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Simplex Basis Function Based Sparse Least

Squares Support Vector Regression
Xia Hong, Richard Mitchell, Giuseppe Di Fatta

Abstract

In this paper, a novel sparse least squares support vector regression algorithm, referred to as LSSVR-SBF, is

introduced which uses a new low rank kernel based on simplex basis function, which has a set of nonlinear parameters.

It is shown that the proposed model can be represented as a sparse linear regression model based on simplex basis

functions. We propose a fast algorithm for least squares support vector regression solution at the cost of O(N) by

avoiding direct kernel matrix inversion. An iterative estimation algorithm has been proposed to optimize the nonlinear

parameters associated with the simplex basis functions with the aim of minimizing model mean square errors using the

gradient descent algorithm. The proposed fast least square solution and the gradient descent algorithm are alternatively

applied. Finally it is shown that the model has a dual representation as a piecewise linear model with respect to the

system input. Numerical experiments are carried out to demonstrate the effectiveness of the proposed approaches.

Index Terms

least squares support vector regression, low rank kernels, simplex basis function.

I. INTRODUCTION

With strong support from its underlying statistical learning theory, the support vector machine (SVM) [2] including

the support vector machine for regression (SVR) [3] is a powerful modelling tool able to provide excellent model

generalization. Originally the model estimation of SVM corresponds to a quadratic programming optimization

problem. The SVM/SVR are regarded as sparse models which also avoid local minima for exceptional modeling

performance, however they are computationally demanding. There are significant algorithmic developments such as

sequential minimal optimization (SMO) [5] which is aimed at increasing computation speed. In the smooth SVR

(SSVR) approach an accurate smooth approximation has been proposed to replace the insensitive loss function in

SVR, hence relaxing the optimization problem into an unconstrained one [4], providing a significant speed up. A

heuristic method based on a measurement of similarity among samples to reduce data samples for accelerating

training was proposed in [6]. A novel geometric framework, based on which new SVR models and algorithms are

proposed in [7], these use convex hull algorithms for data reduction. The SVR has also been applied in applications

in nonstationary settings, e.g., time-series prediction in nonlinear environment [8], and interval regression analysis

The authors are with Department of Computer Science, School of Mathematical, Physical and Computational Sciences, University of Reading,
Reading, RG6 6AY, UK. (x.hong/r.j.mitchell/g.difatta@reading.ac.uk)
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in time-varying environment [9]. A major advance for computational efficiency is the introduction of least squares

support vector machine (LSSVM) and least squares support vector regression (LSSVR), which uses equality

constraints [10] so that closed form least squares type solutions are available. Note that LSSVM/LSSVR will

produce a nonsparse model loosing sparseness property. In common to general kernel methods, LSSVM/LSSVR

also have the limitation that the kernel function must be evaluated for all possible pairs of system inputs, potentially

infeasible for large scale data modeling problems.

The modelling of real-world data from highly complex, nonlinear structures demands computationally fast kernel

methods. Low-rank matrix approximation is an effective tool in alleviating the memory and computational burdens

of kernel methods and sampling. For example, the Nyström method has been successfully applied to efficient kernel

learning [11]. It randomly samples a subset of training examples and computes a kernel matrix for the random

samples. It then represents each data point by a vector based on its kernel similarity to the random samples and the

sampled kernel matrix. Alternatively the method of random Fourier features is another popular approach [12], in

which the kernel function is approximated by the inner product of a randomized feature map. Note that these low

rank kernel approximations will introduce additional generalization errors in the generation performance, which is

of theoretic interest [13].

Alternatively, a nonlinear system can be approximated by locally linear systems as piecewise linear systems.

Various piecewise linear models exist such as lattice piecewise linear representation [14], hinging hyperplanes

(HH) [15] and piecewise affine models [16]. Notably the hinging hyperplane (HH), which uses a hinge function

as basis functions, is shown to be a powerful model representation for nonlinear systems since it is endowed with

proven approximation capabilities to arbitrary nonlinear functions [15]. Recently a new simplex basis function

(SBF) model [20] has been introduced which can be viewed as a HH model and hence has the same approximation

capability as HH. Often the use of linear functions to the system input brings the benefit of model interpretability.

Moreover there are also rich linear system theory which could be exploited if the model is in the form of linear or

piecewise linear form.

In this paper a new low rank kernel based on the simplex basis function has been introduced, based on which a

novel sparse least squares support vector machine regression is developed. The proposed model can be represented

as a sparse nonlinear SBF model, as well as a piecewise linear model. This framework enables the derivation of a

fast algorithm for least squares support vector regression solution at the cost of O(N). The proposed kernels come

with a set of nonlinear parameters, which needs to be adjusted, and it is proposed that the gradient descent algorithm

is applied to minimize the mean square errors. Our overall estimation algorithm therefore alternates between the

fast LSSVR solution and SBF kernel parameters estimation of the gradient descent algorithm. The advantage of the

proposed model is twofold; not only achieve fast LSSVR-SBF estimation, but also to obtain a sparse model which

has a dual representation as a piecewise linear model which provides gradient information with ease. Specifically

our proposed SBF based low kernels enable us to exploit the structural property of the resultant kernel matrix for

fast matrix inversion, which is not valid for conventional Gaussian kernels commonly used in conventional LSSVR

models. Similarly since we adopted the recently proposed simplex basis function (SBF) model [20], the model
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requires us to devise a new gradient algorithm which is devoted to parameter estimation within the SBF functions.

The remainders of this paper are organized as follows. Section II describes preliminaries of the LSSVR model.

Section III initially introduces the proposed kernels based on SBF, the LSSVR-SBF model representation a sparse

model, and then learning algorithms are introduced including computational complexity analysis and the property

of the dual representation of piecewise linear model. Numerical experiments are carried out in Section IV with

comparisons with other benchmark approaches in terms of the modeling performance. Section V is devoted to

conclusions.

II. LEAST SQUARES SUPPORT VECTOR REGRESSION

Many kernels methods are based on a fixed nonlinear feature mapping in some feature space F as

x ∈ ℜm → ϕ(x) ∈ F , (1)

endowed with a Mercer kernel function

k(x(i),x(j)) = ϕ(x(i))Tϕ(x(j)) (2)

which is defined as the inner product of two points in the feature space F as a symmetric function of its arguments.

Suppose a block of training data set denoted as DN , comprising N input vectors x(1) ... x(N), with corresponding

target values y(1) ... y(N) where y(k) ∈ R. The least square support vector machine for regression problem

(LSSVR) [19] is based on a linear model of the form

ŷ(x) = wTϕ(x) + b, (3)

where w is vector of parameters. The optimization problem is given by

γ

2

N∑
n=1

e2(n) +
1

2
∥w∥2, (4)

subject to y(n) = wTϕ(x(n)) + e(n), n = 1, ..., N . Denote e = [e(1), e(2), ..., e(N)]T as the modeling error

vector, and introduce a = [a1, ..., aN ]T, where an are Lagrange multipliers for each of the equality constraint,

giving the Lagrangian function

L(w, e;a) =
γ

2

N∑
n=1

e2(n) +
1

2
∥w∥2

−
N∑

n=1

an{wTϕ(x(n)) + e(n)− y(n)},
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where γ > 0 is a preset regularization parameter. We now optimize out w, b and {e(n)} to give

∂L

∂w
= 0 → w =

∑N
n=1 anϕ(x(n))

∂L

∂b
= 0 →

∑N
n=1 an = 0

∂L

∂e(n)
= 0 → an = γe(n)

∂L

∂an
= 0 → wTϕ(x(n)) + b+ e(n)− y(n) = 0.

In many kernel methods we do not need to know ϕ(x), but work on a well defined kernel function k(x,y) using

the kernel trick due to (2). After eliminating w, e(n), and using kernel trick, the solution for the dual problem is b

a

 =

 0 1T

1 K + I/γ

−1  0

y

 (5)

where y = [y(1), ..., y(N)]T, and the kernel matrix over the training input data set is a positive semi(definite)

matrix and given as

K =


k(x(1),x(1)) · · · k(x(1),x(N))

· · · · · · · · ·

k(x(N),x(1)) · · · k(x(N),x(N))

 ∈ ℜN×N (6)

I is the identity matrix and 1 is the vector of all ones with appropriate dimensions. The model prediction is given

by

ŷ(x) =
N∑

n=1

ank(x,x(n)) + b. (7)

In spite of the advantage of providing a neat closed form solution, LSSVR has two limitations as would happen

in other kernel methods. The computational cost of matrix inversion is in the order of O(N3), meaning that it does

not scale well with data size N , limiting the training data size to be moderate. Additionally, the LSSVR is not a

sparse model since the model size is the same as train sample size N , implying that to evaluate a new data point one

needs to access all the training data set. In general, one disadvantage associated with most kernel methods is that

they do not scale well with large data sets. Hence the low rank kernel approximations are often considered [11, 12]

since they allow reduction of computation time to O(N2). In this work we propose a new type of low rank kernel,

that lends itself to new learning algorithms and model representation free of the above two limitations.

III. SPARSE LEAST SQUARES SUPPORT VECTOR REGRESSION BASED ON LOW RANK SBF KERNELS

In the following a new type of low rank kernels is initially introduced for LSSVR which leads to some desirable

properties. The proposed kernel has a set of nonlinear parameters and model size M , hence in addition to estimating

b and a, our modeling task includes estimation of these extra kernel parameters. Our proposed model estimation

algorithm is an iterative and hybrid one with the aim of gaining computational advantage by exploiting the special

model functional structure induced by the proposed low rank kernel.
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5

We propose a new type of low rank kernel in the form of

k(x,y) =
M∑
j=1

ϕj(x;µj , cj)
Tϕj(y;µj , cj), (8)

where ϕj(x;µj , cj) is the simplex basis function (SBF) defined as [20]

ϕj(x;µj , cj) = max
(
0, 1−

m∑
i=1

µi,j |xi − ci,j |
)

(9)

in which cj =
[
c1,j c2,j · · · cm,j

]T ∈ ℜm is known as the center vector of the jth SBF unit which controls the

location of jth SBF, and µj =
[
µ1,j µ2,j · · ·µm,j

]T ∈ ℜm
+ is the shape parameters vector that control the shape of

jth SBF. The output of SBF functions is illustrated in Fig. 1. From Fig. 1(a) it is clear that the maximum output is

limited as one at the centers, and the responsive region width in one input direction is 1
µ , inversely proportional to

the shaping parameter µ. From Fig. 2(b) it can be seen the SBF output is only nonzeros around the center within

a hyper-polygon shaped region. Within this responsive region, it is composed of 2m locally linear models, each

occupying one of 2m subregions. The SBF can be visually compared with the well known Gaussian radial basis

function (RBF) via Fig. 1(a) versus its counterpart Fig. 1(b) as well as Fig. 1(c) versus its counterpart Fig. 1(d).

Given a collection of data DN , clearly the associated kernel matrix is given by

K = ΦΦT (10)

with Φ = [ϕ1, ...,ϕM ]. ϕj = [ϕ(x(1)), ..., ϕ(x(N))]T. Note that (6) can be represented as

ŷ(x) =
N∑

n=1

an

M∑
j=1

ϕj(x;µj , cj)
Tϕj(x(n);µj , cj) + b

=
M∑
j=1

θjϕj(x;µj , cj) + b = [ϕ(x)]Tθ + b (11)

where θj =
∑N

n=1 anϕj(x(n);µj , cj), θ = [θ1, ..., θM ]T, which can be expressed in vector form as

θ = ΦTa. (12)

Equation (12) bridges the original nonsparse LSSVR into a sparse SBF model with only M terms, based on M

SBF basis functions. In the proposed algorithm, we will set M as small as possible depending on data sets. From

our experience very sparse model can be obtained in comparison with other modeling schemes due to the flexibility

of the SBF basis functions.

A. Fast LSSVR parameter estimation

Given that the set of nonlinear parameters cj and µj , Φ becomes fixed, we propose a fast way of calculating (5)

by exploiting the special matrix property induced by the proposed low rank kernel. Specifically, it is shown that the
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Fig. 1. Graphical illustration of SBF functions centered at origin in comparison with RBF functions; (a) 1D function ϕ(x) = max
(
0, 1 −

2|x|
)

;(b) 1D RBF function function exp
(
−4x2

)
; (b) 2D function ϕ(x) = max

(
0, 1−2|x1|−|x2|

)
; (d) 2D RBF function exp

(
−4x2

1−x2
2

)

computational cost of matrix inversion can be reduced to O(MN), enabling fast parameter estimation. Defining

Φ̃ =

 0 · · · 0

ϕ1 · · · ϕM

 ∈ ℜ(N+1)×M (13)

(5) becomes  b

a

 =


 0 1T

1 I/γ

+ Φ̃Φ̃
T


−1  0

y

 . (14)
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Applying the matrix inversion lemma to (14), we obtain b

a

 =

(
I −

 0 1T

1 I/γ

−1

Φ̃
(
I + Φ̃

T

 0 1T

1 I/γ

−1

Φ̃
)−1

Φ̃
T
)

 0 1T

1 I/γ

−1  0

y


def
= q − P Φ̃

(
I + Φ̃

T
P Φ̃

)−1
Φ̃

T
q

def
= q − P Φ̃

(
I +Q

)−1
Φ̃

T
q (15)

in which

P =

 0 1T

1 I/γ

−1

=
1

N

 −1/γ 1T

1 γ(NI − 11T)

 , (16)

and

q =
1

N

 −1/γ 1T

1 γ(NI − 11T)

 0

y


=

1

N

 1Ty

γ(Ny − 11Ty)

 (17)

and

Q = Φ̃
T
P Φ̃ = γΦ̃

T
Φ̃−Nγϕ̄ϕ̄

T
. (18)

in which ϕ̄ = [ϕ̄1, ..., ϕ̄M ]T, and ϕ̄j =
1
N

∑N
k=1 ϕj(k).

The proposed algorithm needs to be initialized with a predetermined model size M and an initial design matrix

Φ, which is based on preset values of cj ,µj , j = 1, ...M . Clustering algorithms can be used to initialize the centers

cj , which accurately reflects the distribution of the data points. The k−means [21] clustering algorithm is applied

to obtain initial simplex function centers, which is detailed in Algorithm 1 for completeness. While for shaping

parameters µi,j in all simplex functions, it is uniformly initialized as µi,j = µ, where µ > 0 is a predetermined

constant, i.e. we preset µj = µ1.

The fast LSSVR algorithm using SBF low rank kernel is summarized in Algorithm 2, of which the computational

cost is determined by a series of matrix-vector multiplication with the cost at O(NM), matrix multiplication at

O(NM2), and the matrix inverse in computing (15) costs only O(M3), which is negligible in the case of M ≪ N .

October 26, 2018 DRAFT
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Algorithm 1 The k-means clustering algorithm
Require: x(k), k = 1, · · · , N , and a preset number of centers M .
Ensure: cj , j = 1, · · · ,M , that yields the minimum of J =

∑M
j=1

∑
x(k)∈Sj

∥x(k)− cj∥2

1: Randomly select M data points from DN as initial centers coldj .
2: Randomly draw a data point x(k) from DN .
3: From all coldj , j = 1, · · · ,M , find the nearest center to x(k), denoted as coldi .
4: Update cnewi = coldi + ϵ(x(k)− coldi ), where ϵ > 0 is the predetermined learning rate.
5: Set cnewi as coldi .
6: Goto Step 2 until a sufficient large number of iterations, or convergence has been reached.
7: Return cnewj as cj , i = 1, · · · ,M .

Algorithm 2 Summary of fast LSSVR algorithm using SBF low rank kernel.
Require: Φ, y.
Ensure: Ensure b and a are found for given Φ.

1: Construct Φ̃.
2: Calculate b, a using (15)-(18).
3: Return b, a.

B. Iterative estimation of SBF kernels using proposed gradient descent algorithm

Given a training data set DN , consider parameter estimation for the proposed kernel which is specified by a

set of nonlinear parameters cj and µj (j = 1, ...M ). We propose an iterative approach by adjusting cj ,µj , ∀j,

associated with ϕj(x) using a new gradient descent algorithm, while {a, b} are fixed. Our optimization criterion

is based on minimizing the sum of squares of errors (SSE), given by

J (j)(cj ,µj) =
N∑

n=1

e2(x(k))

= eT
(
y −Ka− b1

)
. (19)

We have  ∂J(j)

∂µi,j
= −eT ∂K

∂µi,j
a i = 1, ...,m

∂J(j)

∂ci,j
= −eT ∂K

∂ci,j
a i = 1, ...,m

(20)

in which

∂K

∂µi,j
= (

∂

∂µi,j
ϕj)ϕ

T
j + ϕj(

∂

∂µi,j
ϕj)

T

∂K

∂ci,j
= (

∂

∂ci,j
ϕj)ϕ

T
j + ϕj(

∂

∂ci,j
ϕj)

T (21)

where

∂

∂µi,j
ϕj = [

∂ϕj(x(1))

∂µi,j
, ...,

∂ϕj(x(N))

∂µi,j
]T

∂

∂ci,j
ϕj = [

∂ϕj(x(1))

∂ci,j
, ...,

∂ϕj(x(N))

∂ci,j
]T (22)

October 26, 2018 DRAFT
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Algorithm 3 The proposed LSSVR Algorithm with SBF Kernels.
Require: Data DN . Model size M . Regularization parameter γ. Initial shaping parameter µ. Iteration number Iter.
Ensure: Parameters (cj ,µj , j = 1, ...M ), b, a are obtained.

1: Apply Algorithm 1 (the k−means clustering algorithm) to initialize cj , j = 1, ...M . Set all µi,j as µ.
2: for l = 1, ..., Iter do
3: Form Φ from DN based on cj ,µj , j = 1, ...M .
4: Apply Algorithm 2 to find b, a.
5: for l = 1, ...,M do
6: Adjust cj ,µj using (20)-(27).
7: end for
8: Apply Algorithm 2 to update b, a.
9: end for

10: Return cj ,µj , j = 1, ...M , b and a.

which are calculated by

∂ϕj(x(k))

∂µi,j
= −|xi(k)− ci,j |Id(k), i = 1, ...,m (23)

∂ϕj(x(k))

∂ci,j
= µi,jsign(xi(k)− ci,j)Id(k), i = 1, ...,m (24)

in which Id(k) is an indication function given as

Id(k) =

 1 if
∑m

i=1 µi,j |xi(k)− ci,j | < 1

0 otherwise
(25)

and

sign(s) =


1 s > 0

0 s = 0

−1 s < 0

. (26)

Finally by taking into account the positive constraints for the shaping parameters µj , we propose the constrained

normalized gradient descent algorithm, as expressed as
ci,j = ci,j − η · ∂J(j)

∂ci,j
/∥∂J(j)

∂cj
∥

µ̃i,j = µi,j − η · ∂J(j)

∂µi,j
/∥∂J(j)

∂cj
∥

µi,j = max
(
0, µ̃i,j

) (27)

for i = 1, ...m, where η > 0 is a preset smaller learning rate.

To update all SBF kernel, Equations (20)-(27) are simply applied to M SBF units (j = 1, ...,M ) in turn while

fixing b, a, and all other SBF units. The computational cost is therefore O(M2N). Note that this low computation

cost is based on the fact that (21) has low rank, and in calculating the gradient vector (20), (21) can be in its split

form, which are premultiplied with eT, aT respectively.
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C. Summary of the LSSVR-SBF algorithm

The proposed algorithm is summarized in Algorithm 3. It starts with k-means clustering algorithm for initialization

of SBF centers with a cost at O(N), then the fast least squares LSSVR solution in Section III-A and gradient

decent algorithm in Section III-B are alternatively applied for a predetermined number of iterations. The overall

computational complexity is dominated by the gradient descent algorithm with O(M2N). Hence our proposed

algorithm has a linear complexity of O(N), scaled further by model size M , number of intermediate variables and

iteration number. Thanks to the special structure of the proposed low rank kernels, which enables fast least squares

solution as proposed, this further allows the kernels to be trained using the gradient descent algorithm iteratively.

Furthermore we can often obtain a very sparse model due to the use of the flexible SBF kernels which are learnt

from data automatically, with very little presetting parameters. The overall algorithm is based on the alternative

application of the LSSVR and gradient descent algorithms which have known convergence. LSSVR is a global

optimal algorithm which finds the optimal b, a. The gradient descent algorithm depends on the learning rate η

which should be set as sufficiently small so that the MSE is decreasing per iteration for general smooth function.

Since the SBF model is not based on a smooth function, the MSE per time step may still be slightly increasing

even for very small learning rates, so that the MSE is in general decreasing but not smooth.

D. Piecewise linear model dual representation

In the following, a special property is analyzed, which is referred to as the dual representation of SBF as a

piecewise linear model (Lemma 1).

Lemma 1: The SBF model ŷ(x) can be represented as a piecewise locally linear model with respect to input x

as

ŷ(x) = α(x)Tx+ β(x) + b, (28)

where α(x) and β(x) are piecewise constants, with the properties

(i)
∂

∂x
α(x) = 0,

∂

∂x
β(x) = 0, (29)

(ii)
∂

∂x
f(x) = α(x). (30)

Proof: Consider any given input vector x, (5) can alternatively be represented as

ŷ(x) =
∑

j∈S(x)

θj

(
1−

m∑
i=1

µi,j |xi − ci,j |
)
, (31)

October 26, 2018 DRAFT
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where S(x) ∈ [1, ...,M ] is the index set of j, satisfying condition
∑m

i=1 µi,j |xi − ci,j | < 1. We have

ŷ(x) =
∑

j∈S(x)

θj −
∑

j∈S(x)

θj

m∑
i=1

µi,j |xi − ci,j |+ b

=
m∑
i=1

xi

∑
j∈S(x)

θjµi,jsign
(
ci,j − xi

)
+

∑
j∈S(x)

θj
(
1−

m∑
i=1

µi,jci,jsign
(
ci,j − xi

))
+ b

= α(x)Tx+ β(x) (32)

and α(x) = [α1(x), ..., αm(x)]T, in which

αi(x) =
∑

j∈S(x)

θjµi,jsign
(
ci,j − xi

)
, i = 1, ...,m

β(x) =
∑

j∈S(x)

θj
(
1−

m∑
i=1

µi,jci,jsign
(
ci,j − xi

))
+ b (33)

So that we have ∂
∂xi

αi(x) = 0, ∂
∂xi

β(x) = 0. Hence

∂

∂x
ŷ(x) = α(x). (34)

This concludes the proof.

Clearly SBF’s dual representation as a piecewise linear model with respect to input vector x is useful for extracting

gradient information from an identified model in the similar way as a linear model, except that these are locally

dependent. Moreover, since there are abundant theories in linear systems, e.g. in linear control systems/signal

processing, this piecewise linear model representation can be further exploited for its usefulness depending on

applications, which are our current/future work. For example, the proposed model can be extended to a generalized

predictive controller where the gradient information are needed for calculating the optimal control signals [22],

in which the least square support regression model has been successfully applied. Further works will appear as

separate publications.

IV. SIMULATION STUDY

Example 1 (Nonlinear static function approximation): Consider using LSSVR-SBF to approximate an unknown

scalar function

f(x) =
sin(x)

x
. (35)

A data set of two hundred points was generated from y = f(x)+ ξ, where the input x was uniformly distributed in

[-10,10] and the noise ξ was Gaussian with zero mean and standard deviation 0.2. The data were very noisy. The

proposed LSSVR-SBF algorithm was applied with model size M = 3, µ = 0.2, Iter = 10000, γ = 500, and the

learning rate η = 0.001. The modeling results are plotted in Fig. 2 (a) and (b), respectively. Fig. 2 (b) demonstrates
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that the model can approximate the true underlying function well. In fact the modeling MSE with respective to the

true function converges to 0.0022.
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Fig. 2. Results of Example 1: (a)The evolution of mean square error (MSE) and (b) Noisy data, true function and model predictions of a three
term model.
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Fig. 3. Engine Data: (a) the system input u(k) and (b) the system output y(k)

Example 2 (Nonlinear dynamical system): This Engine data set [23] contains 410 data samples of the fuel rack

position (the input u(k)) and the engine speed (the output y(k)), collected from a Leyland TL11 turbocharged,

direct injection diesel engine which was operated at a low engine speed. The 410 input and output data points of

the engine data set are plotted in Fig. 3 (a) and (b), respectively. The first 210 data samples were used in training

and the last 200 data samples for model testing. The previous study has shown that the data set can be modeled

adequately using the system input vector x(k) =
[
y(k − 1) u(k − 1) u(k − 2)]T, and the best Gaussian RBF

model was provided by the l2-norm local regularization assisted OLS (LROLS) algorithm based on the LOOMSE

(LROLS-LOO) [24] which was quoted in Table II for comparison. The ε-SVM algorithm [25] and the LASSO were
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also experimented based on the Gaussian kernel with a common variance τ2. For the ε-SVM, the Matlab function

quadprog.m was used with the algorithm option set as ‘interior-point-convex’. The tuning parameters in the ε-SVM

algorithm, such as soft margin parameter C [25], were set empirically so that the best possible result was obtained

after several trials. For the LASSO, the Matlab function lasso.m was used with 10-fold CV being used to select

the associated regularization parameter. For both the ε-SVM and LASSO, we list the results obtained for a range

of kernel width τ values in Table II, for comparison. The proposed LSSVR-SBF algorithm was applied, with the

parsimonious principle in mind, by setting the desired model size M as small as possible. For all model sizes,

the experimental setting parameters are uniformly set as µ = 0.2, Iter = 2000, γ = 1000, and the learning rate

η = 0.002. The results obtained for a range of model size M are listed in Table I. It can be seen that the proposed

approach is capable of producing the excellent predictive performance for this benchmark example, even when the

model size is only ten.

TABLE I
COMPARISON OF THE MODELING PERFORMANCE FOR ENGINE DATA.

Algorithm MSE MSE Model
training set test set size

LROLS-LOO [24] 0.000453 0.000490 22
ε-SVM (τ = 3) 0.000502 0.000482 208
ε-SVM (τ = 2.5) 0.000480 0.000475 208
ε-SVM (τ = 2) 0.000461 0.000486 208
ε-SVM (τ = 1.5) 0.000415 0.000579 208
ε-SVM (τ = 1) 0.000370 0.000794 208

LASSO (τ = 1.5) 0.000923 0.001010 70
LASSO (τ = 1) 0.000708 0.000748 44

LASSO (τ = 0.5) 0.000706 0.000842 54
LASSO (τ = 0.2) 0.000565 0.000800 81
LASSO (τ = 0.1) 0.000644 0.001907 76

Proposed LSSVR-SBF 0.000473 0.000487 10
Proposed LSSVR-SBF 0.000440 0.000477 15
Proposed LSSVR-SBF 0.000437 0.000464 20

Example 3 (Nonlinear dynamical system): The continuous-stirred tank reactor (CSTR) plant is very common

in chemical and petrochemical plants. It has an irreversible, exothermic reaction that occurs in a constant volume

reactor and is cooled by a single coolant stream [26]. Within the CSTR two chemicals are mixed and react to

produce a product compound A at a concentration Ca(t), with the temperature of the mixture being T (t). The

system output concentration Ca(t) is controlled by regulating the coolant flow rate qc(t) (system input). The CSTR

can be simulated by the following continuous-time, nonlinear, simultaneous, differential equations:

d

dt
Ca(t) =

q

v

(
Ca0 − Ca(t)

)
− k0Ca(t)e

− E
RT (t) (36)

d

dt
T (t) =

q

v

(
T0 − T (t)

)
+ k1Ca(t)e

− E
RT (t)

+ k2qc(t)
(
1− e−

k3
qc(t) (Tc0 − T (t))

)
(37)
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where k1 = −∆Hk0/ρCp, k2 = ρcCpc/ρCpv, k3 = ha/ρcCpc, in which CSTR parameters are given in Table

II. For nonlinear system identification of the CSTR, the system input are designed as persistent exciting signal,

and we obtain the data set containing 7500 input and output data points from [27]. We build the model based on

the normalized data set, with standard deviation for both input and output data as one. Then the output is added

a zero mean Gaussian noise with variance of 4 × 10−4. 2000 data points are used for training, and the rest are

for validation. The system input vector was set as x(k) =
[
y(k − 1), ..., y(k − ny), u(k − 1), ..., u(k − nu)]

T,

where ny = nu = 3 are adopted according to [26]. The proposed LSSVR-SBF algorithm was applied using model

size M = 5. The experimental setting parameters are uniformly set as µ = 0.01, Iter = 5000, γ = 5000, and

the learning rate η = 0.001. We obtained MSE for training and validation data set of 4.87 × 10−4, 4.85 × 10−4,

respectively. For comparison the ε-SVM algorithm [25] was applied in a similar fashion as in Example 2, and

τ = 2.5 was empirically found to the best choice of kernel width. The MSE for training and validation data set

of 3.68 × 10−4, 6.45 × 10−4 were obtained for ε-SVM algorithm, although the model size was found as 1997,

i.e., it uses all training data points as support vectors. It can be seen that the proposed approach is capable of

producing the excellent predictive performance for this benchmark example, even when the model size is only five.

The modeling results for this example are plotted in Fig. 4 (a)-(c) respectively. This experiment was carried out on

a PC using processor Intel i5-2500 CPU under Matlab, and we recorded the running time as 380 seconds.

TABLE II
THE CSTR PARAMETERS

Parameter Description Nominal Value
q process flow rate 100 l/min
v reaction volume 100 l
k0 reaction rate constant 7.2× 1010min−1

E/R activation energy 1× 104K
T0 feed temperature 300 K
Tco inlet coolant temperature 300K
∆H heat of reaction −2× 105 cal/mol
Ca0 Inlet feed concentration 1 mol/l

Cp, Cpc specific heats 1 cal/g/K
ρ, ρc liquid densities 1× 103 g/l
ha heat transfer coefficient 7× 105 cal/min/K

V. CONCLUSIONS

In this paper we have introduced a least squares support vector regression algorithm using a novel low rank kernel

based on a simplex basis function. The proposed model lends itself to efficient computation due to low rank kernel

matrix. A fast least squares solution has been proposed without matrix inversion to achieve O(N) complexity. It is

shown that the proposed model is equivalent to a sparse SBF model. Since the proposed kernel is parameterized,

the learning algorithm is proposed which alternates between two sub-algorithms (i) the proposed fast least square

algorithm, while the simplex basis functions are fixed and (ii) the gradient descent algorithm for nonlinear SBF
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Fig. 4. CSTR Data: (a) The evolution of MSE for the training set; (b) the system input/output data set (2000 data points); (b) the system
output, model prediction and model residues for validation data set (6500 data points).

parameters in which each simplex basis function parameters are adjusted by minimizing sum of squares errors. We

have shown the proposed model can be dually represented as a piecewise linear model, which can be useful for

extracting gradient information for applications requiring knowledge discovery and control. Numerical experiments

are performed to demonstrate the effectiveness of the proposed approach. Current work is devoted to extending the

method to generalized predictive controller where the gradient information are needed for calculating the optimal

control signals in LSSVR setting [22], which will appear in a separate publication.
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