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Abstract

In the statistical analysis of multivariate data, principal component analysis is

widely used to form orthogonal variables. Realizing the difficulties of interpreting

the principal components, Garthwaite et al. (2012) proposed two transformations,

each of which yield surrogates of the original variables. Recently, Garthwaite and

Koch (2016) proposed a transformation that also produces orthogonal components

and can be used to partition the contribution of individual variables to a quadratic

form. The aim of this thesis is to discover and explore applications of these

transformations.

We consider bootstrap methods for forming interval estimates of the contribu-

tion of individual variables to a Mahalanobis distance and their percentages. New

bootstrap methods are proposed and compared with the percentile, bias-corrected

percentile, non-studentized pivotal, and studentized pivotal methods via a large

simulation study. The new methods enable use of a broader range of pivotal

quantities than with standard pivotal methods, including vector pivotal quanti-

ties. Both equal-tailed intervals and shortest intervals are constructed; the latter

are particularly attractive when (as here) squared quantities are of interest.

Using a transformation to orthogonality, new measures are constructed for eval-

uating the contribution of individual variables to a regression sum of squares. The

transformation yields an orthogonal approximation of the columns of the predictor

scores matrix. The new measures are compared with three previously proposed

measures through examples, and the properties of the measures are examined.

We consider one new procedure and two older procedures for identifying collinear

sets. The new procedure is based on transformations that partition variance infla-
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tion factors into contributions from individual variables, and they provide detailed

information about the collinear sets. The procedures are compared using three ex-

amples from published studies that addressed issues of multicollinearity.
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Chapter 1

Introduction

Analysis of data and the interpretation of results is more straightforward if vari-

ables are independent or uncorrelated. However, in a real life situation many of the

variables of interest are usually correlated. For example, in predicting the blood

pressure of a person on the basis of age, weight, body surface area, duration of hy-

pertension and basal pulse, the variables weight and body surface area are highly

correlated. If the variables are correlated then it is less easy to analyze the data

and implications are less transparent. For example, in multiple regression analy-

sis, some of the parameter estimates will have large variances and covariances if

some regressors are correlated (Gujarati, 2003, p.350). Also, determination of the

relative importance of individual regressors in a regression analysis has widespread

interest in many fields (Kruskal and Majors, 1989), but the assignment of relative

importance becomes a challenging task when variables are correlated (Grömping,

2007) and, if there are near collinearities, the contribution of individual variables

depends on the other variables of the model.

These problems do not arise with orthogonal variables, so transforming vari-
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ables to yield orthogonal variables is attractive. This is one of the benefits of

principal component analysis (PCA). PCA converts a set of observations of possi-

bly correlated variables into a set of values of linearly uncorrelated variables (the

principal components). The new variables are linear combinations of the original

variables and the columns of the transformation matrix are the eigenvectors of

the correlation matrix. The eigenvalues of the correlation matrix are the variance

of the corresponding principal component. The first principal component has the

property of having the largest possible variance of any linear combination of the

original variables that is a unit length. The second component is orthogonal to

the first component and has a larger variance than any other unit-length linear

combination of the original variables, and so on.

Using these new variables (principal components) as regressors provides a

model that is free from multicollinearity problems. Also the overall statistics from

the new model does not change from the original model as the overall model is not

affected by linear transformation (Freund et al., 2006, p.199–200). These advan-

tages hold for any transformation of the original variables to orthogonal variables

(components).

Unfortunately, it is often difficult, though not impossible, to discover the true

interpretation of principal components since the new variables are linear combi-

nations of the original variables (Freund et al., 2006, p.205), i.e., a component is

typically associated with a number of the original variables and an original variable

may be associated with more than one principal component. Also, the first prin-

cipal component has a larger variance than the second component and the second

component has a larger variance than the third component, and so forth. That is,
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each principal component does not contribute equally to the total variability.

In this thesis we are interested in transformations that move the original vari-

ables by only a small amount but give orthogonal variables. The new variables

are called surrogates of the original variables. Suppose X1, . . . , Xp are the original

set of correlated variables and let xj be an n× 1 vector of observations of Xj for

j = 1, . . . , p. Put X = (x1, . . . ,xp). A transformation is applied to X that yields

an orthogonal data matrix Z = (z1, . . . ,zp). The transformation is chosen so that

each zj is closely related to xj, where the definition of ‘closeness’ determines the

optimal transformation. The variable Zj whose data values are zj is called the

surrogate of Xj.

Constructing surrogates of X variables was first suggested in the context of

regression by Gibson (1962). He proposed them as a method of evaluating the

contribution of individual variables to regression model. Johnson (1966) also ad-

dressed the task of evaluating the contribution of individual variables to a regres-

sion model and independently introduced the same orthogonalization procedure.

Their idea is to minimize the sum of the squared distance between xj and zj or,

alternatively, to maximize the sum of the correlations between Xj and Zj. The

matrix Z is related to X by a linear transformation, Z = XA, and the square

matrix A is referred to as the transformation matrix. With their transformation,

the transformation matrix is closer to the identity matrix than any other trans-

formation matrix used to orthonormalize the columns of X in the least square

sense (Johnson, 1966). The only application considered by Johnson (1966) for the

surrogate variables was in assessing the relative importance of individual variables

to a regression model.
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Recently Garthwaite et al. (2012) independently proposed two transforma-

tions, which they called the cos-max and cos-square transformations. The cos-max

transformation is the same as the transformation proposed by Gibson (1962) and

Johnson (1966), while the cos-square transformation can be shown to be a special

case of a transformation of Bolla et al. (1998). [The transformation of Bolla et al.

(1998) is described in Subsection 2.2.4.] The cos-max and cos-square transforma-

tions give orthogonal components with a one-to-one correspondence between the

original vectors and the components, i.e., zj links strongly to xj but not to the

other X vectors and vice-versa. The idea is to maximize the sum of the scalar

products of xj and zj or the sum of the squares of the scalar products of xj

and zj. The transformations have different properties but typically give similar

components. The cos-square transformation has an attractive duplicate invari-

ance property. Suppose the set of vectors x1, . . . ,xk is increased by adding the

set of vectors xk+1, . . . ,xp where each of the vectors xk+1, . . . ,xp is identical to

xk. With the cos-square transformation, this duplication of xk has no effect on

the transformed values of x1, . . . ,xk−1 (i.e z1, . . . ,zk−1 are unchanged). Recent

work by Garthwaite and Koch (2016) implies that the cos-max transformation

has a rotation invariance property. Suppose the first d columns of X, (x1, . . . ,xd),

are rotated and the remaining p − d columns xd+1, . . . ,xp are not rotated. With

the cos-max transformation, the rotation of the first d columns has no effect on

zd+1, . . . ,zp. Rotation will only affect z1, . . . ,zd and the remaining p−d columns

remain unchanged by the rotation. Garthwaite et al. (2012) showed that the trans-

formations have applications in collinearity diagnosis, setting prior probability in

Bayesian model averaging, and in evaluating the upper bound of a multivariate

4



Chebyshev inequality.

Garthwaite and Koch (2016) adapted the cos-max transformation to yield a

transformation that they called the corr-max transformation. The cos-max trans-

formation transforms a data matrix while the corr-max transformation trans-

forms a random vector. The corr-max transformation yields a vector W =

(W1, . . . ,Wp)
> whose components are uncorrelated and W 2

j is defined as the contri-

bution of Xj to the quadratic form. Each of the original variables is associated with

exactly one component of the transformed vector. Garthwaite and Koch (2016)

used the corr-max transformation to partition a quadratic form and quantify the

contribution of individual variables to the quadratic form. This decomposition

is simple to implement and has a straightforward interpretation. It also has the

rotation invariance property.

The three transformations mentioned above (the cos-max, cos-square and corr-

max transformations) have uses in a variety of contexts, as illustrated in the ap-

plications mentioned above. This thesis stems from these transformations. The

purpose of this project is to discover and explore applications of these transfor-

mations. An outline of this thesis is the following.

Detailed description of the methods used to transform the correlated variables

to orthogonal variables are considered in Chapter 2. We also discuss further their

properties and applications.

Rogers (2015) applied the corr-max transformation to identify the key predictor

variables in determining the distributions of vector-borne diseases in the present

and future. He kindly named the corr-max transformation as the Garthwaite–

Koch partition and mentioned this transformation as a novel way of identifying
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the most important predictors in predicting the presence or absence of a species’ in

an area. The partition yields point estimates of individual variables’ contribution

to a quadratic form but interval estimates of the contributions are also impor-

tant. Garthwaite and Koch (2016) illustrated that bootstrap percentile intervals

for these contributions are easily constructed but considered only one method and

did not evaluate its performance. In Chapter 3, we consider four common boot-

strap methods and propose two new methods for forming confidence intervals of

individual contributions to a Mahalanobis distance and their percentages. We also

compare their performances through a simulation study.

In Chapter 4, we consider the task of quantifying the contribution of individ-

ual variables to a multiple regression. This task was first addressed in the work

reported in Gibson (1962) and Johnson (1966), in which the orthogonal coun-

terparts of correlated regressors were derived and used to measure the relative

importance of the regressors. Green et al. (1978) and Johnson (2000) also ad-

dressed this task and proposed measures they call relative importance measures.

These are also based on orthogonal counterparts — the initial step in construct-

ing relative importance measures is to determine the orthogonal counterparts of

Gibson (1962) and Johnson (1966). A criticism of all these methods is that the

relationship between the regressors and the criterion is ignored when deriving the

orthogonal variables. This seems inappropriate as the purpose of the transfor-

mation is to evaluate the contribution of individual variables to the regression

model. We propose three new measures of relative importance that are also based

on the orthogonal counterparts of the original regressors. However, the new or-

thogonal counterparts are determined by maximizing the sum of the correlations
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between the cross-product of individual regressors and the response variable and

the cross-product of the orthogonal variables and the response variable. Hence

the transformation is influenced by the relationship between the response and the

regressors. The new methods are compared with the orthogonal counterparts mea-

sure of Gibson (1962) and Johnson (1966), relative weights measure of Johnson

(2000) and a well-respected measure proposed by Budescu (1993), which is called

the dominance analysis measure. Comparison is made through a simulation study

and the analysis of real data.

In Chapter 5, we address the task of determining the existence of multicollinear-

ity in a multiple regression and identifying the variables that cause each mul-

ticollinearity. Variance inflation factors (VIFs) are commonly used to examine

whether collinearity is present, but it does not indicate the number of collineari-

ties or which variables form each collinearity. Instead, if a collinearity is detected

through VIFs, the most common procedure for determining which variables form

the collinearity is to examine the eigenvectors that correspond to small eigenvalues

of the correlation matrix. The larger elements of an eigenvector that correspond

to a near zero eigenvalue identify those regressors that are most responsible for

multicollinearity. However, there is no one-to-one relationship between a VIF and

a particular eigenvector, so this method is not a well-integrated approach. An

alternative is the regression coefficient variance-decomposition procedure of Bels-

ley et al. (1980), which calculates the proportion of variance of β̂j (jth estimated

regression coefficient) associated with the eigenvalues. However, for more than

one collinearity, it is often difficult to identify separate collinear sets. Garth-

waite et al. (2012) suggested that the transformation matrix of either the cos-max

7



transformation or the cos-square transformation could be used to identify them —

they noted that rows of both transformation matrices have a one-to-one relation-

ship with VIFs. The transformation matrices provide more information than the

eigenvector-eigenvalue method. In Chapter 5, we consider three examples from

published studies that identify collinear sets. The published results are compared

with the output obtained using the other procedures.

Concluding comments and directions for further research are given in Chapter

6.
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Chapter 2

Review of Literature

Orthogonality is important not only in geometry and mathematics, but also in

science and engineering in general, and in data processing in particular. The aim

of this chapter is to review work on transformations that yield new orthogonal

variables that are close approximations of the original variables. The oldest of

the transformations that we review was proposed by Johnson (1966). This is first

described before describing two transformations proposed by Garthwaite et al.

(2012), the cos-max transformation and the cos-square transformation. The cos-

max transformation is essentially the same as Johnson’s transformation but is

derived from weaker assumptions. This chapter also includes a transformation

proposed by Bolla et al. (1998) that addresses a more general problem and which

relates to the cos-square transformation. Garthwaite and Koch (2016) develop

a transformation, called the corr-max transformation, that is similar to the cos-

max transformation. However, the corr-max transformation is used to transform

a random vector while the cos-max transformation (in common with most of the

methods described here) transforms a data matrix. Some properties and appli-
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cations of the transformations are also described. The emphasize here is on the

transformations that we will used in later chapters. Section 2.1 reviews John-

son’s transformation for constructing surrogates of original variables, Section 2.2

reviews the cos-max, cos-square transformations and the transformation of Bolla

et al. (1998), and Section 2.3 describes the corr-max transformation. Properties

of the transformations are considered in Section 2.4 and some of their applications

are described in Section 2.5.

2.1 Johnson’s transformation

Suppose X is an n × p matrix with n ≥ p and is of full rank. Gibson (1962)

and Johnson (1966) suggested a method of finding an orthogonal matrix Z whose

columns are as similar as possible to the columns of the original matrix X in

the least square sense. That is, Z is of order n× p and the p orthonormal vectors

z1, . . . ,zp, each of dimension n×1, must be chosen such that
∑p

j=1(xj−zj)>(xj−

zj) is minimized.

Johnson defines the problem being addressed more clearly than Gibson and

we proceed along his lines. He assumed that Z is related to X through a linear

transformation. Hence, he address the task of finding the n × p matrix Z =

(z1, . . . ,zp) that minimizes the residual sum of squares

τ = tr
{

(X− Z)> (X− Z)
}

(2.1)

such that

1. The transformation of X → Z is of the form Z = XA, where A is a p × p

transformation matrix; and

10



2. The transformed matrix Z is column orthogonal, i.e., Z>Z = Ip.

The transformation matrix A and consequently the transformed orthogonal

matrix Z can be obtained using the singular value decomposition of X. The

singular value decomposition of X is

X = U∆V> (2.2)

where the p columns of U are the first p orthonormal eigenvectors of XX> (if

eigenvalues are arranged in descending order), ∆ is a p× p diagonal matrix with

diagonal elements equal to the square roots of the first p (descending order) com-

mon eigenvalues of X>X and XX> (common eigenvalues are basically the eigen-

values of X>X), and the columns of V are the orthonormal eigenvectors of X>X.

The diagonal elements of ∆ are unique and usually considered as positive, called

the singular values of X. If X is of full rank, eigenvalues of X>X will never be

zero. Here U is column orthogonal and V is both row and column orthogonal,

i.e., U>U = I and V>V = VV> = I.

The problem is to find the transformation matrix A by minimizing

τ = tr
{

(X− Z)> (X− Z)
}

(2.3)

under the conditions that Z>Z = Ip, Z = XA and x>j zj > 0 for j = 1, . . . , p.

Expanding τ = tr
{

(X− Z)>(X− Z)
}

and substituting Z = XA gives

τ = tr
(
X>X

)
− 2tr

(
X>XA

)
+ tr

(
A>X>XA

)
. (2.4)

The first term of the right hand side of equation (2.4) is independent of A and

the last term is a constant p, since A>X>XA = Z>Z = Ip. Thus for evaluating

A, the minimization of τ is equivalent to the maximization of

η = tr
(
X>XA

)
(2.5)
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subject to the constraint that Z>Z = Ip, Z = XA and x>j zj > 0 for j = 1, . . . , p

(Johnson, 1966). Substituting X = U∆V> into equation (2.5) gives

η = tr
(
V∆U>U∆V>A

)
= tr

(
V∆2V>A

)
= tr

(
∆2V>AV

)
(2.6)

since the trace of a product of matrices is independent of the order of multiplica-

tion.

Let M = ∆V>A. Then M is an orthogonal matrix as M>M = A>V∆∆V>A

= A>V∆U>U∆V>A =
(
U∆V>A

)> (
U∆V>A

)
= (XA)> (XA) = Z>Z = Ip.

So equation (2.6) becomes

η = tr (∆MV) . (2.7)

Let T = MV. Then T is an orthogonal matrix as the product of two orthogonal

matrices is orthogonal matrix. Thus equation (2.7) becomes

η = tr (∆T) . (2.8)

The diagonal elements of ∆ are positive. So tr (∆T) can be maximize by choosing

T to have maximum diagonal elements with positive sign. The elements of an

orthogonal matrix cannot be greater than one. Hence one can choose T = I to

maximize tr (∆T).

Now T = MV = ∆V>AV = I implies A = V∆−1V>. Replacing X by

U∆V> and A by V∆−1V> gives

Z = XA = U∆V>V∆
−1

V> = UV>. (2.9)

Now Z>Z = VU>UV> = VV> = I, verifying the constraint of orthonormal

columns. Finally, Z = UV> is the least-square orthonormal approximation of X.

Johnson (1966) has shown that the transformation matrix A = V∆−1V> is closer
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to the identity matrix (in the least-square sense) than any other transformation

matrix that orthonormalizes the columns of X. Hence the columns of Z are a close

approximation to the columns of X, i.e., column vectors of Z are surrogates of the

column vectors of X.

When the columns of X have been standardized to have means of 0 and

unit lengths, then Gibson’s method and Johnson’s (1966) method yield the same

orthogonal components. Gibson (1962) describes the set of orthogonal factors

z1, . . . ,zp as having the highest degree of one-to-one correspondence with x1, . . . ,xp.

The purpose of finding the orthogonal matrix Z in both Gibson and Johnson’s

transformations was to find the contribution of regressors to a multiple regression

model. In the remainder of this section, suppose y (response) and the columns of

X (regressors) have been centered and scaled to have sample means of zero and

unit lengths. Define β̂Z as the vector of regression coefficients when regressing y

on Z, so

β̂Z =
(
Z>Z

)−1
Z>y = Z>y. (2.10)

The jth element of β̂Z , β̂Zj
, is the beta weight of Zj, and it is also the correlation

coefficient between Y and Zj. Gibson (1962) and Johnson (1966) suggested β̂Zj

as the importance weight of Xj, as each Z variable is paired with an X variable,

and β̂2
Zj

is the proportion of the variation in Y that is explained by Zj.

Instead of using the singular value decomposition of X to obtain the orthogonal

matrix Z, Gibson (1962) and Garthwaite et al. (2012) independently used the

symmetric square-root matrix of the correlation matrix Rxx. The orthogonal

matrix Z is obtained from

Z = XR−1/2xx , (2.11)
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where Rxx = X>X = V∆U>U∆V> = V∆2V> and hence the square-root and

inverse square-root matrices of Rxx are R
1/2
xx = V∆V> and R

−1/2
xx = V∆−1V>.

Finally, β̂Z can be expressed as

β̂Z = Z>y = VU>y = V∆−1V>V∆U>y = R−1/2xx X>y = R−1/2xx Rxy. (2.12)

The sum of squared beta weights of the Z variables is equal to the proportion

of variation in Y that is explained by X (or Z). This is because the proportion

of variation in Y explained by a multiple regression model is

R2 = y>X
(
X>X

)−1
X>y = R>xyR

−1
xxRxy, (2.13)

and

β̂
>
Z β̂Z = R>xyR

−1/2
xx R−1/2xx Rxy = R>xyR

−1
xxRxy = R2. (2.14)

Unexpectedly, the correlation matrix between the X variables and the Z vari-

ables, Rxz, is symmetric and is, in fact, the symmetric square-root matrix of Rxx

(Johnson, 1966). The symmetry of Rxz is verified by

Rxz = X>Z = V∆U>UV> = V∆V> = R1/2
xx . (2.15)

Using an example, J. W. Johnson (2000) argued that, when the original X vari-

ables are highly correlated, the measure proposed by Gibson (1962) and Johnson

(1966) does not adequately measure the relative importances of the X variables.

Let λjk denote the correlation between Xj and Zk. Then the variation in Xj

that is explained by Zk is λ2jk. As the Z variables are orthogonal,
∑p

k=1 λ
2
jk is the

variation in Xj that is explained in a multiple linear regression of Xj on Z1, . . . , Zp.

But Z is a linear transformation of X, and vice-versa, so Z1, . . . , Zp explain all

the variance in each X variable, including Xj. And consequently, it follows that
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∑p
k=1 λ

2
jk = 1. Hence, the symmetry given by equation (2.15) implies that

p∑
j=1

λ2jk = 1. (2.16)

The proportion of the variation in Y that is explained by Zk is β̂2
Zk

. J. W.

Johnson (2000) suggested that β̂2
Zk

should not be allocated solely to Xk, but should

be divided between the X variables to reflect (the square of) their correlation with

Zk. That is, he suggested the proportion of β̂2
Zk

that is allocated to Xj should be

λ2jkβ̂
2
Zk

. In total, Xj is allocated
∑p

k=1 λ
2
jkβ̂

2
Zk

from β̂2
Z1
, . . . , β̂2

Zp
, and he defined

the relative importance of Xj as:

Relative importance of Xj :

p∑
k=1

λ2jkβ̂
2
Zk
. (2.17)

From equation (2.16),
∑p

j=1 λ
2
jk = 1, so

∑p
j=1

∑p
k=1 λ

2
jkβ̂

2
Zk

=
∑p

k=1

[∑p
j=1 λ

2
jk

]
β̂2
Zk

=
∑p

k=1 β̂
2
Zk

. Thus equation (2.17) assigns relative importances to X1, . . . , Xp that

sum to the variance in Y that is explained by X1, . . . , Xp in a multiple regression.

2.2 Cos-max and cos-square transformations

Suppose (x1, . . . ,xp) is a set of n× 1 observed vectors of the variables X1, . . . , Xp

and let X = (x1, . . . ,xp). Garthwaite et al. (2012) suggested two methods for ob-

taining orthonormal components z1, . . . ,zp that have a one-to-one correspondence

with the original vectors and are close to them, i.e., each component is closely re-

lated to a single X variable and each X variable is related to a single component.

That is the vectors z1, . . . ,zp are surrogates of the original data vectors x1, . . . ,xp.

The n× p matrix Z = (z1, . . . ,zp) is chosen to maximize either

ψ =

p∑
j=1

x>j zj (2.18)
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or

φ =

p∑
j=1

(
x>j zj

)2
(2.19)

under the following conditions:

Condition 1. The transformed matrix Z is column orthogonal, i.e., Z>Z = Ip.

Condition 2. The relationship between xj and zj is positive, i.e., x>j zj > 0 for

j = 1, . . . , p.

Unlike Gibson (1962) and Johnson (1966), they do not assume that Z is a

linear transformation of X, but show this must be the case. That is, Z = XA,

where A is the transformation matrix. The transformation of X → Z is called

the cos-max transformation when ψ is maximized and when φ is maximized it

is called the cos-square transformation. If the columns of X are normal vectors,

i.e., x>j xj = 1, then x>j zj is the cosine of the angle between xj and zj for each

j = 1, . . . , p. The higher the closeness between xj and zj the higher the magnitude

of the product x>j zj. Hence the objective is to determine orthonormal vectors by

maximizing the sum of the cosines or their squares. That justifies the names of

the transformations. In addition, if the columns of X and Z are standardized to

have zero means and unit lengths, then x>j zj is the correlation between xj and

zj. So maximization of ψ or φ means maximization of the sum of the correlations

between the original vectors and the orthonormal vectors or the sum of the squared

correlations.

For both transformations, the transformation matrix is determined by X>X,

rather than X itself. X>X can be replace by the covariance matrix (X is centred

so that each of its columns has a mean of zero) or by the correlation matrix (X
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is standardized to have unit length of each column) or by some known positive-

definite matrix.

2.2.1 Cos-max transformation

The transformed orthogonal matrix Z for the cos-max transformation can be ob-

tained using either the singular value decomposition, spectral decomposition or

the symmetric square-root of a positive-definite matrix.

The spectral decomposition or eigen decomposition of a p×p symmetric matrix

B is B = LDL>, where L is a p × p orthogonal matrix with eigenvectors of B

as the columns and D is a p× p diagonal matrix with diagonal elements equal to

the eigenvalues of B. And the square-root matrix of B is B1/2 = LD1/2L, where

D1/2 is a p× p diagonal matrix having square-roots of the eigenvalues of B as the

diagonal elements.

Suppose X = U∆V> is the singular value decomposition of X, where U, V

and ∆ are the same as in equation (2.2). Then X>X = V∆2V> and {X>X}1/2 =

V∆V> are respectively the spectral decomposition and square-root matrix of

X>X. Since X = U∆V> this implies U = XV∆−1 as V is an orthogonal

matrix and hence
(
V>
)−1

= V. Also {X>X}1/2 = V∆V> implies {X>X}−1/2 =

V∆−1V> (according to the definition of the inverse of a square-root matrix). The

problem of maximization in equation (2.18) becomes

ψ =

p∑
j=1

x>j zj = tr
(
X>Z

)
= tr

(
V∆U>Z

)
= tr

(
∆U>ZV

)
(2.20)

subject to the condition that Z is an orthogonal matrix.

As Z and V are orthogonal matrices their product ZV is orthogonal and, for

the same reason, U>ZV is also orthogonal. Now since ∆ is a diagonal matrix with
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positive diagonal elements and U>ZV is an orthogonal matrix, tr
(
∆U>ZV

)
is

maximized when U>ZV is an identity matrix i.e., U>ZV = Ip. Now since U is

column orthogonal and V is orthogonal U>ZV = Ip implies

Z = UV> = XV∆−1V> = X
(
X>X

)−1/2
. (2.21)

Now
(
X>X

)−1/2
is unique as it is the symmetric square-root of

(
X>X

)−1
. Hence

equation (2.21) determines Z uniquely.

Equation (2.9) and (2.21) implies that Johnson’s (1966) method and the cos-

max transformation of Garthwaite et al. (2012) produce the same orthogonal vec-

tors. Both methods yield a unique orthogonal matrix Z whose columns are highly

correlated with the corresponding columns of X.

2.2.2 Cos-square transformation

The following theorem underpins the cos-square transformation and also gives the

transformation matrix A for the cos-max transformation. Proof of the theorem is

given in Garthwaite et al. (2012, p.789).

Theorem 1. Suppose C = diag(c1, . . . , cp) where the cj’s are known positive con-

stants. Then the unique maximum of tr
(
CX>Z

)
=
∑p

j=1 cjx
>
j zj, under condi-

tions 1 and 2, occurs when Z = XC
(
CX>XC

)−1/2
.

Putting C = Ip in Theorem 1 gives the unique cos-max transformed matrix

Z = X
(
X>X

)−1/2
which maximizes ψ =

∑p
j=1 x

>
j zj = tr

(
X>Z

)
under conditions

1 and 2.

With the cos-square transformation, the cj’s cannot be obtained from a sim-

ple formula. Rather, they are calculated from an iterative algorithm (Garthwaite
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et al., 2012), reproduced below. Theorem 1 yields Z by maximizing
∑p

j=1 cjx
>
j zj,

which is the weighted version of the cos-max transformation. Each product x>j zj

is weighted by cj. The algorithm repeatedly maximizes
∑p

j=1 cjx
>
j zj until con-

vergence. After each iteration, cj is set equal to the most recent estimate of x>j zj

(j = 1, . . . , p).

Algorithm 1. Algorithm for the cos-square transformation (Garthwaite et al.,

2012).

Step 1. Set C1 equal to the p× p identity matrix and put v = 1.

Step 2. At the vth iteration, determine the square-root matrix of CvX
>XCv,

i.e.,
(
CvX

>XCv

)1/2
.

Step 3. Set Cv+1 equal to a diagonal matrix, with diagonal elements equal to

the diagonal elements of C−1v
(
CvX

>XCv

)1/2
.

Step 4. Repeat Steps 2 and 3 until convergence, i.e., until Cv+1 ≈ Cv.

Step 5. Set Z equal to XCv

(
CvX

>XCv

)−1/2
.

Garthwaite et al. (2012) discussed the rationale behind the algorithm and

proved that the algorithm converges to a unique maximum.

Step 3 of the algorithm sets the diagonal elements of Cv+1 equal to the di-

agonal elements of C−1v
(
CvX

>XCv

)1/2
. Let C denote the value of Cv when the

algorithm converges. Step 4 implies that at convergence the diagonal elements of

C and C−1
(
CX>XC

)1/2
are equal. Olkin and Pratt (1958) proved that a positive

definite matrix B can be uniquely decomposed as B = RDR, where R is a corre-

lation matrix and D is a diagonal matrix. Now C−1
(
CX>XC

)1/2
C−1 is positive
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definite and has diagonal elements that each equal 1, so it is a correlation matrix.

Also X>X is a positive definite matrix. If we put R = C−1(CX>XC)1/2C−1 and

X>X = RDR then D = C2 as RDR = C−1(CX>XC)1/2C−1DC−1(CX>XC)1/2C−1

= C−1(CX>XC)1/2C−1C2C−1(CX>XC)1/2C−1 = C−1(CX>XC)C−1 = X>X.

Since D is unique (Olkin and Pratt, 1958) and the elements of C are positive, so

C is also unique. Also the symmetric square-root matrix
(
CX>XC

)1/2
is unique.

Hence at convergence the transformation matrix A = C
(
CX>XC

)−1/2
is unique.

Also the algorithm converges to a global maximum as there is only one local

maximum (see Lemma 1 & Theorem 2 of Garthwaite et al. (2012)).

2.2.3 Relationship between the cos-max and cos-square

transformations for two variables

Consider two n×1 normalized vectors x1 and x2, i.e., x>1 x1 = x>2 x2 = 1. We want

to determine two orthonormal vectors z1 and z2 such that z1 is close to x1 and z2

is close to x1. These four vectors are displayed in Figure 2.1 in two-dimensional

space. This two-dimensional space is a plane from n-dimensional space. Suppose

x1 and x2 are each of length 1. Denote the angle between x1 and x2 by α. Define

β by letting the angle between x1 and z1 be π
4
− α

2
+ β = γ + β. As z1 and

z2 are orthogonal, the angle between x2 and z2 is π
4
− α

2
− β = γ − β. Since

x1 and x2 are normalized vectors, x>1 z1 = cos(γ + β) and x>2 z2 = cos(γ − β).

Also, (x>1 z1)
2 = cos2(γ + β) and (x>2 z2)

2 = cos2(γ − β). Hence the maximization

problems in Equations (2.18) and (2.19) can be written as:

Choose β1 to maximize

ψ = cos(γ + β1) + cos(γ − β1) = 2cosγ cosβ1 (2.22)
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Figure 2.1: Geometric presentation of original vectors and transformed orthonormal vectors

for the cos-max transformation and choose β2 to maximize

φ = cos2(γ + β2) + cos2(γ − β2). (2.23)

for the cos-square transformation.

Equation (2.22) is maximized when β1 = 0◦. That is the angle between x1 and

z1 and between x2 and z2 is γ = π
4
− α

2
. Now equation (2.23) can be written as

φ = 2(cos2γ cos2β2 + sin2γ sin2β2)

= 2(cos2β2 cos(2γ) + sin2γ)

(2.24)

which is maximized when β2 = 0◦ as γ < 45◦. It is noted that φ has another

candidate point at β2 = π
2
. However, from Figure 2.1, β2 = π

2
is not feasible.

When α 6= 0◦ the cos-max and cos-square solutions are identical as β1 =

β2. However, when α = 0◦, then X>X is singular and hence both solutions are

undetermined.

The identical solutions for the cos-max and cos-square transformations holds
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for the normalized vectors. However, for the unscaled vectors Equations (2.22)

and (2.23) will have a length term and the cos-max and cos-square transformation

will not be identical.

2.2.4 Related optimization problem

Bolla et al. (1998) considered choosing orthonormal vectors z1, . . . ,zp such that

ζ =

p∑
j=1

z>j Ajzj (2.25)

is maximized, where A1, . . . ,Ap are n × n symmetric positive definite matrices

(p ≤ n). Bolla (2001) relaxed the requirement that the Aj are positive definite

matrices and allowed them to be positive semi-definite. The optimization problem

given by (2.19), which leads to the cos-square transformation, is a special case of

(2.25) that is obtained by setting Aj equal to xjx
>
j for j = 1, . . . , p.

Bolla et al. (1998) form an np× np block-diagonal matrix A with A1, . . . ,Ap

in the diagonal blocks and A is zero elsewhere. Then the orthonormal vectors

z1, . . . ,zp which maximize ζ must satisfy the matrix equation

A (Z) = ZS (2.26)

where the n × p matrices Z = (z1, . . . ,zp) and A (Z) = (A1z1, . . . ,Apzp) are

formed by considering enumerated vectors as their columns and S is a p × p

symmetric matrix.

The matrix equation (2.26) is linear in Z and has a non-trivial (non-zero)

solution for the appropriate S if and only if

|A− In ⊗ S| = 0 (2.27)
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where ⊗ denotes the Kronecker-product of matrices. The Kronecker product of

an m× n matrix F and a p× q matrix L is a mp× nq matrix defined as

F⊗ L =


f11L . . . f1nL

...
. . .

...

fm1L . . . fmnL

 . (2.28)

The task is to choose S so that the columns of Z are orthonormal. Bolla

et al. (1998) proposed an iterative algorithm to find S and the corresponding

orthonormal vectors z1, . . . ,zp. The algorithm uses polar decomposition. The

polar decomposition of an m×n matrix M is a factorization of the form M = RH,

where R is an m × n column orthogonal matrix (R>R = Ip) and H is an n × n

positive semi-definite matrix. R and H can be obtained using the singular value

decomposition of M. If the singular value decomposition of M is M = U∆V>

then R = UV> and H = V∆V>.

Algorithm 2. Algorithm for optimizing sums of heterogeneous quadratic forms.

Step 1. Choose an initial (arbitrary) orthonormal set of vectors z
(0)
1 , . . . ,z

(0)
p

and form
(
A1z

(0)
1 , . . . ,Apz

(0)
p

)
.

Step 2. Perform a polar decomposition of
(
A1z

(0)
1 , . . . ,Apz

(0)
p

)
that yields a

set of orthonormal vectors z
(1)
1 , . . . ,z

(1)
p and symmetric positive definite

matrix S(1) such that
(
A1z

(0)
1 , . . . ,Apz

(0)
p

)
= Z(1)S(1), where X(1) =(

z
(1)
1 , , . . . , z

(p)
1

)
.

Step 3. Repeat Step 2 until convergence, when

p∑
j=1

(
z
(m)
j

)>
Ajz

(m)
j ≈

p∑
j=1

(
z
(m−1)
j

)>
Ajz

(m−1)
j .
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The unique polar decomposition determines Z(m). Bolla et al. (1998) showed

that their algorithm converges to a local maximum of the objective function, and

they conjectured that it converges to a global maximum. As noted earlier, the cos-

square transformation of Garthwaite et al. (2012) is a special case of Bolla et al.

(1998) optimization problem when each Aj = xjx
>
j . Garthwaite et al. (2012)

proved the conjecture of Bolla et al. (1998) for this important special case.

2.3 Corr-max transformation

The cos-max and the cos-square transformations were designed to transform a data

matrix and yield a matrix with orthonormal columns, where each transformed

variable is closely associated with only one of the original variables. The corr-

max transformation of Garthwaite and Koch (2016) transforms a random vector

(instead of a data matrix) and has been used to partition the contribution of

individual variables to a quadratic form.

Suppose X = (X1, . . . , Xp)
> is a p × 1 random vector with var (X) ∝ Σ and

µ is an arbitrary p× 1 vector. Then the quadratic form Q is defined as

Q = (X − µ)>Σ−1 (X − µ) (2.29)

where µ is not necessarily the mean of X. Such types of quadratic form arise in

various situations, such as in the probability density function of a multivariate nor-

mal distribution, Hotelling’s T 2-statistic, Mahalanobis distance and discriminant

analysis.

If Σ is an identity matrix then the contribution of each variable is clearly

the square of the corresponding component of X − µ. This partitioning can be
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extended for a diagonal Σ. However, variables are usually correlated and then Σ is

not diagonal. Garthwaite and Koch (2016) proposed a method for evaluating the

contribution of individual variables to a quadratic form for correlated variables.

They consider a transformation of X to W of the form

W = A (X − µ) , (2.30)

where A is a p× p transformation matrix such that W is a p× 1 vector and

W>W = (X − µ)>Σ−1 (X − µ) . (2.31)

Equation (2.31) implies that

Q = W>W =

p∑
j=1

W 2
j , (2.32)

where W = (W1, . . . ,Wp)
>. And since the quadratic form can be expressed as

the sum of the squared elements of W , so W forms a partition of Q. They argue

that the partition will be useful and meaningful if

(a) the components of W are uncorrelated with variance proportional to the iden-

tity matrix and

(b) Xj is associated with only Wj, so that the contribution of Xj to Q can sensibly

be defined as W 2
j .

Since W = A (X − µ) and W>W = (X − µ)>Σ−1 (X − µ), it follows that

A>A = Σ−1. And hence var (W ) ∝ Avar (X − µ) A> = AΣA> = A
(
A>A

)−1
A

= Ip, which indicates that the components of W are uncorrelated. The degree

to which Wj approximates Xj can be determined by the correlation between Xj

and Wj. The task is to find A such that
∑p

j=1 corr (Xj,Wj) is maximized subject
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to the condition A>A = Σ−1. The following theorem from Garthwaite and Koch

(2016) solves this to give the corr-max transformation.

Theorem 2. Suppose var (X) ∝ Σ and DΣD has diagonal elements of 1 with

D a diagonal matrix. The maximum of
∑p

j=1 corr (Xj,Wj) subject to W =

A (X − µ), where the square matrix A is such that A>A = Σ−1 and µ is any

given vector, occurs when A = (DΣD)−1/2 D and thenW = (DΣD)−1/2 D (X − µ).

Proof of Theorem 2 is given in the appendix of Garthwaite and Koch (2016).

The p× p diagonal matrix D has diagonal elements that are the reciprocals of the

square root of the corresponding diagonal elements of Σ. DΣD is the correlation

matrix of X and (j, k)th element of (DΣD)1/2 is the correlation between Xj and

Wk. Hence the diagonal elements of (DΣD)1/2 measure the degree of relationship

between the components of X and the corresponding components of W .

2.4 Duplicate invariance and rotation invariance

properties

2.4.1 Duplicate invariance property

Garthwaite et al. (2012) showed that the cos-square transformation has a dupli-

cate invariance property. Suppose we have two sets of vectors x1, . . . ,xp and

x1, . . . ,xp,x(p+1), . . . ,x(p+k) where the first set is a subset of the second set. If

both sets are transformed separately then the transformed values of x1, . . . ,xp in

the two sets are likely to differ. This is also true for the case where the original

sets are transformed to orthogonal sets, the only exception is when the vectors
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x(p+1), . . . ,x(p+k) are orthogonal to x1, . . . ,xp. However, suppose each of the vec-

tors x(p+1), . . . ,x(p+k) is an exact duplicate of xp. Then the transformed orthogonal

vectors associated with x1, . . . ,x(p−1) obtained under the cos-square transforma-

tion will be the same in the two transformed sets. That is, duplication of xp has

no effect on the transformed values of x1, . . . ,x(p−1). Also the transformed values

of x1, . . . ,x(p−1) are virtually the same if each x(p+1), . . . ,x(p+k) is virtually a du-

plicate of xp, i.e., if xl = xp + αζl for l = p+ 1, . . . , p+ k, where α ≈ 0 and ζl can

be any value. Garthwaite et al. (2012) called this property of the cos-square trans-

formation the ‘duplicate invariance property’. For more details of the duplicate

invariance property, see Garthwaite et al. (2012).

2.4.2 Rotation invariance property

When there is a strong collinearity between some of the X variables, then some

columns of the transformed orthogonal data matrix are not close representation

of the corresponding columns of X. Orthogonal rotation of collinear variables can

remove collinearities but, with most transformations, rotation of some variables

will typically affect the transformed values of all variables. However, as noted in

the introduction, the cos-max and the corr-max transformations have a rotation

invariance property. In this subsection we first show that rotation can reduce

collinearity and then describe the rotation invariance property.

An orthogonal rotation of axes X1, X2 to axes X∗1 , X∗2 is illustrated in Figures

2.1(a) and 2.1(b). In Figure 2.1(a), the positions of 10 points (x1, x2) are plotted

and new axes X∗1 and X∗2 are shown. The new axes are obtained by rotating the

original axes X1 and X2 (by 45o in this case). Figure 2.1(b) shows the same 10
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X1

X1
∗

X2

X2
∗

Figure 2.1(a) Points before rotation

with X1, X2 as axes.

X1
∗

X2
∗

Figure 2.1(b) Points after rotation with

X∗1 , X∗2 as axes.

points, but drawn with X∗1 and X∗2 as the horizontal and vertical axes. It can

be seen that rotation of axes changes the correlation between variables: Figure

2.1(a) shows that the points are highly correlated when expressed in terms of X1

and X2, while Figure 2.1(b) shows that the correlation is low when the points are

expressed in terms of X∗1 and X∗2 . Consequently, orthogonal rotation can be used

to remove or reduce collinearity between variables.

We only need to rotate those variables that are involved in collinearities. For

example, suppose there is just one collinearity and it involves only the first d

variables X1, . . . , Xd. Then axes are rotated using a rotation matrix, Γ say, that

has the following block-diagonal form:

Γ =

Γd 0

0 Ip−d

 , (2.33)

where Γd is an orthogonal matrix of order d and Ip−d is a (p − d) order identity

matrix.

Rotation produces new variables that are linear combinations of the original

variables. The rotation matrix should be chosen in such a way that the variables
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that are created have meaningful interpretation. For example, if only the first two

variables X1 and X2 are responsible for one collinearity then Γd can be set as:

Γd =

 1√
2
− 1√

2

1√
2

1√
2

 (2.34)

This rotation creates two meaningful variables, the first one is proportional to

X1 +X2 and the second one is proportional to X2 −X1.

In terms of the original variables, X1 and X2, the ten points in Figure 2.1 form

the data matrix:−0.48 −0.42 −0.24 −0.18 −0.12 0.18 0.18 0.24 0.36 0.48

−0.48 −0.41 −0.41 −0.07 0.07 0.14 0.21 0.14 0.41 0.41


Post-multiplying this data matrix by Γd in equation (2.34) gives the points in

terms of the new variables X∗1 and X∗2 :−0.68 −0.59 −0.46 −0.18 −0.04 0.22 0.27 0.27 0.55 0.63

0.00 0.01 −0.12 0.08 0.13 −0.03 0.02 −0.07 0.04 −0.05


The sample correlation between X1 and X2 is 0.951, while the sample correla-

tion between X∗1 and X∗2 is 0. (The correlation between the sum and difference of

two variables that have been standardised to have equal variances is always 0.)

To illustrate the rotation invariance property of the cos-max and the corr-max

transformations, suppose the rotation matrix is of the form in equation (2.33). Let

the data matrix after rotation be X∗, i.e., X∗ = XΓ. This rotation rotates only

the first d columns of X, while the last p−d columns of X and X∗ are the same. If

the cos-max transformation is applied separately to X and X∗ then the last p− d

columns of Z and Z∗ are same, where Z and Z∗ are, respectively, the transformed

matrices of X and X∗. That is, with the cos-max transformation, the rotation
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of variables has no effect on the transformed values of the unrotated variables.

This is also true for the corr-max transformations. Rotation of first d columns

changes only the first d components of W , the remaining p−d components remain

unchanged. Consequently the contribution of last p−d variables are unchanged by

the rotation. Rotation can be performed before or after transformation and in both

cases yields the same result. For a detailed description of the rotation invariance

property of the corr-max transformation see Garthwaite and Koch (2016).

2.5 Applications of the transformations

Gibson (1962), Johnson (1966) and Johnson (2000) consider the task of determin-

ing the relative importance of regressor in a multiple regression. Applications of

the cos-max and cos-square transformations can also yield new statistical meth-

ods (Garthwaite et al., 2012), such as (i) a unified approach to the identification

and diagnosis of collinearities, (ii) a method of setting prior weights for Bayesian

model averaging, and (iii) calculating an upper bound for a multivariate Cheby-

shev inequality. The corr-max transformation has applications in determining the

contribution of individual variables to a quadratic form (Garthwaite and Koch,

2016). These applications are all briefly described in this section.

2.5.1 Relative importance of variables in multiple regres-

sion

For this subsection, we assume that the columns of X have been standardized to

have means of 0 and unit lengths. Both Gibson (1962) and Johnson (1966) used
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the square of the jth element of β̂Z obtained in equation (2.10), β̂2
Zj

, as the relative

importance measure of Xj. J. W. Johnson (2000) argued with an example that

when the original X variables are highly collinear, the correlation between Xj and

Zj can be small for some j. Since Z is a linear transformation of X, Xj might

not be only highly correlated with Zj for correlated X variables. Hence, some

X variables that are highly correlated with the response variable can be assigned

very small relative importance. J. W. Johnson (2000) considered regressing X on

Z. Denote the matrix of regression coefficients by Λ, where

Λ =
(
Z>Z

)−1
Z>X = Z>X. (2.35)

The matrix Λ = Z>X is the correlation matrix between the X and Z variables.

If λjk is the correlation between Xj and Zk, then λ2jk is the proportion of variance

of Zk accounted by Xj and vice-versa. The proportion of variance of Y accounted

by Xj derives from Zk is λ2jkβ̂
2
Zk

. Finally, the vector of relative importance weights

ε = (ε1, . . . , εp)
> is given by

ε = Λ[2]β̂
[2]
. (2.36)

Again, the sum of the relative importance weights is equal to model R2.

For further details see Gibson (1962), Johnson (1966) and J. W. Johnson

(2000), also see Section 4.4 in Chapter 4.

2.5.2 Detection and identification of collinearities

Variance inflation factors are commonly used to determine whether a particular

variable is responsible for collinearity among a set of variables. If collinearities

are detected, then eigenvectors corresponding to small eigenvalues are generally

examined in order to identify which variables cause them (form a collinear set).
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This gives no direct relationship between the quantity used to identify a collinearity

and the quantity used to determine its cause, as an eigenvector is not explicitly

linked to any particular variance inflation factor. The transformation matrix A

of both the cos-max and the cos-square transformations may simultaneously be

used as a diagnostic for determining the number of collinearities and as a means

of identifying the variables that contribute to each collinearity (Garthwaite et al.,

2012). With either transformation, VIFj is expressed as a sum of the squared

elements of the jth row of the transformation matrix A. That is, there is a one-

to-one relationship between VIFj and the jth row of A. Detailed description of

collinearity diagnostics using the cos-max or the cos-square transformation matrix

is given in Garthwaite et al. (2012) and it is the focus of Chapter 5 of this thesis,

where further detail is given.

2.5.3 Prior weights for Bayesian model averaging

In Bayesian model averaging, a prior weight must be given to each of the models

under consideration. The simplest and most common choice is a discrete uniform

prior in which each model is given the same prior weight. However, selection of

a uniform prior ignores the similarities among the models (George et al., 2010).

It can be argued that models that are very similar to each other should be given

smaller weights (George, 1999), which is referred as the dilution of prior weights.

The most common situation where model averaging is used is in regression

problems that involve variable selection. In that context, each model would be

the regression model with one particular set of regressors. Hence model 1 might

contain variables X1, X3 and X5; model 2 might contain variables X1, X6, X7
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and X9; and so on. Then, several models might contain similar sets of variables,

while other models contain a set of variables that has few similarities to the sets

of variables found in other models. If each of the models is given the same prior

weight, George et al. (2010) argue that the similar models receive too much weight

as they approximately duplicate each other, while the unusual models receive too

little weight. The procedure for assigning prior weights should give reduced weights

to similar models.

Suppose p1, . . . , pp are the prior probabilities or prior weight assigned to the

models M1, . . . ,Mp. One way of choosing the prior probabilities is by using the cos-

square transformation (Garthwaite and Mubwandarikwa, 2010). They determine

a p × p matrix R, where R is the correlation matrix with rjk as the correlation

between the predictions of the models Mj and Mk. The cos-square transformation

is applied with X>X set equal to the correlation matrix R and Algorithm 1 yields

the diagonal matrix C. If C has diagonal elements c1, . . . , cp, then the model Mj

is assigned the prior probability

pj =
c2j∑p
i=1 c

2
i

. (2.37)

This weighting scheme assigns smaller weights to more similar models, i.e.,

the models that are more highly correlated with other models (Garthwaite et al.,

2012). Detailed description of the cos-square weighting scheme and dilution of

prior probabilities are given in Garthwaite et al. (2012) and Garthwaite and Mub-

wandarikwa (2010).
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2.5.4 Multivariate Chebychev inequality

Suppose the random vector (X1, . . . , Xp) has mean vector 0 and non-singular

covariance matrix Σ = (σjk). Form the positive definite matrix Ω with (j, k)th

element equal to σjk/ (σjσkljlk), where l1, . . . , lp are positive constants and σjj = σ2
j

for j = 1, . . . , p. Then the multivariate Chebychev inequality suggested by Olkin

and Pratt (1958) is

pr (|Xj| ≥ ljσj, for some j) ≤ tr
(
T−1ΩT−1

)
(2.38)

where T is the unique positive definite correlation matrix such that TΩ−1T is a

diagonal matrix. For p = 1, inequality (2.38) reduces to the univariate Chebychev

inequality, pr (|X1| ≥ l1σ1) ≤ 1/l21.

According to Olkin and Pratt (1958, p.233), T cannot be obtained from Ω

by standard matrix operations except in special cases. Garthwaite et al. (2012)

suggested using the cos-square transformation to determine T. Suppose X>X is

set equal to Ω, and the cos-square transformation is applied to X>X, giving the

diagonal matrix C (c.f. Algorithm 1). Garthwaite et al. (2012) show that the

upper bound of the inequality (2.38) is tr(C2). For a more detailed description of

the Multivariate Chebychev inequality and determining the upper bound of the

inequality, see Olkin and Pratt (1958) and Garthwaite et al. (2012).

2.5.5 Partition of Hotelling’s T 2, Mahalanobis distance and

discriminant function

The corr-max transformation can be used to partition the contribution of individ-

ual variables to a quadratic form such as Hotelling’s one-sample T 2, Hotelling’s
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two-sample T 2, Mahalanobis distance and a discriminant function. Suppose the

statistic of interest is

Θ = δ (X − µ)> Σ̂−1 (X − µ) , (2.39)

where δ is a positive scalar, Σ̂ is an estimate of Σ with var (X) ∝ Σ.

When Σ in Theorem 2 is unknown, we replace it by a sample estimate Σ̂. If

the sample variance of X is proportional to Σ̂, then the sample estimate of W ,

denoted by Ŵ =
(
Ŵ1, . . . , Ŵp

)>
, is obtained by (Garthwaite and Koch, 2016)

Ŵ =
(
D̂Σ̂D̂

)−1/2
D̂ (X − µ) , (2.40)

where D̂ is a diagonal matrix obtained from Σ̂ and D̂Σ̂D̂ has diagonal elements

of 1. Then the contribution of the jth X variable to Θ is evaluated as δŴ 2
j . Parti-

tioning of Hotelling’s one and two-sample T 2 statistics and Mahalanobis distance

is straightforward as they have precisely the same form as in equation (2.39), while

the discriminant function is closely related.

(a) Hotelling’s one-sample T 2 statistic. Let X1, . . . ,Xn be a random sample of

size n from the multivariate normal population Np (µ,Σ). Suppose the sample

mean vector is X̄ and Σ̂1 is the sample covariance matrix. Then Hotelling’s

one-sample T 2 statistic for testing µ = µ0 is

T 2
1 = n

(
X̄ − µ0

)>
Σ̂−11

(
X̄ − µ0

)
. (2.41)

Let X = X̄, which justifies var (X) ∝ Σ as var (X) = Σ/n. Hence, putting

Σ̂ = Σ̂1, δ = n and µ = µ0 gives the contribution of individual variables to

T 2
1 .
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(b) Hotelling’s two-sample T 2 statistic. SupposeX11, . . . ,X1n1 andX21, . . . ,X2n2

are two random samples of sizes n1 and n2 from two multivariate normal pop-

ulations Np (µ1,Σ) and Np (µ2,Σ), respectively, having a common covariance

matrix Σ. Let X̄1 and X̄2 be the sample mean vectors and S1 and S2 be

the sample covariance matrices. Then Hotelling’s two-sample T 2 statistic for

testing µ1 = µ2 is

T 2
2 = {n1n2/(n1 + n2)}

(
X̄1 − X̄2

)>
Σ̂−1p

(
X̄1 − X̄2

)
, (2.42)

where Σ̂p = {(n1 − 1) S1 + (n2 − 1) S2} / (n1 + n2 − 2) is the pooled estimate

of Σ. Let X = X̄1−X̄2, so var (X) = Σ/n1 +Σ/n2 = (1/n1 + 1/n2) Σ ∝ Σ.

The contribution of individual variables to T 2
2 is obtained by putting Σ̂ = Σ̂p,

δ = n1n2/ (n1 + n2) and µ = 0.

(c) Mahalanobis distance. The Mahalanobis distance between two random vectors

X [1] and X [2] is (
X [1] −X [2]

)>
Σ̂−1M

(
X [1] −X [2]

)
. (2.43)

Let X = X [1]−X [2]. Then var (X) = k1Σ+k2Σ = (k1 + k2) Σ, where k1 and

k2 are the proportionality constants of var
(
X [1]

)
and var

(
X [2]

)
, respectively.

The partition of the Mahalanobis distance is obtained by putting δ = 1, µ = 0

and Σ̂ = Σ̂M , where Σ̂M is an unbiased estimate of Σ.

(d) Fisher’s linear discriminant function. Suppose X11, . . . ,X1n1 and X21, . . . ,

X2n2 are two random samples of sizes n1 and n2 from two multivariate normal

populations π1 and π2 having the common covariance matrix Σ. Let X̄1 and

X̄2 be the sample mean vectors and S1 and S2 be the sample covariance

matrices. Suppose Σ̂p is the pooled estimate of the covariance matrix from
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two samples. A new observation X0 will be allocate to π1 if

τ (X0) =
(
X̄1 − X̄2

)>
Σ̂−1p

[
X0 −

1

2

(
X̄1 + X̄2

)]
> 0. (2.44)

Now var
(
X̄1 − X̄2

)
∝ Σ and var

[
X0 − 1

2

(
X̄1 + X̄2

)]
∝ Σ, hence the

Garthwaite-Koch partition is valid. The transformations are of the form

Ŵ 0 =
(
D̂Σ̂pD̂

)−1/2
D̂
(
X̄1 − X̄2

)
(2.45)

and

Ŵ ∗ =
(
D̂Σ̂pD̂

)−1/2
D̂

[
X0 −

1

2

(
X̄1 + X̄2

)]
. (2.46)

Let Ŵj
0 and Ŵj

∗ denote the jth components of Ŵ 0 and Ŵ ∗, respectively.

Then as τ (X0) =
∑p

j=1 Ŵj
0Ŵj

∗, the contribution of Xj to τ (X0) is Ŵj
0Ŵj

∗.

2.6 Concluding comments

In this chapter, we have reviewed some common transformations that transform

the correlated variables to produce their orthogonal counterparts. We have also

discussed their applications and properties along with some connections between

the methods. These transformations will help in finding new statistical applica-

tions and deriving new methods. We have discussed only the literature that relates

to more than one chapter. Literature relevant to only a particular chapter will be

discussed in that chapter.
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Chapter 3

Bootstrap confidence interval for

the contribution of individual

variables to a Mahalanobis

distance

3.1 Introduction

In multivariate analysis, Mahalanobis distance (MD) is the most commonly used

measure of distance between two vectors. It was proposed by Mahalanobis (1930)

as a measure of the distance between groups that takes account of multiple charac-

teristics and the correlations between these characteristics. The initial motivation

was to analyze and classify human skulls into groups, based on multiple charac-

teristics and the MD continues to be widely used in classification problems. Ma-

halanobis distance also underlies Hotelling’s one-sample and two-sample T 2 tests:
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it forms the test statistic when multiplied by appropriate constants determined

from sample size(s).

To give some specific applications of MD, in environmental and health science

it has been used to identify and map suitable habitats for a species. For instance,

Liu and Weng (2012) calculated MD between a vector of environmental variables

and the mean vector of environmental factors at the closest locations to mosquito

infections. Small MD values indicated a more favourable habitat for mosquitoes.

In multivariate calibration, MD is used to determine multivariate outliers (Martens

and Naes, 1992) and evaluate the representativity between two multivariate data

sets (Jouan-Rimbaud et al., 1998). In analytical chemistry, Shah and Gemperline

(1990) used MD in pattern recognition to classify new samples by comparing them

to a set of measurements of predetermined classes. In process control, MD is used

in Hotelling’s T 2-test to build multivariate control charts using the original or

latent variables (Hotelling, 1933). In the field of wildlife biology, MD can be used

to find the ideal landscape of some wildlife species. Clark et al. (1993) developed

a multivariate model based on MD in a Geographic Information System (GIS) to

identify areas of high habitat of female black bears.

When the value of an MD or Hotelling’s T 2 is large, then an obvious ques-

tion is Which variables cause it to be large? One approach to answering this

question is to form a partition of the MD, where each element of the parti-

tion is associated with one variable and an element’s size measures the contri-

bution of the variable. Garthwaite and Koch (2016) recently proposed a partition

of this form that has attractive properties. They partition the (squared) MD,

∆2 = (X − µ)>Σ−1(X − µ), by a linear transformation from the random vector
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X to W such that W>W = ∆2 and the components of W are uncorrelated,

with the transformation chosen to maximize the sum of correlations between cor-

responding elements of X and W . Rogers (2015) developed global predictive risk

maps for an important tropical disease, dengue, and used the partition to identify

the most important predictors in determining the presence or absence of dengue

in an area. Following Rogers, we refer to the partition as the Garthwaite-Koch

partition.

The partition gives point estimates of the contribution of individual variables

and scientists would often want interval estimates of these contributions. The task

of forming confidence intervals for (un-partitioned) MDs has, of course, attracted

attention. Madansky and Olkin (1969) provide an approximate confidence inter-

val based on the asymptotic distribution of the likelihood ratio statistic. More

recently, Reiser (2001) gave a method for constructing exact confidence inter-

vals using the non-central F -distribution. A Bayesian approach is also possible

(Radhakrishnan, 1984). In contrast, little work has been conducted on forming

confidence intervals for the contribution to an MD given by the Garthwaite-Koch

partition, although Garthwaite and Koch (2016) illustrated that bootstrap confi-

dence intervals are readily constructed. Here we consider common non-parametric

bootstrap methods for forming confidence intervals and propose new methods.

We then use simulation to compare their performance for confidence intervals of

individual contributions of variables to MD.

If we let W = (W1, . . . ,Wp)
>, then the contribution of the jth variable is

either expressed as an absolute value, W 2
j , or as a proportion W 2

j /
∑p

i=1W
2
i . The

standard bootstrap pivotal methods apply a one-to-one transformation to W 2
j or
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W 2
j /
∑p

i=1W
2
i and assume the transformed quantity is pivotal. Our new methods

broaden the range of pivotal quantities that can be used. For W 2
j , a one-to-one

functions of Wj is treated as a pivotal quantity. (Standard bootstrap methods

cannot use a one-to-one function of Wj as a pivotal quantity because the function

would not have a one-to-one mapping to W 2
j .) For W 2

j /
∑p

i=1W
2
i , a multivariate

function of (W1, . . . ,Wp) is taken as a pivotal quantity.

In the simulation study, both equal-tailed and shortest intervals are constructed.

An attraction of the shortest interval for W 2
j is that its lower limit will be 0 if the

equal-tailed interval for Wj contains 0. This is intuitively desirable, as only an

upper bound for W 2
j seems of interest when it is unclear whether Wj is posi-

tive or negative. This is also the case for W 2
j /
∑p

i=1W
2
i if it is unclear whether

Wj/{
∑p

i=1W
2
i }1/2 is positive or negative.

In Section 3.2, we briefly discuss the Mahalanobis distance and the Garthwaite-

Koch partition. Brief description of bootstrapping is given in Section 3.3. In Sec-

tion 3.4, we describe the methods used to construct bootstrap confidence intervals,

including the new methods. An extensive simulation study is reported in Section

3.5 that examines the performance of methods when population distributions are

multivariate normal. In Section 3.6, further simulations are reported where pop-

ulation distributions are skew. Concluding comments are given in Section 3.7.
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3.2 Mahalanobis distance and the Garthwaite-

Koch partition

Suppose we have two distinct groups (populations) which we shall label as π1

and π2. For example, π1 and π2 might represent genuine bank notes and fake

bank notes, or, in a medical diagnosis situation, those with an illness and those

without it. Each individual in these groups has a number (say, p) of variables or

characteristics. These characteristics may include, for example, physical measure-

ments such as length or height, and medical features, such as body temperature

or blood pressure. Let X denote a (random) vector that contains the values of

these variables on an item, individual or experimental unit.

Suppose the two populations have means µ1 and µ2, and share a common

covariance matrix Σ. Then the Mahalanobis distance between the two means is

the nonnegative square root of

∆2
1 = (µ1 − µ2)

>Σ−1 (µ1 − µ2) . (3.1)

Of course, the population parameters are rarely known and it is usual for them to

be estimated by the corresponding sample values. Suppose we have two indepen-

dent random samples of sizes n1 and n2 (n1 + n2 = n) from populations π1 and

π2, yielding sample means X̄1 and X̄2 and sample covariance matrices S1 and S2.

If the populations have the same covariance Σ, the sample Mahalanobis distance,

D1, can be similarly defined by

D2
1 = (X̄1 − X̄2)

>S−1(X̄1 − X̄2), (3.2)

where S = {(n1 − 1)S1 + (n2 − 1)S2}/(n − 2) is an unbiased estimate of Σ.
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Hotelling’s two-sample T 2 statistic is {n1n2/(n1 + n2)}D2
1 and is used to test the

hypothesis that µ1 and µ2 are equal.

Other forms of Mahalanobis distance are also commonly of interest. The

Mahalanobis distance between a vector X = (X1, . . . , Xp)
> and the mean µ =

(µ1, . . . , µp)
> of a population with covariance matrix Σ is the nonnegative square

root of

∆2
2 = (X − µ)>Σ−1 (X − µ) , (3.3)

while a useful dissimilarity measure between two random vectors X [1] and X [2]

drawn from a distribution with the common covariance matrix Σ is given by:

∆3 =
{(
X [1] −X [2]

)>
Σ−1

(
X [1] −X [2]

)}1/2

. (3.4)

Also, Hotelling’s one-sample T 2 statistic is

T 2
1 = n

(
X̄ − µ0

)>
S−1

(
X̄ − µ0

)
(3.5)

when n observations are taken from a multivariate normal (MVN) distribution

whose hypothesized mean is µ0 and X̄ and S are the sample mean and covariance

matrix.

The square of the Mahalanobis distance is often referred to as the Mahalanobis

Index (MI) and we shall do so here. Garthwaite and Koch (2016) consider the

MI given by equation (3.3) for the case where X is a p× 1 random vector whose

covariance matrix is proportional to Σ, and µ is a p×1 vector that is not necessarily

the mean of X. They address the task of partitioning ∆2
2 into the contribution of

individual variables, thus giving an evaluation of each variable’s contribution to

the MI.

Brief description of Garthwaite-Koch partition is given in Section 2.3. For more
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detail see Garthwaite and Koch (2016). To obtain the partition they maximize∑p
j=1 corr (Xj,Wj) under the condition that

W>W = (X − µ)>Σ−1 (X − µ) (3.6)

holds for all X. This yields

W = (DΣD)−1/2 D (X − µ) (3.7)

where D is a positive-definite diagonal matrix and DΣD has diagonal elements

of 1. That is, D has diagonal elements equal to the reciprocal of the square-root

of the corresponding diagonal elements of Σ. As
∑p

j=1 corr(Xj,Wj) is maximized,

each component Xj is identified with the corresponding component Wj in a one-

to-one relationship. The sample estimate of W , denoted by Ŵ = (Ŵ1, . . . , Ŵp)
>,

is obtained by replacing µ and Σ with (unbiased) sample estimates.

In examples given in Garthwaite and Koch (2016), the partition always gives

a sensible evaluation of the contributions of individual X variables. Rogers (2015)

uses the partition for disease mapping and notes that “Identifying the key model

variables in predicting the changing spatial pattern of vector-borne diseases over

time is now made possible by the Garthwaite-Koch technique”.

In general, the relative importance of variables when evaluated by the corr-

max transformation may not match the relative importance given by variable

selection methods. For example, Mardia et al. (1979, p.322–323) give an F - test

for discarding variables from a discriminant function and the first variable to be

discarded is not necessarily the one that is evaluated as least important by the

corr-max transformation.

44



3.3 Bootstrapping

Bootstrapping is a resampling technique for estimating the sampling distribution

of estimators and making inference about the corresponding parameters when

there are no theoretical results on which to base inferences.

We assume that sample observations x1, . . . ,xn are independent realizations

of a random variable X that has probability density function (p.d.f.), f(.; θ), and

cumulative distribution function (c.d.f.), F (.; θ). Suppose the parameter of inter-

est is θ and θ̂ is its sample estimate. Since the sample estimate θ̂ is a function of

sample observations it has a probability distribution, called sampling distribution

of θ̂.

The bootstrap method assumes that the sampling distribution can be estimated

from the large number of repeated samples. Two broad areas of approximating

the sampling distribution of θ̂ are the parametric and non-parametric bootstrap.

In parametric problems, we assume that the data x = (x1, . . . ,xn) comes from

a known distribution such as Normal, Gamma, i.e., the functional form of the p.d.f.

is known, but the parameter values are unknown. The bootstrap resamples are

obtained from F (.; θ̂), where θ̂ is the estimate of θ from the data. The estimate θ̂ is

typically the maximum likelihood estimate of θ. The basic steps for the parametric

bootstrap are as follows. [See, for example, Carpenter and Bithell (2000)].

(a) Sample n observations x∗ = (x∗1, . . . ,x
∗
n) from F (.; θ̂), i.e., from the c.d.f. with

parameter values replaced by the sample statistic.

(b) Calculate θ̂∗ from x∗ in the same way that θ̂ is estimated from x.

(c) Repeat steps (a) and (b) N times, where N is large. Use the empirical dis-
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tribution of the N bootstrap estimates θ̂∗1, . . . , θ̂
∗
N as an approximation of the

sampling distribution of θ̂.

The basic idea of a non-parametric bootstrap is to generate samples of sizes

n from an empirical distribution function F̂ . This empirical distribution function

is a discrete probability distribution that assigns probability 1/n to each sample

points x1, . . . ,xn. Thus a non-parametric bootstrap resample x∗ = (x∗1, . . . ,x
∗
n)

of size n is a with replacement sample from the data x = (x1, . . . ,xn). Steps in

the algorithm for the non-parametric bootstrap are as follows. [See, for example,

Ukoumunne et al. (2003)].

Suppose the data set x = (x1, . . . ,xn) is available from a target population

with unknown probability distribution.

(a) Sample n observations randomly with equal probability and replacement from

x1, . . . ,xn to create a bootstrap data set of the same size as the original study

data.

(b) Calculate the bootstrap version (replication) of the statistic of interest (θ̂) in

the same way as for the study data set. Denote the estimate by θ̂∗.

(c) Repeat stages (a) and (b) N times, where N is large. The empirical dis-

tribution of the N bootstrap estimates is taken as an approximation of the

sampling distribution of θ̂.

The mean and standard error of θ̂ are estimated by

¯̂
θ∗ =

1

N

N∑
k=1

θ̂∗k (3.8)

46



and

σ̂(θ̂∗) =

√√√√ 1

N − 1

N∑
k=1

(
θ̂∗k −

¯̂
θ∗
)2
. (3.9)

This σ̂(θ̂∗) is used as an approximation of the standard error of θ̂.

3.4 Bootstrap confidence intervals

Confidence intervals are a familiar data analysis tool and in this section we will

discuss several methods for the construction of bootstrap confidence intervals.

The aim is to construct a confidence interval for some population characteristic,

which we denote by θ. While X may be a vector, θ is a scalar. By a (1− 2α)

confidence interval, we mean selecting two scalar functions L = L (x1, . . . ,xn)

and U = U (x1, . . . ,xn), of a sample such that pr(L ≤ θ ≤ U) = 1 − 2α, where

pr(.) denotes probability under the true distribution F . One general approach for

constructing the confidence interval is to make it surround a point estimate of the

parameter (Davison and Hinkley, 1997). Suppose that θ̂ estimates θ and that we

want an equal-tailed interval with errors in both tails equal to α. We assume that

θ̂ is continuous, for convenience. If the pth quantile of θ̂−θ is denoted by ap, then

pr
(
θ̂ − θ ≤ aα

)
= α = pr

(
θ̂ − θ ≥ a1−α

)
. (3.10)

Rearranging the event θ̂−θ ≤ aα and θ̂−θ ≥ a1−α as θ ≥ θ̂−aα and θ ≤ θ̂−a1−α,

respectively, we can find the (1− 2α) equal-tailed interval as

(
θ̂ − a1−α, θ̂ − aα

)
. (3.11)

We let θ̂ denote the estimate of θ given by the original data and θ̂?1, . . . , θ̂
?
N denote

the estimates given by the N bootstrap replications.
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Various methods have been proposed for constructing a confidence interval for

θ from θ̂?1, . . . , θ̂
?
N . For good reviews of a number of methods, see Efron and Tib-

shirani (1993), Davison and Hinkley (1997), and Carpenter and Bithell (2000).

We will consider four commonly used methods: the percentile method, the bias-

corrected percentile method, the non-studentized pivotal method, and the studen-

tized pivotal method. We also propose new methods that deviate from the non-

parametric algorithm for obtaining bootstrap replications of θ. The new methods

introduce a parameter, γ say, that determines θ, but while θ must be a function of

γ, the function need not be one-to-one. It is an estimate of γ that is determined

from each bootstrap set and the estimates are manipulated to form a confidence

interval for θ, using a method that has similarities to a bootstrap pivotal method

(see Subsection 3.4.3).

In the present chapter the characteristic of interest, θ, reflects the contribution

of the jth component of X to the Mahalanobis index. This contribution is defined

to be W 2
j (j = 1, . . . , p), where Wj is the jth component of (DΣD)−1/2 D(X−µ).

We examine bootstrap methods for forming confidence intervals for (i) W 2
j and (ii)

W 2
j /
∑p

i=1W
2
i . The latter quantity is the proportion of the MI that is attributable

to the j th X variable and is a readily interpretable measure of the j th variable’s

importance.

We generally discuss central intervals, i.e. intervals (L,U) such that pr(θ ≤

L) = pr(θ ≥ U) = α. The concept of shortest confidence intervals has attracted

some attention [see, for example, Tate and Klett (1959) and Guenther (1969)].

Shortest confidence intervals can be preferred, because the length of the interval is

the smallest possible that gives the required coverage probability. For symmetric
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distributions an equal-tailed interval is also the shortest interval. The following

elegant theorem (Casella and Berger, 2002) is applicable in some generality and

gives a result for finding a shortest interval in the case of a unimodal distribution

(symmetric or asymmetric).

Theorem 3. Let f(θ̂) be a unimodal p.d.f. If the interval [a, b] satisfies

1.
∫ b
a
f(θ̂)dθ̂ = 1− 2α

2. f(a) = f(b) > 0 and

3. a ≤ θ? ≤ b, where θ? is the mode of f(θ̂),

then [a, b] is the shortest intervals among all intervals that satisfy
∫ b
a
f(θ̂)dθ̂ =

1− 2α.

As W 2
j is non-negative, the distribution of its sample estimate will be markedly

skew when the point estimate of Wj is near 0. Thus an equal-tailed interval will

sometimes be markedly longer than the shortest interval that has the same level

of confidence. Partly for this reason, we consider shortest confidence intervals

as well as equal-tailed confidence intervals. The other reason is that we believe

there should be some coherence between a confidence interval for W 2
j and a confi-

dence interval for Wj (and similarly with W 2
j /
∑p

i=1W
2
i and Wj/{

∑p
i=1W

2
i }1/2).

So alternatively, we also consider forming bootstrap estimates for the un-squared

quantity, Wj, and form a confidence interval for W 2
j from the squares of these es-

timates. With regard to this, consider the question: What is a sensible confidence

interval for W 2
j if the confidence interval for Wj includes 0? When Wj has the

sampling distribution given in Figure 3.1(a), then W 2
j has the sampling distribu-

tion in Figure 3.1(b). The equal-tailed confidence intervals for Wj is indicated in
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Figure 3.1: (a) Probability distribution for Ŵj and equal-tailed confidence interval for Wj , and

(b) corresponding probability distribution for Ŵ 2
j and shortest confidence interval for W 2

j .

Figure 3.1(a) and the shortest interval for W 2
j is marked in Figure 3.1(b). The

latter interval not only includes all the plausible for W 2
j , but also the square of

the most plausible values for Wj. This is not true of an equal-tailed confidence

intervals for W 2
j , as the interval would not contain 0. (Obviously the shortest

confidence intervals for W 2
j will not have 0 as its lower endpoint when the sign of

Wj is clear.)

As Figures 3.1(a) and 3.1(b) illustrate, a shortest confidence interval for W 2
j

should sometimes have 0 as its lower endpoint. However, an empirical bootstrap

distribution is discrete and the smallest bootstrap estimate of W 2
j is unlikely to

equal 0 precisely. It follows that the lower endpoint of a confidence interval will

not equal 0, as the lower endpoint cannot be less than the smallest bootstrap

estimate. As a ‘continuity correction’, for a 95% confidence interval (for both W 2
j

and W 2
j /
∑p

i=1W
2
i ) we form intervals for the following combinations of (α1, α2):

(0.000, 0.050), (0.005, 0.045), ... , (0.045, 0.005) and (0.050,0.000), where the lower
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interval endpoint is taken as 0 when α1 = 0. We observe which of the intervals

is shortest and take that as the ‘shortest’ confidence interval. This often gives 0

as the lower limit. A similar approach can be used for other levels of confidence,

though here we consider the 95% level.

We next describe the bootstrap methods of interest in this chapter. We suppose

we wish to form a confidence interval for which the lower and upper tail areas

are α1 and α2, respectively. For an equal-tailed 100(1− 2α)% confidence interval,

α1 = α2 = α. For a shortest interval, α1 and α2 are varied, subject to α1+α2 = 2α.

3.4.1 Percentile methods

Percentile method

The simplest method of forming a bootstrap confidence interval is the percentile

method suggested by Efron (1981), which simply equates quantiles of the distribu-

tion of θ̂ to the equivalent quantiles of the bootstrap distribution of θ̂∗. This gives(
θ̂∗ (α1) , θ̂

∗ (1− α2)
)

as a 100 (1− 2α) % confidence interval for θ, where θ̂∗ (q)

denotes the qth quantile of the bootstrap distribution. Hall (1992, p.19) refers

to Efron’s (1981) percentile method as the “other percentile method”. However,

for our discussion we will use ‘percentile method’ to indicate Efron’s percentile

method.

This method has simplicity, can be applied to any statistic, and no invalid

parameter values will be included in the confidence interval, as the method is

range-preserving. Also, the method is transformation respecting, implying that if

(θL, θU) is a 100 (1− 2α) % confidence interval for θ and g is a monotonic increasing

transformation of θ, then (g (θL) , g (θU)) is a 100(1− 2α)% confidence interval for
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g (θ). Largely for these reasons, the method is widely used. However, if the

distribution of θ̂ is markedly skew, the coverage error of equal-tailed intervals is

often substantial (Efron and Tibshirani, 1993).

Bias-corrected percentile method

Efron (1981) introduced the bias-corrected percentile (BC method) method. The

BC method is a modification of the percentile method that aims to improve cov-

erage for non-symmetric distributions. Its steps are as follows:

1. Let θ̂?k denote the estimate of θ given by the kth bootstrap resample. Count

the number of members of θ̂?1, θ̂
?
2, . . . , θ̂

?
N that are less than θ̂ (calculated from

the original data). Call this number p and set p? = p/N . Set z0 = Φ−1(p?),

where Φ denotes the c.d.f. of the standard normal distribution.

2. Define α̂1 and α̂2 as α̂1 = Φ (2z0 + z1) and α̂2 = 1 − Φ (2z0 + z2), where

z1 = Φ−1 (α1) and z2 = Φ−1 (1− α2).

3. Take θ̂? (α̂1) and θ̂? (1− α̂2) as the endpoints of the confidence interval.

This method is as easily implemented as the percentile method and is trans-

formation respecting. If the distribution of θ̂? is symmetric about θ̂, that is when

z0 = 0, the bias-corrected percentile interval and percentile interval are the same.

Hence the method may be thought of as a “fine-tuning” of the percentile method.

However even a small departure between pr(θ̂∗Median < θ̂) and 0.50 can lead to a

substantial difference between the endpoint of the BC method and that of the

percentile method (Efron, 1982, p,75-90).
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3.4.2 Pivotal methods

Pivotal methods form a function of θ and θ̂ that is treated as pivotal: it is as-

sumed that the sampling distribution of the function does not depend upon any

unknown quantities. The most commonly used functions for the non-studentized

and studentized pivotal methods are θ̂ − θ and (θ̂ − θ)/σ(θ̂), respectively, where

σ(θ̂) is the standard error of θ̂.

The methods can yield confidence intervals that include invalid parameter

values if the range of θ is bounded. Moreover, neither θ̂ − θ nor (θ̂ − θ)/σ(θ̂)

could be a pivotal function if the range of θ is bounded. Transformations are

the usual approach to counter this problem. If the parameter of real interest

has a bounded range, then θ is equated to some monotonic increasing function

of the parameter. A confidence interval for θ is constructed and its endpoints

transformed back, giving a confidence interval for the true parameter of inter-

est. However, pivotal methods are not transformation respecting, so the choice

of transformation will affect the endpoints of confidence intervals. Here we put

θ = logW 2
j or θ = logit[W 2

j /
∑p

i=1W
2
i ] when seeking a confidence interval for

W 2
j or W 2

j /
∑p

i=1W
2
i , respectively. In both cases the resulting θ has a range of

(−∞,∞).

Non-studentized pivotal (basic) method

The non-studentized pivotal method makes the assumption that the distribution

of ψ = θ̂−θ is similar to the distribution of ψ̂? = θ̂?− θ̂. Quantiles of the bootstrap

distribution of ψ̂? are used to form confidence intervals for θ. The steps are as

follows:
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(a) Set ψ̂?k = θ̂?k − θ̂, for k = 1, 2, . . . , N .

(b) Determine ψ̂? (α2) and ψ̂? (1− α1), where ψ̂?(q) denotes the qth quantile of

the bootstrap distribution of ψ̂?.

(c) Then a 100 (1− 2α) % confidence interval for θ is given by (θ̂− ψ̂?(1−α1), θ̂−

ψ̂?(α2)), which can equivalently be written as (2θ̂ − θ̂?(1− α1), 2θ̂ − θ̂?(α2)).

This method is simple to use, but the coverage error can be substantial if the

distributions of ψ and ψ̂? differ in a clearly noticeably manner.

Studentized pivotal method (bootstrap t method)

The bootstrap t method aims to improve on the basic bootstrap method by treat-

ing (θ̂ − θ)/σ̂(θ̂) as a pivotal quantity, where σ̂(θ̂) denotes the estimated stan-

dard error of θ̂. It derives its name from the fact that when θ̂ ∼ N(θ, σ2), then

(θ̂ − θ)/σ̂(θ̂) is a pivotal quantity that has a t-distribution. The method assumes

that (θ̂− θ)/σ̂(θ̂) and (θ̂?− θ̂)/σ̂(θ̂?) have similar distributions. The following are

its primary steps.

(a) Set ξ̂?k = (θ̂?k − θ̂)/σ̂k(θ̂?), for k = 1, 2, . . . , N , where σ̂k(θ̂
?) is an estimate of

the standard error of θ̂?k (see below).

(b) Determine ξ̂? (α2) and ξ̂? (1− α1), where ξ̂? (q) denotes the qth quantile of the

bootstrap distribution of ξ̂?.

(c) Then a 100 (1− 2α) % confidence interval for θ is given as

(θ̂ − σ̂(θ̂)ξ̂?(1− α1), θ̂ − σ̂(θ̂)ξ̂?(α2)).
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The method requires estimates σ̂(θ̂) and σ̂k(θ̂
?). For some statistics, the stan-

dard error can be estimated from known formula. More complicated statistics have

no formula for estimating standard error. However, a variety of analytical approx-

imations exists in the literature (see, for example Davison and Hinkley (1997),

Chapters 2 and 3). An estimate of σ̂(θ̂) is obtained from

σ̂2(θ̂∗) =
1

N − 1

N∑
k=1

(
θ̂?k −

¯̂
θ?
)2
, (3.12)

where
¯̂
θ? is the mean of θ̂?1, . . . , θ̂

?
N . An estimate of σ̂k(θ̂

∗) might be estimated

using the jackknife. The alternative, that we use, is to carry out a computationally

intensive, but routine, ‘second-level bootstrap’ to estimate σ̂k(θ̂
?), as follows.

Let x?k1, . . . ,x
?
kn be the kth (k = 1, 2, . . . , N) bootstrap sample and let θ̂?k de-

note the estimate of θ it gives. Obtain a second-level bootstrap sample x??k1, . . . ,x
??
kn

by sampling with replacement from x?k1, . . . ,x
?
kn and evaluate the estimate of θ.

Repeat this B times and let θ̂??k` denote the estimate given by the `th second-level

sample (` = 1, 2, . . . , B). Then the estimate of the variance of θ̂?k is

σ̂2
k(θ̂

?) =
1

B − 1

B∑
`=1

(θ̂??k` −
¯̂
θ?k)

2, (3.13)

where
¯̂
θ?k is the mean of θ̂??k1, θ̂

??
k2, . . . , θ̂

??
kB.

From each bootstrap resample, at least 25 second-level bootstrap samples

should be taken (Carpenter and Bithell, 2000). The obvious drawback of the

studentized pivotal method is that the process is computationally intensive — to

generate a total of N values of θ̂?, a total of BN bootstrap samples are required.

The method can perform very poorly if σ̂(θ̂) is not independent of θ, but simula-

tion results reported in the literature (Carpenter and Bithell, 2000) suggest that

the method often gives more accurate coverage than other bootstrap methods.
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3.4.3 New methods

The new methods broaden the range of pivotal quantities that can be used to

form bootstrap confidence intervals for θ. The methods are partly Bayesian, in

that parameters are treated as variables that have probability distributions — but

no prior distributions are specified.

Let θ = h(γ), where γ may be a vector and h is not necessarily a monotonic

function, nor necessarily a one-to-one function. The sample data x1, . . . ,xn yield

an estimate γ̂ of γ. From a bootstrap resample, we determine an estimate γ̂∗ of

γ̂ in the same way as γ̂ was determined from the original sample. Let γ̂∗1 , . . . , γ̂
∗
N

denote the estimates given by the N resamples.

When seeking a confidence interval for W 2
j , we set θ = W 2

j and γ = Wj. For

an interval for W 2
j /
∑p

i=1W
2
i , we put θ = W 2

j /
∑p

i=1W
2
i and γ = (W1, . . . ,Wp)

>.

Method A

The first of our new methods, Method A, treats γ̂ − γ as a pivotal quantity and

makes the following assumption.

Assumption A. Given any γ, the statistics γ̂ − γ and γ̂∗ − γ̂ are from the same

distribution.

Let P̂γ̂∗|γ̂ denote bootstrap probabilities when γ̂∗ is considered a random variable

and γ̂ is non-random. Similarly, let P̂γ̂|γ denote bootstrap probabilities when γ̂ is

random while γ is non-random. We have,

P̂γ̂∗|γ̂(γ̂
∗ − γ̂ = ν) =


1/N ν = γ̂∗k − γ̂; k = 1, . . . , N

0 otherwise,

(3.14)
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so, from Assumption A,

P̂γ̂|γ(γ̂ − γ = ν) =


1/N ν = γ̂∗k − γ̂; k = 1, . . . , N

0 otherwise.

(3.15)

To add flexibility, we wish to allow γ to have a probability distribution, so we

adopt a Bayesian approach and let P̂γ|γ̂ denote bootstrap posterior probabilities,

where γ is now random while γ̂ is non-random. So that Bayesian credible intervals

match frequentist confidence intervals, we assume that γ has a probability match-

ing prior distribution. (See, for example, Datta and Mukerjee (2004) for details of

probability matching priors.) Then, from equation (3.15),

P̂γ|γ̂(γ̂ − γ = ν) =


1/N ν = γ̂∗k − γ̂; k = 1, . . . , N

0 otherwise,

(3.16)

so

P̂γ|γ̂(γ = η) =


1/N η = 2γ̂ − γ̂∗k; k = 1, . . . , N

0 otherwise.

(3.17)

Let P̂θ|γ̂ denote the bootstrap posterior probability distribution of θ. As θ = h(γ),

equation (3.17) gives

P̂θ|γ̂[θ = h(η)] =


1/N η = 2γ̂ − γ̂∗k; k = 1, . . . , N

0 otherwise.

(3.18)

Quantiles from the distribution in equation (3.18) yield a Bayesian credible interval

for θ and, because a probability matching prior has been used, we take this as the

confidence interval. That is, if θ#A (q) denotes the qth quantile of P̂θ|γ̂(θ) given by

(3.18), then (θ#A (α1), θ
#
A (1 − α2)) is the 100(1 − 2α)% confidence interval for θ

given by Method A.

The following summarises the steps for Method A.
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1. Determine γ̂∗1 , . . . , γ̂
∗
N from the N bootstrap resamples.

2. Put ϑ̂∗k = h(2γ̂ − γ̂∗k) for k = 1, . . . , N .

3. Then a 100(1−2α)% confidence interval for θ is given as (ϑ̂∗(α1), ϑ̂
∗(1−α2)),

where ϑ̂∗(q) is the qth sample quantile of the sample ϑ̂∗1, . . . , ϑ̂
∗
N .

Method B

Suppose γ is an r-dimensional vector. Let σ̂(γ̂(j)) and σ̂(γ̂∗(j)) denote the estimated

standard errors of the jth components of γ̂ and γ̂∗, respectively. Also, let τ̂(γ̂) and

τ̂(γ̂∗) denote r × r diagonal matrices whose jth diagonal elements are [σ̂(γ̂(j))]
−1

and [σ̂(γ̂∗(j))]
−1, respectively. Method B, makes the following assumption.

Assumption B. Given any γ, the statistics τ̂(γ̂)(γ̂−γ) and τ̂(γ̂∗)(γ̂∗− γ̂) are from

the same distribution.

Consequently, the difference between Method A and Method B is similar to

the difference between the non-studentized and studentized pivotal methods. Cor-

responding to equations (3.14) and (3.16), the bootstrap probabilities are

P̂γ̂∗|γ̂ [τ̂{γ̂∗)(γ̂∗ − γ̂} = ν] =


1/N ν = τ̂k(γ̂

∗){γ̂∗k − γ̂}; k = 1, . . . , N

0 otherwise,

(3.19)

and the resulting bootstrap posterior probabilities are:

P̂γ|γ̂ [τ̂(γ̂){γ̂ − γ}} = ν] =


1/N ν = τ̂k(γ̂

∗){γ̂∗k − γ̂}; k = 1, . . . , N

0 otherwise.

(3.20)

This yields the bootstrap posterior distribution of θ:

P̂θ|γ̂[θ = h(η)] =


1/N η = γ̂ − {τ̂(γ̂)}−1τ̂k(γ̂∗){γ̂∗k − γ̂}; k = 1, . . . , N

0 otherwise.

(3.21)
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Let θ#B (q) denote the qth quantile of P̂θ|γ̂(θ) given by (3.21). Then (θ#B (α1), θ
#
B (1−

α2)) is the 100(1− 2α)% confidence interval for θ given by Method B.

Method B requires estimates of the standard errors, σ̂(γ̂(j)) and σ̂k(γ̂
∗
(j)) for

k = 1, . . . , N ; j = 1, . . . , r. These are obtained in a way analogous to the procedure

for obtaining σ̂(θ̂) and σ̂k(θ̂
∗) in the studentized pivotal method. The following

summarises the steps in Method B.

1. Generate N bootstrap resamples to obtain estimates γ̂∗1 , . . . , γ̂
∗
N . The sample

standard deviation of the jth components of the γ̂∗k is taken as σ̂(γ̂(j)). The

diagonal elements of τ̂(γ̂) are set equal to {σ̂(γ̂(1))}−1, . . . , {σ̂(γ̂(r))}−1.

2. From the kth bootstrap resample (k = 1, . . . , N), generate B second-level

bootstrap samples and estimate γ in each. Let γ̂∗∗kl denote the estimate of

γ given by the lth second-level sample (l = 1, . . . , B). The sample standard

deviation of the jth components of the γ̂∗∗kl is taken as σ̂k(γ̂
∗
(j)). For k =

1, . . . , N , the diagonal elements of τ̂k(γ̂∗) are set equal to {σ̂k(γ̂∗(1))}−1, . . . ,

{σ̂k(γ̂∗(r))}−1.

3. Put λ̂∗k = h[γ̂ − {τ̂(γ̂)}−1τ̂k(γ̂∗){γ̂∗k − γ̂}] for k = 1, . . . , N .

4. Then a 100(1−2α)% confidence interval for θ is given as (λ̂∗(α1), λ̂
∗(1−α2)),

where λ̂∗(q) is the qth sample quantile of the sample λ̂∗1, . . . , λ̂
∗
N .

When γ is a scalar and h is a monotonic transformation, standard bootstrap

methods can be used to first form a bootstrap confidence interval for γ and then the

endpoints of the interval can be back-transformed to obtain a bootstrap confidence

interval for θ. If the non-studentized pivotal method is used to form the bootstrap

confidence for γ, then the resulting confidence interval for θ is identical to the
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interval given by Method A. If the studentized pivotal method is used, the resulting

confidence interval is identical to the interval given by Method B. The advantages

of Methods A and B are that they can be used when γ is not a scalar and h is not

a monotonic transformation.

The new methods (Methods A and B) construct pivotal quantities before squar-

ing the bootstrap estimates. With standard pivotal methods, only two bootstrap

estimates are pivoted: the αth smallest and the αth biggest. With methods A

and B, all the bootstrap estimates are pivoted as ordering is not maintained when

a set of positive and negative estimates are squared. For an interval estimate of

W 2
j , we set γ = Wj. Let γ̂∗jk denote the bootstrap estimate of Wj given by the

kth sample (j = 1, . . . , p; k = 1, . . . , N) and let γ̂j denote the estimate given by

the original data. We then consider γ̂j − γj as pivotal quantity for Method A and

(γ̂j − γj)/σ̂(γ̂j) as pivotal quantity for Method B, where σ̂(γ̂j) is an estimate of

the standard error of γ̂j. For Method A put

W̃ ∗
jk = 2γ̂j − γ̂∗jk (3.22)

and for Method B put

W̃ ∗
jk = γ̂j − σ̂(γ̂j){γ̂∗jk − γ̂j}/σ̂k(γ̂∗j ), (3.23)

where σ̂(γ̂j) is an estimate of the standard error of γ̂j and σ̂k(γ̂
∗
j ) is an estimate

of the standard error of γ̂∗jk. These are obtained in the similar way of obtaining

σ̂(θ̂) and σ̂k(θ̂
∗) in the studentized pivotal methods. The interval estimates of W 2

j

and W 2
j /
∑p

i=1W
2
i are obtained from the bootstrap distributions of (W̃ ∗

jk)
2 and its

percentage respectively. Let θ̃∗jk = (W̃ ∗
jk)

2 and θ̆∗jk = (W̃ ∗
jk)

2/
∑p

i=1(W̃
∗
ik)

2. Then

(θ̃∗j (α1), θ̃
∗
j (1−α2)) and (θ̆∗j (α1), θ̆

∗
j (1−α2)) are taken as the bootstrap confidence
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intervals for W 2
j and W 2

j /
∑p

i=1W
2
i , respectively, where θ̃∗j (q) and θ̆∗j (q) are the

qth quantiles of the empirical distributions given by the θ̃∗jk and θ̆∗jk. Since the

new methods consider quantiles of the squared quantities the lower endpoints of

the confidence intervals of individual contributions and their percentages cannot

be negative.

3.5 Simulation Study: Multivariate Normal Dis-

tribution

A large simulation study was conducted to evaluate the coverage probabilities of

the six methods. In this section we use a multivariate normal distribution to de-

scribe each population because this is consistent with the assumptions underlying

Hotelling’s T 2 hypothesis test and the test of whether a Mahalanobis distance is

unusually large. In Subsections 3.5.1 – 3.5.3 the mechanics of the simulations are

described and results are presented in Subsection 3.5.4.

3.5.1 Population distributions

We require a number of known population distributions. To mimic reality, we set

the mean and variance of each population distribution equal to the sample mean

and variance of a real dataset, using the following five datasets.

1. Swiss bank notes: The dataset is given in Flury and Riedwyl (1988). It

contains six measurements that were made on 100 genuine bank notes and

100 forged bank notes. The measurements were: length (length of bank

note), left (width of note, measured on its left side), right (width of note,
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measured on the right), bottom (width of margin at the bottom), top (width

of margin at the top) and diagonal (length of the image diagonal). All

variables were measured in millimetres.

2. Male and female athletes: Data on 102 male and 100 female athletes were

collected at the Australian Institute of Sport (Cook and Weisberg, 1994).

For our study we considered the following nine measurements on each ath-

lete: Wt (weight in kg), Ht (height in cm), RCC (red cell count), Hg

(haemoglobin), Hc (hematocrit), WCC (white cell count), Ferr (plasma

ferritin concentration), Bfat (% body fat) and SSF (sum of skin fold thick-

ness).

3. Tibetan skulls: Data reported in Morant (1923) were collected from south-

western and eastern districts of Tibet. Five measurements (all in millimetres)

were made on each of 32 skulls: Length (greatest length of skull), Breadth

(greatest horizontal breadth of skull), Height (height of skull), Fheight (up-

per face length) and Fbreadth (face breadth between outermost points of

cheekbones). The first 17 skulls come from graves in Sikkim and the neigh-

bouring area of Tibet, and the remaining 15 were from a battlefield in the

Lhasa district.

4. Psychological measurements: Beall (1945) gives data on 32 men and 32

women. Four psychological measurements were made on each person: Pi

(pictorial inconsistencies), Tr (tool recognition), Pb (paper from board) and

Vo (vocabulary).

5. Flea Beetles: Lubischew (1962) gives data on two species of flea beetles
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Table 3.1: Features of the data sets

Dataset Sample sizes No. of variables Range of absolute correlations

Bank notes 100 & 100 6 0.000 to 0.664

Athletes 102 & 100 9 0.017 to 0.967

Skulls 17 & 15 5 0.011 to 0.718

Psychological tests 32 & 32 4 0.322 to 0.628

Flea beetles 19 & 20 4 0.074 to 0.727

(Haltica Oleracea and Haltica Carduorum). Four measurements were made

on each flea: Dt (distance of transverse groove from posterior border of

prothorax (µm)), Le (length of elytra (0.01 mm)), Ls (length of second

antenatal joint (µm)) and Lt (length of third antenatal joint (µm)).

Table 3.1 summarizes some key features of the datasets: their sizes, the number

of variables considered here, and the range of correlations between variables. It

can be seen that the datasets vary in size from quite small (15) to moderately

large (102) and each set contains between 4 and 9 variables. The correlations

between variables vary from small to moderate in most datasets, with the largest

correlation in a dataset generally lying between 0.62 to 0.72. The Athletes dataset

is an exception with some correlations above 0.95.

3.5.2 Simulation procedure for the bank note dataset

To simplify explanation we first focus on the bank notes dataset. We calculated the

mean and covariance of the 100 genuine bank note measurements and took these

as the mean (µ) and variance (Σ) of an MVN population distribution describing

genuine bank notes. We also took one of the fake bank notes and examined how

its measurements (x) distinguish it from the genuine bank notes. To this end,

we calculated (x− µ)>Σ−1 (x− µ), the MI (squared MD) between x and µ,
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and then applied the Garthwaite-Koch partition to evaluate the contributions of

individual variables. Through simulation we investigated different ways of forming

confidence intervals for these contributions (W 2
j ) and their percentages (100% ×

W 2
j /
∑p

i=1W
2
i ). We examined various sample sizes (20, 50, 80, 100 and 200) and

ten fake bank notes (the first ten in the dataset). For simplicity we describe the

simulation procedure for samples of size twenty.

We generated one data sample of size 20 from an MVN(µ,Σ) distribution and

then generated 1000 bootstrap resamples from this data sample. Each resample

was a random sample of size 20 drawn with replacement from the data sample.

We took one of the first ten fake bank notes and calculated the MI between

that bank note and the mean of the resample, using the estimated covariance

matrix of the resample, Σ̂. Then estimates of W1, . . . ,W6 from this resample

were calculated using the Garthwaite-Koch partition. This gives 1000 estimates

of each Wj. From each bootstrap sample, 25 second-level bootstrap samples were

generated so as to determine (approximate) standard errors of the estimates. The

standard errors were needed for the studentized pivotal method and Method B.

After generating the bootstrap samples and second-level samples, 95% confidence

intervals for individual contributions and their percentages were calculated using

the methods discussed in Section 3.4.

As noted above, the Garthwaite-Koch partition was also applied to (x −

µ)>Σ−1(x− µ). This yielded ‘true values’ for individual contributions and their

percentages, and we determined which confidence intervals covered their target

values. The procedure was repeated 1000 times by generating 1000 data samples,

from which we estimated coverage probabilities of the confidence intervals for each
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variable’s contributions and their percentage contributions.

3.5.3 Simulation procedures for other datasets

Simulation procedures for the Athletes dataset and the Tibetan skulls dataset were

the same as for the bank note dataset. For the Athletes dataset, the male athletes

took the role of the genuine bank notes so their sample mean and covariance

matrix became the mean and variance of the population distribution. The first

ten female athletes took the role of the first ten fake bank notes, so the MIs from

each of these female athletes to the mean of the men were the quantity of interest.

For the Tibetan skulls dataset, the 17 skulls from the Sikkim area took the role of

the genuine bank notes while the first ten skulls from the Lhasa district took the

role of the fake bank notes.

These simulations all concern the MI between an individual and a mean. How-

ever, the MI between two means is also of importance, so with the last two datasets

we examined the MI that underlies Hotelling’s two-sample T 2 test. From each

dataset, two population MVN distributions were constructed that had different

means, µ1 and µ2, but the same covariance matrix, Σ. For the psychological test

dataset, µ1 and µ2 were set equal to the sample means for men and women, and

Σ was equated to their pooled sample covariance matrix. Two sample groups,

each of size n, were generated from the population distributions and resamples

of size n were generated by sampling with replacement from each group sepa-

rately. The MI between the means of the resamples for men and women was

calculated using the pooled covariance matrix of the resamples as Σ̂. Estimates of

the Wj were evaluated using the Garthwaite-Koch partition and confidence inter-
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vals were constructed in the same way as with the bank notes data. Sample sizes

of n = 20, 50, 80, 100 and 200 were examined. This simulation procedure was also

followed with the Flea beetles dataset; µ1 and µ2 were set equal to the sample

means of Haltica Oleracea and Haltica Carduorum, respectively, and Σ to their

pooled sample covariance matrix.

3.5.4 Results: Multivariate Normal distribution

Table 3.2 illustrates the output that was obtained for a single simulation. It is

from the simulations of contributions of individual variables for the bank note data

and gives results for the studentized pivotal method for the first fake bank note

with samples of size 20. Various 95% confidence intervals were constructed, with

different nominal coverages in each tail that add to 5%. Each row of the table

gives a different confidence interval, with the nominal coverages in each tail shown

in the first column. The actual coverages of confidence intervals are given in the

columns headed CCI (C overage of C onfidence I nterval), while the coverages in

tails are given in CLT (left-tail) and CRT (right-tail). The table also gives the

median width of intervals for each combination of tail probabilities. The shortest

95% confidence interval was identified for each variable in each of the 1000 samples

and results for these shortest intervals are recorded in a separate row. The bank

note dataset has six variables and results are presented separately for each of these.

The coverages of the confidence intervals is a little low for the variable,‘left’,

and a little high with some intervals for the variable ‘diagonal’, but otherwise the

coverages are reasonably close to the target coverage of 95%. For this fake bank

note, the shortest interval was always close to the interval that had 0.0% and 5.0%
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Table 3.2: Coverages (%) of confidence intervals formed by the studentized pivotal method for

the contributions of individual variables to the MI of the first fake bank note with samples of

size 20. Coverages of tail areas and median widths of confidence intervals are also given.

First three variables

Length Left Right

Tailsa CCIb CLTc CRTd Widthe CCIb CLTc CRTd Widthe CCIb CLTc CRTd Widthe

(0.0,5.0) 98.3 0.0 1.7 20.8 91.1 0.0 8.9 24.9 94.7 0.0 5.3 26.0

(0.5,4.5) 98.2 0.4 1.4 22.1 91.8 0.1 8.1 28.5 94.7 0.4 4.9 28.1

(1.0,4.0) 98.1 0.6 1.3 23.7 91.8 0.4 7.8 32.2 94.6 0.7 4.7 31.5

(1.5,3.5) 97.6 1.3 1.1 25.6 91.8 1.0 7.2 37.7 94.2 1.5 4.3 36.0

(2.0,3.0) 97.5 1.5 1.0 28.0 92.2 1.1 6.7 44.4 93.6 2.5 3.9 41.9

(2.5,2.5) 97.0 2.0 1.0 31.2 92.5 1.6 5.9 56.3 93.3 3.1 3.6 52.9

(3.0,2.0) 96.2 2.8 1.0 35.6 92.8 1.8 5.4 78.8 93.5 3.4 3.1 71.2

(3.5,1.5) 96.5 3.1 0.4 43.0 92.8 2.3 4.9 120.3 93.6 3.7 2.7 97.9

(4.0,1.0) 96.0 3.9 0.1 60.3 93.3 2.7 4.0 234.6 93.8 4.1 2.1 181.9

(4.5,0.5) 95.5 4.4 0.1 117.3 94.0 3.1 2.9 720.0 94.7 4.3 1.0 563.7

(5.0,0.0) 95.0 5.0 0.0 2545.8 96.8 3.2 0.0 2776.5 95.6 4.4 0.0 2419.1

Shortest 97.0 1.3 1.7 20.7 90.8 0.3 8.9 24.9 93.4 1.3 5.3 25.9

Last three variables

Bottom Top Diagonal

Tailsa CCIb CLTc CRTd Widthe CCIb CLTc CRTd Widthe CCIb CLTc CRTd Widthe

(0.0,5.0) 96.0 0.0 4.0 32.8 96.9 0.0 3.1 31.0 99.0 0.0 1.0 26.7

(0.5,4.5) 96.6 0.1 3.3 31.7 97.1 0.1 2.8 30.2 98.8 0.3 0.9 26.4

(1.0,4.0) 96.7 0.3 3.0 31.6 97.2 0.3 2.5 30.6 98.9 0.6 0.5 26.8

(1.5,3.5) 97.0 0.5 2.5 31.7 97.0 0.8 2.2 31.0 98.5 1.1 0.4 27.3

(2.0,3.0) 96.5 1.5 2.0 32.4 96.8 1.3 1.9 31.3 97.6 2.0 0.4 28.1

(2.5,2.5) 96.1 2.1 1.8 33.5 96.7 1.7 1.6 32.5 97.4 2.2 0.4 29.6

(3.0,2.0) 96.1 2.6 1.3 35.1 97.1 1.9 1.0 34.1 97.0 2.7 0.3 31.2

(3.5,1.5) 96.7 2.6 0.7 36.6 96.6 2.6 0.8 36.0 96.4 3.4 0.2 33.3

(4.0,1.0) 96.6 3.0 0.4 39.6 96.3 3.3 0.4 39.8 96.0 4.0 0.0 37.1

(4.5,0.5) 96.0 3.9 0.1 45.9 96.0 4.0 0.0 46.4 95.8 4.2 0.0 46.0

(5.0,0.0) 95.8 4.2 0.0 6137.0 95.6 4.4 0.0 5531.1 95.4 4.6 0.0 2901.6

Shortest 94.3 2.0 3.7 30.7 96.0 1.1 2.9 29.3 97.1 1.9 1.0 25.7

a The nominal coverage in (left-tail, right-tail).
b Coverage of confidence interval
c Coverage of left-tail
d Coverage of right-tail
e Median width of confidence intervals

nominal coverages in the left and right tails, respectively, and far different from

the equal-tailed interval. This asymmetry in the nominal tail coverages was also

found with the other fake bank notes that were examined and marked asymmetry
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was also found with most variables in each of the other datasets. Greater nominal

coverage in the upper tail thus seems a trait of the shortest confidence interval

for individual contributions to an MI. Comparison of the equal-tailed and shortest

confidence intervals reveals substantial variation in their relative lengths, with the

shortest confidence interval only a little shorter than the equal-tailed interval for

some variables (such as ‘bottom’) and much larger for others — the equal-tailed

interval is more than twice the width of the shortest interval for the variables ‘left’

and ‘right’.

Condensed results for all datasets and each sample size are presented in Tables

3.3 and 3.4. They give the average coverage across variables for the equal-tailed

and shortest 95% confidence intervals. For the bank note data, each average is

based on 60 separate coverages, as the six variables and ten fake bank notes gave

60 Mahalanobis distances. Averages are based on 90, 50, 4 and 4 coverages for the

Athletes, Skulls, Psychological tests and Flea beetles data, respectively. (With

the last two datasets we examined a single difference between two means rather

than the Mahalanobis distances for ten items.) The tables also give a comparison

of the width of intervals relative to the width of intervals given by Method A.

Specifically, for each Mahalanobis distance, the median width of the equal-tailed

and shortest 95% confidence intervals were calculated for each bootstrap method

and divided by the median width of the corresponding intervals given by Method

A. Averages of these ratios are presented in brackets in the tables. (Hence, for

example, each average that is given for the Athletes data is based on 90 ratios.)

Table 3.3 gives average coverages and average width ratios for the contributions

of variables and Table 3.4 gives averages for the proportion of the MI attributed

68



to each variable.

To meet the definition of a confidence interval, a method must be conservative

rather than liberal, so the coverage of its confidence intervals should preferably

be above the nominal value of 95%, rather than below it. In Tables 3.3 and 3.4,

average coverages that achieve at least the nominal level are marked blue. It is

readily seen that Methods A and B (the new methods) almost always achieve

their nominal coverage, while the other methods do not. The obvious question is

whether the new methods achieve their higher coverage at the expense of giving

wider confidence intervals. Looking at Table 3.3, the bias-corrected percentile

method does typically give narrower intervals than Method A; its width ratios

(in brackets) are almost always less than or equal to 1.00. However, its average

coverages are too far below 95% for the method to be preferred to alternatives.

The other methods typically give wider intervals than method A — much wider in

the cases of the pivotal methods, but also slightly wider with both the percentile

method and Method B. Hence, Method A clearly has better results than other

methods in Table 3.3, with Method B a close second.

While the pattern of average coverages in Table 3.4 is similar to that in Table

3.3, its pattern of width ratios is a little different. In Table 3.4 the pivotal meth-

ods still typically give much wider intervals than the new methods and the bias

corrected method (which gives poor coverage) still has the narrowest intervals, but

now the percentile method gives slightly narrower intervals than the new meth-

ods, and differences between the widths of the new methods favour Method A less

consistently. Nevertheless, taking both coverage and interval width into account,

Method A is again the best method, with Method B a very close second.
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Table 3.3: Average coverage (%) of 95% confidence intervals for individual contributions given
by the percentile, bias-corrected percentile, non-studentized and studentized pivotal methods,
and Methods A and B. Average of the ratio of the median widths of intervals relative to the
median widths of intervals given by Method A are shown in brackets. Population distributions
are multivariate normal.

Sample Dataset Percentile Bias-corre. Non-student. Studentized Method Method
Size method Percentile pivotal pivotal A B

Equal Tailed Intervals

20 Bank notes 80.9 (2.01) 90.7 (0.84) 87.9 (3.24) 92.7 (1.63) 97.7 (1.00) 94.4 (0.68)
20 Athletes 89.1 (1.69) 91.8 (0.76) 86.2 (5.24) 95.4 (3.28) 99.3 (1.00) 99.2 (1.97)
20 Skulls 85.4 (1.70) 91.0 (0.94) 87.3 (4.62) 91.6 (2.28) 97.7 (1.00) 94.1 (0.80)
20 Psychol. Tests 91.7 (1.24) 91.2 (0.98) 82.9 (7.49) 92.7 (4.80) 97.2 (1.00) 96.5 (1.06)
20 Flea Beetles 88.7 (1.30) 94.6 (1.08) 94.9 (1.66) 96.1 (1.05) 97.0 (1.00) 95.9 (1.05)

50 Bank notes 88.3 (1.23) 91.5 (0.98) 87.5 (5.86) 92.7 (3.89) 96.1 (1.00) 95.1 (1.02)
50 Athletes 92.1 (1.27) 94.0 (0.99) 88.8 (6.43) 95.6 (3.70) 98.6 (1.00) 97.8 (0.99)
50 Skulls 90.8 (1.18) 91.8 (1.00) 87.6 (5.55) 93.9 (3.77) 96.7 (1.00) 96.2 (1.03)
50 Psychol. Tests 94.3 (1.09) 92.1 (0.97) 85.6 (6.47) 93.5 (4.63) 96.2 (1.00) 96.7 (1.07)
50 Flea Beetles 92.6 (1.09) 94.9 (1.02) 95.2 (1.16) 93.5 (1.00) 95.0 (1.00) 95.7 (1.06)

80 Bank notes 91.0 (1.13) 92.2 (0.98) 88.8 (5.42) 94.3 (3.69) 95.9 (1.00) 96.2 (1.04)
80 Athletes 93.3 (1.15) 93.8 (1.00) 89.6 (5.51) 95.2 (3.19) 97.3 (1.00) 97.0 (1.01)
80 Skulls 92.0 (1.11) 92.1 (1.00) 88.3 (5.19) 94.3 (3.50) 95.8 (1.00) 96.4 (1.06)
80 Psychol. Tests 94.5 (1.05) 92.7 (0.98) 87.9 (6.51) 93.7 (5.14) 96.0 (1.00) 96.6 (1.05)
80 Flea Beetles 93.3 (1.06) 94.9 (1.01) 95.2 (1.09) 95.1 (1.03) 94.8 (1.00) 95.9 (1.06)

100 Bank notes 91.5 (1.10) 92.1 (0.99) 88.9 (5.22) 93.9 (3.68) 95.7 (1.00) 95.7 (1.05)
100 Athletes 93.5 (1.12) 94.1 (1.00) 89.8 (4.96) 95.1 (2.96) 96.9 (1.00) 96.6 (1.02)
100 Skulls 92.9 (1.09) 92.8 (1.00) 89.1 (4.89) 94.7 (3.31) 96.0 (1.00) 96.6 (1.05)
100 Psychol. Tests 95.2 (1.04) 92.0 (0.97) 88.7 (6.00) 94.3 (5.45) 96.0 (1.00) 96.7 (1.07)
100 Flea Beetles 93.5 (1.04) 94.2 (1.01) 94.8 (1.07) 95.3 (1.04) 94.7 (1.00) 95.9 (1.06)

200 Bank notes 93.6 (1.05) 93.5 (0.99) 90.7 (4.35) 94.7 (3.00) 95.9 (1.00) 95.8 (1.06)
200 Athletes 94.0 (1.05) 94.1 (1.00) 90.7 (3.66) 94.9 (2.19) 95.5 (1.00) 96.1 (1.04)
200 Skulls 94.0 (1.04) 93.5 (0.99) 90.8 (3.63) 94.9 (2.48) 95.5 (1.00) 96.3 (1.06)
200 Psychol. Tests 95.2 (1.02) 91.9 (0.99) 89.7 (6.19) 94.2 (4.67) 95.9 (1.00) 96.8 (1.07)
200 Flea Beetles 94.6 (1.02) 95.0 (1.00) 95.5 (1.03) 96.1 (1.05) 94.7 (1.00) 96.3 (1.06)

Shortest Intervals

20 Bank notes 92.0 (1.91) 89.4 (0.81) 94.3 (1.80) 92.8 (1.16) 98.9 (1.00) 96.1 (0.72)
20 Athletes 96.8 (1.68) 89.8 (0.75) 92.4 (2.31) 93.4 (1.86) 99.7 (1.00) 99.9 (1.80)
20 Skulls 93.8 (1.64) 89.6 (0.91) 93.8 (2.33) 92.3 (1.49) 98.3 (1.00) 95.3 (0.83)
20 Psychol. Tests 95.3 (1.21) 90.3 (0.94) 92.3 (3.18) 92.3 (2.20) 96.7 (1.00) 96.8 (1.04)
20 Flea Beetles 91.4 (1.27) 94.0 (1.05) 97.4 (1.38) 96.2 (1.01) 94.5 (1.00) 94.0 (1.04)

50 Bank notes 93.3 (1.20) 91.0 (0.94) 93.0 (2.67) 92.5 (1.94) 96.6 (1.00) 96.2 (1.01)
50 Athletes 95.5 (1.27) 92.7 (0.97) 93.9 (2.93) 95.1 (1.90) 98.0 (1.00) 97.4 (0.99)
50 Skulls 93.9 (1.16) 91.4 (0.97) 93.3 (2.61) 93.7 (1.90) 96.1 (1.00) 96.1 (1.02)
50 Psychol. Tests 95.2 (1.08) 91.3 (0.95) 92.8 (3.07) 92.7 (2.22) 95.7 (1.00) 96.2 (1.06)
50 Flea Beetles 93.5 (1.07) 94.2 (1.01) 96.6 (1.07) 92.2 (1.00) 93.8 (1.00) 94.2 (1.05)

80 Bank notes 93.8 (1.12) 91.7 (0.96) 93.3 (2.54) 94.0 (1.89) 96.2 (1.00) 96.6 (1.02)
80 Athletes 95.1 (1.15) 92.7 (0.99) 93.9 (2.59) 94.6 (1.72) 96.5 (1.00) 96.4 (1.00)
80 Skulls 93.9 (1.09) 91.5 (0.98) 93.3 (2.46) 93.9 (1.80) 95.3 (1.00) 96.2 (1.04)
80 Psychol. Tests 95.2 (1.04) 91.9 (0.96) 93.4 (2.94) 93.6 (2.25) 95.9 (1.00) 96.2 (1.04)
80 Flea Beetles 93.9 (1.04) 94.1 (1.00) 95.3 (1.03) 94.3 (1.02) 94.1 (1.00) 95.4 (1.05)

100 Bank notes 93.5 (1.09) 91.8 (0.97) 93.2 (2.48) 93.9 (1.87) 95.7 (1.00) 96.0 (1.04)
100 Athletes 94.9 (1.11) 93.2 (0.99) 94.1 (2.40) 94.3 (1.63) 96.2 (1.00) 96.1 (1.01)
100 Skulls 94.2 (1.07) 92.3 (0.98) 93.7 (2.35) 94.1 (1.74) 95.5 (1.00) 96.3 (1.04)
100 Psychol. Tests 95.1 (1.04) 90.1 (0.97) 92.9 (2.87) 93.5 (2.41) 95.3 (1.00) 96.1 (1.07)
100 Flea Beetles 93.3 (1.03) 93.9 (1.00) 95.2 (1.03) 94.5 (1.04) 93.9 (1.00) 95.3 (1.06)

200 Bank notes 94.6 (1.04) 93.2 (0.98) 93.9 (2.14) 94.6 (1.63) 95.8 (1.00) 95.9 (1.05)
200 Athletes 94.4 (1.05) 93.4 (1.00) 94.2 (1.93) 94.5 (1.38) 94.8 (1.00) 95.3 (1.03)
200 Skulls 94.4 (1.03) 93.0 (0.98) 94.0 (1.93) 94.7 (1.51) 95.1 (1.00) 95.9 (1.05)
200 Psychol. Tests 95.5 (1.02) 90.9 (0.99) 92.8 (2.76) 92.3 (2.11) 95.5 (1.00) 96.4 (1.06)
200 Flea Beetles 94.4 (1.02) 94.1 (1.00) 94.9 (1.01) 95.6 (1.05) 94.1 (1.00) 95.8 (1.06)
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Table 3.4: Average coverage (%) of 95% confidence intervals for percentage of contributions given
by the percentile, bias-corrected percentile, non-studentized and studentized pivotal methods,
and Methods A and B. Average of the ratio of the median widths of intervals relative to the
median widths of intervals given by Method A are shown in brackets. Population distributions
are multivariate normal.

Sample Dataset Percentile Bias-corre. Non-student. Studentized Method Method
Size method Percentile pivotal pivotal A B

Equal Tailed Intervals

20 Bank notes 92.5 (0.54) 88.4 (0.50) 81.3 (1.45) 91.3 (1.22) 97.6 (1.00) 94.8 (0.65)
20 Athletes 94.2 (0.64) 84.7 (0.62) 80.1 (2.40) 93.9 (2.38) 97.2 (1.00) 97.4 (1.15)
20 Skulls 91.4 (0.60) 86.5 (0.57) 82.1 (1.44) 90.7 (1.26) 96.1 (1.00) 92.8 (0.71)
20 Psychol. Tests 93.7 (0.76) 88.1 (0.71) 82.2 (1.98) 91.9 (1.80) 97.5 (1.00) 97.0 (0.93)
20 Flea Beetles 93.3 (0.77) 92.3 (0.78) 94.5 (1.06) 94.9 (0.84) 98.2 (1.00) 96.5 (0.93)

50 Bank notes 93.4 (0.77) 89.8 (0.73) 85.4 (3.06) 92.2 (2.40) 97.0 (1.00) 95.7 (0.92)
50 Athletes 94.7 (0.74) 90.7 (0.74) 86.6 (3.25) 94.7 (2.39) 98.1 (1.00) 97.2 (0.93)
50 Skulls 93.2 (0.80) 89.9 (0.77) 86.0 (2.49) 93.1 (2.09) 96.6 (1.00) 95.8 (0.94)
50 Psychol. Tests 94.1 (0.91) 90.4 (0.85) 85.5 (3.05) 92.3 (2.51) 96.3 (1.00) 96.7 (1.03)
50 Flea Beetles 94.0 (0.91) 93.6 (0.92) 95.4 (1.03) 92.7 (0.94) 95.7 (1.00) 96.0 (1.02)

80 Bank notes 93.7 (0.86) 90.8 (0.84) 87.2 (3.59) 93.7 (2.69) 96.6 (1.00) 96.4 (0.99)
80 Athletes 94.5 (0.84) 91.5 (0.84) 88.2 (3.48) 94.4 (2.34) 97.0 (1.00) 96.6 (0.96)
80 Skulls 93.3 (0.88) 90.6 (0.86) 87.5 (2.95) 93.6 (2.36) 95.8 (1.00) 96.2 (1.01)
80 Psychol. Tests 95.0 (0.94) 91.6 (0.90) 88.1 (3.63) 93.4 (3.02) 96.1 (1.00) 96.5 (1.03)
80 Flea Beetles 94.5 (0.94) 94.2 (0.95) 95.3 (1.01) 94.2 (0.99) 95.8 (1.00) 95.9 (1.04)

100 Bank notes 93.6 (0.90) 90.9 (0.87) 87.6 (3.71) 93.6 (2.84) 96.0 (1.00) 96.1 (1.02)
100 Athletes 94.6 (0.87) 92.2 (0.87) 88.7 (3.41) 94.3 (2.27) 96.7 (1.00) 96.3 (0.98)
100 Skulls 93.9 (0.91) 91.6 (0.89) 88.4 (3.03) 93.9 (2.40) 95.9 (1.00) 96.3 (1.02)
100 Psychol. Tests 95.2 (0.95) 91.4 (0.91) 88.8 (3.70) 93.5 (3.49) 96.3 (1.00) 96.4 (1.04)
100 Flea Beetles 93.9 (0.96) 93.5 (0.96) 94.6 (1.01) 95.4 (1.00) 94.5 (1.00) 96.7 (1.03)

200 Bank notes 95.0 (0.95) 93.1 (0.93) 90.2 (3.60) 94.5 (2.62) 96.2 (1.00) 96.1 (1.04)
200 Athletes 94.2 (0.94) 92.8 (0.94) 90.3 (2.96) 94.5 (1.97) 95.3 (1.00) 95.9 (1.02)
200 Skulls 94.5 (0.95) 93.0 (0.93) 90.6 (2.90) 94.6 (2.13) 95.5 (1.00) 96.1 (1.04)
200 Psychol. Tests 95.6 (0.97) 91.9 (0.96) 90.0 (4.40) 94.1 (3.60) 96.0 (1.00) 96.8 (1.05)
200 Flea Beetles 94.1 (0.98) 94.0 (0.98) 94.8 (1.00) 95.9 (1.03) 94.5 (1.00) 96.2 (1.04)

Shortest Intervals

20 Bank notes 93.5 (0.59) 87.0 (0.54) 89.6 (1.26) 91.4 (1.04) 98.4 (1.00) 95.6 (0.66)
20 Athletes 93.5 (0.67) 82.7 (0.67) 86.5 (2.11) 92.4 (2.14) 96.0 (1.00) 95.9 (1.14)
20 Skulls 91.4 (0.65) 85.0 (0.62) 88.3 (1.34) 90.5 (1.14) 97.4 (1.00) 93.4 (0.73)
20 Psychol. Tests 93.3 (0.80) 86.5 (0.74) 89.4 (1.78) 90.7 (1.49) 96.9 (1.00) 96.4 (0.94)
20 Flea Beetles 90.6 (0.80) 89.9 (0.81) 95.1 (1.03) 93.4 (0.86) 96.3 (1.00) 94.3 (0.95)

50 Bank notes 94.0 (0.80) 89.2 (0.76) 91.2 (2.06) 91.6 (1.59) 97.9 (1.00) 96.4 (0.93)
50 Athletes 93.9 (0.79) 89.4 (0.79) 92.0 (2.31) 94.3 (1.67) 97.7 (1.00) 96.7 (0.94)
50 Skulls 93.0 (0.83) 88.9 (0.80) 91.5 (1.88) 92.4 (1.52) 96.5 (1.00) 95.7 (0.95)
50 Psychol. Tests 93.8 (0.92) 89.4 (0.86) 91.6 (2.24) 91.0 (1.83) 95.7 (1.00) 95.7 (1.03)
50 Flea Beetles 92.4 (0.91) 92.5 (0.92) 95.5 (0.98) 91.2 (0.94) 94.7 (1.00) 94.6 (1.02)

80 Bank notes 93.9 (0.88) 90.2 (0.85) 91.8 (2.18) 93.4 (1.68) 97.0 (1.00) 96.7 (0.99)
80 Athletes 93.5 (0.86) 90.4 (0.86) 92.8 (2.24) 93.9 (1.56) 96.5 (1.00) 95.9 (0.97)
80 Skulls 93.1 (0.89) 89.7 (0.87) 92.0 (2.00) 92.8 (1.57) 95.5 (1.00) 95.9 (1.01)
80 Psychol. Tests 94.9 (0.95) 90.6 (0.91) 92.7 (2.43) 92.9 (1.95) 95.9 (1.00) 95.9 (1.02)
80 Flea Beetles 93.8 (0.95) 93.6 (0.95) 95.3 (0.98) 93.2 (0.99) 95.0 (1.00) 95.4 (1.04)

100 Bank notes 93.6 (0.91) 90.2 (0.88) 92.0 (2.20) 93.5 (1.72) 95.9 (1.00) 96.2 (1.01)
100 Athletes 93.9 (0.89) 91.3 (0.89) 93.2 (2.14) 93.7 (1.51) 96.1 (1.00) 95.7 (0.98)
100 Skulls 93.5 (0.92) 90.8 (0.89) 92.6 (1.98) 93.3 (1.56) 95.6 (1.00) 96.1 (1.01)
100 Psychol. Tests 94.9 (0.96) 90.0 (0.92) 92.4 (2.44) 92.6 (2.07) 96.0 (1.00) 95.9 (1.04)
100 Flea Beetles 93.2 (0.95) 92.8 (0.96) 94.5 (0.99) 94.7 (1.00) 94.0 (1.00) 96.0 (1.03)

200 Bank notes 94.8 (0.96) 92.5 (0.94) 93.5 (2.01) 94.4 (1.57) 96.0 (1.00) 96.0 (1.04)
200 Athletes 93.6 (0.94) 92.2 (0.94) 93.7 (1.83) 94.3 (1.34) 94.8 (1.00) 95.2 (1.02)
200 Skulls 94.0 (0.96) 92.2 (0.94) 93.6 (1.79) 94.1 (1.44) 95.0 (1.00) 95.8 (1.03)
200 Psychol. Tests 95.1 (0.98) 90.6 (0.96) 92.7 (2.48) 92.6 (2.00) 95.7 (1.00) 96.4 (1.05)
200 Flea Beetles 93.5 (0.98) 93.5 (0.98) 94.0 (0.99) 95.5 (1.03) 94.0 (1.00) 95.6 (1.05)
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Table 3.5: Average coverage (%) of 95% equal-tailed and shortest confidence intervals for Method

A and Method B, for sample sizes of 500 and 1000.

Dataset

Equal tailed intervals Shortest intervals

Method A Method B Method A Method B

500 1000 500 1000 500 1000 500 1000

Contribution of individual variables

Bank notes 95.5 95.3 96.3 96.2 95.2 94.9 96.0 95.9

Athletes 95.6 95.2 96.5 96.1 95.1 94.7 95.8 95.6

Skulls 95.5 95.3 96.4 96.1 95.0 94.9 96.0 95.8

Psychol. Tests 95.5 95.3 96.4 96.5 95.4 94.1 96.1 95.2

Flea Beetles 95.5 94.6 96.4 95.9 94.9 94.2 95.9 95.7

Percentage contribution of variables

Bank notes 95.7 95.0 96.0 95.9 95.4 94.6 96.3 95.6

Athletes 95.7 95.3 96.4 96.2 95.0 94.7 95.8 95.7

Skills 95.7 95.2 96.5 96.1 95.2 94.8 96.1 95.8

Psychol. Tests 95.2 95.1 96.2 96.3 94.9 93.9 95.8 95.1

Flea Beetles 95.7 95.1 96.4 95.9 95.3 94.4 96.1 95.5

Theoretical results about asymptotic properties have not been derived for the

new methods (A and B) of forming confidence intervals. To explore their behaviour

for larger sample sizes, further simulations were conducted with these methods

that were identical to those reported above, but for sample sizes of 500 and 1000.

Results are presented in Table 3.5. It can be seen that the coverage is always

close to the nominal level of 95%, especially for the larger sample size of 1000.

These results suggest that coverage will tend to 95% as sample size increases. The

coverages for Method A are generally closer to 95% than those of Method B, albeit

by marginal amounts.

As Method A seems the best method, we examined more closely how it might

be used. Specifically, we compared the shortest confidence intervals that it gave

with the equal-tailed intervals it gave. For each Mahalanobis distance, the width

of the equal-tailed 95% interval was divided by the width of the shortest 95% con-
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Table 3.6: Relative frequency distribution (%) for the width ratio of confidence intervals given

by equal-tailed interval relative to shortest interval using Method A for shortest intervals that

are not one-sided

Sample Dataset width ratio

size 1.0-1.05 1.05-1.1 1.1-1.25 1.25-1.5 1.5-1.75 1.75-2.0 2 and over

Contribution of individual variables

20

Bank notes 97.62 2.38 0.00 0.00 0.00 0.00 0.00

Athletes 87.80 4.88 0.00 7.32 0.00 0.00 0.00

Skulls 97.84 2.08 0.09 0.00 0.00 0.00 0.00

Psychol. Tests 95.21 4.50 0.29 0.00 0.00 0.00 0.00

Flea beetles 93.06 6.53 0.41 0.00 0.00 0.00 0.00

100

Bank notes 96.61 3.22 0.17 0.00 0.00 0.00 0.00

Athletes 88.86 10.55 0.59 0.00 0.00 0.00 0.00

Skulls 94.36 5.41 0.22 0.00 0.00 0.00 0.00

Psychol. Tests 91.52 8.12 0.35 0.00 0.00 0.00 0.00

Flea beetles 99.10 0.90 0.00 0.00 0.00 0.00 0.00

Percentage contribution of variables

20

Bank notes 86.64 11.82 1.54 0.00 0.00 0.00 0.00

Athletes 93.32 6.11 0.57 0.00 0.00 0.00 0.00

Skulls 54.81 22.13 21.31 1.75 0.00 0.00 0.00

Psychol. Tests 71.77 18.02 9.67 0.54 0.00 0.00 0.00

Flea beetles 86.14 12.21 1.60 0.05 0.00 0.00 0.00

100

Bank notes 93.66 5.80 0.54 0.00 0.00 0.00 0.00

Athletes 81.94 16.33 1.73 0.00 0.00 0.00 0.00

Skulls 89.15 9.22 1.60 0.03 0.00 0.00 0.00

Psychol. Tests 93.24 6.52 0.23 0.00 0.00 0.00 0.00

Flea beetles 98.68 1.33 0.00 0.00 0.00 0.00 0.00

fidence intervals. The frequency distributions of these ratios differed substantially

depending upon whether or not the shortest confidence interval was a one-sided

interval (with 0 as its lower endpoint). Table 3.6 gives the relative frequency

distributions when the shortest interval is not one-sided. It can be seen the equal-

tailed interval is generally only slightly longer than the shortest interval, especially

when the contribution of each variable (rather than percentage contribution) is the

quantity of interests, when the equal-tailed interval is seldom more than 5% longer
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Table 3.7: Relative frequency distribution (%) for the width ratio of confidence intervals given

by equal-tailed interval relative to shortest interval using Method A for shortest intervals that

are one-sided

Sample Dataset width ratio

size 1.0-1.05 1.05-1.1 1.1-1.25 1.25-1.5 1.5-1.75 1.75-2.0 2 and over

Contribution of individual variables

20

Bank notes 2.69 12.94 30.48 31.53 16.88 4.36 1.13

Athletes 0.41 3.54 22.76 51.00 18.66 2.92 0.70

Skulls 4.42 11.47 36.39 35.55 10.33 1.53 0.31

Psychol. Tests 4.53 11.62 46.94 35.93 0.97 0.00 0.00

Flea beetles 13.39 32.70 50.87 3.04 0.00 0.00 0.00

100

Bank notes 1.86 9.38 58.25 30.33 0.17 0.00 0.00

Athletes 3.95 15.33 58.67 21.89 0.16 0.00 0.00

Skulls 2.66 10.85 57.27 29.01 0.21 0.00 0.00

Psychol. Tests 1.86 9.71 54.75 33.61 0.07 0.00 0.00

Flea beetles∗ - - - - - - -

Percentage contribution of variables

20

Bank notes 7.59 13.96 35.59 35.72 6.64 0.48 0.03

Athletes 4.49 7.34 44.83 40.48 2.74 0.10 0.01

Skulls 6.40 13.35 40.93 33.07 5.63 0.55 0.07

Psychol. Tests 3.66 8.87 41.82 41.89 3.73 0.04 0.00

Flea beetles 9.97 21.95 56.15 11.67 0.26 0.00 0.00

100

Bank notes 1.51 7.62 53.30 36.84 0.74 0.00 0.00

Athletes 2.87 12.24 57.31 27.06 0.51 0.01 0.00

Skulls 2.02 8.81 53.55 34.95 0.68 0.00 0.00

Psychol. Tests 2.67 8.70 51.58 36.42 0.63 0.00 0.00

Flea beetles∗ - - - - - - -

∗ Shortest confidence intervals for the flea beetles data were never one-sided for this sample size

than the shortest interval. As people are unfamiliar with interpreting confidence

intervals that are neither equal-tailed nor one-sided, there will seldom be much

justification for presenting a shortest confidence interval if it is not one-sided.

Table 3.7 gives the relative frequency distributions when the shortest interval

is one-sided. Now the equal-tailed interval is 10%-50% wider than the one-sided

interval in most cases. We earlier noted that a one-sided confidence interval for

a squared quantity is attractive when 0 is contained in an equal-tailed interval

for the un-squared quantity, which typically happens when the shortest interval is

one-sided. Hence, when the shortest confidence interval is one-sided, there seems
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good reason to report it in preference to an equal-tailed interval.

Tables 3.6 and 3.7 only present results for sample sizes of 20 and 100. Results

for sample sizes of 50, 80 and 200 were also produced but, for brevity, are not

presented here because results did not vary appreciably with sample size.

3.6 Simulation Study: Skew Distribution

In the last section we compared transformation and examined their performance

when the underlying population distributions were multivariate normal. Here we

extend that work and examine the sensitivity of its results to departures from nor-

mal distributions. Specifically, we take the same population distributions as before

and use the sinh-arcsinh transformation (Jones and Pewsey, 2009) to construct

skew population distributions that retain features of the original distributions —

each variable keeps its mean and variance and the correlation structure is broadly

similar. Details are given in the next subsections.

3.6.1 Simulation procedure for skew distributions: bank

note data

We will refer to the bank note data constructed here as the skew-genuine and

skew-fake bank notes, to distinguish them from the genuine and fake bank notes

from which we start. As before, we calculated the mean and covariance of the

100 genuine bank note measurements and took these as the mean (µ) and vari-

ance (Σ) of an MVN distribution. We then generated 100,000 observations from

an MVN(0,Σ) distribution. Denote these observations as y1, . . . ,y100 000 and put
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yi = (yi1, . . . , yip)
>. The sinh-arcsinh was then applied separately to each compo-

nent of each y, putting

y#ij = sinh
[
δ−1

{
sinh−1 (yij) + ε

}]
(3.24)

for i = 1, . . . , 100 000; j = 1, . . . , p.

Let Y #
j denote a scalar variable whose sample values are y#1j, . . . , y

#
100 000j. The

parameters ε and δ in equation (3.24) respectively affect the skewness and tail-

weight of the distribution of Y #
j . The parameter δ is always positive and ε has a

range of (−∞,+∞). The positive value of ε yields positive skewness and negative

value yields negative skewness and skewness increases with increasing ε. Whereas

tailweight increases with decreasing δ, δ < 1 yields tailweight that is heavier than

the Normal distribution. For the bank note data we set ε = 1.0 and δ = 0.8. Let

ȳ#j and s(y#j ) denote the sample mean and sample standard deviation of Y #
j . Also

let µj denote the jth component of µ and σ2
j denote the jth diagonal element of

Σ. For i = 1, . . . , 100 000; j = 1, . . . , p put

x#ij = µj + σj

{
y#ij − ȳ

#
j

}
/s
(
y#j

)
(3.25)

and x#
i =

(
x#i1, . . . , x

#
ip

)>
.

We suppose that the complete population of skew-genuine bank notes consists

of 100 000 notes and that x#
i is the vector of measurements on the ith note (i =

1, . . . , 100 000). There are only two differences between the simulation method

used now and the simulation method used in Section 3.5.

1. In Section 3.5, sample datasets were generated from MVN (µ,Σ). Here,

x#
1 , . . . ,x

#
100 000 are treated as the population and a sample data set is gen-

erated by sampling without replacement from x#
1 , . . . ,x

#
100 000.
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2. The distribution of the skew-fake bank notes should be similar in shape

to that of the skew-genuine bank notes, but with a different mean. Let

µ� =
(
µ�1, . . . , µ

�
p

)>
denote the sample mean of the 100 fake bank notes and

let t = (t1, . . . , tp)
> denote the deviations from this mean for one fake bank

note. Analogous to equations (3.24) and (3.25), for j = 1, . . . , p put

t#j = sinh
[
δ−1

{
sinh−1 (tj) + ε

}]
(3.26)

and

v#j = µ�j + σj

{
t#j − ȳ

#
j

}
/s
(
y#j

)
(3.27)

where σj, ȳ
#
j and s(y#j ) take the same values as in equation (3.25). We take

(v#1 , . . . , v
#
p )> as the vector of values of the skew-fake bank note. In the

simulations, a skew-fake bank note is constructed from each of the first ten

fake bank notes.

For the population of skew-genuine bank notes, the Pearson’s moment coeffi-

cients of skewness for the six measurements were 1.016, 1.020, 0.981, 1.384, 1.410

and 1.150. Figures 3.2(a) and 3.2(b) show the marginal probability density func-

tions (p.d.f.s) of the third and the fifth measurements. It can be seen that the

p.d.f.s have clear skewness.

3.6.2 Simulation procedure for skew distributions: other

datasets

The simulation procedure used to construct skew distributions for the bank note

dataset was also used for the Athletes data and the Tibetan skull data. As in the

earlier study, the male athletes or the skulls from the Sikkim area took the role of
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Figure 3.2: Probability density functions with coefficients of skewness of (a) 0.981 and (b) 1.410.

the genuine bank notes, while the first ten female athletes or the first ten skulls

from the Lhasa district took the role of the fake bank notes.

For the Psychological test and Flea beetle datasets, in which two means are

compared, Σ was set equal to the pooled sample covariance matrix and two popu-

lations of 100 000 skew-data were constructed. For the Psychological test, for one

population µj in equation (3.25) was set equal to the jth component of the sam-

ple mean for men and for the other population it was obtained from the sample

mean for women. For the Tibetan skulls, µj was taken as the jth component of

either the sample mean for skulls from the Sikkim area (for one population) or the

sample mean for skulls from the Lhasa district (for the other population).

In applying the sinh-arcsinh transformation, the parameters ε and δ were var-

ied across our five datasets so as to vary the degree of skewness and thickness of

tails. Table 3.8 shows the values chosen for ε and δ and lists the Pearson’s mo-

ment coefficients of skewness and kurtosis for each variable in the datasets. (The

Pearson’s moment coefficient of kurtosis is 3 for a normal distribution and larger

for heavier tails).
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Table 3.8: Parameters ε and δ and the Pearson’s moment coefficient of skewness for each variable

in each dataset. The Pearson’s moment coefficient of kurtosis for each variable is given in

parentheses

Dataset ε δ Skewness (kurtosis)

Bank notes 1.0 0.8 1.02(4.44), 1.02(4.56), 0.98(4.37), 1.38(5.41), 1.41(5.62), 1.15(4.84)

Athletes 0.8 0.9 1.57(5.50), 1.57(5.55), 0.73(3.76), 1.24(4.82), 1.48(5.30), 1.44(5.19),

1.56(5.36), 1.52(5.43), 1.58(5.53)

Skulls 0.5 0.9 1.24(4.67), 1.24(4.71), 1.22(4.65), 1.22(4.69), 1.24(4.73)

Psychol. Tests 0.4 0.8 1.29(5.53), 1.33(5.46), 1.35(5.61), 1.33(5.54)

Flea beetles 0.6 0.9 1.40(5.11), 1.39(5.03), 1.38(5.04), 1.39(5.01)

3.6.3 Results: Skew distributions

Tables 3.9 and 3.10 give results for the skew population distributions that are

equivalent to results presented in Tables 3.3 and 3.4 for the MVN population dis-

tributions. Table 3.9 gives average coverages of intervals for the contributions of

individual variables and hence corresponds to Table 3.3; Table 3.10 gives similar

results for the proportion of the MI attributable to each variable and so corre-

sponds to Table 3.4. As before, the median widths of intervals given by each

method were compared with the median widths of intervals given by Method A.

The average of these ratios are given in brackets in the tables. Average coverages

above the nominal level of 95% are again marked blue.

The motivation for these simulations was to examine the robustness of results

to departures from normality in the population distributions. Hence we focus

on comparing Tables 3.9 and 3.10 with Tables 3.3 and 3.4. Regarding average

coverage, the same main features in Tables 3.3 and 3.4 were also found in Tables

3.9 and 3.10. Specifically:

• Methods A and B almost always achieve the nominal coverage.
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Table 3.9: Average coverage (%) of 95% confidence intervals for individual contributions given
by the percentile, bias-corrected percentile, non-studentized and studentized pivotal methods,
and Methods A and B. Average of the ratio of the median widths of intervals relative to the
median widths of intervals given by Method A are shown in brackets. Population distributions
are skew.

Sample Dataset Percentile Bias-corre. Non-student. Studentized Method Method
Size method Percentile pivotal pivotal A B

Equal Tailed Intervals

20 Bank notes 78.0 (2.11) 89.4 (0.80) 85.6 (2.87) 90.2 (1.38) 96.8 (1.00) 92.8 (0.63)
20 Athletes 85.9 (1.76) 90.5 (0.73) 84.6 (4.38) 95.3 (2.76) 97.7 (1.00) 97.7 (2.16)
20 Skulls 84.1 (1.90) 89.1 (0.90) 84.1 (3.92) 90.7 (1.93) 98.6 (1.00) 94.9 (0.80)
20 Psychol. Tests 88.8 (1.34) 89.7 (0.99) 78.5 (7.24) 91.6 (4.66) 96.3 (1.00) 95.6 (1.10)
20 Flea Beetles 84.8 (1.47) 92.9 (1.15) 92.7 (1.81) 95.3 (1.14) 95.9 (1.00) 95.6 (1.09)

50 Bank notes 85.6 (1.30) 89.6 (0.99) 84.4 (5.56) 91.7 (3.55) 95.9 (1.00) 94.5 (1.04)
50 Athletes 89.0 (1.37) 93.0 (1.03) 88.0 (5.43) 94.7 (2.85) 97.2 (1.00) 96.1 (1.03)
50 Skulls 89.2 (1.30) 89.9 (1.04) 85.7 (5.81) 93.2 (3.66) 96.5 (1.00) 95.9 (1.11)
50 Psychol. Tests 92.6 (1.13) 91.2 (0.96) 82.6 (7.00) 93.4 (4.86) 95.6 (1.00) 96.6 (1.10)
50 Flea Beetles 89.7 (1.14) 93.4 (1.04) 93.0 (1.20) 93.9 (1.01) 94.6 (1.00) 95.4 (1.08)

80 Bank notes 89.2 (1.18) 90.9 (0.99) 86.0 (5.51) 93.0 (3.68) 95.4 (1.00) 95.4 (1.08)
80 Athletes 90.1 (1.21) 93.2 (1.02) 88.8 (4.17) 94.5 (2.49) 95.9 (1.00) 95.3 (1.04)
80 Skulls 91.0 (1.18) 90.9 (1.03) 87.1 (5.42) 93.7 (3.54) 95.9 (1.00) 96.1 (1.11)
80 Psychol. Tests 93.9 (1.07) 92.0 (0.96) 85.8 (6.31) 93.1 (4.82) 95.6 (1.00) 96.4 (1.10)
80 Flea Beetles 91.9 (1.08) 94.4 (1.02) 93.8 (1.11) 94.6 (1.04) 94.8 (1.00) 95.9 (1.07)

100 Bank notes 90.3 (1.14) 91.4 (0.99) 86.9 (5.17) 93.6 (3.59) 95.5 (1.00) 95.8 (1.09)
100 Athletes 90.6 (1.16) 93.3 (1.01) 89.3 (3.78) 94.6 (2.36) 95.4 (1.00) 95.2 (1.05)
100 Skulls 92.3 (1.14) 91.9 (1.02) 88.7 (5.15) 94.5 (3.59) 95.9 (1.00) 96.5 (1.11)
100 Psychol. Tests 94.3 (1.05) 92.6 (0.95) 87.5 (5.63) 94.1 (4.84) 95.3 (1.00) 96.7 (1.09)
100 Flea Beetles 93.1 (1.06) 94.5 (1.02) 94.4 (1.09) 95.2 (1.05) 94.8 (1.00) 96.0 (1.08)

200 Bank notes 92.2 (1.07) 92.1 (0.99) 88.7 (4.37) 94.2 (3.07) 94.9 (1.00) 95.9 (1.09)
200 Athletes 92.1 (1.07) 93.5 (1.00) 90.8 (2.93) 94.3 (2.17) 94.3 (1.00) 95.0 (1.06)
200 Skulls 93.9 (1.07) 92.7 (1.01) 90.5 (4.42) 94.8 (3.05) 95.6 (1.00) 96.5 (1.09)
200 Psychol. Tests 95.3 (1.03) 91.6 (0.96) 88.0 (5.71) 93.7 (4.58) 95.3 (1.00) 96.6 (1.08)
200 Flea Beetles 94.2 (1.03) 95.3 (1.01) 95.0 (1.04) 96.1 (1.05) 95.7 (1.00) 96.5 (1.07)

Shortest Intervals

20 Bank notes 90.4 (2.04) 88.3 (0.79) 93.7 (1.63) 91.3 (1.04) 99.2 (1.00) 95.5 (0.68)
20 Athletes 96.4 (1.75) 89.5 (0.73) 92.3 (2.02) 93.6 (1.66) 99.8 (1.00) 99.9 (1.97)
20 Skulls 93.2 (1.82) 87.8 (0.87) 91.6 (2.04) 91.0 (1.33) 98.6 (1.00) 96.2 (0.83)
20 Psychol. Tests 93.3 (1.31) 89.5 (0.95) 91.8 (3.16) 92.5 (2.27) 96.1 (1.00) 96.3 (1.07)
20 Flea Beetles 89.5 (1.43) 92.2 (1.10) 95.6 (1.49) 95.4 (1.10) 94.1 (1.00) 94.2 (1.06)

50 Bank notes 90.9 (1.27) 89.6 (0.94) 91.6 (2.56) 92.0 (1.87) 95.8 (1.00) 95.3 (1.02)
50 Athletes 94.3 (1.36) 92.7 (1.00) 93.9 (2.62) 95.3 (1.71) 97.6 (1.00) 97.0 (1.02)
50 Skulls 92.9 (1.26) 89.8 (1.00) 91.9 (2.75) 92.9 (1.96) 95.5 (1.00) 95.7 (1.08)
50 Psychol. Tests 93.8 (1.10) 90.5 (0.93) 91.3 (2.96) 92.1 (2.29) 94.9 (1.00) 96.2 (1.08)
50 Flea Beetles 91.6 (1.11) 93.0 (1.02) 95.1 (1.09) 92.8 (1.00) 93.1 (1.00) 94.2 (1.06)

80 Bank notes 92.6 (1.16) 90.9 (0.96) 92.0 (2.55) 93.0 (1.91) 95.3 (1.00) 95.7 (1.06)
80 Athletes 93.8 (1.19) 93.1 (0.99) 94.2 (2.21) 94.9 (1.52) 95.8 (1.00) 95.7 (1.02)
80 Skulls 93.3 (1.15) 90.8 (1.00) 92.5 (2.61) 93.4 (1.88) 95.0 (1.00) 95.8 (1.08)
80 Psychol. Tests 94.6 (1.07) 91.3 (0.95) 92.9 (2.92) 92.9 (2.25) 95.1 (1.00) 96.0 (1.09)
80 Flea Beetles 92.7 (1.06) 93.7 (1.01) 95.0 (1.04) 93.6 (1.03) 93.8 (1.00) 94.7 (1.07)

100 Bank notes 93.1 (1.12) 91.4 (0.97) 92.4 (2.46) 93.6 (1.88) 95.3 (1.00) 95.9 (1.07)
100 Athletes 93.6 (1.14) 93.1 (0.99) 94.5 (2.05) 94.8 (1.46) 95.4 (1.00) 95.5 (1.03)
100 Skulls 94.1 (1.12) 91.4 (0.99) 93.1 (2.49) 93.9 (1.87) 95.1 (1.00) 96.2 (1.09)
100 Psychol. Tests 94.9 (1.05) 91.4 (0.93) 93.4 (2.66) 93.5 (2.13) 94.7 (1.00) 95.9 (1.08)
100 Flea Beetles 93.5 (1.05) 94.1 (1.01) 95.0 (1.03) 94.7 (1.04) 93.7 (1.00) 95.3 (1.07)

200 Bank notes 93.3 (1.06) 91.8 (0.98) 93.0 (2.20) 94.0 (1.70) 94.7 (1.00) 95.7 (1.07)
200 Athletes 93.8 (1.06) 93.3 (0.99) 94.7 (1.70) 94.0 (1.36) 94.6 (1.00) 95.3 (1.05)
200 Skulls 94.4 (1.06) 92.1 (0.99) 93.5 (2.22) 94.2 (1.68) 94.8 (1.00) 96.1 (1.08)
200 Psychol. Tests 95.2 (1.02) 90.2 (0.95) 92.3 (2.69) 92.1 (2.09) 95.1 (1.00) 96.1 (1.07)
200 Flea Beetles 94.5 (1.02) 95.0 (1.00) 95.5 (1.01) 95.9 (1.05) 95.1 (1.00) 96.2 (1.06)
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Table 3.10: Average coverage (%) of 95% confidence intervals for percentage of contributions
given by the percentile, bias-corrected percentile, non-studentized and studentized pivotal meth-
ods, and Methods A and B. Average of the ratio of the median widths of intervals relative to the
median widths of intervals given by Method A are shown in brackets. Population distributions
are skew.

Sample Dataset Percentile Bias-corre. Non-student. Studentized Method Method
Size method Percentile pivotal pivotal A B

Equal Tailed Intervals

20 Bank notes 92.6 (0.58) 86.5 (0.53) 79.0 (1.48) 88.8 (1.26) 96.6 (1.00) 93.2 (0.68)
20 Athletes 93.2 (0.68) 83.2 (0.68) 79.8 (2.45) 93.0 (2.48) 96.5 (1.00) 96.9 (1.14)
20 Skulls 90.8 (0.63) 83.2 (0.58) 79.4 (1.42) 89.2 (1.30) 96.0 (1.00) 92.9 (0.81)
20 Psychol. Tests 93.3 (0.70) 86.6 (0.64) 79.2 (1.79) 90.2 (1.67) 96.5 (1.00) 95.8 (0.95)
20 Flea Beetles 92.9 (0.74) 91.4 (0.75) 92.7 (1.03) 93.9 (0.87) 97.3 (1.00) 96.4 (0.94)

50 Bank notes 92.9 (0.72) 88.2 (0.69) 83.0 (2.72) 90.8 (2.14) 96.2 (1.00) 95.1 (0.93)
50 Athletes 93.5 (0.70) 89.7 (0.72) 86.1 (2.73) 93.7 (1.93) 96.8 (1.00) 95.9 (0.93)
50 Skulls 92.2 (0.74) 88.0 (0.71) 84.9 (2.17) 92.3 (1.80) 96.2 (1.00) 95.3 (0.95)
50 Psychol. Tests 94.4 (0.86) 89.6 (0.80) 83.0 (2.98) 91.7 (2.47) 95.4 (1.00) 96.6 (1.06)
50 Flea Beetles 92.4 (0.88) 91.6 (0.89) 93.6 (1.01) 92.3 (0.92) 94.8 (1.00) 95.5 (1.04)

80 Bank notes 93.5 (0.82) 89.6 (0.79) 85.2 (3.28) 92.3 (2.53) 95.8 (1.00) 95.6 (1.02)
80 Athletes 92.9 (0.78) 90.6 (0.79) 87.6 (2.63) 93.5 (1.80) 95.6 (1.00) 95.1 (0.96)
80 Skulls 93.2 (0.83) 89.8 (0.80) 87.0 (2.62) 92.8 (2.10) 95.9 (1.00) 95.8 (1.01)
80 Psychol. Tests 94.7 (0.91) 91.0 (0.86) 86.3 (3.42) 92.6 (2.88) 95.6 (1.00) 96.7 (1.07)
80 Flea Beetles 94.2 (0.92) 93.9 (0.92) 94.9 (1.00) 94.1 (0.97) 95.3 (1.00) 96.5 (1.05)

100 Bank notes 94.0 (0.85) 90.6 (0.83) 86.2 (3.41) 93.0 (2.62) 95.7 (1.00) 96.0 (1.04)
100 Athletes 93.2 (0.82) 91.3 (0.82) 88.3 (2.60) 93.8 (1.79) 95.3 (1.00) 95.1 (0.99)
100 Skulls 93.8 (0.86) 90.6 (0.84) 88.2 (2.76) 93.5 (2.23) 95.9 (1.00) 96.1 (1.03)
100 Psychol. Tests 95.2 (0.93) 91.6 (0.86) 87.4 (3.47) 93.8 (3.06) 95.4 (1.00) 96.6 (1.07)
100 Flea Beetles 94.2 (0.94) 93.8 (0.94) 94.8 (1.00) 94.6 (0.99) 95.1 (1.00) 96.2 (1.06)

200 Bank notes 94.0 (0.93) 91.4 (0.91) 88.3 (3.49) 93.9 (2.60) 95.0 (1.00) 96.0 (1.07)
200 Athletes 93.1 (0.90) 92.3 (0.90) 90.3 (2.37) 93.7 (1.82) 94.4 (1.00) 95.0 (1.03)
200 Skulls 94.6 (0.93) 92.1 (0.91) 90.3 (3.08) 94.4 (2.37) 95.7 (1.00) 96.5 (1.05)
200 Psychol. Tests 95.9 (0.96) 91.3 (0.92) 88.2 (4.13) 93.7 (3.55) 96.1 (1.00) 96.9 (1.07)
200 Flea Beetles 95.0 (0.97) 94.8 (0.97) 94.9 (1.00) 95.6 (1.03) 95.4 (1.00) 96.2 (1.06)

Shortest Intervals

20 Bank notes 93.2 (0.62) 84.9 (0.57) 87.2 (1.29) 89.1 (1.08) 97.6 (1.00) 93.5 (0.69)
20 Athletes 92.9 (0.72) 81.2 (0.73) 85.0 (2.18) 91.6 (2.29) 96.5 (1.00) 96.9 (1.12)
20 Skulls 90.2 (0.66) 80.9 (0.61) 84.2 (1.33) 88.1 (1.19) 95.0 (1.00) 92.1 (0.80)
20 Psychol. Tests 93.0 (0.75) 85.2 (0.68) 88.0 (1.62) 89.7 (1.43) 95.6 (1.00) 95.1 (0.96)
20 Flea Beetles 89.9 (0.78) 88.7 (0.79) 93.5 (1.01) 92.5 (0.89) 94.8 (1.00) 94.1 (0.95)

50 Bank notes 92.9 (0.76) 87.3 (0.73) 89.3 (1.91) 90.4 (1.51) 96.2 (1.00) 95.3 (0.94)
50 Athletes 92.8 (0.75) 88.8 (0.77) 92.0 (2.06) 94.2 (1.51) 97.0 (1.00) 96.0 (0.94)
50 Skulls 91.5 (0.78) 86.3 (0.75) 89.8 (1.76) 91.2 (1.45) 95.6 (1.00) 94.9 (0.97)
50 Psychol. Tests 93.7 (0.88) 87.9 (0.81) 90.8 (2.13) 90.4 (1.80) 95.0 (1.00) 95.9 (1.05)
50 Flea Beetles 91.2 (0.88) 90.3 (0.89) 93.7 (0.97) 90.7 (0.92) 93.5 (1.00) 94.2 (1.03)

80 Bank notes 93.4 (0.84) 89.0 (0.81) 90.4 (2.09) 92.1 (1.64) 95.8 (1.00) 95.8 (1.02)
80 Athletes 92.3 (0.82) 89.8 (0.83) 92.8 (1.88) 93.8 (1.37) 95.7 (1.00) 95.1 (0.97)
80 Skulls 92.3 (0.85) 88.4 (0.83) 91.2 (1.92) 92.1 (1.54) 95.2 (1.00) 95.3 (1.02)
80 Psychol. Tests 94.2 (0.93) 89.5 (0.87) 92.3 (2.36) 91.8 (1.90) 95.3 (1.00) 96.1 (1.07)
80 Flea Beetles 93.4 (0.92) 92.9 (0.93) 95.0 (0.97) 93.3 (0.97) 94.3 (1.00) 95.5 (1.05)

100 Bank notes 93.8 (0.87) 89.7 (0.84) 91.3 (2.10) 92.8 (1.67) 95.7 (1.00) 96.1 (1.04)
100 Athletes 92.7 (0.84) 90.6 (0.85) 93.4 (1.80) 94.1 (1.33) 95.6 (1.00) 95.3 (0.99)
100 Skulls 93.1 (0.88) 89.2 (0.85) 91.8 (1.94) 92.6 (1.58) 95.3 (1.00) 95.6 (1.03)
100 Psychol. Tests 94.8 (0.94) 90.2 (0.87) 92.8 (2.20) 92.7 (1.85) 95.1 (1.00) 96.1 (1.06)
100 Flea Beetles 93.3 (0.94) 92.9 (0.94) 94.9 (0.98) 94.0 (0.99) 94.5 (1.00) 95.6 (1.06)

200 Bank notes 93.6 (0.94) 90.8 (0.92) 92.2 (2.05) 93.6 (1.61) 94.7 (1.00) 95.7 (1.06)
200 Athletes 93.3 (0.91) 91.8 (0.91) 94.1 (1.61) 93.6 (1.30) 94.8 (1.00) 95.3 (1.03)
200 Skulls 94.0 (0.94) 91.1 (0.92) 93.0 (1.96) 93.5 (1.56) 95.1 (1.00) 96.0 (1.05)
200 Psychol. Tests 95.2 (0.97) 90.2 (0.92) 92.1 (2.40) 92.0 (1.95) 95.6 (1.00) 96.7 (1.07)
200 Flea Beetles 94.6 (0.97) 94.3 (0.97) 94.7 (0.99) 95.2 (1.03) 94.9 (1.00) 95.9 (1.06)
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• With other methods, the average coverage is typically below the nominal

level.

• In particular, the average coverage of the bias-corrected percentile method

is often well below the nominal level.

Similarly, with respect to the width of intervals, the results in Tables 3.9 and

3.10 show the same basic patterns as in Tables 3.3 and 3.4:

• In Table 3.9 (as in Table 3.3), the bias-corrected percentile method typically

gives narrower confidence intervals than Method A (at the expense of having

poor coverage). The pivotal methods generally give much wider interval

than Method A and the percentile method and Method B give slightly wider

intervals than Method A.

• In Table 3.10 (as in Table 3.4), the pivotal methods still typically give much

wider intervals than the new methods, the percentile method gives slightly

narrower intervals than the new methods, and differences in widths of the

new methods favour Method A. Again, the bias corrected method has the

narrowest intervals, but with poor coverage.

The only noteworthy difference between results with the skew distributions and

those with the MVN distributions is that average coverages were slightly smaller

with the skew distributions. With the new methods, averages coverages were still

almost always above the nominal level, so average coverages for these methods

were better with the skew distributions than with the MVN distributions; the

other methods gave average coverages that were usually below the nominal level

for the MVN distributions, so these were further below the nominal level for the
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skew distributions.

With the MVN distributions, the overall conclusion was that Method A had

better results than other methods, with Method B a close second. This conclusion

also holds for the skew population distributions. In general, the results found with

the MVN population distributions were robust to the introduction of skewness and

higher kurtosis.

3.7 Concluding comments

Motivation for this chapter is the potential importance of the Garthwaite-Koch

partition (as illustrated, for example, in the work of Rogers (2015)) and the need

of a method for forming confidence intervals for the quantities it yields. In the

simulations the two new methods almost always gave confidence intervals whose

coverage was conservative, while the coverages of the four standard methods that

were examined were generally liberal. Nevertheless, the widths of the intervals

given by the new methods tended to be much smaller than those given by the

non-studentized and studentized pivotal methods, and similar in size to those of

the percentile method. The only method that gave appreciably narrower intervals

than the new methods was the bias-corrected percentile, but the coverage of its in-

tervals was typically well below the nominal 95% level. These results held both for

MVN population distributions and for skew population distributions with heavy

tails, suggesting some robustness of these results to departures from normality.

Consequently, in this study the new methods clearly outperformed the standard

methods.

In the study, Method A performed marginally better than Method B — there

83



was little to choose between them in terms of their coverages but Method A

tended to give slightly narrower intervals. Method A is also computationally a

little simpler and a little faster than Method B (unlike Method B, it does not

require second-level bootstrap sampling), so it is the method we recommend for

constructing bootstrap confidence intervals for both the contributions and the

percentage contributions determined by the Garthwaite-Koch partition.

The widths of equal-tailed and shortest confidence intervals given by Method

A were compared. It was found the shortest interval was generally not markedly

narrower than the equal-tailed interval when the shortest interval was a two-sided

confidence interval, but differences tended to be much greater when the shortest

interval was a one-sided confidence interval. In the present context with squared

quantities, the shortest interval has further merit when it is one-sided, as it gives

coherence with the interval for the un-squared quantity. Hence, reporting the

shortest interval in preference to the equal-tailed interval should be strongly con-

sidered when the shortest interval is one-sided.

The good performance of the new methods begs two obvious questions: “Why

did the new methods perform well for this application?” and “For what types of

application are they likely to be useful?” Regarding the first question, none of

the pivotal quantities used in this chapter are exactly pivotal (under the strict

definition of a pivotal quantity), but the simulations indicate that the Wj are

closer to giving pivotal quantities than logW 2
j or logit(W 2

j /
∑p

i=1W
2
i ). Hence the

new methods performed better than the non-studentized and studentized pivotal

methods. Also, pivotal methods will outperform percentile methods when condi-

tions do not hold for the latter to work well and the pivotal methods use good
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pivotal quantities. So it seems that the Wj are reasonably good pivotal quantities

for the application of interest here.

Regarding the second question, the benefit of the new methods is that they

enable the use of a broader range of pivotal quantities than can be used with

standard bootstrap methods. Thus, the question may be re-phrased as “When

will broadening the range of pivotal quantities prove advantageous?” Davison

and Hinkley (1997) note the importance of variance-stabilization in choosing the

quantity (θ) to bootstrap. They write (p. 111), “Experience suggests that boot-

strap methods for confidence limits and significance tests . . . are most effective

when θ is essentially a location parameter, which is approximately induced by a

variance-stabilizing transformation.” This suggests that the new methods should

be considered when the quantity of interest (such as W 2
j or W 2

j /
∑p

i=1W
2
i ) can

be constructed from simpler quantities that are essentially location parameters.

For example, the methods should be considered if the quantity of interest can be

expressed as a function of the means of several inter-related variables that have

been scaled to have unit sample variances.

We believe that Method A and Method B should prove useful in practice. While

Method A performed marginally better than method B in this application, this will

not always be the case. The difference between the two methods is similar to the

difference between the non-studentized and studentized pivotal methods: Method

A uses pivotal quantities whose variances may fluctuate across samples, while

Method B uses pivotal quantities that have been standardised to have consistent

sample variances. This has little benefit in the present application because the

variances of the pivotal quantities used by Method A do not vary appreciably
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across bootstrap samples (they derive from the Mahalanobis distance — a scale

invariant quantity). Further research is needed to evaluate the methods in other

applications.
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Chapter 4

Relative importance of variables

in regression sum of squares

4.1 Introduction

An important question that statistical consultants and researchers commonly face

after conducting a multiple regression analysis is which variable contributes most

to predict or explain the criterion variable. For example, a chemist may raise the

question of the relative importance of temperature and concentration in determin-

ing the rate of reaction. The term importance is recognized in the literature as

having various possible meanings. A predictor may be considered important if the

corresponding regression parameter is statistically significant. A second definition

judges a predictor as more or less important on the basis of its practical impact

on the response. Soofi et al. (2000) claimed that relative importance is related to

statistical estimation. However, Kruskal and Majors (1989) took a sample from

a population of papers that had relative importance (or the equivalent) in their
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titles. The papers come from many different fields and Kruskal and Majors were

unhappy to find that a substantial fraction (one-fifth) of them used statistical

significance to measure relative importance. It has been argued that the ques-

tion of relative importance is even more common than the question of statistical

significance (e.g., Healy, 1990).

Numerous methods have been proposed for evaluating the relative importance

of regressors. Darlington (1968) gave an overview of the methods for evaluat-

ing practical importance that were available at that time. These included using

squared zero-order correlations, squared standardized regression coefficients, prod-

uct measures, usefulness, and a measure proposed by Engelhart (1936). We de-

scribe these five measures in the next section. When predictors are uncorrelated,

they lead to the same result and the sum over all the predictor variables for any

of the five measures is equal to R2. However, the measures can lead to different

results for correlated regressors and among them only the product measure and

Engelhart’s measure satisfy the condition that sum of the individual contributions

over all regressors is equal to model R2. Among the five measures, only Engel-

hart’s measure considers the contribution of individual predictors and the joint

effect of each pair of predictors, but all the measures ignore the interaction effect

of all possible combinations of predictor variables. This is regretable, as people

are interested in the total contribution of a predictor and this is the sum of the

direct contribution of that particular predictor and all possible joint contributions

(interactions) with other predictors.

The order in which the regressors enter the model is important for correlated

regressors. For example, the sum of the squares due to X3 from the order X1X2X3
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and the order X1X3X2 will be different, and hence the contribution of X3 to R2

will also be different. So the relative importance based on only one fixed order is

not appropriate. It is better to take the average of the sequential sums of squares

over all p! possible ordering of the p regressors. Lindeman et al. (1980) proposed

an unweighted average of sequential sums of squares over p! possible orderings and

hence the name LMG (Lindeman, Merenda and Gold). According to Johnson and

LeBreton (2004) LMG was the first measure that was theoretically meaningful

and consistently provided sensible results.

Budescu (1993) and Azen and Budescu (2003) proposed a number of measures

in work referred to as “dominance analysis”. The most widely used of these

measure is a general dominance measure that is identical to the LMG measure.

The LMG/general dominance measure is computationally intensive and Lindeman

et al. (1980) claimed during the introduction of LMG that the method may not

be feasible for more than 5 or 6 predictors. The general dominance measure

formulates the task in a different way to the LMG measure, and is computationally

much faster than the LMG method. However, neither measure can be calculated

exactly when there are more than about 25 variables and then we have found that

random sampling can be used with the LMG method and gives good accuracy.

Gibson (1962) and Johnson (1966) suggested using transformed orthogonal

variables for measuring the relative importance of a set of predictors that are

highly correlated to the original set of predictors. Green et al. (1978) felt the

method had limitations and suggested estimating the relative importance of the

original predictors by regressing the orthogonal predictors on the original predic-

tors. Instead of regressing the orthogonal predictors on the original predictors, J.
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W. Johnson (2000) proposed regressing the original predictors on the orthogonal

predictors. However, the methods ignore the correlation between the response

variable and the predictor variables in obtaining the orthogonal predictors.

Reviews of work on relative importance are given in Johnson and LeBreton

(2004), Nathans et al. (2012), Grömping (2007), Grömping (2015), Bi (2012), and

Kraha et al. (2012), and a good older review is given by Darlington (1968). As

noted by Johnson and LeBreton (2004), there is no unique solution to the problem

of evaluating relative importance, so identifying good measures must be based on

the logic behind their development, their properties and shortcomings, and the

apparent sensibility of the results they yield.

In this chapter we develop new measures of relative importance and compare

them with well-regarded alternatives. The new measures are based on transfor-

mations that yield orthogonal variables that are closely related to the original

regressors. In consequence they have much in common with the orthogonal coun-

terparts measure proposed by Gibson (1962) and the relative weights measure of

Johnson (2000). The main difference is that the new measures use the values of

both the regressors and the response in determining the transformation, while the

measures of Gibson (1962) and Johnson (2000) ignore the response when deter-

mining the transformation and use only the values of the regressors. Intuitively,

there should be benefits in letting the response influence the transformation, as

the purpose of the transformation is to help evaluate the relationship between

regressor and the response.

The new measures proposed here are compared with the orthogonal counter-

parts measure (Gibson, 1962), and the relative weights measure (Johnson, 2000)
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and also with the general dominance measure proposed by Budescu (1993). Com-

parison is made through examples and by examining theoretical properties.

In Section 4.2 we briefly discuss simple methods for measuring importance.

We briefly discuss the more complicated methods for evaluating importance in

Section 4.3. The variable transformation methods are described in Section 4.4.

In Section 4.5 we describe the new methods and they are compared with other

three measures in Section 4.7. Some of the measures have the rotation invariance

property, whereby an orthogonal rotation can be applied to some variables with-

out affecting the relative weights assigned to un-rotated variables. The rotation

invariance property for the first new measure is proved in Section 4.6. Concluding

comments are given in Section 4.8.

4.2 Simple methods of relative importance

In this section we describe the methods reviewed by Darlington (1968). These

measures are the simple measures and should be used only when the regressors

are uncorrelated. For correlated regressors, these measures have serious drawbacks

and so the methods are not considered further after this section, but reviewed here

for completeness. The methods are illustrated using a real dataset.

We assume that the response, Y , and regressors X1, . . . , Xp are related through

the regression equation

Y |X = β0 + β1X1 + . . .+ βpXp + ε, (4.1)

where X = (X1, . . . , Xp)
> and ε is random error and has variance σ2. We suppose
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Table 4.1: Correlation matrix of the body fat data

Variable BF TST TC MC

BF 1.000 0.843 0.878 0.142

TST 0.843 1.000 0.924 0.458

TC 0.878 0.924 1.000 0.085

MC 0.142 0.458 0.085 1.000

there are n data, so that the model can be written in matrix form as:

y|X = β01 + Xβ + ε (4.2)

where 1 is an n×1 vector of 1’s, y is an n×1 vector of responses, X = (x1, . . . ,xp)

is an n× p matrix of known values of X1, . . . , Xp, β is a p× 1 vector of regression

coefficients (whose values are unknown) and ε is an n × 1 vector of independent

random errors. The coefficient β0 is irrelevant for the regressors’ relative impor-

tance so, to simplify notation, throughout this chapter we assume that Y and

X1, . . . , Xp have been centered to have sample means of 0. Then the least squares

estimate of β is β̂ =
(
X>X

)−1
X>y and var(β̂) = σ2

(
X>X

)−1
.

4.2.1 Example data

Data for illustrating the methods was obtained from Neter et al. (1983). There

are four measurements collected from 20 healthy women, aged between 25 and 34

years. The measurements were: BF (Body Fat), TST (Triceps Skinfold Thick-

ness), TC (Thigh Circumference), MC (Midarm Circumference). We take BF as

the response variable. The correlation matrix of the body fat data is shown in

Table 4.1. There is a high correlation between TST and TC and the correlation

structure creates problems in allocating relative importance.
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The fitted standardized multiple regression model is:

B̂F = 4.264TST − 2.929TC − 1.561MC (4.3)

having R2 = 0.801.

4.2.2 Zero-order correlation (validities)

Zero-order correlation is the simplest measure of importance. It measures the de-

gree and direction of the linear relationship between a regressor variable and the

response variable when all other regressors are ignored in the regression model, so

that it is unaffected by the other regressors of the model. In the case of uncor-

related predictors, the sum of the squared zero-order correlations is equal to the

model R2, and thus can be used for initial rank ordering of the individual con-

tributions of predictor variables to the model. However, for correlated regressors,

shared variance in the response variable is added up several times and thus the

sum of the squared zero-order correlations is often greater than R2 for the model

with all regressors together (Bi, 2012). This is also clear from the example data:

Variable TST TC MC

r2yxj
0.711 0.771 0.020

Note : r2yxj
is the squared zero-order correlation between the response and the jth regressor.

These r2yxj ’s are the R2 values of each regressor. The sum of the squared zero-order

correlations is 1.502, which is about twice the size of the model R2 of 0.801. In

contrast, the reverse relation can happen if some of the regressors are suppres-

sors (Hamilton, 1987). If a regressor has zero or near zero correlation with the

response but is correlated with one or more of the regressors then that variable is

a suppressor.
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4.2.3 Standardized regression coefficients (beta weights)

Standardized regression coefficients are commonly used for evaluating the contri-

bution of each predictor variable. Beta weights are easily computed and when

the predictor variables are uncorrelated they are simply equal to the zero-order

correlations. In such a case, squared beta weights can be used to determine the

relative importance of each predictor — the squared beta weights sum to the full

model’s R2 so there is no need to calculate a complicated measures in order to

rank predictor variables. However, predictor variables are usually correlated and

beta weight for a particular predictor will depend on which other predictor vari-

ables are in the model. When a predictor shares the explained variance with one

or more predictors in the model (Pedhazur, 1997), then a predictor variable that

has a high positive correlation with the response variable may have a near-zero

beta weight. Alternatively, a predictor variable with a low (positive) zero-order

correlation may have a large positive beta weight. As Darlington (1968) notes,

it is possible to have a negative beta weight for a predictor that has a positive

zero-order correlation. The following are the squared beta weights determined

from the example dataset:

Variable TST TC MC

β̂2
j 18.179 8.577 2.438

Note : β̂2
j is the squared beta weight for the jth predictor.

TST and TC are approximately equally correlated with BF . However, TST

contributes twice as much as TC in predicting BF and the beta weight (β̂j) for

TC is negative, even though TC has a positive correlation with the criterion. This

happens due to the high collinearity between TST and TC. Thus interpretation
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of beta weight is sometimes an invalid measure of the importance of collinear

regressors. Moreover, if we add or remove variables from the model, then the sign

of the beta weights can change.

4.2.4 Product measures

Hoffman (1960) proposed the product measure (named by Bring, 1996), which is

the product of the zero-order correlations with corresponding beta weights. Pratt

(1987) justified this measure as a relative importance measure and showed that

the sum of the product measures over all predictor variables is equal to the model

R2, irrespective of correlated or uncorrelated predictors. A major disadvantage

of this measure is that it may produce a negative importance value for a predic-

tor variable even though that predictor contributes substantially to the criterion

(Darlington, 1968). Thomas et al. (1998) claimed that the negative value of the

product measure can only happen for high multicollinearity. Basically, this mea-

sure shares the limitations of both the zero-order correlations and the beta weights

(Bring, 1996; Darlington, 1968). The example data illustrates this.

Variable TST TC MC

β̂jryxj 3.595 -2.572 -0.222

Note : β̂jryxj
is the product of the beta weight for the jth predictor and the corresponding

zero-order correlation.

Since the beta weights for the variables TC and MC are negative while the zero-

order correlations are positive, the product measures for these variables are nega-

tive. So calculation of percentages of importance is not possible. If one or more of

the predictors has a negative product measure value, then the product measures of

all variables have no meaningful interpretation. Pratt (1987) mentioned that this

95



measure would be valid only if both the zero-order correlation and beta weight for

a predictor variable have same sign.

4.2.5 Usefulness

The increase (decrease) in R2 from adding (removing) a predictor to (from) a

model that already contains all other predictors is referred to as the usefulness of

that particular predictor (Darlington, 1968). If the regressors are highly correlated,

the usefulness of a predictor can exceed the squared zero-order correlation and a

predictor with the lowest zero-order correlation can have a higher usefulness than

some of the other predictor variables. For correlated predictors, the sum of the

usefulness over all predictors is typically far less than the model R2 (Grömping,

2006). The table below gives the increase in R2 from adding each variable for

example dataset:

Variable TST TC MC

Usefulness 0.026 0.015 0.023

Though MC has a lower zero-order correlation than TC, the percentage of im-

portance assigned from the usefulness measure to the variable TC is even smaller

than that of MC. MC has a usefulness value of 0.023, which is greater than the

squared zero-order correlation of 0.020 (see, Subsection 4.2.2). Also, sum of the

usefulness of the three predictors is 0.064, which is far less than the model R2 of

0.801.

4.2.6 Engelhart’s measure

Engelhart (1936) assigns a contribution (squared beta weight) to each predictor
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variable and also a joint effect to each pair of predictor variables. The sum of

the contributions (individual and joint) is equal to the model R2 irrespective of

correlated or uncorrelated predictors. Engelhart expressed model R2 by

R2 = β̂2
1 + . . .+ β̂2

p + 2β̂1β̂2r12 + . . .+ 2β̂p−1β̂pr(p−1)p. (4.4)

If a regression model has p predictors then it will produce p individual contribu-

tions and [p(p− 1)] /2 joint effect terms. So if the number of predictors increases

then the total number of joint contributions increases rapidly. For high multi-

collinearity, the joint effect can be negative (as with the product measure) and

hence have no meaningful interpretation (Darlington, 1968). This is also clear

from the example dataset:

Variable TST TC MC TST ∗ TC TST ∗MC TC ∗MC

Contribution 18.179 8.577 2.438 -23.072 -6.095 0.774

Because of high multicollinearity between TST and TC, the joint effect of them

is negative, even though both of them are highly correlated with the response

variable, BF . The sum of the contributions is equal to the model R2 of 0.801.

Since some of the joint contributions are negative it is not possible to calculate

the percentage contributions.

4.3 Relative importance based on sequential sums

of squares

In the previous section, we discussed simple methods for evaluating relative im-

portance of predictor variables in multiple regression. In this section, we discuss
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the LMG and general dominance measures, which are based on averaging over

orderings.

For correlated regressors, the change in the regression sum of squares for adding

any predictor depends on the order in which the predictor enter the model. So,

to determine the contribution of a predictor to the total sum of squares, it is

better to take the average of the sums of squares over all possible p! orderings of

p predictors.

In the remainder of this chapter we will assume that Y and eachX variable have

been standardised to have unit length. That is, y>y = x>j xj = 1 for j = 1, . . . , p.

So the total sum of squares is 1. Thus regression sum of squares is equal to the

model R2.

4.3.1 LMG measure

The method was proposed by Lindeman et al. (1980, p.120), and hence has the

name LMG. They proposed taking a simple average of the sequential sums of

squares over all orderings. Kruskal (1987) independently decomposed R2 into non-

negative partitions based on averaging the squared semipartial correlations over

orderings and popularized the LMG method. This method is computationally

intensive — as the number of predictors increases the number of possible ordering

also increases rapidly.

To specify a formula for the LMG measure, suppose the regression sum of

squares for a model with the set S of regressors is denoted by SSR(S). Also

let SSR(M |S) denote the additional sum of squares from adding the set M of
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regressors to the set S, defined as

SSR(M |S) = SSR(M ∪ S)− SSR(S). (4.5)

Let F be the set of all p! orderings of regressors and let r = (r1, . . . , rp) denote an

ordering (r ∈ F). Let (rj) denote the position of Xj in that ordering. Suppose

Sr(rj)−1 denotes the set of the first (rj)− 1 variables that entered into the model in

the order r. Then the sum of squares of Xj in the order r is given by

SSR({Xj}|Sr(rj)−1) = SSR({Xj} ∪ Sr(rj)−1)− SSR(Sr(rj)−1)

= SSR(Sr(rj))− SSR(Sr(rj)−1).

(4.6)

So for p regressors, the LMG for regressor Xj is given as

LMG(Xj) =
1

p!

∑
r∈F

SSR({Xj}|Sr(rj)−1). (4.7)

When Lindeman et al. proposed this relative importance measure in 1980, fit-

ting models with all combinations of variables was only practical when the number

of variables was fewer than 5 or 6. Since then, advances in computer power has

substantially increased that number, so currently it takes only 0.28 seconds to

fit all submodels of 12 regressors using software developed by Grömping (2006).

However, it is not possible ot use Grömping’s software with models containing 25

regressors.

4.3.2 Dominance Analysis (DA) measure

Dominance analysis measures relative importance and was originally proposed

by Budescu (1993) and refined and extended by Azen and Budescu (2003). DA

is based on the comparison of R2 for all possible subset models. Budescu (1993)

defined the contribution of variables as the squared semipartial correlation, i.e., the
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increase in R2 from adding a new variable to a model that contains other variables.

For example, the contribution of X1 to the subset model {X3} is R2
Y.X1X3

−R2
Y.X3

,

where R2
Y.X1X3

is the value of R2 when Y is regressed on X1 and X3, while R2
Y.X3

is the R2- value when Y is regressed on X3.

When performing a regression analysis, the standard summary statistics in-

clude an estimate of the regression coefficients, the standard error of the coeffi-

cients and the t- statistics, as well as the p- values corresponding to the t- statistics.

The t- statistics are used to check whether individual regression coefficients sig-

nificantly differ from 0 and the square of the t- statistics are F - statistics. The

increase in R2 from adding a variable to the model that has other variables in the

model is used to calculate the dominance analysis measure and is also the numer-

ator of the F -statistic for testing whether a single parameter should be added to

the model.

There are three types of dominance, namely complete dominance, conditional

dominance and general dominance (Azen and Budescu, 2003). The strongest type

of dominance, termed complete dominance, rarely occurs. If the additional con-

tribution of Xj is always higher than Xk for all possible subset models, then Xj

completely dominates Xk. According to Budescu (1993), if Xj completely dom-

inates Xk and Xk completely dominates Xr then Xj completely dominates Xr,

i.e., dominance is transitive. Complete dominance does not exist in most cases,

because typically the additional contribution of Xj is greater than that of Xk

for some of the subset models, but the reverse happens for the remaining subset

models. A weaker type of dominance, called conditional dominance, compares the

average additional contributions to all subset models of sizes 0 to p − 1. If the
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average additional contribution of Xj is greater than Xk within each model size,

then Xj conditionally dominates Xk. Like complete dominance, conditional dom-

inance often does not exist for all pairs of predictors. Lastly, the weakest type of

dominance, called general dominance, is computed by averaging all the conditional

statistics. The sum of the general dominance over all predictors is equal to the

model R2. If Xj has the greater overall average additional contribution than Xk

then Xj generally dominates Xk.
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Table 4.2 gives a general picture of all three types of dominance for a three

regressors multiple regression model. This table makes the dominance analysis

procedure simpler to understand. The first column of Table 4.2 defines the subset

model, giving the variable(s) already in the model; the second column is the R2-

value of the subset model; the third column indicates the size of the subset model,

which varies between 0 and 2. The last three columns corresponding to each sub-

set model represents the additional contributions of X1, X2 and X3 respectively

as a result of adding that particular predictor to a subset model. For example,

R2
Y.X1X2

−R2
Y.X2

is the increase in R2 when X1 is added to the model that already

contains X2; it is called the contribution of X1 to the subset model X2. Similarly,

R2
Y.X1X2X3

− R2
Y.X2X3

is the increase in R2 when X1 is added to the model that

already contains X2 and X3. The first three coloured rows give averages and rep-

resent the average increase in R2 from adding a specified variable to all the subset

models of a given size that do not contain the specified variable. These averages are

the conditional dominance values. For example, the conditional dominance value

of variable X1 to subset models of size 1 is (−R2
Y.X2
−R2

Y.X3
+R2

Y.X1X2
+R2

Y.X1X3
)/2.

The last coloured row is the average of the conditional dominance values for each

variable and these are called the general dominance values. The expression of the

general dominance values are given below the table.

General dominance coincides with the LMG measure proposed by Lindeman

et al. (1980). The most commonly stated criticism of the DA measure is that

it is computationally demanding. This is because there are (2p − 1) regression

models that should be fitted in order to evaluate the relative importance of all

variables. Azen (2003) provided a SAS macro for the computation of dominance
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analysis that reduces the number of regression that must be calculated. The R

package “yhat” of Nimon and Oswald (2013) can be used to calculate dominance

analysis along with other statistics such as commonality analysis. However, with

20 regressors the general dominance measure could not be calculated using the

‘yhat’ package.

The number of variables that are included in regression models has increased

substantially, especially with interest in ‘big-data’. One possibility is to examine

a sample of submodels rather than examining all possible submodels. Simulations

we have conducted suggest that the LMG measure can be well-approximated by

examining 500 random sequences for entering variables into the regression model.

However, it is very difficult to take a random sample from the dominance analysis

procedure in order to get approximate results and reduce the number of model

fitting. A procedure for taking random sequences of samples from all possible p!

orderings for LMG is discussed in appendix A, where we also explain why random

samples cannot be obtained with the general dominance formulation.

4.4 Variables transformation methods

In variable transformation methods the correlated regressors are transformed to

closely related orthogonal variables (surrogate of original regressors). Then the

orthogonal variables are used as regressors instead of using the original regressors.

The transformed orthogonal variables are related with the original regressors on a

one-to-one basis. They are computationally far less demanding than the methods

based on sequential sums of squares.
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4.4.1 Orthogonal Counterparts (OC) measure

Gibson (1962) and R. M. Johnson (1966) suggested a method for obtaining a set

of orthonormal predictors that are closely related on a one-to-one basis with the

original set of predictors. The new predictors can be considered as ‘orthogonal

counterparts’ to the original regressors. To approximate the relative importance

of the original predictors, the response variable is regressed on the new orthonor-

mal variables. The proportion of the predictable variance in the response that is

accounted for by each orthogonal counterpart can be taken as the importance mea-

sure of the original regressors. We have discussed Johnson’s (1966) transformation

in Chapter 2.

The best-fitting (in the sense of least squares) orthogonal approximation of X

(Johnson, 1966) can be obtained by

Z = UV>, (4.8)

where U and V are the same as in equation (2.2) and Z can be found in equation

(2.9). The orthogonal vectors z1, . . . ,zp are called the ‘orthogonal counterparts’

of x1, . . . ,xp.

Let β̂Z = (β̂Z1 , . . . , β̂Zp)> denote the vector of regression coefficients from

regressing Y on Z, so

β̂Z =
(
Z>Z

)−1
Z>y = Z>y. (4.9)

Then β̂Zj
is called the beta weight of Zj (j = 1, . . . , p) and the squared beta

weight, β̂2
Zj

, is the variation in Y that is explained by Zj. Hence the squared

beta weights are a natural measure of the relative importance of the Z variables

(cf. Subsection 4.2.3). Each Z variable is paired with an X variable, and the
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Orthogonal Counterparts (OC) measure takes these squared beta weights as a

measure of the importance of the X variables, defining the relative importance of

Xj as β̂2
Zj

. The sum of these importance weights equals the variation in Y that

is explained by a multiple linear regression with X1, . . . , Xp as the independent

variables (or, equivalently, with Z1, . . . , Zp as the independent variables).

J. W. Johnson (2000) argues that the OC measure can assign relative weights

that are inappropriate when the original X variables are highly correlated, and

gives examples where some variables are assigned weights that seem too low. How-

ever, the OC measure appears to give sensible weight to the X variables when

the correlations between variables are not high. Also, recent work by Garth-

waite and Koch (2016) implies that the OC measure has an attractive ‘rotation

invariance’ property. (See Subsection 2.4.2 for details of rotation invariance prop-

erty.) When some variables have strong collinearities, they can be transformed

into non-collinear variables via orthogonal rotation of coordinate axes. Only axes

corresponding to variables involved in the collinearities need to be rotated, and

Garthwaite and Koch (2016) show that the rotation has no effect on the Z vari-

ables that correspond to un-rotated axes. The predictable variation in Y is also

unaffected by the rotation, so the OC measure has the property that the relative

importance is unchanged for those X variables associated with un-rotated axes

(Further detail is given in Subsection 2.4.2). This has the following implications

for the OC measure.

• Sometimes collinear variables can be transformed into meaningful variables

that are not collinear through a rotation of the axes associated with them.

This can lead to relative weights that are a transparently reasonable repre-
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sentation of the importance of the different variates. Moreover, the relative

weights are unchanged for those variables that are not involved in the rota-

tion.

• Since axes could be rotated to remove collinearities without affecting the

relative weights of the other variables, multicollinearities do not affect the

relative weights that the OC measure gives to variables not involved in the

collinearities.

The OC measure is compared with the new measures, the relative weight mea-

sure and the general dominance measure using numerical example in Section 4.7.

4.4.2 Green et al.’s δ2

The OC measure of Johnson (1966) and Gibson (1962) regress Y on the orthonor-

mal predictors Z and use squared betas as a measure of variable importance.

However, they did not relate the orthonormal predictors, Z, with the original pre-

dictors, X. Realizing the limitations of OC measure, Green et al. (1978) proposed

a measure of variable importance where they regress the columns of Z on X in

addition to regressing Y on Z. Suppose Γ is the matrix of regression coefficients

when Z is regressed on X. That is,

Γ =
(
X>X

)−1
X>Z. (4.10)

Where γjk denote the jth regression coefficient when Zk is regressed on X. Then

the relative contribution of Xj to predict Zk is obtained by

γ∗jk
2 =

γ2jk∑p
j=1 γ

2
jk

. (4.11)
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If β̂Zk
is the beta weight (obtained from OC measure) of Zk (k = 1, . . . , p) when

regressing Y on Z, then the relative importance of Xj as suggested by Green et al.

(1978) is given by

δ2j =

p∑
k=1

γ∗jk
2β̂2

Zk
. (4.12)

Each δ2j is always non-negative and sum of the δ2j ’s is equal to R2.

Jackson (1980) criticized the method, because “the γ2jk’s are coefficients from

regressions on correlated variables; ... cannot meaningfully and unambiguously

assign importance to the Xj’s any more than could the β̂j’s from a regression of

Y on the Xj’s”. Green et al. (1980) replied that δ2j ’s are at least better than

previous measures. However, this method is not considered further in this thesis

because subsequent work by Johnson (2000) is clearly better, as Johnson (2000)

demonstrates.

4.4.3 Relative Weights (RW) measure

The Relative Weights (RW) measure of J. W. Johnson (2000) is based on the

same Z variables that are calculated for the OC measure. That is z1, . . . ,zp are

the orthogonal variables that minimize
∑p

j=1(xj − zj)>(xj − zj) and, as they are

orthogonal, the relative importance of Zj in predicting Y is clearly β̂2
Zj

. However,

while the OC measure simply takes β̂2
Zj

as the relative importance of Xj, the mea-

sure of Johnson (2000) takes into account all the correlations between the X and

Z variables. From the criterion that determines the Z variables, the correlation

between Xj and Zj should be high, but this correlation could still be well below 1

if the X variables display collinearities or high intercorrelations. Also, Xj might

not be the only X variable that has a marked correlation with Zj.
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Let λjk denote the correlation between Xj and Zk. The transformation from

X to Z has the unexpected symmetry property that λjk = λkj for all j, k (see,

for example, Johnson (1966)). As Z is a linear transformation of X and vice-

versa,
∑p

j=1 λ
2
jk = 1 and the symmetry of λjk leads to the useful consequence that∑p

j=1 λ
2
jk =

∑p
k=1 λ

2
jk = 1 (see Subsection 2.1). The RW measure divides the

relative importance of Zk amongst the X variables (as zk is a linear combination

of xj’s) according to the square of their correlations with Zk, so the relative im-

portance weight that Xj derives from Zk is λ2jkβ̂
2
Zk

. (This indeed partitions the

relative importance of Zk, as
∑p

j=1 λ
2
jkβ̂

2
Zk

= β̂2
Zj

∑p
j=1 λ

2
jk = β̂2

Zk
.) The full relative

importance weight of Xj is obtained by summing the relative importance weights

that it derives from all the Z variables. Thus, under the RW measure, the relative

importance of Xj is given by

RW of Xj =

p∑
k=1

λ2jkβ̂
2
Zk
. (4.13)

Johnson’s (2000) relative weights of regressors obtained from equation (4.13)

coincides with the proposals of Fabbris (1980) and Genizi (1993) (see Nimon and

Oswald (2013)). The latest version of Grömping’s R package “relaimpo” contains

the metric genizi. Also the R package “yhat” developed by Nimon and Oswald

(2013) can be used to calculate RW of regressors.

The λ2jk in equation (4.13) may be regarded as the squares of regression coef-

ficients rather than the squares of correlation coefficients, as

E (Xj|Z) = λj1Z1 + . . .+ λjpZp (4.14)

when Xj is regressed on Z1, . . . , Zp. When Johnson (2000) proposed the RW mea-

sure he used the regression model in equation (4.14) to motivate its construction.
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Figure 4.1: Relationships between the X, Z and Y variables for three regressors when Y is

regressed on the Z variables and each X variable is regressed on the Z variables

However, we prefer to view the λ2jk as squared correlations because correlation is

a symmetric relationship while the regression equation (4.14) is a one-directional

relationship and shows how the Z variables determines Xj. When viewed as a

regression, the relationships between the X, Z and Y variables is illustrated in

Figure 4.1 and shows no direct link between the X and Y variables. When the

λ2jk are viewed as squared correlations, the links between the X and Z variables

are two-directional association, thus giving links from the X variables to Y .

Applications in which the RW measure has been used are reported in Johnson

and LeBreton (2004) and Krasikova et al. (2011). Part of the attraction of the

RW measure is that it typically gives similar results to the general dominance

measure of Budescu (1993), even though Budescu’s measure and the RW measure

are calculated in very different ways. As Johnson (2000, p.15) suggests, “it is

encouraging that two measures that have very different definitions and calculations

produce very similar solutions”, and Johnson and LeBreton, 2004 (2004, p.251)
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argue that the closeness of results indicates that the two measures are measuring

the same construct. Thomas et al. (2014) show that for two variables, RW of

Johnson (2000) and the relative importance obtained by LMG (and hence general

dominance of Budescu (1993)) are algebraically identical.

4.5 New measures of Relative Importance

Three new measures are proposed here. All are based on transformations that

yield orthogonal variables — the first and third are similar to the OC measure of

Gibson (1962) and R. M. Johnson (1966); the second is very similar to the RW

measure of J. W. Johnson (2000). The main difference is that the new measures use

transformations that are determined by cross-products of the X and Y variables,

rather than ignoring Y in choosing the transformation. The third new measure

uses weights to alter the balance of the different cross-products when forming

orthogonal variables.

The estimated regression coefficient β̂ for regressing Y on X = (X1, . . . , Xp)
>

is

β̂ =
(
X>X

)−1
X>y (4.15)

and the regression sum of squares (RegSS) is

y>X(X>X)−1X>y. (4.16)

Let (y1, . . . , yn)> = y and let Y be an n×n diagonal matrix with diagonal elements

y1, . . . , yn. The RegSS can also be rewritten as:

1>YX(X>X)−1X>Y1 (4.17)

where 1 is a vector of ones.
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Both the OC and RW measures construct orthogonal vectors z1, . . . ,zp that

corresponds closely to the original predictors x1, . . . ,xp on a one-to-one basis. The

way the z1, . . . ,zp are chosen ignores the values of Y , even though the reason for

constructing z1, . . . ,zp is to partition the RegSS. With our new measures, a set

of orthogonal vectors w1, . . . ,wp is chosen so that Ywj is closely related to Yxj.

Suppose Y is regressed on w1, . . . ,wp and that wij is the ith component of wj.

Then wj’s contribution to the RegSS from the ith sample is (yiwij)
2. Our new

measures take (yiwij)
2 as a first estimate of the contribution of Xj to the RegSS

from the ith sample. (The OC and RW measures equivalently take (yizij)
2 as a

first estimate of Xj’s contribution to the RegSS from the ith sample, where zij

is the ith component of zj.) Hence, as yiwij is the ith component of Ywj, it is

appropriate to focus on Yw1, . . . ,Ywp in the criterion for choosing w1, . . . ,wp. It

is for this reason that we want to focus on the distance between Ywj and Yxj (we

want them to be closely related in some sense) rather than focusing on the distance

betweenwj and xj. We also want W = (w1, . . . ,wp) to be a linear transformation

of X = (x1, . . . ,xp), so that regression models with w1, . . . ,wp as explanatory

variables and with x1, . . . ,xp as explanatory variables give identical predictions,

residuals and regression sums of squares. Hence, analogous to equation (2.18),

we choose W so that
∑p

j=1(Ywj)
>(Yxj) is maximized subject to the constraints

that W>W = Ip and W = XA for some p× p non-singular matrix A.

The following lemma and theorem give the transformation for obtaining W

from X and Y.

Lemma 1. If W = XA and W>W = Ip, then W = X
(
X>X

)−1/2
G where G is

a p× p orthogonal matrix. The converse also holds, i.e., if W = X
(
X>X

)−1/2
G
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and G is an orthogonal matrix, then W>W = Ip.

Proof. For the first part of the lemma, let G = (X>X)1/2A. Then A = (X>X)−1/2G

and W = X(X>X)−1/2G. Also Ip = W>W = G>(X>X)−1/2X>X(X>X)−1/2G =

G>G. This implies that G is orthogonal, as required. The converse is immedi-

ate: if W = X(X>X)−1/2G and G is an orthogonal matrix, then W>W =

G>(X>X)−1/2X>X(X>X)−1/2G = G>G = Ip.

Theorem 4. Under the constraints that W = XA and W>W = Ip, the value of

W = (w1, . . . ,wp) that maximizes
∑p

j=1 (Ywj)
> (Yxj) is

W = X
(
X>X

)−1/2
G, (4.18)

where

G = Ψ
(
Ψ>Ψ

)−1/2
(4.19)

and

Ψ =
(
X>X

)−1/2
X>YYX. (4.20)

Proof. From Lemma 1, W = X
(
X>X

)−1/2
G where G is an orthogonal ma-

trix. Put G =
(
g1, . . . , gp

)
, so wj = X

(
X>X

)−1/2
gj. Also, define ψj =(

X>X
)−1/2

X>YYxj for j = 1, . . . , p. Then
∑p

j=1 (Ywj)
> (Yxj) =

∑p
j=1(g

>
j (X>

X)−1/2X>Y(Yxj) =
∑p

j=1 g
>
j ψj. As G is an orthogonal matrix, it is immediate

from Theorem 1 in Garthwaite et al. (2012) that
∑p

j=1 g
>
j ψj is maximized when

G = Ψ
(
Ψ>Ψ

)−1/2
, where Ψ =

(
ψ1, . . . ,ψp

)
. Thus equation (4.20) defines Ψ.

We should note that the X variables are standardized but ‖Yxj‖ typically

varies with j. Hence the X variables are given equal importance in maximising∑p
j=1 x

>
j zj or minimizing

∑p
j=1(xj − zj)>(xj − zj) (as with the OC and RW

113



measures) but here, in maximising
∑p

j=1 (Ywj)
> (Yxj), Xj is given greater im-

portance when ‖Yxj‖ is larger than when it is small. This has the benefit that

those X variables that are most highly correlated with Y are given greater weight

when choosing the wj. (We could scale the X variables so that ‖Yxj‖ is the same

for each Xj, but that would lose this benefit.)

4.5.1 First new measure (NM1)

In the same way that the OC measure views zj as the counterpart of xj (j =

1, . . . , p), our first New Measure (NM1) views Ywj as the counterpart of Yxj

(j = 1, . . . , p). The RegSS when Y is regressed on wj is {1>Ywj}2 =
(
y>wj

)2
.

As {w1, . . . ,wp} are a set of orthonormal vectors,
∑p

j=1(y
>wj)

2 is the RegSS

both when Y is regressed on w1, . . . ,wp and when Y is regressed on x1, . . . ,xp.

NM1 defines the relative importance of Xj as

NM1: Relative importance of Xj =
(
y>wj

)2
. (4.21)

Like the OC measure, NM1 has a rotation invariance property. Specifically,

if an orthogonal rotation is applied to some of the X variables, the relative im-

portance of the other X variables is unchanged if relative importance is measured

using NM1. Further detail of rotation invariance is given in Chapter 2 and the

proof of rotation invariance for NM1 is given in Section 4.6. As with the OC

measure, it means that collinearities do not affect the relative importances that

NM1 gives to variables not involved in the collinearities.
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4.5.2 Second new measure (NM2)

While NM1 allocates all the RegSS of Wk to Xk, our second new method, NM2,

divides the RegSS of Wk between the X variables according to their association

with Wk. As Z = X
(
X>X

)−1/2
, from equation (4.18) we have that W = ZG.

(This is an attractive representation of W because Z is a set of orthonormal vectors

and G =
(
g1, . . . , gp

)
is an orthogonal matrix.) Thus,

wk = Zgk. (4.22)

As noted in Section 4.5, z1, . . . ,zp correspond closely to x1, . . . ,xp on a one-to-

one basis, so wk should generally be highly correlated with Xgk. Also gj and gk

are orthogonal for j 6= k, typically wk will not be closely associated with Xgj for

j 6= k.

NM2 divides the RegSS of Wk between X1, . . . , Xp to reflect the squares of the

sample correlations between Xgj and wk (j = 1, . . . , p). Let rjk denote the sample

correlation between Xgj and wk. It is readily shown that

rjk =
g>j
(
X>X

)1/2
gk

[g>j X>Xgj]
1/2

. (4.23)

The proportion of Wk’s RegSS that NM2 attributes to Xj is r2jk/
∑p

l=1 r
2
lk, so NM2

defines the relative importance of Xj as:

NM2: Relative importance of Xj =

p∑
k=1

r2jk
(
y>wk

)2∑p
l=1 r

2
lk

. (4.24)

If Xj has low correlations with other X variables, the NM1 and NM2 will give

similar importance to Xj. However the relative importance that they assign to Xj

can differ markedly if Xj is highly correlated with some of the X variables. This

can be seen in the Section 4.7.
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4.5.3 Third new measure (NM3)

If an X variable has a small regression coefficient in the multiple regression of

y on all the X variables, then dropping that variable from the regression model

can be attractive. With the NM1 and NM2 measures (and also the OC and RW

measures), the orthogonal counterparts of all variables can change markedly if any

X variables are discarded, which might be undesirable in some situations. Our

third new measure, NM3, takes account of the size of regression coefficients when

forming orthogonal counterparts, so that the inclusion or exclusion of variables

with small regression coefficient has little effect on the orthogonal counterparts of

other variables.

As in equation (4.15), let β̂ denote the estimated regression coefficient for

regressing Y on X = (X1, . . . , Xp)
> and put β̂ = (β̂1, . . . , β̂p)

>. While NM1 and

NM2 choose W = (w1, . . . ,wp) to maximize
∑p

j=1 (Ywj)
> (Yxj), with NM3 we

choose W# = (w#
1 , . . . ,w

#
p ) to maximize

∑p
j=1 |β̂j|(Yw

#
j )> (Yxj). Thus, with

NM3, the importance of the correlation between (Yw#
j ) and (Yxj) depends upon

the size of β̂j.

Now
∑p

j=1 |β̂j|(Yw
#
j )>(Yxj) =

∑p
j=1(Yw

#
j )>(Yx#

j ) where x#
j = |β̂j|xj. If

we let X# = (x#
1 , . . . ,x

#
p ) , then analogy to Theorem (4) yields the following

result.

Corollary 1. Under the constraints that W# = X#A and
(
W#

)>
W# = Ip, the

value of W# = (w#
1 , . . . ,w

#
p ) that maximizes

∑p
j=1 |β̂j|(Yw

#
j )>(Yxj) is obtained

by replacing W with W# and X with X# in equations (4.18) - (4.20).

NM3 views (Yw#
j ) as the counterpart of (Yx#

j ) (j = 1, . . . , p) and evaluates
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the relative importance of Xj as the value of R2 when Y is regressed on w#
j . Thus,

NM3: Relative importance of Xj =
(
y>w#

j

)2
. (4.25)

NM3 and the DA measure are the only measures we examine that explicitly use

the multiple regression of Y on X = (X1, . . . , Xp)
>. Using this regression model

seems sensible, since the purpose of the measures is to evaluate the contribution

of each variable to this regression.

4.6 Rotation invariance property

With the majority of measures of importance, rotating some explanatory vari-

ables will change the relative importance of every variable. However, results in

Garthwaite and Koch (2016) show that with the OC measure only the relative

importances of variables involved in the rotation are changed — the relative im-

portances are unchanged for those variables that are not involved in the rotation

(see also Subsection 2.4.2). Theorem 5 (below) shows that NM1 also has this

rotation invariance property.

Lemma 2. If H is a positive-definite matrix and Γ is an orthogonal matrix of the

same dimension as H, then
(
Γ>HΓ

)−1/2
= Γ>H

−1/2
Γ.

Proof. (Γ>H
1/2

Γ).(Γ>H
1/2

Γ) = Γ>H
1/2

(ΓΓ>)H1/2Γ = Γ>HΓ, so (Γ>HΓ)1/2 =

Γ>H
1/2

Γ. Hence, (Γ>HΓ)−1/2 = (Γ>H
1/2

Γ)−1 = Γ−1H−1/2(Γ>)−1 = Γ>H
−1/2

Γ.

Lemma 3. Suppose X∗ = XΓ. Under the constraints that W∗ is a linear trans-

formation of X∗ and that (W∗)>W∗ = Ip, the value of W∗ = (w1, . . . ,wp)
> that
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maximises
∑p

j=1(Yw
∗
j)
>(Yx∗j) is

W∗ = WΓ, (4.26)

where W is defined by equations (4.18), (4.19) and (4.20).

Proof. Let Ψ∗ = [(X∗)>X∗]−1/2(X∗)>YYX∗ and put G∗ = Ψ∗[(Ψ∗)>Ψ∗]−1/2.

Now, [(X∗)>X∗]−1/2 (X∗)> = [Γ>X>XΓ]−1/2Γ>X> = Γ>[X>X]−1/2ΓΓ>X> (from

Lemma 2), so [
(X∗)>X∗

]−1/2
(X∗)> = Γ>

[
X>X

]−1/2
X>. (4.27)

Hence, Ψ∗ = Γ>[X>X]−1/2X>YYXΓ = Γ>ΨΓ, where Ψ is defined in equation

(4.20). Thus G∗ = Γ>ΨΓ[
(
Γ>ΨΓ

)> (
Γ>ΨΓ

)
]−1/2 = Γ>ΨΓΓ>[Ψ>ΓΓ>Ψ]−1/2Γ

(from Lemma 2), so G∗ = Γ>Ψ[Ψ>Ψ]−1/2Γ = Γ>GΓ, where G is defined by

equation (4.19).

The proof of Theorem 4 does not require the fact that the X variables have

been standardized to have unit variance. Hence the result of the theorem also

applies to W∗ and X∗. It follows that W∗ = (X∗)>[(X∗)>X∗]−1/2G∗ so, from

equation (4.27), W∗ = X[X>X]−1/2ΓG∗. As G∗ = Γ>GΓ, this gives W∗ =

X
[
X>X

]−1/2
ΓΓ>GΓ, so W∗ = WΓ, where W is defined in equation (4.18).

If say, just the first d of p explanatory variables are rotated, then the rotation

matrix Γ has the block-diagonal structure

Γ =

Γd 0

0 Ip−d

 , (4.28)

where Γd is an orthogonal matrix of order d and Ip−d is a (p − d) order identity

matrix. Then, from Lemma 3,
(
w∗d+1, . . . ,w

∗
p

)
= (wd+1, . . . ,wp). When Y is

regressed on
(
w∗1, . . . ,w

∗
p

)
, the contribution of w∗j to the RegSS is the same as the

118



RegSS from a simple regression of Y on w∗j , because
(
w∗1, . . . ,w

∗
p

)
are an orthog-

onal set of vectors. Under NM1, this RegSS is taken as the relative importance

of X∗j in a regression of Y on
(
X∗1 , . . . , X

∗
p

)
. Similarly, when Y is regressed on

(X1, . . . , Xp), NM1 evaluates the relative importance of Xj as the RegSS from a

simple regression of Y on wj. As w∗j = wj for j = d + 1, . . . , p, NM1 has the

rotation invariance property given in the following theorem.

Theorem 5. If an orthogonal rotation is applied to some of the X variables, the

relative importance of the other X variables is unchanged if relative importance is

measured using NM1.

4.7 Examples

In this section we apply the measures of relative importance to several datasets. In

Subsection 4.7.1 we examine straightforward application of the measures, using five

datasets that have clear structures. In Subsection 4.7.2 we examine how relative

importance changes under orthogonal rotation of some variables and under variable

selection.

4.7.1 Fixed models

Each dataset consists of 1000 data drawn from a multivariate normal distribution

with a mean vector of zeros and variance-covariance matrix Σ, where Σ varies with

the dataset. The first component of a datum is the response, Y , and the other

components are the explanatory variables, X1, . . . , Xp. We first describe each

dataset by giving the sample correlation matrix R̂, the multiple regression model

that relates Y to the explanatory variables, the value of R2 for that regression, and
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the regression coefficients for simple regressions when Y is regressed separately on

one X variable at a time. We also note salient features of the dataset. After

this brief description of the datasets, we tabulate the relative importance that the

different measure allocate to each variable. The results are then discussed.

Example 4.1

In this first dataset, X2 and X3 are useful predictors of Y and X1 correlates with

both X2 and X3. But the regression coefficient for X1 is small in both a simple

regression of Y on X1 and a multiple regression of Y on X1, X2 and X3.

The sample correlation matrix is

R̂ =

Y X1 X2 X3

1.000

−0.007

0.501

−0.489

−0.007

1.000

0.676

0.717

0.501

0.676

1.000

0.304

−0.489

0.717

0.304

1.000



Y

X1

X2

X3

The fitted standardized multiple regression model is:

Ŷ = 0.063X1 + 0.684X2 − 0.743X3 (R2 = 0.706)

and the simple regression models are

Ŷ = −0.007X1, Ŷ = 0.501X2, and Ŷ = −0.489X3.

Example 4.2

In a sense, this example is the opposite of Example 4.1. Now Y correlates highly

with X1 and its correlations with X2 and X3 are much lower. Also, X1 has much

120



the biggest regression coefficient in a multiple regression of Y on X1, X2 and X3.

Again, there is marked correlation between the X variables.

The sample correlation matrix is

R̂ =

Y X1 X2 X3

1.000

0.847

0.419

0.382

0.847

1.000

0.701

0.697

0.419

0.701

1.000

0.483

0.382

0.697

0.483

1.000



Y

X1

X2

X3

The fitted standardized multiple regression model is:

Ŷ = 1.380X1 − 0.351X2 − 0.411X3 (R2 = 0.865)

and the simple regression models are

Ŷ = 0.847X1, Ŷ = 0.419X2, and Ŷ = 0.382X3.

Example 4.3

There are just two explanatory variables in this dataset. The Y variable is highly

correlated with X1 but uncorrelated with Z1. Together, X1 and X2 give a multiple

regression equation that predicts Y perfectly.

The sample correlation matrix is

R̂ =

Y X1 X2
1.000

0.893

0.450

0.893

1.000

0.803

0.450

0.803

1.000


Y

X1

X2
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The fitted standardized multiple regression model is:

Ŷ = 1.499X1 − 0.755X2 (R2 = 1.00)

and the simple regression models are

Ŷ = 0.893X1, and Ŷ = 0.450X2.

Example 4.4

The correlation between the X variables in this example is the same as in Example

4.2, apart from sampling variation. Now, however, the three X variables make

similar contributions in a multiple regression, and their simple regressions (with

Y as the dependent variable) are also similar.

The sample correlation matrix is

R̂ =

Y X1 X2 X3

1.000

0.854

0.801

0.792

0.854

1.000

0.704

0.679

0.801

0.704

1.000

0.505

0.792

0.679

0.505

1.000



Y

X1

X2

X3

The fitted standardized multiple regression model is:

Ŷ = 0.335X1 + 0.376X2 + 0.375X3 (R2 = 0.884)

and the simple regression models are

Ŷ = 0.854X1, Ŷ = 0.801X2, and Ŷ = 0.792X3.
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Example 4.5

In this example, Y is almost a perfect linear function of the last five X variables

(X2, . . . , X6) while Y is more highly correlated with X1 than the other X variables.

Also, the largest correlations between the X variables are the correlations involving

X1.

The sample correlation matrix is

R̂ =

Y X1 X2 X3 X4 X5 X6

1.000

0.805

0.681

0.669

0.702

0.702

0.698

0.805

1.000

0.581

0.572

0.601

0.605

0.598

0.681

0.581

1.000

0.352

0.361

0.392

0.386

0.669

0.572

0.352

1.000

0.372

0.384

0.365

0.702

0.601

0.361

0.372

1.000

0.428

0.422

0.702

0.605

0.392

0.384

0.428

1.000

0.400

0.698

0.598

0.386

0.365

0.422

0.400

1.000



Y

X1

X2

X3

X4

X5

X6

The fitted standardized multiple regression model is:

Ŷ = 0.010X1+0.277X2+0.266X3+0.272X4+0.261X5+0.269X6 (R2 = 0.936)

and the simple regression models are

Ŷ = 0.805X1, Ŷ = 0.681X2, Ŷ = 0.669X3

Ŷ = 0.702X4, Ŷ = 0.702X5, and Ŷ = 0.698X6.

Results from the five examples.

The relative importance given to each variable by the six different measures are

given for each example in Table 4.3. Advocates of the RW measure argue that one
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Table 4.3: Relative importances given by the orthogonal counterparts (OC), relative weights

(RW) and general dominance (GD) measures and by three new measures (NM1, NM2 and

NM3) in Examples 4.1–4.5

OC RW GD NM1 NM2 NM3

Example 4.1

X1 0.000 0.099 0.078 0.000 0.094 0.000

X2 0.350 0.304 0.314 0.366 0.322 0.358

X3 0.355 0.302 0.314 0.340 0.289 0.347

Example 4.2

X1 0.856 0.642 0.665 0.764 0.669 0.864

X2 0.008 0.115 0.101 0.061 0.105 0.000

X3 0.002 0.108 0.099 0.040 0.091 0.001

Example 4.3

X1 1.000 0.798 0.798 0.930 0.830 0.989

X2 0.000 0.202 0.202 0.070 0.170 0.011

Example 4.4

X1 0.305 0.301 0.316 0.316 0.307 0.281

X2 0.292 0.293 0.287 0.289 0.292 0.307

X3 0.288 0.290 0.282 0.280 0.285 0.296

Example 4.5

X1 0.124 0.137 0.170 0.172 0.159 0.001

X2 0.163 0.160 0.152 0.143 0.147 0.184

X3 0.155 0.153 0.145 0.146 0.149 0.177

X4 0.167 0.164 0.158 0.160 0.162 0.199

X5 0.163 0.160 0.155 0.160 0.161 0.187

X6 0.165 0.162 0.156 0.155 0.157 0.188

of its strengths is that it generally gives similar results to the general dominance

(GD) measure. Table 4.3 shows that this was also the case for our examples, but

the table shows that the NM2 measure also gives similar results to GD. Indeed,

for Examples 4.2, 4.4 and 4.5 the relative importances assigned by GD are a little

closer to those of NM2 than to those of RW. The results of the other measures

(OC, NM1 and NM3) are often fairly similar to each other, especially those of OC

and NM3, as in Examples 4.2 and 4.3. At the same time, NM1 is notably similar

to GD in examples 4.4 and 4.5, and NM3 gives radically different results to all
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other measures in Example 4.5.

In some of the examples, a variable’s contribution to predicting Y was small but

it was correlated with variables that were better predictors. Then the variable’s

relative importance was higher when measured by RW, GD or NM2 than when

measured by OC, NM1 or NM3. This can be seen in Example 4.1, where X1 is

a poor predictor, and in Example 4.2, where X2 and X3 are poor predictors. In

Example 4.1, the multiple regression suggests that X1 makes some contribution

to the prediction (albeit small) so the relative importance value it receives from

OC, NM1 and NM3 seem too close to 0. Similarly, the relative importance values

they give to X2 and X3 in Example 4.2 also seem too low.

The NM1 and NM3 measures, though conceptually quite similar to the OC

measure, can give evaluations that are clearly more sensible than those of the OC

measure. This is illustrated in Example 4.3, where the OC measure evaluates the

relative importance of X1 as 100% and the relative importance of X2 as 0%. This

is inappropriate, since X1 on its own cannot explain all the variation in Y , while

the combination of X1 and X2 can explain all the variation in Y , clearly showing

that X2 contributes usefully to the multiple regression model. The NM1 and NM3

measures evaluate the contribution of X2 as small, but non-zero. The larger values

given to X2 by the RW, GD and NM2 measures are perhaps a better reflection of

X2’s contribution, since on its own X2 explains 20.3% of the variation in Y .

In Example 4.4 the three X variables all make similar contributions to the

prediction of Y and the six measures all seem to reflect this appropriately. In

Example 4.5, it is arguable whether X1 is useful for predicting Y . On the one

hand, X1 makes little contribution to the multiple regression model while, on the
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other hand, it is the best predictor of Y from simple regression. NM3 gives X1

a relative importance that is close to 0, which might be considered appropriate

in view of the multiple regression model. Other measures give it a much higher

relative importance; indeed, GD and NM1 evaluate it as the most important

predictor which, to us, seems inappropriate. Example 4.5 also shows that the RW

and GD measures are not always in close agreement: while GD evaluates X1 as

the most important variable in the regression model, RW evaluates it as the least

important.

4.7.2 Orthogonal rotation and variable selection

Two examples are examined in this subsection. In the first, two of the explanatory

variables are highly correlated and we consider both the model with the original

variables and the model that results from rotating the correlated variables. Mea-

sures of relative importance are applied to both models and their differences are

examined. In the second example, one variable has a regression coefficient that

does not differ significantly from 0 (at the 5% level of significance). We examine

how dropping this variable from the model effects the relative importances of the

other variables.

Example 4.6 Orthogonal rotation

The Longley dataset (Longley, 1967) is well-used as an example of highly collinear

regression. The dataset contains annual values of various US macroeconomic vari-

ables for the years 1947-1962. Here we use five of its variables: npe (number of

thousands of people employed), GNP1 (GNP implicit price deflator), GNP2 (GNP
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in millions of dollars), npue (number of thousands of unemployed people) and npa

(number of people in the armed forces). We take npe as the response variable and

initially take the other four variables as the explanatory variables.

The following is the sample correlation matrix for these variables:

R̂ =

npe GNP1 GNP2 npue npa

1.000

0.971

0.984

0.502

0.457

0.971

1.000

0.992

0.621

0.465

0.984

0.992

1.000

0.604

0.446

0.502

0.621

0.604

1.000

−0.177

0.457

0.465

0.446

−0.177

1.000



npe

GNP1

GNP2

npue

npa

The fitted standardized multiple regression model is:

n̂pe = 0.173GNP1 + 0.998GNP2 − 0.227npue− 0.109npa, (4.29)

for which R2 = 0.986.

The correlation matrix shows that there is a strong collinearity between two

of the explanatory variables, GNP1 and GNP2. Collinearity can radically affect

the values of parameter estimates and will inflate their variances. Transforming

variables to remove collinearity is consequently attractive and here we replace

GNP1 and GNP2 by the variables

X1 = (GNP1 +GNP2)/
√

2 and X1 = (GNP1 −GNP2)/
√

2.

This is equivalent to multiplying the original variables by the orthogonal rotation
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Table 4.4: Relative importances of variables before and after rotation

OC RW GD NM1 NM2 NM3

Relative importances before rotation

GNP1 0.400 0.390 0.390 0.527 0.361 0.088

GNP2 0.526 0.417 0.411 0.371 0.393 0.888

npue 0.023 0.099 0.104 0.046 0.139 0.005

npa 0.036 0.079 0.081 0.042 0.092 0.004

Relative importances after rotation

X1 0.922 0.682 0.687 0.891 0.550 0.967

X2 0.004 0.014 0.015 0.007 0.183 0.004

npue 0.023 0.161 0.156 0.046 0.146 0.004

npa 0.036 0.128 0.128 0.042 0.107 0.011

matrix,

Γ =



1√
2

1√
2

0 0

1√
2
− 1√

2
0 0

0 0 1 0

0 0 0 1


.

The new variables X1 and X2 are uncorrelated.

Regressing npe on the transformed set of variables gives the equation

n̂pe = 1.681X1 − 0.054X2 − 0.227npue− 0.109npa. (4.30)

Theory implies that the regression coefficients of the unrotated components (npue

and npa) should be unchanged — comparison of equations (4.29) and (4.30) shows

that this is indeed the case. Also, the R2 value is again 0.986. However, with

some measures of relative importance, the importances of npue and npa in the

pre-rotation model (equation (4.29)) will differ from their importances in the post-

rotation model (equation (4.30)). This can be seen in Table 4.4, where the relative

importances given by our six measures of importance are presented.

In line with theory, the table shows that the relative importances given by the
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OC and NM1 measures to npue and npa are unchanged by the rotation of GNP1

and GNP2. With the other measures, the relative importances given to npue and

npa do change, though the degree of change varies with the measure. With NM3

the importance values change by a large proportion (e.g., from 0.004 to 0.011),

though the changes are small in absolute terms. With the RW and GD measures

the changes are quite large — noticeably larger (at least three times larger) than

with the NM2 measure. Interestingly, values given by the NM2 measure are strad-

dled by the before/after values given by the RW and GD measures, and are quite

close to the averages of the before/after values given by both the RW measure

and the GD measure. For example, the RW measure gives before/after values of

0.079 and 0.128 to npa, and their average is relatively close to the values 0.092

and 0.107 that NM2 gives to npa.

Example 4.7 Variable selection

Wood (1973) presents data from a process variable study of a petroleum refin-

ery unit. The dependent variable (Y ) is the octane value of the petroleum pro-

duced and there are four independent variables: three relate to feed composition

(X1, X2, X3) and the fourth relates to process conditions (X4). Eighty-two obser-

vations were taken, giving the following sample correlation matrix:
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R̂ =

Y X1 X2 X3 X4

1.000

−0.870

0.392

−0.638

0.629

−0.870

1.000

−0.589

0.449

−0.337

0.392

−0.589

1.000

−0.298

0.161

−0.638

0.449

−0.298

1.000

−0.722

0.629

−0.337

0.161

−0.722

1.000



Y

X1

X2

X3

X4

After standardizing the variables, regression of Y on the four independent variables

gave

Ŷ = −0.824X1 − 0.172X2 − 0.097X3 + 0.309X4, (R2 = 0.905) (4.31)

as the regression model. There is clear evidence that X1, X2 and X4 should be

included in the regression model (p < 0.0002 for each of these three variables) but

whether X3 should be included is debatable. The null hypothesis that the regres-

sion coefficient for X3 is zero is rejected only at significance level 0.07. Omitting

X3 from the model gives the regression equation

Ŷ = −0.841X1 − 0.163X2 + 0.372X4, (R2 = 0.902). (4.32)

The top half of Table 4.5 displays the real importance assigned to the different

X variables by the different measures when all four X variables are included in

the regression model. Surprisingly, all but one of the measures gives X3 a higher

relative importance than X2, even though X3 is the variable whose inclusion in

the model is tenuous. The NM3 measure is the exception. It gives X3 a relative

importance of 0.0, which concords fully with the inference that X3 can reasonably

be omitted from the regression model.

130



Table 4.5: Relative importances of variables before and after omitting X3

OC RW GD NM1 NM2 NM3

Relative importances before omitting X3

X1 0.593 0.515 0.518 0.488 0.439 0.685

X2 0.012 0.066 0.064 0.009 0.051 0.060

X3 0.121 0.146 0.150 0.160 0.178 0.000

X4 0.180 0.179 0.173 0.250 0.238 0.161

Relative importances after omitting X3

X1 0.640 0.570 0.578 0.604 0.542 0.665

X2 0.016 0.075 0.075 0.017 0.072 0.074

X4 0.246 0.257 0.248 0.281 0.287 0.162

The lower half of Table 4.5 shows the relative importances assigned to X1, X2

and X4 after X3 has been omitted from the model. In the whole of the table,

the RW and GD measures are strikingly similar in all their evaluations. It is also

the case that all measures evaluate X1 as the most important variable and X4 as

the second most important (both before and after omitting X3). In other respects

though, there is limited agreement across measures. For example, NM1 and NM2

agree quite closely in their evaluations of X1 and X4, but NM1 is similar to OC

in its evaluation of X2, while NM2’s evaluations of X2 are similar to those of RW,

GD and NM3.

With most measures, the relative importance of X3 is far greater than the dif-

ference between the R2 values of the models in equations (4.31) and (4.32). Hence,

with those measures the omission of X3 must substantially increase the relative

importance of at least one X variable. As X3 has higher absolute correlation with

X4 than with X1 or X2, it might be anticipated that omitting X3 would increase

the relative importance of X4 more than that of X1 or X2. This is indeed the

case for the OC, RW and GD measures, but not for NM1, NM2 or NM3. It seems
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then, that the effects on relative importance of omitting a variable are somewhat

unpredictable and can vary markedly with the choice of measure.

4.8 Concluding comments

Six measures for evaluating the relative importance of predictor variables in a

regression have been examined. From the examples presented in Section 4.7, it is

clear that usually there is some consensus between them — variables given a high

relative importance by one measure are usually given a high relative importance

by other measures, and similarly for low relative importance. At the same time,

in each example there were differences between the measures in their evaluations,

and some differences were substantial.

Occasionally, common sense shows that an evaluation is unreasonable. For

instance, in Example 4.3 the OC measure evaluated the relative importance of X1

as 100% and that of X2 as 0%. This is clearly inappropriate, as all the variation

in Y could not be explained by X1 on its own, but could be explained by the com-

bination of X1 and X2. Often though, the evaluations of the different measures all

seem reasonable and how to choose between them is not clear-cut, because there

are no known ‘correct’ evaluations with which to make comparison. As noted by

Johnson and LeBreton (2004, p.240), “Because there is no unique mathematical

solution to the problem [of evaluating relative importances], these indices [mea-

sures] must be evaluated on the basis of the logic behind their development, the

apparent sensibility of the results they provide, and whatever shortcomings can

be identified.”

The following arguments favour different measures.
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1. The GD and RW measures have been the most widely recommended mea-

sures in recent years, partly because they typically give similar evaluations,

suggesting that there is an underlying construct that they both appraise.

The examples presented here support that rationale, as they give further

evidence that the two measures generally give similar results — there is only

one case (variable X1 in Example 4.5) where the GD and RW evaluations

differ appreciably. Most often, the GD measure is closer to RW than to any

other measure, though there were examples where GD was closer to NM2.

2. The OC measure has the benefit of simplicity, so that the relationship be-

tween a variable and the evaluation of its relative importance is fairly direct.

A further merit of the OC measure is that it has the rotation invariance

property.

3. In constructing the new measures (NM1–3), the aim was to improve upon

the OC and RW measures by letting Y influence the transformation to or-

thogonality, rather than determining the transformation from just the values

of the regressors. This was motivated by the observation that the transfor-

mation’s purpose is to help evaluate the relationship between Y and the

regressors, so both should be taken into account in forming the transforma-

tion. On that basis, NM1 is to preferred over OC, since in other respects the

construction of the two measures are very similar. Similarly for NM2 and

RW. Regarding NM1 and OC, the two measures tend to give similar results

but, when there are larger differences, the NM1 evaluations tend to be closer

to the consensus of all six measures, perhaps giving further reason to favour

NM1 over OC.
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4. In the examples, a feature of NM3 is that it gave low relative importance to

variables that might reasonably be omitted from the regression, which could

be considered an attractive characteristic. In Example 4.7, for instance,

it gave X3 a relative importance of 0.000 while other measures gave it a

relative importance of 0.121 or more. Similarly, in both Examples 4.1 and

4.5, predictions of Y are not improved by including X1 in the regression

model but, in Example 4.1, OC, NM1 and NM3 gave X1 a low evaluation

and, in Example 4.5, only NM3 gave it a low evaluation.

The new measures presented here and ideas behind them could be adapted to

give other measures of potential value. In particular, any of the OC, RW and NM2

measures could be modified to use regression coefficients as weights when forming

orthogonal counterparts, in the same way that NM3 is derived from NM1. The

weighting scheme could also be generalised to use the (|β̂j|)α as weights (where the

β̂j are the multiple regression coefficients). Setting α equal to 0 would correspond

to ‘no weighting’, and increasing α would increase the importance of the weighting.
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Chapter 5

Identifying variables underlying

multicollinearity

5.1 Introduction

When the regressors are orthogonal, the use and interpretation of a multiple re-

gression model is straightforward. But in real life problems, many of the regressors

are correlated. There is no precise definition of collinearity in the literature. Orig-

inally it meant that there is a perfect linear relationship between two or more

regressors. In practice, such exact collinearity rarely happens. A broader sense

of collinearity refers to a near linear relationship between two or more regressors.

The term near linear relationship implies that one of the regressor can be ap-

proximately expressed as a linear combination of one or more of the remaining

regressors. For this chapter, we use the term multicollinearity or collinearity to

indicate near linear relationship among some or all regressors of the model.

Collinearity has a number of practical consequences. When there is an exact
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collinearity, the ordinary least squares (OLS) estimate of β is not unique and vari-

ances of the individual estimates are infinite (Gujarati, 2003, p.345–347). When

there is approximate collinearity, OLS estimates have large variances and covari-

ances, and one or more important regressors may have low t-ratios and much wider

confidence intervals (statistically insignificant), even if the overall model param-

eters are significant and the model has a high R2 value. Also, OLS estimates

and their variances will be sensitive to minor changes in the data (Gujarati, 2003,

p350), so the addition of new observations to the data or deletion of observations

from the data can change the regressors that variable selection chooses to include

in the model. It also inflates some of the OLS estimates in absolute value, i.e.,

the estimated vector β̂ is generally longer than the true parameter vector β. As

a result, the average of the squared distance between the parameters and the es-

timates can become large (Ofir and Khuri, 1986). In some cases one or more of

the estimates may even produce incorrect signs of the OLS estimates, contradict-

ing the relationship of these regressors and the response variable (Hocking, 2003,

p.153).

In summary, inferences and prediction can be misleading in the presence of

multicollinearity. So identification of and remedy of collinearity deserves more

attention. This chapter focuses on the diagnostics and identification of collinear

sets.

Several methods for detecting multicollinearity have been proposed in the lit-

erature. None of them can uniquely identify collinearity in the data. Detailed

description of the methods will provide clearer guidelines for the researchers. The

simplest of them examines the pairwise correlations between regressors. This
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method is applicable for identifying pairwise collinearity but is not suitable for

the detection of more complex collinearity. Farrar and Glauber (1967) proposed

a three-stage procedure to detect and locate interdependence and identify its pat-

tern. However, their tests are seriously criticized by Haitovsky (1969), Wichers

(1975), Kumar (1975), and O’Hagan and McCabe (1975). Most researchers prefer

to use condition indices and variance inflation factors, which are related to the

correlation matrix of the regressors.

The above methods are used either for the diagnosis of collinearity or detect-

ing the number of collinear sets. However, they cannot identify the collinear sets,

i.e., the sets of regressors that are collinear. Gunst and Mason (1977) and Bels-

ley et al. (1980) suggested two procedures for identifying collinear sets. Both of

them are based on the eigenvalues and eigenvectors of the correlation matrix of

the regressors. However, Belsley et al.’s (1980) procedure provides more detailed

information about collinearity sets than Gunst and Mason’s (1977) procedure.

More recently, Garthwaite et al. (2012) proposed a procedure for identifying the

collinear sets that is based on the inverse of the square-root matrix of the cor-

relation matrix of the regressors. Basically, this procedure partition the variance

inflation factors into individual contribution of regressors. Hence, also, this pro-

cedure provides very detailed information about collinearity sets. For example, if

there is a collinearity among three variables, then three rows of the transformation

matrix will provide this information.

Good reviews of works are given in Belsley et al. (1980), Ofir and Khuri (1986),

Gujarati (2003) and Montgomery et al. (2015). The above mentioned three pro-

cedures for identifying collinear sets are compared through examples from three
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published studies that identify collinear sets using either procedure.

In designed experiments, the values of the explanatory variables are usually

fixed at values that avoid multicollinearities. This is the case, for example, in

standard designs involving factors, such as Latin squares or randomized block

designs. With such designs, analysis of variance is commonly used to test for

the importance of variables and X>X is a non-singular matrix. Our methods

can be applied to the data from such experiments. However, in some designed

experiments (for example, when there is confounding) X>X is singular and then

our methods cannot be applied.

Diagnosis and identification of the number of collinearities in the dataset is

discussed in Section 5.2. In Section 5.3 we discuss three procedures for identifying

collinearity sets. Comparison of the procedures by using published examples that

address multicollinearity using either procedure are given in Section 5.4. Conclud-

ing comments are given in Section 5.6.

5.2 Detection of Multicollinearity

Suppose we have a multiple regression model of Y on X1, . . . , Xp

Y = β0 + β1X1 + . . .+ βpXp + ε. (5.1)

For n observations from a sample, the above model can be written in matrix form

as

y = β01 + Xβ + ε (5.2)

where y is an n × 1 vector of response variable, 1 is an n × 1 vector of ones,

X is an n × p matrix of known values of the regressors X1, . . . , Xp, β is a p × 1
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vector of unknown parameters and ε is an n × 1 vector of random error terms,

with var(εi) = σ2 and the εi’s independently distributed. For simplicity, all X

variables and Y are standardized to have sample means of 0 and unit lengths.

Consequently, X>X is the sample correlation matrix of the regressors and X>y

is the vector of sample correlations between the response and the regressors. We

denote the correlation matrix of the regressors by Rxx, i.e., Rxx = X>X.

Essentially, multicollinearity depends on the particular sample and is not a

statistical problem. The regressors from a particular set of sample data may be

multicollinear, when the regressors are not correlated in the population from which

the sample was taken. There are several methods of detecting multicollinearity, but

there is no unique simple method for its detection. Instead, there are some rules of

thumb for detecting the number of collinearities and identifying the collinearities

sets. In the next subsections, some of these rules will briefly be discussed.

The dataset used in Chapter 4 from Neter et al. (1983) is used to explain

the common methods of identifying the multicollinearity. The dataset has four

variables BF , TST , TC and MC. The variable BF is considered as the response

variable. The estimated standardized regression model is

B̂F = 4.264TST − 2.929TC − 1.561MC (5.3)

5.2.1 Inspection of R2, F and t-statistics

If Xj and Y are highly correlated, but H0 : βj = 0 is not rejected, it sug-

gests a collinearity that involves Xj. If the overall F -test for the hypothesis

H0 : β1 = . . . = βp = 0 is significant but none or very few of the individual

model parameters are significantly different from zero, it suggests multicollinear-

139



ity. That is, if there is an overall significant F -test but insignificant t-values for

all the individual model parameters or most of the individual parameters, we may

suspect that multicollinearity is present among the regressors. At the same time,

a few insignificant t-values and a high R2 does not mean multicollinearity.

Sample size has an effect on the F test. If the sample size become larger and

R2 stays the same, the significance of the F - statistic increases. Hence, for a

given R2, with a large sample size there is less uncertainty when rejecting the null

hypothesis that the population regression coefficients are all zero. With a small

sample size there is greater uncertainty.

With the dataset from Neter et al. (1983), the model has R2 = 0.801 and F =

22.86 with 3 and 17 df. This is significant at 1% level of significance (p = 0.000)

but none of the individual regression parameters are significant (p =0.157, 0.270,

and 0.176 respectively), suggesting the likelihood of multicollinearity.

5.2.2 Examination of the correlation matrix of the regres-

sors

If a model has only two regressors, the correlation coefficient determines the degree

of collinearity. For a model with more than two regressors, any pairwise correla-

tions between the regressors greater than 0.8 or 0.9 indicates multicollinearity (Far-

rar and Glauber, 1967, p.98). According to Gujarati (2003, p.359), high pairwise

correlations are not a necessary condition for the existence of multicollinearity but

they are a sufficient condition. If more than two regressors form a multicollinearity

set, it is not necessary for any of the pairwise correlations to be large. Pairwise

correlation can be used only to detect pairwise multicollinearity and inspection of
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Table 5.1: Correlation matrix of the body fat data

Variable BF TST TC MC

BF 1.000 0.843 0.878 0.142

TST 0.843 1.000 0.924 0.458

TC 0.878 0.924 1.000 0.085

MC 0.142 0.458 0.085 1.000

pairwise correlation is not sufficient for identifying the presence of multicollinearity

among more than two regressors (Montgomery et al., 2015, p.296). According to

Klein (1962), multicollinearity is harmful if the pairwise correlation between two

regressors is greater than or equal to the overall multiple correlation, i.e., rjk ≥ Ry,

where rjk is the correlation between Xj and Xk, and Ry is the multiple correlation

between the response and the regressors.

The correlation table of Chapter 4 in page 92 is reproduced below. It shows

that the correlation between TST and TC is high (0.924), so a collinearity is

indicated between TST and TC.

5.2.3 Examination of the determinant of the correlation

matrix of the regressors

The determinant of the correlation matrix of the regressors can be used as a

measure of multicollinearity (Ofir and Khuri, 1986). The range of the deter-

minant of Rxx is 0 ≤ |Rxx| ≤ 1. When the regressors are orthogonal, then

|Rxx| = 1. If |Rxx| = 0, there is a perfect linear dependency between some of the

regressors. |Rxx| becomes closer to zero if multicollinearity becomes more severe.

On the basis of the distribution of |Rxx|, Farrar and Glauber (1967) proposed

a statistical test to check the existence and severity of multicollinearity. They
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viewed multicollinearity as any departure from orthogonality. The hypothesis is

H0 : The X ′s are orthogonal, versus H1 : The X ′s are not orthogonal. The test

statistic has the form

χ2 = −
[
n− 1− 1

6
(2p+ 5)

]
loge|Rxx|. (5.4)

The test statistic approximately follows a chi-square distribution with v = 1
2
p(p− 1)

degrees of freedom. If the calculated value of chi-square, χ2
cal, from a sample is

greater than the tabulated value of χ2
v(α) for a significance level α, it is concluded

that collinearity exists between some of the regressors. This chi-square statistic is

basically Bartlett’s (1954) sphericity test, which is based on the Wishart distribu-

tion. Under the assumption thatX = (X1, . . . , Xp)
> follows a multivariate normal

distribution, the sample correlation matrix, Rxx, is distributed as a Wishart dis-

tribution. The chi-square test of Farrar and Glauber (1967) has been criticized

by Haitovsky (1969). Haitovsky point out that the existence of this test requires

X to be stochastic, while one of the assumption of the linear regression model is

that X is fixed. Also the test statistic is sensitive to sample size.

The calculated value of the chi-square test statistic from the body fat data is

χ2
cal = 100.75, which is significant at the 1% level of significance (χ2

3(0.01) = 11.34).

This again indicates the presence of multicollinearity among the regressors. The R

package “mctest” can be used to calculate the chi-square test statistic for testing

the overall collinearity.

5.2.4 Examination of R2 from auxiliary regressions

The regressions of Xj (j = 1, . . . , p) on X1, . . . , Xj−1, Xj+1, . . . , Xp are called the

auxiliary regressions of the main regression of Y on X1, . . . , Xp. One way of
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identifying which particular regressor is collinear with the remaining regressors is

by performing overall F -tests for the auxiliary regressions (Farrar and Glauber,

1967). For Xj, the hypothesis to be tested is H0 : R2
j.1,...,p = 0 versus H1 : R2

j.1,...,p 6=

0. The test statistic is

F =
R2
j.1,...,p/(p− 1)

(1−R2
j.1,...,p)/(n− p)

. (5.5)

Which is distributed as F with p − 1 and n − p degrees of freedom. The null

hypothesis is rejected at significance level α, if the observed value of F from the

sample is greater than the tabulated value F(p−1),(n−p)(α). If the overall F -test for

a particular auxiliary regression is significant it means that the particular regressor

Xj is collinear with X1, . . . , Xj−1, Xj+1, . . . , Xp.

The F -statistics corresponding to TST , TC and MC are 62.47, 45.68 and

10.81 respectively. The degrees of freedom of the F distribution are (2, 17) and

the corresponding tabulated value at the 1% level of significance is 6.11. We

therefore conclude that TST can be predicted from TC and MC, TC can be

predicted from TST and MC and, in addition, MC can be predicted from TST

and TC. The R package “mctest” can also be used to calculate F - statistics to

test the significance of auxiliary regressions.

Instead of performing the overall F -test for all auxiliary regressions, one can

compare the R2 value of an auxiliary regression with the R2 value of the main

regression model. If we let R2
y denote R2 for the full model and R2

j denote R2

for the auxiliary regression (j = 1, . . . , p), then Klein (1962) suggested that a

particular regressor Xj (j = 1, . . . , p) is collinear with X1, . . . , Xj−1, Xj+1, . . . , Xp

if R2
j is greater than R2

y.
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5.2.5 Examination of partial correlations

Partial correlation is the simple correlation between two variables after controlling

for the effect of other regressors. If we have three variables, X1, X2 and X3, the

partial correlation between X1 and X2 is denoted by r12.3 and is defined by

r12.3 =
r12 − r13r23√

(1− r213)(1− r223)
(5.6)

where rjk’s are the simple correlations.

For more than three variables, the partial correlation can be obtained from the

inverse of the correlation matrix. The partial correlation coefficient between Xj

and Xk after adjusting for the other variables is defined by

rjk. =
−rjk√
rjjrkk

, (5.7)

where rjk is the (j, k)th off-diagonal element of R−1xx , and rjj and rkk are the jth

and kth diagonal elements of R−1xx respectively.

The hypothesis to be tested is H0 : rxjxk.x1,...,xp = 0, versus H1 : rxjxk.x1,...,xp 6=

0. As given by Farrar and Glauber (1967), the statistic

tjk. =
rjk.
√
n− p√

1− r2jk.
(5.8)

has Student’s t-distribution with v = (n−p) degrees of freedom and can be used to

assess the interdependence pattern among the regressors. If the calculated value

of the t-statistic from the sample is greater than the theoretical value tv(α) for a

significance level α, then the regressors Xj and Xk are considered to be collinear.

Wichers (1975, p.367) argues that the partial correlation test is not appropriate

for detecting multicollinearity because entirely different multicollinearity patterns

may produce the same partial correlation.
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Table 5.2: t-statistics and its associated p-values (p-values are given inside the brackets)

Variable TST TC MC

TST – 5.979 (0.000) 1.975 (0.074)

TC – – -0.469 (0.648)

Table 5.2 gives the t-statistics values for all pairs of partial correlations obtained

from the body fat data. The test statistic is significant only for the variable pair

TST and TC. On that basis the variables TST and TC are collinear. Partial

correlations can be tested using the “ppcor” package in R language.

5.2.6 Variance inflation factors

Variance inflation factors (VIFs) are the most commonly used method of identify-

ing the existence of collinearities and which variables are involved in collinearities.

The VIF measures the increase of variance of the regression estimator with the

increase of multicollinearity. The term VIF was first used by Marquaridt (1970).

The variance-covariance matrix of the regression estimator β̂ of a multiple

regression model is

var(β̂) = σ2
(
X>X

)−1
(5.9)

where σ2 is the common variance of the random error term. The covariance of the

estimators are related to the off-diagonal elements of (X>X)−1, while the variance

of the estimators are related to the diagonal elements of (X>X)−1. That is

var(β̂j) = σ2
(
X>X

)−1
jj
. (5.10)

Suppose the regressor set, X, is partitioned as

X =

(
X(1)

...X(2)

)
(5.11)
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where X(1) = X1 and X(2) = (X2, . . . , Xp)
>. The corresponding partitioning of

the correlation matrix Rxx = X>X is

X>X =

 x>1 x1 x>1 X(2)

X>(2)x1 X>(2)X(2)

 . (5.12)

From the standard result for the inverse of a portioned matrix, the upper-left

corner, r11 of the inverse of X>X is

r11 =
[
x>1 x1 − x>1 X(2)

(
X>(2)X(2)

)−1
X>(2)x1

]−1
. (5.13)

Now R2 value from regressing X1 on X(2) = (X2, . . . , Xp)
> is

R2
1 =

x>1 X(2)

(
X>(2)X(2)

)−1
X>(2)x1

x>1 x1

= x>1 X(2)

(
X>(2)X(2)

)−1
X>(2)x1. (5.14)

Since x>1 x1 = 1, r11 can be expressed as

r11 =
(
1−R2

1

)−1
(5.15)

and var(β̂1) from equation (5.10) can be rewritten as

var(β̂1) = σ2 1

(1−R2
1)
. (5.16)

The factor (1−R2
1)
−1

is called the variance inflation factor (VIF1) for the

variance of β̂1. In general,

var(β̂j) = σ2 1(
1−R2

j

) , (5.17)

where R2
j is the R2 value from regressing Xj on X1, . . . , Xj−1, Xj+1, . . . , Xp and

σ2 is the variance of the random error term ε. The factor
(
1−R2

j

)−1
is called the

VIF of Xj (Farrar and Glauber, 1967). The VIFj is the jth diagonal element of

the inverse of the correlation matrix Rxx (Hocking, 2003, p.166).
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It can also be shown that the VIF associated with a predictor Xj is the ratio

of the variance of the estimated coefficient, var(β̂j), form a model with correlated

regressors and the variance of the estimated coefficient, var(β̂j0), of the model

when the regressors are orthogonal (Hocking, 2003, p.166). So VIFj measures

the amount of inflation of the variance of β̂j due to the inclusion of correlated

regressors in the model. For example, a VIFj of 5 tells us that the variance of β̂j is

5 times inflated due to its collinearity with other regressors. Also the width ratio

of the confidence interval of βj from the observed data relative to the confidence

interval obtained from the model with orthogonal regressors is equal to the square

root of V IFj (Ofir and Khuri, 1986).

There is no theory-based rule for what values of VIF indicate collinearity.

There is a rule of thumb that a VIF greater than 10 indicates collinearity and

this rule is often adopted (Neter et al., 1983, p.392). However, Montgomery et al.

(2015, p.296) claims that the VIF for a regressor greater than 5 or 10 indicates that

the associated regression coefficient is poorly estimated due to collinearity. Also,

according to O’Brien (2007), a VIF of even 4 indicates serious multicollinearity.

For the correlation matrix in page 141, the VIF’s are 708.84 (TST ), 564.34

(TC) and 104.61 (MC). Hence all three regressors are involved in a collinearity,

or collinearities. General statistical packages for identifying collinearity automat-

ically give VIFs, making them convenient to use.
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5.2.7 Eigensystem analysis of the correlation matrix of the

regressors

An eigensystem analysis of X>X is widely used to detect multicollinearity. Here,

X>X is both the cross-product matrix of the standardized data matrix X and the

correlation matrix Rxx of the regressors. Discussion of the eigensystem analysis is

usually based on the correlation matrix because multicollinearity entirely depends

on the correlation structure of the regressors. Suppose λ1 ≥ . . . ,≥ λp are the

ordered eigenvalues of the correlation matrix Rxx, where
∑p

j=1 λj = p, the number

of columns of X. If the regressors are uncorrelated then λj = 1, for j = 1, . . . , p.

For correlated regressors, some of the eigenvalues are greater than 1 and some

are less than 1. Since the product of the eigenvalues of a square matrix is equal

to the determinant of that matrix, one or more small eigenvalues implies that

the correlation matrix is near-singular. Near-singularity in the correlation matrix

implies that one or more near-linear dependencies exist among the columns of the

data matrix, X.

If there is a perfect multicollinearity between some variables, one of the eigen-

values of Rxx will be exactly equal to zero. The number of collinear sets in the data

is equal to the number of near zero eigenvalues of Rxx. For example, if λ1 = 2.532,

λ2 = 0.460 and λ3 = 0.008, then the dataset has only one collinear set. On the

other hand, if λ1 = 2.932, λ2 = 0.040 and λ3 = 0.028, then there are two collinear

sets in the data.

Some analyst prefer to use the condition number of the correlation matrix

Rxx as a measure of overall multicollinearity. The condition number is generally

used as a measure of numerical instability in a correlation matrix Rxx (a positive
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definite matrix). The condition number of Rxx is defined as

CN =
Maximum eigenvalue

Minimum eigenvalue
=
λ1
λp
. (5.18)

For orthogonal regressors, all the eigenvalues of Rxx are one and hence the condi-

tion number is 1. Since the sum of the diagonal elements of the correlation matrix

is equal to the number of regressors, the sum of the eigenvalues of that correlation

matrix is equal to p, the number of regressors. So if a correlation matrix has some

small eigenvalues, it also has some large eigenvalues. Consequently, the condition

number is always greater than 1 for non-orthogonal regressors. A condition number

between 100 and 1000 indicates moderate to strong multicollinearity and a con-

dition number greater than 1000 is often used to indicate severe multicollinearity

(Gujarati, 2003, p.362; Montgomery et al., 2015, p.298).

A related measure used to identify the number of collinear sets in the data is

the condition index (CI). The condition indices κj of Rxx are

κj =

√
λmax
λj

, for j = 1, . . . , p. (5.19)

The largest condition index equals the square root of the condition number. In

the literature, there is no agreement on specific thresholds for condition index that

strictly determine the strength (degree) of multicollinearity. However, empirical

understanding of Belsley et al. (1980, p.105) suggest that κj’s around 5 or 10

indicate weak dependencies, whereas values of κj’s between 30 to 100 indicate

moderate to strong collinearity. In addition, Rawlings (1988, p.371) suggests that

κj’s around 10 indicate weak dependencies, 30 to 100 indicate moderate to strong

collinearity and serious collinearity is indicated by κj’s greater than 100. To the

best of our knowledge, there is no suggestion for condition indices between 10 and

30.
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Condition indices have limited value in the diagnosis of collinearity. They can

only detect the number of collinearities but cannot identify the variables which

are involved in the multicollinearity. Standard statistical packages for collinearity

diagnostics automatically give condition number and condition indices. The con-

dition indices for the body fat data are 1.000, 1.488 and 53.329, which indicate

that there is only one collinear set.

Thisted (1980) suggested two multicollinearity indexes. These are

mci =

p∑
j=1

(
λp
λj

)2

(5.20)

and

pmci =

p∑
j=1

λp
λj

(5.21)

where λp is the smallest eigenvalue of Rxx. The mci is for estimation and pmci

is for prediction. They satisfy the inequality 1 < mci ≤ pmci ≤ p, with equality

holding for orthogonal regressors. For orthogonal regressors, both measures have

the value p and with increasing collinearity they go towards one. That is, high

multicollinearity is indicated by values close to one; if their values are greater than

two it indicate relatively little or no multicollinearity. According to Fellman et al.

(2009), these measures can be used only if there is one small eigenvalue but are

unreliable for several small eigenvalues. To the best of our knowledge there is no

R package for calculating Thisted’s collinearity measures.

5.2.8 Expected squared distance between β and β̂

For collinear data, the OLS estimates are usually large in absolute value. So the

average squared distance between the true parameter values and the OLS estimates
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are sometimes used as a measure of multicollinearity. Denote the squared distance

by D2, then

E(D2) = E

[
p∑
j=1

(β̂j − βj)2
]

= E
[
(β̂ − β)>(β̂ − β)

]
= tr

{
E
[
(β̂ − β)(β̂ − β)>

]}
= tr

{
var(β̂)

}
= tr

{
σ2(X>X)−1

}
= tr

{
σ2R−1xx

}
= σ2tr

(
R−1xx

)
.

(5.22)

Since the sum of the eigenvalues of a matrix is equal to its trace, the average

squared distance can be expressed in terms of the eigenvalues. Also the eigenvalues

of R−1xx are the reciprocals of the eigenvalues of Rxx. So equation (5.22) becomes

D2 = σ2

p∑
j=1

1

λj
. (5.23)

One or more small eigenvalues can make the average squared distance very large,

so small eigenvalues indicate collinearity. For orthogonal regressors, the λj’s are

all equal to 1 and hence D2 = pσ2. Hoerl and Kennard (1970) used this squared

distance as a measure of multicollinearity.

Equation (5.22) can also be written as

D2 = σ2

p∑
j=1

VIFj (5.24)

as the diagonal elements of the inverse of the correlation matrix of the regressors

are the VIFs of the regressors. If the regressors are orthogonal then VIFs would

be all 1 and consequently D2 would be pσ2. If D2 is five times (say) greater

than pσ2, multicollinearity is present (Chatterjee and Hadi, 2006, p.245). The
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average squared distance between β and β̂ for the body fat data is 1377.79σ2 and

pσ2 = 3σ2, again suggesting a multicollinearity in the data.

5.3 Identifying collinear sets

The methods discussed above can provide only the presence and the number of

collinearities among the columns of X. However, they cannot identify the cause

of each collinear sets. The methods discussed in this section aim to identify the

variables involved in each collinearity.

There are three procedures for identifying the collinear sets. The first is based

on the eigenvalues and the eigenvectors of the correlation matrix Rxx. The second

is also based on the eigenvalues and the eigenvectors of the correlation matrix, but

is more sophisticated. It decomposes the variance of the regression coefficients

and finally express them in proportions. The last and most recent procedure

was suggested by Garthwaite et al. (2012) and is based on a transformation that

partitions the VIFs into contribution of individual variables. The procedure can

be used for identifying the collinear variables as well as the collinearity sets.

5.3.1 Eigenvalues and eigenvectors of Rxx

It has been suggested that the eigenvectors corresponding to small eigenvalues can

be used to identify the multicollinearity sets (e,g., Gunst and Mason (1977)). If

vj is the normalized eigenvector corresponding to the eigenvalue λj for the matrix

Rxx = X>X, then

X>Xvj = λjvj. (5.25)
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Since vj is normalized, this implies

(Xvj)
>(Xvj) = λj ≈ 0, (5.26)

if λj is near zero. Now (Xvj)
>(Xvj) ≈ 0, if and only if Xvj ≈ 0, i.e.,

∑p
i=1 vijxi ≈

0, since the sum of the squares of the elements of near-zero vector is close to zero.

This implies that the columns of X are linearly dependent. Since
∑p

i=1 vijxi ≈ 0

is the definition of multicollinearity, small eigenvalues can identify collinearity

among the regressors and collinearity sets can be described by the eigenvectors

corresponding to small eigenvalues. If λj is near-zero, then the elements of vj that

are large identify the regressors that are involved in a collinearity.

This method is very simple and hence widely used in practice. However, com-

bining VIFs with eigenvalues and eigenvectors is not a well-integrated approach,

as a VIF is not linked to a particular eigenvector (VIFs are commonly used to

determine the variables which are involved in collinearity). Garthwaite et al.

(2012) illustrated that this method provides limited information about the pat-

tern of collinearities in the data as a collinear set can be identified from only one

eigenvector. Also, if two small eigenvectors are approximately equal then eigen-

vectors corresponding to those small eigenvalues cannot identify the form of the

collinearities — it can only identify the variables that belong to at least one of the

collinearities. That is, the method fails to separate specific variables involved in

specific collinearities. For example, two eigenvectors may identify that variables

X1, X2, X3 and X4 are involved in at least one collinearity. However, in reality,

there can be a collinearity between X1 and X2 and another between X3 and X4.

In addition, Belsley (1991, p.36) gave an example in which the small eigenvec-

tor elements that corresponded to a small eigenvalue did not correspond to the
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absence of those variables in a collinearity.

For simplicity, we will use the term eigenvectors analysis to indicate the eigen-

values and eigenvectors analysis.

5.3.2 Regression coefficient variance-decomposition

The procedure of variance-decomposition was proposed by Silvey (1969) and was

reinterpreted and extended by Belsley et al. (1980). It is closely related to the

concept of eigenvectors analysis, as the method uses eigenvalues and eigenvectors

to form a set of variance-decomposition proportions. The basis for the analysis is

to decompose the variances of the regression estimators into a sum of terms that

are associated with singular values of X. Like eigenvectors analysis, this method

is a by-product of principal component analysis.

The variance-covariance matrix of β̂, the OLS estimators, is

var
(
β̂
)

= σ2
(
X>X

)−1
(5.27)

where σ2 is the common variance of the random error term ε of the regression

model Y = Xβ + ε.

Using the singular-value decomposition of X (discussed in Chapter 2), equation

(5.27) can be written as

var
(
β̂
)

= σ2
(
X>X

)−1
= σ2

(
V∆U>U∆V>

)−1
= σ2

(
V∆−2V>

)
. (5.28)

The jth diagonal element of this matrix is the variance of the regression coefficient

β̂j. That is,

var
(
β̂j

)
= σ2

p∑
k=1

v2jk
λk

(5.29)
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Table 5.3: Matrix of variance decomposition proportions

Variance-decomposition Proportions

X1 X2 . . . Xp

A
ss

o
ci

at
ed

w
it

h

√
λ1 π11 π12 . . . π1p√
λ2 π21 π22 . . . π2p
...

...
...

. . .
...√

λp πp1 πp2 . . . πpp

where vjk is the jth element of the kth eigenvector. Equation (5.29) decomposes

var(β̂j) into p components, each of them related to a single eigenvalue λk. Other

things being equal, a small λk (which indicates near linear dependencies in the

data) can dramatically inflate var(β̂j) if the corresponding entry vjk is not close

to zero. Here,
∑p

k=1

v2jk
λk

is proportional to the variance of β̂j. If X>X is the

correlation matrix of the regressors, then
∑p

k=1

v2jk
λk

is the jth VIF.

If the components are expressed as proportions for all var(β̂j) and the results

are displayed in a table, it will help researchers identify the collinearity sets. Let

ηjk =
v2jk
λk

and ηj =

p∑
k=1

ηjk for j = 1, . . . , p. (5.30)

Then the (j, k)th variance-decomposition proportion, i.e., proportion of variance

of β̂j associated with the the kth singular value is

πkj =
ηjk
ηj
, for all j, k = 1, . . . , p. (5.31)

Table 5.3 displays the variance decomposition proportions associated with all

singular values. It can be noted that
∑p

k=1 πkj = 1, for j = 1, . . . , p. If the

regressors are orthogonal then the variance decomposition proportions matrix is

an identity matrix. A variance-decomposition proportion greater than 0.5 that

corresponds to a small eigenvalue is a recommended criteria for whether a regressor
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is part of that multicollinearity (Belsley et al., 1980, p.112; Montgomery et al.,

2015, p.300).

The following three cases summarizes the experimental evidence of Belsley

et al. (1980).

(a) Only one near dependency. If there is only one large condition index, indicat-

ing a single near dependency, it is possible to identify collinear set by examin-

ing the variance-decomposition proportions (Belsley, 1991, p.136). Variance-

decomposition proportions of at least 0.5 for two or more regression coefficients

associated with a high condition index indicates that these variables (variables

associated with those regression coefficients) are involved in a collinearity.

(b) Confounding with competing dependencies. This occurs when two or more

condition indices are large and have roughly the same magnitude. The 0.5

rule for identifying the variables involved in each collinearity from separate

principal components must be modified. In this case, the variables whose

aggregate proportions across these large condition indices (of roughly the same

magnitude) are at least 0.5 are involved in at least one of the collinear sets

(Belsley et al., 1980, p.154). The information on exactly which variables are

involved in a specific competing dependency is lost. For example, if there

are two competing dependencies, one between X1, X2 and X3 and another

between X2, X3 and X4, then we can only identify that the variables X1, X2,

X3 and X4 are involved in at least one near dependency.

(c) Dominating dependencies. Dominating dependencies means the existence of

two or more large condition indices with one extremely large. The near de-

pendency associated with the extremely large condition index can explain a
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greater amount of the variance of a specific regression coefficient and the in-

volvement of this variable in other near linear dependencies becomes invisible

(Belsley et al., 1980, p.155). In this case, it is quite possible to have only

one variance-decomposition proportion (associated with the large condition

index) that is greater than the threshold value of 0.5 and which masks the

other collinear set. So, further analysis is required. One suggestion is to use

the set of auxiliary regressions to investigate the nature of the relationship

between variables. A procedure for forming the auxiliary regressions from the

variance-decomposition proportions is give in Belsley et al. (1980, p.159). One

variable is identified from each row (associated with a large condition index)

as having the largest variance-decomposition proportions and each of these

variables is regressed separately against the remaining variables. For exam-

ple, suppose we have five variables X1, X2, X3, X4 and X5 and it is known that

there are two collinear sets, one in which X1 has the largest variance propor-

tions associated with a largest condition index, and the other in which X2 has

the largest variance proportions associated with the second largest condition

index. Then X1 and X2 are each regressed separately on X3, X4 and X5 and

the t-statistics for regression coefficients are used descriptively to identify the

variables involved in each collinearity (Belsley, 1991, p.144). Unfortunately,

when there are many collinearities, forming auxiliary regressions is often not

straightforward and interpreting the results can be hard.

An advantage of this approach over eigenvectors analysis is that the algorithms

for computing the singular-value decomposition are more stable numerically than

those for the eigenvalues and the eigenvectors of Rxx (Belsley, 1991, p.44). The
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R package ‘perturb’ can be used to find the variance-decomposition proportions

from regression analysis. This is also available in SPSS and SAS and, in conse-

quence, researchers have used this method widely for identifying collinear sets.

The procedure is simple to interpret if there is only one near dependency.

However, for more than one collinearity, special training is needed to interpret the

results and inconclusive results are quite common (Freund et al., 2006, p.198).

Also, the steps of the computations are somewhat complicated and difficult to

understand by non-mathematicians.

5.3.3 Cos-max and cos-square transformations

Involvement of a variable in a collinear relationship can commonly be identified

by its VIF. The other two methods of identifying collinear sets have no direct

relationship with VIFs. The methods suggested by Garthwaite et al. (2012) have

one-to-one relationship with VIFs. These methods are the cos-max and the cos-

square transformations, described in Section 2.2. To recap, suppose (x1, . . . ,xp) is

a set of n×1 observed vectors of the variables X1, . . . , Xp and let X = (x1, . . . ,xp).

Garthwaite et al. (2012) suggested two methods for obtaining the orthonormal

components z1, . . . ,zp that have a one-to-one correspondence with the original

vectors, i.e., each component is closely related to a single X variable and each X

variable is related to a single component. Suppose the n×pmatrix Z = (z1, . . . ,zp)

must be chosen to maximize either

ψ =

p∑
j=1

x>j zj or φ =

p∑
j=1

(
x>j zj

)2
(5.32)

under the conditions that Z is a column orthogonal matrix and x>j zj > 0 for

j = 1, . . . , p.
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Garthwaite et al. (2012) showed that the transformation of X → Z is linear

and is of the form Z = XA. Transformation of X → Z is called the cos-max

transformation when ψ is maximized and when φ is maximized it is called the

cos-square transformation. The transformation matrix is A = (X>X)−1/2 for the

cos-max transformation and A = C(CX>XC)−1/2 for the cos-square transforma-

tion, where C is a diagonal matrix with positive diagonal elements c1, . . . , cp. The

matrix C in the cos-square transformation cannot the obtained using a simple for-

mula — rather, C is obtained using an iterative algorithm proposed by Garthwaite

et al. (2012). In both cases, if each X is standardized to have a mean of 0 and

unit length, i.e., x>j xj = 1, A may be used both as a diagnostic for determining

the collinear variables and for identifying the variables that contribute to each

collinearity.

For both the cos-max and the cos-square transformations, the new orthogonal

vectors z1, . . . ,zp are obtained in such a way that zj is meant to be strongly

related with only xj. So the diagonal elements of A should be high and the off-

diagonal elements should be close to 0. However, if some of the X variables are

collinear then the correlation between xj and zj will not be very strong for some

j. Also, xj might not be the only column of X that has marked correlation with

zj. Consequently, some of the off-diagonal elements of A will not be close to 0.

Hence, large off-diagonal elements indicate collinearity among the columns of X.

Suppose each columns of X have been standardized to have a mean of 0 and

unit length such that X>X is the correlation matrix Rxx. The diagonal elements

of R−1xx are the VIFs (Farrar and Glauber, 1967) and VIFs are commonly used to

identify the variables involved in collinear relations. It can be easily verified that
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AA> = R−1xx for both the cos-max and cos-square transformations. Hence, if a>j

is the jth row of A, then a>j aj is the jth diagonal element of R−1xx and hence it

is the VIFj. So both transformations have a one-to-one relationship with VIFs.

If collinearity exists between some of the X variables, then some elements of aj

will be large, including the jth element, and the remaining elements will be close

to 0. Consequently, VIFj will be large. Moreover, the larger elements of aj that

corresponds to a large VIFj define the collinearity among the variables.

This method is simple and uses more information in identifying collinear sets.

For example, if a collinearity exists between X1, X2 and X3 then each of the

three rows a1, a2 and a3 will provide this information. Also, each row of A has

a one-to-one relationship with a particular VIF and hence the elements of the

row determines that VIF. Moreover, this method can separate the confounded

collinearities while the other two methods can only identify which variables are

involved in at least one of the confounded collinearities.

5.4 Illustrative Examples

To illustrate the detection and pattern of collinearity, we apply all three procedures

described in Section 5.3, together with VIFs and condition indices, to three exam-

ple datasets. Each dataset is extracted from published studies where they suggest

what collinearity patterns are present in the data. We examine the collinearity

patterns that are identified by three procedures and make comparisons.
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Table 5.4: Correlation matrix and VIF of regressors for the sales data

Variable ASt AEt PEt SEt AEt−1 PEt−1 VIF

ASt 1.000 -0.170 0.540 0.811 -0.350 -0.052

AEt -0.170 1.000 -0.357 -0.129 -0.140 -0.496 36.94

PEt 0.540 -0.357 1.000 0.063 -0.316 -0.296 33.47

SEt 0.811 -0.129 0.063 1.000 -0.166 0.208 1.08

AEt−1 -0.305 -0.140 -0.316 -0.166 1.000 -0.358 25.92

PEt−1 -0.052 -0.496 -0.296 0.208 -0.358 1.000 43.52

5.4.1 Sales of a firm

Data reported in Chatterjee and Hadi (2006, p.236) were collected from a firm

for a period of 23 years. The firm had fairly stable operating conditions during

the period of data collection. The objective is to regress aggregate sales (ASt)

against five regressors: advertising expenditures (AEt), promotion expenditures

(PEt), sales expense (SEt), (lagged) advertising expenditure in the previous year

(AEt−1) and lagged promotion expenditure (PEt−1).

Table 5.4 displays the correlations among the variables in the dataset and VIFs

of the regressors. The correlations among the regressors are small. However, the

VIFs corresponding to the regressors AEt, PEt, AEt−1, and PEt−1 are high indi-

cating that they are involved in a collinearity or collinearities. Only the regressor

SEt is not involved in any collinearity.

VIFs can only identify the regressors which are involved in the collinearity.

For identifying collinear sets, we need to apply either the eigenvectors analysis of

the correlation matrix, or the variance-decomposition proportion method, or the

transformation matrix of either the cos-max or the cos-square transformation.

The dataset is analysed by Chatterjee and Hadi (2006) using the eigenvectors

analysis. Table 5.5 gives the eigenvalues and eigenvectors of the correlation matrix

Rxx along with the condition indices. Among the five eigenvalues, λ5 = 0.007 is
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Table 5.5: Eigenvectors analysis for the sales data

Condition Eigenvector

Number Eigenvalue Index v1 v2 v3 v4 v5

1 1.701 1.000 0.532 0.024 0.668 -0.074 0.514

2 1.288 1.149 -0.232 -0.825 -0.158 0.037 0.489

3 1.145 1.219 -0.389 0.022 0.217 -0.895 -0.010

4 0.859 1.407 0.395 0.260 -0.692 -0.338 0.428

5 0.007 15.295 -0.596 0.501 0.057 0.279 0.559

Table 5.6: Variance-decomposition proportions for the sales data

Principal Variance Proportion

Component Eigenvalue AEt PEt SEt AEt−1 PEt−1

1 1.701 0.005 0.001 0.083 0.004 0.005

2 1.288 0.000 0.016 0.000 0.002 0.004

3 1.145 0.011 0.001 0.038 0.016 0.000

4 0.859 0.000 0.000 0.867 0.005 0.002

5 0.007 0.985 0.983 0.012 0.973 0.989

the smallest. Furthermore, the condition index κ5 = 15.295 is well above the

critical point of 10 and the others are very small. (We considered the rule of

thumb of Rawlings (1988).) So there is only one collinearity in the dataset. Large

entries in the 5th eigenvector indicate that the regressors AEt, PEt, AEt−1 and

PEt−1 constitutes a collinear set. This was the collinearity pattern identified by

Chatterjee and Hadi (2006).

Next we have applied the variance-decomposition proportion method. Ta-

ble 5.6 presents the results obtained using the variance-decomposition proportion

method. The entries in the fifth column (SEt) indicate that the fourth principal

component can explain around 87% of the variance of β̂3, 8% comes from the first

principal component and so forth. According to the rule of thumb suggested by

Belsley et al. (1980), a collinearity is indicated when these variance-decomposition

proportions greater than 0.5 for two or more regression coefficients associated with

a small eigenvalue. Under this criterion, the variables AEt, PEt, AEt−1 and PEt−1
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Table 5.7: Cos-max transformation matrix and VIF for the sales data

AEt PEt SEt AEt−1 PEt−1 VIF

a>1 3.743 2.736 -0.010 2.345 3.154 36.94

a>2 2.736 3.470 -0.070 2.285 2.952 33.47

a>3 -0.010 -0.070 1.026 0.024 -0.134 1.08

a>4 2.345 2.285 0.024 2.901 2.604 25.92

a>5 3.154 2.952 -0.134 2.604 4.249 43.52

Table 5.8: Cos-square transformation matrix and VIF for the sales data

AEt PEt SEt AEt−1 PEt−1 VIF

a>1 3.736 2.676 -0.004 2.232 3.293 36.94

a>2 2.735 3.419 -0.062 2.181 3.089 33.47

a>3 -0.005 -0.069 1.025 0.031 -0.142 1.08

a>4 2.348 2.245 0.029 2.813 2.729 25.92

a>5 3.136 2.880 -0.120 2.472 4.389 43.52

are involved in a collinearity, based on the decomposition for the 5th eigenvalue.

That is, the variance-decomposition proportion suggests the same collinearity as

that given by the eigenvectors analysis.

Lastly, we applied the transformation matrices of both the cos-max and the

cos-square transformations to standardized X. Tables 5.7 and 5.8 present the

cos-max and the cos-square transformation matrices, respectively. The transfor-

mation matrix of the cos-max transformation is symmetric while the cos-square

transformation matrix is asymmetric. However, the entries of both transformation

matrices are very similar. Large entries in a1, a2, a4 and a5 for both the cos-max

and the cos-square transformations indicate that the regressors AEt, PEt, AEt−1,

and PEt−1 are involved in a collinearity. That is, with each transformation, four

rows of the transformation matrices provide information about a collinearity in-

volving four variables.

The collinear set identified for this simple example is the same with all methods.

In the eigenvectors analysis, the decision that there is a collinearity between the
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variables AEt, PEt, AEt−1, and PEt−1 comes from the last eigenvector. Also the

same collinear set is identified from a single row that is associated with a single

principal component in the variance-decomposition proportion method. However,

the four rows of either the cos-max or the cos-square transformation matrix provide

information about a collinearity between AEt, PEt, AEt−1, and PEt−1. So even

though all three methods identify the same collinear set, the cos-max and the cos-

square transformations provide more information than the other two methods.

5.4.2 Pitprop data

Data used by Jeffers (1967) were collected from East Anglia over a period of 10

years to determine the physical characteristics of pitprops made of Corsican pine

that influence their maximum compressive strength. The study has 180 pitprops.

The physical variables on each prop were top diameter in inches (X1), length in

inches (X2), moisture content as a percentage of the dry weight (X3), specific

gravity at the time of the test (X4), oven-dry specific gravity (X5), number of

annual rings at the top (X6), number of annual rings at the base (X7), maximum

bow in inches (X8), distance of the point of maximum bow from the top in inches

(X9), number of knot whorls (X10), length of clear prop from the top in inches

(X11), average number of knots per whorl (X12), and average diameter of the knots

in inches (X13). The dataset was used in Garthwaite et al. (2012) to illustrate

collinearity identification using the cos-max and the cos-square transformations

and compare the methods with the eigenvectors analysis. Here, we also used the

variance-decomposition proportion method and compare all three methods.

Table 5.9 presents the sample correlation matrix of the 13 physical variables for
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Table 5.9: Correlation matrix for the physical properties of pitprops

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

X1 1.000 0.954 0.364 0.342 -0.129 0.313 0.496 0.424 0.592 0.545 0.084 -0.019 0.134

X2 0.954 1.000 0.297 0.284 -0.118 0.291 0.503 0.419 0.648 0.569 0.076 -0.036 0.144

X3 0.364 0.297 1.000 0.882 -0.148 0.153 -0.029 -0.054 0.125 -0.081 0.162 0.220 0.126

X4 0.342 0.284 0.882 1.000 0.220 0.381 0.174 -0.059 0.137 -0.014 0.097 0.169 0.015

X5 -0.129 -0.118 -0.148 0.220 1.000 0.364 0.296 0.004 -0.039 0.037 -0.091 -0.145 -0.208

X6 0.313 0.291 0.153 0.381 0.364 1.000 0.813 0.090 0.211 0.274 -0.036 0.024 -0.329

X7 0.496 0.503 -0.029 0.174 0.296 0.813 1.000 0.372 0.465 0.679 -0.113 -0.232 -0.424

X8 0.424 0.419 -0.054 -0.059 0.004 0.090 0.372 1.000 0.482 0.557 0.061 -0.357 -0.202

X9 0.592 0.648 0.125 0.137 -0.039 0.211 0.465 0.482 1.000 0.526 0.085 -0.127 -0.076

X10 0.545 0.569 -0.081 -0.014 0.037 0.274 0.679 0.557 0.526 1.000 -0.319 -0.368 -0.291

X11 0.084 0.076 0.162 0.097 -0.091 -0.036 -0.113 0.061 0.085 -0.319 1.000 0.029 0.007

X12 -0.019 -0.036 0.220 0.169 -0.145 0.024 -0.232 -0.357 -0.127 -0.368 0.029 1.000 0.184

X13 0.134 0.144 0.126 0.015 -0.208 -0.329 -0.424 -0.202 -0.076 -0.291 0.007 0.184 1.000

Table 5.10: Eigenvectors analysis for the pitprop data

Eigenvector X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

v11 0.005 0.054 -0.117 0.017 -0.005 0.537 -0.764 -0.026 0.051 0.318 0.048 -0.047 -0.045

v12 0.392 -0.411 0.527 -0.585 0.202 0.080 -0.036 -0.053 0.054 0.060 0.005 0.002 0.013

v13 0.572 -0.582 -0.408 0.383 -0.118 -0.057 -0.002 -0.018 0.058 -0.004 0.007 -0.004 0.009

VIF 13.135 13.714 11.660 12.420 2.533 6.932 12.033 1.852 2.103 5.118 1.511 1.434 1.771

the pitprop data. The correlations between X1 and X2, between X3 and X4, and

between X6 and X7 are strong. There are also a number of moderate correlations.

High pairwise correlations indicate that there may exist collinearities between some

of the physical variables.

The correlation matrix has the eigenvalues 4.219, 2.378, 1.878, 1.109, 0.910,

0.815, 0.576, 0.440, 0.353, 0.191, 0.051, 0.041 and 0.039. Three of these are small

compared to the others. This suggests that there are three collinear sets in the

dataset. Table 5.10 displays the eigenvectors corresponding to the three small

eigenvalues along with the VIFs. A VIF greater than 5 or 10 is taken as an

indication of collinearity, according to rule of thumb given by Montgomery et al.

(2015). Under this rule, the variables X1, X2, X3, X4, X6, X7 and X10 are involved
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Table 5.11: Variance-decomposition proportion for the pitprop data

Principal Condition Variance Proportion

Component Index X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

1 1.000 0.003 0.003 0.000 0.001 0.000 0.003 0.003 0.011 0.014 0.007 0.000 0.002 0.002

2 1.332 0.002 0.001 0.011 0.007 0.005 0.000 0.001 0.008 0.000 0.005 0.012 0.035 0.023

3 1.499 0.002 0.002 0.001 0.005 0.049 0.017 0.003 0.017 0.011 0.001 0.002 0.003 0.032

4 1.950 0.001 0.001 0.000 0.000 0.001 0.001 0.000 0.040 0.004 0.007 0.385 0.057 0.047

5 2.153 0.001 0.001 0.012 0.011 0.013 0.016 0.004 0.020 0.006 0.005 0.086 0.276 0.004

6 2.275 0.001 0.002 0.008 0.000 0.189 0.000 0.000 0.002 0.001 0.007 0.025 0.025 0.272

7 2.705 0.002 0.001 0.000 0.001 0.122 0.022 0.008 0.149 0.133 0.000 0.023 0.351 0.024

8 3.098 0.003 0.000 0.000 0.000 0.000 0.007 0.000 0.506 0.529 0.000 0.000 0.070 0.017

9 3.459 0.024 0.022 0.001 0.000 0.088 0.069 0.004 0.183 0.195 0.040 0.042 0.013 0.236

10 4.702 0.038 0.028 0.002 0.004 0.000 0.008 0.015 0.016 0.008 0.518 0.394 0.138 0.318

11 9.134 0.000 0.004 0.023 0.000 0.000 0.823 0.959 0.007 0.024 0.391 0.031 0.031 0.022

12 10.086 0.282 0.297 0.574 0.665 0.390 0.022 0.003 0.036 0.033 0.017 0.000 0.000 0.002

13 10.437 0.643 0.638 0.368 0.305 0.143 0.012 0.000 0.005 0.041 0.000 0.001 0.000 0.001

in at least one collinearity. The eigenvectors v13 and v12, which are associated

with the two smallest eigenvalues, both suggest a collinearity between X1, X2,

X3 and X4. According to v11, which corresponds to the 3rd smallest eigenvalue,

the variables X6 and X7 are clearly collinear; perhaps the variable X10 could be

involved in this latter collinearity.

Table 5.11 presents the results obtained using the variance-decomposition pro-

portion analysis. The second column indicates that there are three weak collinear-

ities (κj’s around 10). Since the last two condition indices are roughly equal then

the two collinear sets are confounded. The 0.5 rule of thumb for identifying the

collinear sets must be modified. According to the sum rule discussed in Subsection

5.3.2, last two rows indicate that the variables X1, X2, X3, X4 and X5 are involved

in at least one of the near linear dependencies. In this case, auxiliary regressions

can be used to identify the separate involvement of a particular variable in a par-

ticular collinearity. However, forming auxiliary regressions has some troubles and

may not be informative in all situations. While the third row from the bottom
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Table 5.12: Cos-max transformation matrix and VIF for the pitprop data

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 VIF

a>1 3.036 -1.912 -0.252 -0.100 0.119 -0.064 -0.220 -0.202 0.006 -0.204 -0.079 -0.068 -0.175 13.135

a>2 -1.912 3.114 0.004 -0.051 0.048 0.032 -0.220 0.004 -0.382 -0.292 -0.103 -0.059 -0.255 13.714

a>3 -0.252 0.004 2.717 -1.946 0.592 0.017 0.259 -0.027 -0.015 0.077 -0.053 -0.028 0.022 11.660

a>4 -0.100 -0.051 -1.946 2.838 -0.664 -0.333 0.020 0.116 -0.032 -0.015 0.007 -0.041 0.011 12.420

a>5 0.119 0.048 0.592 -0.664 1.296 -0.108 -0.128 -0.040 0.018 0.071 0.036 0.086 0.017 2.533

a>6 -0.064 0.032 0.017 -0.333 -0.108 2.102 -1.479 0.043 0.098 0.394 0.037 -0.154 0.069 6.932

a>7 -0.220 -0.220 0.259 0.020 -0.128 -1.479 2.979 0.004 -0.211 -0.788 -0.023 0.170 0.305 12.033

a>8 -0.202 0.004 -0.027 0.116 -0.040 0.043 0.004 1.288 -0.171 -0.254 -0.095 0.149 0.094 1.852

a>9 0.006 -0.382 -0.015 -0.032 0.018 0.098 -0.211 -0.171 1.360 -0.124 -0.077 -0.021 0.017 2.103

a>10 -0.204 -0.292 0.077 -0.015 0.071 0.394 -0.788 -0.254 -0.124 1.969 0.411 0.191 0.207 5.118

a>11 -0.079 -0.103 -0.053 0.007 0.036 0.037 -0.023 -0.095 -0.077 0.411 1.137 0.056 0.097 1.511

a>12 -0.068 -0.059 -0.028 -0.041 0.086 -0.154 0.170 0.149 -0.021 0.191 0.056 1.141 0.000 1.434

a>13 -0.175 -0.255 0.022 0.011 0.017 0.069 0.305 0.094 0.017 0.207 0.097 0.000 1.231 1.771

suggests a collinearity between X6 and X7. Which coincide with one of the finding

of eigenvectors analysis.

The transformation matrices of the cos-max and the cos-square transformations

along with the VIFs are given in Tables 5.12 and 5.13, respectively. The last

columns of both tables are identical as in each case a>j aj = VIFj. The cos-max

transformation matrix is symmetric while the cos-square transformation matrix is

asymmetric. But the values in the two matrices are again very similar. Both the

transformations indicate that there is a collinearity between X1 and X2. There is

another collinearity between X3 and X4 and the entries in a3, a4 and a5 indicate

that this collinearity might also include X5. Garthwaite et al. (2012) suggested

that since X4 is the specific gravity at the time of the test and X5 is the oven-

dry specific gravity, they are likely to be approximately collinear and X3, their

moisture content. Clearly, X7 is collinear with X6 and the entry corresponding to

X10 in a7 and the entry corresponding to X7 in a10 indicate that X7 is collinear

with X10.
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Table 5.13: Cos-square transformation matrix and VIF for the pitprop data

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 VIF

a>1 3.039 -1.916 -0.230 -0.093 0.097 -0.070 -0.222 -0.173 -0.010 -0.206 -0.066 -0.056 -0.152 13.135

a>2 -1.882 3.144 0.004 -0.049 0.041 0.013 -0.216 -0.003 -0.326 -0.281 -0.083 -0.047 -0.209 13.714

a>3 -0.262 0.005 2.694 -1.996 0.510 0.022 0.276 -0.024 -0.015 0.082 -0.049 -0.030 0.012 11.660

a>4 -0.102 -0.055 -1.916 2.881 -0.568 -0.310 0.032 0.103 -0.033 -0.022 0.003 -0.039 0.007 12.420

a>5 0.131 0.056 0.605 -0.702 1.265 -0.133 -0.133 -0.035 0.019 0.075 0.037 0.087 0.0267 2.533

a>6 -0.085 0.016 0.023 -0.344 -0.120 1.989 -1.636 0.041 0.076 0.358 0.031 -0.132 0.090 6.932

a>7 -0.207 -0.205 0.225 0.027 -0.092 -1.255 3.115 0.006 -0.175 -0.711 -0.018 0.131 0.229 12.033

a>8 -0.222 -0.003 -0.027 0.121 -0.033 0.043 0.008 1.281 -0.179 -0.273 -0.087 0.148 0.091 1.852

a>9 -0.013 -0.419 -0.016 -0.038 0.018 0.079 -0.237 -0.175 1.343 -0.148 -0.073 -0.018 0.014 2.103

a>10 -0.229 -0.318 0.081 -0.022 0.062 0.328 -0.850 -0.236 -0.130 1.964 0.357 0.173 0.190 5.118

a>11 -0.091 -0.117 -0.059 0.003 0.038 0.036 -0.027 -0.094 -0.080 0.443 1.123 0.050 0.088 1.511

a>12 -0.076 -0.065 -0.035 -0.048 0.087 -0.148 0.191 0.156 -0.019 0.211 0.049 1.133 -0.011 1.434

a>13 -0.204 -0.286 0.014 0.008 0.026 0.100 0.329 0.095 0.015 0.229 0.086 -0.010 1.208 1.771

The superiority of the cos-max and the cos-square transformations matrices

over the eigenvectors analysis is that the eigenvectors cannot suggest separate

collinearities, one between X1 and X2 and another between X3 and X4, while the

cos-max and the cos-square transformations can identify separate collinearities.

Similarly, the variance-decomposition proportion method can only identify that

the variables X1, X2, X3, X4 and X5 are involved in at least one of the collinear-

ities. However, if we use the auxiliary regressions based on the values of the

variance-decomposition proportions of last two rows, we may get the same con-

clusion as we get from the cos-max and the cos-square transformations. But, that

is an extra bit of work to identify collinear sets. Also, with the cos-max and the

cos-square transformations, the a3, a4 and a5 rows provide detailed information

about the collinearity between X3, X4 and X5.

5.4.3 Shopping pattern data

Mahajan et al. (1977) collected data from the residents of an inner-city neighbor-
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Table 5.14: Correlation matrix among the variables of the shopping pattern data

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 1.000 0.547 0.274 0.637 0.481 0.517 0.369 0.242 0.566 0.666

X2 0.547 1.000 0.650 0.837 0.809 0.792 0.562 0.277 0.808 0.768

X3 0.274 0.650 1.000 0.744 0.782 0.795 0.781 0.496 0.566 0.526

X4 0.637 0.837 0.744 1.000 0.851 0.772 0.609 0.609 0.815 0.775

X5 0.481 0.809 0.782 0.851 1.000 0.906 0.821 0.573 0.798 0.748

X6 0.517 0.792 0.795 0.772 0.906 1.000 0.781 0.418 0.736 0.702

X7 0.369 0.562 0.781 0.609 0.821 0.781 1.000 0.473 0.577 0.599

X8 0.242 0.277 0.496 0.609 0.573 0.418 0.473 1.000 0.484 0.424

X9 0.566 0.808 0.566 0.815 0.798 0.736 0.577 0.484 1.000 0.894

X10 0.666 0.768 0.526 0.775 0.748 0.702 0.599 0.424 0.894 1.000

hood. Telephone interviews were conducted to collect data from the members of

the household who did the major food shopping for the household. The house-

holds were selected by random sampling from households in a large northeastern

metropolitan city. There were 10 regressors in their study.

Table 5.14 gives the correlation matrix of the regressors. There are a number of

strong correlations, such as between X2 and X4, between X5 and X6 and between

X9 and X10, as well as a number of moderate correlations among the regressors.

Large pairwise correlation is a sufficient condition for collinearity, so we expect

collinearities between some of the regressors.

Ofir and Khuri (1986) analyzed this dataset using VIFs, R2
j ’s (R2

j is the R2

value when regressing Xj on the remaining regressors) and the eigenvalues and

eigenvectors of the correlation matrix Rxx of the regressors.

Table 5.15 represents the results of collinearity diagnostic using the eigenvec-

tors analysis. The expected squared distance between the least square estimates

and the true parameter is 79.9σ2, which indicates that the least square estimates

are about eight times inflated by multicollinearity (for orthogonal regressors the

expected distance would be pσ2, i.e., 10σ2). This is one indication of collinearity
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Table 5.15: Eigenvectors analysis for the shopping pattern data

Eigenvector X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

v8 0.110 -0.247 0.035 0.151 0.041 -0.186 0.146 -0.178 0.683 -0.589

v9 -0.126 -0.525 -0.073 0.478 0.526 -0.087 -0.151 -0.294 -0.185 0.216

v10 0.213 0.070 0.337 -0.554 0.566 -0.356 -0.280 0.039 0.037 0.001

VIF 3.330 7.526 6.783 14.641 15.831 8.832 5.875 2.947 7.488 6.643

Note:
∑10
j=1

1
λj

= 79.9

in the dataset. The eigenvalues of the correlation matrix are 6.897, 1.059, 0.739,

0.462, 0.349, 0.188, 0.129, 0.081, 0.064 and 0.032. The corresponding condition

indices are 1.000, 2.552, 3.055, 3.866, 4.446, 6.056, 7.319, 9.204, 10.392 and 14.716,

respectively. The last three eigenvalues are small compared to the others as well as

have three large condition indices, so there are three collinear sets in the data. The

κj’s indicate that one of them is moderate while the other two are weak. The VIFs

indicate that all the regressors except X1 and X8 are involved in a collinearity. On

the basis of v10, Ofir and Khuri (1986) concluded that the variables X4 and X5

are clearly collinear, and that perhaps X6 is involved in this collinearity. Although

Ofir and Khuri did not suggest it, the third element of the eigenvector indicates

that X3 might also be included in this collinear set. The other two eigenvectors

(associated with next two smallest eigenvalues) identify one collinearity between

X2, X4, and X5 and another one between X9 and X10.

The variance-decomposition proportions of shopping pattern data is given in

Table 5.16. The last row of the variance-decomposition proportions indicates that

X3, X4 and X5 are involved in one collinearity, and that perhaps X6 is involved

in this set. This collinear set is the same as the collinear set identified by the last

eigenvector (v10). The second last row has only one large variance proportions

(associated with X2). Although the variance proportions corresponding to X4 and
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Table 5.16: Variance-decomposition proportion of shopping pattern data

Principal Variance Proportion

Component X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1 0.003 0.002 0.002 0.001 0.001 0.002 0.002 0.002 0.002 0.002

2 0.092 0.006 0.024 0.000 0.001 0.001 0.020 0.047 0.006 0.014

3 0.012 0.014 0.010 0.003 0.000 0.012 0.010 0.303 0.002 0.002

4 0.303 0.039 0.001 0.002 0.000 0.003 0.073 0.000 0.045 0.005

5 0.041 0.028 0.053 0.040 0.001 0.000 0.105 0.001 0.042 0.093

6 0.000 0.013 0.271 0.007 0.067 0.142 0.010 0.038 0.002 0.117

7 0.003 0.205 0.097 0.024 0.018 0.327 0.256 0.000 0.057 0.015

8 0.044 0.100 0.002 0.019 0.001 0.048 0.044 0.131 0.766 0.641

9 0.074 0.573 0.012 0.245 0.274 0.013 0.061 0.460 0.071 0.110

10 0.428 0.021 0.527 0.659 0.636 0.451 0.419 0.016 0.006 0.000

Table 5.17: Cos-max transformation matrix and VIFs of the shopping pattern data

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 VIF

a>1 1.501 0.030 0.410 -0.712 0.282 -0.348 -0.177 0.095 0.080 -0.395 3.330

a>2 0.030 2.428 -0.125 -0.843 -0.506 -0.336 0.170 0.533 -0.392 -0.267 7.526

a>3 0.410 -0.125 2.179 -0.921 0.241 -0.652 -0.695 -0.071 0.165 0.078 6.783

a>4 -0.712 -0.843 -0.921 3.330 -0.794 0.316 0.502 -0.622 -0.330 -0.104 14.641

a>5 0.282 -0.506 0.241 -0.794 3.548 -1.085 -0.914 -0.353 -0.286 -0.030 15.831

a>6 -0.348 -0.336 -0.652 0.316 -1.085 2.611 -0.160 0.102 -0.215 0.006 8.832

a>7 -0.177 0.170 -0.695 0.502 -0.914 -0.160 2.030 -0.093 0.066 -0.289 5.875

a>8 0.095 0.533 -0.071 -0.622 -0.353 0.102 -0.093 1.443 -0.182 -0.039 2.947

a>9 0.080 -0.392 0.165 -0.330 -0.286 -0.215 0.066 -0.182 2.459 -0.989 7.488

a>10 -0.395 -0.267 0.078 -0.104 -0.030 0.006 -0.289 -0.039 -0.989 2.310 6.643

X5 are small they could perhaps be collinear with X2. (The eigenvectors analysis

suggested a collinearity between X2, X4 and X5.) The variance proportions of X4

and X5 are dominated by the first collinear set. The third row from the bottom

shows that clearly X9 and X10 are collinear. This is also one of the finding from

the eigenvectors analysis.

Tables 5.17 and 5.18 present the transformation matrices of the cos-max and

the cos-square transformations of shopping pattern data, respectively. From the

components of a9 and a10 in both the cos-max and the cos-square transformation

matrices, clearly there is a collinearity between X9 and X10. This coincides with
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Table 5.18: Cos-square transformation matrix and VIFs of the shopping pattern data

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 VIF

a>1 1.434 -0.006 0.380 -0.815 0.317 -0.370 -0.161 0.063 0.063 -0.441 3.330

a>2 -0.004 2.388 -0.162 -0.941 -0.578 -0.364 0.142 0.408 -0.425 -0.281 7.526

a>3 0.325 -0.173 2.127 -1.039 0.309 -0.683 -0.668 -0.094 0.157 0.071 6.783

a>4 -0.519 -0.750 -0.773 3.465 -0.810 0.308 0.406 -0.453 -0.284 -0.070 14.641

a>5 0.189 -0.431 0.215 -0.757 3.677 -0.936 -0.695 -0.242 -0.227 -0.007 15.831

a>6 -0.273 -0.338 -0.590 0.358 -1.163 2.593 -0.185 0.065 -0.224 0.012 8.832

a>7 -0.142 0.157 -0.690 0.563 -1.032 -0.220 1.954 -0.100 0.055 -0.306 5.875

a>8 0.065 0.522 -0.112 -0.726 -0.416 0.090 -0.116 1.372 -0.223 -0.058 2.947

a>9 0.048 -0.409 0.141 -0.342 -0.293 -0.232 0.048 -0.168 2.461 -0.978 7.488

a>10 -0.347 -0.277 0.065 -0.086 -0.009 0.013 -0.273 -0.045 -1.004 2.313 6.643

one of the results obtained from both the eigenvectors method and the variance-

decomposition proportion method. Further information about the structure be-

tween X2, X3, X4, X5, X6 and X7 is provided by the components of a2, a3, a4,

a5, a6 and a7. From a2, there is a suggestion that X2 and X4 are related. The

components of a3 indicate a relationship between X3 and X4. The large values in

a4 indicate that X4 is related with X2, X3, and X5. Similarly, a5 indicates that

X5 is related with X4, X6 and X7. A relationship between X6 and X5 is indicated

by a6, and a relationship between X7 and X5 is indicated by a7.

We only know of the existence of relationships between the variables but do

not know their directions. By assigning directions to the relationships, we can

generate some possible structures. From a2 and a3, we can say X4 predicts X2 and

X3 respectively. Similarly X5 predicts X6 and X7 in a6 and a7 rows respectively.

In addition to the directions assigned above, a4 and a5 can say X5 predicts X4.

Figure 5.1(a) is drawn to explain the above mentioned directional relationship.

Figure 5.1 shows four of these possible structures. This is one of the advantages

of using the cos-max and the cos-square transformation matrices. Each structure

can yield the same correlation pattern, for suitable choices of pairwise correlations.
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The only difference between Figures 5.1(a) and 5.1(c) is that in 5.1(c) X2 and X3

predict X4. Whereas the difference between Figures 5.1(a) and 5.1(d) is that both

X6 and X7 predict X5. Figure 5.1(b) assigns the reverse direction between X4

and X5 compared to Figure 5.1(d). This is the only difference between Figures

5.1(b) and 5.1(d). In Figure 5.1(a), there will be some correlation between X2

and X3 because of their dependence on X4. This is why there must be a weak

correlation between X6 and X7 in Figure 5.1(b). This illustrates that the cos-max

and cos-square transformation matrices can suggest structures that might underlie

the data. The structure between the variables cannot be inferred from the other

two methods.

A simulation study was conducted to compare the methods using the structure

given in Figure 5.1(a). We generated 1000 data considering the simple case where

one variable is regressed by only one regressor. We generated X5 from a normal

distribution and then generated X4, X6 and X7 from X5. We then generated X2

and X3 from X4. The beta coefficients and variances of the random error terms

to generate the simulated data were estimated from the shopping pattern data.

(We have no real data, so we first generated 1000 data from an MVN distribution

using the correlation matrix of the shopping pattern data.) Table 5.19 gives the

correlation matrix for the generated data. Using this matrix, we applied the above

mentioned three methods of collinearity diagnostics to examine whether we can

identify the structure that generated the data.

We first apply the eigenvectors method. The eigenvalues of the correlation

matrix of the simulated data are 5.559, 0.193, 0.116, 0.089, 0.030 and 0.013.

The corresponding condition indices are 1.000, 5.363, 6.908, 7.903, 13.685 and
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Figure 5.1: Structure between the variables
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Table 5.19: Correlation matrix of the simulated data

X2 X3 X4 X5 X6 X7

X2 1.000 0.884 0.948 0.908 0.894 0.853

X3 0.884 1.000 0.932 0.893 0.878 0.843

X4 0.948 0.932 1.000 0.958 0.944 0.901

X5 0.908 0.893 0.958 1.000 0.985 0.933

X6 0.894 0.878 0.944 0.985 1.000 0.917

X7 0.853 0.843 0.901 0.933 0.917 1.000

Table 5.20: Eigenvectors analysis of simulated data

Eigenvector X2 X3 X4 X5 X6 X7

v5 0.337 0.240 -0.865 0.010 0.284 0.021

v6 -0.016 -0.018 0.172 -0.791 0.581 0.079

VIF 9.808 7.674 27.85 51.031 33.360 7.725

20.901, respectively. The condition indices indicate that there are two near linear

dependencies. Table 5.20 presents the eigenvectors corresponding to two small

eigenvalues and the VIFs. The VIFs suggest that all variables are involved in

collinearity. There is one collinearity between X5 and X6 and another between

X2 and X4. However, the analysis does not suggest the structure in Figure 5.1(a).

The eigenvectors can identify only a partial structure.

Table 5.21 gives results of the variance-decomposition proportion for the sim-

ulated data. One collinearity can be seen from the last row of the table, and it

suggests that X5 and X6 are involved in a collinearity. This is one of the outcomes

from the eigenvectors analysis. The row corresponding to the 5th principal com-

ponent shows that the only large variance proportion is associated with X4, but

that it may be collinear with X5, because the variance proportion of X5 on that

row is heavily dominated by the last row. Again, this method does not suggest

the true structure in the simulated data.

The output obtained using the cos-square transformation is given in Table 5.22.
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Table 5.21: Variance-decomposition proportion of simulated data

Principal Condition Variance Proportion

Component Index X2 X3 X4 X5 X6 X7

5 187.269 0.389 0.253 0.905 0.000 0.081 0.002

6 436.836 0.002 0.003 0.084 0.963 0.796 0.063

Table 5.22: Cos-square transformation matrix of simulated data

X2 X3 X4 X5 X6 X7

a>2 2.682 -0.405 -1.483 -0.358 -0.276 -0.214

a>3 -0.420 2.406 -1.231 -0.266 -0.245 -0.250

a>4 -1.052 -0.842 4.944 -1.147 -0.451 -0.265

a>5 -0.240 -0.172 -1.085 6.487 -2.679 -0.717

a>6 -0.234 -0.200 -0.538 -3.377 4.623 -0.452

a>7 -0.221 -0.249 -0.386 -1.105 -0.553 2.437

It broadly suggests the same structure that was used to construct the simulated

data. Results for the cos-max transformation were also produced but, for brevity,

they are not presented here because, as mentioned earlier, both methods yield

similar elements. The only difference is that the cos-max transformation matrix is

symmetric. Hence, obviously the cos-max and the cos-square transformation give

better result than the other two methods.

5.5 Collinearity in Analysis of Variance

Analysis of variance (ANOVA) is a collection of statistical techniques used to

test differences between two or more means. This means correspond to different

groups. In fact, it is the extension of two sample t- test. The idea of ANOVA is

to partition the total variability in the response into factors (qualitative variables)

and error. So the entries of the design matrix, X, is either 1 or 0 indicating the

presence or absence of the factors, respectively.
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The factors in ANOVA can be collinear. The method proposed by Garth-

waite et al. (2012) identify collinear sets using either the cos-max or the cos-

square transformation matrix. However, both transformations require the inverse

of the square-root matrix of X>X. Hence, this method is applicable to identify

collinear sets among the factors when X>X is non-singular. However, for the

over parametrized ANOVA model the method of Garthwaite et al. (2012) is not

applicable due to the fact that X>X is singular.

5.6 Concluding comments

The potential importance of the VIFs in collinearity identification motivates this

chapter. VIFs are commonly used to identify collinear variables. We have dis-

cussed three methods for identifying the collinear sets.

The oldest one, the eigenvectors analysis, is widely used due to its simplicity.

However, this method cannot identify separate collinear sets that correspond to

two small eigenvalues of approximately equal size. Also, a collinear set can be

identified from only one of the eigenvectors.

The second method, the variance-decomposition proportion method, is closely

related to the concept of the eigenvectors analysis. Like eigenvectors analysis, this

method identifies a collinearity from only one row of the table. If there is more

than one collinearity then it is often difficult to identify separate collinear sets

using simple rules. However, this method is also widely used by researchers for

collinearity identification, due only its availability in different computer packages.

The latest methods, the cos-max and the cos-square transformation matri-

ces, decompose the VIFs to individual contribution of variables. Information
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about a collinear set is obtained from more than one row and more than one

column. Moreover, this method can separate the competing dependencies and

suggest structures between variables. The simulation study illustrates that the

cos-max and cos-square transformation matrices can help to correctly identify the

structure underlying a dataset. (Only with simulated data do we actually know

the true structure.) This is not true of the other two methods, and is as much

as can be hoped for from any method that aims to identify collinearities from the

correlation matrix.
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Chapter 6

Conclusion and future work

The potential importance of forming orthogonal variables from correlated variables

motivate the work in this thesis. PCA is widely used to transforms the observations

of correlated variables into observations of uncorrelated variables. However, the

interpretation of principal components is often difficult because each uncorrelated

variable is a linear combination of the original variables, and typically a number

of the original variables are important in most of the linear combination. Recent

work has advocated the construction of orthogonal variables that are the surro-

gates of the original variables, i.e., the new orthogonal variables move the original

correlated variables by only small amounts. Both the cos-max and cos-square

transformations of Garthwaite et al. (2012) yield orthogonal components with a

one-to-one correspondence between the original vectors and the components, i.e.,

each component is closely related to a single X variable and each X variable is

related to a single component. The transformations have different properties but

typically give similar components. Applications of these transformations leads to

new statistical methods. Both transformations transforms the data matrix. More
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recently, Garthwaite and Koch (2016) proposed the random variable counterpart

of the cos-max transformation that they called the corr-max transformation. This

thesis has focused on application of the cos-max, cos-square and corr-max trans-

formations.

The main contributions of this thesis are reviewed in Section 6.1. Directions

for future work is given in Section 6.2.

6.1 Main Contributions

6.1.1 Bootstrap confidence intervals for quadratic forms

The corr-max transformation proposed by Garthwaite and Koch (2016) can be

used to partition a quadratic form to its individual variable contributions. Rogers

(2015) used this transformation to identify the key predictors in predicting the

presence or absence of dengue in an area, illustrating that the partition is po-

tentially useful. We considered four commonly used bootstrap methods to form

confidence intervals for the contributions of individual variables to a Mahalanobis

distance and their percentage contributions. The bootstrap methods that were

examined were the percentile method, the bias-corrected percentile method, the

non-studentized pivotal method, and the studentized pivotal method. We also

proposed two new methods (A and B) that broaden the range of functions used as

pivotal quantities: the functions need not be one-to-one and they may be functions

of vectors rather than restricted to being functions of scalars. The new methods

have similarities with the bootstrap pivotal methods. The difference between

Method A and Method B is similar to the difference between the non-studentized
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and the studentized pivotal methods.

A lager simulation study was conducted to compare the performance of these

methods. Both equal-tailed confidence intervals and shortest confidence intervals

were examined. The data were generated from the MVN distribution and also form

skew distributions to check the robustness of the results to departure from nor-

mality. The average coverage of the new methods were almost always greater than

the nominal coverage, while the standard methods were often below the nominal

value. The average of the ratio of median width of the intervals compared with

Method A showed that the bias-corrected percentile method gave the narrower

intervals on average. However, its coverages were far below the nominal coverage

of 95%. The width of the percentile method was similar in size to the new meth-

ods, while the pivotal methods gave wider intervals. Considering the coverage and

intervals width, Method A and Method B performed much better than the other

methods. Method A seemed marginally better than Method B, both for the data

generated from the MVN distribution and for skew distributions. So the results

are robust to departures from normality.

Two points underlie the recommendation to use Method A to form bootstrap

confidence intervals, rather than Method B. Method A tended to give slightly

narrower intervals. Also Method A is computationally a little simpler and a little

faster than Method B, as Method B requires second level bootstrap to estimate

the variance of the estimator. One-sided and two-sided intervals were compared.

The equal-tailed intervals were slightly wider than the shortest intervals when the

shortest intervals were two sided. On the other hand, the equal-tailed intervals

were substantially wider than the shortest confidence intervals when the latter
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were one-sided, so in various circumstances, shortest intervals that are one-sided

should be used in preference to two-sided intervals.

6.1.2 Contributions of variables to a multiple regression

The most common measures for evaluating the contributions of individual variables

to a regression are the relative weights (RW) measure of J. W. Johnson (2000) and

the general dominance (GD) measure of Budescu (1993). The RW measure uses

the orthogonal counterparts (OC) measure of Gibson (1962) and Johnson (1966) as

its initial step. The GD measure does not transform variables, while the RW and

OC measures use transformations to orthogonality that ignore the relationship

between the response and the regressors. In this thesis, three new measures of

relative importance were proposed, the NM1, NM2 and NM3 measures. The NM1

and NM3 are very similar to the OC measure, while NM2 is very similar to the RW

measure. The main difference is that the new measures consider the relationship

between the response and the regressors in constructing the transformation. This is

an attractive approach, as the aim of the measures is to evaluate the contributions

of individual regressors in their joint affect on the response.

The new methods were compared with the OC, RW and GD measures using

five simulated datasets from MVN distribution that have clear structures, and also

two real datasets. The following are its main results.

1. Through examples, Johnson (2000) argued that a strength of the RW mea-

sure is that it generally gives similar results to the GD measure. This was also

the case in our examples, with only one exception (variable X1 of Example

4.5). However, in some situations, the GD measure assigned contributions

182



that were a little closer to those of the NM2 measure than those of the RW

measure (Examples 4.2, 4.4 and 4.5).

2. On the grounds that the new transformation considered the relationship

between the response and the regressors, NM1 might be preferred over OC

measure and for the same reason NM2 might be preferred over RW. The

results obtained from NM1 and OC are similar in most cases. However, when

the differences are large, NM1 measure tended to be close to the consensus

of all six measures.

3. Example 4.3 showed that the OC measure is inappropriate in some situation.

It assigned relative importances of 100% and 0% to X1 and X2, respectfully,

in that particular example. However, it was not possible to explain all the

variation in Y by X1 alone. The relative importance of X2 obtained using

NM1 and NM3 for this example were small, but non-zero.

4. NM3 considers the effect of beta coefficient when forming the transformation.

Hence, it is expected that the variables having low beta coefficient will have

low relative importance from NM3. Which can be observed from examples

4.1, 4.5 and 4.7.

5. The NM1 measure has the rotation invariance property (shown in Section

4.6) and the benefit of this property was illustrated in Example 4.6.

Overall though, none of the measures was clearly better than the others and the

choice of measure may depend on the application and the purpose for evaluating

individual contributions.
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6.1.3 Identification of collinearities

Chapter 5 considered the task of identifying collinear sets from a set of regres-

sors. Three methods were compared by considering three datasets from published

studies that address multicollinearity. Two of the methods are older and one of

them is recent. The oldest method is the eigenvectors method, which is also the

simplest method. It finds collinearities by examining eigenvectors that correspond

to small eigenvalues. It has the problems in identifying the separate collinear sets

from two eigenvalues of approximately equal size (Table 5.10). The other older

method we examined was the variance-decomposition proportion method. It also

has problems in identifying separate collinear sets if there are two or more com-

peting collinearities, or if one collinearity dominates other collinearities. In the

case of competing collinearities, this method can only identify which variables are

involved in at least one of the collinearities (Table 5.11).

Variance inflation factors (VIFs) are the most common statistic for identifying

the presence of collinearities and underpin the recent method which uses either the

cos-max or the cos-square transformation matrix. Each row of the transformation

matrices has a one-to-one relationship with a particular VIF — the squares of

the elements of the row sum to the VIF. A major advantage of this method is

that it gives a greater quantity of informations about collinearities than either

the eigenvectors method or the variance-decomposition proportion method. If

a collinearity involves m variables, then m rows of the transformation matrix

provide information about that collinearity. With the other two methods, only

one eigenvector or one row of the table provide information about the collinearity.

From the cos-max and the cos-square transformation matrices, we can identify
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possible structures between the variables. The simulation study showed that the

data obtained from a particular structure can retain the same structure that was

used to simulate the data (Table 5.22). The other two methods cannot suggest

the plausible structure when that structure is complex and involves overlapping

collinearities. Thus, this method outperforms than the other two methods.

6.2 Future work

The work on bootstrap confidence intervals aimed to form confidence intervals for

just one application — contributions (or percentage contributions) of individual

variables to a quadratic form. The new methods extended the range of pivotal

quantities that could be used as pivots and the methods performed markedly bet-

ter than alternatives. Clearly the performance of the methods should be explored

in other applications. In particular the bootstrap methods could be used to con-

struct interval estimates for the contributions of individual regressor to a multiple

regression.

In the work on evaluating the contributions of individual regressors to a mul-

tiple regression, the primary new feature was to use the cross-products of the

response and predictors in forming orthogonal components. A subsidiary idea was

to use regression coefficient as weights when forming the components. This idea

was used to derive NM3 from NM1 and it could be applied to modify any of the

RW and NM2 measures. Also the weighting scheme could be generalized, i.e.,

could use the weight (|β̂j|)α to Xj. Setting α = 0 gives no weight, and importance

of weighting would increase with the increase of α. The generalized weighting

scheme could also be applied to NM3. The use of different weighting scheme with
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various measures is a topic that needs further work.

In the work on collinearity identification, the use of simulated data enabled

methods to be examined in conditions where the structure underlying the data

was known. This work suggested that the transformation matrices of the cos-max

and cos-square transformations can provide insight into the collinearity structure

of a dataset, even when the dataset has multiple, overlapping collinearities. This

work was limited and more work with simulated data needs to be done.

The methods used in this thesis are generally designed for the case where

the number of observations is greater than the number of variables. Due to the

development of data collection technology, in recent years data sets often have a

comparatively small number of observations and a large number of variables. Data

sets with a large number of variables compared to the number of observations are

called high-dimensional data. Examples of such data sets include microarray data,

Netflix movie rating data. Further research needs to modify the transformations

developed in this thesis so that they are applicable to high-dimensional data.

More generally, the work in this thesis illustrates that transformations to or-

thogonality have varied applications. There are likely to be numerous other appli-

cations in which the transformations would prove useful, so research is needed to

find some of these applications. Also, the cos-max and cos-square transformations

have different properties. For example, one has the rotation invariance property

and the other has the duplicate invariance property. Further work is also needed

that compares the two transformations critically.
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Appendix A

We illustrate the method of taking a sample from all possible p! orderings by

using the data from Vandaele (1976). The dataset has 14 measurements and were

originally collected from the FBI’s Uniform Crime Report and other government

sources to identify the variables that are responsible for crime rates in 1960 based

on the data form 47 states of the USA.

Among the 14 variables we have used 13 variables for our study (we have

not used the indicator variable). Crime rate is the response variable and the

other 12 variables are considered as regressors. We have calculated the relative

weights (RW) measure of Johnson (2000), the general dominance (GD) measure of

Budescu (1993)/LMG measure of Lindeman et al. (1980) for these 12 regressors.

The regressors have 12! possible orderings of variables, from which we have taken

a random sample of 500 orderings. We have calculated the sequential R2 values

of each variable for each ordering. Finally, the average of the sequential R2 values

for each variable from these 500 orderings were calculated to approximate the true

value of LMG/GD.

Table 1 gives the values of the RW, GD/LMG measures obtained from the

U.S. crime data. The last two rows of this table are the average and standard

deviation, respectively, of 1000 approximate LMG contributions. The average of
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Table 1: LMG analysis for US crime data

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

RW 0.035 0.060 0.183 0.170 0.019 0.035 0.046 0.018 0.020 0.040 0.082 0.059

GD 0.041 0.056 0.189 0.168 0.015 0.033 0.035 0.020 0.016 0.034 0.076 0.083

Mean 0.041 0.056 0.189 0.168 0.015 0.033 0.035 0.020 0.016 0.034 0.076 0.083

SD 0.001 0.002 0.008 0.008 0.001 0.002 0.002 0.002 0.001 0.002 0.005 0.002

RW: Relative importance by Johnson (2000)

GD: General dominance

Mean and SD are the mean and standard deviation of sample contributions

R2 = 0.767

the approximate LMG contributions are close to the true GD/LMG contributions

with small standard deviations. This illustrates that GD/LMG contributions can

be approximated by taking a sample of the orderings of regressors and this will

reduce the number of model estimations and consequently reduce the time required

for computation.

Approximating GD by taking a sample of subset models from the dominance

analysis formulation is not feasible. General dominance is the average of condi-

tional dominance at all levels from 0 to p − 1 so, rather than taking a simple

random subset of models from all possible models, we need to take samples sep-

arately from each level. Level 0 has only one row, so there is no need to take a

sample. Also level p − 1 has p rows, but each column has only one element. So

again if we take a sample from that level, conditional dominance from that level

will be missing for some variables and will affect the general dominance. For level

p− 2, we have to take a large number of samples to get a conditional dominance

value for all columns. We also need to take a large number of rows for other higher

levels. Also, since each element of a row is the difference between the R2 values

of two models, each row has some connection with the previous level. As a result,

to approximate the true output from the sample we cannot reduce the number of
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models that must be estimated and consequently computation time is not reduced

much. If we take a small sample of rows the sample results overestimate the true

output.
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