who

want a more brief or introductory experience with a topic), refreshers (those who once

knew the topic, but who have had a significant break), deep divers (those who really

just want to get into a topic completely) and completists (those who want to finish their

program of study). He felt that learning analytics could provide indications of learner

goals by collecting key information about the educational and personal background of

learners, and through proxies such as when a learner pays their tuition fees, how often

and when the learner is returning to online resources (watching lectures, reading papers,

etc.), and whether or not the learner is studying sequentially. Figure 7.12 illustrates

this participant’s statements as a description of how he might classify learners according
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to their style of engagement with the materials, the system and other learners. His

modifiers, such as “little”, “moderate”, or “significant” were suggested as being subjec-

tive and dependent on both the context and the educator’s own personal judgement.

“Saturation” refers to how much of the University provided content has been viewed

and reviewed by the learner. A learner with high saturation would engage with most or

with all of the provided resources, at least marginally. While there are definite gaps in

his operationalisation process (coded as “not given”), he provides some insight into how

educators perceive their students and how they make use of information that they find

personally relevant.

Figure 7.12: Classification by Engagement Style

Another participant described how he uses information that learners disclose to reveal

certain aspects of the learner’s context, such as their mental and physical health, back-

ground etc. so that he can try to accommodate that learner. A different participant with

no background in analytic data also felt that application data, for example, could be

integrated into what is known about the learner, to provide tutors with a richer picture

of student experiences before they reach the classroom. He felt this would allow him to

target his material more neatly toward their needs. Two participants (one with experi-

ence in computer science, one without), spoke about using analytics to explore statistics

on interaction and engagement, looking at log-in data and activity on the fora, etc. One

of these participants felt that log-in data can be a proxy for student engagement, telling
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him when the best time to capture students might be and how to tell when he has lost

their attention.

When asked what they know about their students, instructors described some of the

proxies they use to understand learner lives and contexts. For example, some proxies

that were relevant for all educators included assignment style (content and

form, quality), submission habits (late or early submitters), choice of com-

munication (email, social media, telephone), time of communication, extent

of communication, style of questions, sense of humour, quality of work and

changes in their work (indicating troubles at home or other distractions).

Findings indicated that, for educators, classifying learners is about understanding

and accommodating learners’ goals, which are continuously in flux. Educators were

aware that their classifications of learners can change and that classification needs to

be dynamic.

7.5 Intended or Imagined Use

As the subject of actual affordances (for course development and classification of learn-

ers) was limited to half of the participants, part of the interview involved brainstorming

with participants about possible applications of learning analytics tools and technolo-

gies. This occurred throughout the interview, if a participant mentioned a proxy that

they knew could be digitally captured. Some participant affordances have already been

discussed in previous sections, for example, in the quote from Richard referring to mea-

suring euphoria in the classroom. Others were prompted by conversations about the

state-of-the-art in learning analytics research and what might be possible to capture

about the learning experience.

The following section summarises these intended or imagined affordances, and organises

them according to a general thematic category. Figure 7.13 provides a visual summary

of these categories and the affordances that educators mentioned.

7.5.1 Affordances for the “Academic Fitbit”

Participants that did not have a background in computing still found it possible to

imagine what learning analytics can offer, through applying previous knowledge and

conceptions about Big Data or Personal Analytics, such as health and fitness trackers.
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Figure 7.13: Categories and Subcategories for Imagined Affordances

“Just imagine if they could do a time-planning pro-forma, with an indication

of what they hoped to achieve? I would like that. I don’t know if other stu-

dents work like that...an academic ’Fitbit’”. - Michael, Learner Satisfaction

Similar ideas were voiced in several of the participant interviews. This is the only

affordance perceived for a student-facing applications of learning analytics, until the

end of the interview after the interview schedule had been exhausted (see section 7.7).

7.5.2 Affordances for the “Crystal Ball”

Another commonly mentioned imagined use of learning analytics had to do with the

possibility of uncovering “unknown-unknowns”, the things that educators might not

have any idea are happening, but which learning analytics data could highlight.

“I am interested as a teacher, not necessarily because I think I would know

how to parse all of that, but I can see the appeal, the crystal ball, letting

you peer into things that you wouldn’t normally. I would be most interested

in seeing how the numbers are affected by different things. But, as I’ve said

before, it’s probably just going to shift around, that satisfaction. One pre-

sentation you will make this group of students happy, the next presentation

you make others happy. There are so many variables.” - Richard, Developing

Strong Minds
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7.5.3 Affordances for Cohort Analysis

The quote from Richard, in the previous subsection, demonstrates one of the biggest

concerns for educators in using learning analytics to form the basis of their educational

strategies, cohort dynamics. Even more important than the individual, educators tended

to feel that the cohort makes a significant difference to learning experiences. The cohort

can be mobilised to support learner success.

“I was very fortunate to have two very useful players within the group; there

were two people who were 1) technically skilled and 2) very enthusiastic, and

they fed off each other. And they were like that snowball going down the

mountain; they were picking everyone up as it was going”. - Will, Developing

Strong Minds

The cohort can also be curated to improve the chances of success. In one interview,

a participant spoke about a particular course that attracted students from 2 different

disciplines. The module team realised that discussion seemed to flow more smoothly

when equal numbers of students from both disciplines were represented.

One participant who is working on MOOCs talked about the opportunity to use learning

analytics to create learning groups that can mimic those ideal conditions.

“Coursera data is doing some experiments with learning groups, you create

vertical small study groups and let the people study together, so they ex-

plain among themselves how to interpret certain things.” - Hendrick, Learner

Satisfaction

Educators felt that the cohort, in addition to affecting classroom dynamics, can also

provide some useful insights about individual students. Richard proposed that using

individual students’ ratings of the overall cohort’s emotional well-being might be a more

valuable proxy than asking each individual student to gauge their own emotional state.

He argued that the collective assessment of emotion allows learners to distance them-

selves from the emotion, which would lead to them being more honest. Learners can

detect undercurrents of dissatisfaction in the group that the educator would miss.

Participants with an interest in cohort dynamics viewed learning analytics

as being a starting point for understanding the social aspects of learning.

For example, learning analytics could uncover some of the effects not only of

the number, but the combination and constellation of students on a variety

of psychological, social, and experience levels.
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7.5.4 Affordances for Interaction and Communication

In discussing the challenges they faced in online education, educators with the goal of

developing strong minds had often referred to problems of “decentralised discussion”.

“On these forums, people can help each other better because all questions

are visible to everyone, at the same time, you cannot centralise things that

easy because it’s all public anyway. If someone asks a question for the third

time, you can point them to the thread where it is discussed but you can’t

really centralise discussions that easily” - Hendrick, Learner Satisfaction

Hendrick spoke about how he wished there were more tools to help students understand

how to identify key conversations that could be important for them. He described how,

in a typical classroom, a student can passively overhear much of what is going on in the

classroom and “tune in” on discussions as they become personally or socially relevant.

Some students are more attentive to these shifts in information sharing than others, but

the educator can answer learner queries more efficiently. In a digital classroom, Hendrick

felt that information is often presented sequentially, which is not always effective in

working with the attention of the student. Hendrick’s understanding of learning analytics

was that it would be possible to look at the conversations in which successful

students are participating, to help learners prioritise their engagement.

Another challenge that was important to many of the educators was the “lack of visual

referencing” in online classrooms.

“All online teaching is a problem. If you fall back on the pedagogy, you will

find out that 65% of communication is not spoken. And online, you have

severed that. The body language. Well, silence is silence. You can’t see if

unless you have got sort of videos on.” - Will, Developing Strong Minds

In discussing possible interventions to improve communication in this way, one proposal

was to establish other digital visual cues for expressing emotions that one might be able

to interpret face to face.

“But what I encourage people to do is if they don’t want to speak, play with

emoticons”. - Will, Developing Strong Minds

Emoticons, as an expression of learner emotion, might be no more or less likely to

be correctly interpreted than a student’s actual facial expression. Still it can provide
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some useful information. Will discussed an online collaboration and meeting tool called

“Flashmeeting”4 with the researcher, in terms of its capabilities to track and represent

when a meeting participant was smiling. Will noted that it would be easy to tell “the

highlights” of a meeting, by looking at the moments when all of the participants are

determined to be smiling. He then acknowledged that such a tool could also be used

to help educators understand learner emotion in relation to specific issues or topics of

discussion, by annotating lectures or live presentations.

7.5.5 Affordances for Recognising Complex Skills

For many educators with the goal of developing strong minds, metrics of success were

often a combination of several indicators that are complex and difficult to capture. On

occasion however, an educator was able to articulate exactly what they were considering

to weight their interpretations of the data.

“Of course, there is always the performance of skill [in Critical Thinking].

The question is, which skills? I want to see that they not only know where

to find an answer to a question, I want to see that they can form an own

opinion. I want to see them try to convince others”. - Angela, Developing

Strong Minds

.

The combination of information seeking and argumentation skills is necessary for becom-

ing a critical thinker for Angela. Speaking about argumentation software, Angela felt

that learning analytics could be mobilising tools that can detect “cohesion”

and “critical thinking” in learner assignments and forum contributions.

As learning is something that is difficult to detect, instructors have developed proxies

for learning that touch upon student expression of emotion, demonstration of skills and

sustainability. For example the following proxies were provided across the group of 10 in-

terview participants: feelings of success among the learners (euphoria and engagement),

feelings of success by the teacher, demonstration of a learned skill, signs of student

appreciation (such as gifts and letters), student feedback (written and verbal), the stu-

dent being logged-in and consistently active on the VLE as well as with other students,

learners posing questions, seeking or generating alternatives, contributing ”second-order

questions” about the topic, bringing in new aspects of the topic, lively classroom discus-

sion, feelings of surprise, assessment results, student progress (measured over time) and

4http://flashmeeting.com
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general quality of work in comparison to other students and to previous work. Learner

satisfaction was also deemed a reasonable proxy, although most instructors felt that

learner satisfaction was dependent on marks. 2 instructors described how they deter-

mine whether or not learner satisfaction is a good indicator of learning, in that it results

in a feeling of pride or identity expressed by the student, or it is sustained over time.

3 participants mentioned sustainability of learner satisfaction as being visible through

the extent to which they stay involved with one another, with the instructor and with

communities of practice.

7.6 Goals and Roles in Learning Analytics Affordances

Affordances were often shared across educational goals, which made them difficult to cat-

egorise definitively. However, there were some general tendencies, which are illustrated

in figure 7.14. For example, for educators focused on Learner Satisfaction, having infor-

mation about what the student did before entering the current educational environment

would be perceived as very helpful.

As mentioned previously, these educators are often also teaching very large class sizes

and expressed the most worry about having to prepare for a very diverse student cohort.

Conversely, educators that were hoping to prepare learners for practice seemed to be

most interested in understanding how to predict student behaviour, with the hopes

of intervening early and sufficiently to prevent poor educational choices. Educators

developing strong minds appeared to fall somewhere in the middle, sharing some of the

concern for the past and some of the concern for the future with educators from both

other groups. However, this group tended to be most interested in understanding what

was happening in the present moment. Words like “emergence”, “energy”, “euphoria”,

which educators in this category tended to use, denote ephemeral experiences that they

find difficult (but useful) to document. From the left to the right of the graphic, the

affordances named closest to the left tended to address the past and preparing with

the past in mind. Toward the right side of the figure, the affordances become more

about prediction, evaluating interventions and developing good recommendations for

the future. From top to bottom, affordances are more longitudinal, analyses based

on data collected over a significant period of time. Toward the bottom of the graphic,

affordances become more immediate, such as understanding a learner’s goal at any given

moment, or what immediate recommendation can be made.

The colours in figure 7.14 represent which types of participants tended to discuss each

affordance more often, with tutors and associate lecturers focusing the most on what

they could know about their learners and their goals, and module chairs and senior
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academics paying most attention to course design and delivery. The affordances named

in the purple box were shared across all types of roles and responsibilities within the

institution.

Figure 7.14: Affordances, Goals and Roles within the Institution

7.7 Reflections on the Exploratory Interviews

To contextualise some of the statements in the section above, it is important to describe

how some of the conversations were triggered within the course of the interview and how

experiences of the exploratory interviews shaped the direction of the study that follows.

This section explains the impetus behind conducting focus groups with learners and

educators in the context of a case study about perceptions of learning analytics at the

Open University UK. The section begins with educator perspectives on student facing

analytics and whether or not students are up to the task of using analytics data to sup-

port their learning. The section then ends with some final reflections on the exploratory

interviews and some of the feedback received after the interview was completed.
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7.7.1 Educator Perspectives on Student-facing Analytics

Before ending the interview, all participants were asked if there was anything they would

like to ask about the research project. Most participants asked about my initial interest

in the subject of learning analytics. Because of my background in social science, I admit-

ted that my initial interest in learning analytics was to explore how learning analytics

could assist the learner in interpreting contextual elements of classroom experiences to

highlight issues such as social exclusion, racism and sexism. I viewed learning analytics

as providing evidence for philosophical debate [151]. During this time, participants ex-

pressed some additional ideas, that were potentially triggered by this conversation. At

this point, educator perspectives on learners having access to analytic data became a

more concrete aspect of the study.

Several participants felt that learning analytics could help learners identify their own

goal.

“I guess if students could just have access to their own data, if no one else

ever saw it. If it was just to give them some insight. Maybe this would be

acceptable.” - Angela, Developing Strong Minds

“I can definitely see the value in seeing some of that data, for some students.

And essentially, all of the tools we develop for students will only ever be useful

for some of them. That’s simply the way it goes, as they say. If I imagine

that someone were to follow me around for several days, noting this and that

about me and what I did, and then gave me a report on that, that would

be really interesting. This is kind of the same thing, is it not? It’s going to

‘notice’ some things and not others. The student will have to decide what’s

relevant. That’s true for us as well. We’re seeking relevance. We want to see

that this data has relevance for our vision.” - Richard, Developing Strong

Minds

The imagined affordances that some educators had previously mentioned were also recog-

nised as such by additional participants during this post-interview discussion. For ex-

ample, 2 additional participants described the concept that Michael referred to as the

“academic Fitbit,” a way for learners to monitor their own progress and activity through

various indicators.

Educators were divided as to whether or not such data would be interesting for stu-

dents. Unsurprisingly, this sentiment pairs with an educator’s level of “Experience with

Computing”. Educators who were interested in analytics themselves tended
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to feel more optimistic about students’ ability to cope with analytic data as

a source of information about their practice as learners.

7.7.2 The Impact of the Findings on the Study

At the beginning of this chapter, the questions guiding this portion of the investigation

were listed as follows:

1. To which extent are educators able to perceive specific affordances of learning an-

alytics without prompting?

2. Will affordances be uniform across participants?

The initial, exploratory interviews illustrated, relative to these questions, that there

are definite, notable differences in how participants from certain depart-

ments and faculties viewed learning analytics and learning analytics tools

or technologies. The types of affordances that participants mentioned indicated that

some educators are better equipped than others to make use of learning an-

alytics to support their practice. It appeared that these differences were not only

influenced by the current domain of the educator, but also by their background and

interest in computing.

Exposing educators to some alternative perspectives on learning analytics, at the end of

the interview, changed the way that participants spoke about learning analytics and the

opportunities they were able to perceive. This indicated that perceptions of learning

analytics are also socio-cultural.

With the subsequent case study, it was important accomplish 3 things: First, it was

necessary to explore whether the epistemic and departmental divisions in the exploratory

interviews can be detected even within a single institution. Second, it was important

to evaluate how differences affect educators’ abilities to deliver their educational plans.

Third, it was important to investigate if educators and learners could highlight any blind

spots for learning analytics research that could be easily resolved.

As a case study provides the frame for developing an organisational perspective on

learning analytics within one institution and a theory of context about departmental or

epistemological impacts on how learning analytics are perceived.
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7.8 Chapter Summary

This chapter presented the findings of exploratory interviews conducted with educators

involved in online and blended learning from different Universities in Europe. The

purpose of the interviews was to create a clearer picture of the most salient issues around

learning analytics now, at this point of the field’s development.

The first section of the chapter described the background of this part of the research pro-

cess, including the participants and procedures involved. The second section introduced

participant context and the apparent connection between the research participants’ goals

and disciplines. The section also explored how learning design and classroom implemen-

tation appear to support participants’ statements about their goals, and how goals shape

what the participant views as a challenge or opportunity in learning. The findings in-

dicated that participants who aim to develop strong minds measure learning through

the interaction and participation in the module, along with their own intuitions and re-

flections. Participants who were focused on learner satisfaction, tended to focus on the

learner feedback, while those who were preparing students for practising their disciplines

were more interested in learner performance.

The third section addressed attitudes and experiences of participants around learn-

ing analytics and the factors that appeared to influence participants’ statements most,

namely, computing experience fear or ignorance around the subject of big data in general

and learning analytics in particular. Section 6.4 discusses experiences of actual use of

learning analytics tools and technologies to support practice. Findings indicated that

course creation and development and learner classification were the dominant themes in

actual use. Section 6.5 explored intended or proposed uses for learning analytics data,

which centred mostly around improving current actual uses, to gather enough big data

about individual learners or groups of learners to understand their behaviours and high-

light “unknown unknowns”. Participants also perceived affordances in looking at cohort

composition for creating supportive learning communities, and in analysing social in-

teraction and communication to understand more about learners’ emotional well-being

and motivation for learning. Finally, participants described affordances for measuring

and recognising complex skills, such as critical thinking and argumentation.

The chapter ended with a section on reflections from the exploratory interviews, which

introduced information gathered after the end of the participant interviews and impact

of the findings on the subsequent case study. The exploratory interviews suggested that

context may play a greater role in learning analytics acceptance, adoption and impact

than is currently recognised in the literature. The next chapter presents the findings
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from focus groups that were related to the participants’ context, to frame the discussion

of affordances in the following chapters.



Chapter 8

The OU Case Study: What

Matters to Educators and

Learners at the Open University

Our goals can only be reached through a vehicle of a plan, in which we must

fervently believe, and upon which we must vigorously act. There is no other

route to success. - Pablo Picasso

The exploratory interviews described in the previous chapter suggested that pedagog-

ical intention, background and experience may influence what kind of information an

educator requires and for what purposes that information is used. The purpose of the

Open University case study was to examine these relationships further from an institu-

tional perspective. By understanding what influences perceptions and behaviour, it is

possible to theorise how learning analytics’ positive mediatory effects may be amplified

to improve practice.

In particular, the case study aimed to expose organisational aspects of learning analytics

adoption and acceptance, by choosing participants from different departments within the

same institution as part of a case study. The motivation for conducting focus groups,

as previously stated, was to collect social information about different perceptions of

learning, teaching and learning analytics in homogeneous and heterogeneous groups. By

studying interactions between the participants, it was possible to see which aspects of a

given topic are most significant, the negotiation of meaning and approaches to conflict

or differences of opinion.

This chapter summarises the findings from the focus groups which refer to the context

of participants and their current ways of teaching and learning. The chapter opens with

97
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Figure 8.1: Participant Breakdown

a background section providing a description of the case, the Open University UK. The

section introduces the individuals who actually participated in the study and discusses

some experiences in recruitment, implementation and analysis of the study. The next

section delves deeper into the context of the participants. This includes information on

their background, educational experiences, personal and professional goals. Section 8.3

describes how participants perceived their own learning and some of the factors that

appear to influence these perceptions, such as transitioning from one type of discipline

to another. The section also explores some of the comparisons and metrics that learners

and educators use to understand that learning is taking place. In section 8.4.1, learning

strategies are addressed, with educator and learner perspectives on how learning should

be monitored and controlled. The social aspects of learning are the subject of the fourth

section in the chapter, with regard to working with peers, gaining access to new strategies

and using student forums. It also briefly addresses the issue of “abusing” social aspects

of learning to support laziness and to plagiarise. The contextual information in this

chapter will provide a lens through which to consider the affordances that participants

contributed in the following chapter.

Wherever the box around a quotation is square, the quotation comes from a learner

focus group or focused interview. When the box has rounded corners, the quotation

is taken from an educator focus group. The purple colour indicates that an educator

is speaking. The light-orange colour indicates that a student is speaking. Quotes that

are contained within the same box represent a dialogue within a focus group. Quotes

contained in separate boxes indicate that a speaker’s comment stands alone.
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8.1 Description of the Case

The Open University UK (OU) case study was conducted from 2016-2017 and includes

evidence collected from educators and students through a series of focus groups. The OU

was determined to be a strong case study for an organisational investigation of learning

analytics and learning analytics acceptance because of its unique position of access to

student data, the express interest in learner experiences, and the skill and expertise the

institution has in learning analytics.

As a long-time provider of distance and online education, the OU has considerable access

to learner data [3]. The OU also maintains a strong institutional identity of technology-

enhanced, inclusive learning [152]. This overarching goal has attracted educators who

feel strongly about inclusion. In addition, the reality of accepting students from a wide

variety of backgrounds and abilities means that the OU is faced daily with challenges

related to learner diversity. Learning analytics is, therefore, of considerable interest at

the OU [96], to identify learners at risk of dropping out [51], to evaluate learning design

[153] and assessment [154], to categorise learners and learning dispositions [59][155] and

to understand more about the social aspects of learning [3]. As an institution, the Open

University stands to gain considerably from a strong data-driven approach to managing

the institutional challenges of providing a high quality, accessible education to a large

number of students, and put “students first” 1. With the opportunity and expertise

that exist at the OU, the institution is in strong position to advance toward the goal of

wide-scale, ethical adoption of learning analytics tools and technologies that impact the

learning experience [96].

The OU is already making a strong case that learning analytics can impact many key

areas of teaching and learning, including learner satisfaction and retention [156]. How-

ever, it is not just the technology or even the reality of positive impact that effect the

wide-scale, ethical adoption of learning analytics. Organisational culture, resistance to

change and issues of ownership also impact how learning analytics will be successful at a

large-scale [24]. The case study was designed to give space to these types of influencing

factors and to understand how they link up with other theories or approaches.

8.1.1 Structure of Open University Courses

The Open University is a provider of distance education. However, this does not mean

that students never meet face-to-face. The University provides tutorial groups, day

schools and other types of activities for students to meet one another and engage in

1 http://www.open.ac.uk/about/main/mission
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their work. However, the majority of the student’s studies will be self-organised, which

the OU refers to as “open, supported learning”2.

Assignments vary from course to course, but most courses will involve several Tutor-

Marked Assignments (TMAs), followed by an End-of-Module Exam or Assignment

(EMA). In addition, the student may have project work with classmates, or other types

of written assignments and oral exams as is appropriate for the course of study3.

8.1.2 The Participants

Participants were recruited through direct appeal to the faculties at the Open Univer-

sity. Once an educator participated in one of the focus groups, they were asked for

their assistance in recruiting student participants from their modules. This was entirely

voluntary and 7 of the participating educators agreed to do so.

The invitation to take part in the case study focused on perceptions of learning and

how educators and learners understand learning strategies. The invitation for educators

read:

“This study aims to collect information about how online instructors under-

stand their students’ learning processes (in particular, how learners exercise

control over their own learning) and their beliefs about how learning analytics

can support this process.”

The recruitment letter was sent out to individual faculties. Educator participants were

relatively easy to identify. The Open University is conducting several pilot studies in

learning analytics that participants said had increased their awareness of the field and

their interest in learning more. Within the first 4 months of the case study, the educator

participant quota (n=20) had been reached. However, due to a scheduling conflict with

one focus group, 2 participants had to decline and only 18 educators took part in the

study.

Learner recruitment was more difficult that originally anticipated. Initially, students

were recruited using a similar approach and language as was used with educators, mak-

ing explicit mention of learning analytics and student data. After a period of limited

response, even with assistance from the different faculties, the research ethics commit-

tee at the Open University was contacted for approval to revise the invitation. The

2http://www.openuniversity.edu/study/how-study-works
3http://www.openuniversity.edu/study/how-it-works/exams-assessment
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Figure 8.2: Participant Breakdown

more informal and conversational invitation focused on learner experiences, rather than

analytics, and was more successful:

“My research is about supporting student learning and it depends heavily on

being able to speak to some of you about your experiences. So I would like

to invite you to participate in my research. You will get 15 for one hour of

your time (in the form of a voucher) and you can participate at a time and

place convenient for you. The procedure is pretty straightforward - I will just

be asking you some questions about your learning and you will provide some

thoughts on those questions. You don’t need any special skills or insights -

just your own experience.”

This alteration in the invitation text resulted in reaching the maximum participation

quota for learners (n = 20) within only a few days.4 An additional 2 students participated

spontaneously on the day, having been recruited by other students in the focus group.

Figure 8.2 shows the breakdown of total participants according to position, role and dis-

cipline (n = 40). Students were mostly undergraduate, with the exception of 2 graduate

students.

Figure 8.3 shows the years of experience participants had working or learning at the

Open University. Educators in senior roles typically had 10 years of experience or more

in education. More than half of those educators had been teaching online or at a distance

4The maximum number was determined to be 20 students and 20 educators, to ensure enough time
for transcription and data analysis. This was discussed with the supervision team.
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Figure 8.3: Years of Experience at the OU

for nearly the entire period. All had been at the Open University for more than two

years. Half of all learners who participated were mostly at the end of their first year

of studies. However, all but two learner participants had already completed a previous

degree, or worked for a significant period of time in some other capacity. This includes

being a home-maker. Five learner participants were currently retired. In addition, four

learner participants reported disabilities that they believed impacted their studies.

8.1.3 The Procedure

The focus groups were conducted separately with educators and learners, but occasion-

ally mixed in terms of the discipline and level of experience or role within the institution.

This was intended to highlight the most salient and thought-provoking issues. 10 focus

groups were conducted, 5 with educators (n=18) and 5 with learners (n=13). In addi-

tion, 9 in-depth interviews were conducted with learners who were unable or unwilling

to participate in a focus group. Each focus group had 2-5 participants. While two indi-

viduals would be generally small for a focus group, these sessions still provided space for

important social dynamics. Focus Groups took place in person at the Open University

(n=3), online using Skype (n=4) and online using WebEx (n=3). The reason for these

changes, relative to the research design, had mostly to do with scheduling conflicts and

a preference for 1-to-1 interviews among learners. OU students are used to working

independently, many have second jobs. It was difficult to schedule and keep appoint-

ments. In addition, some OU students expressed anxieties about speaking up in a focus

group and referenced their decision to study at a distance as proof of this concern. The
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decision was made to accommodate these students with a 1-to-1 interview. In the text

below, these are referred to as “focused interviews”, as they followed the same format as

the focus groups and occasionally involved sharing perspectives from other focus groups

with interviewees, in order to stimulate ideas.

In the first part of the focus group or interview, participants were asked to describe how

they know they are being successful at learning or teaching and to give an example of

how that can be measured. For example, if an educator said that they know they are a

successful teacher when their students are learning, they were asked to explain how they

define student learning. They were also asked if they could think of any information that

they have already noticed is missing for them. As the issue of intentions and goals was

of particular interest after conducting the exploratory interviews, the decision was made

to explicitly seek this information in the focus groups/focused interviews. Participants

were asked to verbalise a goal or at least a description of what they were trying to

achieve.

In the second part of the focus group, participants were asked to consider different forms

of information and analytic technologies that are available, and describe any affordances

they see in using that information to impact their current practice of teaching or learning.

During this exercise, participants were given a brief introduction to 4 main sources

of information: 1) click data and other activity information from within the Virtual

Learning Environment (VLE) or Learning Management System (LMS), 2) demographic

and social data, 3) multimodal data, and 4) data from the Web environment (outside of

the VLE). During the focus groups, the attempt was made to avoid discussing specific

tools with the participants. The reason for this was to divorce a specific implementation

from the concept behind it, so that participants could consider the potential utility of

the information, and not just of the tool. However, on occasion, when the participant

did not understand a certain type of information or technique, an example was provided.

In some cases, this example came from another focus group participant.

Every attempt was made to accommodate participant schedules. Snacks and beverages

were provided where possible.

8.1.4 Context and Practice Analysis

After transcription, as described in the Methodology section of this thesis (see chapter

6), the focus groups and focused interviews were reviewed and open coded. The codes

were then organised as categories and subcategories of wider thematic regions through

constant comparison, as will be described throughout the chapter. A full description of

each of these codes can be found in the appendices of this thesis.
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Context and current practice are two major subjects of the present chapter, as it formed

a significant portion of each focus group and focused interview. Figure 8.4 provides the

major categories under the thematic category of context for reference. From the figure,

one can see that educators made reference to their own background and experience, the

discipline and department in which they are working, their other colleagues and the

institution, as well as their own learning design and pedagogy. Learners referred to their

own background and previous educational experiences, their triggers for learning at the

Open University and their current goal(s), other learners, the institution, their tutor

and the discipline. A full description of these codes can be found in Appendix A.

8.2 Goal Orientation and Aims

As with the exploratory interviews, the focus groups revealed several aspects of learner

and educator contexts that provided a frame of reference for understanding participants’

statements. The ways in which both educators and learners orient themselves on a goal

and the ways in which they verbalise their intentions and aims appear to be significant

in understanding how they define and measure their success.

This section illustrates the interplay that participants described between who they are,

what they want to achieve and the mechanisms they deploy to do so.

8.2.1 Goals and Triggers

With regard to their pedagogical intentions, educators participating in the focus groups

generated many of the same codes and thematic categories related to goals as those

introduced in the exploratory interviews. Once again, educators expressed disagreement

about the purpose of education and the ways in which a quality education should be

delivered. The goals of “Learner Satisfaction”, “Preparing for Practice”, and “Develop-

ing Strong Minds”, discovered in the exploratory interviews, were also recognised within

the focus group data. The focus groups additionally included educators working in in-

terdisciplinary areas, such as business and finance. Figure 8.5 shows how participant

goals mapped to the different faculties represented in the focus groups. Once again,

the pattern of STEM educators prioritising practice and Arts and Humanities educators

prioritising more general learning is visible in this data. The one educator in business

described a primary goal of satisfying learners and meeting learner needs, whereas the

one educator in finance appeared to support more pragmatic approaches to teaching

that prioritise practice and skill building in specific areas.
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Figure 8.5: Educator Goal by Faculty

The transcripts showed that motivations that educators explicitly voiced for

working at the Open University were the flexibility of the institution, inclu-

sive and accessible higher education and innovative instruction using tech-

nology.

Learners expressed two categories of educational goals, those which relate to an over-

arching sense of the purpose of their education (coded as “Aims”) and those which

related to goals they would like to achieve within the module (coded as“Module Specific

Goals”). With regard to the over-arching educational goal, learner participants could be

broken down broadly into three groups: those that are studying for their own “Personal

Development”, those that are seeking “Qualifications” for a specific job or profession,

and those that are studying for the “Joy of Learning”. Figure 8.6 illustrates how these

divisions appear in the coding.

“Personal Development” applied to goals that were particularly related to wanting to

challenge oneself, do the best one can do.



Chapter 8 The OU Case Study: What Matters to Educators and Learners at the Open
University 107

Figure 8.6: Learner Aims and Associated Codes

“I don’t want to spend my life behind a supermarket till. So I

thought I’d just study something. And I went for the course that

I did years ago, it was actually 1979, to see if I could finish it.

Well, I did finish it, but I decided I wasn’t going to stay in English

Literature and I didn’t fancy History. I did, but I couldn’t think

of anything to do with it. But then, I always had an interest in

environment, because of the environmental group in my neighbour-

hood. So, I thought I’d try this then. And if it doesn’t work out

well, I could try something else.” - Laurie

“I want to keep learning and I want to keep using it, maybe do

more because I’m not going to let all that I’m learning go. So, for

me, I think the main thing is, I just want to see what I can do. It’s

seeing how far I can push myself in a sense of my ability.” - Harriett

When a learner did not seem to have this added pressure of personal best, but still had a

significant sense of self-motivation and interest in study, the learner was coded as having

the goal “Joy of Learning”. This included learners who were engaged in studies to “keep

an active mind”, or to follow an interest or curiosity.
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“I’m 71, I’m hardly going to go through getting a career out of this.

I’m doing it for the pure love of it.” - Chris

Learners who are learning for the joy of learning, as well as those who are trying for their

personal best, did often wish to achieve a certain qualification or expertise in a given field.

However, when the focus of the learner’s statements was on gaining qualifications for a

specific job or profession, that learner was coded as having a goal of “Qualifications”.

“I really thought it would make me better at my job, give me an

advantage over other people.” - Jonah

“I started with the OU because the head teacher at the school I

work at, wanted me to get a degree.” - Allan

These two quotes illustrate that the motivation or push to study can be both internal

or external in the case of wanting qualifications.

There were no learners participating in the study that had absolutely no particular aims

or goals. However several learner and educator participants claimed that such students

exist. It is not surprising that such students, if they indeed exist, would not have been

motivated to participate in this study.

8.2.2 The Influence of Background on Learner Aims

Figure 8.7 shows learners’ aims, by the faculty in which they are currently studying. A

pattern such as was seen among the educators was not visible in learner groups.

However, when discussing with learner participants their various backgrounds,

how they came to the Open University and what they were trying to achieve,

some tendencies were apparent. Figure 8.8 shows learner aims broken down by their

background. Women who had been homemakers previously and were returning to higher

education consistently reported aims associated with challenging themselves, doing their

best and working very hard on their studies. This was true across age groups, faculties

and number of years spent at the Open University. Harriett, who had not studied
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Figure 8.7: Learner Aims by Faculty

previously and who was raising a son with dyslexia, was originally drawn to her studies

by wanting to help her son with his own learning. She described how she moved from

one level to the next challenging herself to go one step further. Grace, who still had

young children, described how she expected her family to adjust to her study schedule,

now that her family did not require as much of her attention.

“I thought, if I don’t do this, I’m really going to regret this, so I,

that’s when I jumped and started doing it, and it is really good.” -

Harriett

”After I stayed up until 4am in the morning writing an essay, I

thought, I just can’t do this again. I need to be strict with my

husband and children and say ’look, I need to do this, you need to

sort yourselves out.” - Grace

Learners with disabilities also expressed a strong interest in personal best and challeng-

ing themselves appropriately. As will be discussed later in this chapter, learners with

disabilities also tended to express much more confidence in their knowledge of their own

learning habits and preferences.

Learners who were retired, especially those from the STEM sciences, Medicine, Finance

and Business, expressed the desire to enjoy what they are doing. Often, their current
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experience was compared to very hectic professional lives in the past, and an interest in

trying something new.

“They suggested I drop English Literature and concentrate on ac-

counting. Turned out, I was reasonably good at it and had a 50-year

living from it. But the dream had always been to be a writer. So I

had the opportunity now to return to the dream.” - Chris

“I’ve got a Master’s of Science and I’ve got a number of medical

qualifications. But I really want to do something more artsy. I

mean, I find it difficult to find the time, my daughter has been in

very poor health, both before and during pregnancy, we spent a lot

of time in the hospital. I’ve got this elderly father who needs me.

I’m married. I’ve got all sorts of responsibilities. But I feel this is

the thing I’m now doing for me.” - Louise

Louise points out that her current life is stressful too, for a number of reasons. However,

her motivation and aim make her clearly prioritise her studies. Learners like Louise

tended to express frustration and confusion toward learners that find it difficult to self-

motivate, particularly when future career perspectives are at stake.

“You would think that a qualification they need for their job, that

would be motivation enough.” - Laura

“Obviously, if this was going to be used some way in your career,

for your future, you always want to do your best, right? And so I

think a normal student, a younger student, who is wanting to make

use of his degree, would be more concerned than I was.” - Ralf

First-time students tended to express more generic goals, either associated with a job

qualification or with the flexibility that the OU specifically offers.
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“I chose it because I’ve got two children and I just can’t travel.” -

Grace

“I am out of work just a little over a year now. I need this degree

to improve my prospects of getting a job.” - Frank

However, there were some tendencies for such students, especially in the presence of

other students from their faculty, to express firmer ideas about goals and expectations.

Figure 8.8: Learner Goals by Background

Learner participants stated many different reasons for choosing the Open University,

none of which were academic related. Rather, participants stated that they had

chosen the Open University because of a career or life change, because of

disabilities that made distance learning attractive, or because of the flexibility

that the Open University can offer.

It should be noted that learners who were funded in some way to complete their studies

at the OU were identified in each of the three aim categories. This was an interesting

finding, given that many educators in the exploratory interviews seemed to believe that

free online education was damaging learner motivation and overwhelming learners with

content. Whether or not this is a true statement, it did not appear to affect the learner’s

goal or motivation from the learner’s perspective in the context of this study.
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8.2.3 Module Specific Goals

Some learners had goals that were specific to a given module, for example, obtaining a

pass or gaining a prerequisite. Some learners had goals that were relatively consistent,

regardless of which module or activity the learner was speaking about. Learners coded as

having the goals “Joy of Learning” and “Personal Best” often expressed module specific

goals that were quite similar to their over-arching aim. For example, a participant

striving for her personal best in her degree program, was also likely to be striving for

her personal best in the module. Learners whose module goals were consistent were

coded as having “Module Agnostic” goals.

Learners that expressed the goal of obtaining specific job qualifications more often de-

scribed module-specific goals that were different from the overall aim. In particular,

these goals appeared to be influenced by whether or not the module was perceived by

the learner as a real prerequisite for the job. For example, two participants, who had

an overall aim to have a particular “Qualification”, described treating modules they did

not perceive as being directly useful for that aim strategically, calculating the lowest

necessary mark or effort.

“I just need to pass this module. I’m not even sure why I need it

when I know I don’t need it to do what I want to do.” -Boris

“I know if I manage a pass in this [module], I can move on to the

next, which is, well, that’s the one I really signed up, or registered

to do.” - Jonah

The findings indicate that learners with module specific goals, while they often

described themselves as being able to learn more efficiently in some cases,

also expressed having some difficulties in new strategy adoption.

8.3 Recognising Learning

The findings thus far support observations from exploratory interviews that goal ori-

entation and adoption relate to one’s own idea of the purpose of education.

This section describes how those differences extend, as they did in the exploratory inter-

views, to the ways in which the participants in the focus groups and focused interviews
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Figure 8.9: Learner Categories and Subcategories for Recognising Learning

recognise learning. To illustrate the active component of recognising learning, the codes

associated with this category were based on actions, for example “comparing”, “reflect-

ing”, and “tracking”, etc., as well as the objects that are being acted upon, such as

“performance”, “participation” and “cohesion”.

The subsections discuss the categories of recognition that learners described and how

learners transitioning from one domain to another adjust their strategies. Subsection

discusses the categories of recognition that educators described, comparing these re-

sponses to information obtained in the exploratory interviews. The next subsections

discuss the various comparisons that can be made using only the individual’s present

and past performance or background, or a body of other students (in terms of past and

previous cohorts, or within the same cohort). Following comparisons, the next subsec-

tions address the role of educators and other human facilitators in helping learners to

identify their learning. More specifically, the subsection deals with how individuals offer

direct feedback or an indirect opportunity for reflection. Finally, the last three subsec-

tions deal with recall, coherence and marks, common heuristic mechanisms that learners

and educators describe as parsimonious ways of identifying learning.

8.3.1 Transitioning Learners and Recognising Learning

Student descriptions of how they recognise learning fell into one of seven categories:

“Comparison with the individual and past performance”, “Comparison with Other Stu-

dents”, “Coherence”, “Comparison with the Discipline”, “Marks”, “Feedback” and (for

students only) “Recall”. Figure 8.9 shows the codes as they were organised as categories

and subcategories for recognising learning.
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Figure 8.10: Transitioning Learners’ Measurements

The findings indicate that to a certain extent, the learners adopted measurements

of their own learning from their background. Figure 8.10 shows a breakdown of

how students who are transitioning from one domain to another measure their learning.

The percentages refer to the number of conversational turns related to that particular

way of recognising learning and the percentage of those turns that was devoted to a

particular measure. All of the students represented by this chart who are transitioning

from Finance, Business and Medicine, are transitioning into the Arts and Humanities.

In contrast, Figure 8.11 shows how students who are not transitioning to another dis-

cipline recognise their learning. Definite trends among those active in the Arts and

Humanities are visible, for example, in terms of the importance of coherence. For par-

ticipants learning a STEM science, recognition of learning appeared to be much more

related to performance and, more specifically, marks. Those transitioning tended to

show more flexibility in conversations and individuals increased the amount

of time they spent talking about measurements of learning that are not nec-

essarily typical of their previous domain. This was particularly true when students

were in mixed focus groups (of different domains and backgrounds).
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Figure 8.11: Non-Transitioning Learners’ Measurements

8.3.2 Educator Indicators

Educator indicators of learning are slightly different from those of students, which was

apparent in the exploratory interviews. However, in mapping educator comments on

learning to learner recognition of learning codes shows some interesting trends. Marks

and comparisons with the average student, for example, were more commonly discussed

by educators who had the goal of preparing learners for practice, while feedback from

learners about their learning appeared to be more important to educators trying to

satisfy learners and develop strong minds. Figure 8.12 shows the percentage of overall

comments about recognising learning that related to each type of measurement and

educational goal.

Educators developing strong minds, who were typically identified among educators in

the Arts and Humanities or Social Sciences, discussed how they rely on coherence to

understand whether or not a learner has really absorbed the content of the module.
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Figure 8.12: Educator Recognition of Learning

“It’s in those little details. Does the person know how to transition

from one idea to the next? Is there a flow? Does it ‘hang together’?

You get a sense for that. A student who is not just repeating back

what you say, but knows how to, I suppose, navigate around the

topic.” - Nora

Recognising learning more generally was not as large a part of the educator focus groups

as it was for learners. This was, in part, by design, as the exploratory interviews had al-

ready looked quite deeply into this from educator perspectives. It was also possible that,

due to the fact that educators came to the focus group with an express interest in learn-

ing analytics, the discussion was moved swiftly in that direction. However, in comparing

educator perspectives from the exploratory interviews, one can see some consistencies in

the data. Educators developing strong minds, who described measuring learning through

euphoria and excitement in the classroom, do so by observing learner activity and com-

paring it with previous states of activity. In addition, they recognise learning through

seeking coherence in learners’ work and being receptive to their feedback. Once again,

educators preparing for practice expressed more interest in using marks and comparisons

against averages or other groups of learners as tools for recognising learning.
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8.3.3 Comparison with the Self

Comparisons between past and previous behaviours and emotions of the individual stu-

dent were a common measurement for both educators and learners. Self-comparisons

were identified among learners through the ways in which they described tracking and

monitoring their own performance.

“I go back to those first tutorials and think, oh my God, seriously,

look how far I’ve come. I know I’ve learned a vast amount this year,

a serious amount. I think it’s from looking back and realising that

actually, that was really difficult at the time and now that’s okay.”

- Vicky

Recognition that something is easier or makes more sense over time was the

most common type of self-comparison after comparing one’s previous and

present marks. Learners also made self-comparisons with regard to states of emo-

tional well-being, social well-being and over-all progress toward their goals.

For both first-time and return students in the Arts and Humanities, self-comparison was

often described in terms of the affective aspects of learning, feelings of excitement

and engagement.

“I don’t feel guilty anymore. I know I’m working because I feel

proud of myself.” - Frank

“I know if I’m learning effectively when I have to keep switching

to my laptop to Google stuff or want to research something a bit

more. That’s how I know that my brain’s active and I’m really

doing something.” - Allan

Improvements appeared to be more difficult for learners to concretely measure, because

the individual was typically comparing this affective state with ill-defined parameters,

such as “better than before” or “more than before”, where “before” was not defined

explicitly, even for the learner. This is another example of how the interpretation of

certain metrics is subjective.
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For first time and return STEM students, past performance was more about assess-

ment and performance, in terms of marks. Generally, these students described easily

recognisable data points to make general decisions about effort.

“I got low 70s for my first TMAs this year, which surprised me,

because I was a 80s kind of student the previous year. It got me

thinking about whether or not I was taking it in.” - Mascha

This type of comparison relies on the learner’s self-image and how this image compares

to reality. Other students have more difficulty understanding how to leverage marks as

information relevant to the practice of learning.

“I wouldn’t really be able to say, simply based on my marks if I was

doing well or not. I mean, compared to what? Each assignment is

so different, each module, each tutor. I can get 1sts for 4 modules

and 3rds for the rest. My performance has very little to say about

what I’ve actually learnt.” - Moritz

In this exchange, Moritz’s statement shows that he struggles to understand how he can

contextualise a mark in any meaningful way. His interest in marks is more “procedural”

in terms of how they contribute to his overall aim of doing his best (for example, getting

a distinction).

“Obviously, I can see that if I am able to perform well on these

exams, I get rewarded for that. I am interested in the reward, the

distinction. It’s not just a pat on the head.” - Moritz

Educators also compared an individual against their previous performance,

behaviour and attitude.
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“You will see improvement in the students, from whatever level

they came in with. Sometimes with a group of students, you don’t

get such a steep curve. You get a shallow incline because they’re

already up there. They don’t have far to go. I guess for me it was

always a question of looking at where the students started. I hate to

use the word ‘baseline assessment’ but that’s what it is. You make

a mental note of where they’re at and you’re looking for them to

move upwards. Formative and summative assessment. If a student

takes a sudden dive, you’ve got to look at that because something’s

wrong. I wouldn’t expect any student to be on a downward curve

ever. If it was level, I would say, okay, there’s an issue there.” -

Elizabeth

This simple measurement, of whether the student is doing better than before, is one

that many educators used to help them gauge learning. Elizabeth’s expectation that

no student should be “on a downward curve” indicates that she views this as a general

measurement, one that can also be used in diagnosing a learning challenge, potentially

even for learners who are already average.

8.3.4 Comparison with Others

Comparisons with others included comparisons between cohorts, between individual

students and cohorts, past and present students in the same module, and with students

that meet certain criteria (for example the top 10% of the class). They include not only

comparisons of performance, but also of activity and retention (across modules, study

programmes and the University as a whole).

Learners were less interested in cohort comparisons, unless they were small groups in

the same module. However, learners disagreed on how much could truly be compared

between two different groups of individual students.
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Asha: “We did this exercise once, a group presentation. The qual-

ity between the groups was enormous. You could see that. The

presentations looked rushed in some cases, spelling and grammar

mistakes, no cohesion in the fonts, no structure. You could just tell

that what we’d done was much more...much more professional than

that.”

Betty: “That’s not learning, that’s something, that’s something

else.”

Asha: “It says something about the time spent, though, doesn’t

it?”

Betty: “If I’m in this class and I’ve done such a presentation, what

have I learned, then?”

Asha: “You’ve learned how to be diligent and detailed about some-

thing, how to put together an argument that makes sense. That’s

learning.”

Betty: “That’s form. I can deliver something polished that is not

very insightful. You can’t judge group work based on that.”

Betty and Asha’s discussion was typical of learners with open strategies (such as Betty)

and learners with pragmatic strategies (like Asha). For Asha, the proxy for learning

should be the cleanest, most easily recognisable factor. Betty has difficulty in seeing

such a proxy as useful, without it giving her a sense of the larger picture.

As learners debated how they apply comparisons with others, it became clear that

students have different expectations around what a useful comparison might

be. Ultimately, the participants agreed that the learner decides.

“I would like to know where my mark sits in the overall marks...It

would make me work harder.” - Ralf

“I suppose you could get something from that. I don’t know if I

need to see all of that. Maybe just the top 10%?” - Asha

“Top 10%, top 20%, whatever target you have.” - Ralf

For educators, comparisons against others appeared to be particularly impor-

tant for educators looking to prepare learners for practice and for those
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looking to satisfy learners. Educators seeking to satisfy learners made comparisons

between cohorts to assess the overall “health” of the module, rather than the individual

learning of students. Educators preparing for practice, were more likely to compare

students against other students in their same cohort, particularly in terms of marks and

participation.

Georgia: “I am somewhat of a, kind of, stick in the mud. I have

some high marks, which I am willing to award to students who

work very, very hard. You can see they are leading the discussions,

they are putting in the effort. You can’t really compare them to

anything else but each other.”

Dana: “There are normal fluctuations in the module, you know, one

year everyone is really active and taking it in, and the next year it

feels like you have to push them. There are also these kinds of, I

suppose, effects that you can see, looking at how the students have

responded to certain information. That might not be something I

see this year or the next, but I do feel that we, I don’t know, have

a sense of it, of what is happening.”

Mark: “This year, we had one TMA and they all struggled, which

was a surprise because we thought...”

Dana: (interrupting)“We just need access to that information.”

Mark: “We hadn’t had a single difficulty in the previous year and

there is some truth to what [Dana] is saying. I’ve not seen the

numbers on all of my modules, but this information is out there.”

Georgia: “It’s not perfect, but I think you have to look at reten-

tion.”

Dana and Mark, who both have the goal to satisfy learners expressed worries over a lack

of access to information and orientation around their cohorts. Comparisons between

cohorts was a simple measure used to gauge the overall success of the module.

Georgia, who is preparing learners for practice, expresses more belief that longitudinal

comparisons will highlight learning effects that are as of yet unknown to her.

Retention was an interesting and very common comparison for educators, relative to the

University, the departments, the course of study and specific modules. Most educa-

tors agreed that retention was an important figure and that it is difficult to



Chapter 8 The OU Case Study: What Matters to Educators and Learners at the Open
University 122

interpret. This finding was in keeping with findings from the exploratory interviews

about the topic of retention.

“I think it is institutionally important, that if we take a student

on, we expect them to finish...I think retention is only one measure.

And it’s the measure we’ve got.” - Jeremy

However, this information was occasionally interpreted and applied in different ways.

Educators focused on learner satisfaction tended to also see retention from a learner’s

perspective.

“If I were a student and I saw all of these people dropping out

within the first two weeks, I might think I ought to have a look into

that and find out why.” - Dana

“I think it would be good to know how many of the students do fin-

ish in my area. How many go on to become [names his profession].”

- Jeremy

Educators preparing learners for practice were more concerned about retaining students

through to the end of their course of study.

“The problem is that we are obsessed with retention in modules.

And that’s not our problem. Our problem is retention across pro-

grams. ” - Ivan

“I’m not entirely sure if the Open University can even look at re-

tention in the same way. We have a lot of non-traditional students,

who come to us for many different reasons and a good many of them

are not seeking degrees.” - Georgia
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The perceptions of educators around retention illustrate that, for a simple measure, the

implications are very complex. It is worth noting that these interviews were taking place

within the context of the Teaching Excellence Framework 5, in which (nationally) reten-

tion was an important figure for measuring university performance in teaching. There

appeared to be much concern within the OU that the nature of the University’s mis-

sion and the type of students we attract with flexible, distance education would impact

our ratings. Retention is viewed as a problematic metric, in particular, with regard to

degree-level retention 6. No doubt, this will have been influencing the statements that

educators made about retention.

8.3.5 Feedback

Feedback was coded very generally, in terms of any information that a learner “gained”

from human interaction, with the intention of applying it or learning to apply it. This

included direct and indirect interactions.

Most learners spoke about tutor feedback, in particular, as being an important

tool for recognising, monitoring and controlling learning.

“I think most of my learning comes from feedback with assignments

and tutor comments, as well as assessment scores.” - Chris

“In some of your assignments, you write an essay, you receive your

feedback and then you adjust accordingly, which I’ve done. But he

[a tutor] hasn’t given me anything to go on.” - Grace

At the end of Grace’s statement, she is discussing a new tutor. This tutor has not met

her expectations, which were set by her first tutor, that she would receive concrete,

applicable feedback. In discussing conflicts that learners had with tutors, this was one

subject that nearly every interview touched upon, diversity among tutors. This was

particularly true of learners with pragmatic strategies, who relied on their tutors for

much of their expert knowledge and feedback.

5https://www.officeforstudents.org.uk/advice-and-guidance/teaching/what-is-the-tef/
6https://www.timeshighereducation.com/blog/why-my-university-not-entering-tef
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“If someone tells me, ‘you’ve got to work on your argument here’,

but I am not entirely sure what an argument is, consists of, that’s

significant. I am going to need some help. That’s why I am here.”

- Ora

“You have to put it right in front of my face kind of thing, exactly,

what is it that’s wrong.” Jonah

“Tell me why I need to do this in this way.” - Boris

“It’s almost as if some of them really don’t know what to say, but

they have to say something, so they just say whatever and then you

find yourself with all of these vague comments wondering what or

how, what you can do with it.” - Ida

Other students, in particular those with open strategies, expected some emo-

tional and social support from their tutor.

“It totally depends on your tutor whether you feel as if you’re get-

ting support or not. The tutor we’ve had this year has been fan-

tastic, really, very proactive with us, actually and very motivating.

Last year, they just sort of marked your TMAs and that was it,

kind of thing.” - Joan

Students, more than educators, considered the role of other human beings

in their learning experience. In a feedback email, one student participant reflected

on her experience of participating in the research study and how it triggered a reflection

on reflection.
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“Perhaps just talking to someone who you know is really listening is

the vital key to increase motivation, enable effective reflection and

to support students to progress through understanding themselves.

I not sure that it matters whether it is in person (though that is

nice) or on a computer, as we did. It is the fact that if someone

asks a question and is really listening, then we are more likely to

consider and provide a more honest and in depth answer, and when

the questions are about yourself, then the answers are surely going

to lead to more effective reflection and resulting progress.” - Ora

Similar to the findings of the exploratory interviews, educator participants in the

focus groups also relied heavily on learner feedback to understand and make

sense of learning. Once again, this information appeared to be most important for

educators developing strong minds and satisfying learners, as illustrated by Figure 8.12.

8.3.6 Recall

The ability to recall was mentioned by several students, in particular students that

return to education after retirement, as an important measure of learning. In particular,

forgetting was viewed as a sign that learning had not taken place. Laurie recounted a

story in which a fellow classmate was able to participate in the classroom discussion,

because he was able to remember the name of a certain theory that they had learned in

a previous class.

“I knew when he said the word, I knew what he meant. But I

couldn’t have answered the question because I didn’t remember

it.” - Laurie

Statements about memory were unclear in whether they were about recognising learning,

or recognising a skill that is helpful for learning. Most of the participants that discussed

memory issues were older students. However, some claimed that they had always had

memory problems. It is therefore unclear whether these perceptions are related to age,

or to a conceptualisation of education that was formed much earlier when rote learning

was a more popular method of study.
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8.3.7 Coherence

Coherence was described by learners as a sense of meaning and logic within the whole,

almost as thought the pieces of the puzzle were coming together as the student learned.

Participants described recognising coherence through moments in which

their participation in the discourse was facilitated by what they had learned.

Grace described how her architecture class has helped to her to gain an appreciation for

things that had previously escaped her.

“When I go past a church, things spring to mind and I can tell I

look a lot more into it than I initially did...So, after you’ve read

the chapter, if you’re looking around at paintings, at buildings,

and things are springing to mind, you realise you’ve picked up the

thing.” - Grace

Learner participants also described seeking coherence in terms of holism, exam-

ining their arguments and their work from multiple perspectives.

“When you answer a question, you actually have to sit back and look

at it from as many different ways...it’s almost like an interrogation.

You interrogate your answer to make sure that you’ve got all the

sides in.” - Laurie

Coherence was an important issue, in particular for educators developing strong minds

and those pursuing learner satisfaction. Often, these educators described difficulties

with assessment, which forced them to seek information about student learning from

other composite variables.

George: “The difference between a 1st and 2nd year student is the

bridges between paragraphs.”

Sam: (laughs) “That’s what they say, but no, yes, it actually does

have some, potency, this statement. An advanced student knows

how to massage the topic, play with it, cast it in an alternative

light. A 1st year student struggles to use the terms correctly.”

George: ”I am still struggling with our terms!”
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George and Sam are able to provide a few measurements in this statement, but they

are difficult to capture. When asked how they get a sense for those measurements, Sam

said:

“It’s something you acquire with time, I think. I couldn’t really

say. Or maybe I could? I would really have to sit and think about

it.”

George agreed that it might be possible to describe what is meant by coherence in

concrete terms, but that it would have to be an individual exercise by the educator who

wanted to use such a measurement.

“What makes sense for me is not going to make sense for someone

else. Could I tell a tutor helping me mark my assignments, ‘could

you please make sure that all of these things are covered?’ Wouldn’t

that be just immense?” - George

George’s perception of the impossibility of such types of assessment was shared among

many educators, those for whom the measure was deeply important as well as those

for which it was not. The understanding that there are certain things that cannot be

measured appears to be a necessary scepticism toward recognising learning, which is

shared among educators at the Open University.

8.3.8 Marks

Of course, marks were also generally perceived as an important measure of learning,

particularly in combination with comparison. However, when a learner did not use a

comparison, but rather a more generic standard, they were coded as using “Marks”

to determine learning. For example, Chris said in a focus group that he knew he was

learning when his grades were “high”. After one of the participants in the focus group

asked him “what is high?”, Chris says“Over 80”. On what it is about this score that

helps Chris to understand his learning, he said:

“I am appreciative of the feedback he gives, as well as the actual,

simple score, I mean, aren’t grades ultimately the final arbiter? You

either pass, or you get a distinction, or not.” - Chris
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Chris was not the only student who had such a generic standard. Occasionally, the

standard would start much lower, a pass, for example. Over time, that benchmark

occasionally had changed for the learner. For example, Allan also finds grades important,

though this is a new experience for him:

“I coasted through school and I coasted through college, and it

wasn’t until about 21 that I realised that. So part of my thing,

especially this year, was to ensure that I put as much effort as I

could in order to see my grades go higher. I suppose a grade is a kind

of measurement of the effort I’m putting in. I could probably coast

it at 70 out of 100 in assessments, but like [Chris], I am thinking

anything about 80 and that’s when I know that I’m putting in the

work for me.” - Allan

Allan does not describe the grade itself as the actual measurement, like Chris does. For

Allan, the grade is a proxy for effort, so long as it is above what he knows he is capable

of achieving without much effort. This is something that only Allan can know. If Allan

did not particularly mind coasting, his behaviour would not likely trigger any red flags,

as he is able to perform fairly well without trying. As he describes it, however, he would

clearly not be acquiring much new information or learning from the experience.

The findings indicate that it is necessary to understand something about the

strategy of the student, who recognises their learning through marks.

8.3.9 Comparison with the Discipline

Comparisons that learners made between themselves and the discipline were typically

dependent on how far along they were in their studies and the discipline in which they

were currently studying. Interestingly, the less experience a student had and the newer

they were to the discipline (without any previous training in the subject), the more

they sought criteria within the discipline as a measure of their learning, even when this

criteria was very vague. A first year student in environmental science, with a background

in activism, rather than science, expressed doubts and insecurities about how much she

was able to understand and learn in her class.
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“This course is a scientific base for people who are going to be

going forward, maybe to measure things in the environment. I

wasn’t taking it that far. I’m interested in waste and the amount

of stuff we throw away. I don’t think I’ll be measuring things in the

same way. You don’t think that there are all of these other things

involved, all of these measurements, all of these massive numbers

that you can’t get your head around. It’s a bit like saying ‘I’ve got

a trillion pounds in the bank.’ What does that mean?” - Laurie

A first year student in English Literature, with a background in accounting, was looking

for signs of passion and creativity inside of himself. He spoke about needing to “fall in

love” with his tutor, and be inspired by her. Whatever the student thought was expected

of them by their perceptions of the domain, they judged their capabilities against that.

Findings indicated that a sense of insecurity in their new field led transitioning

students to seek comparisons between themselves and what they perceive to

be the expectations of their current field. They may need assistance early on in

orienting themselves in a new system.

Educators, even those that had quite heated discussions about other issues in online and

distance education or pedagogy, all seemed to share one very common but vague metric

in determining learner success, their own sense of shame and pride when they

intellectually compared the learner to the expectations of the discipline.
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Lucy: “In terms of content, I like to think about it in terms of

whether or not it can stand up to scrutiny from the outside.”

Ivan: “The student should be able to pursue a PhD degree in

Manchester and not look like [an idiot] when they show up for

the interview because whatever they’ve been taught is not what is

accepted within the community.”

Lucy: (Interrupting)“That when they go out, that they can fit

within the community.”

Jeremy: “You have lots of different types of students, the floggers,

the sackers... and for me, it’s heartbreaking when you see someone

on the borders, when you have someone who has clearly done, you

know ‘almost enough’. I could pass this person, fail this person,

whatever. My only criteria is, finally, when we argue this is if

someone came up to me on the street and said ’you passed this

person’ if I think I would feel ashamed. Then I would fail them.”

This measurement is intuitive, and relies on the educator consulting their own affective

state with regard to the learner. The only group of educators for whom this seemed to

be less important, were educators pursuing learner satisfaction. However, both of these

educators were from Business or Finance faculties, which introduces another variable

and makes interpretation of this phenomenon difficult.

8.4 Learning Strategy Orientation

Thus far, the previous sections have constructed a picture of the participants’ context

and background, their learning goals and the ways in which they recognise progress to-

ward those goals. The importance of dynamic strategies in driving those efforts became

apparent in discussing how students approach learning in general and, in particular, how

they gained access to the strategies they are using. This section explores learner and

educator perspectives on learner strategies and relates this information to the findings

discussed in the seconds above. Subsections 8.4.1 and 8.4.2 provide an explanation of

the strategy codes “open”, “pragmatic” and “applied”, and the apparent influence of

background features on strategy orientation adoption. Subsections 8.4.3 and 8.4.4 deal

with strategies that learners believed were carried over from their previous educational

or professional backgrounds. Subsection 8.4.5 discusses learners with disabilities and
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the special awareness that some of these learners expressed around their learning com-

petencies and strategies. The final subsection includes educator perspectives on learner

strategies that were distilled from the focus groups.

8.4.1 Open, Pragmatic and Applied Strategies

Learner participants described their current strategies for achieving their aims and their

module specific goals. While strategies themselves were rather mixed, 3 types of strate-

gic “approaches” emerged from their statements: “Open Strategies”, “Pragmatic Strate-

gies” and “Applied Strategies”. It is important to note that these strategies only repre-

sent a snapshot into the current experience of the learner and do not represent a static,

or fixed trait or quality. Rather, they represent the whole of what was visible at the

moment of the interview, with regard to where the learner had come from (in a profes-

sional sense), what stage of life they were currently experiencing, any confounding life

circumstances and the usual qualifiers having to do with personal character, desires and

needs.

Learners coded as having an “Open Strategy” a) were currently open to questioning

their current strategies and b) actively seeking inspiration from outside of themselves.

These learners tended to have more general than specific strategies. They also tended

to struggle with the isolation of online learning.

“I do like to discuss what I’m thinking and the opportunity really

isn’t there. I think, maybe, if I was discussing it more in a group,

I might hear things, bounce ideas around and then come away and

maybe just do one draft and then change it a little bit...I don’t

get to talk about what I’m keen on sometimes, and learn, just

enthusiastic, and I really want to talk about it and there’s no one

to talk to. Sometimes, if I just get feedback, I find that I might

take it differently to what is meant. And so, I’m like it would be

good to discuss that, I think.” - Harriett

Learners like Harriett find it difficult to cope when their social needs in learning are

not met. Access to a community of learners would help Harriett, as she describes,

particularly at the beginning, where she needs orientation.

Learners with “Pragmatic Strategies” a) already had specific strategies for optimising

performance, b) were typically seeking the easiest path to achieve the aim, and c)
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generally looked only for specific advice from other people around them. Pragmatic

learners tended to express more confidence around their learning and were, surprisingly,

most eager to share their strategies with others. In gaining strategies from others,

pragmatic learners described their behaviour more like information gathering, seeking

out specific answers to specific questions from classmates and tutors.

“I’ve found I learn well when I have very concrete examples of

things, of how to play out key concepts. I’ve also realised that I am

not terrible good at focusing on key concepts and I love going my

own way, exploring my own literature and my own roots. But that’s

not what’s expected here. I have to buckle down and be disciplined

about what exactly I am being told to read.” - Jaisha

Jaisha’s comment is an example of how pragmatic strategies seemed to be organising

around delivering what is expected.

In contrast, Learners with “Applied Strategies” appear to organise their learning around

personal mastery. Such learners a) already had strategies for maximising performance,

b) were typically seeking the best path to achieve the aim, and c) looked for both

general and specific advice from other people around them. For example, Ralf spoke

about utilising students who have previously studied the module to gain important

information on key concepts. But he understands the difference in applying that strategy

to his assignments, in comparison with what is necessary for the project work he is about

to undertake.

“Luckily, one of my colleagues I keep referring to did the module

last year, so she gave me a head’s up on what I needed to be doing

and when. I think the biggest piece of advice that I got [from the

forum] was to choose a subject you’re interested in, to do the project

on. And that’s what I’ve followed and plus, it interests me...on the

project module, you have to be very self-motivating. Whereas with

a normal module, you have to have certain things done by certain

times and read certain chapters by this. The diary for the project

module is just a blank sheet, really.” - Ralf

Learners with applied strategies demonstrated that they were choosing strategies to suit

the task.
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8.4.2 The Influence of Background on Strategy

Figure 8.13 shows a breakdown of participants according to background and strategic

approach. The findings indicate that the learner’s background appeared to influ-

ence strategy, especially in combination with the overall aim.

Figure 8.13: Learner Strategies by Educational Background

It is, perhaps, not surprising that learners who have the goal of personal development

tend to do everything they know how to do in order to prepare themselves for the learning

experience. They described activities such as looking at the full course materials, logging

on to the VLE early, and completing school preparation on holiday. Learners who have

the goal of qualification did not uniformly exhibit this behaviour. It depended on the

learner’s secondary goal, regarding the module itself, and whether or not the learner

perceived the module as highly necessary for their future success.

However, many new students and those who had raised children or worked in a non-

academic field before studying also found it difficult to formulate a strategy.

“Especially those that have a job already working as a manager or

someone in charge. They already have experience of having to be

in charge, of having to be self-directed. I found that difficult.” -

Harriett

Findings suggested that learners without previous academic experience relied

on other learners to help demonstrate strategies that work.
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8.4.3 Strategies Carried over from STEM, Medicine and Finance

Learners with a background in STEM sciences, medicine and finance exhibited more

pragmatic and applied strategies. Some learners even described very clearly how this

background affects their current learning experience. Louise, who worked as a doctor

for many years, described “list making” as a practice she adopted from her professional

career.

“I’m afraid it’s a very medical thing. You know, when I started as

a doctor 30 years ago, you had a bit of paper with lists of things

you had to do and you just struck through them as you did them.

I’m always a list maker.” - Louise

Findings suggest that the idea of a right and a wrong answer and the importance

of grades also appeared to be a part of STEM strategy that learners occa-

sionally questioned, when they found themselves in another domain. Chris

and Louise, who both worked with numbers and performance indicators in their profes-

sions, seem to be aware that these strategies might not be the only or the best that they

could apply in their new domain.

“I can only say that I am a product of 50 years of being results

orientated.” - Chris

“Writing a humanities essay, it’s a different skill. And my first essay,

probably, objectively, went very well. But when my tutor advised

me how to make it more suited to the humanities, I could see that

there was a change. I used to write in a very sort of, staccato way. In

science, often, you know, you state the facts and there’s no waffling.

Although it’s not exactly waffling, I think, in the humanities you

often bridge the paragraphs in a slightly different way.” - Louise

In this example, Louise’s quote is particularly interesting because her use of the word

“waffling” supports her overall statement that she has left-over negative connotations

with what she now claims are a positive strategies. This demonstrates how certain

strategies are under-appreciated in some disciplines, and even actively rooted out as

poor practice.
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8.4.4 Strategies Carried over from the Arts and Humanities

Learners with a background in the Arts and Humanities, or who had no background

and were currently studying in an Arts and Humanities module, were the only learner

participants to report having open strategies. Participants with open strategies saw

interaction with others as a large part of their own learning.

Participants with open strategies also tended to be more likely to see the increase of

coherence in their work as a recognition of learning. In particular, coherence appeared

to be related to the student’s perception of their understanding of and contribution to

the discourse. Coherence was described as a signal of learning, which was applied to

non-formal or incidental learning moments as well.

8.4.5 Lessons from Learners with Disabilities

One student group that expressed a strong sense of self-awareness regarding their general

study habits and strategies were learners with recognised and accommodated special

needs and disabilities. All of the participants in this category (n=5) were receiving

some type of institutional support that required reflection on needs and solutions for

successful studies.

“It was only at postgraduate level that I sought and obtained an

educational needs assessment. Since studying with the OU, I have

been meeting with a specialist mentor who is funded by the Dis-

abled Students Allowance...Obviously my own interest in improving

my self-awareness and experience has been an important part of this

process, which is ongoing. Paying attention to what is difficult/-

painful and what flows more easily, I have been able to see more

clearly what I have always experienced.” -Lane

Upon being asked how the mind-mapping tool her specialist mentor offered is impacting

her learning, Lane said:
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“being able to target my time and energy on the most relevant ma-

terial, because mind-mapping allows me to think about how things

are related and what is relevant (I find this much more difficult with

linear text). And I have limited effective study time/energy so it is

important for me to be able to work smartly rather than trying to

put in lots of hours. As a result I am not always struggling with

burn-out in the way I was before. The mind-map software allows

me to categorise the notes I am making, so I can put markers for

incomplete notes, reference required, important point etc so I don’t

lose sight of those things because I can’t remember them by my-

self. So I lose less material and therefore work more efficiently. The

mind maps help me reconnect much more quickly with my work

when I have periods of not being able to work and memory gaps. I

don’t have to re-read everything again like I used to have to before

using the mind-mapping software. As a result I don’t tend to need

extensions to assignment deadlines. Before I frequently needed ex-

tensions which I found stressful asking for and felt a bit of a failure

because of.” - Lane

Lane also reported that her marks were more consistent, now that she was able to make

better use of her time, and that the tools she was using helped to assist her memory

in devising a clear path to success, with more manageable milestones. The emotional

effects for her are also considerable.
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“This helps me to manage anxiety and feel less anxious; which then

helps with my concentration. I am more able to enjoy studying in

a formal academic setting than I was before - this is a really big

gain for me and comes out of being able to relax more plus not

burn-out as often. Before, I loved learning but found negotiating

the difficulties of formal academic study so challenging that there

wasn’t much enjoyment despite achievement. The mind-mapping

software and knowing more about my learning process do not take

away the challenges I have as a student, but they make them more

manageable so that I can make the most of my analytic ability. I got

a distinction for the last MA module (but not for the first module

when I was learning how to use the software and had not yet found

out so much about how to work more effectively) so I guess that is

another measure of the success of the changes.”

The purpose in sharing this entire portion of the focused interview with Lane is that it

provides a very clear picture of how she could have recognised her problem in the first

place (through inconsistent performance, anxiety, difficulty with linear learning, having

to read essential materials several times, need for extensions, etc.). This maps to some

of the educators’ descriptions of their own indicators of trouble, which were described

in the previous chapter. For example, students needing extensions and inconsistent

performance was a general sign of instability in the learning process.

8.4.6 Educator Perspectives on Learner Strategies

Educators participating in the study were aware that some students make judgements

about whether or not to devote time and attention to certain topics, on the basis of

whether or not that topic will be represented on an assessment. Some educators choose

to support students in making pragmatic decisions about their studies, while others

choose to test the learner’s own ability to parse large amounts of information. This

particular aspect of pedagogy did not seem to be related to the educator’s actual goal,

but rather the educator’s self-image.

Figure 8.14 describes the categories and subcategories that emerged from the data re-

garding educator self-image. For example, Educators that described themselves as

“innovators” or “frontiersmen” tended to place more responsibility on the
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Figure 8.14: Categories and Subcategories for Educator Self-Image

shoulders of students to distil the most salient points of the lesson or mod-

ule. Educators that viewed themselves as “facilitators” or “guides” tended

to describe their own responsibility to ease the path of learning for a diverse

group of students. When asked if he would facilitate a student in doing the bare

minimum for a course they were moderating, one tutor said:

“That’s up to them. If a student is sitting in my office telling me

that they are working full time and trying to raise several children

or whatever, I am really inclined to advise that student on how to

get where they want to go in the most expeditious way possible.”

This included, for those who felt it was appropriate, advising students to drop a module

because the student has determined that the workload is too significant to manage. One

educator, talking about peer support networks, voiced concerns that students might ad-

vise each other toward unrealistic expectations and that it was necessary as an educator

to inform a student when they see that the student has taken on too much work.

“What you’ve got to remember is that choosing to drop a module

is also a valid decision. There is no point in keeping a student here

who cannot do the work. The better strategy is to understand why

they cannot do the work and address that.” - George
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The learner’s ability to “self-regulate” and control their learning process is

often described as a secondary goal that is vitally important. However, it

appears that it is mostly implicitly trained and tested.

“One of the things you should come out with after completing any

kind of degree is how to manage your own learning, I believe. So

as the student progresses along their learning journey, I believe

we should be less and less hands on in terms of how the student

engages with the information, and leave that more and more up

to the student...And on the forums, you’ll have some students who

are happy with the amount of work that they’ve got and you’ll

have other students who are not. And I am trying to tell these

students you’ve got this knock on exam at the end and you should

be selecting the most important information and engaging with it

in a way that you feel is appropriate. At which point you get

comments back from some of the students saying ‘well, actually,

this is not how I like to work. I like to sort of make sure I’ve

understood everything and move on.’ And I say ‘well, I can always

give you more stuff. Does that mean that you are going to try and

do everything?’ Part of the skills you should be developing is how

to manage large collections of information and documents.” - Ivan

Ivan’s statement indicates that he finds fault with this type of learning strategy, as he

feels it is ineffective in building a skill he feels is critical. However, not all educators agree

with this approach. The following exchange between Ivan and Jeremy is an example of

a disagreement that was commonly recorded during the focus groups, especially those

with heterogeneous participants (in terms of goals).
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Ivan: “I do not see University as an educational provider of an

educational service...My job is to create something that is going to

support the development [of a] discipline.”

Jeremy: “In contrast to what you’ve said, my concern when I am

teaching is ‘is the student having a good time?’ Is it fun? Do they

like what I’m doing? I agree with what you’ve said about their

motivation and their educational aspiration, but we can still do a

very bad job of...”

Ivan: “...I’m not saying we couldn’t deliver a very bad module...My

point was that it is reasonable for me to have an expectation that

they want to study this, at which point it becomes my job to make

it as interesting as possible. However, it is not my job to make it

more interesting for people who have no intrinsic interest in that

subject”.

Ivan’s statement exemplifies concerns raised in earlier chapters of this thesis that a

market-style approach to University education is counter to its traditional purpose, when

compared with other forms of higher education, including trade schools and Universities

of applied sciences. This corresponded typically to a belief that the learner arrives at

the institution with the motivation to learn whatever it is that they have chosen to

learn. However, educators that view themselves as facilitators and guides, see

learner motivation more as a reciprocal event, which educators and should

influence. The focus group was a vehicle to explore these differences.

Educators like Ivan, who perceived themselves as pioneers or innovators in education

and who are preparing learners to enter a specific discipline, tended to place more

responsibility on the shoulders of the learner to self-motivate. The only exception to

this trend found in the data was when the educator reported a large class

size. In the exploratory interviews, the class size where this tipping point

occurred was 1000+ learners. In the focus groups, this number was determined to

be smaller, from 250+ learners.7

Educators like Jeremy, who describe themselves as facilitators, tended to more easily

recognise student agency as being influenced by the educational context and his own

behaviour.

7The exploratory interviews did not include any participants with a class size range of 150+-1000+
learners, so this effect was not previously identified in that first set of interviews.
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Innovators and frontiers-people, as well as facilitators and guides, can be found in dif-

ferent faculties across the University. When conflicts in focus groups arose, edu-

cators who viewed themselves as facilitators and guides tended to invoke the

mission of the University as an arbiter.

“Then we have to remember that the mission of the OU is inclu-

sive learning, and that means that we’ll have lots of students from

different backgrounds. And I do get your point, I hear from some

students things like ’Oh, this is not at the Master’s level’ but I am

more inclined to help those who...so the way we are designed we

try to provide some challenges for those who are at that level, but

we are designing the course so that those who are not yet at that

level can access it. I agree with you, we should do something to

ensure the high level of teaching and coursework, but we need to

have balance”. - Dave

Some educators viewed this type of accommodation as being unfair toward other types

of students.

“You have to think about the high performers too, and actually, the

mid-range students. Where are they? How can they be supported?

I would really love to understand that middle-of-the-road type of

student. Where is the support for that student?” - Nora

“My point is, we’re often told we need to focus on the weaker stu-

dents and I disagree with that. Actually strong students pay the

same fees as weak students. They should have the same chance to

explore their strengths as the weaker students have to have their

weaknesses accommodated.” -Ivan

These findings indicate that some educators perceive a trend in supporting weak-

learners at the University, which they feel has resulted (in part) from analytic

data that has been used to reform or re-calibrate modules. This activity of

streamlining modules, which some educators perceive as “dumbing down” was also seen

in the exploratory interviews.
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8.5 Reflections on the Case Study Context

Context was such a significant part of students’ lives that it consumed most of the

conversation with students studying at the OU. Each story was uniquely challenging,

making it difficult to understand how to pin-point real factors in recognising learning.

One ever-present factor was change; in accepting new definitions of learning, in develop-

ing expertise, in choosing an individual target. This section describes some reflections

on these changes, in keeping with the procedure of constant comparison [130]. These re-

flections led to shifts in theorising about educator and learner experiences with learning

analytics, and how they can be improved. In particular, the importance of agency and

having tools for improving visibility of that agency, became more apparent in the data.

8.5.1 Indicators of Learning

Reflecting on what educators described in the exploratory interviews as “learning” (see

Figure 7.6) and how this mapped to learners’ ways of recognising learning (see Figures 8.9

and 8.12) brought up several interesting themes in the data. First, educators and learners

have to be receptive to information for it to inform their judgements about learning. If

they trust their intuition, this is perceived as a good tool for recognising learning and

it is used. If they trust data, this is perceived as a good tool and it is used. Learning

analytics researchers and developers will need to build trust for their tools to

be perceived as good tools for learning. Second, educators have more sophisticated

ways of describing what they view as learning. For example, educators delineate between

different categories of social relationships and their importance in recognising learning.

Learners did not describe their relationship to other learners and what that

indicates about their learning. Only in comparison with others, did learners see how

others frame their learning journey. Educators saw many more indicators of learning by

looking at the success of communication and interaction in the classroom. This birds-eye

view may also be interesting for learners, based on what they feel is important about

issues such as coherence and accessing discourse.

8.5.2 Transition and Change in Recognising Learning

In the data, stakeholders agree that goals and strategies change. In addition, some

indicators for learning have qualifiers that are known only to the individual and which

are also changeable, such as “better than...” and “more than...”, or “good enough”.

For example, having a specific grade target or class percentile is a threshold set by the

individual. After the first focus group, I realised that I had not noticed these qualifiers
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and inquired after them. On reflection, I realise that this is because I was simultaneously

interpreting them for myself or assuming that some objective value could be given.

At this point, more attention was given to qualifiers in the focus groups and focused

interviews, and when they were mentioned, I asked the participant to tell me exactly

what that meant for them.

8.6 Chapter Summary

This chapter described the context of the Open University as a case study. The Open

University invests in analytics, has significant expertise in the field and could benefit

considerably from its insights. As such, the OU provides a suitable environment for

examining the impact learning analytics is having, and seeking ways to leverage and

improve those effects. The first section of the chapter described the Open University’s

interests in learning analytics, and provided a description of the participants, procedure

and processes of analysis involved in the study.

The second section discussed findings related to goals and goal orientation. Findings

support indications from the exploratory interviews that educators’ goals are associated

with the practicalities and ideologies of their departments, as well as the Open Univer-

sity. Learners tended to express two types of goals, one higher aim for their educational

trajectory, and one for the module. Findings indicate that the learners’ backgrounds

were important in orienting them on a goal. In particular, the findings suggest that

learners seeking qualifications as their primary aim express more module specific goals

that may not be the same as their aim. The third and fourth sections address how

participants recognise and evidence learning, and the strategies they use to influence

the learning process. Findings indicated that transitioning learners, moving from one

domain to another at the Open University, were able to describe and discuss more

strategies than other learners, but may not know how to incorporate them all into their

studies. Findings also indicated that ways of recognising and controlling learning are

shared more commonly among students with a certain educational background, which

supports educators’ perspectives from the exploratory interviews. The findings of this

chapter are important for interpreting why a certain affordance might be particularly

apparent and attractive to learners or educators with a specific background, goals or

strategies. Participants’ statements indicate that their motivation to achieve, the recog-

nition of their achievements and the ways in which they control their learning processes

are connected. Certain information will be valuable or not, depending on its position

in the “hierarchy” of priorities that students have. The next chapter will discuss how
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learners and educators perceived affordances in using certain types of learning analytics’

data or technologies to support their practice.



Chapter 9

The OU Case Study: Affordances

of Learning Analytics for

Improving Practice

He who loves practice without theory is like the sailor who boards ship without

a rudder and compass and never knows where he may cast. - Leonardo da

Vinci

Context-related findings presented in the previous chapter suggested that learners at

the Open University have considerable knowledge and skills from other professional,

personal and educational undertakings. Learners and educators at the OU believed that

this background shaped their learning strategy and its influences are also apparent in

their strategy choices. Learners participating in the study were able to describe how

this process occurred, particularly when they are were experiencing a change in their

domain of engagement (from one type of faculty to another, or one profession to a very

different course of study). Participants also discussed the role and importance of different

figures in education, such as other students, tutors and the Open University as an entity,

and the impact of those agents on their practice. Findings indicated that educators

and learners can perceive, even if they do not exactly name, a problem of

competing student goals “in the classroom” at the Open University, which

is difficult for students and educators. Each participant had an understanding of what

that diversity means for them, in interpreting means and averages, learner progress,

participation and engagement of learners.

145
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The focus of the current chapter is to present the affordances that learners and educators

described in using learning analytics to support their practice. Affordance Theory as-

serts that objects can be perceived in terms of their actionable properties, how an object

can be manipulated or used. During the focus groups, educators and learners discussed

the potential of learning analytics (the object) to perform certain functions (affordances)

[21]. Affordances were examined in terms of the metacognitive activity that the partici-

pant expressed in discussing the given affordance. Particular attention was paid to how

having that information would impact a particular strategy or approach to education,

teaching or learning. Understanding the role that particular needs and interests play in

using learning analytics, it is easier to understand their mediating potential, and thus

the ways in which that potential can be nurtured.

A statement was coded as an Affordance when the following subcategories were present:

a direct reference to a type of digital data that the participant believed would be possible

to capture using the technologies discussed (coded as “Measurements”), along with an

application for that information that would be useful (coded as “Intentions”). When

the participant made an explicit connection with their own practice, this was coded as

“Metacognitive Activity”. These codes were not mutually exclusive and include sub-

categories that will be discussed in subsequent sections. Rather, combinations of codes

revealed the findings within the transcripts, which are presented in this chapter. The

perceptions and influences that participants described about their context will be inter-

woven throughout, to help illustrate how different types of information and technology

trigger metacognitive responses in learners. Examining the weight of certain affordances

over others, as was done with the frequency analysis in the previous chapter, would

potentially lead to a false impression of perceived utility. As was previously discussed,

“familiarisation phases” with new technologies sometimes limit what participants can

imagine is possible [24]. Instead, the chapter compares and contrasts the perspectives of

learners and educators, along with their various departmental, pedagogical and strategy

positions.

The sections are organised by sources of data and measurements that participants dis-

cussed, with an exploration of their intentions and any related metacognitive activity

triggered by the discussion about the participants’ own practice included in the body

of the section. This reason for this choice is that participants discussed the subject of

learning analytics by category of data in their focus groups and this division illuminates

the more subtle differences in their perceptions of how to use the same type of data. In

addition, it should be noted that affordances often link together to to support a specific

intention. This intention is highlighted within the text in boldface. Evaluating learning
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design, while an important affordance of learning analytics, is a large composite of af-

fordances of learning analytics. Thus, the connection of learning analytics to learning

design features in several sections and subsections below.

The first section addresses affordances related to demographic, background and legacy

data for understanding learners’ prior experiences, and performing analyses on differ-

ent groups and cohorts of students. Section 9.2 describes the many affordances that

educators and learners perceived involving data from the VLE. This included general

affordances, such as “Testing Assumptions” (see 9.2.1) and “Predicting At-Risk Learn-

ers”, as well as specific affordances for tracking individual student behaviour (see 9.2.3).

Section 9.3 outlines the affordances that educators and learners identified in using so-

cial network data and social analytics, primarily for exploring the impact of others on

learning. Subsections 9.4 and 9.5 address learning analytics based on non-traditional

sources of data in higher education, sensory data and web data external to the VLE.

The final sections offer some additional insights about the way that participants spoke

about learning analytics and their impressions of what is possible.

9.1 Affordances of Demographic, Background and Legacy

Data

According to educator participants, the Open University has a considerable wealth of

information about students. Participants reported that in some faculties and at some

student levels, it is possible to obtain information about students’ backgrounds and

previous experience from applications to particular courses of study or registration forms.

From student feedback forms, participants said that they had access to some limited

information on learners’ reasons for withdrawing, as well as written evaluations of their

modules. Years of collecting valuable student data means that the Open University has

legacy data about previous presentations of modules [96]. While it is not within the

scope of this thesis to describe in full the data sources that are available to staff at

the OU, it is important to discuss perceptions on how this information can be used to

support student learning. In nearly every case, this data is combined with other data to

produce meaningful insights. The affordances listed in this section, are those which rely

primarily on the type of data that is named in the section title, in order to be effective

in fulfilling the intentions of the participant.

This section is divided into two parts. The first part examines direct and indirect

affordances of learning analytics for supporting complex sociological studies. The second

part explores cohort-level comparisons, on the basis of demographic, legacy and other

types of background data.
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9.1.1 Complex Sociological Studies

In combination with performance data and other information, in particular, from the

VLE (see 9.2), educators saw opportunities to use learning analytics to understand

more about how the experience of education is different for different groups

of people. Social effects of problems commonly noted in society, such as racism, sexism,

poverty and other forms of discrimination or exclusion are believed by some educators

to seriously influence the educational experience [157]. Educators participating in the

study, in particular those in the Arts and Humanities and Social Sciences, were more

likely to report awareness for these effects in their classrooms and viewed learning an-

alytics as an opportunity to explore them. However, these educators were frustrated at

the lack of integration of data.

Elizabeth: “It does seem like there is information coming from one

direction, but it doesn’t join up with data coming from a different

direction...you can’t look at a particular package of students. So, for

example, if you’re concerned about students from a lower economic

background or of a certain gender or ethnicity, you can’t break that

data down in any way. They said, ‘Oh well, you need to go back to

the faculty data crunchers for that kind of data’. No, it should come

from the same place. We should be able to dig into the data and see

more detail about particular groups. So if we’re concerned that the

module is not attracting women, for example, just for the sake of

argument. Can we somehow track the behaviour of female students

through the data? And the answer to that is ‘No you can’t, because

unless you get it down to the student level, you can’t do that.’ If

we’re going to be designing courses that have a broad appeal across

gender and ethnicity, disability, etc., we need to be able to extract

that information and we can’t.”

Researcher: “And if you had that information, what would you do

with it?”

Elizabeth: “That’s a good question too. In some ways, we need to

be able to tease out what it is that enables success for that type of

student.”

Recognising that some learners may be at a disadvantage, Elizabeth and several other

educators felt that it would be possible to better understand and accommodate
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students with special needs using learning analytics to understand their ex-

periences. One common complaint with regard to this point, however, which was par-

ticularly voiced by educators in the Arts and Humanities, Social Sciences and Business,

was a lack of qualitative data.

“I can get access to data, but what is missing for me is the qualita-

tive data, in the sense that my module is an introductory module,

so the students don’t necessarily know if they want to go higher. I

might have 100 students and in the first week, there will be a big

drop off. And I don’t understand why they are leaving. I get the

data, But I don’t get the qualitative reason why they are leaving.

Are they leaving because of a personal reason, because the course

is not good, because they didn’t see a way into the materials, it’s

three different things...In terms of numbers, I can get everything I

want. In terms of intentions, I don’t have that information.” - Dave

For Dave, some key questions that could be critical for his practice remain unanswered

due to what he perceives as a gap in the institution’s knowledge about its learners.

Implicitly in Dave’s statement is a desire to act on student intentions, which is

a common feature of educators who have the educational goal of satisfying learners.

Getting information on intentions is problematic, either because it is not being collected,

or it is not being integrated.

While frustrations with the lack of integration and access is understandable, given the

proximity these educators have to answers they feel they need, there are real concerns

behind integrating data from multiple sources. As one participant explained:

“The problem is not that we don’t have the data. The problem is integrating

that data. There’s a real privacy concern there that integration makes it

possible to recreate the data set.” - Viola

Viola’s statement refers to how integration of multiple sources could provide enough

vectors for someone to effectively identify individuals in a large anonymous data set.

Findings indicate that data privacy concerns are a major set-back in providing

meaningful insights on demographic data for educators. This is a concern that

has been noted in other big data projects involving sensitive information, such as in the

field of health care or banking, in which the benefits and risks are significant. Interest-

ingly, students did not perceive any particular benefit in sociological studies. Rather,
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they tended to view their differences as being goal and motivation dependent, rather

than cultural.

9.1.2 Cohort Comparisons

Using legacy data from previous presentations of modules and academic years, Staff

Tutors and Module Chairs, in particular, spoke about using cohort-level comparisons

to help make important decisions about learning design and pedagogy. Co-

hort comparisons represent only one part of this complex application. Other factors

that educators use to evaluate learning design are included in affordances addressed in

subsequent sections.

One affordance of legacy data, that was described as useful in its own right, is to under-

stand which skills the participants should have developed before they reach

their current module.

“I teach at level 3 and I can see exactly where they dropped off...What

I can’t do is to see how the student did and what their marks were

for the prerequisites.” - Ivan

Ivan was not the only educator in his focus group that would have appreciated under-

standing the knowledge background of the learners. Dave, Lucy and Jeremy all agreed

that having more information about the skills with which a student comes

to the module, leads to better interpretations of the performance of those

students.

Another common affordance for cohort-level comparisons, with regard to legacy data,

was to gain orientation in the faculty. Ken, a relatively new associate lecturer,

and Elizabeth, a former associate lecturer, shared their experiences of being without

orientation early on in one’s career:
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Ken: “You’re kind of in the dark. And you can see who’s passed

the TMAs and the EMA and you can sit down and analyse that,

but not much else.”

Elizabeth: “I know what you mean, I was an AL for 15 years before

I was central staff. And yeah, as an AL you’re kind of in a different

position because you only get the data that sort of relates immedi-

ately to your group. Trying to see the bigger picture is often quite

difficult.”

Ken: “Exactly.”

Elizabeth: “And sometimes that matters and sometimes it doesn’t.

It’s one of those things where if you’re in contact with other tutors

and you can say ‘Well, how’s your group doing?’ you can kind of get

a picture of where the cohort sits. But if you aren’t in contact with

anybody else, you are, as you say, totally in the dark. Sometimes it

would be nice, even if it it was just beginning, middle and end, to

get a picture of okay, ‘You have x amount of people in the cohort,

the average mark for the TMA was that, just even basic information

so you could see how you group sits within that. How that would

impact teaching, I don’t know. As a lecturer you are dealing with

the individual students and as a central academic, you’re dealing

with cohorts. I think it’s a slightly different dynamic.”

Rather than being part of a specific teaching strategy, seeking cohort-level comparisons

appears to be more of a general teaching strategy, similar to learners who compared their

own marks with those of other students. The overall health of the cohort could be quickly

examined by referencing a few measurements, such as the percentage of withdrawals from

the module, overall performance and number of students, for example.

However, Ken and Elizabeth agreed that most educators at this level lack orientation

on how to make complete sense of cohort-level studies.

“It should be longitudinal, it should have reliable data over time.

And it should be presented in a way that makes sense to module

teams to work with. That it’s something that someone without a

degree in maths can understand.” - Elizabeth
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Across the findings, this appears to be a generic critique of learning analytics tools and

technologies, particularly arising from participants without a background in advanced

numeracy or computing. This particular finding will be discussed in more detail in 9.7.7.

9.2 Affordances of VLE Click-Stream Data

For providers of online or blended education, one of the most readily available sources of

information is from interactions and activity within the Virtual Learning Environment.

Students must engage on the platform to perform certain functions, such as access-

ing resources and submitting assignments. Though no one participating in the study

suggested that click-stream data can create a complete story of learner experiences, it

appeared to be a common perception at the Open University that this information is

useful, at the very least to the Open University and, in select cases, individuals within

it.

Not surprisingly, many of the ideas that educators, in particular, were able to generate for

using learning analytics in their practice were related to predicting and classifying

learning behaviour, through analysing their VLE behaviours (and in some cases,

demographic profiles). For educators, the majority of affordances fall into this category.

This section explores the main affordances that educators and learners perceived in using

VLE data to support their practice.

9.2.1 Testing Assumptions

The most commonly mentioned, if rather general, affordance for having access to click-

stream data and other information from the VLE was to test the educator’s own

assumptions. Inside of these types of affordances, the measurement, intention and

metacognitive activity appeared to be self-contained: the meaning was assigned by the

educator, as was the intention, and the technology had more of a facilitating than

enlightening role. Jeremy, who had experience in MOOCs, as well as in other types of

digital pedagogy, described a theoretical tool that could serve this function:
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“I imagine having my screen with all of the students and maybe

one student is blue and another is green, indicating a certain type

of student pattern, for example. So, I can see the structure of the

cohort and the dynamics of the cohort, and within that there is

still the individual student. I want to improve education and I

think that’s the best way to do it. I think analytics can support

that.”

As Jeremy was describing his tool, the other participants in his focus group, regardless of

their goals, were interested in such a prospect. Later on in the focus group, when asked

“who knows best”, when it comes to interpreting learning analytics, the participants

had the following exchange.

Jeremy: “I don’t think anyone knows best.”

Ivan: “I agree.”

Jeremy: “I think we all have different perspectives, we all have

different opinions and it can all get very dynamic. If I had the

choice, I would not have some top down, ‘this is the best’...I would

make it sort of automatic so people can access it and play with it

and do creative things with it.”

Ivan: “But that’s why I think your vision with the screen and all of

the little dots on it, that’s very appealing. Because as well as the

screen with all of the little dots on it, you could have a column down

the side that says these are the features that have been incorporated

in this model.”

Ivan’s statement describes a potentially useful “top-down” aspect of learning analytics,

as a framework or model that could have “standardised” measurements. The combina-

tion and interpretation of those measurements would be manipulated by the educator.

Ideas similar to those Ivan and Jeremy discussed appealed to most of the educators,

even those without advanced numeracy. Findings indicate that, for testing assumptions,

educators would appreciate semi-structured “shell tool” of different indicators that could

be bundled together using the educators’ own systems of recognising learning. By the

description of “shell tool” it appears to be described as a tool that would incorporate
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some different models of learning that educators can “play” with to learn

more about learning analytics.

Jeremy further indicated that he had a practical interest in analytics because he believed

that, through learning analytics, it would be possible to create different “streams of

educational content that will allow a greater number of students to manage

it on their own.” As a believer in the philosophy that the OU communicates, Jeremy,

who focused on learner satisfaction, believed this would resolve an ideological issue for

him around accessibility and personalisation in learning.

However, it is clear that Jeremy views technology as enhancing his role, rather than

replacing it. Participants in the focus groups that described themselves as “innovators”

and “frontiersmen” tended to speak more about the risks of “top-down” analytics, in

which the measurements and intentions are not self-contained, when speaking about

wanting to test their own assumptions. However, the reason for this could be that they

perceive their assumptions as necessarily challenging commonly held beliefs in education

that required a new perspective.

“I imagine it as something really dynamic, so patterns, the dy-

namic patterns are interesting too, to me. There is an example from

France. They have about half a million students who are learning

maths and they use this kind of analysis of the different pathways

they can take based on personality and some kids will want to go

this way and some will want to do whatever first and this that and

the other. And that is incredibly interesting. And they’ve done

that for some years now. And so, with our students, the analytics

could show that even though they can manage this sort of linear

progression, maybe they would like to learn differently.” - Jeremy

Jeremy’s sense of optimism and enjoyment around having access to data is one that

was shared by participants who regularly interacted with analytic data, or who had

large class sizes that made testing assumptions more practical. The findings indicate

that testing assumptions is a type of exploration, described as play, that

educators believe would assist in their acceptance of learning analytics as a

tool for improving their practice.



Chapter 9 The OU Case Study: Affordances of Learning Analytics for Improving
Practice 155

9.2.2 Predicting Weak or At-Risk Learners

Educator participants, in particular those who were familiar with learning analytics

initiatives at the Open University (through proximity of departments, personal contacts

in other departments, etc.), all discussed the affordance of learning analytics to help

predict weak learners. Feelings were generally positive that having more information

about learners is good, even when it is partial information. As retention was described

as one of the simplest metrics for the University, improving retention was perceived

as a measurable impact of this affordance, which is concise and easy to communicate.

In particular for educators with large class sizes, retention was the most reasonable

measurement currently available. There was some difficulty, however, coding retention as

a measurement or an intention, with regard to this particular affordance, because many

educators described it as both. Findings suggested that, as a proxy for learning,

retention was an important measurement, one that became an intention

as participants described how they would use learning analytics tools and

technologies. Once again, it should be noted that the Open University was beginning

to become fully aware of its poor financial situation 1. Staff will have had some strong

opinions about this when speaking about retention, in particular.

When discussing how these predictions would and do impact practice, only educator par-

ticipants with class sizes of 250+ students identified a personal use for that information

and how it could be incorporated into their own existing strategies. Predicting weak

learners was viewed as an efficient way of helping educators to distribute their

resources and keep students involved. Jeremy noted a simple reality that makes

this kind of affordance particularly valuable.

“No one educator can engage with that many students at one time.”

To help them cope with a large number of students, educators with larger class sizes felt

that this was a positive tool to help them quickly intervene with at-risk learners.

This is consistent with the literature on educator perspectives on predictive analytics

[96]. Findings indicate that the speed at which learning analytics can help edu-

cators perform a strategy they are already using is its greatest added value.

Among educators who had more negative or neutral feelings toward predictive analytics,

there was a general fear that focusing on “weak learners” could lead to “educational

triage” that would be damaging to the educational experience.

1https://www.timeshighereducation.com/news/open-universitys-second-chance-model-may-already-
be-gone
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“I think there’s a danger of...there’s actually been some good papers

on this...I think someone called it ‘educational triage’, where you’re

saying ’Well, these ones aren’t worth saving, these ones are, so we’ll

intervene here, but not there’ and I think there is a very cynical

financial, almost sinister financial aspect to it, where you intervene

because there’s money to be saved. And its not about the student

anymore, its about the financial picture behind it and I think that

is totally and utterly wrong. There’s a very fine line to be drawn at

what point you are doing it for the student’s benefit and not for the

financial benefit and I don’t think the two necessarily coincide.” -

Elizabeth

Elizabeth may be referencing research on the No Child Left Behind program in the

United States of America, which assessed whether or not high standards testing was

increasing learning gaps in the lowest performing schools [158]. One suggestion of where

that “fine line” might be was in whether or not the University’s interventions would also

support students at all levels.

George: “I can see that it’s useful to, I don’t know. There is some-

thing in that red, underlined thing of ’at-risk’ that would be really

compelling to any educator and my fear would be, what about that

student that is just lacking in confidence, or needs a push to do

even better?”

Sam: “Those students in the middle.”

George: “I was that student!” (both laugh)

Sam: “I was that student too, and maybe this is why I feel, re-

sponsible for those students, the average, mediocre... (both laugh).

Quite honestly, I do care about that student and I am rooting for

him.”

Discussions about “weak learners” often merged with shared concern for identifying

the lost, “mid-range” student, an affordance shared among many educators and

learners with regard to predicting weak learners. Educators felt that if it were possible

to model and predict learners who were under-performing or at-risk, it would also be

possible to identify learners who were performing erratically or who seemed
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to be on a downward trend. Drilling down on predicting weak learners, Lucy,

who already had experience with learning analytics initiatives, was able to describe an

affordance for early warning signs of trouble.

“One of the first things we did was look at students who hadn’t

accessed the course before it started, because it’s totally online if

you don’t get on at the beginning, you’ll fall behind. We then had

the tutors look at this data, which was unfortunate because the

tutors weren’t actually being paid at this point, they didn’t tell

me this, they agreed to do it. And then they would phone up the

individual students and find out, was it because they didn’t realise

it was online, or did they change their mind, or...” - Lucy

Lucy also felt it would be possible to look at the number of additional credits a learner

was taking, and learners’ banked assessments.

Educators with the role of module chair or senior lecturer tended to perceive the biggest

beneficiaries of predictive analytics as the tutors, who would ultimately be responsible

for intervening. Tutors also felt that they would have the greatest gains from predictive

analytics, but typically, this was described in terms of imagined needs rather than current

needs or strategies.

“If I had a lot of students I was managing and I was worried some-

thing might slip through the cracks, I could imagine it.” - Georgia

“If you were insecure, it might provide you with a potential way to

test your, test your assumptions.” - Sam

Lucy’s previous statement offers a potential explanation for this: that tutors involved

in her pilot were not being compensated for some of the additional work they were

doing to help validate learning analytics tools and approaches. Tutors reported finding

predictive analytics useful to do their jobs better or more efficiently, but only under

certain circumstances such as class size, or level of experience. It is possible that tutors

were initially alienated from wanting to support an initiative that they perceived as

potentially increasing their work-load with no immediate benefit.
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Predicting weak learners was such a common topic of conversation in the educator

focus groups that the decision was made to ask students explicitly about it as well, to

determine how they perceive this particular affordance. Students who were prompted to

discuss the value of predictive data in the focus groups had mixed feelings about whether

tools notifying them of their “status” would specifically help them. This data was more

viewed as being “nice to have”. Only a small number of participants, however, feared

that students could be potentially demotivated by knowing whether or not they fell into

an at-risk category. Additionally, this was typically described as a potential concern

someone could have and not an actual concern of the participant.

Educators also considered the potential demotivating effects of tools that would issue

students with any kind of “at-risk” label. One educator described herself as the type

of learner who “never read, always asked for extensions and only ever worked for the

assessments”. She felt that if she had received information that said that she was going to

fail, too early on before her own strategy had a chance to take effect, it might have tipped

her toward dropping out. This, combined with other student perceptions of predicting

weak learners, indicates that the timing of interventions based on predictions, if

they are student facing, matters.

9.2.3 Study Tracking

Affordances for tracking study behaviours were related to either tracking one’s own ac-

tivities (self-tracking) for purposes of self-discovery and monitoring, or modelling

learner behaviour. As modelling learner behaviour has several purposes that are ul-

timately affordances in their own right, this subsection deals entirely with self-tracking.

Most educators that participated in the study did not consider using VLE data to un-

derstand learner behaviour at an individual level. The two reasons proposed were that

it would be too intrusive or lacking in meaning.

“I don’t want to identify particular students, I think that’s the

wrong direction to go. I think we need to be able to identify groups

of concern and to be able to track patterns through those groups.”

- Elizabeth

“I would see that somewhat as prying, particularly when someone

is dropping out. However, at the cohort level, if many students are

dropping out, then you know it has to do with the module” - Drew
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”You don’t want to get into counting data, which is identifying

names. It’s not a matter of names. The danger with that is that

students start to feel like they’re kind of spied on and all the rest of

it. Over time, because it’s the old story of you need to be looking at

trends over a period of time, not only over one group, then I think

it’s really helpful to start to see patterns. That’s in terms of both

your group, but also quite obviously, how your group compares with

the overall.” - Ken

Educators also expressed some concerns over whether or not students would be able to

make sense of that data for themselves.

“I think students who already have developed habits in their learn-

ing may learn something from looking at all of that. Would it be

really useful? Would it be a distraction? I tend to think the latter,

simply because I am not quite sure what could be done about it.”

- Dana

“If I’m kind of pushing myself to do this, like I know a lot of my

students are, and I am kind of, breaking through, however difficult

that is for me, might it push me beyond the limits of my capacity?

I am seeing this example and maybe that person has more time

than me, more money or support or whatever.” - George

In the last part of George’s statement, he referred to whether or not the student would

then be able to compare their study plan with that of a “successful” student. Partici-

pants debated this idea in the context of the affordance described above, using learning

analytics for “predicting weak learners” (see 9.2.2).

Some learners, however, felt that having a long-term record of VLE data may help them

to understand their own patterns of activities toward their goals.
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“One idea I have had that I dont think we touch on is it would be

good if the OU developed some sort of study planning tool where

buy you can have it as an app on a windows phone apple phone

or iphone and you can plot your study of each topic based on the

recommended hours and extra activity and it sends a notification

to your phone and emails you to remind you of your study plans

each day this would enable student to better plan their studies.” -

Jonah

In a completely separate focused interview, Harriett proposed a similar tool and elabo-

rated on it.

“I think that could be a good reminder of where you should be. And

then, it could even have a few questions. So that, when you get to

that point and it says ’try and access this now’, or ’you should have

accessed this’, that would be helpful I think.” - Harriett

Harriett emphasised several times a particular standard that could be communicated

to the student using learning analytics, to help keep the student on track by ensuring

they are moving through the material in an effective way. She mentions that her module

included a pre-assessment, which she enjoyed. Her only comment was that it was basic

and that “something a bit more in-depth” would be interesting, like reflection questions.

Jonah’s statement implied that each student would develop their own study plan and

that the learning analytics tool he would find helpful would utilise his VLE data to help

him understand his progress within that plan. It appeared important to many learners

in the study, regardless of their goals or strategies, that those goals and strategies

are personal and unique.

However, other participants argued that personal conditions are also unique and some-

times immovable. While a person may not always have the perfect conditions for work-

ing, it is possible to learn to adapt.
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“I guess the whole point is, you’re studying when you’re succeeding.

And even if that means, you know, you’ve got your kid screaming

down the monitor and you’re exhausted or whatever. It’s about

yourself, and the direction you understand this is going in.” - Grace

Overall, the findings suggest that affordances for study tracking are most useful

for learners with a concrete goal, who are able to create time and space

to consciously monitor those goals and who feel prepared to act on that

knowledge. The only students participating in the study with that profile were stu-

dents with a disability, for which they were receiving support, and graduate students

who experienced skills audits. These students all believed their general study habits

had improved as a result of that support and they were interested in having access to

additional information.

9.2.4 Recognising Patterns in Behaviour

Most dialogue about learning analytics and learning design had to do with recognising

patterns in behaviour within the VLE. Patterns were typically related to per-

formance across TMAs, behaviours accessing resources and participating online with

classmates, similar to what educators discussed in the exploratory interviews.

“For example, I would be very interested to know which students

did the first TMA, which did the second TMA..you know, all of

the analytic stuff you can do, just to figure out some patterns of

behaviour.” - Jeremy

Once patterns were recognised, educators felt that they would have the possibility of

intervening and then testing the impact of their interventions on those patterns.

“I did a project with my level 2 module last year where I was looking

at one particular intervention we created at a point in the module

that we know is an issue to see can we actually intervene at that

point and try to ease students through that difficulty.” - Elizabeth
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Identifying pinch points and providing extra support during those phases was con-

sidered to be valuable for the purpose of improving student retention.

Some educators felt that VLE data could also tell you something about the

mindset and intention of learners. Lucy, who was the participant most familiar

with learning analytics initiatives, shared some of her early experiences using learning

analytics to adjust a module.

Lucy: “We had a questionnaire and we picked up, for example,

that they hadn’t been taught how to annotate online, or we picked

up something else where we can put something in [an intervention]

immediately...they still dropped out. We were also part of this

program OU Analyse, so we looked at clicks. And we saw, they

seem to be dropping off after this block, so we gave that block more

time. And even more dropped out (everyone laughs). The loss of

these people, they weren’t being retained, the retention was about

10%.”

Researcher: “So how are you interpreting that? What do you think

is happening there?”

Lucy: “They get to a particular TMA which is, which actually

accounts for 25% of the exam component, they obviously have been

taken ill or they decide that they can’t do themselves justice. So

they bank the previous ones and come back next year to do it

properly.”

Despite her early failures in using learning analytics to improve retention, Lucy and two

of the other focus group participants felt that seeking new types of patterns in

the data could help to more correctly calibrate and test predictions. Seeking

patterns as an affordance was mentioned both generally as part of an intention to improve

learning design, and as a vehicle through which to fulfil other more specific intentions,

described in the subsections below.

9.2.5 Identifying Potential Anxiety

One pattern that educators had already perceived as being important had to do with the

feeling that some students were overwhelmed and that this was visible in their behaviour

on the VLE platform. Educators felt that this information could be captured by learning
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analytics tools and techniques to identify potential areas where learners might

behave erratically or counter-productively.

“A student who is doing really well on some assignments, and then

terrible on others... I would see that as a sign that something has

gone wrong. Clearly, something has changed in the learner’s life

circumstances or goals. I have to find out what that is.” - George

“Some of my students have been very late to access the materials.

They only ever go onto the VLE during work hours or on weekends.

Sometimes, I can just tell by their level of experience with technol-

ogy. They don’t have as much computer access as they need.” -

Nora

“I was the type of person who worked late at night, early in the

morning, whenever it suited me, really. So, I wouldn’t necessarily

think that, has any kind of, knowledge that you can gain from seeing

that. Maybe though, you could at least suggest that the student

try to bring some structure to their study habits. They might listen

to you, they might not, if you tell them enough times how helpful

it can be, perhaps they will listen.” - Justin

Changes in learner habits, certain types of erratic behaviour and signs of disadvantage

were all captured by educators in an anecdotal fashion, a task which they also believed

could be much better facilitated through learning analytics approaches. Rather than

relying solely on the educator’s own observational and interpretive skills, learning ana-

lytics could support the educator in recognising more subtle changes over time

and earlier than the power of human reflection might afford.

Educators spoke about students taking too many courses and overestimating their ca-

pacities as additional stressors that can produce anxiety. While the University offers

flexible pathways to avoid losing credits through banked assignments, for example, edu-

cators worried that extensions and banked assignments might be simply forwarding the

problem to a later time and place.
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Ivan: “Our experience has tended to be on that, is that students

don’t tend to improve. So it is very difficult to tell if life has just

gotten in the way or if they actually thought they could do better

and actually they couldn’t.”

Researcher: “So, the ones that are coming back are coming back

with the same level of competence that they left with.”

Lucy and Ivan (in unison): “Right.”

Jeremy: “I think you’ll find the same poor decision making. I had

a number of courses that I was into that were very popular and

what we found was that we had some students who were getting it

for free, an entire course of stuff. And they were getting all kinds

of other courses for free as well and all at the same time. So they

would have 60 points worth of stuff.”

Jeremy, Lucy, Ivan and Dave, all of whom have different over-arching educational goals,

were able to agree that students need to be supported in how they can improve their

study habits, as well as how they can continue their studies. When asked if students

who bank assignments often return to their studies, each educator felt confident that

they do. This means that students who may have withdrawn, but who have banked

assignments, are excellent targets for intervention. Findings suggest educators felt that

learning analytics could help learners to identify habits that put their studies

at risk, and provide them with a support framework to change them, so that

their next learning experience can be more successful.

9.2.6 Understanding Withdrawal

One of the most important aspects of retention for educators was understanding why

learners leave an educational experience. Using learning analytics to recognise dis-

engagement was, therefore, another common affordance related to improving learning

design. While most educators and learners agreed that the decision to withdraw is

often personal, recognising when the student is starting to disengage could provide

educators with more time and resources to help the student in time.
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“Often times, you’ll find that the problems, students let them get

out of hand, or are afraid to say something. I think it would help

us to find those students more quickly.” - Dana

Staff tutors, in particular, saw many opportunities for applying learning analytics to

recognise disengagement and other early warning signs. For example, studying student

extensions, much like Lucy’s statement about banked assignments, was believed to pro-

vide information about a learner’s time management skills. Looking at the pace and

timing of extensions, in comparison with that student’s typical behaviour, staff tutors

felt that one could gain a feeling about the student’s workload and how they are coping.

Findings illustrated that being overwhelmed in general, was viewed as the easiest expla-

nation for why students withdraw. While the University may not be able to help the

student cope with every situation they might encounter, most participants felt that the

University could do more with learning analytics to help learners manage their studies

more efficiently.

Learners, perhaps unsurprisingly, did not perceive any use for learning analytics to

help them understand their own reasons for withdrawing. In considering whether this

information could be useful to the University, most learners felt that there would not be

much that the University would be able to do, short of resolving some of the foundational

problems that prevent the development of good habits from the beginning. The major

classes of problems include funding, both tutor and learner familiarity with technology,

and more contact with other students.

“If I got funding for my daughter to go to nursery... my tutor

being a better teacher, that’s the kind of thing that would make

the biggest difference to my education.”

”I’ve had issues where one [tutor] was insisting he had the paper

TMA’s submitted by post. So she [a classmate] posted it and she

didn’t receive her results”
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“I think maybe actual facilitated discussions would be really good.

You know, getting people together once a week for an hour to talk

online. With a focus, a simple, clear focus to talk about something.

I think that would be really helpful. You just learn so much by

talking to other people.”

Findings suggest that withdrawing from a module is a personal decision that

learners typically perceive as resulting from a lack of resources, rather than

a lack of study skills. Educators have the benefit of being able to reengage with

students after they have returned, conceivably when life conditions have become more

favourable to studying. Educators’ perceptions are that a lack of study skills

contributes to the overall feeling of being overwhelmed, which then results

in the student withdrawing. They note this in that learners returning from having

taken a break, rarely exhibit improved learning skills, even when life conditions have

changed. The shifting responsibility that was noted in the evidence, between the impact

of skill and strategy development versus the impact of life conditions indicates that the

reality is most likely somewhere in the middle.

9.2.7 Classifying Learners

As was noted in both the exploratory interviews and the focus groups, educators classify

learners to help understand learner trajectories, to target the right materials

at them, at the right time, and to identify learners with special needs or

concerns.

“So, [Jeremy] describes his screen and you have a point for each student and

so and so... so according to this, there is lots of data that is being collected.

Has any of this been put through a classifier?” - Ivan

Ivan’s statement is representative of those educators who had extremely high confidence

and experience in advanced numeracy, either due to their domain or their interest in

computing. The experimental nature of his suggestion suggests that classifying learners

can expose “unknown unknowns” that educators also referenced in the exploratory

interviews described in chapter 7.

Educators preparing learners for practice and those looking to promote learner satis-

faction spoke mostly about classifying learners for the purposes of creating different
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pathways for success. Justin and Nora, who are both Arts and Humanities educators

looking to develop strong minds, had a discussion with Georgia, a STEM tutor preparing

for practice, about different “types” of students.

Georgia: “Not everyone arrives at this moment with the same in-

tentions. If we really ought to save time and money, that is where

we will do it.”

Justin: “While I accept that the University has to care about

money, I don’t see necessarily why I should. My job is to care

about what the students are learning, not the University...”

Georgia: “I’m not suggesting you do it for the University, but for

yourself. When you have a class of 300 students, and you have to

diagnose and deal with all of their various issues, you need some

ways of identifying clusters. That’s all I’m saying.”

Justin: “Oh, in that case, absolutely...absolutely. I’m just not sure

if we should be educating people at that scale...”

Nora: “Though if you are, certainly what [Georgia] is suggesting is

the way to do it. What will be the criteria?”

Georgia: “Well I think there are already some clear winners...the

people who will always want everything you’ve got to show them,

the ones who just want to pass, the ones who are sporadic in their

involvement. We could figure out a way to support those types

of goals and behaviours if we only understood what exactly is and

perhaps how to automatically identify it.”

What Georgia is suggesting in her statement is, once again, the idea that learning

analytics can help learners to identify what their goal might be, on the basis

of their behaviour and to identify and develop strategies that assist with the

learner’s goal. Participants viewed this relationship as being two directional with

regard to learning analytics. Classifying learners according to their goal could be the

product of a machine-learning approach to identify best practices. This would then

inform the development of an algorithm that can spot certain classes of students

and support real-time analyses of learners’ behaviour on the VLE platform.

Educators with large class sizes or who were module chairs were particularly interested

in performing such analyses to help them target their own effort.
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When asked how this knowledge would influence their practice, educators described how

they would deal with students having different goals:

Georgia: “Well you don’t flood the people who don’t engage that of-

ten with even more information. You really have to streamline and

reduce content. In the same way, you have to feed those students

who want more and a lot of what they want is other students’ time.

I don’t know how to offer that unless I pair students who really

want to benefit from this with other, similar students.”

Nora: “What about the students who aren’t aware that it’s im-

portant to them? I just feel like it’s, like it’s part of my role to

encourage growth, study growth.”

Georgia: “And that is always the difficulty, isn’t it?”

Allowing learners to choose their own path was not always an avenue that educators

found appropriate, in particular when they were coded as having the goal of developing

strong minds.

“A fitbit is a personal choice and you cannot address a whole cohort,

if you’re giving choice to individuals. What would you expect to

gain from it? I can’t see if they are going to initiate a choice and

student X chooses to use analytics and student Y chooses not to,

how are you going to teach them together as a cohort?” - Elizabeth

Elizabeth voices some legitimate worries about the asymmetries that could develop be-

tween students who make use of learning analytics and those who do not. This is

particularly relevant in the context of this study, which suggests that it is not the lack

of interest on the part of the student, but perhaps a missing skill-set in terms of how

to interpret and apply analytic data, that influences understanding and use of learning

analytics.

9.2.8 Setting Expectations

As the exploratory interviews and focus groups illustrated, educators do not always have

confidence in students’ abilities to set realistic expectations. Educators proposed that
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this results in students overextending themselves or incorrectly assessing their capacities,

as was discussed previously. Some educators felt that learning analytics could be utilised

to help learners to set expectations, and to inform themselves about the course of study

and its demands in advance.

“At least if you can have a realistic idea of what will be expected

of you, you can then look at your situation and ask yourself ‘okay,

how is this going to be possible?’ Without that, you have nothing,

so I think that would be a good thing.” - Georgia

“If you could tell prospective students about which modules the

University recommends in preparation for starting a new module or

qualification, this could help students to have realistic expectations”

- Regina

Once this had been proposed in the educator interviews and focus groups several times,

it was decided that all of the remaining learner focus groups would be asked directly

about this type of affordance.

Learners were divided as to whether this information would be useful to certain types

of people, but all agreed that it would not likely have changed their personal decision

to take a course.

“If you’re looking into starting a course, knowing how well people

have done might help you to choose whether you would do that

course. But for me, I think, how other students have done, yeah, it

might make a bit of difference but not too much, I don’t think. -

Harriett

“I need to be a [names profession] to do what I want to do and

have anyone take me seriously. End of story. If I had known how

much math would be involved, I think it would have just worried

me, rather than changed me.” - Laurie
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Interestingly, educator Regina reported that after a pre-course call that was intended to

let students know what would be expected of them, 50 enrolled students dropped the

course. At the time, Regina understood this as a positive, self-regulatory behaviour.

She considered this type of affordance as belonging to an “early warning system” that

does not detect students who are struggling, but predicts learners who might be likely

to struggle, given the expectations of the course (in terms of prerequisites, for example).

In general, however, the findings indicate that motivations for studying can be

stronger than “being realistic”, sometimes resulting from fixed decisions

based on interests and needs. Students entered into their study programmes be-

cause they really wanted to explore something different, or make up for lost time, or to

get a higher paying job. Those motivations were perceived as extremely influential for

Open University students in driving their behaviour.

In contrast to learners’ feelings about setting expectations as an affordance of learning

analytics, many learners and educators agreed that learning analytics should be used

to deliver targeted content. Findings indicate that pragmatic learners envisioned

learning analytics as being able to determine what the learner should focus on,

given their academic goals. For learners with open strategies, “targeted content”

tended to be described as that which would appeal to the personal interests of the

learner or the interests of those around them. Learners with applied strategies

perceived “targeted content” as the delivery of self-defined categories of useful

content.

For educators, delivering targeted content was an affordance that arose in connection

with classifying learners (see 9.2.7). Educators with both large and small class sizes

perceived somewhat predictable divisions in their classrooms as Jeremy discussed in

subsection 9.2.1. Educators with small class sizes and more teacher-student interaction

felt that it would be more difficult to assess learners, if multiple pathways were possible

(see 9.2.9). However, nearly all of the educators agreed that offering more learning

pathways would be beneficial for students.

9.2.9 Evaluating Assessment

In discussing the issue of distributed marking across large class sizes, participants agreed

that learning analytics could contribute to a workable solution to the serious problem

of somewhat arbitrary systems of marking student assignments.
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Jeremy: “To my mind, that is systemic. That will happen. What

can we do? If what they say is true, it should be mandatory that

every course is double marked, if not triple marked.”

Ivan: “We wound up triple marking 50% of the assignments. The

marking was being done by a smaller group, the module team, so

that when there were disparities in marks we could sit together

and say ‘okay, what do we think is really going on here.’ It had

that sense that the students had been properly done by. I now feel

confident going to students and say ‘okay right, we did this and I

am happy with the mark that we gave’.”

Jeremy: “I must say, I think this is an area where analytics could

really help. The institute has to accept that this is really a problem,

for the past 40- 50 years.”

Lucy interrupted this exchange to share a story about several students who noticed a

disparity in the marking, which they dealt with promptly, but it left her with a feeling

of dissatisfaction.

Lucy: “Supposing some of these other people are deserving of a

second mark? For some of the other smaller courses, you could

have someone marking the whole class.”

Jeremy: “Even with that there is an issue that this might be a very

generous person or a very difficult person.”

Knowing that many students judge their learning through their marks, even those that

also have other types of strategy monitoring in place, educators felt learning analytics

could help expose some of the arbitrary aspects of assessment and provide

more complex tools to examine learner competencies.

For educators in the Arts and Humanities, assessment was already a sticking point that

was difficult to surmount in the focus groups.
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Elizabeth: “I think the interesting thing is that there’s a difference

in the Arts and Humanities. We deal very much in the grey areas.

We’re dealing with developing thought processes, self-reflection,

things that are very difficult to measure. You can’t push a quanti-

tative measure on that as a student develops. In the same way as

you can’t quantify a creative process.”

Ken: “I fully accept that idea that in the arts, qualitative measures

are...your measurement of students is harder to quantify. The only

part of that I doubt is that I think that you can measure student

progress on any course, both quantitatively and qualitatively. You

may well make a case for saying that things like creativity cannot

be measured by analytic data and I can accept that. But, that’s

rather missing the point that some of the nitty gritty of... what

am I trying to say. I don’t think that what you’ve said means that

quantitative analysis doesn’t have a place. There are lots of things

that you could measure.”

Elizabeth: There are, but you can’t measure a students individual

development as a creative entity. You can only measure the out-

comes and the creative process is about more than the outcomes.

Researcher: So that’s an assessment issue.

Elizabeth: “Yes! We measure creative outcomes. We ask students

to contribute a commentary on what they’ve done, but that doesn’t

tell us how they’ve got there. They are telling us what they want

us to know.”

However, participants did occasionally try to break down the complexities of those “grey

areas” and found that there were several points at which analytics could eventually

provide some support, as Ken proposed. Initial suggestions that educators proposed

were typically related to analysing the structure of effective discourse or written

assignments such as essays.
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Researcher: “What is a good essay?”

George: “That’s tricky. It really is.”

Sam: “Is it? A good essay has structure. It has an introduction

and a conclusion. Depending on what type of essay it is, it provides

evidence or arguments. You could identify all of that, couldn’t you?

These days?”

George: “Even if you could do all that, what about the content

that fills it? That could never be automatic. Well, not at first.”

Sam: “Okay. It helps you whittle their assignments down, into

a couple of different...I don’t know, piles. For me, that might be

useful. You could at least standardise the scores for the structure.”

George: “That’s the easiest part! Deciphering a good argument

and a great argument, that’s more difficult.”

Sam: “There is always going to be an element of magic in marking.”

(both laugh)

Sam and George, both of whom have very little computing experience and knowledge

of learning analytics, are able to work out the boundaries of their own ideas within the

given technology and pedagogical structure of the social sciences. They both recognise

some aspects of their work as being algorithmic and predictable, to a certain extent.

Sam sees the value in improving standardisation across non-dynamic variables,

such as the structure of an essay.

Learners also saw some potential uses for learning analytics to support the evaluation of

assessment, but this was typically framed in relation to evaluating a tutor’s competencies

more generally, which is discussed later in section 9.6.

9.2.10 Comparison with a Selection

While comparing oneself with others was a major category of affordances, the category

itself could be broken down into “comparison with the average” and “compari-

son with a selection” of students. This corroborated what students and educators

reported about recognising learning, as described in the previous chapter.

When students considered having access to the VLE data of themselves and their class-

mates, several student participants mentioned that they would only concern themselves
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with whether or not they were performing somewhere in the average of other students.

These students tended to have the goal of gaining a qualification, and were more often

likely to have a pragmatic view of their specific modules.

“As long as I am somewhere in the middle, I guess that’s okay. I

just need to not do poorly.” - Boris

Occasionally, students had a more general selection, such as comparison with the top

10 or 20%, or with other students from their same background. Students with applied

strategies exhibited the most metacognitive activity around discussing this affordance

of learning analytics, in terms of applying this information to their own practice. Some

students felt that if learning analytics would be able to show them how students with

similar skills or experiences become successful, they would have a better chance

of being able to absorb those strategies into their current practice. Other students

described how they could use the modifier of the top 10% to ring-fence the students

whose strategies were most likely to be useful.

“If I have limited time, it’s just about reducing the noise. I have to

focus on something.” - Ora

This affordance was very closely connected to the ways in which students described using

others to recognise their learning. Earlier in the focus group, when asked what she gains

from sharing physical space with classmates, Betty described how she benchmarks her

own progress through comparison with a select group of students.

Betty: “I know who in the class I trust to know what they’re talking

about and I orientate myself on those people.”

Researcher: “How do you recognise them?”

Betty: “It’s a combination of their attitude in class, how they speak

and argue. It’s - a lot of it is non-verbal. I know who I can trust.”

Betty’s choice of words indicate that her criteria are personal and complex. Without

regular access to her fellow classmates, Betty is less able to get a sense of her colleagues,

enough to know which will be part of her snap self-evaluations. Betty went on to describe

this feeling as being at the “back of the classroom”, observing and listening to others.
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“I can see why that is useful to the University. It really is remark-

able that...I’m sure it helps them. I’d have to comb through that

for days, though, to make sense of it for me. I can sit at the back

of the classroom and get much more valuable information chatting

about it all over a cup of tea.” - Betty

Findings indicate that comparison with a selection may be a digital manifes-

tation of the “back of the classroom”, one that some students need in order to

calibrate their existing strategies and gain access to new, relevant strategies.

Participants have confidence that learning analytics could meet aspects of that need.

9.3 Affordances of Social Network Data and Social Ana-

lytics

Social Network Analysis is something with which most educators and learners were al-

ready familiar. In the age of social media and social marketing intelligence, the value of

understanding human interconnections was easily understandable and relatable through

familiarisation with other tools. In terms of how this information could inform strategies

for learning, affordances were more conceptual than actual for learners and educators.

None of the participants in the study felt that this type of technology had been ade-

quately utilised in education. This section explores some of the ideas that educators and

learners had for harnessing Social Analytics for improving practice.

9.3.1 Exploring the Staff-Student Relationship

Similar to testing assumptions and classification, social analytics were perceived as ex-

ternal observational tools for understanding the impact that others have on

our learning. In particular, educators with large class sizes, or who had the goal

of developing strong minds, perceived social analytics as a tool for exploring certain

undercurrents and relationships that influence classroom dynamics in subtle ways.
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“I used to provide a weekly message on the tutor group forum.

I received a lot of positive feedback, so they just implemented it

across some other modules. I just had a vague feeling for it and

it would be interesting to confirm it. Is that relationship actually

successful or not?” - Regina

Most educator participants described a general impression that the students who contact

them the most perform better, but they still could not explain why. What exactly is

happening inside of that contact that learners are responding to? Deciphering the

relationship between teachers and students was something that participants felt

may be an affordance of social learning analytics.

One participant described a small experiment, in which she was concerned that the

students were not reading the TMA thoroughly, so she left a little note at the end for

the students to email her that they had read it. She correlated this information with the

assignment marks they received. She found that the students that emailed her did get

higher scores. However, she admitted that this could be for a lot of different reasons.

She did not know for certain if it was the materials, their accountability to her as their

teacher or the fact that they were just “better students” that made the difference.

“It would be interesting to see use social analytics to just see if cer-

tain interventions helped. How many people are reading the com-

ments? Inside of that group, what other behaviours might explain

this? Even contact with other students.” - Regina

Findings indicate that educators perceive social learning analytics as a complementary

tool for interpreting impact more precisely.

Learners also spoke about social analytics for exploring the teacher-student relationship,

though primarily this was expressed as a tool for evaluating teacher efficacy, rather than

learner response. These findings are aggregated in a separate section on affordances for

exploring teacher activity (see 9.6). Students viewed the teacher-student relationship as

being very important to their success and having the right tutor, even more so. Findings

indicate that students would welcome analytics that could provide orientation on

different ways of grouping individual students and teachers together, to have

the greatest impact on learning.
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9.3.2 Identifying Key Conversations

The decentralisation of discussion on student forums was a challenge that learners in

the focus groups described, similarly to educators in the exploratory interviews.

“It’s very...messy. That feeling you get when you open your inbox

and it tells you how many unread messages you’ve got. That’s

what I feel like when I look at those endless threads of seemingly

irrelevant discussion. I just want to be able to know...here...this is

what we’re talking about.” - Frank

“If we could be alerted as to where conversations are happening,

that would be great. If you were struggling, you could look there.”

- Harriett

Learners envisioned social analytics as a tool for following the flow and density of certain

conversations, to be able to extract major topics of discourse. The ways in which

they recognised this themselves had to do with how many of their fellow classmates

were participating in the discussion, and occasionally, how intensive the discussion was

or how many different subtopics it produced.

Educators with large class sizes, or who described having a particularly active forum,

tended to agree that being able to structure and represent student discourse would

allow them to more efficiently utilise already diminished resources.

“Every year, we’re doing more for less. We want to give the students

the best experience and we need to think of ways to do that in a

more economically sustainable way.” - Dave

Findings indicate that affordances of social analytics for topic detection are

based on perceptions that important topics are those with which many stu-

dents are engaging. However, both educator and learner participants believe that this

can be explored more deeply with learning analytics. In particular, learners with open

strategies and educators looking to develop strong minds perceived other, more specific

measurements that could be captured by learning analytics to determine the quality

and trajectory of conversations, as well as the quantity.
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George: “What’s interesting is to see which conversations students

tend to congregate around. Sometimes I feel it is for my benefit,

sometimes it’s the conflicting or controversial issues. It’s always

something. Perhaps learning analytics could help me to define what

that is.”

Sam: “You can also do all sorts of things these days, looking at

influence in discourse and how ideas sort of spread around from one

person to another. If you were looking at trends and all that, you

might be able to see how habits are formed.”

Educators were cautious of reading too much into social analytics conducted on formal,

university-managed, student networking tools.

Ken: “The reality is there are an enormous number of Facebook

groups that students set up independently of the Open University.”

Elizabeth: “It’s probably because they know they aren’t being

tracked there.”

Ken: “You could make a case for, why are we not looking at that?

Why are we not working at Facebook?”

Elizabeth: ‘I think the question we can ask is why are they going

on Facebook and not on the forums we provide for them and I think

the answer to that is because they know they’re not being tracked

on that.”

Ken: “Okay. So we need to be providing better forums that they

are not going to shy away from.”

Elizabeth: “They know that the OU Forums are tracked.”

Ken: “My point is that if the OU wanted to track Facebook they

could.”

Elizabeth: “Reading it is one thing, but analysing it is different.

To have that statistically analysed is a very different issue.”

Elizabeth’s point was corroborated by learners.



Chapter 9 The OU Case Study: Affordances of Learning Analytics for Improving
Practice 179

Joan: “If you go online and do an online forum, it’s much more

stilted and you’re much more polite, you’re phrasing things, not

academically, but in a much more formal way. However you try to

be informal, you’re still always going to be slightly formal I think.”

Researcher: “Why do you think that is? Why are the forums so

formal?”

Joan: “Because they’re run by the University. So you’re always

aware, I think, of the fact that there’s somebody watching.”

As has been mentioned previously, students also expressed fear in contributing to stu-

dent forums, primarily because they feared that their contributions would be read as

plagiarism if they included thoughts from the student discussion on the forum into their

final assignments. However, if one was not allowed to actually discuss the content of

the assignment and how to understand the question, some of these students did not

understand the purpose of contributing on the forum. Findings suggest that educators

and learners find social analytics to be most useful in cases where contri-

butions are voluntary and uninhibited, and where students are the primary

beneficiaries of any insights.

9.3.3 Assessing Participation

As was already mentioned in the previous subsection, participants viewed social analytics

as a way of also looking at how the students in the course communicate with one another.

Sam and George discussed the issue of influence and using learning analytics to explore

how conversations are shaped. The lowest hanging fruit from this type of analysis

would be to track student participation more generally.

“When a student is doing their first and second modules, it’s re-

ally helpful to know how well engaged they are and that’s not to...I

think one purpose of looking at social analytics would be to monitor

if, if they’re not engaging, if they’re not participating into student

communication over the VLE, why not? Because one would hope

that they would because it is a helpful way of learning and devel-

oping. If they’re not doing it, you would be curious to know why.

At the cohort level, not the individual level.” - Ken
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Once again, educators proposed learning analytics for exploring cohort-level dy-

namics of attention, interest and communication to get an overall sense of the

classroom experience.

9.3.4 Forming Successful Peer Groups

Educators that valued class participation highly generally agreed that group constel-

lation was important for successful peer work. Good student teams are described as

those in which each student has skills and expertise to offer, and where the students

feel satisfied with their performance as a team. Yet students and educators described

the formation of peer teams as being rather arbitrary in practice. For some students,

especially those who had negative experiences in co-working with peers or who reported

general social anxiety, peer working and peer assessment, in particular, was a source of

aggravation.

“I would think I’d have to actually experience group working and

reflect on what happens. Whether I was able to think analytically

and creatively about joint work would be one indicator. And how

I experienced things inter-personally within the group would be

another. Plus feedback from others in the group would probably

be part of it too.” - Lane

The success or failure of peer work, as Lane described it, depends on multiple, complex

measurements, that are derived from both internal and external evaluations. Lane’s abil-

ity to name them, however, suggests that she understands how to monitor the experience

of group work and how it would impact her learning experience.

Students, in particular those with open and applied strategies, had hopes for social

analytics that could help pair them with other students who shared their motivations

and goals, something which they perceived as impacting the quality and enjoyment of

group work.
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Mascha: “I don’t need everyone to agree with me or do it my way.

I do want some push-back, some argument, some skillful argumen-

tation.”

Researcher: “And you didn’t have that?”

Mascha: “I think the rule of thumb is that you might have one

other reasonable person in any group assignment.”

Moritz: “You do see some people not doing their share and you wish

that there were some way to kind of extract that person’s effort,

also for their own benefit. ‘You’ve not actually done it, so we can’t

quite assess, whatever it is...”

Researcher: “What do you think the purpose of a group assignment

is?”

Mascha: “To aggravate us (both laugh). No, honestly, I think it

can be really a good thing, character building, presumably readying

us for a life of working in inefficient teams.”

For some students, the purpose of forming a type of “home group” with learners that

share your way of working is not a way to avoid frustration, but a way to accommodate

different needs.

“I suppose to be able to highlight those students and put, you know,

like-minded students together, because there are students that don’t

want to get involved. And I appreciate that there’s people who just

kind of want to get their head down, do their own work. But I’m

not like that. I’m quite interactive and want to get involved. It

seems a shame that you get a region of people and just class them

all together and there’s no, you know, maybe they’re selected at

random and given to a tutor at random and maybe there’s be a

better tutor that could meet their needs better by being, a more

proactive tutor.” - Vicky

However, the necessary tracking and interpretation to be able to use social analytics in

this way, was viewed by some educators, as potentially tricky.
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“We have assessed group work on [module] and there is a very

strong feeling from students that they do not want to be tracked

on their engagement with other learners. We know that this can be

a powerful tool, but the students don’t know that yet. I would be

concerned about what tools, and how we use them. It’s a very grey

area. For students to interact with each other is very important,

but I don’t think we should be controlling it down to that level,

analysing it down to that level. I think there is an element there

that needs to be self-reflected, self-regulated. It could so easily be

misused, so easily backfire and be used as something against us.” -

Elizabeth

Another educator raised the concern that mapping such relationships might be viewed

by students as an invasion of their privacy, or as exacerbating existing anxieties over class

participation. Particularly in conjunction with forced participation (where participation

forms a percentage of the learner’s final grade), the educator feared that students would

not be open to having their every movement and social exchange documented through

the data collection process.

9.3.5 Additional Comments on Affordances of Social Data

The comments summarised in this subsection relate to expectations that participants

appeared to have toward social data and analytics. While these expectations may extend

to other types of analytics and tools, they were primarily expressed in speaking about

social analytics.

First, the visual element of social analytics was something that was important to both

learners and educators.

“What would it look like? Would I be receiving an enormous graph in

my inbox each week? Would there be some text highlighted, or bold, or

something to draw my attention? I need for things to be readable, to a

certain extent, immediately.” - Dana

“If it looks too techy, I just won’t use it. These tiny fonts and endless streams

of information. It wears me out.” - George
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Expectations of social learning analytics tools match models of technology acceptance

described earlier in this thesis, in that familiarity and experience with “similar tools” is

perceived a major factor in acceptance. Findings suggested that participants expect

what they have come to expect from commercial analytics software: clean,

accessible, easy-to-use with customisable interfaces. This was particularly (but

not exclusively) true for educators with less experience with computing and advanced

numeracy.

Another common theme that emerged from several educator perspectives, is the percep-

tion that students cannot fully grasp what they really want or need within a learning

experience.

“You can ask students what they want and what they say they

want is not reflected in their subsequent behaviour. It would be

interesting to see how analytics could help students reflect on that.”

-Violet

Statements like Violet’s were common in both the exploratory interviews and in the focus

groups, discussing everyday challenges that all educators experience around learner mo-

tivation and behaviour. Findings indicated that learning analytics were perceived

as an extra-observational tool to test the difference between sentiment (using

social analytics, for example) and behaviour (through click-stream analysis,

for example).

9.4 Affordances of Multimodal Data and Multimodal An-

alytics

Discussing multimodal data required more examples and explanations within the focus

groups and focused interviews. Participants were familiar with some technologies, such

as eye-tracking and the use of sensors, but there was some difficulty in imagining how

multimodal analytics could support learning and in particular their individual practice.

“The problem with this type of analytics is that it’s all so theoret-

ical. I’d have to see the data first. See what you can get from it.”

- Drew
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Still, the technologies were generally perceived to be novel enough to be interesting and

several participants tried to consider how such new techniques could be incorporated

into their daily experience.

Eye-tracking and noise detection were perceived as predominantly useful for establishing

the learner’s attention and focus. Some students felt that it would aid educators in

understanding how students review the resources available to them.

“If you could see how slowly people were turning the pages, where

they stopped and put their attention on, any part of the module

that they lingered over and why, have they got bored? or is it

difficult?” - Harriett

Educators could also see possibilities in using multimodal analytics as a way of evalu-

ating human-computer interaction.

“Eye-tracking could be interesting in a course that is hosted on a

different platform, to look at the differences between that platform

and on the VLE, for example.” - Drew

The difficulty for most participants, lies in interpreting the data accurately.

“The problem with social or multimodal analytics, is that interpre-

tation is open to a lot of presumptions and assumptions that could

be problematic.” - Regina

Participants from both educator and learner groups, independent of strategies or goals,

expressed less confidence that this type of data could be viewed as objective, regardless

of the empirical methods involved in data collection. In addition, when asked if this

data would actually change their behaviour, most students felt that it wouldn’t, at least

not directly.

“I’d find that a bit intrusive. I’d probably just break the rules

anyway.” - Harriett
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“Maybe, if I hadn’t already decided.” - Boris

“It doesn’t really matter, so no. I feel I was always going to do this

eventually, so it was kind of inevitable.” - Ora

Regardless of the type of strategy that the student described, findings suggested that

learners perceive the effects of multimodal analytics on learning as most likely to be

indirect or deferred, used as a tool for orientation. When Harriett was asked why she

would like a tool that wouldn’t change her behaviour, she said:

“Just to know. Maybe later it matters and I come back to it.”

This was an interesting finding of the study, that some students gather (or would

gather) information to assess their own performance that does not have an

immediate application or potential impact on the learning experience. This

was most true for students with open strategies.

9.5 Affordances of Web Data External to the VLE

As previously mentioned, one of the four types of learning analytics technologies pre-

sented to participants during the focus group were different types of software to track

learner behaviour in the web environment, external to the VLE [43]. Such software is

able to track learners’ movements through the web environment and keep track of what

pages they searched. They also offer tools for organising key terms or annotating web

pages and specific resources. Having this data was a tempting idea to many of the edu-

cators that participated in the study, because it provided the most insight into learner

strategies and process.

Participants discussed how knowing which websites a student visited, in which order,

could tell them a lot about how the student approaches preparing for an assignment and

completing their work.



Chapter 9 The OU Case Study: Affordances of Learning Analytics for Improving
Practice 186

Lucy: “It would be interesting to see what websites they were open-

ing. To see if they are really working on one thing, or looking at

train times.”

Jeremy: “What interests me is when they can combine different

streams of data, structure the data. It can be very informative. For

example, if you can see that the content that a person is engaging

with is exactly the same as what you are offering, but they are

looking at it on YouTube or whatever, it might tell you that the

way you are explaining it is insufficient.”

Iva: “Or that they want to go to the source.”

Jeremy: “Indeed, it can also be that.”

Lucy: “What is the usability like?”

The affordances educators perceived in the excerpt above were quite differently applied.

Jeremy would utilise such a tool for evaluating the suitability of resources and

educational approaches. Lucy would be interested in knowing more about how

learners spend their time. Interestingly, Jeremy is the only educator to mention an

affordance of learning analytics that focus on educator behaviour (see 9.6).

Students with open strategies were most interested in web data external to the VLE. In

particular, these students were interested in how such a tool could expose them to the

strategies and information of their fellow classmates.

“I think that would be helpful because a couple of times, somebody

said something about a program that’s on TV, or something like

that, or that’s on the forum and you don’t always look at them.

But also, if you could have alerts or like link you with your email so

that if something comes up that you were looking for, that would

be good.” - Harriett

“If there are things people are looking at that I’m not looking at, I’d

find that really interesting to see, in case there is something I find

useful. It’s a bit like peering into someone else’s mind.” - Moritz
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Something as simple as having the web histories of classmates was viewed as being

something that could be potentially very useful, if there were a way to sift through

and categorise the information meaningfully. Other types of web activity external to

the VLE that educators found enticing, though for no particular reason than to test

a hunch, included examining assignments in Google Docs to see how many versions a

student creates, how often they check social media and how long they appear to stay

engaged in the study process. However, all agreed that such intrusions would constitute

an invasion of privacy and all recommended that the student be responsible for sharing

or agreeing to share any part of their web history as part of such an analytics initiative.

9.6 Affordances for Tracking Educator Activity

While many participants spoke about the possibilities of evaluating and adapting their

learning design as a result of learning analytics data, or of recognising some “discrimi-

nating factors” in educational experiences, only one educator independently mentioned

tracking his own activity as a source of information. At the end of the focus group,

the participants had not come back around to this topic, so they were asked about it

explicitly.

This section describes some of the characteristics and activities of educators that educa-

tors and learners felt were significant in the learning process. 9.6.1 talks about collecting

information on groups of educators and their characteristics and 9.6.2 discusses how to

interpret information about the educator and learner relationship. 9.6.3 provides some

examples of learner indicators of a positive learner and educator relationship.

9.6.1 Looking at Educator Sub-Groups

Findings indicate that students and teachers agree that the most important influence

on the student’s learning is the tutor/educator. Tutors and educators view their own

intuitions, their pedagogical intentions, their learning designs and their character as

important to learner success.

Lucy, who was currently participating in several learning analytics initiatives, had won-

dered about the effects of certain characteristics, such as an educator’s gender, on the

learning process.
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“I’ve been looking at data recently and wondering,‘maybe that’s

the reason’, and one of the things I have been looking at is that

women, especially chairs, tend to spend a lot of time on the forum

supporting students, raising the replies, very friendly and replying

promptly. Does this actually prove this.” - Lucy

Jeremy and Dave responded that they had noticed other tendencies, from anecdotal

evidence shared by colleagues, that might be interesting to explore using analytics. For

example, Jeremy suggested that experienced and novice educators could be identified

looking at the amount of time they spend achieving an excellent result. Dave also felt

that understanding how learners feel about the tutors they work with could reveal a lot

about the learning experience. Ivan, however, expressed concern.

Ivan: “The whole University is set up so that you have the central

academics who should not ever have to directly support the stu-

dents. Now we do, we choose to, but the whole idea is we’re here,

we do our thing and there’s a couple of layers in between so that

essentially, the student shouldn’t have to deal with anyone except

their own associate lecturer.”

Jeremy: “Maybe this just goes to show how bold we are, but I

wasn’t trying to be facetious when I said that perhaps we could

learn that we’re not doing a very good job sometimes. It never

really occurred to me that you could mine that data and essentially

find out some very useful things.”

Ivan’s concern points to a fear that the data will not tell the whole story and that less-

experienced data wranglers or other colleagues would not understand how to read it.

Jeremy’s argument, however, is that it is simply too valuable of a data resource to be

ignored.

9.6.2 Interpretation of Educator and Learner Relationships

While Dave, Lucy and Jeremy agreed that tracking their own behaviour could be a key

piece of the puzzle in understanding learners’ experiences, Ivan was clear about how

that data should be qualified.
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“So earlier I said, I’m not a teacher, I’m an academic and teaching

is just part of what I do, it’s just one part of what I do. That

applies to many of us...You say it could show our arrogance and

possibly our failings, but you know, we’re trying to innovate here

and the analytics could, or should be the things that tell us if our

innovations are working.”

Ivan went on to describe his evaluation of the current applications of learning analytics.

Ivan: “If you look at all of these packages of tools that are being

developed at the institutional level, these are not being developed

by the people trying to innovate teaching.”

Jeremy: “We all see things differently. I’m just saying that maybe

I find out my TMAs aren’t very nice, or the students aren’t re-

ally understanding them. It could be very interesting to get those

insights.”

Ivan: “I’m totally agreeing with you. What I’m saying is that we’re

the ones who are making the changes.”

Ivan and Jeremy appear to be arguing on two different sides of the same coin. Ivan’s

point is that the final say in interpreting educator activity should be in the hands of

those who are implementing changes in the classroom. Jeremy’s argument is that there

are insights that learning analytics could provide that he would not have anticipated.

Findings suggest that educators and learners agree that it is important that

they be involved both in the interpretation of data and any resulting inter-

ventions. They cite two justifications for this. First, participants believed that data

will be vulnerable to misinterpretation, particularly at the module level, where sample

and effect sizes will be smaller and potentially less reliable. All of the research par-

ticipants wanted some power to use their experience and insight to decide the extent

to which information collected about them is relevant. Second, participants statements

indicate that they believe that data could eventually be used to undermine or harm

them.

This second justification is related to the first, in that participants believed misinterpre-

tation of data could be used to justify unfair attitudes or actions against an individual
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or group.This finding supports what was learned in both the JISC [30] and EDUCAUSE

[159] publications on learning analytics in higher education.

Educator participants that were experienced both in computing and working with large

class sizes, tended to feel the least comfortable with what some described as “top-down”

analytics. They also had the most scepticism about what actions would be taken as a

result of learning analytics insights.

Jeremy: “I would like to have the data. I don’t want any analytics

on top of that, I have my own. I don’t want to use anyone else’s

analytics (Ivan nods in agreement). I am not convinced that the

top down stuff is very good. However, there are a lot of people who

would like to have standard tools. That’s fine. I would like to get

my hands on this data, if I knew where to find it.”

Ivan: “There is also the question of what we have the freedom to

do. Let’s suppose, for arguments’ sake, I found out that students

who did poorly on the prerequisite module, dropped out after the

third electronic assessment. Well, there’s actually not a lot I can

do about that.”

These statements from Ivan and Jeremy illustrate what was proposed in the previous

chapter about the tendencies for potential experts to have the most misgivings about

learning analytics’ adoption. However, when speaking directly about actual affordances,

even non-experts can perceive some of the complex issues around the wide-scale ethical

adoption of learning analytics. George and Sam also spoke about feeling a lack of agency

in making changes:
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George: “We’ve had countless discussions on assessment already

and have been able to do nothing about it.”

Researcher: “Why is that do you think?”

George: “It’s too much change, I suppose. It’s too different. It

makes people... uncomfortable.”

Sam: “That’s a very strange thing, indeed, that. It’s about choices,

priorities and, to a degree, investment. The OU is quite a progres-

sive environment. I’m not entirely sure what the Uni would have

against rethinking how students are assessed. Nothing very signifi-

cant has changed in that regard in so many years.”

George: “Too much interpretation. That’s what I think. It’s easy

to say 1+1=2 and all of your statements and hypotenuses and hy-

potheses, and all of those wonderful Greek mathematical terms

(both laugh), but if you ask two maths teachers to grade the same

paper, you’re going to get the same mark. It’s all about reducing

chance, isn’t it?”

9.6.3 Learner Evaluations of Educator Activity

Learners had more ideas for evaluating educator activity using learning analytics. Specif-

ically, learners look at tutor reactions to their questions, involvement on the forums,

leadership in the classroom, communication style, and the ability to inspire and moti-

vate, as primary influences on their ability to succeed.

Mascha: “You know when you ask a question and the tutor sends

you a link and that link doesn’t work or if it does, it directs you to

something that does not answer your question at all. It would be

good to have one of those little questions pop up that asks you, ’was

this information helpful?’ You could provide quite direct feedback

but it might be useful over the long-term.”

Moritz: “I think people would go crazy with that. If they didn’t

like the answer they would say it wasn’t helpful.”

Mascha: “Okay, maybe ’Did I answer your question?’ then.”
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While interaction and response from the tutor are easier indicators to measure, the

ability to inspire and lead in a classroom may be more difficult to immediately identify.

Rather, longitudinal, rich data may provide some insights into these qualities and their

effects on a classroom.

9.7 Evidence Summary and Remarks on Affordances

Some general comments can be made about how participants engaged with the subject

of learning analytics, which are important to summarise and elaborate before moving on

to the discussion in Chapter 10. This section will distil some of the most salient insights

from the focus groups on affordances of learning analytics for improving practice.

The first three subsections, 9.7.1 and 9.7.2 examine relationships between Influences,

Affordances and Intentions, with regard to metacognitive statements about learning

analytics. These subsections explore different groupings of these elements that emerged

from the data. 9.7.4 describes the dimension of “distance from the learner” to the

discussion of affordances and how this influenced perceptions of impact. 9.7.5 reflects

on the concept of “time well spent” and how different educators and learners appeared

to prioritise their time. 9.7.6 returns to the subject of “unknown unknowns” and the

consensus that analytics can illuminate important and currently invisible aspects of the

educational experience. 9.7.7 addresses some specific concerns around accessibility of

data and 9.7.8 discusses issues around training.

9.7.1 Metacognitive Activity

As mentioned in the introduction to this chapter, statements that related directly to the

participant’s own practice were coded as “Metacognitive Activity”. When discussions

triggered metacognitive activity in participants, this was noted as a positive signal of

perceived usefulness. 179 metacognitive events were captured in the focus groups and

focused interviews that could be reduced (through removal of repetitions) to 46 metacog-

nitive events in which a participant described intentions for using learning analytics for

a specific purpose related to their practice (see B.7).

The 46 metacognitive events were then grouped into categories based on the focus of

the intention, or the most important general outcome as given by the participant. This

process produced 9 categories that were titled: “Focused Intentions”. Focused Intentions

were general uses for learning analytics that participants felt were particularly important:

Orientation, Intervention, Retention, Agency, Reciprocity, Reflection, Accommodation,
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Figure 9.1: Metacognitive Activity and Intentions

Exposure and Cohesion. Orientation intentions were those that were about preparing

the learner for the educational environment and helping them to set expectations, or

helping new educators to gain orientation in the field. Intervention intentions were those

that involved looking at learner behaviour to help develop, implement and evaluate

specific interventions for preventing problems. Retention was simply the code given

for any intentions that were expressly about keeping students enrolled and completing

their studies. Agency, Reciprocity and Reflection respectively refer to intentions that

empower the individual, encourage the individual to share their thoughts and ideas, as

well as reflect on the thoughts and ideas of others. Accommodation intentions were

those applications of learning analytics that identified special needs and recommended

ways of dealing with those needs. Finally, Exposure and Cohesion intentions were about

bringing learners into contact with new people and ideas, and then supporting their

sense-making activities (see B.5 for a full description).

Figure 9.1 presents the number of metacognitive events that were identified for each of

the focused intentions. The colour scheme for groupings is the same as in figure 9.2 in

the following subsection. Findings indicate that most metacognitive activity was

located around affordances for reflection and reciprocity, such as recognising

patterns in the data and testing pedagogical assumptions, activities that re-

quired participants consider what it is that they are trying to accomplish and

how it can be measured . When connecting affordances with real practice, educators
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Figure 9.2: Influences, Affordances and Intentions

and learners were looking to resolve real challenges, such as exploring their own

assumptions, seeking patterns in the data, finding novel ways of identifying

learner emotion and of gaining access to different strategies and choices.

9.7.2 Affordance Groupings

Focused intentions could be grouped into three systems. Figure 9.2 summarises how

influences and experience appeared to influence the types of affordances and intentions

that participants were able to perceive in supporting their own individual practice.

Individuals with a pragmatic strategy, in particular when they have an understanding

of advanced numeracy and computing, tended to perceive more affordances for helping

learners to understand what is expected of them, to understand when they

are struggling as quickly as possible, and to do whatever possible to retain

the student. Individuals with a very open strategy, in particular if they highly

valued interaction in learning, were more likely to perceive affordances that could help

to identify and accommodate special needs. In addition, they were more likely

to promote affordances that bring people together in the process of creating

meaning.
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Figure 9.3: Educator and Learner Breakdown of Pragmatic Intentions

Individuals who were transitioning between domains, and those who had extremely

well developed, applied strategies, seemed to circumscribe a middle-space between

those two territories of open, social learning and optimised, effective strate-

gies. In this space, the intentions appear to be focused on creating buy-in by involving

different stakeholders more in the process of data collection and interpre-

tation. In addition, affordances tend to invite learners to consider the process

of learning as important as the outcomes of learning. Finally, there is a sense

that learning analytics can aid in the process of reflection on a much deeper

level, still using all of the same tools and technologies. For example, partic-

ipants who occupied this middle space tended to describe using learning analytics to

really understand more about how to optimise the teacher-student relationship,

and to recognise different types of patterns in behaviour, also at the strategy

level, to make those inner-workings of individual study more transparent for learners.

Groups were named by the strategy approach most commonly represented within the

grouping: a Pragmatic Group, Applied Group and Open Group.

9.7.3 Educator and Learner Differences

Returning to figure 9.1, these categories can be reconstituted into their original 46

intentions to examine how educators and learners differed in their intentions.
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Figure 9.4: Educator and Learner Breakdown of Open Intentions

Figure 9.3 shows the breakdown of metacognitive activity within the pragmatic group-

ing, according to whether the metacognitive event was experienced by an educator or by

a student. Nearly a third of all metacognitive activity identified in the study was expe-

rienced by educators who saw pragmatic applications of learning analytics to evaluate

their interventions and improve retention through prediction and cohort level compar-

isons. As mentioned previously, most of the educators who expressed these types of

affordances had advanced numeracy and computing in their background. Educators

and learners in the pragmatic grouping typically perceived the utility of

learning analytics in providing insights about a few, key metrics.

Figure 9.4 illustrates the mirror effect for educators who expressed affordances associ-

ated with the open grouping. As mentioned previously, educators that fall into this

category were typically from the Arts and Humanities, as well as Social Sciences dis-

ciplines. Especially educator participants from these domains had difficulties in seeing

how to apply learning analytics to their practice. However, findings indicate that the af-

fordances critical for the open grouping are concentrated in examining social

aspects of learning in great detail. In addition, it is interesting to note that more

students than educators in this grouping experienced metacognitive activity relative to

thinking and speaking about learning analytics. This suggests, perhaps, a resistance

among educators in the open grouping (typically from the Arts and Humanities, and

Social Sciences) that will have to be dealt with as learning analytics research progresses

at the Open University. Educators in the open grouping run the risk of falling behind

in understanding and working with learning analytics.
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Figure 9.5: Educator and Learner Breakdown of Applied Intentions

Finally, Figure 9.5 presents the educator and student breakdown for intentions associ-

ated with the applied grouping. Educator and learner affordances were much more well

balanced in this grouping, which is not surprising, because this grouping was generally

composed of equally competent educators and learners with shared goals and cross-

disciplinary or transitioning experience. Learners in the applied grouping identified as

many affordances for learning analytics as educators in the pragmatic grouping. They

had a very strong sense of their own study habits and needs, or at the very least a

wide array of study habits and strategies from which they could choose. The affor-

dances they suggest provide a picture of the kinds of activities they engage

in that support them along the way. Findings indicate that affordances in the

applied grouping appear most linked toward, as mentioned previously, supporting the

agency of individuals within the institution and consciously exposing them

to strategies through contact with others (whether a tutor, a peer group or

some other entity). In addition, affordances appear to involve a bit more investment

for some of the “high-hanging fruit” of learning analytics research, in pairing

learners and educators, testing assumptions and developing new forms of assessment.

The open grouping produced the least number of metacognitive events. The reasons

for this implied by the individuals in that group are that pedagogical and assessment

choices are already a struggle for these individuals within the institution, which make
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it difficult to perceive a useful application for learning analytics based on the current

(presumably inadequate) system of assessment.

9.7.4 Direct and Indirect Benefits

One dimension of affordances that became increasingly relevant in the evidence was the

distance of the affordance from the learner.

Direct affordances were those that were closer to the student, who is actually responsible

for learning. These affordances would be those that could inform a student-facing appli-

cation. For example, a study tracker that would make recommendations to the learner

(see 9.2.3), or a tool for helping the learner to compare their progress against a select

group of students (see 9.2.10 would offer a direct pathway to influencing student

learning. Direct affordances tended to be perceived as helping learners to identify

and monitor their goals and strategies.

Indirect affordances were more removed from the learner. Educators and learners

described indirect affordances as potentially influencing educators’ pedagogical

choices, such as identifying pinch points in the module where students struggle. Indirect

affordances helped educators to identify best practices and interpret learner behaviour

so that they could modify their own approaches.

The existence of direct and indirect benefits warrants attention in considering how such

approaches could work together. Indirect benefits appeared to have more sup-

port among educators because they were perceived as impacting a greater

number of people. However, tools for making a direct impact were far more

interesting for learners.

9.7.5 Time Well-Spent

Most educators in the study, particularly the more senior members of academic staff,

hoped that learning analytics could identify “time well-spent”, the sense that what

one was doing was “worth it”, for the institution and for oneself personally. Time well

spent was defined differently depending on the educational goals of the participant.

For educators that were preparing learners for practice, time well spent tended to be

defined as saving time on irrelevant or non-critical activities.

“If I know I don’t need to be cropping those five images, or whatever because

no one is actually looking at them, that’s what I need to know.” - Dana
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If the educator had the goal to to develop strong minds, time well spent was defined

as saving time on certain activities through reducing their complexity or

automating aspects of the activity. Returning to the discussion between Sam and

George about the qualities of an essay, the two agreed that the exercise of thinking

about learning analytics helped them to see how they could describe more concretely

what skills they were hoping to develop.

George: “It’s interesting how we’ve been talking about this now for

more than 45 minutes and I’ve got ideas in my mind that I did not

expect to have about this subject. I didn’t even know what it was,

really, 30 minutes ago.”

Sam: “I am thinking. I am thinking and I find it a bit shocking

that I couldn’t answer that question right away, the point of my

module. I want students to be better informed. I suppose that

means, using more of their own resources in the right way, making

stronger arguments.”

Learners who viewed the learning process as very pragmatic, perceived more affordances

for saving time in everyday tasks such as information gathering and identi-

fying key concepts. Students with more open or applied strategies viewed time well

spent as more personal and subjective. Findings indicate that for these students, use-

ful learning analytics tools were those that afforded the individual as much

agency as possible in both deciding which information is relevant and how

it should be interpreted. This finding is significant in considering what it means for

learning analytics to optimise learning.

9.7.6 The Unknown Unknowns

One of the more complex affordances that nearly all participants discussed, was to il-

luminate “unknown unknowns”. In this case, participant statements weave in and out

of the discussion of learning analytics to discussions about big data and the promise of

understanding what one does not know. The measurements typically included every-

thing that is possible to measure, a composite of all of the various types of analytics that

had been discussed already. The purpose was to help the participant to uncover the

discriminatory features that set one person’s experience apart from others.

The significance of this expressed interest in “unknown unknowns” (that was nearly

universal across focus groups and focused interviews) is that it signals a sense of trust,
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however small, that there is something about the educational experience that is possible

to illuminate with learning analytics.

9.7.7 Perceptions of Accessibility and Awareness

Some educators were aware of a selection of the information they required was avail-

able to them through the Statistical Analysis System (SAS) at the OU. No one had

considerable experience with the SAS tools, but the experiences they did report were

positive. Still, educators agreed that it was not always clear what information

was available to them. Dave, who had expressed interest in such tools, but did not

know how to access them, met up for a separate interview after the focus group, to be

introduced to the system. He had difficulty knowing how to interpret what was there,

and wished it were possible to set his own parameters and interrogate the system on his

own. He was informed that he could make an ad hoc data request if there was something

specific he wanted to know. He agreed to submit and inquiry about the retention rates

between modules that have a final written exam vs. modules that have an EMA report.

A data insight manager responded within a 2-week period with useful information for

the participant. The analyst cautioned that the data Dave requested was not sufficient

to answer his question. For Dave, however, the data did satisfy his goal of having a

small piece of information about his module.

Dave explained that he was considering whether to change the way he assessed his

students, toward providing an essay-based exam, rather than a classical exam. Dave

had observed that the students in his module appeared to grasp concepts more when

they wrote about them. They also seemed to enjoy it. He was concerned about the drop-

off of students and he wondered if the form of exam might be an avenue worth pursuing.

The results of his query, though they were not proof of any phenomenon, did tell Dave

something about his initial query that was relevant for his next steps. Dave’s response

to this information was similar to how other educators with a more open pedagogy

viewed learning analytics. Findings suggested that educators who wanted primarily

to promote learner satisfaction or the development of strong minds were interested in

quick partial measurements that provide an indication, rather than proof, of

a phenomenon.

9.7.8 Responsibility and Training

Educators were ardent in their feelings about training. For example, staff tutor with

experience in the SAS tools described how it took someone sitting with her for ap-

proximately one hour to explain the basics of what she could interpret from the data
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available there. Findings suggested that participants found ample training to be

absolutely necessary to the success of any learning analytics initiative.

Most educators were aware of the advanced skills necessary to interpret learning an-

alytics. They spoke about the necessity of spreadsheet skills, knowledge of statistics,

but also robust techniques of analysing qualitative data. Educators with advanced

numeracy were better able to see both the possibilities and limitations of

learning analytics. Educators with less experience in advanced numeracy

were both less able to perceive subtle benefits and less likely to distinguish

more nuanced concerns from general problems. Paradoxically, this effectively

raises the level of evidence required to topple assumptions that learning analytics are

overly complex. The implications of this are discussed in the following chapters.

Educators pondered whether or not the development of “new skills” in data collection

and analysis were simply becoming a part of digital pedagogy.

“When I first started, IETa had much more information. They had

an IET member on every team. They were supposed to teach you,

what they learned about teaching.” - Lucy

aInstitute of Educational Technology: https://iet.open.ac.uk/

It appeared that while the University did, at some point, recognise the need for training

and support, the mechanisms for empowering the right people seemed to deteriorate.

When educators were asked who is responsible for interpreting the evidence produced

by learning analytics tools, they often referred back to the issue of who is asking the

question and why. Most educators felt that no single person or entity could be the

sole interpreter, because the motivations for collecting and using data are very different.

“I think you would find that students, educators, module teams and

the VC would have very different opinions. It may be that what

the module team needs and what the student needs are different.”

- Regina

When asked what those different needs might be, educators and students tended to per-

ceive the University’s first priority as saving money. This was interpreted in different

ways. Many participants expected that the University would prioritise its finances like
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any other institution. Some participants even found the cost-saving structures worth-

while, if they are ridding the University of any unnecessary burdens. However, findings

suggested that participants perceive a lack of transparency around University

goals, which threaten not only the financial stability of the institution, but also the

pedagogical stability.

“If they are teaching to retention, we’re going to have a big problem

later on when we don’t even know anymore what we’re producing

or measuring. We can’t tell students we’re providing cost-effective

education. That’s not enough. Education starts with a plan.” -

George

The one area where participants were prepared to give up a bit of their autonomy was in

uncovering “unknown unknowns”. This was true of participants both with and without

advanced numeracy or computing experience.

“I wouldn’t trust only myself to look at the data. I was amazed at

what professional statisticians could get out of the data. You need

to ask people who are good at seeing patterns.” - Drew

Participants appeared to be in agreement that seeing patterns is a skill. If educators

and learners are going to be asked to do it, they felt should receive some support in

learning how to do so correctly.

One troubling finding was that educator participants did not have a lot of faith that

analytics, even if they were insightful, could actually inform decision-making processes

at the institutional level.

“In my experience it is very difficult to do anything in the OU

because there are legions of people telling you how to do it.” -

Jeremy
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“I think the thing that’s come across really clearly in this work-

shop, among all five of us, is how much it comes down to really,

individuals and the thing is, that the University is a mass teaching

thing. We are an industrial teaching environment and that’s not

necessarily compatible with what the gods at the University would

like. Whether there’s anything that can be done about that, I don’t

know. Actually one of your questions that came before was how can

learning analytics support the individual experience. ” - Ivan

This impression appears to link back with transparency around institutional goals. The

proposed solution from Ivan, which was shared by several other participants, is to con-

nect learning analytics more firmly with individual needs and experiences.

In other words, it is important to create buy-in with people who have agency to

make changes.

9.8 Chapter Summary

This chapter outlined the affordances that participants were able to name for using

learning analytics to support their practice. Affordances, as the actionable properties

of an object [21], are based on perceptions. Chapter 8 described some of the contextual

features that act as lenses for participants, influencing what they see and how they see

it. This chapter focused on the actual opportunities that participants have experienced

or could visualise, in using learning analytics to improve educational experiences.

The chapter began with a discussion of affordances related to student demographic data,

data from previous module presentations (legacy data) and other types of information

obtained from student applications (see 9.1). Findings suggested that educators in the

Arts and Humanities or Social Sciences in particular, were more likely to see this type

of data as directly useful to their practice, in particular for understanding the differ-

ent educational experiences of particular social groups of learners. Ultimately,

educators who perceived these affordances tended to express an interest in accommo-

dating any special needs that might be uncovered. This was particularly true if

the educator had the educational priority of learner satisfaction. This section also in-

troduced cohort-comparisons, based on legacy data, as a way of helping educators and

learners to understand prerequisite knowledge that could be important for a

given module and for new educators to gain orientation in the faculty.
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The second and largest section 9.2, presented the many affordances that educators and

learners could perceive in using click-stream data from tracking activity in the VLE. The

majority of affordances were around exposing patterns in behaviour to predict and

classify learners. Educators with large class sizes and module team chairs were most

interested in predicting weak or at-risk learners. For those with large class sizes, the

value-added was the speed at which learning analytics could alert them to problems.

For module teams, the value-added was typically described in terms of retention. Some

educators, in particular tutors working in the Arts and Humanities, felt that this focuses

the University on a reactive, rather than a proactive approach to working with learners.

They proposed the identification of mid-range students as a compromise, to learn more

about how behaviour changes and to begin looking for warning signs even earlier.

Educators and students enjoyed the idea of experimenting with VLE data and viewed

this as requiring freedom to both set the parameters of a given query, and aid in the

interpretation of any results. Affordances for study tracking and testing assumptions

suggested that educators and learners would respond well to software that would allow

them to test and play with assumptions.

Section 9.3 began by describing how daily social networking experiences helped to ease

educators and learners into the topic of social analytics, in particular with regard to

following trends and group discussions online. Affordances that educators and learn-

ers perceived involved exploring the staff-student relationship and innovating

existing paradigms about the teacher-student connection. In addition, partic-

ipants envisioned using social analytics to form more effective teams and match

learners to teachers. Difficulties or concerns were typically around the potential for

misinterpretation and difficulty in stimulating participation without forcing students to

contribute.

The next two sections addressed affordances related to learning analytics technologies

that are less common in higher education and were not particularly known to any of the

participants, Multimodal data (see 9.4) and Web Data from outside of the VLE during

normal web-searching activities (see 9.5). Multimodal data, from sensors or eye-tracking

devices were typically seen as tools for assessing learner attention for orientation

on a problem, but not for developing intervention on an individual basis. Web

data external to the VLE was valuable to educators as it was the only affordance that

gave them direct access to learner strategy. Likewise, students were also interested

in web data to explore how other students approach a task and to identify

new, relevant resources.

9.6 provided an overview of how educator activity might be tracked using learning ana-

lytics to support student learning. Findings suggested that educators are wary of having
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their activity tracked, but that learners feel this could improve assessment, as well as

student-teacher relationships.

The final section of the chapter presented some general thoughts about affordances.

Groupings of influencing factors, affordances and metacognitive activity were presented,

which materialised from the data. In addition, the section discussed the direct and in-

direct benefits of learning analytics, the meaning of “time well spent” and perceptions

of accessibility, awareness and training. While some affordances participants mentioned

would potentially impact student choices, many would impact educator choices. Findings

showed that the educator’s definition of “time well spent” is integral to their perception

of priorities and thus, how and why they would use learning analytics. Educators agreed

that the skills required to understand and use learning analytics appropriately required

significant training for certain types of individuals with little experience in advanced

numeracy. Helping educators to understand the basic ideas behind learning analytics

will help them to grasp the more subtle opportunities and challenges that could affect

their practice. Participants also believe that it would have an equalising function among

educators with and without this knowledge. The findings of this chapter are the central

point of the discussion on how learning analytics can mediate learning. Recording par-

ticipants’ experiences and cataloguing the ways in which they consider how they think

about their practice assists in modelling how the process of mediation takes place. Over-

all, it appears that background, experience and goals influence affordances in somewhat

predictable ways.

The next chapter will focus on exactly what is being mediated and why that is impor-

tant for student learning. In addition, it will present some recommendations for other

stakeholders involved in learning analytics about how to capitalise on this predictability

to improve the impact of learning analytics on learning.



Chapter 10

Discussion

What engineers do is design for society and if we don’t represent society,

we’re not going to do very well for society. - Roma Agrawal

The previous chapters presented impressions, experiences and ideas around learning

analytics, expressed by the participants in this study. Participants’ statements were

contextualised by examining their foundational beliefs about both teaching and learning,

and in particular, the experience of online education. By connecting affordances with

participants’ current contexts, affordances had more meaning. The actionable properties

that the participants were able to perceive were described not only in terms of what could

be done, but also how and for what purposes at a given moment in time. In addition,

looking at affordances in this way highlighted the opportunities that some groups would

be more likely to perceive as useful, depending on background and experience. Those

chapters partially address the research question that has guided this study: “What

impact is learning analytics having on practice and how can it be improved

for educators and learners?”

This chapter serves two functions: to resolve the theoretical discussions brought up

within the data and to transform this into the language of learning analytics. First, this

chapter returns to the theories of “Mediated Learning” as framework through which

to interpret and evaluate the data presented in the previous chapters. The outcome

of that exercise is to discuss how“learning analytics” can act as a mediatory agent, a

more knowledgeable entity that can support learning. Second, this chapter identifies

the indicators that appeared to be most useful to participants and translates them

into metrics that can be captured with learning analytics. Understanding how learning

is recognised is key to improving existing educational models and establishing impact

in learning analytics research. Recommendations are grouped with regard to issues

206
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around data collection, interpretation and analysis, and communicating outputs with

stakeholders, the three pillars of software development [160].

Section 10.1 examines the evidence from the perspective of Vygotsky’s theories of me-

diated learning. It summarises how learning analytics can best shift thinking about

teaching and learning. In addition, it provides some recommendations for learning ana-

lytics developers for how to promote positive changes in these areas. Section 10.4 adds

the perspective of Feuerstein’s Mediated Learning Experiences and the universal crite-

ria that all MLEs will share. Each criterion is used to examine the types of affordances

expressed by educators and learners in the context of this study and to evaluate their

potential for improving the impact of learning analytics on teaching and learning. Sec-

tion 10.5 goes more deeply into translating the indicators that educators and learners

are already using to understand and monitor various aspects of their practice, into work-

able metrics. This section includes informal feedback from researchers and developers

on the recommendations made in this chapter. Finally, the chapter closes with some

reflections on using Mediated Learning as a framework and the extent to which it was

able to produce insights useful for addressing guiding questions in this research.

10.1 How Learners Develop

Vygotsky believed that the development of signs, symbols and language is the vehicle

by which human beings master more advanced cognitive skills; The need to communi-

cate, creates a need to think about oneself in relation to an“other”, which then opens

channels for critical thought and reflection. Kozulin argued that, as certain systems of

psychological tools persist over time, they become “cultural”, perpetuating themselves

[26].

The findings of this study described some of the psychological tools, or ways of think-

ing, that appear to have become cultural for the participants in the study, and which

have/had their own mediating effect on how learning analytics can be perceived and

utilised (see 8.13). This section examines some of these reciprocal relationships and

their consequences for learning analytics.

10.1.1 Self-Selection in the Field

The study suggests that, through socialisation within their given field or profession,

a process of self-selection impacts how an individual thinks of affordances of learning

analytics and prepares to act on them. This evidence could support the Theory of Formal
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Discipline, for example, which states that the study of certain subjects will result in the

development of certain cognitive skills [161]. Mathematics, for example, has been shown

to influence the development of conditional reasoning over time [161, p 164]. The fields

of medicine, law and psychology have also been shown to have significant effects on

certain cognitive skills [162]. The findings of this study support the proposition that

individuals carry over strategies from previous educational and professional

experiences, which then influence their goal orientation and future strategy

choices. The greatest differences noted in this study were from Medicine and Sociology

(see 8.10).

For learning analytics research, this will impact both perceived ease of use and perceived

usefulness. Perceived usefulness is dependent on learning analytics dealing with a chal-

lenge that the stakeholder finds relevant. Relevance is established through evaluation.

For example, the Learning Analytics Acceptance Model was evaluated and validated

with only participants with a computing background or experience in analytics. Per-

ceived usefulness was examined only in terms of the role within the institution, not their

personal or past professional background [2]. If evaluations were conducted with a more

diverse stakeholder group, it might be possible to identify new categories of data that are

necessary to collect, new techniques and methodologies around interpretation and anal-

ysis, and different applications of learning analytics data. On the basis of those findings,

it is highly recommended to ensure diversity at all stages of the development

and evaluation process.

Recommendations

• Data Collection: Conduct qualitative studies with educators from differ-

ent faculties to understand their unique data needs.

• Data Analysis: Conduct early pilots with stakeholders from non-technical

backgrounds.

• Communication: Ensure effective “translation” of technical terms to non-

technical stakeholders.

10.1.2 Perceiving Strategy

The findings presented indicate that exposure to new strategies, in particular through

transitioning to a new domain or coming into contact with those who have, produced the

greatest level and diversity of metacognitive activity about individual practice. Learners
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who found themselves in unfamiliar territory appeared to find it easier to spot differences

in strategy and goals among their fellow classmates. The importance of witnessing and

being exposed to different strategies is mirrored in Vygotsky’s theories about learning

through the “other”. Humans need others to compare these factors and influence them,

and our “modifiability and diversity” are what makes humans powerful as a species [16].

This study suggested that learners with special needs are also more conscious of their

strategies than other students, perhaps through recognition of their struggles. Learners

described becoming more aware of their study habits, strengths and limitations because

of some of the support services that are offered to them at the Open University.

Institutions like the OU, which provide flexible distance education, should be prepared

to both accommodate and learn from transitioning learners and learners with

special needs. The OU has reported that approximately 70% of learners work full or

part-time while they are studying and that the institution had enrolled more than 20,000

students with reported disabilities in 2015-2016 1. The student research participants in

this study reflected the strength of this demographic. If transitioning learners and

learners with special needs have the greatest insight into their own strategies, then

they represent an important group of learners whose behaviours could be significant to

monitor.

The findings of this study suggested some possible ways of recognising such learners.

Transitioning learners may be most easily identified through integration of information

about their professional background and current course of study. In combination of this,

transitioning learners might perform initially worse than they expect, or have habits

that are different from other students who are not transitioning. Learning analytics

can contribute to the strategy development of learners by focusing on the activity of

transitioning learners, how they approach the new topic, how they learn from other

students and how they change their behaviour.

1http://www.open.ac.uk/about/main/strategy/facts-and-figures, Accessed January, 2018
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Recommendations

• Data Collection: Harvest more data on the learner’s professional and

educational background from initial University or course applications.

• Data Analysis: Identify learners transitioning from one domain to an-

other. Look for moments of behavioural change, for example, by analysing

VLE data related to indicators such as use of resources, submission style,

interaction, tuition payments and quality of work.

• Communication: Consult with students with special needs on learning

analytics.

10.1.3 Supporting the Learner Through Design

As providers of distance education, every communication, every resource, also transfers

a way of thinking to the learner. It is important to consider that message and what

it communicates. As mentioned previously, there is already a strong support for using

learning analytics to improve learning design. For example, learning analytics can inform

intervention design [163] or the study the effects of learning design on student satisfaction

or performance [154].

Findings from this study indicate that educators have a conscious link between what

they intend and how they structure their course and that they would most prefer to have

learning analytics solutions that resolve real challenges that they are already resolving

in a different, less effective way. Similar to learners, educators felt learning analytics

should be able to help them make better educational choices, not perfect choices. The

personal attachment that educators feel toward their teaching approach, suggests that

over-standardising course delivery is not likely to be a workable option. Rather, using

learning analytics to support reflection on the appropriateness of certain learning

designs for certain subjects, what consequences that has for the student and

how they could be innovated seems to be a more sensible approach [154].
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Recommendations

• Data Collection: Harvest more data on educator background and expe-

rience.

• Data Analysis: Evaluate learning design more holistically, looking at the

confines of the field and the materials, the pedagogical intention of the

educator and the impact on learners.

• Communication: Promote standardisation across shared educational goals

and needs, rather than wholesale across a given faculty or module.

10.2 How Learners Think

As a necessary first step toward changing thinking and behaviour with learning analytics,

the study indicated that it is important to understand how different ways of thinking

get established, so that they can be broken down or expanded upon if necessary.

This section deals with how learners conceptualise knowledge and evidence, and how this

relates to learning analytics acceptance. 10.2.1 explores how epistemology and strategy

connected in the study. 10.2.2 looks at learning analytics as its own object, constituting

a specific type of evidence.

10.2.1 Different Tools for Different Jobs

How do learners and educators perceive knowledge and knowing? Asking participants to

reflect on how they recognise learning provided insight into how they perceive, “knowl-

edge”, where it comes from and how it changes. Examining the variety of affordances,

one can get a sense for the types of information that are interesting for certain groups

of individuals.

The evidence suggested that, for learners and educators in the pragmatic grouping,

learning is somewhat like prospecting; a learner uncovers knowledge that exists,

waiting to be discovered. Affordances appeared to be about making the prospecting

easier; calibrating tools, automating processes, and taking a more indirect

approach to impacting learning with learning analytics (see 9.7.4).
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Their more discursive strategies suggested that for educators and learners in the

open grouping, knowledge was viewed as more constructive; an internal process

of competency development in being able to engage with the topic on multiple levels.

The affordances associated with the open grouping tended to be more about providing

many chances for interaction and exchange (see 9.7.2).

For the applied grouping, knowledge appears to be a combination of that which can be

uncovered, such as patterns in one’s own behaviour or that of others, and that which

is constructed on top of that foundation through interaction and exchange with others

(see Figure 10.1). Applied learners appear to view knowledge as both fixed and

evolving, which combines the best of both pragmatic and open strategies. For example,

learning analytics were perceived to be useful in assisting the process of sifting through

potentially relevant data on student forums to identify the key conversations. This

is a rather pragmatic affordance. When combined (by learners, in particular) with the

intention to analyse discourse, it appears similar to intentions expressed by participants

in the open grouping. Individuals with applied strategies demonstrated that they are

aware of different forms of knowledge and performance of knowledge, for which different

strategies are appropriate.

Figure 10.1: Learner Conceptions of Knowledge

With regard to learning analytics research, the consistencies in some of the behaviours

or interests that are associated with a pragmatic or open strategy might make it possible

to predict what type of conceptual development a student might need at a

given moment in time, in order to put them on equal footing with their classmates.

If a student displays no time management in submitting assignments but appears to

have a lot of interaction with other students, for example, this may indicate that the

student has activated an open strategy. If a student submits regularly with adequate
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performance, but does not engage with other students, this may indicate the presence of

a pragmatic strategy. In order to seriously consider strategy as an indicator, institutions

must consider which information is important to collect and harvest about a learner’s

background and experience. Figure 10.2 provides an initial set of indicators for identify-

ing learner strategies from combinations of performance, interaction and communication

metrics. Qualifying words such as “limited” and “considerable” refer to educator and

learner discretion in how such terms should be interpreted. This implies the need for

clustering processes on such information to help create some useful ranges.

Figure 10.2: Indicators for Recognising Different Learner Strategies

Many learners that fell into the applied grouping, were transitioning learners. This

makes sense, as many of these learners have had to develop complex epistemological

positions in order to do well transitioning between domains as was discussed in 10.2.1.

Understanding this process of transition may offer important clues about how it takes

place and how to encourage it in other learners.

In addition, it is worth considering the educator’s own background and how their own in-

terdisciplinary approaches open new strategic visions. Online education, and particularly

open education, attracts different types of individuals to the field. The Open University

appeals to different technological, sociological and pedagogical interests. Rather than

identifying common interests among all stakeholders, learning analytics research

could focus on identifying and serving specific needs of specific communities

or types of stakeholders.
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Recommendations

• Data Collection: Harvest more information on learner interactions with

their tutor and other peers.

• Data Analysis: Identify and cluster patterns of behaviour and perfor-

mance that may illuminate the current strategies of learners, such as

consistency or continual fluctuations.

• Communication: Focus on identifying and serving specific needs of spe-

cific communities or types of stakeholders.

10.2.2 Accepting Learning Analytics as Evidence

What counts as evidence and who decides? The findings suggest that educators and

learners tend to cluster around a few different educational goals and strategies, which

are influenced by their educational and professional backgrounds. This appears to impact

the extent to which learning analytics will constitute acceptable “evidence”.

The belief structures that governs an individual’s particular goals and strategies, prime

the individual for how to perceive evidence. For individuals with advanced numeracy

or computing in their background, learning analytics were not difficult to process as a

plausible vehicle for good evidence. As mentioned previously, learning analytics emerged

from computer science and educational data mining, which involved a certain set of

psychological tools. Educators with no background in computing or analytics are less

likely to “speak the same language” and express more fears about whether or not learning

analytics could be adequately interpreted at all.

However, a promising finding of this study indicates that fears around learning an-

alytics could be mitigated through exposure to them, regardless of whether

the experience was particularly fruitful or not. Even participants that reported

negative experiences with learning analytics, such as Lucy, continued to feel confident

that learning analytics can illuminate something significant. She describes learning

analytics as an extra-observational tool, that is sometimes useful and sometimes not.

The general interest in exposing “unknown unknowns” supports this as well, suggesting

that learning analytics have unrealised potential that is recognisable. Finally, the same

effect was noticed after the exploratory interviews, when the researcher was able to dis-

cuss her own ideas about learning analytics with the participants from the exploratory

interviews. Sharing her own reflections on using learning analytics to support critical
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pedagogy, sparked additional conversations with participants about new affordances. As

mentioned in 7.7, this effect is what helped to clarify the purpose of the focus groups to

explore learning analytics without preconceptions related to specific tools, just thinking

about the information learning analytics can provide.

The findings above indicate that learning analytics may be mediating learning even by

simply introducing some individuals to the concept of operationalisation. Considering

how something could be measured, educators were able to see more possibilities for what

else could be measured with the same methodologies. Conducting operationalisa-

tion exercises, even those that are very complex, could provide insights into

creating more intuitive learning analytics tools.

In addition, to help educators inspire one another, forming interdisciplinary teams

can help to shake persistent assumptions about learning analytics.

Recommendations

• Data Analysis: Allow for experimentation in the operationalisation pro-

cess with different indicators with diverse stakeholders.

• Communication: Provide early, interdisciplinary experiences with learn-

ing analytics.

10.3 How to Support Learning

In this study, potential impact was measured in terms of the extent to which the partici-

pant could conceive of a personal application for the insights that a particular affordance

might offer. The richest affordances were those in which the participant could describe

how having similar insight in the past actually changed or would change behaviour. The

cognitive and conscious behavioural shift is learning impact, in comparison to

impacts on the “performance of learning”. Learning impact is the focus of this study.

This section focuses on how participants shifted their thinking or behaviour and how

learning analytics can leverage or mobilise these factors. This leads to a final caution in

subsection 10.3.5, which addresses the pitfall of confusing affordances (how something

could be used) with intention (knowing how something would be used).
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10.3.1 Identifying Student Goals Through Query

The evidence suggests that the learner’s goals really are at the centre of the

educational experience and that useful interventions require access, of some

sort, to this information. Most of the intentions that educators had in classifying

learners, for example, were really about looking at behaviours that might be more help-

ful in identifying the learner’s goal, to understand what they were perceiving as the

learner’s strategies. Educators reported that once they were aware of what the learner’s

goal was, they would be better equipped to encourage the learner to stretch it. If the

learner does not choose to stretch, at least the learner can be encouraged to maintain

their current achievement level. Unfortunately, educators reported that they are

missing information about students’ goals.

At the moment, educators gather information on learner goals from what the learner tells

them and what they can observe in the learner’s behaviour. When they do not have

even this much information (for example, with large class sizes), educators described

feeling in the dark, preparing for everything and fearing that they are delivering less

than they could. Much of what educators hoped to achieve with learning analytics was

about amplifying and extending their existing practice of identifying what learners

need and want to know. Affordances around analysing prerequisites and setting

expectations were about calibrating learners’ goals to be more realistic and achievable,

once again, focusing on the indirect approach to compensate for the lack of information.

For learners, goals were much more contextualised and nuanced. Goals were

sometimes formed on the basis of life experiences, such as motherhood or retirement,

conditions that will not soon change. Regardless of what the educator would hope for

the student, the evidence indicates that if the student has decided on a certain path, it

will be difficult to deter her.

Students in sub-optimal conditions will continue to study. However, learners did ex-

perience having their goals shaped through different learning strategies. Meaningful

comparisons with the self, with others and with the discipline were able to shape learn-

ers’ self-conceptions, in particular when these comparisons were on their own terms.

Learning analytics were perceived as an opportunity for noticing subtle shifts in

learner behaviour that indicate they are consciously acting on feedback.

Learning analytics for non-formal learning are able to offer some insights in this regard.

For example, the AFEL project, mentioned in the literature review of this thesis, involved

tracking individual behaviour online and suggesting to the user what their goal might be

based on their activities. The simple question implied by this is: “is this what you [the

user] intended to do?” [41] Looking at how learners react to simple queries such
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as this may provide insight into the level of consciousness behind students’

strategies, as well as alerting educators to changes. This could come in the form

of an alert or regular notification/reflection question, to help provide an additional data

point for interpreting learners’ actions.

Another way of gathering insight into conscious decision-making is to gather information

on what students feel is important to know. The ADA service, a digital assistant created

to support students at Bolton College 2, tracks the kinds of queries that students submit

to the system, to analyse gaps in understanding or communication channels. It also

provides personalised and adaptive feedback. This simultaneously provides a useful

service to the student and delivers extremely useful insights about what

students know and do not know.

In learning analytics research, the need for customisable, adaptive feedback is typi-

cally realised in the form of an interactive dashboard. This tool can enhance its power

by making two adjustments. Combining the customisability of learning dash-

boards with a way of tracking learner queries and confirming any changes

in behaviour by asking the student to confirm it, would provide the reciprocal

information of understanding where learners have gaps in their strategic understanding

and what assists them in making changes.

Recommendations

• Data Collection: Collect information on the questions learners ask. Col-

lect learner verification of system outputs.

• Data Analysis: Appeal to learner verification of system outputs (predic-

tions, etc.), through use of prompts, to establish learner awareness and

conscious behavioural change.

• Communication: Include verification prompts in learner and educator

dashboards. Inform tutors of changes in learner behaviour and apparent

goals after verification of system outputs.

10.3.2 Ensuring Relevance Through Agency

What is likely to be relevant? This is still a question that learning analytics may help to

answer, even if it is personal. Useful analytics are those which “surprise and compel, and

2http://aftabhussain.com/ada_goes_live.html

 http://aftabhussain.com/ada_goes_live.html
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thus motivate behavioural change” [24]. The previous subsection described some of the

shared ways in which learning processes generally change and adapt. Helping learners

to develop more cognitive flexibility is an area where learning analytics can

help to impact learning directly.

Inside of that, however, students still need to anchor their development on

something that is important to them. The findings suggested that agency plays a

much bigger role in learner success and strategy formation than educators realise. The

evidence indicates that while educators hoped to empower learners to make

good choices, learners hoped to be empowered to make good on the choices

they’ve already made. Information that learners were likely to find useful typically

depended on goals that were personally relevant for their learning experience: a) what

they hope to gain overall from studying b) what they hope to gain from the module or

class itself. Occasionally, those needs coincided with what educators wished for students

to do, but only when the student had personally understood the value of the activity

toward achieving their goals.

Statements from students also demonstrate their desire for concrete, timely, relevant

feedback that take into account the realities of their lives. Educators, however,

do not always feel that they have enough information to provide contextualised, person-

alised feedback.

What is interesting, however, is that agency was also an enormously important aspect

for educators, who expected to be supported in delivering the learning design that they

feel is most appropriate. While educators appeared open to exploring the impact of

their pedagogical approaches, they also hoped to have more control over what data is

collected and how it is interpreted. The findings suggest that agency may be the

quickest path to relevance, and thus to perceiving an actual affordance in

using learning analytics.

For learning analytics development, enhancing agency could mean creating more person-

alised dashboards, but possibly, more personalised tools as well. Using learning analytics

for identifying more subtle changes in learner behaviour would allow educa-

tors to better assess learners in the absence of information about their goals.

Research indicates that customisable dashboards are what both educators and learners

want[164][85]. However, research shows that the customisation process itself requires a

familiarisation phase, especially for computer novices [164]. Personalised tools, which go

a little further in allowing an individual to develop their own indicators to analyse, can

support the processes of reflection and regulation. The DDART platform, for example,

allowed learners to develop their own indicators from examining their trace data, which

improved their ability to regulate their behaviour. However, evaluations indicated that
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developing indicators can be difficult [165]. This suggests, once again, that training in

the area of operationalisation will be important for learning analytics development.

Recommendations

• Data Collection: Identify the indicators that are important to learners.

Collect data relevant to those indicators.

• Data Analysis: Explore common patterns and trends to enhance learning

models and bundle indicators for novice users.

• Communication: Consult diverse stakeholders to create customisable learn-

ing analytics dashboards, but provide familiarisation phases in implemen-

tation.

10.3.3 Utilising Association and Examples

As mentioned previously, Vygotsky argued that self-consciousness arises through com-

parison with the “other.” Vygotsky’s notion of the Zone of Proximal Development (ZDP)

describes the learning potential of an individual with the assistance of a more knowl-

edgeable individual [26] (or perhaps entity, in the case of learning analytics platforms).

This has direct and indirect features. Some mediating effects are direct, in the form

of instruction or scaffolding procedures that help learners to develop inquiry skills and

clarify their strategies [26, p 20]. Other mediating effects are indirect, in the form of

exposure or spontaneous insight. However, not every experience of exposure will have

a positive mediating effect, as Smagorinsky argued [106]. Scaffolding experiences of ex-

posure as learning experiences is more likely to result in the development of cognitive

strategies, which are useful in formal learning [26, p 21]. This suggests that novice users

of analytics platforms will require some assistance in understanding and using the in-

sights provided. If learning analytics is to be a mediatory agent, or represent the “more

knowledgeable other”, there must be some common language.

Findings related to transitioning students show that conscious contact with other learn-

ers is the mechanism that they relied upon most to actually change a strategy. This

means that, if a learner has already developed a general set of learning strategies, as

many OU learners will have done in their previous or current professional life, conscious

contact with new strategies can help them transform or replace certain strategies when

necessary. Students act incidentally, in group assignments or student chat rooms and on

the forum, but they do not often interact with the clear purpose to explore and exchange
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information about learning strategies. In particular, students with pragmatic strategies,

who reported less conscious contact with other students, reported some difficulty in

adapting new learning strategies when they were struggling. This was especially true

if they did not have a particularly interactive tutor to provide expert guidance. How-

ever, the research literature is ambiguous on this point, as some studies argue that

participation expressly improves performance [166], whereas others indicate that it is

not interacting that has a negative effect on learning [167].

In light of the findings of this study, this ambiguity makes sense. If the student requires

a new strategy, but has no conscious contact with other learners or is not aware of her

need for the strategy, she will have difficulty making that transition. If, in addition,

her tutor is not helpful, then she is even less likely to make a positive transition to

a more useful strategy. This study implicates the way in which interaction is

facilitated and for what purpose as the influencing factors on the level of

impact it can have on student learning.

To improve the likelihood of new strategy development, social learning analytics can first

help to identify some general strategies that are useful. Second, social learning

analytics can assist learners in becoming more aware of their needs through

making meaningful comparisons, and in particular by giving them access to a wider

selection of strategies. Finally, social learning analytics can help to improve and optimise

social networks, helping the learner identify more knowledgeable peers able to

assist with new strategy development.

Tutors also have an important role to play in providing the conscious contact that some

students need in order to shift their strategies, especially when the learner is entering

a new domain with a pragmatic strategy set. Learning analytics that help to track

educator activity and intervention would provide much needed insight to a very

important aspect of the learning process. The findings of this study suggest that this

may be true, even if only the educator has access to this data.

It appears from the findings that the “more knowledgeable entity” does not need to be

present. Many students spoke about wanting to have an example of an assignment or

text, something that could help them to understand, at least at the beginning, what will

be expected of them. Other students wanted to have insights into how other students

approached assignments. For example, one of the affordances of learning analytics on

web data that is external to the VLE (see 9.5) was having access to other learners’ web

histories as they prepared an assignment. The realisation that each person will approach

the task slightly differently, and that it would be possible to have access to some part

of this process, was interesting for both learners and educators.
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For educators, finding more efficient or more effective ways of resolving exist-

ing problems was a primary concern. This typically translates into identifying best

practices, which is not the same as drilling down on specific issues of importance. Find-

ings from the exploratory interviews demonstrated that a “problem” is only a problem

for an educator, if it represents a challenge directly related to their individual learning

design and pedagogy. The study found that different pedagogical positions could

be clustered into some reasonable groupings, clarifying sets of needs and

possibilities that might be relevant for subgroups of educators.

Recommendations

• Data Collection: Collect web histories and examples of work from differ-

ent learners and experts. Collect social data from learner use of histories

and examples from other learners and experts. Collect information on

tutor interaction with learners.

• Data Analysis: Have users rate and annotate examples they find useful.

Identify workable learning teams and support networks based on goals

and strategies.

• Communication: Provide ample training and support, especially for novice

users. Anchor evaluation experiences on existing problems.

10.3.4 Reaching for High-Hanging Fruit

How can you assess knowledge? All of the above leads to the very complex issue of as-

sessment. Assessment featured quite often in the data, involving relationships between

the University as an entity and the educators, the module teams and the associate lec-

turers or tutors, the educators and the students. Educators were generally unhappy with

assessment and many felt that the current ways they assess their students were inade-

quate for the job. This was particularly true for educators in the Arts and Humanities

or Social Sciences, especially those with a goal to develop strong minds. That appears

to translate to students in similar domains, who struggle to recognise their learning with

traditional assessment and performance markers. Findings indicated that assessment

in the Arts and Humanities, as well as Social Sciences require more creative

methods of analysing text and identifying best practices for which general

skills are expected to be developed, such as argumentation and critical think-

ing. This is not a surprising finding. This division has been noted before in education,
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for example, with the concept of “multiple intelligences” and the development of lin-

guistic versus numeric skills [168]. Educators and learners acknowledge that assessment

of linguistic skill is time-consuming and complex. They see opportunities for learning

analytics to provide the innovative technologies necessary for harvesting this

high-hanging fruit of educational data.

Already in 2011, Ferguson and Buckingham Shum illustrated that it would be possible

to use learning analytics techniques to identify exploratory dialogue in synchronous

chats [169]. In the same year De Liddo, Buckingham Shum, Quinto, Bachler, and

Cannavacciuolo demonstrated how learning analytics could support qualitative data

collection about student discourse and argumentation [170].

These types of tools are reminiscent of wishes expressed by individuals in the applied

grouping to understand the shape and structure of discourse, where certain conversations

or conflicts are occurring. Many smaller analytics tools that have been researched and

developed, which accomplish what many educators felt would be useful in assessing more

complex skills, such as academic writing [171] and discourse [172]. However, research

indicates that students are not likely to use them, unless they are perceived as useful

or necessary, and “embedded” in their coursework [173]. With regard to “perceived

usefulness”, findings implicate a domain-relationship as a factor in what a learner would

perceive as important. As an effect, that value is communicated by the educator to the

student through the pedagogical approach. This is important when one considers the

Mediation of Meaning in 10.4.4.

It also suggests that it is important to start with the educator and make a con-

vincing argument for embedding such tools in the every day processes of

learning. In terms of approaching and working with educators, the findings of this

study indicate that having stakeholders work in interdisciplinary teams on learning an-

alytics might be more helpful in disseminating useful knowledge to less knowledgeable

individuals. In addition, the influx of novices may generate some creative ideas from

outside of the disciplines closest to learning analytics (such as computer science and

statistics).
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Recommendations

• Data Collection: Collect textual data from learner assignments.

• Data Analysis: Use existing research to provide ways of analysing more

complex skills that impact success such as critical thinking and academic

writing.

• Communication: Encourage educators and tutors to fully embed the pro-

cess of reflecting on learning into the regular activities of the class.

10.3.5 Differentiating Affordances and Intentions

Why are such tools, as those described in the previous paragraphs, not more common

place for educators in an institution like the Open University?The findings of this study,

along with the research literature, suggest that many tools educators might need already

exist in some form. If they exist and they are not being used, there are a few possible ex-

planations. However, the educators and learners in this study suggested that if tools are

not being used it is mostly likely because they are failing to meet the real requirements

of educators, with regard to the information needed to make an important judgement.

Requiring educators to base their evaluations on personal, real-life scenarios

will be more likely to produce evidence of intent to use.

10.4 How to Change a Mind

The previous section highlighted the places where learning analytics could mediate im-

portant educational processes related to identifying, influencing and transitioning be-

tween systems of thinking (“psychological tools”). Smagorinsky claimed that a positive

mediation will not always be successful, in particular if the learning environment is not

intentional and trustworthy [106]. In addition, as Feuerstein argued, it is possible to

perform learning without the continued development of advanced cognitive skills [17].To

determine if an environment is trustworthy and differentiates between learning and the

performance of learning, it requires some additional reflection.

Assessment has already been discussed as a frustrating element of the educational ex-

perience. Assessing learning as something separate from the performance of learning is

a central conflict that faces all educational institutions. Kozulin wrote:
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“We often tend to confuse literacy in a generic sense with a special type

of analytic literacy that is supposed to be a goal of formal education. Not

every type of literacy leads to the cognitive changes observed by Vygotsky

and Luria (Luria, 1976). Moreover, even literacy acquired in the nominally

formal educational setting does not necessarily lead to the cognitive changes

unless this literacy is mediated to a student as a cognitive tool.[26, 25]”

When the output looks very similar, learning and performance can be differen-

tiated by examining the educational context. Feuerstein’s criteria for mediated

learning experiences provide a framework for determining, at the very least, whether

the appropriate conditions for learning have been met, as a complementary

feature to actual performance.

This section discusses the affordances proposed by research participants in relation to the

three universal criteria proposed by Feuerstein, which all mediated learning experiences

will share. 10.4.2 addresses Mediation of Intentionality and Reciprocity. It describes the

affordances of learning analytics that communicate an intent for the student to learn, as

well as an interest in the student’s processes over outcomes. 10.4.4 explores Mediation

of Meaning, and the ways in which learning analytics can help to convey or support

learners’ understanding of why something is important, should happen, or be done.

10.4.6 probes Mediation of Transcendence, and affordances that go beyond the goals

of specific educational interactions to help the learner see the larger picture. Each of

these sections has a message for institutions, researchers and developers about creating

learning analytics that are more likely to mediate (and this impact) student learning.

10.4.1 The Applied Grouping

Before beginning this part of the discussion, it is useful to point to a particular group

of interest from the data, which shaped the development of arguments below, learners

with applied strategies. The previous chapter explored how the hybrid strategies of the

applied grouping allowed them to connect with learning analytics in novel ways. The

affordances of learning analytics that were expressed by members of this grouping re-

sulted in the highest levels of metacognitive activity (see 9.1). This group represents an

interesting and insightful target group for learning analytics exposure and

evaluation. Transitioning learners from the applied grouping provided some additional

evidence of how new learning strategies are adopted, which is ultimately how Vygotsky

and Feuerstein believed that learners grow [19][17]. Due to their ability to stimulate
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metacognitive activity, more of the affordances that fall into the applied group-

ing are also those which have the greatest mediatory potential, as the following

subsections will demonstrate.

10.4.2 Mediating Intentionality and Reciprocity with Learning Ana-

lytics

Intentionality is the spark that ignites the mediation process. Feuerstein likened this

to calling a class to attention and signalling that the learning process has begun [16].

Feuerstein argued that if a particular object is intended to be used as a cognitive tool,

that intention must be communicated very clearly to learners. Reciprocity is the com-

panion to Intentionality, in communicating to the learner that there is value in sharing

the processes by which they learn, rather than their outcomes [16] [19]. Together, they

ensure that mediated learning is a mutual process, which Feuerstein felt provides the

learner with the best chances of success [19][20].

Online classrooms already have difficulty mediating intentionality and reciprocity in

the same way as a bricks and mortar institution. In a physical classroom, the teacher

can come in, stand at the front of the class and tap on the chalkboard or flip the

lights on and off if the classroom is noisy and the pupils appear unsettled. Silence is

a sign of attention. In an online classroom, at least for educators from the exploratory

interviews and focus groups, silence is potentially a sign of disinterest. Without the

disruption/silence dynamic of a physical classroom, how do online educators and learners

perceive a mutual process? How can learning analytics support this?

Findings of this study showed that transparency was a factor in how educators and

learners perceived learning analytics affordances. This was particularly noted with re-

gard to the intentions of the University. Students and educators tended to connect

learning analytics with cost-saving measures, which breaks the perception of mutual

process. Having a clear chain of responsibility was also an important issue, in

terms of who is asking the questions and why. Not knowing who the beneficiaries are,

appeared to create barriers in how useful educators and learners perceived learning an-

alytics to be. Ethical considerations, too, appeared to be focused around the potential

for misinterpretation or misapplication, for example, to reduce quality and keep costs

high for students. The evidence suggests that if educators and learners could be assured

of benevolent usage, they would be more willing to supply their data. Mediation of

Intentionality and Reciprocity can be improved by dealing with these trans-

parency issues and clarifying responsibilities.
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Intentionality and reciprocity can also be mediated by allowing learners to engage

with the institution and with educators on the subject of learning analytics.

Findings of this study suggest that even just pointing out to educators and learners that

certain activities can be mapped and measured elicited metacognitive activity about

practice. Getting the learner to verify claims that the system is can encourage their

participation and increase the validity of the system’s insights.

Most educators admitted that they make mistakes and that they could learn something

about their own practice from the data. This indicates that they are open to having

their activity interpreted by others. However, they are less open with how it is applied.

Findings indicated that educators are less willing to share data, if they believe it could

be used to evaluate their performance based on measures to which they do not relate.

Still, understanding, in the same way as learners, the ways in which they are responding

to learning analytics insights, would be an important piece of the puzzle to resolve.

10.4.3 Affordances for Mediating Intentionality and Reciprocity

Which of the affordances that educators and learners named meet this particular crite-

rion? Affordances that stop short of involving the learner or educator in any conscious

aspect of the process would be automatically excluded. However, most named affor-

dances did have potential for examining mutual process of intention and response. Pre-

diction, for example, has a very clear intention and reciprocal request; at-risk learners

should be identified and the tutor should intervene. The findings of this study indicate,

however, that the strength of the prediction could be improved, if some part of the

request was made directly of the learner. More specifically, this study suggests that a

query, such as asking the learner if they are aware of a given trend in their activity, if

they intend to continue or if they need help, might help to close the loop more effec-

tively, between learning analytics and impact. Identifying the learners who do and do

not exhibit behavioural changes after verifying or rejecting system outputs can provide

some useful insight into what processes or conditions support behavioural change.

Likewise, complex sociological studies have the intention to examine other contextual

features that are relevant for learning and it is expected that the institution will do

something about it. The mediatory potential of such studies, affording to the findings

presented in this thesis, could be improved if learners were also aware of the many

factors that potentially influence their educational experience. In addition, comparison

with a selection, so long as that selection is relevant to the learner, is also intentional

and reciprocal. Conversely, affordances such as assessing participation, understanding

withdrawal and assessing learner attention, as they were described by participants, were
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not typically affordances that would mediate intentionality and reciprocity. Either, there

was no clear request that the learner perceived (in particular when their participation

or attention was required), or there was no clear intention behind it.

The affordances that provide the closest mutual process of learning exchange through

learning analytics can be found among the applied grouping. Affordances that involved

investigating the educator and student relationship, tracking one’s own patterns of study,

or looking into the patterns of others relied most closely on mobilising the individual for

a social benefit.

To gain their support, findings suggest that educators and learners would like to be

in control of how their data is applied. During the initial stages of learning an-

alytics research, institutions should consider developing tools that support

familiarisation and personal exploration, providing exposure without requir-

ing access to the data. This would give educators and learners time to become familiar

with learning analytics approaches enough to provide a useful consultation on how they

could be used to evaluate activity on an institutional level. This suggests that learning

analytics can learn some lessons from the health sector about innovative approaches to

protecting sensitive data, for example, through cryptography protocols around cluster-

ing partitioned data from distributed databases [174][175]. However, intentionality and

reciprocity are a frame. Mediation of meaning and transcendence are still necessary to

understand exactly what is being communicated through the mutual learning process.

Recommendations

• Data Collection: Collect verification and response rates to system outputs

from both learners and educators.

• Data Analysis: Perform cluster analyses on recommendations, verifica-

tion and subsequent user behaviour. Develop more meaningful predictive

patterns. Research new technologies regarding data storage and distri-

bution.

• Communication: Make a clear use case for why gathering data is im-

portant. Ensure that this use case benefits those who contribute their

data. Make all stakeholders visible.Develop student-facing dashboards

for tracking study habits and outcomes, identifying and verifying goals

and strategies.
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10.4.4 Mediation of Meaning

Presseisen argued that Mediation of Meaning is about finding “the generator of the

emotional, motivational, attitudinal, and value-oriented behaviors of the individual” [16,

p 15]. The findings of this study indicate that this generator is found in the individual’s

background and life circumstances, which set a few systems in motion that can be

difficult to change.

This study proposes that the motor for change is in having access to new strategies that

may assist the learner in accomplishing their own goals. With this in mind, Mediation

of Meaning will involve communicating the importance of certain activities

toward the learner’s own goals.

The findings of this study suggest that a few general learning analytics that are able

to meaningfully group and support different constellations of individuals can

help to anchor new strategies on existing knowledge (Mediation of Transcendence) and

promote conscious contact. As has been previously mentioned, learners appeared

more likely to seek out students with similar goals to obtain information on strategy.

Learning analytics could both support and influence this process, for example through

algorithms such as k-nearest neighbours, which helps to classify like-students. This

technique is already used in predictive analytics, for example, in informing the models

involved in the predictions generated by OU Analyse [51].

Mediating meaning in online learning gives social learning analytics a much higher value

than it appears to have currently in impacting the practice of educators or learners.

Educators are only one bridge that learners have to understanding the value and impor-

tance of knowledge and strategy. In a physical classroom, students can absorb strategy

knowledge from students they trust “in the back of the classroom”, as one participant

said. Finding ways of recreating that informal space within the structure of the Univer-

sity is a difficult challenge. Mediation of meaning can be improved by analysing

and fortifying bridges between students and with educators, in a way that

focuses on the learner’s goals.

10.4.5 Affordances for Mediating Meaning

Which affordances are best able to mediate meaning? Once again, any affordances that

do not speak to the goals of the individual are not likely to mediate meaning, because the

value is not easily apparent. Affordances that build awareness of value or work

with existing values are most promising for mediating meaning. The most

immediate approach is to allow the individual to experiment with, model and test their
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own assumptions, because the value is internal. For example, affordances around testing

assumptions, tracking one’s own study, and comparisons against specific selections of

others are all driven by the individual’s own perceived goals. Affordances that are based

on idealistic goals cannot be assured of their ability to mediate meaning, even when

those idealistic goals are very sensible, such as high performance or retention.

In connection with the above, findings of this study suggested that rather than time-

management or setting expectations, which educators felt constituted a more reason-

able approach to learning to study, students seemed to feel that accessibility and coping

strategies would be more valuable. This indicates that mediating meaning can be

also be improved through affordances of learning analytics that address what

learners perceive as critical aspects of their ability to participate in educa-

tion.

With this in mind, there are many affordances that participants mentioned, which po-

tentially pass this second test. Almost all of the affordances from the pragmatic grouping

in Figure 9.3.4 could mediate meaning if they were directed at the users than can ben-

efit from this type of information. However, there are some that will not likely mediate

learning. As has been mentioned above, setting expectations is an affordance that educa-

tors expect learners to benefit from, but which learners do not say they want. Likewise,

assessing participation was considered important for educators in implementing their

learning design, but this kind of design was not perceived as useful for some students.

Additional work would be necessary to convince learners that do not feel they benefit

from interaction that interaction is useful. This study suggests that affordances around

social analytics, in particular those that examine the expert-novice relation-

ship, will appeal to the most students, even those with different motivations

and goals (though for different reasons). Learners want examples, from tutors or from

peers. Tools that allow them to filter those examples in a meaningful way will be helpful.

This study observed evidence of two paths through which Mediation of Meaning might

best be achieved. First, learning analytics could potentially automatically recommend

strategies based on the goals the system can recognise. For example, through learning

analytics, a tool could identify and communicate to the learner what their goal appears

to be, based on their activity. The AFEL project [41] is an example of this functionality.

Once the learner has verified or refuted the presented goal, it would be possible to suggest

to the learner whether their activities are helping them to achieve that goal. Tools like

nStudy [43] and click-stream analytics would have improved value. For example, if a

learner has consistently fallen within the 10% of her class in her performance, it may be

useful to ask her, “Is this your goal?”. It may even be possible to ask follow up questions,

such as “Do you want to improve it?” to gather extra information that would be helpful to
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know in understanding learner motivations and actual behaviour. Learning analytics

can mediate meaning more efficiently by helping the learner to identify goals,

and monitor them as they change.

The second avenue for development, with regard to mediation of meaning, would be to

focus on general strategies that are important toward achieving any goal. For

example, the findings of this study suggest that knowing how to make conscious use of

other students and tutors is a general strategy that is useful for developing new strategies,

as well as gaining access to specific strategies that are useful in the short-term. Social

analytics could facilitate conscious contact by appealing to learners for whom

any interaction is useful, as well as those who want more targeted support.

Using the example above, the learner’s goal was to be in the top 10% of her class, having

access to learners with the same goal may allow her to make a more relevant comparison

of strategies.

Recommendations

• Data Collection: Collect response rates (from both learners and educa-

tors) to learning analytics recommendations and prompts. Collect user

verification of system outputs.

• Data Analysis: Identify patterns of expert and novice behaviour relative

to different system tools and applications. Use non-parametric statistics

on demographic, legacy and VLE data (such as k-nearest neighbours)

to identify classes of learners who exhibit similar responses to system

insights in terms of their goals, priorities and background. Apply social

analytics to support classifications and create learning exchange groups.

• Communication: User the learner’s own goal to motivate by exposing the

learner to successful strategies demonstrated by learners who share their

goals and certain key aspects of their background.

10.4.6 Mediation of Transcendence

The above sections argued that to mediate intentionality, reciprocity and meaning, the

future direction of learning analytics research should focus on how to make learning

analytics more personal, dynamic and mutually beneficial for the institution,

educators and learners. Mediation of Transcendence is a type of insurance

policy that improves the quality of information in a highly personalised and



Chapter 10 Discussion 231

dynamic setting. As mentioned previously, transcendence is mediated when the me-

diatory agent goes “beyond the scope of a particular interaction”, to “widen the scope

of interaction” [16, p 14]. Transcendence is what allows a person to organise new

knowledge into existing structures. Without it, learning transfer is difficult to

achieve.

Essentially, mediating transcendence is about communicating context, which

this study concluded was an important feature for new strategy development.

One achievable area of influence that learning analytics could have would be in help-

ing learners to see how their strategies fit within a larger context of other

students in their in their module, in their degree program, or even in their

domain (which was important for novices). Through understanding context, individ-

uals are able to anchor information on familiar concepts, identify outliers, observe the

interactions of different factors, many general strategies that are important for learning.

Presseisen wrote:

“Feuerstein (1990) notes that transcendence is seldom, if ever, observed

among animals who rather model behavior of particular and discrete inten-

tions alone, very much limited by the organism’s primary instinctual needs.

Transcendence, for Feuerstein, is the most humanizing of the universal pa-

rameters [16, pp 14-14]”

Findings of this study about how specific strategies impact student learning suggested

that being focused on achieving only specific goals may put new strategy development

at risk. The framework of mediated learning would propose that this is because the

conditions for transcendence are not met. In the study, when the student had module

specific goals, such as to pass a specific test, their strategies were generally around

understanding what that particular test would be assessing and making judgements

about how to efficiently process material. This is a good strategy that can be repeated

for a generally good outcome, so long as the student’s ability to assess the situation is

adequate (awareness), or they have contact with a more knowledgeable peer or tutor that

is helping them (interaction). If the student is lacking in that general ability to assess,

or has little contact with a tutor or peers, it is difficult for a student to contextualise

their own goals and strategies well enough to know what is missing and how they can

fix it.

The same is true for educators, when they find themselves in the position to interpret

and act on learning analytics. It may be difficult for some educators to understand the

wider context of learning analytics and thus, its strength as evidence. For example,

where prediction falls short is in informing a larger cognitive strategy for what to do
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in the future to prevent the same occurrence. The evidence of this study demonstrated

that sometimes the educator knows what to do, but sometimes they do not and it

is this missing larger strategy, for educators and learners, that impede the

performance of prediction as an affordance of learning analytics that can impact

learning.

10.4.7 Affordances of Mediating Transcendence

Of the affordances that educators and learners named, which are best able to mediate

transcendence? This study concluded that affordances that specifically address

general or contextualised strategy development will be those that best me-

diate transcendence. Affordances around study tracking and self-regulation, for ex-

ample, help learners to view their behaviours as part of a larger strategy for success

(whatever this means)[39][43], which is already part of the challenge. All educators in

the study agreed that self-regulation is a skill that students need and are expected to

develop through their course of studies. As this study concluded, however, there is

very little place inside of higher education to assess and correct learners’

strategy development. It was not generally a formal part of the curriculum, nor

were students’ skills in this area formally assessed (with the exception of students with

learning support).

Self-regulated Learning Theory shares many of the same principles that have been cited

throughout this paper as being important for learning, such as emphasising agency and

reciprocity in learning [5]. Learning analytics researchers have connected with this theory

to create holistic sets of tools [176], as well as customisable dashboards and personal

learning environments [177] for self-regulated learning, using learning analytics as a way

of promoting awareness and reflection. In the long-term, these projects will reach the

potential to mediate transcendence by providing structure and organisation to

educational strategy data.

Learners, however, report that they need more help accessing that cycle of self-regulation.

Becoming aware of learning as a strategy is a first step, followed by the understanding

that there are different strategies that produce different results. With regard to the

above, one of the simplest ways of mediating transcendence was in identifying and cat-

aloguing different study behaviours. This was an affordance that learners were keen to

see realised. In particular, the technology behind tools like nStudy [43], which capture

trace data, was interesting for learners in a somewhat surprising way. Learners reported

that, if some of the details of classmates’ web histories and resource use were made



Chapter 10 Discussion 233

available, for example, they would have a useful point of contact to consider different re-

search strategies. Knowing the task and the first places a learner goes to start resolving

the task can provide specific information for general strategy development, such as does

the learner start with the materials or a general web search? Do they look at source

material? How deeply do they go into the topic?

As long as the affordance, with its intentions and requests, aids in widening the scope

of the interaction, it will have improved changes of mediating transcendence. Engaging

learners and educators in the process of interpreting and verifying learning analytics

claims and insights is not only reciprocal and meaningful, it also directs the reflection

process away from the individual and back toward the process of discovery. As the find-

ings of this study suggest, even small or negative experiences with learning analytics are

sufficient to improve a stakeholder’s awareness of learning analytics and their potential

power.

Though experience of learning analytics does begin to train these skills, educators and

learners, any direct beneficiaries of learning analytics insights, should still receive a

foundation in computing and numeracy that is necessary for understanding both the

potential and limitations of learning analytics. Specific and prolonged training will

help educators to understand certain functions of a given software, which

will improve impact.
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Recommendations

• Data Collection: Collect information on students who both verify a sys-

tem output and exhibit a behavioural change as a result. Collect infor-

mation on students who verify a system output and do not change their

behaviour.

• Data Analysis: Seek patterns in precipitating events or behaviours that

precede behavioural change. Seek patterns in precipitating events or be-

haviours that precede verification without behavioural change. Conduct

mixed-methods research to develop models of behavioural change on the

basis of learning analytics insights. Share and verify these models with

learners.

• Communication: Invite all stakeholder groups to be involved in the ver-

ification process to a reasonable extent. Communicate organisational

changes that are made on the basis of insights and recommendations.

Embed the processes of self-regulation into learning management sys-

tems and classroom curricula. Improve training in advanced numeracy

and analytics for all student-facing staff and central academics.

10.5 Identifying Software Requirements

Identifying software requirements in learning analytics research is an iterative and cycli-

cal process (see Figure 10.3). Clow described the learning analytics cycle as an extension

of other cyclical learning and reflection theories, for example from Kolb, Schön and Lau-

rillard, which emphasise how reflection leads to future decision-making [4]. For learning

analytics to operate in a “closed loop”, Clow suggests that there needs to be a) a clear

evaluation of what has been done in response to learning analytics and b) evidence of

how these responses are borne out in the subsequent data collection and analysis phases.

What did users expect and were their expectations met? Requirements elicitation is an

important part of understanding expectations.

For requirements analysis, Yang and Tang have suggested that focus groups, question-

naires and experimentation with initial prototypes are part of the first stage in gathering

requirements from end users. During subsequent stages, the key stakeholders typically

respond to a prototype and provide enhancement suggestions, while satisfaction with
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current features is measured [178]. This is a common practice in gathering learning an-

alytics requirements as well. As has been highlighted before in this thesis, however, this

process can risk conflating technology acceptance with learning analytics acceptance.

For the purposes of understanding the conceptual value of learning analytics, this thesis

did not involve responding or reacting to a prototype. Instead, it deployed a qualita-

tive approach, highlighting instead what it is that educators and learners want to know

about learning, and whether or not the information they could use to support them is

being currently collected already.

Dyckhoff also distilled requirements qualitatively by assessing different case studies in-

volving learning analytics and analysing the research questions that these case studies

intended to answer [179]. The diversity of these requirements supported her conclusion

that learning analytics tools must have a high degree of personalisation with a “flexible

and extendable set of research questions”[179]. The findings of this thesis suggest that

what is being framed as highly personal might also reflect professional standards or is

shaped by professional experience and mindset. The application Mediated Learn-

ing at the point of collecting user requirements made it possible to group

requirements into different clusters, demonstrating that what is relevant may

be somewhat predictable. The findings of this thesis also suggest that learning an-

alytics should focus on improving end users’ existing strategies first, as this is what

educators and learners value most. This meets the requirements of mediating meaning

described in the previous sections, which are critical for gaining buy-in and contextu-

alising impact. Greller Drachsler [180] concluded that intentional pedagogy is visible

in the way that an educator interacts with learning analytics tools and technologies.

The authors do not extend this to examine whether or not there are patterns, such that

pedagogy might become detectable by looking at certain choices or behaviours. Know-

ing what an educator appears to be trying to achieve improves the value of a highly

personalised tool, which is part of the contribution of the study presented in this thesis.

The codes and descriptions that emerged from the data often produced some indicators

of concepts that were important to the participants. By considering what is available to

collect, given the sources of data accessible, it is possible to develop workable software

requirements for tools that perform the functions that participants suggested in the

exploratory interviews analysed in chapter 7 and the focus groups presented in chapter

9 on Affordances.

The previous sections and chapters have already highlighted several examples of learn-

ing and learning process indicators that could be translated into metrics. Researchers

and developers can start from those indicators to improve data collection, support the
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development of stronger predictive and descriptive models, advance learning assessment

techniques and create buy-in from a greater number of potential stakeholders.

Figure 10.3: Learning Analytics Cycle (Clow, 2012)

This section expands on some of those examples, using codes and descriptions from the

previous chapters to make some more specific recommendations with regard to classifi-

cation of learners, prediction, social analytics and assessment, four of the most common

applications of learning analytics in higher education. This section shapes a pathway

for future work.

10.5.1 Overview

Before descending into the details, it is useful to consider the top-level system require-

ments that would be necessary for learning analytics systems to engage with educators

and learners as a mediatory agent. A “more knowledgeable entity” should be able to

help model and scaffold effective learning strategies. This thesis has helped to distil what

should be available to educators and learners, in terms of the information they need to

make better educational choices. Figure 10.4 presents those top-level requirements for

systems that want to help mediate learning. Mediation of Intentionality and Reciprocity,

Meaning and Transcendence were universal criteria that should be present in all learning

analytics systems, as described in the previous sections. The requirements to capture

all relevant metrics and perform the relevant analyses are broken down further in subse-

quent diagrams below. Multi-modal analytics have been left off of the relevant metrics
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in this diagram, based on reported learner and educator perceptions that multi-modal

data was not particularly important. As this thesis is focused on what is important to

educators and learners right now, it is expected that this could change. Web analytics

are included because of the importance they had for learners in understanding the be-

haviour of their peers, but they do not need to be built into the system. Rather, the

system should be able to integrate web analytics on learning analytics platforms.

With this birds-eye view of the system, it is easier to explore the ways in which different

concepts were operationalised in the sections below.

10.5.2 Useful Classes of Learners

Some learners were determined through the evidence to be important targets for learning

analytics research because they can highlight how certain processes of change occur. For

example, it has already been recommended to consult with learners with special needs

as important contribution to learning analytics research and development. A group of

interest that also arose in the case study was the “mid-range learner”. Educators and

learners were concerned that learning was difficult to detect among learners that perform

averagely, because the the effort and strategies of the student are less immediately visible.

Some of the examples educators gave were inconsistent performance and engagement,

and erratic learning habits, related to when they spend time logged-in, when they submit

their assignments and when they participate in discussion. If learning analytics could

make the identification of mid-range learners possible, some educators felt that this

could offer important insights into learning patterns and the the impact of interventions.

This would potentially offer an even earlier warning system for at-risk learners,

before they become at-risk.

In addition, to mid-range learners, the findings suggest that it is important to identify

transitioning learners to explore their strategy formation and development. In addition,

learning analytics that are focused on transitioning learners shifts the focus away from

what some educators in the study described as “educational triage” and contributes

more directly to investigating how learning analytics can optimise learning. To help

identify transitioning learners, it is necessary to know more about their edu-

cational and professional background, which is information that was important for

the pragmatic and open groupings as well. It will be important to collect and integrate

this data.

Figure 10.5 illustrates some of the indicators associated with identifying each class of

learner. The qualifying terms that educators use, such as “limited”, “erratic” and “con-

siderable” are representative of each educator’s or learner’s own judgement in comparison



Chapter 10 Discussion 238

F
ig
u
r
e
1
0
.4
:

S
of

tw
a
re

R
eq

u
ir

em
en

ts
fo

r
M

ed
ia

to
ry

L
ea

rn
in

g
A

n
a
ly

ti
cs

S
y
st

em
s



Chapter 10 Discussion 239

to other information. In some cases, information may not be available or possible to

integrate fully in an ethical way, such as previous academic performance. However, in-

formation needs should be considered in terms of what kind of “answer” is required. For

example, in the case of student past performance, information is only needed in terms

of the question “Has there been a change?” The educator does not need to have access

to the complete set of student grades.

Figure 10.5: Indicators of Transitioning and Mid-range Learners

Incorporating some new techniques for identifying and documenting the behaviours

of learners who could be useful to track could improve the power of existing tech-

niques like prediction and automatic recommendation systems. In addition, develop-

ments in cryptography might offer new ways of interrogating databases, for

example, using zero-knowledge proofs or other type of verification method that does not

require unmasking the data [181]. Zero-knowledge proofs allow for verification of data

without the need for accessing the entire data set, allowing educators and learners to

interrogate data without exposing the data of other learners.

10.5.3 Metrics for Recognising Learning

Both educators and learners who participated in this study provided some indicators that

they already find useful in their practice. In figure 7.6, educators described how they

recognise learning, through getting a sense of the willingness to learn, positive feedback,

social interaction, demonstration of skill and even their own perceptions. Figure 10.6

illustrates a translation of these indicators into software requirements (the second, longer

row) and the associated metrics that educators described under each indicator.
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One can see from the figure that there are many non-textual features of learner activity

that are useful to track regarding communication, interaction, energy and excitement.

Several requirements, however, do require more complex technologies to gather data,

such as performing semantic sentiment analysis on communications on student fora and

in email exchanges. Semantic data can be gathered about “morphology, semantics,

discourse analysis with emphasis on polyphony and dialogism, thus providing reliable

support for both tutors and students across a range of educational settings” [182]. Sen-

timent analysis can gather information that is important for understanding student

attrition [183], supporting the emergence and maintenance of discourse [184] and more

generally obtaining a sense of the feelings and attitudes toward a given subject [185]. Ex-

ploring sentiment in this way will help to provide more robust data to support emotional

indicators, such as intuition and positive feelings toward the learner cohort.

Learners described the ways in which they recognise their own learning, which was

summarised in a table in figure 8.9, including comparisons against oneself and others,

sensing coherence in their work and performing well on assessments. They had their

own indicators, such as doing better than a certain selection of students, or obtaining a

specific mark, or feeling like they had access to discourse on a subject to support their

process of recognition. As such, most of the metrics are already listed in figure 10.6.

For learners, it is more about what kinds of analyses are performed on the data, which

makes the difference. The metrics necessary for performing theses analyses are presented

in figure 10.7.

10.5.4 Requirements for Improving Learner Classification and Mod-

elling

Several examples of classifying learners have already been presented within the data.

Figure 7.12 illustrated one participant’s description of how to classify learners by engage-

ment. Figure 10.5 proposed some indicators for classifying transitioning and mid-range

learners, and figure 10.2 suggested some indicators for classifying learners by strategies.

From the affordances that participants described in using learning analytics to impact

their practice, educators and learners named a number of indicators they would gather

from the various sources of data that could be available to them. Figure 10.8 looks at

the data collection and analysis that educators desire from each data source. Data that

has already been referred to in a previous column is then shaded in grey, indicating

that it is a data need that is shared between two or more data sources and should be

a priority for research and development. The most important data to collect, according

to this figure is learner verification on learning analytics insights. This suggests that a
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student-facing dashboard is a must-have for any learning analytics initiative.

Without knowing why a learner agrees or disagrees with a particular system output, or

how they found it helpful, at least connecting a verification of a claim with a behavioural

output helps to reduce the relative “noise” in identifying patterns in learning behaviour.

All of the data mentioned in figure 10.8 can be combined to test the various indicators

that educators and learners referred to in the data chapters of this thesis. For example,

in chapter 9, educators Ivan and Jeremy elaborated an idea of a “shell tool” that would

allow educators to experiment with different models, and to select indicators

that they would like to track on the basis of these models. The requirements

presented in figure 10.8 can provide some introductory steps in developing more complex

and stronger indicators to expand upon what educators and learners provided in figure

7.6.

In addition, learners Jonah, Harriett and Ora all spoke independently about having the

ability to track and make sense of certain features of their own online activity and habits.

Students could also select the indicators that are most interesting for them

and receive data analyses on the basis of those indicators.

Combined with the frequency distribution in figure 7.7, researchers and developers can

work on further developing these basic models with the educators for whom specific

indicators are important. For example, the findings of this study suggested that edu-

cators with the goal to develop strong minds were missing data about the emergence

of discourse and excitement or energy in the classroom. Starting from the data collec-

tion requirements in figure 10.6, researchers and developers can consider consulting with

members of the Arts and Humanities or Social Sciences to further explore and refine

research outputs. This represents an area of future research, to gain further perspec-

tives, and work with educators and learners to better refine the metrics or test different

models based on educator and learner needs.

10.5.5 Requirements for Improving Assessment

In general, semantic analysis of learner and educator written contributions, communica-

tions and assignments can provide some of the valuable data for assessment that some

educators required. Research on semantic sentiment analysis of Twitter data, for ex-

ample, can provide clues on how to explore short contributions that include informal

language and irregular usage of words [185], which is common in online educational

exchanges. In an increasingly international and interdisciplinary online education envi-

ronment, the analysis of data based on standard lexicons may no longer be sufficient to

adequately explore student contributions to learner fora.
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In addition, as two social science participants remarked, analysing a written assignment,

such as an essay, has presented a considerable challenge for educators and researchers,

up until now. Text semantics that explore more complex concepts such as cohesion

have helped to elaborate classical models that typically include only text syntax and

vocabulary, such that their accuracy is considerably improved [186].

10.5.6 Evaluating Learning Analytics Tools for Mediating Learning

To meet all requirements for mediating learning, learning analytics tools and technolo-

gies should satisfy all universal criteria, collect all relevant data and perform all relevant

analyses. One area of future research would be to more fully vet the learning analytics

tools and technologies that exist. Figure 10.9 is an initial example of how the perfor-

mance of learning analytics platforms can be compared to the requirements presented

in Figure 10.4.

The small “n” icon represents the nStudy 3 program and the small person icon repre-

sents the OU Analyse platform 4. One can see from the figure that nStudy is stronger

in creating a reciprocal relationship between learners and learning analytics, while OU

Analyse performs more of the analyses necessary to parse large amounts of educational

data. The two initiatives together would meet many of the requirements that educators

and learners felt were important, and which are necessary for mediating learning. Eval-

uating additional tools and collecting insights from their developers on how these tools

might be improved is a next step following this research.

10.5.7 Feasibility of Software Requirements

While it was outside of the scope of this research project to perform a complete eval-

uation of the recommendations presented in this thesis, the initial ideas and opinions

were sought from three experts within the learning analytics research field. These indi-

viduals have expertise on predictive analytics, learning dispositions and using learning

analytics to understand learning design. Each of these experts was asked for some infor-

mal feedback on the recommendations provided in this chapter. In addition, they were

asked for their thoughts on data collection, analysis and communication around learning

analytics, and to review the indicators and metrics that emerged from the data.

With regard to analysis, one researcher working on predictive analytics reported that

attempts to use machine learning techniques to explore strategy led to “messy data”.

3https://www.sfu.ca/edpsychlab/nstudy.html
4http://kmi.open.ac.uk/projects/name/ou-analyse
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With all factors considered, students appeared too individualistic for meaningful clas-

sifications. However, with the assistance of some indicators that can provide a way of

reducing the amount of data that is being included in the analysis, it may be possible

to improve models and set some parameters for analysis. If educators and learners can

describe more clearly exactly what they are looking for, it may be possible for learning

analytics to find it.

A researcher that had experience liaising with different faculties on the issue of learning

analytics confirmed different faculty perceptions that had been noted in the data. For

example, this researcher had experienced similar resistance from educators with little to

no background in either numeracy or computing, and the wish for more independence

and knowledge of the processes behind analytics from STEM and other computing fac-

ulties. He also said that he faced more ethics and privacy concerns than were reported in

my study, and that he had noted a tendency regarding the age of a course and increased

resistance to change. The researcher had used an activity chart as a way of introducing

people to what learning analytics can do. Based on the recommendations made in this

thesis, activity charts should be assessed to ensure that they represents activities that

are relevant to the educators involved, not just one type of educators group.

One researcher has expertise in using learning analytics to examine learning design and

learner disposition. He proposed that the “strategic approaches” presented in this the-

sis might be connected to learner disposition, but also to the institution itself. He said

that much of how students progress has to do with how the university does things,

which explains the focus on shaping macro-level interventions to improve learning de-

sign and retention. He also spoke about academic resistance, to technology, to change.

In particular, he spoke about tracking educator activities as something that would be

very difficult to convince educators was useful. Resistance to technologies like learning

analytics, which transform complexities into ordinal numbers, attract fear of misinter-

pretation [187]. Sometimes this fear is justified, because complexities are “misconstrued

as calibrated ordinal variables”[188][189]. This lends support to the statement that

educators need to be able to trust in the data they have been given.

10.6 Mediated Learning As a Framework

Mediated Learning as a framework produced some heuristic tests for assessing the po-

tential for learning analytics to impact learning.

• Does the tool or approach support agency, especially of learners?

• Does it communicate why information is or could be important?
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• Can it widen the scope of interaction in meaningful ways?

• Can it do all of the above?

Mediated Learning also helped to answer the questions that were highlighted as gaps

in the literature review. This section goes briefly through each of these questions and

evaluates the answers concluded by this study.

10.6.1 What is the relationship between learning analytics and peda-

gogy? How can it be managed?

This study demonstrated how commitment to pedagogy, in particular over time, can

have an influence on goals, strategies and thus, perceptions of learning analytics. It also

suggested how psychological tools might be agitated and influenced by learning analytics

that promote conscious contact and exchange, especially around general learning and

teaching strategies. Looking at learning analytics as a mediatory agent presented an

opportunity to explore their impact on psycho-social aspects of learning, rather than

the technological aspects.

To manage pedagogical influences, mediated learning suggests that new approaches and

strategies should not be allowed to become stagnant, and to encourage educators and

learners to experiment with new ways of accomplishing the same thing.

10.6.2 How can learning analytics help to detect and optimise goals?

Mediated learning highlighted that it is not so much goals as strategies that need to

be optimised, as these are sometimes indefinitely borrowed from a previous domain or

profession. The theory provided a way to understand how transitioning learners make

their way from one system of psychological tools to another, to better understand what

is necessary to know in order to correct strategy problems in other types of learners.

Feuerstein’s criteria provided a way of evaluating those approaches and checking learning

potential (measured by metacognitive activity) with mediation potential (measured by

comparison with the universal criteria).

10.6.3 How can learning analytics help capture and optimise the learner-

educator relationship?

Mediated learning focused the attention a bit more on the educator once again, in

technology-enhanced learning. It served as a reminder of the incredible importance
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that educators have in shaping learning experiences. The affordances that learners

named for helping to match educators and learners, or track educator activity

are currently untapped potential in learning analytics development. Once

again, it might be possible to build support for these types of tools by keeping the data

with the educator while the impact of such tools is evaluated.

10.6.4 How important is learning analytics literacy in the every day

performance of the educator?

Learning analytics do not exist in a purely theoretical space as this study simulated.

They are always intertwined with a specific tool, with specific purpose, functionality

and design. However, all of this constitutes a language, textual and symbolic, that is

not easily grasped by those without insight into that system of psychological tools.

This study was able to demonstrate that learning analytics is both shaping education

and educators. A lack of foundational knowledge about the principles behind learning

analytics leads to fear and resistance. Fortunately, the study also illustrated that those

fears can be relieved through experimentation and ownership. Concerns about shar-

ing data, misinterpretation and misapplication of data are generally resolved

if the user sees a direct link between what data is being collected and for what it

will be used, in the best case, when they can decide this for themselves.

10.6.5 Limitations of the Framework and Future Research

Though not as “over-socialised” in comparison with Activity Theory [190], Mediated

Learning is very much based on the socio-cultural. It does not appear to account for

individual giftedness or progression beyond what is socially or environmentally available

[191]. Liu and Matthews also argue that mediated learning does not account for special

needs specifically, in terms of how to make a social interaction something worthwhile.

During the course of this study, understanding and accounting for special needs were

affordances that were possible to organise within the theory as a type of psychological

tool. For example, performing complex sociological studies was an affordance associated

with the open grouping, which included many educators who fell into the pedagogical

category “developing strong minds”. Links were identified between the values of the ed-

ucator’s discipline and the perceived value of accommodating different needs. However,

what Liu and Matthews refer to, is something more general, in terms of concrete ways

of accommodating special needs in the actual process of mediating learning. However,



Chapter 10 Discussion 250

the entirety of Mediated Learning Theory can be framed as a theory of accommoda-

tion. The attention to intentionality, reciprocity, meaning and transcendence is exactly

about ensuring that the message is received by the learner, whoever they are and with

whichever skills.

This presents an opportunity for future research, to understand if the field of learning

analytics makes appropriate provisions for recognising and accommodating special needs,

as a mediatory agent. For example, how would social analytics accommodate learners

with social anxieties? How would student-facing dashboards address issues like dyslexia

or dyscalculia5 among potential users? It is not that learning analytics cannot or does

not address some of these issues, but they are generally not incorporated into models.

The Open University, as a strong supporter of learners with special needs, should partner

with these learners to understand more about their experience and how learning analytics

can support them.

Giftedness may or may not have been relevant to the study. If gifted learners are simply

faster at enacting the same strategies as other learners, or if they have existing strategies

that other learners might not know, the framework of mediated learning still applies. If

gifted learners have skills that cannot be transferred or improved, then mediated learning

cannot explain the behaviour and influence of gifted students.

Gifted students may be one of the groups that are worth trying to study specifically

with learning analytics research. What do gifted students do that other students do not?

How do they make use of resources? How do other students benefit from their presence

in the classroom? What challenges do they present? The study of gifted students could

provide some orientation on cognitive development that is currently missing from the

literature on learning analytics research.

In addition, this study did not provide a way to address or structure many of the

temporal aspects involved in learning. In the exploratory interviews and focus groups,

the only dimensions of time that appeared to be relevant were immediacy and volume.

For example, participants stated that feedback should be as immediate as possible.

Tutors and Modules Teams said that intervention should happen as soon as possible

after the problem has been identified. In addition, educators and learners spoke about

not having enough time, being short on time, etc. However, none of this could be

particularly incorporated into Mediated Learning Theory. One reason for this might be

that Mediated Learning is not necessarily procedural or didactic, though it seems to

be. There are principles and structure to Feuerstein’s concepts of Mediated Learning

Experiences [19][20] that can be translated into didactical approaches, but type and

5Dyscalculia is a learning difficulty associated with numeracy (see
http://www.bdadyslexia.org.uk/dyslexic/dyscalculia)
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technique of mediation are two different things. However, learning analytics may be

able to provide that extra context. One area of future research would be to go more

deeply into techniques of mediation using learning analytics, to get at those temporal

elements.

Finally, this study implicated previous experience and background as a likely influence

on goals and strategies. While participants checks were conducted, the evidence was

cross-referenced with the literature and other similar studies. The delineation of the

groupings that emerged from the data, if they are to become tools for classification,

must be more robustly validated. These findings could be further explored and validated

using a survey instrument with a wider sample of educators and learners. Do the three

groupings stand up to scale? Can some of what learners and educators perceived be seen

in their traces in the VLE and online? These would be two important questions for

immediate future research.

10.6.6 Limitations of the Research Design

In addition to the above-named theoretical limitations, the study also produced limita-

tions resulting from the initial research design. Missing institutional perspectives, for

example, make the picture of learning analytics at the Open University less complete. In

addition, with access to several well-known researchers in learning analytics, this should

have formed an additional stakeholder group participating in this study. Unfortunately,

time and other resources would not permit it. An immediate and elaborative addition

to this study would be to share the findings with those missing stakeholder groups and

gather their reactions and responses to this information. This has been included into

the publication schedule of the researcher heading into the post-doctoral phase.

In addition, with the number of participants in the study, choosing not to use a digital

form of record management was time-consuming and cumbersome. Additional analyses

of participant statements may have been possible through using software such as nVivo

6, which is specifically for qualitative research. While this does not impact the over-all

quality of the work, it may have impacted the scope.

10.7 Chapter Summary

This chapter applied the framework of Mediated Learning to demonstrate how learning

analytics can mediated the learning process, filtered through the prism of other human

6http://www.qsrinternational.com/nvivo/what-is-nvivo
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beings and technology. It presented several recommendations and guidance notes, for

both researchers and institutions, on improving mediatory effects.

11.1 retraced the path of the study, from the critical review to the methodology. 10.1

identified self-selection in the field as a particular challenge of learning analytics and

how to manage it through interdisciplinary exchange. In addition, it addressed episte-

mological diversity and how facilitating reflection on operationalisation might support

researchers in helping to legitimise learning analytics as a source of evidence. 10.3 looked

more closely at how transitioning learners changed strategies and behaviours to accom-

modate a new domain. It suggested that asking learners to verify learning analytics

insights, in particular about what is presumed to be conscious behaviour change, would

greatly improve the value of learning analytics for all stakeholder groups. 10.3.3 and

10.3.2 described the importance of associative examples, and how learning analytics can

help to identify and categorise them. In particular, the findings suggest that identifying

more subtle behavioural changes would be most useful in supporting agency through

learning analytics. 10.3.4 examines the potential of “high hanging fruit”, and the im-

portance of embedding learning analytics tools in the curriculum. 10.3.5, discussed

confusing affordances with intention. It supported previous author’s claims about the

necessity for deeper collaboration [105] and proposed the development of more experi-

mental tools in learning analytics research.

Section 10.4 applied the universal criteria to the affordances that participants expressed

in the context of this study to evaluate them. 10.4.2 outlined factors and potential affor-

dances that can demonstrate a mutual learning-teaching process. 10.4.4 discussed how

learning analytics can help to communicate the importance or value of some strategies

over others. 10.4.6 presented mediation of transcendence as the insurance policy that

ensures personal, dynamic environments also remain grounded in a wider context.
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Concluding Remarks

In the Universe, there are things that are known, and things that are un-

known, and in between there are doors. - William Blake

What impact is learning analytics having on practice and how can it be

improved for educators and learners? In learning analytics research, understand-

ing, documenting and evaluating impact is a persistent problem [4]. It is a socio-

technological problem, in that learning is very difficult to define and represent coher-

ently [14], learners are difficult to access, and they have private motivations that effect

how one should interpret their behaviour [3] [15]. Impact is also an ethical problem.

Learning analytics must anticipate the consequences of actions not yet taken, and how

one can mitigate any associated challenges [65]. Finally, learning analytics is an episte-

mological problem. Even if it were possible to identify and collect all of the evidence

one would like to have, it is still necessary to identify ways to parse the abundance of

data available [89] and apply it meaningfully, in order to understand impact.

To bring together the socio-technological, ethical and epistemological aspects of learning

analytics’ impact, the study presented in this thesis used Mediated Learning [16][17] as

a framework for examining impact potential. Affordance Theory [21] provided a

mechanism for examining how perception links with metacognition. More specifically,

affordances illustrated the recognisable action potential that educators and learners

could perceive. Metacognitive activity, however, demonstrated that the individual was

aware of how to apply information [119]. The study took a qualitative approach [140] in

investigating the problem, to unpack some more of those context variables that influence

learning analytics adoption and acceptance. This was determined to be an exploratory

study, to develop theories around how to actually understanding learning analytics as a

mediator. For this reason, the study applied Grounded Theory [130] to design a research

253
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study able to gather different perspectives on education and learning. Semi-structured

interviews and focus groups [140], were the vehicle by which those perspectives were con-

tributed and analysed. Participants contributed information on what they are trying to

achieve in education and how they recognise it, to understand more about how learning

analytics can assist and improve those processes. To organise participant contributions,

the evidence was transcribed and coded, using an inductive, qualitative analysis of the

transcripts.

Chapter 10 provided a summary of the main findings of the thesis (see 10.6) in relation

to the given framework of Mediated Learning. In addition, several recommendations

for future work have been provided, alongside recommendations and limitations of this

research (see 10.6.5 and 10.6.6). This chapter presents further opportunities for future

work and some final reflections on the study. 11.1 reviews the objectives of this study

and reviews some of the key literature and research questions that framed this study.

11.1 Research Objectives

The research question named in the introduction to this chapter was divided into three

parts: what is known currently about impact, how that compares with perceptions

and finally, what can be done to enhance or increase positive impacts. This section

summarises the chapters of these thesis that address these three components.

11.1.1 What is already known

Chapter 2 of this thesis explored the genesis of learning analytics, and how analytics and

“big data” are already shaping the educational landscape through policy [29] and skill

requirements [32]. In addition, it presented concerns that this has happened without

proper attention to the socio-cultural aspects of educational technology [53]. With

regard to tools and technologies, the chapter reviewed the state-of-the-art of learning

analytics most typically applied within higher education. The chapter included some

of the perceptions that have already been gathered about learning analytics’ impact.

Critiques of learning analytics presented in the chapter highlight some generic difficulties

of exploring impact, such as the necessity for reflexivity to be embedded in everyday

practice [61]. In addition, it argued that technological and financial deficits shape the

kind of experience an institution may have with using learning analytics [66].

Chapter 3 discussed what is missing from learning analytics research and how some of

those gaps could be filled. For example, what is meant by optimising learning? Does it
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mean the same as improving efficiency [38]? How do learning analytics fit into a wider

pedagogical structure [4]? What are the consequences for the conceptual development

of learning analytics, if it cannot be separated from its tools and technologies? Finally,

how can one create stake-holder buy-in? The chapter argued that it is a challenge to

determine what is relevant to different stakeholders enough to answer these questions.

Educators have different needs and may find tools overly complex [9], while students

may require a higher level of customisation due to dynamic and variable goals [91].

Evaluation also remains difficult outside of authentic settings without a firm founda-

tion in educational theory [3] [74][73]. Learning analytics acceptance my require a way

of dividing the different features of larger systems of data management from specific

tools or technologies [92]. Other forms of evaluation might be necessary, as well. Us-

ability studies are implicated as potentially counterproductive [94] in examining some

types of learning impact. Finally, the chapter highlighted some of the known challenges

in learning analytics training, knowledge transfer and acceptance. It presented future

visions about a more cohesive structure to learning analytics research, more fruitful

communication and collaboration, and improved learning analytics literacy [105].

11.1.2 Framing the Gap

It was determined through the literature review that deeper perspectives from educators

and learners were required to understand the mechanics of how learning analytics can

lead to cognitive and behavioural change. Asking educators and learners to describe

what they are trying to achieve, how they recognise it and how they control it, was

proposed as a way of understanding where points of contact with learning analytics

might be most effective.

In Chapter 4, Mediated Learning was adapted as an exploratory and evaluative frame-

work, to assess the potential of different learning analytics tools and technolo-

gies for impacting practice. Vygotsky’s theories on the development of psychological

tools and the role of the “other” in learning [16] were proposed as a way of understand-

ing psycho-social levers in perceptions of learning analytics. Feuerstein’s theories about

Mediated Learning Experiences and the universal criteria they all share [16], was chosen

to provide a way of assessing the potential of learning analytics to shift certain thematic

areas into focus.

The scope of this research was to examine in more detail the different perspectives of

educators and learners toward learning analytics. In addition, a main objective was to

understand more about how they would or do actually use learning analytics to support
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everyday aspects of their practice. As the study concerned itself with individual per-

spectives and everyday experiences, it was determined to be appropriate for a qualitative

investigation. Chapter 5 presented the reasoning behind choosing a Grounded Theory

approach [130] and the formats of qualitative interview and case study. In addition,

the chapter introduced Affordance Theory as a way of getting at realistic perceptions of

learning analytics and connecting them to practice.

Affordance Theory argues that the affordances of an object are driven by perception [21].

Perception, according to Vygotsky, is shaped through conscious exposure to the “other”,

which Feuerstein believed could be regulated through a Mediated Learning Experience

(MLE) [16][17]. This study demonstrated that affordances of learning analytics are also

driven by perceptions of them, and those perceptions are influenced by other people and

entities around the individual, in potentially predictable ways.

11.1.3 Understanding Impact

As affordances are ideas, it is difficult to know how much they reflect real desires and

needs. Simply because a participant could perceive an action possibility for learning

analytics, did not necessarily mean that the affordance was valuable or would be used.

In addition, having a personal example provided better granularity for seeing dimensions

of impact, for both the immediate and long-term future. Focusing on the production

of metacognitive activity through affordances was way of qualifying whether or not an

affordance has high potential for impact or not. If a participant could imagine to use

learning analytics for a specific task or query that was personally important for practice

(Intention), this was viewed as a strong indicator of potential impact. Affordances were

then examined in more detail with their given context, to see which factors appeared

particularly important and how its value could be enhanced, both for those that currently

find it valuable and those who need more convincing.

11.2 Contributions of this Thesis

This thesis involved an investigation of the determinants of perceived usefulness from

a social constructivist perspective. The scope of the research included an examination

of relationships between learning analytics, performance expectancy, effort expectancy,

social influence and facilitating conditions within a specific context.

The following represent the contributions this thesis has made to knowledge:
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• The recognition of departmental epistemology as a new exogenous mech-

anism of learning analytics acceptance. This contributes to theories of

context at the organisational level.

• The connection between learners’ and educators’ conceptual models of

learning, and perceived usefulness of learning analytics tools and tech-

nologies.

• Guidance on how to develop feelings of affinity and perceptions of useful-

ness among potentially resistant stakeholders.

In terms of methodological contributions, this thesis makes the following contributions:

• The use of Mediated Learning Theory as an evaluative framework for a)

assessing the potential for impact and b) understanding learning analytics

as a mediatory agent.

• The use of Affordance Theory to establish perceived usefulness in con-

nection with “real-life” problems or circumstances.

These contributions resulted in a set of heuristics to test learning analytics ap-

proaches for their robustness in being able to mediate learning. These heuris-

tics can be tested and applied in different institutions to help shape their learning ana-

lytics initiatives.

In addition, it was possible to translate what educators and learners perceive

as useful into software requirements and metrics that would important to

capture.

11.3 Outlook

The future work in learning analytics has been interspersed throughout chapter 10, as

recommendations for the development of the field, in particular with regard to Medi-

ating Learning and related educational theory. However, this section addresses some

additional possibilities in the broader disciplines touching learning analytics research.
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11.3.1 Future Work in Education and Learning

Education is a wide field, with it’s own exponentially large set of sub-fields. This study

contributed findings that are immediately relevant to educational philosophy and edu-

cational theory, which could warrant future research.

With regard to educational philosophy, this research study produced some evidence in

support of the Theory of Formal Discipline [161], which argues that studying a particular

discipline over a period of time shapes a person’s cognitive development in some pre-

dictable ways. In some cases, these developments can be highly productive. Medicine

and psychology, for example, have been shown to produce effects in statistical and

methodological reasoning. In addition, studying law had been shown to improve rea-

soning in the logical of the conditional [162]. Using learning analytics to perform

longitudinal studies on learners’ behaviours and performance online would

help educational scientists to understand more about how learning strategies

are formed and shaped through the educational experience. Such studies could

investigate whether or not learning analytics support or reject this theory, and whether

they can help demonstrate when and how learning changes take place.

Concerning educational theory, this thesis has already made a contribution to mediated

learning, in evaluating it as a preliminary assessment and forecasting tool, looking at

potential impact. In addition, it would be possible to frame the affordances provided in

the context of this study with other educational theories. For example, Self-Regulated

Learning Theory describes the different areas and phases of regulation [39]. It addresses

the actions that the learner takes, from orientation and planning, to monitoring and

controlling learning. The objects of control are thinking, feeling, behaviour and context

[39]. As was mentioned in 10.6.5, this study did not address some of the temporal is-

sues of learning. Looking at affordances from the perspective of self-regulated

learning, it is possible to see how learners perceived affordances that could

be mapped to this theory and used to understand techniques of mediation

that can lead to specific, self-regulatory actions. This may be important for the

development of tools like nStudy [43], which are student facing, strategic and based on

self-regulation. It would also help to contextualise tools like the platform developed in

the AFEL project [41], which rely on learners confirming learning analytics propositions.

In fact, this study proposed learner validation of learning analytics insights as a recom-

mendation for future development. It would be a very useful area of future research to

investigate the impact of learner validation on their own behaviour, and on

what can be understood about what learners are thinking and doing more

generally. Another broad area for future research would be to go more deeply into tech-

nology and learning analytics acceptance. Agency links back to relevance, in that the
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agent wants to do something that is important to them. Future research could explore

receptiveness, specifically toward harvesting high-hanging fruit with learning

analytics, such as evaluating assessment and identifying learner strategies for

self-regulation. The findings of this study indicate that to properly mediate learning

experiences, learning analytics in higher education should be much more personal, holis-

tic and interactive than they are currently. Since the kinds of tools that educators and

learners were looking for do already exist in some form, one can ask, why are they not

more widely adopted? There are some questions that are difficult to resolve, but the

answer to this one may have something to do with what is perceived as relevant. This

study concluded that data must address goals, challenges and strategies of the individual

to drive action. There are some domain-based and profession-based characteristics that

influence perceptions of relevance. This study also argued that impact is likely to be

evaluated in the stakeholder’s own framework. Either the stakeholder will need to ex-

pand their framework to understand learning analytics, or learning analytics researchers

must develop tools that can work inside of different stakeholders’ frameworks. This

study suggested that harvesting high-hanging fruit is viewed as a middle space, because

this is where more agreement in the usefulness of learning analytics will be found. Those

that are already knowledgeable of analytics and analytic techniques will see the value.

Those that need need more convincing would be more likely to see value in high-hanging

fruits. Harvesting high-hanging fruit can lead to the convergence on some

common areas of engagement and research.

While this study did not go extensively into ethics, because they were not often men-

tioned, especially once the focus groups began, it is clear that relevance is not only a

cognitive but an ethical issue. The willingness to share information increased with per-

ceived usefulness and transparency. This suggests that ethical and privacy issues could

be mitigated if institutions always ensured a direct benefit to the person supplying the

information. Experimenting with the cost-benefit ratio for learners, and how

this drives their engagement with technology, would be another area of future

research, that could contribute to the development of educational software that will have

impact.

11.3.2 Future Work in Data Security, Management and Cryptography

In light of how important agency is to users and data protection is to the institution,

it would also be useful to experiment with different ways of storing and sharing data.

For example, Blockchain technology, the distributed record ledger behind the cryptocur-

rency Bitcoin, may offer some insights into how to store and manage educational
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records more dynamically. Educators and learners in this study spoke about learn-

ing processes as being dynamic. Studies are disrupted often by personal and professional

lives. Blockchain would improve the flexibility of the institution to award cer-

tifications and credits in smaller increments. Educators perceived that students

who banked their assignments tended to return to their studies. They simply wished

that the student would return with improved competencies. Blockchain could pro-

vide a mechanism for pushing out very small, but certifiable transactions.

This is useful for validating specific skills, which may be more appropriate for distance

learners, like those at the Open University.

11.4 Conclusion

The study concludes that learning analytics can better mediate learning when they

support the agency of the stakeholder in collecting, analysing and even storing the

data. The closer the agent is to the student (in the best case the agent is the student),

the greater the potential is to mediate learning. The study also pointed to potential

weaknesses in self-selection, with regard to learning analytics research and development.

The language of learning analytics can be alienating to individuals without advanced

numeracy or computing in their background, which leads to a potential lack of diversity

among adopters and evaluators. In addition, it is not always clear for which purposes and

for whom information is gathered through learning analytics. This is counterproductive

to mediating learning through learning analytics.

Learning analytics must be embedded in a larger vision and strategy, with regard to

curriculum and institutional trajectory. This must be communicated clearly to all stake-

holders and become a part of new institutional processes. Researchers have already come

quite far in the development of tools and technologies that all kinds of educators and

learners can appreciate. This study suggest that the reasons why these tools are not

reaching their full potential within institutions have to do with epistemological barriers

that influence institutional will, to move forward with learning analytics development

and to invest in harvesting some of the high-hanging fruits that have been promised in

the literature.

It is the general recommendation of this thesis that to improve the mediatory impacts

of learning analytics, institutions will have to show interest in making learning

analytics a regular part of the teaching and learning process. Educators and

learners should be trained to see the types of learning insights that analytics can provide.

Engagement with learning analytics should be facilitated through experimentation and

supporting agency. Impact should be evaluated reciprocally, in terms of what learning
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analytics propose, and educators and learners confirm. Finally, both educators and

learners should remain close consultants to the learning analytics research community

and participate in the development of the field.



Appendix A

Open Codes for Exploratory

Interviews

In the following tables, the open codes that emerged from the data are represented

on the right side of the table under the heading “Open Codes/Subcategories”. Open

codes often became subcategories of larger thematic categories. Descriptions of those

categories are given.

262
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Major	  	  
Categories	  

Description	   Open	  Codes/	  
Subcategories	  

Communication	   Challenges	  in	  both	  non-‐
verbal	  and	  verbal	  
communication	  with	  
students	  	  

-‐	  Lack	  of	  visual	  
referencing	  	  
-‐	  Lack	  of	  feedback	  from	  
learners	  

Interaction	   Challenges	  in	  group	  
dynamics	  and	  context	  for	  
communication	  
	  

-‐	  Difficulties	  creating	  
community	  	  
-‐Difficulties	  generating	  
discussion	  

Institution	   Challenges	  inside	  of	  the	  
educational	  institution	  

-‐	  Pressure	  to	  work	  quickly	  	  
-‐	  Confusion	  of	  roles	  

Background	   Challenges	  arising	  from	  a	  
lack	  of	  information	  about	  
the	  learner	  before	  
entering	  the	  learning	  
environment	  	  

-‐	  Learner	  diversity	  	  
-‐	  Lack	  of	  information	  
about	  existing	  knowledge	  
or	  previous	  experience	  

Progress	   Challenges	  related	  to	  
measuring	  learning	  

-‐	  Progress	  is	  difficult	  to	  
interpret	  -‐	  Assessment	  is	  
flawed	  

Dynamic	  Agency	   Challenges	  related	  to	  
"moving	  targets"	  such	  as	  
choice	  and	  individual	  
decision	  making,	  which	  is	  
not	  static	  	  

-‐	  Transience	  of	  learner	  
goals	  	  
-‐	  Learner	  patterns	  of	  
peaks	  and	  troughs	  

Ethics	   Challenges	  associated	  
with	  ethical	  dilemmas	  	  

-‐	  Data	  protection	  	  
-‐	  Ethics	  about	  retention	  

Realities	   Challenges	  that	  cannot	  
be	  resolved	  	  
	  

-‐	  Social	  change	  in	  use	  of	  
technology	  	  
-‐	  Change	  in	  structure	  of	  
education	  

Goal	  of	  Education	   Participants'	  description	  
of	  the	  purpose	  of	  
education	  	  
	  

-‐	  Learner	  Satisfaction	  	  
-‐	  Developing	  Strong	  
Minds	  	  
-‐	  Preparing	  for	  Practice	  

	  
	  
	  
	  

Table A.1: Categories and Subcategories of Educator Challenges
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Major	  	  
Categories	  

Description	   Open	  Codes/	  Subcategories	  

Willingness	   The	  sense	  that	  a	  learner	  has	  
the	  desire	  to	  engage	  

-‐	  Reciprocity	  in	  the	  
classroom	  
-‐	  Learner	  response	  to	  
feedback	  

Retention	   The	  learner	  is	  retained	  in	  the	  
course	  of	  study	  or	  the	  
module	  
	  

-‐	  Retention	  in	  modules	  	  
-‐	  Retention	  in	  study	  
programmes	  

Cohesion	  	   The	  learner's	  work	  "makes	  
sense"	  

-‐	  The	  learner	  can	  engage	  on	  
the	  topic	  
-‐	  The	  learner's	  work	  is	  well-‐
rounded	  

Social	  Presence	   The	  learner	  brings	  their	  
whole	  self	  into	  the	  
classroom	  	  

-‐	  Learners	  supporting	  other	  
learners	  
-‐	  Learner	  active	  participation	  
	  

Demonstration	  of	  Skill	   The	  learner	  is	  able	  to	  prove	  a	  
new	  skill	  

-‐	  High	  marks	  
-‐	  Successful	  practicals	  

Positive	  Learner	  Feedback	   The	  learner	  communicates	  
that	  they	  have	  learned	  
something	  	  

-‐	  Written	  evaluations	  
-‐	  Emails	  and	  informal	  
conversations	  with	  learners	  
-‐	  Gifts	  from	  learners	  

Positive	  Institutional	  
Environment	  

The	  presence	  of	  tools	  and	  
systems	  that	  logically	  should	  
support	  student	  learning	  	  

-‐	  Institutional	  attitudes	  that	  
are	  learner-‐centred	  	  
-‐	  Support	  for	  learners	  	  

Positive	  personal	  emotional	  
response	  

An	  own	  sense	  that	  the	  class	  
or	  individual	  students	  are	  
learning	  
	  

-‐	  Intuition	  
-‐	  Joy	  

Excitement/Energy	   Learners	  are	  interactive	  such	  
that	  the	  speed	  and	  quality	  of	  
contributions	  is	  dynamic	  
	  

-‐	  Long	  message	  threads	  
-‐	  Quick	  response	  time	  
-‐	  Increased	  participation	  

Emergence	  of	  Discourse	   The	  learners'	  interactions	  
result	  in	  meaningful	  
discourse	  	  

-‐	  New	  ideas	  	  
-‐	  Transfer	  of	  ideas	  

Table A.2: Categories and Subcategories of Educator Desired States
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Major	  	  
Categories	  

Description	   Open	  Codes/	  
Subcategories	  

Willingness	   A	  sense	  that	  the	  learner	  
is	  engaged	  and	  invested	  
in	  the	  process	  of	  learning	  	  

-‐	  Response	  to	  feedback	  	  
-‐	  Change	  in	  behaviour	  
after	  feedback	  

Positive	  Learner	  
Feedback	  

Anything	  that	  the	  
educator	  can	  learn	  about	  
sentiment	  

-‐	  Positive	  evaluations	  
-‐Informal	  contact	  	  
-‐Gifts/appreciation	  

Emergence	  of	  Discourse	   The	  discourse	  is	  
expanded	  or	  emerges	  
through	  learner	  
interaction	  

-‐	  Introduction	  of	  new	  
ideas	  	  
-‐	  Effective	  knowledge	  
transfer	  

Excitement	  or	  Energy	   The	  sense	  of	  excitement	  
and	  energy	  in	  the	  
classroom	  

-‐	  Long	  threads	  	  
-‐	  Quicker	  responses	  	  
-‐	  More	  participation	  

Cohesion	   Sense-‐making	  in	  
arguments	  

-‐	  Work	  is	  well-‐rounded	  
-‐	  Learner	  can	  engage	  

Social	  Presence	   The	  learner	  brings	  their	  
full	  self	  to	  the	  learning	  
experience	  

-‐	  Support	  other	  learners	  	  
-‐	  Active	  participation	  

Demonstration	  of	  Skill	   Learners'	  ability	  to	  prove	  
their	  knowledge	  	  

-‐	  High	  marks	  	  
-‐	  Good	  practicals	  

Retention	   Percentage	  of	  learners	  
who	  stay	  enrolled	  
	  

-‐	  Learners	  compete	  their	  
module	  	  
-‐	  Learners	  complete	  
studies	  

Positive	  Personal	  
Emotional	  Response	  

The	  educator's	  own	  
reflections	  on	  their	  
emotional	  state	  

-‐	  Positive	  intuition	  	  
-‐	  Joy	  

Positive	  Institutional	  
Environment	  

The	  general	  sense	  that	  
learners	  are	  well	  looked-‐
after	  within	  the	  
university	  

-‐	  Attitudes	  are	  learner	  
centred	  
-‐	  Support	  for	  learners	  is	  
more	  than	  adequate	  

	  
	  
	  
	  
	  

Table A.3: Categories and Subcategories of Educator Data Needs
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Major	  	  
Categories	  

Description	   Open	  Codes/	  Subcategories	  

VLE	  Data	   Data	  that	  is	  available	  about	  
the	  learner's	  activity	  in	  the	  
Virtual	  Learning	  
Environment.	  

-‐	  Log-‐in	  Data	  
-‐	  Trace	  Data	  
-‐Use	  of	  Resources	  

Institutional	  Analytics	   Data	  available	  through	  
institutionally	  implemented	  
pilots	  or	  other	  learning	  
analytics	  initiatives	  
	  

-‐	  Predictive	  analytics	  	  
-‐	  Retention	  studies	  

Social	  Media/Forums	  	   Data	  available	  through	  social	  
media	  platforms	  and	  student	  
forum	  

-‐	  Learner	  sentiment	  on	  the	  
platform/forum	  
-‐	  Learner	  social	  role	  
-‐	  Learner	  interaction	  

Home-‐grown	  Analytics	   Analyses	  performed	  by	  the	  
educator	  directly	  on	  a	  
chosen	  set	  of	  data	  	  	  

-‐	  Home-‐grown	  participation	  
assessments	  
-‐	  Home-‐grown	  group	  
assessment	  
	  

Consulting	  Colleagues	   Asking	  colleagues	  for	  advice	  
or	  support	  

-‐	  Module	  team	  meetings	  
-‐	  Support	  from	  Data	  
Wranglers	  

Qualitative	  Data	   Data	  collected	  through	  
observation	  of	  the	  class	  and	  
classroom	  dynamics	  (on-‐	  and	  
off-‐line)	  

-‐	  Paying	  attention	  to	  silence	  
-‐	  Emails	  and	  informal	  
conversations	  with	  learners	  
-‐	  Gifts	  from	  learners	  

Self-‐Report	   Data	  collected	  directly	  from	  
students	  

-‐	  Feedback	  forms	  	  
-‐	  Emails	  	  
-‐Evaluations	  

Personal	  Reflection/Intution	   Data	  collected	  from	  one's	  
own	  sense	  that	  the	  class	  or	  
individual	  students	  are	  
learning	  
	  

-‐	  Intuition	  
-‐	  Joy	  
-‐	  Excitement	  

	  
	  
	  

Table A.4: Categories and Subcategories of Educator Data Sources
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Major	  	  
Categories	  

Description	   Open	  Codes/	  Subcategories	  

VLE	  Data	   Data	  that	  is	  available	  about	  
the	  learner's	  activity	  in	  the	  
Virtual	  Learning	  
Environment.	  

-‐	  Log-‐in	  Data	  
-‐	  Trace	  Data	  
-‐Use	  of	  Resources	  

Institutional	  Analytics	   Data	  available	  through	  
institutionally	  implemented	  
pilots	  or	  other	  learning	  
analytics	  initiatives	  
	  

-‐	  Predictive	  analytics	  	  
-‐	  Retention	  studies	  

Social	  Media/Forums	  	   Data	  available	  through	  social	  
media	  platforms	  and	  student	  
forum	  

-‐	  Learner	  sentiment	  on	  the	  
platform/forum	  
-‐	  Learner	  social	  role	  
-‐	  Learner	  interaction	  

Home-‐grown	  Analytics	   Analyses	  performed	  by	  the	  
educator	  directly	  on	  a	  
chosen	  set	  of	  data	  	  	  

-‐	  Home-‐grown	  participation	  
assessments	  
-‐	  Home-‐grown	  group	  
assessment	  
	  

Consulting	  Colleagues	   Asking	  colleagues	  for	  advice	  
or	  support	  

-‐	  Module	  team	  meetings	  
-‐	  Support	  from	  Data	  
Wranglers	  

Qualitative	  Data	   Data	  collected	  through	  
observation	  of	  the	  class	  and	  
classroom	  dynamics	  (on-‐	  and	  
off-‐line)	  

-‐	  Paying	  attention	  to	  silence	  
-‐	  Emails	  and	  informal	  
conversations	  with	  learners	  
-‐	  Gifts	  from	  learners	  

Self-‐Report	   Data	  collected	  directly	  from	  
students	  

-‐	  Feedback	  forms	  	  
-‐	  Emails	  	  
-‐Evaluations	  

Personal	  Reflection/Intution	   Data	  collected	  from	  one's	  
own	  sense	  that	  the	  class	  or	  
individual	  students	  are	  
learning	  
	  

-‐	  Intuition	  
-‐	  Joy	  
-‐	  Excitement	  

	  
	  
	  

Table A.5: Categories and Subcategories of Affordances for Course Creation and
Development
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Major	  	  
Categories	  

Description	   Open	  Codes/	  
Subcategories	  

Learner	  Background	   All	  information	  about	  the	  
learner's	  education	  and	  
experience	  upon	  entering	  
the	  classroom	  	  

-‐	  Previous	  studies	  	  
-‐	  Barriers	  
-‐	  Professional	  
background	  

Goal	  of	  the	  Learner	   Information	  about	  what	  
learner's	  want	  to	  achieve	  
and	  why	  

-‐	  Learner	  desire	  
-‐	  Leader	  needs	  
-‐	  Classifying	  goals	  

Change	   The	  importance	  of	  
knowing	  when	  and	  how	  
things	  change	  

-‐	  Recognising	  change	  	  
-‐	  Documenting	  change	  

	  
	  
	  
	  
	  

Table A.6: Categories and Subcategories of Affordances for Learner Context and
Disposition
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Major	  	  
Categories	  

Description	   Open	  Codes/	  
Subcategories	  

The	  Academic	  Fitbit	   Affordances	  for	  a	  
personal	  educational	  
activity	  tracker	  	  

-‐	  Student-‐facing	  	  
-‐	  Real-‐time	  feedback	  

The	  Crystal	  Ball	   Affordances	  for	  gaining	  
information	  that	  learning	  
analytics	  can	  provide	  that	  
one	  cannot	  anticipate	  

-‐	  unknown-‐unknowns	  
-‐	  
	  

Cohort	  Analysis	   Affordances	  for	  
examining	  effects	  of	  the	  
group	  on	  the	  learner	  and	  
the	  learner	  on	  the	  group.	  
In	  addition	  the	  learner's	  
perception	  of	  the	  group	  
dynamics	  

-‐	  Group	  constellation	  	  
-‐	  Leveraging	  Group	  
Dynamics	  	  
-‐	  Cohort	  level	  emotional	  
analysis	  
-‐	  Creating	  collaboration	  

Interaction/	  
Communication	  

Affordances	  for	  sensing	  
excitement	  and	  energy	  in	  
the	  classroom	  

-‐	  Key	  conversations	  	  
-‐	  Prioritising	  and	  
organising	  conversations	  	  
-‐	  Other	  sensory	  and	  
visual	  data	  

Recognising	  Complex	  
Skills	  

Affordances	  for	  more	  
granular	  examination	  of	  
learner	  activity	  online	  

-‐	  Finding	  new	  resources	  
-‐	  Questioning	  
-‐	  Making	  argumentation	  
visible	  

Other	  Measurements	  of	  
Learning	  	  

Affordances	  for	  other	  
ways	  of	  measuring	  
learning	  

-‐	  Support	  other	  learners	  	  
-‐	  Active	  participation	  

	  
	  
	  
	  
	  

Table A.7: Categories and Subcategories of Affordances for Imaginary Uses



Appendix B

Open Codes for Case Study

In the following tables, the open codes that emerged from the data are represented on

the right side of the table under the heading “Open Codes/Subcategories”. Open codes

often became subcategories of larger thematic categories. Description of those thematic

categories are given.
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Major	  	  
Categories	  

Description	   Open	  Codes/	  
Subcategories	  

Educational	  
Background	  

The	  past	  education	  or	  training	  of	  
the	  participant	  	  

-‐	  Previous	  educational	  
training	  	  
-‐	  Advanced	  knowledge	  of	  
numeracy	  
-‐	  Faith	  in	  numbers	  
-‐	  Experience	  in	  discourse	  

Professional	  
Background	  

The	  skills	  a	  participant	  acquired	  
on	  the	  job	  or	  in	  any	  other	  work-‐
related	  capacity	  

-‐	  Experience	  with	  
computing	  
-‐	  Experience	  with	  
numbers	  
-‐	  Experience	  with	  strategy	  

Triggers	  (Students	  
Only)	  

The	  life	  situations	  learners	  
describe	  as	  impacting	  their	  
decision	  to	  study	  at	  the	  Open	  
University	  	  

-‐	  Returning	  after	  
retirements	  
-‐	  Returning	  after	  having	  a	  
family	  
-‐	  Having	  a	  disability	  
-‐	  Being	  a	  new	  student	  

Goals	   What	  the	  learner	  hopes	  to	  gain	  or	  
achieve	  from	  the	  learning	  
experience	  

-‐	  Learner	  aims	  	  
-‐	  Module	  specific	  goals	  	  
-‐	  Module	  agnostic	  goals	  

The	  Tutor	   The	  influence	  of	  the	  presence	  of	  
tutors	  in	  the	  educational	  
experiences	  of	  learners	  

-‐	  Tutor	  feedback	  
-‐	  Tutor	  responsibility	  
-‐	  Tutor	  character	  

The	  Institution	  	   The	  influence	  of	  institutional	  
mission	  and	  values	  on	  learners	  
and	  on	  teaching	  

-‐	  Distance	  learning	  	  
-‐	  Social	  inclusion	  as	  a	  
mission	  
-‐	  Using	  innovative	  
technology	  
-‐	  Flexibility	  toward	  
students	  

The	  Discipline	  	   The	  influence	  of	  the	  discipline	  on	  
learners	  and	  on	  teaching	  

-‐	  Expectations	  of	  learners	  	  
-‐	  Access	  to	  experts	  

Pedagogy	  
(Education	  Only)	  

The	  influence	  of	  educators'	  
pedagogy	  on	  learners	  and	  on	  
teaching	  

-‐	  Educational	  aims	  
-‐	  Belief	  structures	  
-‐	  Perspectives	  on	  the	  
purpose	  of	  education	  

	  

Table B.1: Categories and Subcategories of Participant Context
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Major	  	  
Categories	  

Description	   Open	  Codes/	  
Subcategories	  

Personal	  Development	   Aims	  associated	  with	  
learning	  to	  develop	  
oneself,	  whether	  it	  is	  
enjoyable	  or	  not	  and	  
regardless	  of	  where	  it	  
leads	  

-‐	  Betting	  oneself	  	  
-‐	  Being	  the	  best	  
-‐	  Module	  agnostic	  goals	  

Qualifications	   Aims	  associated	  with	  
needing	  qualifications	  for	  
specific	  types	  of	  work	  

-‐	  Specific	  job	  prospects	  
-‐	  Being	  "good	  enough"	  
-‐	  Module	  specific	  goals	  

Joy	  of	  Learning	   Aims	  associated	  with	  
getting	  pleasure	  out	  of	  
learning	  experiences,	  
whether	  they	  are	  
successful	  or	  not	  

-‐	  Enjoyment	  in	  learning	  	  
-‐	  Enjoyment	  as	  
motivation	  
-‐	  Module	  agnostic	  goals	  

	  
	  
	  
	  
	  

Table B.2: Categories and Subcategories of Learner Aims
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Major	  	  
Categories	  

Description	   Open	  Codes/	  
Subcategories	  

Comparison	  with	  
the	  Self	  

Comparisons	  between	  any	  
previous	  state,	  set	  of	  
behaviours	  or	  outcomes	  
around	  a	  single	  individual,	  with	  
a	  current	  state,	  set	  of	  
behaviours	  or	  outcomes	  of	  that	  
same	  individual	  

-‐	  Comparison	  with	  Previous	  
Marks	  
-‐	  Comparison	  with	  Previous	  
Performance	  of	  a	  Skill	  
-‐	  Comparison	  with	  Previous	  
Emotional	  State	  
-‐	  Comparison	  with	  Previous	  
Social	  State	  
-‐Comparison	  with	  Previous	  
Well-‐Being	  

Comparison	  with	  
Others	  

Any	  comparisons	  involving	  
groups	  of	  students	  in	  a	  single	  
module,	  a	  course	  of	  study,	  a	  
department,	  a	  faculty,	  or	  the	  
University	  as	  a	  whole	  

-‐	  Comparisons	  between	  
Cohorts	  
-‐	  Comparisons	  between	  the	  
Individual	  and	  the	  Cohort	  
-‐	  Comparison	  with	  a	  Selection	  
of	  Students	  
-‐	  Retention	  

Comparison	  with	  
the	  Discipline	  

Any	  statements	  around	  proving	  
competence	  by	  comparing	  a	  
learner	  with	  some	  aspect	  of	  the	  
discipline	  

-‐	  Comparisons	  with	  experts	  
-‐	  Comparisons	  with	  
expectations	  of	  learner	  ability	  

Coherence	   Perceptions	  of	  the	  learner	  
having	  a	  sense	  for	  the	  domain	  
and	  the	  ability	  to	  navigate	  it	  

-‐	  Appreciation	  of	  the	  Domain	  
-‐	  Sense-‐making	  Arguments	  
-‐	  Access	  to	  Discourse	  

Marks	   Fixed	  ideas	  of	  a	  good	  and	  bad	  
mark,	  that	  are	  not	  directly	  
related	  to	  comparisons	  with	  
other	  students	  or	  past	  
performance	  

-‐	  Assignment	  Marks	  
-‐	  Test	  Marks	  
-‐	  Overall	  Marks	  

Recall	   Aspects	  of	  the	  institution	  of	  the	  
Open	  University	  that	  impact	  
learning	  and	  teaching	  
experiences	  

-‐	  Remembering	  Key	  Concepts	  
-‐	  Retaining	  Written	  
Information	  	  

Feedback	  	   Any	  information	  about	  learning	  
that	  is	  gathered	  from	  human	  
sources	  outside	  of	  the	  
individual	  

-‐	  Direct	  Feedback	  from	  the	  
Tutor	  
-‐	  Direct	  Feedback	  from	  other	  
Students	  
-‐	  Indirect	  feedback	  from	  other	  
students	  

Table B.3: Categories and Subcategories of Learner Recognition of Learning
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Major	  	  
Categories	  

Description	   Open	  Codes/	  
Subcategories	  

Pragmatic	  Strategy	   A	  strategy	  for	  doing	  what	  is	  
necessary	  to	  achieve	  a	  specific	  
goal	  in	  learning	  

-‐	  Limited	  contact	  with	  tutor	  
-‐	  Limited	  contact	  with	  other	  
learners	  
-‐	  Consistent	  performance	  	  

Open	  Strategy	   A	  strategy	  for	  exploring	  new	  
territory	  

-‐	  Considerable	  contact	  with	  
tutors	  
-‐	  Considerable	  contact	  with	  
other	  learners	  
-‐	  Informal	  contact	  
-‐	  Erratic	  behaviour	  

Applied	  Strategy	   Any	  statements	  around	  proving	  
competence	  by	  comparing	  a	  
learner	  with	  some	  aspect	  of	  the	  
discipline	  

-‐	  Contact	  with	  the	  tutor	  when	  
necessary	  	  
-‐	  Participation	  in	  key	  
conversations	  	  
-‐	  Consistent	  performance	  
(mid-‐range	  or	  high)	  

	  

Table B.4: Categories and Subcategories of Learner Strategy
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Major	  	  
Categories	  

Description	   Open	  Codes/	  
Subcategories	  

Facilitator/Guide	   A	  strategy	  for	  doing	  what	  is	  
necessary	  to	  achieve	  a	  
specific	  goal	  in	  learning	  

-‐	  Limited	  contact	  with	  tutor	  
-‐	  Limited	  contact	  with	  other	  
learners	  
-‐	  Consistent	  performance	  	  

Innovator/Frontiersman	   A	  strategy	  for	  exploring	  new	  
territory	  

-‐	  Considerable	  contact	  with	  
tutors	  
-‐	  Considerable	  contact	  with	  
other	  learners	  
-‐	  Informal	  contact	  
-‐	  Erratic	  behaviour	  

	  

Table B.5: Categories and Subcategories of Focused Intentions
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Major	  	  
Categories	  

Description	   Open	  Codes/	  
Subcategories	  

Facilitator/Guide	   A	  strategy	  for	  doing	  what	  is	  
necessary	  to	  achieve	  a	  
specific	  goal	  in	  learning	  

-‐	  Limited	  contact	  with	  tutor	  
-‐	  Limited	  contact	  with	  other	  
learners	  
-‐	  Consistent	  performance	  	  

Innovator/Frontiersman	   A	  strategy	  for	  exploring	  new	  
territory	  

-‐	  Considerable	  contact	  with	  
tutors	  
-‐	  Considerable	  contact	  with	  
other	  learners	  
-‐	  Informal	  contact	  
-‐	  Erratic	  behaviour	  

	  

Table B.6: Categories and Subcategories of Educator Self-Image
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Measurement	  Data	   Thematic	  Codes/	  

Affordances	  
Open	  Codes/	  
Intentions	  

Demographic	  Data	   Complex	  Sociological	  
Studies	  

-‐	  Understanding	  the	  
experience	  of	  specific	  
groups	  of	  learners	  
-‐	  Accommodating	  their	  
needs	  

Legacy	  Data	   Cohort	  Comparisons	   -‐	  Identifying	  key	  
prerequisites	  
-‐	  Interpreting	  
performance	  
-‐	  Gaining	  orientation	  in	  
the	  Faculty	  

VLE	  (Clickstream)	  	  
Data	  

Testing	  Assumptions	  
	  
	  
	  
Predicting	  at-‐risk	  
learners	  
	  
	  
	  
	  
	  
	  
Study	  Tracking	  
	  
	  
	  
	  
	  
Recognising	  Patterns	  in	  
Behaviour	  
	  
Identifying	  Potential	  
Anxiety	  
	  
	  
	  
Understanding	  
Withdrawal	  

-‐	  Experimenting	  with	  
analytics	  
-‐	  Creating	  different	  
streams	  of	  educational	  
content	  
-‐	  Improving	  Retention	  
-‐	  Distributing	  resources	  
-‐	  Intervening	  quickly	  
-‐	  Identifying	  the	  mid-‐
range	  student	  
-‐	  Timing	  interventions	  
	  
-‐	  Self-‐discovery	  
-‐	  Modelling	  learner	  
behaviour	  
-‐	  Monitoring	  effort	  and	  
strategy	  
	  
-‐	  Identifying	  ``pinch	  
points"	  
-‐	  Improving	  retention	  
	  
-‐	  Recognising	  more	  subtle	  
changes	  over	  time,	  
quickly	  
-‐	  Helping	  learners	  to	  
develop	  good	  study	  habits	  
	  

Table B.7: Categories and Subcategories of Affordances
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Measurement*Data* Thematic*Codes/*
Affordances*

Open*Codes/*
Intentions*

!
!
!
Classifying!Learners!
!
!
!
!
!
!
!
!
!
!
!
!
Setting!Expectations!
!
!
!
!
Evaluating!assessment!
!
!
!
!
!
Comparison!with!a!
Selection!

2!Improving!retention!
2!Intervening!quickly!
2!Identifying!skill!gaps!
!
2!Understanding!learner!
trajectories!
2!Exposing!``unknown!
unknowns"!
2!Creating!different!
pathways!for!success!!
2!Helping!learners!to!
identify!goals!
2!Helping!learners!to!
identify!strategies!
2!Identifying!``best!
practices"!
2!Delivering!targeted!
content!
!
2!Helping!learners!to!
identify!goals!
2!Helping!learners!to!
identify!strategies!
!
2!Exposing!arbitrary!
aspects!of!assessment!
2!Providing!more!complex!
tools!to!build!
competencies!!
!
!
2!Identifying!best!
practices!!
2!Providing!access!to!new,!
relevant!strategies!like!
the!``back!of!the!
classroom"!
!

Social*Network*Data*
and*Social*Analytics*

Exploring!Staff2Student!
Relationship!

2!Interpreting!impact!
more!precisely!!

Table B.8: Categories and Subcategories of Affordances Continued
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Measurement*Data* Thematic*Codes/*
Affordances*

Open*Codes/*
Intentions*

!
!
!
Identifying!Key!
Conversations!
!
!
!
!
!
!
!
Assessing!Participation!
!
!
!
!
!
!
!
!
!
Forming!Successful!Peer!
Groups!

2!Matching!educators!and!
students!
!
2!Extracting!major!topics!
2!Structuring!and!
representing!student!
discourse!
2!Determining!quality!and!
trajectory!as!well!as!
quantity!of!conversations!
!
2!Understanding!influence!
and!how!conversations!
are!shaped!
2!Tracking!student!
participation!!
2!Exploring!cohort2level!
dynamics!of!attention,!
interest!and!
communication!
!
2!Distributing!resources!
and!accommodating!
different!needs!

Multimodal*Data* Analysing!Learner!
Attention!

2!Using!noise!sensing,!eye2
tracking!and!other!types!
of!sensory!data!
2!Identify!moments!of!
attention!and!distraction!

Web*Data* Cataloguing!Research!
Behaviours!!

2!Using!other!learners'!
research!behaviours!as!a!
model!!
2!Developing!new!
strategies!and!approaches!

Tutor*and*Educator*
Activity**

Identifying!Educator!
Subgroups!
Matching!Educators!and!
Students!
Evaluating!Interventions!

2!Understanding!aspects!
of!the!tutor!relationships!
that!impact!learning!and!
teaching!experiences.!!

!
!

Table B.9: Categories and Subcategories of Affordances Continued



Appendix C

Research Instruments

The following appendices include the research instruments used to recruit participants

to the study and guide our conversations in the exploratory interviews and focus groups.

Figure C.1 is an example of the recruitment letter sent to participants before the ex-

ploratory interviews. Figure C.2 is the letter sent to educators before the focus groups.

The consent form for focus participants is found in Figure C.3. The letter initially used

to recruit students to the focus groups is presented in Figure C.4. After unsuccessful

recruitment, the letter was amended to to attract more learners. These amendments are

presented in Figure C.5.
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Dear lecturers, tutors, module chairs and other pedagogical staff,  
  
 
I am contacting you about taking part in a qualitative research study about the affordances of learning analytics 
for self-regulated learning. The study will be carried out by myself, under the supervision of my doctoral 
supervisors, Dr. Alexander Mikroyannidis and Prof. Harith Alani at the Open University's Knowledge Media 
Institute (KMi). This study aims to collect information about how online instructors understand their students' 
learning processes (in particular, how learners exercise control over their own learning) and their beliefs about 
how learning analytics can support this process. The contribution you will make to our understanding in these 
areas is greatly appreciated.  
 
If you are interested in thinking more about how students develop learning strategies and how learning 
analytics can contribute to this process, we invite you to return the attached consent form to the email address 
given below. The interview would last for between 0.5 - 1 hour. For research purposes only, the interview will 
be recorded. Recordings will never be made public and will be stored in a safe location in accordance with the 
Data Protection Act until the research project has been concluded and the data can be destroyed. Specific 
information that could make you identifiable will not be used in any resulting publications.  
 
I hope that you are interested in participating in this study. If you have any questions or would like to know 
more about the research, you can contact me on +447586101985 or by email, tracie.farrell-frey@open.ac.uk. 
 
 
 
Yours sincerely, 
 
Tracie Farrell Frey  
 
Knowledge Media Institute 
The Open University 
Berrill Building 
Walton Hall 
Milton Keynes  
MK7 6AA 
 

Figure C.1: Educator Recruitment Letter (Exploratory Interviews)
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Dear lecturers, tutors, module chairs and other pedagogical staff,  
  
 
I am contacting you about taking part in a focus group for a research study about the affordances of learning 
analytics for self-regulated learning. The study will be carried out by myself, under the supervision of my 
doctoral supervisors, Dr. Alexander Mikroyannidis and Prof. Harith Alani at the Open University's Knowledge 
Media Institute (KMi). This study aims to collect information about how online instructors understand their 
students' learning processes (in particular, how learners exercise control over their own learning) and their 
beliefs about how learning analytics can support this process. The contribution you will make to our 
understanding in these areas is greatly appreciated.  
 
If you are interested in thinking more about how students develop learning strategies and how learning 
analytics can contribute to this process, we invite you to return the attached consent form to the email address 
given below. The focus group would last for between 1.5 - 2 hours on the OU campus, with 5-10 other 
individuals. Interested participants would have a choice of several dates for their convenience. For research 
purposes only, the focus groups will be video recorded. Recordings will never be made public and will be 
stored in a safe location in accordance with the Data Protection Act until the research project has been 
concluded (latest December 2019) and the data can be destroyed. While participation in the focus group 
cannot ensure complete anonymity, as it is a collaborative event, specific information that could make you 
identifiable will not be used in any resulting publications.  
 
I hope that you are interested in participating in this study. If you have any questions or would like to know 
more about the research, you can contact me on +447586101985 or by email, tracie.farrell-frey@open.ac.uk. 
 
 
 
Yours sincerely, 
 
Tracie Farrell Frey  
 
Knowledge Media Institute 
The Open University 
Berrill Building 
Walton Hall 
Milton Keynes  
MK7 6AA 
 

Figure C.2: Educator Recruitment Letter (Focus Groups)
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HREC  http://www.open.ac.uk/research/ethics/human-research 

 
 
 

Knowledge Media Institute 
 
 

Consent form for persons participating in a research project  
 

Affordances of Learning analytics for Self-Regulated Learning 
 

Name of participant: 

Name of principal investigator(s): Tracie Farrell Frey, supervised by Alexander Mikroyannidis and 

Harith Alani 

 
1. I consent to participate in this project, the details of which have been explained to me 

in my invitation letter. 
 

2. I understand that my participation will involve recording my participation in a focus 
group and I agree that the researcher may use the results as described in the plain 
language statement.  

 
3. I acknowledge that: 
 

a. the possible effects of participating in this research have been explained to my 
satisfaction; 
 

b. I have been informed that I am free to withdraw from the project without 
explanation or prejudice and to request the destruction of any data that have 
been gathered from me until it is anonymized at the point of transcription, 4 
weeks after the focus group has taken place . After this point data will have been 
processed and it will not be possible to withdraw any unprocessed data I have 
provided; 
 

c. the project is for the purpose of research; 
 

d. the confidentiality of the information I provide will be safeguarded subject to any 
legal requirements; 
 

e. I have been informed that with my consent the data generated will be stored in a 
safe location and will be destroyed after five years; 
 

f. I have been informed that I will be participating with 8-10 other individuals, such 
that complete anonymity cannot be secured, but if necessary, any data from me 
will be referred to by a pseudonym in any publications arising from the research; 
 

g. I have been informed that a summary copy of the research findings will be 
forwarded to me, should I request this. 
 

  
I consent to this Focus Group being audio-taped/video-recorded                   □ yes   □ no 

      (please tick) 
  
I wish to receive a copy of the summary project report on research findings   □ yes    □ no 

      (please tick) 
 
Participant signature: Date: 
  
Tracie Farrell Frey, Knowledge Media Institute, Email: tracie.farrell-frey@open.ac.uk 

Figure C.3: Focus Group Consent Form
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Dear [Recipient Name]  
  
 
I am contacting you about taking part in a focus group for a research study about how students learn and 
behave in online learning environments. The study will be carried out by myself, under the supervision of my 
doctoral supervisors, Dr. Alexander Mikroyannidis and Prof. Harith Alani at the Open University's Knowledge 
Media Institute (KMi). This study aims to collect evidence of how students understand their own learning 
processes and how institutions can support that self-knowledge. The contribution you will make to our 
understanding in these areas is greatly appreciated.  
 
We are seeking 30 participants at the moment to make 3 focus groups of 8-10 people. All participants will 
receive a 10£ voucher for their time. If you are interested in thinking and talking about how you learn and 
develop learning strategies, we invite you to return the attached consent form to the email address given 
below.  
 
Please note: the focus groups will last approximately 1.5 - 2 hours and will be held online. Interested 
participants would have a choice of several dates for their convenience. For research purposes only, the focus 
groups will be video/audio recorded. Recordings will never be made public and will be stored in a safe location 
in accordance with the Data Protection Act until the research project has been concluded (latest December 
2019) and the data can be destroyed. While participation in the focus group cannot ensure complete 
anonymity, as it is a collaborative event, specific information that could make you identifiable will not be used in 
any resulting publications.  
 
I hope that you are interested in participating in this study. If you have any questions or would like to know 
more about the research, you can contact me on +447586101985 or by email, tracie.farrell-frey@open.ac.uk. 
 
 
 
Yours sincerely, 
 
Tracie Farrell Frey  
 
Knowledge Media Institute 
The Open University 
Berrill Building 
Walton Hall 
Milton Keynes  
MK7 6AA 
 

Figure C.4: Learner Recruitment Letter
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Figure C.5: Revised Learner Recruitment Email
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