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Abstract 12 

Large-area coastal exposure and impact analysis has focussed on using sea-level rise (SLR) scenarios and has 13 

placed little emphasis on socioeconomic scenarios, while neglecting spatial variations of population dynamics. We 14 

use the Dynamic Interactive Vulnerability Assessment (DIVA) Framework to assess the population exposed to 1 15 

in 100-year coastal flood events under different population scenarios, that are consistent with the Shared 16 

Socioeconomic Pathways (SSPs); and different SLR scenarios, derived from the Representative Concentration 17 

Pathways (RCPs); and analyse the effect of accounting for regionalised population dynamics on population 18 

exposure until 2100. In a reference approach, we use homogeneous population growth on national level. In the 19 

regionalisation approaches, we test existing spatially explicit projections that also account for urbanisation, coastal 20 

migration and urban sprawl. Our results show that projected global exposure in 2100 ranges from 100 million to 21 

260 million, depending on the combination of SLR and population scenarios and method used for regionalising 22 

the population projections. The assessed exposure based on the regionalised approaches is higher than that derived 23 

from the reference approach by up to 60 million people (39%). Accounting for urbanisation and coastal migration 24 

leads to an increase in exposure, whereas considering urban sprawl leads to lower exposure. Differences between 25 

the reference and the regionalised approaches increase with higher SLR. The regionalised approaches show highest 26 

exposure under SSP5 over most of the 21st century, although total population in SSP5 is the second lowest overall. 27 

All methods project the largest absolute growth in exposure for Asia and relative growth for Africa. 28 
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1 Introduction 31 

A large number of studies have assessed future coastal exposure to sea-level rise (SLR) and respective impacts on 32 

global scale (e.g. Hanson et al. 2011; Hallegatte et al. 2013; Neumann et al. 2015). These studies rely on SLR and 33 

socio-economic scenarios, because future climate and socio-economic change cannot be forecasted over decades 34 

due to deep uncertainties and alternating pathways of development involved. While a lot of emphasis has been 35 

placed on developing adequate SLR scenarios that account for uncertainties in future SLR, much less emphasis 36 

has been placed on socio-economic scenarios, even though both uncertainties are roughly at equal footing in terms 37 

of their influence on future coastal exposure and impacts (Hinkel et al. 2014).  38 

The implementation of population changes in global coastal impact assessments has generally improved since the 39 

1990s, as at that time studies assumed socioeconomic conditions to remain constant (e.g. Nicholls and Mimura 40 

1998) and were therefore unrealistic for future conditions. In recent years multiple scenarios of socioeconomic 41 

development on global, continental or national level have been employed in global coastal impact assessment in 42 

order to account for uncertainties in socioeconomic development and lead to plausible estimates on future exposure 43 

(see e.g. Nicholls (2004) and Arnell et al. (2004) for the Intergovernmental Panel on Climate Change (IPCC) 44 

Special Report on Emission Scenarios (SRES) and e.g. Hinkel et al. (2014) for the Shared Socioeconomic 45 

Pathways (SSPs)). However, these approaches used population projections on national level and did not account 46 

for different population change rates in coastal and inland areas. As coastal zones typically face different 47 

challenges compared to inland areas, including differing rates of economic growth and a higher density of cities 48 

(McGranahan et al. 2007; Seto 2011; Kummu et al. 2016), coastal population was underestimated.  49 

For this reason, some recent studies of global coastal exposure have used higher growth rates for coastal population 50 

than for inland population. Nicholls et al. (2008) assumed coastal population to grow up to 2 times faster than the 51 

national average. Neumann et al. (2015) refined the approach of Nicholls et al. (2008) and differentiated between 52 

coastal and inland population development for urban and non-urban areas by using correction factors. These 53 

corrections factors allowed coastal population to remain constant if inland population was projected to decrease 54 

and grew 1.7 to 2 times faster than the inland population if the inland population was projected to increase. These 55 

approaches have the limitations of assuming first, arbitrary correction factors, and second that coastal population 56 

develop faster than inland population for all countries, which is, not always the case. Merkens et al. (2016), for 57 

example, tested this assumption against historical population data for coastal countries between 1990 and 2000 58 

and found that for 40-50% of all countries inland urban and rural locations grow faster than their coastal 59 

counterparts. 60 
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Spatially explicit population projections provide a more realistic basis for coastal exposure analysis. Gaffin et al. 61 

(2004) developed population projections until 2100 consistent with the SRES with a horizontal resolution of 15’ 62 

(~30 km at the equator). Grübler et al. (2007) produced gridded population projections with a horizontal resolution 63 

of 7.5’ (~15 km at the equator) for three of four SRES scenarios. Their work was refined by Jones and O’Neill 64 

(2016), who created gridded population projection for all five SSPs at an initial horizontal resolution of 7.5’. Their 65 

projections were downscaled to 0.5’ (~ 1km at the equator) by Gao (2017). Jones and O’Neill (2016) analysed 66 

historical trends of population development and used a gravity-based downscaling model to simulate urban and 67 

rural population changes. For all five SSPs an index of potential attractiveness for each grid cell was used to 68 

allocate population, which indirectly leads to different growth rates on subnational level for coastal and inland 69 

areas. Merkens et al. (2016) created gridded population projections with a horizontal resolution of 0.5’ for all five 70 

SSPs that focused on coastal areas and analysed historical growth differences of coastal urban and coastal rural 71 

areas compared to the inland counterparts. Their method is described in more detail in section 2.2. In addition, 72 

they expanded the qualitative narratives of the SSPs to the coastal zone and assumed scenario-specific 73 

modifications of the observed growth differences that are based on the narratives. Both studies, Jones and O’Neill 74 

(2016) and Merkens et al. (2016), are consistent with the population projections (KC and Lutz 2017) and 75 

urbanisation projections (Jiang and O’Neill 2017) on national level that are used in the SSP framework (O’Neill 76 

et al. 2017).  77 

In this study we assess the sensitivity of outcomes in coastal exposure analysis to inclusion of subnational 78 

heterogeneity in population projections. We compare (i) homogeneous population change on national level 79 

(hereinafter referred to as the basic approach) to (ii) the population projections of Merkens et al. (2016) that also 80 

account for urbanisation and coastal migration are have been specifically developed for coastal exposure analysis 81 

(hereinafter referred to as the coastal approach) and to (iii) the downscaled spatial projections of Jones and O’Neill 82 

(2016) by Gao (2017) that account for urbanisation and urban sprawl (referred to as dynamic approach)). We 83 

further analyse (iv) the extent to which urbanisation can explain the differences in exposure between the basic and 84 

coastal approach (referred to as urban approach) (see Fig. 1). 85 
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 86 

Fig. 1: Regionalisation approaches. The basic approach assumes homogeneous population dynamics within a country. The 87 

coastal approach differentiates population dynamics between coastal urban, coastal rural, inland urban and inland rural 88 

areas. The dynamic approach uses dynamic urban extents to account for urban sprawl. The urban approach differentiates 89 

urban and rural population dynamics with static urban extents 90 

2 Data and Methods 91 

2.1 DIVA database 92 

For our analysis, we employ the Dynamic Interactive Vulnerability Assessment (DIVA) modelling framework, 93 

which has been used in a wide range of applications in coastal risk assessments (see Hinkel et al. 2013 for erosion, 94 

Hinkel et al. 2010 and Hinkel et al. 2014 for adaptation, Hinkel et al. 2012 for adaptation and mitigation, Spencer 95 

et al. 2016 for wetlands). The results presented in this study are based on version 30 of the DIVA database and 96 

model version 1.7. 97 

The DIVA database breaks the world’s coasts (excluding Antarctica) into 12,148 segments. Each coastal segment 98 

provides information on administrative, bio-physical and socioecological attributes. In the context of this study, 99 

we focus on the population living in the 1 in 100-year floodplain, which is a well-established measure of coastal 100 

exposure analysis (e.g. Hanson et al. 2011; Vousdoukas et al. 2016; Muis et al. 2017). The 1 in 100-year coastal 101 

flood heights are taken from Muis et al. (2016). We use the DIVA flood module to calculate the number of people 102 
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living in the floodplain without considering dikes. A detailed description of this approach can be found in Hinkel 103 

et al. (2014). As we account for isostatic adjustment and subsidence (see section 2.3), DIVA provides relative sea-104 

level for all segments.  105 

To define the floodplain, we use a global elevation dataset which is based on SRTM (Jarvis et al. 2008) and 106 

GTOPO30 (USGS 1996) data for high latitudes (>60°N and >54°S). For all elevation steps from 1m to 16m, we 107 

calculate the extent of the area that is hydrologically connected to the ocean and smaller or equal to the respective 108 

elevation threshold (see Poulter and Halpin 2008). Intermediate values are linearly interpolated (Hinkel et al. 109 

2014). We utilise the GRUMPv1 grid (CIESIN et al. 2011a) to analyse the population located in each of these 110 

elevation increments for the year 2000. The coastal SSPs of Merkens et al. (2016) use the GRUMP urban extent 111 

grid, which uses census population counts, settlement points and night-time lights, to define urban areas (CIESIN 112 

et al. 2011b) and assumes assume these to be static. GRUMP tends to underestimate the extent of settlements with 113 

none or little light at night, e.g. in parts of Africa (Balk et al. 2006), which also affects the estimates on exposed 114 

population. The estimates on exposed population also depend on the elevation model used for the analysis. Lichter 115 

et al. (2011) analysed the land area of the LECZ derived from three different elevation datasets with the same 116 

vertical and horizontal resolution of 1m and 0.5’ (~ 1km at the equator). On continental scale, they found 117 

differences of up to 40%. In the same study, Lichter et al. (2011) compared two commonly used population datasets 118 

(GRUMP alpha and LandScan 2006) and analysed the population located in the LECZ. On global scale, the LECZ 119 

population differed by ~10%, on continental scale by up to 28%. They stated the combined uncertainty of elevation 120 

and population data at 20% on global scale and at up to 67% on continental scale. Mondal and Tatem (2012) 121 

compared the LECZ population for GRUMP version 1 (the same version that was used in this study) and LandScan 122 

2008 and found differences of 4% on global scale and of up to 39% on continental scale. GRUMP’s underlying 123 

assumption of homogeneous population distribution within urban and rural areas in the same administrative unit 124 

can in addition lead to an over- or underestimation of the ‘true’ exposure (Merkens and Vafeidis 2018). As this 125 

study uses the same population and elevation datasets throughout the analysis, we expect the relative differences 126 

between the approaches to be independent from the elevation or population data, whereas the absolute numbers 127 

are likely to be different if other population or elevation data are used.  128 

2.2 Socioeconomic scenarios 129 

We initially calculate exposure of population based on two approaches to account for future population 130 

development in coastal areas (see Fig. 1). In the basic approach, we use national population projections taken from 131 

KC and Lutz (2017) and apply these to the baseline (i.e., year 2000) spatial population data. This approach assumes 132 
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homogeneous growth rates within each country, i.e. population in coastal areas grows at the same rate than in 133 

inland areas. In the coastal approach, we use the coastal SSPs of Merkens et al. (2016). These are based on the 134 

national population projections of KC and Lutz (2017) as well, but consider urbanisation projections (Jiang and 135 

O’Neill 2017), historical growth differences and scenario-dependent modifications of growth differences. For each 136 

country Merkens et al (2016) analysed the population growth for coastal urban (rural) areas and inland urban 137 

(rural) areas over a 10-year period from 1990 to 2000. If coastal areas had a higher population growth rate than 138 

inland areas, the growth difference (GD) was positive and vice versa. The GD allows for negative (positive) 139 

population growth in the coast or inland even if national population growth is positive (negative). It also allows 140 

for higher population change rates in coastal areas compared to inland areas. For SSP2 Merkens et al. (2016) 141 

assumed the GD to keep constant over time for each location. For the other four SSPs they modified the GDs based 142 

on the interpretation of the coastal SSP narratives, which are introduced in the same study. They quantified the 143 

modification of the GDs based on the difference between percentiles in the distribution of the observed urban and 144 

rural GDs for all coastal countries. In SSP1 they assume no differences in growth for coastal and inland urban 145 

areas and a reduced rural GD (translates to relatively higher rural growth in inland). In SSP3 they assume that the 146 

GD to reduce by 50% for both, urban and rural areas. In SSP4 and SSP5 they increased the GD (translates to 147 

relatively higher relative growth at the coast), whereby the increase was bigger in SSP5. Based on the scenario 148 

specific GDs and the population and urbanisation projections they calculated population counts for coastal urban, 149 

costal rural, inland urban and inland rural for each country in 5 year increments until 2100. This leads to 150 

heterogeneous growth rates within countries because urban areas develop differently to rural areas and coastal 151 

areas differently to inland areas. We then calculate the mean coastal population growth rate for each country and 152 

apply it on each coastline segment of this country. We must note that the definitions of ‘urban’ between GRUMP 153 

(used in Merkens et al. (2016) and Gao (2017)) and Jiang and O’Neill (2016) differ, which results in an offset in 154 

the data for the years 2005 and 2010 (see section 4 for a discussion of the implications on exposure analysis). 155 

2.3 Sea-level rise scenarios 156 

We use the projected changes in global mean sea level and the likely ranges reported in the Fifth Assessment 157 

Report of the Intergovernmental Panel on Climate Change (Church et al. 2013). For each of the four RCPs, we use 158 

the ensemble median as medium SLR scenario. The 83rd percentile serves as high SLR scenario and the 17th 159 

percentile as low SLR scenario (see Table 1). We do not consider regional patterns of SLR due to ocean dynamics 160 

and regionally differential changes in thermal expansion and rotational and gravitational effects of the mass loss 161 

of ice sheet. Church et al. (2013) show that these regional effects are below 10% for most of the populated coastal 162 

zone with the exception of the East Coast of the US. Hence the global effects of these regional SLR variations are 163 
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expected to be much smaller than those of human-induced subsidence in densely populated river deltas, which we 164 

consider here together with isostatic adjustment. Furthermore, uncertainties in regional sea level projections are 165 

large, with different models producing different patterns and the highest deviations of regional sea-level rise due 166 

to dynamic variability coinciding with those regions for which model uncertainties are largest (Church et al., 2013).  167 

We assume that water levels during coastal floods increase by the same amount as the projected global sea-level 168 

and do not account for non-linear interactions between the water level and SLR (Arns et al. 2017) as the focus of 169 

this paper is the comparison of population distribution approaches. 170 

Table 1: Sea level rise projections for 2100 referenced to the 1986-2005 period [in m]. 171 

 low medium high 

RCP2.6 0.28 0.44 0.61 

RCP4.5 0.36 0.53 0.71 

RCP6.0 0.38 0.55 0.73 

RCP8.5 0.53 0.74 0.98 

Values are taken from Prather et al. (2014). 

 172 

In this study, we use the 12 SLR scenarios from Table 1 (four RCPs, for each high, medium and low SLR 173 

projections). These are combined with the five SSPs. Taking into account the two regionalisation approaches (plus 174 

another two for testing our assumption) in each SSP, we end up with 240 model runs. This number could be 175 

reduced by ignoring scenario combinations that are not plausible. For example, the combination of an 176 

environmentally friendly socioeconomic scenario (SSP1) and a physical scenario with high radiative forcing 177 

(RCP8.5) would in general be inconsistent (van Vuuren et al. 2014; Engström et al. 2016). Nevertheless, we 178 

decided to analyse all scenario combinations, as this study aims to analyse and understand the effect that 179 

regionalisation approaches of socioeconomic scenarios have for impact assessment. 180 

3 Results 181 

We compare future coastal exposure to 1 in 100-year coastal floods based on the different regionalisation 182 

approaches. We define the absolute difference in exposure as the difference in the tested approach (i.e. coastal, 183 

urban or dynamic) minus the exposure in the basic approach. The relative difference is defined as the absolute 184 

difference in exposure divided by the exposure in the basic approach. 185 

3.1 Global 186 

Our first main finding is that accounting for urbanisation and coastal migration has significant implications for 187 

assessing coastal exposure. The exposure based on the coastal approach exceeds the one based on the basic 188 

approach in all scenarios over the 21st century (see Fig. 2). This finding is consistent for all SLR scenarios (see 189 
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Fig. A. 3). For SSP1, 4 and 5 we find the exposure in the basic approach with high SLR in all RCPs to be lower 190 

than the respective low SLR variant in the coastal approach. In other words, in these scenarios the difference 191 

between the population distribution approaches is larger than the difference between high and low SLR. To 192 

investigate which of the two (urbanisation and coastal migration) is the dominant process leading to the difference 193 

between basic and coastal approach, we added the ‘urban approach’ to our modelling scheme (see Fig. 1). The 194 

urban approach is based on population and urbanisation projections that are modelled in the same way as in the 195 

coastal SSPs, but uses a GD of zero, which means that the population in urban and rural zones for each SSP grows 196 

at rates consistent with projections on national level and does not differ between coastal and inland areas. We 197 

assume that the difference between the urban approach and the basic approach represents the impact of changing 198 

urbanisation levels, without considering urban sprawl. The difference between the urban approach and the coastal 199 

approach can result from differences in fertility, mortality, international migration or internal migration, of which 200 

we assume internal migration from or to the coast to have the highest impact. We find that, independently of SLR, 201 

urbanisation explains 61% of the difference between the coastal and basic approach in SSP1, 96% in SSP2, 54% 202 

in SSP3, 76% in SSP4 and 45% in SSP5 (see Fig A. 2). This means that SSP5 is the only scenario where 203 

urbanisation appears not to be the dominant process. This can be explained by the underlying assumptions of 204 

intense coastward migration for SSP5 in the coastal approach (Merkens et al., 2016). In general, the projected 205 

increase in urbanisation levels leads to higher population growth rates in the coastal zone compared to inland areas, 206 

as coastal areas show a higher density of cities than inland areas, and population is projected to move into these 207 

cities. In the basic approach, the population in all areas within a country grows at the same rate, which leads to 208 

lower population numbers at the coast compared to the coastal approach. We therefore conclude that the higher 209 

exposure in the coastal approach compared to the basic approach is due to a combination of increasing urbanisation 210 

levels in all SSPs and migration to coastal areas, of which urbanisation is the dominant process for SSPs 1-4 and 211 

coastal migration for SSP5. 212 
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 213 

Fig. 2: Exposure of population to 1 in 100-year coastal floods under medium SLR in RCP6.0 in the tested approaches. 214 

Our second main finding is that the implementation of urban sprawl has a considerable impact on the estimates on 215 

exposure. We compare the urban approach to a ‘dynamic approach’, which is based on the population projections 216 

of Jones and O’Neill (2016) that were downscaled by Gao (2017). Unlike the urban (and coastal) approach, that 217 

assume urban extent to be static, the dynamic approach considers urban sprawl, which leads to wider city extents 218 

and lower population densities within cities. We assume that differences between the urban and dynamic approach 219 

are mainly due to urban sprawl, as the approaches use the same population projections of KC and Lutz (2017) and 220 

the same urbanisation projections of Jiang and O’Neill (2017). Compared to the dynamic approach, we find 221 

exposure to 1 in 100-year coastal floods to be higher in the urban approach for all combinations of SSPs and RCPs 222 
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(Fig. A. 3). They differ between 15 million in SSP1 (RCP 2.6 and low SLR) and 26 million in SSP4 (RCP 8.5 and 223 

high SLR). Differences in SSP1 are lowest, as cities in the dynamic approach are assumed to be concentrated 224 

(Jones and O’Neill 2016) and urban extents to be static in the urban (and coastal) approach. However, the 225 

difference of 15 million in SSP1 is considerable and suggests that the definition of urban areas (and population) 226 

between the urban and the dynamic approach differs, as urbanisation levels and total population do not differ and 227 

cities are assumed to be concentrated (dynamic approach) or static (urban approach). For SSPs 2-5 differences 228 

between the urban approach and dynamic approach are higher, as only the dynamic approach considers urban 229 

sprawl. This suggests that urban sprawl can lead to a reduction of exposure as cities seem to expand towards less 230 

flood-prone areas. The differences between the basic and the dynamic approach are rather small (Fig. 2). Global 231 

exposure in the dynamic approach under SSP3 for 2100 is up to 7.5 million lower than one in the basic approach. 232 

In the other SSPs, exposure based on the dynamic approach exceeds the basic approach by 1 million in SSP4, 2 233 

million in SSP2, 5 million in SSP5 and 6 million in SSP1 (see Fig. A. 4). These SSPs are also projected to have a 234 

high increase in urbanisation levels, whereas urbanisation levels in SSP3 are projected to increase little (Jiang and 235 

O’Neill 2017). This supports our first finding that neglecting urbanisation patterns would lead to an 236 

underestimation of coastal exposure. The differences between the dynamic and the coastal approach are larger than 237 

the differences between the dynamic and the urban approach (between 17 million is SSP2 under RCP 2.6 with low 238 

SLR and 54 million in SSP5 under RCP 8.5 and high SLR), as coastal migration is additionally considered in the 239 

coastal approach. Overall we believe that the coastal approach overestimates exposure, as it does not consider 240 

urban sprawl, which appears to reduce exposure; and that the dynamic approach underestimates exposure, as it 241 

does not explicitly consider coastal migration, which appears to increase exposure to coastal flooding. We must 242 

note that this study does not aim to test the underlying quantifications on coastal migration in Merkens et al. (2016) 243 

and the quantification of urban sprawl in Jones and O’Neill (2016), but rather to investigate the implications for 244 

coastal exposure analysis when accounting or neglecting of processes actually taking place in coastal areas. 245 

We also find that the population distribution approach is important in determining which SSP leads to the highest 246 

exposure to coastal flooding. Though all approaches agree on SSP3 having the highest exposure in 2100, only the 247 

basic approach shows SSP3 to lead to the highest exposure throughout the century. The other approaches agree on 248 

SSP5 leading to the highest exposure until 2060 (dynamic approach), 2075 (urban approach) and 2090 (coastal 249 

approach) (see Fig. 2). This holds true for all SLR scenarios. This is noteworthy as SSP5 and SSP1 are projected 250 

to have considerably lower total populations than the other SSPs (KC and Lutz 2017). We identify two factors 251 

leading to this observation. The behaviour in the basic approach can be explained by the underlying global 252 

population projections that project population to be highest in SSP3 (KC and Lutz 2017). The higher exposure in 253 



11 

SSP5 in the other approaches is due to high urbanisation levels (Jiang and O’Neill 2017). Exposure rises in the 254 

coastal approach as coastal areas are assumed to be more attractive than inland areas and decreases in the dynamic 255 

approach as high urban sprawl leads to cities expanding to flood proof areas. 256 

Results also show that the absolute difference in exposed population between the basic and  the other approaches 257 

increases with SLR (see Fig. A. 4). We find the highest differences under the high SLR projections in RCP8.5 and 258 

the smallest differences under the low SLR projections in RCP2.6. Compared to the basic approach, SSP1, SSP4 259 

and SSP5 show the highest difference and SSP2 and SSP3 the lowest. Different to the urban and the coastal 260 

approach, the dynamic approach shows a reduced exposure for SSP3 and a higher difference for SSP2 than for 261 

SSP4 for 2090 to 2100, when the basic approach is used as reference. Again, this observation highlights the 262 

significance of urbanisation, coastal migration and urban sprawl.. As cities are concentrated in coastal areas, the 263 

overall population growth in coastal areas is higher than the national average (represented by the basic approach). 264 

3.2 Regional 265 

In this section we focus on the comparison between the basic and the coastal approach, as the coastal approach 266 

explicitly considers coastal migration. Results for the dynamic and urban approach on regional level can be found 267 

in the SM. 268 

Different to the global patterns, Europe, Northern America and Oceania face the highest exposure under SSP5 for 269 

both coastal and basic SSPs (Fig. 3). Exposure increases continuously until 2100 under this SSP. For Africa and 270 

Latin America and the Caribbean (LAatC), SSP3 shows the highest exposure throughout the century, which also 271 

increases continuously with time. This is in line with the underlying national projections of KC and Lutz (2017) 272 

that project highest population under SSP5 for the most developed countries and under SSP3 for developing 273 

countries. For Asia, we find a notable difference between the coastal and basic approach. In the basic approach, 274 

exposure is highest under SSP3 throughout the 21st century. In the coastal approach, exposure is highest under 275 

SSP5 until 2075 and under SSP3 afterwards. Asia’s high exposure under SSP5 in the coastal approach reflects the 276 

high increase of urbanisation levels in the underlying urbanisation projections (Jiang and O’Neill 2017) and the 277 

coastward migration in the coastal SSPs. The decrease in Asia’s exposure projected after 2050 is due to the 278 

decreasing population after 2050 in the underlying population projections (KC and Lutz 2017). This also can also 279 

be seen in the basic approach and holds true for all SSPs except SSP3, where the Asia’s population is projected to 280 

grow after 2050. 281 
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 282 

Fig. 3: Exposure per continent under medium SLR in RCP6.0. In the basic approach, SSP1 and SSP5 overlap for Africa and 283 

Asia. For LAtaC (Latin America and the Caribbean), SSP1 and SSP4 overlap in both approaches. 284 

The absolute difference in exposure to 1 in 100-year coastal floods on continental scale follows global patterns 285 

and becomes larger with SLR in all SSPs (see Fig. A. 7). Accordingly, we find the highest differences in RCP8.5 286 
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with high SLR and the smallest differences in RCP2.6 with low SLR. The difference between the coastal and basic 287 

approach is highest in SSP5 in all continents except Africa, where SSP4 shows the highest differences. We observe 288 

the lowest differences in SSP1 for Africa, LAatC, Northern America and Oceania. For Europe and Asia, we find 289 

the lowest differences between the coastal and basic approach in SSP3. 290 

The relative difference in exposed population is heterogeneous and does not follow the global patterns. For Africa, 291 

which shows overall the highest values, we find the relative difference to decrease with rising sea levels (see Table 292 

A. 1). The highest difference in exposure is in SSP4 (coastal approach is up to 64% higher than the basic approach) 293 

and lowest in SSP2 and SSP3 (coastal approach 24% higher than basic approach). For Asia, we find the highest 294 

relative differences between coastal and basic approach in SSP5 (48%) and the lowest in SSP3 (~12%). For 295 

Europe, which shows overall the closest agreement between coastal and basic approach, the relative difference in 296 

exposure increases slightly with SLR. SSP5 exhibits the highest relative difference in exposure (~20%) and SSP3 297 

the lowest (<1%). For Northern America, the relative difference in exposure increases with SLR in SSP1 and 298 

decreases in SSP2-5 while the opposite is the case in Asia. For LAatC and Oceania we do not find a relation 299 

between SLR and relative difference in exposure based on the basic and coastal SSPs. 300 

4 Discussion 301 

One of our key findings is that under all scenarios the coastal approach projects higher population located in the 302 

floodplain of 1 in 100-year coastal floods than the basic approach. In agreement with previous studies that 303 

identified urbanisation as a key component in coastal population development, we explain most of the differences 304 

with the projected growing urbanisation levels in the coastal approach (see Fig. A. 1 and Fig. A. 2). Coastal areas 305 

today show a higher concentration of cities than inland areas. Kummu et al. (2016) shows that 105 out of 256 cities 306 

with a population of more than 1 million are located in the near coast zone (proximity to coast < 100 km and 307 

altitude < 100 m). According to Brown et al. (2013), in 2010 20 out of 31 megacities (cities with more than 8 308 

million inhabitants) were located in the low-elevation coastal zone (LECZ; altitude ≤ 10 m and hydrological 309 

connection to the ocean). Neumann et al. (2015) assume that the number of megacities in the LECZ will increase 310 

to 25 until 2025. Hoornweg and Pope (2016) project the population development of the 101 largest cities under 311 

three SSPs. They show that the percentage of population living in these cities will increase from 11% in 2010 to 312 

15% in SSP3, 20% in SSP2 and 23% in SSP1 until 2100. As the coastal approach accounts for urbanisation 313 

(Merkens et al. 2016) and the basic approach does not, coastal population tends to be underestimated in the basic 314 

approach. 315 
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The basic approach shows similar results to the study of Jongman et al. (2012) that also used a homogeneous 316 

population growth approach on national level. They found an increase in population exposure to 1 in 100-year 317 

coastal floods between 2010 and 2050 of 25% on global scale. In the basic approach, we find an increase of 318 

population’s exposure to 1 in 100-year coastal floods between 19% in SSP4 and 28% in SSP3. The exposure based 319 

on the coastal approach grows from 2010 to 2050 between 33% in SSP3 and 50% in SSP5 and exceeds the 320 

projections of Jongman et al. (2012). In agreement with Jongman et al. (2012), both approaches analysed in context 321 

of this paper project the highest absolute growth in exposed population until 2050 for Asia and the highest relative 322 

growth for Africa. However, the comparison of results to other studies proofs difficult, as the underlying population 323 

projections are different. For example, Jongman et al. (2012) used the medium Fertility projection of the 2006 324 

Revision by the UN Population Division while this study is based on the work of KC and Lutz (2017). 325 

The differences in population exposure between the approaches for the years 2005 and 2010 are due to using 326 

differing definitions of ‘urban’ in the underlying data. The urbanisation projections rely on Jiang and O’Neill 327 

(2017), which used the world urbanisation prospects (UN 2015) as input data that retains the urban definitions 328 

used by each country. Across countries, the definitions are inconsistent. The coastal SSPs of Merkens et al. (2016) 329 

used the GRUMP urban extents grid, which tends to underestimate urban extents in developing regions (see section 330 

2.1). Hence, urban population is concentrated in the remaining settlements with night-lights, leading to higher 331 

estimated population counts in these areas. As coastal areas in eastern and northern Africa are heavily populated 332 

(Hinkel et al. 2012) and western Africa hosts important port cities with growing population (Hanson et al. 2011), 333 

the inconsistencies in data trigger an offset in the initial exposure. In SSP4, which shows the highest relative 334 

differences between the coastal and basic approach for Africa, the African population grows more than threefold 335 

(KC and Lutz 2017) and the urbanisation level almost doubles until 2100 (Jiang and O’Neill 2017). This leads 336 

presumably to an overestimation of exposure in the coastal approach. With SLR, the effects of the initial 337 

inconsistencies in the data decrease, leading to a reduction of the relative differences of exposed population.  338 

This study has focused on the differences in exposure that arise from using different approaches to regionalise 339 

population projections. We interpret the differences in exposure between the approaches as uncertainty that is 340 

related to regionalisation, as the underlying population projections on national level do not differ between the 341 

approaches. Other uncertainties arise from elevation data and the base year population datasets used to assess the 342 

exposure to 1 in 100-year. Elevation and population datasets can potentially be improved if data availability 343 

improves and the need for modelling decreases. The uncertainties that arise from the downscaling approach can 344 

be reduced to some extent, if the differences between reported urbanisation level and the urbanisation levels based 345 



15 

on remote sensing products find a better agreement. Other parts of the uncertainty cannot be removed, as the 346 

projections are made for long timeframes and human behaviour cannot be predicted.  347 

5 Conclusion 348 

This study compared different approaches to account for population change in coastal impact assessment in order 349 

to assess the exposure of population to 1 in 100-year coastal floods under different SLR and socioeconomic 350 

scenarios. All approaches were based on the same population projections on national level. We found that 351 

urbanisation and coastal migration lead to increased exposure whereas urban sprawl leads to reduced exposure. 352 

This emphasises the need for taking into account population dynamics on subnational level in exposure 353 

assessments. We believe that the exposure estimates obtained from approaches accounting for regional variations 354 

in population distribution, such as urbanisation, coastal migration and urban sprawl, are more reliable than the 355 

approaches not accounting for such variations. As coastal areas host a disproportionately large number of cities, 356 

sub-national population dynamics are of particular relevance for coastal exposure studies and should not be 357 

ignored. With rapidly growing cities in developing countries, the need to provide improved assessments of 358 

population exposure to coastal flooding is important for global and national planning, both in terms of allocating 359 

human and financial resources on national level and climate change adaptation funding on international level. 360 
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