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Abstract

Bioactive phosphate glasses are of considerable interest for a range of soft and hard tissue engineering 

applications. The glasses are degradable and can release biologically important ions in a controlled 

manner. The glasses can also potentially be used as an antimicrobial delivery system. In the given 

study, novel cobalt doped phosphate-based glasses, (P2O5)50(Na2O)20(CaO)30-x(CoO)x where 0 ≤ x 

(mol%) ≤ 10, were manufactured and characterised. As the cobalt oxide concentration increased the 

rate of dissolution was observed to decrease. The antimicrobial potential of the glasses was studied 

using direct and indirect contact methods against both Escherichia coli (NCTC 10538) 

Staphylococcus aureus (ATCC 6538) and Candida albicans (ATCC 76615). The results showed a 

strong, time dependent and strain specific, antimicrobial activity of the glasses against 

microorganisms when in direct contact. Antimicrobial activity (R) ≥ 2 was observed within 2 hours 

against Escherichia coli whereas similar effect was achieved in 6 hours against Staphylococcus 

aureus and Candida albicans. However, when in indirect contact, the dissolution products from the 

bioactive glasses failed to show antimicrobial effect. Following direct exposure to the glasses for 7 

days, osteoblast-like SAOS-2 cells showed a 5-fold increase in VEGF mRNA whilst THP-1 

monocytic cells showed a 4-fold increase in VEGF mRNA expression when exposed to 10% CoO 

doped glass compared with the cobalt free control glass. Endothelial cells stimulated with conditioned 

medium taken from cell cultures of THP-1 monocytes exposed to 10% CoO doped glass showed clear 

tube–like structure (blood vessel) formation after 4 hours.

1. Introduction

The growth and attachment of bacteria on surfaces leads to contamination and/or infections [1], 

therefore prevention of microbial adhesion and colonisation is the preeminent strategy to combat 

infections. In the last few decades a number of antimicrobial surfaces have been developed such as 

antibacterial plastics, ceramics and clothes [2-4] to prevent microbial colonisation. Likewise, recent 

attempts to coat or impregnate medical devices, such as urinary and central venous catheters, 

ventilators, dental and orthopaedic implants, with antimicrobials are gaining interest [5-7]. However, 
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lack of antimicrobial activity and/or failure in the delivery system highlights the need to improve the 

properties of existing materials.

Bioactive glasses show great potential for a range of hard and soft tissue bioengineering applications 

[8-10]. These biodegradable glasses can be tailored to provide a controlled release of ions (e.g. Ca 

and P) to stimulate the desirable cellular responses. In addition, antimicrobial metallic ions such as 

Ag, Cu or Zn can also be incorporated to reduce infections. The degradation rate of phosphate-based 

glasses can be tailored by several orders of magnitude by changing the glass composition making it 

an ideal controlled delivery system of antimicrobial ions. Consequently silver and copper doped 

bioactive glasses have been widely studied for their broad and strong antimicrobial properties [4, 11-

15]. Silver doped bioactive glasses have shown bacteriostatic and bactericidal properties against 

Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Knowles et al. investigated 

the antimicrobial effect of silver-doped phosphate-based glass on planktonic bacteria as well as the 

effect of increasing copper content in phosphate based glasses on biofilms of Streptococcus sanguis 

[13, 15]. Although silver and copper doped glasses have been report to exhibit moderate antimicrobial 

properties, recent studies have documented emergence of resistance [16, 17]. Therefore, the emerging 

resistance not only calls for development of new antimicrobial agents but also better delivery devices 

for delivering lethal doses effective against microorganisms.

Recently cobalt has been incorporated into bioactive glasses to help promote vascularisation [18, 19]. 

Cobalt ions are known to activate the hypoxia pathway by stabilising the Hypoxia Inducible Factor-

1 α (HIF-1α) transcription factor [20-22]. Studies have shown that bioactive glasses can be tailored 

to release Co2+ ions within the biologically active concentration range (10-14 ppm) without being 

cytotoxic [23, 24]. However, to date the antimicrobial activity of cobalt doped glasses has not been 

studied. The present study therefore investigates the antimicrobial efficacy of a range of novel cobalt 

doped phosphate-based glasses against clinically relevant gram positive, gram negative and fungal 

microorganism: Escherichia coli, Staphylococcus aureus and Candida albicans. 

Page 3 of 37

ACS Paragon Plus Environment

ACS Biomaterials Science & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Previous studies have demonstrated that the methodology (direct / indirect studies) can have a 

significant impact of the resulting antimicrobial activity [25]. The present study therefore aims to 

determine the antimicrobial efficacy for a series of cobalt containing glasses for a range of potential 

biomedical applications by employing both the direct contact and indirect contact methodologies 

using the international standards (ISO-22196).

2. Methods and Materials

2.1 Glass preparation: Glasses were prepared using the melt quench method with NaH2PO4 

(>99.0%, Sigma Aldrich, Dorset, UK), P2O5 (99%, Fisher Scientific) and CaCO3 (99.95%, Alfa 

Aesar, Lancashire, UK) as starting materials. To produce cobalt containing phosphate-based glasses 

CoO (99%, Sigma Aldrich, Dorset, UK) was used. The glasses manufactured had fixed concentrations 

of P2O5 (50 mol %) and Na2O (20 mol %) with the remaining 30% composed of CaO (30-x) and x 

CoO as shown in Table 1.

Table 1: nominal compositions of the glasses investigated.

                          Concentration (Mol %)

Glass code P2O5 CaO Na2O CoO

0 50 30 20 0

1% 50 29 20 1

3% 50 27 20 3

5% 50 25 20 5

10% 50 20 20 10

Starting reagents were carefully weighed out (± 1.0 mg) and then thoroughly mixed before placing 

into a 59 ml 90% Pt -10% Rh crucible (GLC alloys Ltd Middlesex, UK). The crucible was placed in 

a chamber furnace at room temperature and then heated up to 300°C at a rate of 10°C per minute. 

After one hour the temperature was rapidly increased to 600°C and the sample was held at this 
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temperature for a further 30 minutes, the temperature was then rapidly increased up to 1050°C and 

held at this temperature for 30 minutes. The molten glass was poured into a split graphite mould, with 

10 mm aperture, which had been preheated at 350°C. The glass samples were annealed overnight at 

350°C and then slowly cooled to room temperature in the graphite mould to produce glass rods. These 

rods were cut into 2 mm thick discs using an IsoMet™ 1000 Precision saw (Buehler) . Discs were 

polished using MetaServ® (Buehler) polishing machine using a series of polishing clothes (30µ, 15µ 

using lapping oil) followed by a final polish using 0.02µ colloidal silica. The discs were cleaned in 

acetone and air dried. Prior to undertaking the experiments, the discs were sterilised using dry heat at 

180°C for 2 hours. Samples were stored in a desiccator between stages of preparation to reduce 

exposure to atmospheric moisture.

X-ray diffraction data were collected at I-15 beamline, Diamond Light Source, Harwell, UK. The 

instrument was set up to collect data in a 2θ geometry with an incident energy of 76.7 KeV, (λ = 

0.162 Å).  Glass samples were ground into fine powders and loaded into 1.17 mm internal diameter, 

1.5 mm outer diameter x 40 mm glass capillaries and all measurements carried out at room 

temperature. An empty capillary was measured for background corrections. Data corrections 

including background, normalisation, attenuation, absorption, Compton scattering, x-ray beam 

polarisation, Bremsstrahlung, fluorescence and subtraction of self-scattering term which were 

performed using a program GUDRUNX [26].

2.2 Degradation study: cobalt oxide doped phosphate-based glass discs (radius 10 mm and ~2 mm 

thickness) containing different cobalt content were placed in 60 ml plastic containers (Fisher 

Scientific, Loughborough, Leicestershire) filled with 25 ml of standard distilled water. The containers 

were then placed in a 37°C incubator at 200 rpm. Weight loss measurements were taken at 24-hour 

intervals for 7 days. Glass discs were removed from their respective containers and excess moisture 

was removed by tissue prior to taking weight measurement. To determine the degradation rate, weight 

loss was calculated using
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Weight loss = (M0 - Mt)/A (1)

where M0 is initial weight in mg, Mt is weight in mg at time t and A is the surface area, cm2, of the 

original disc. Only a single time point was recorded per disc. 

Weight loss was plotted against time and the slope of the graph gave a degradation value (mg.cm-2 d-

1). Degradation analysis was also conducted in nutrient broth which was used for the antimicrobial 

studies. Each measurement was carried out in triplicate.

2.3 pH analysis: pH measurements of the degradation media were simultaneously taken at every time 

point using pH meter (Mettler Toledo, Switzerland). Three-point calibration of the pH electrode was 

achieved using pH calibration standards (Fisher Scientific, Loughborough, UK).

2.4 Ion release study: The media obtained at each time point from degradation studies in distilled 

water was analysed for the presence of cations (Na+, Ca2+, Co2+) and anions (PO4
3-) using inductively 

coupled plasma optical emission spectrometry, ICP-OES (iCAPTM 7000 Plus Series). The dissolution 

products were filtered prior to measurements using 0.2µm Ministart filters (Fisher Scientific, UK) 

and the concentration of each ion was calculated from the linear portion of the generated standard 

curve as ppm. 

2.5 Cell culture studies: The human monocytic cell line THP-1 and human osteosarcoma cell line 

SAOS-2 were obtained from ECACC and cultured as recommended, in RPMI 1640 (containing 10% 

Fetal Calf Serum) and McCoy’s 5a medium (15% FCS), respectively, containing 2 mM L-glutamine 

(Life Technologies, Paisley, UK), 200 U/ml penicillin/200 μg/ml streptomycin (Life Technologies). 

Glasses were ground in a pestle and mortar, sieved to achieve a particle size range of 75-125 microns, 

baked at 250°C for 1 hour to sterilise and to destroy adherent endotoxin, then added to the appropriate 

volume of serum-free RPMI 1640 medium (Sigma). For gene expression analysis, THP-1 cells and 

SAOS-2 cells were cultured in RPMI 1640 or McCoy’s 5a medium, respectively, containing 2% Fetal 

Calf Serum, 2mM L-glutamine, 200 U/ml penicillin, and 200 μg/ml streptomycin (Life 

Technologies). Cells were exposed to bioactive glasses at a concentration of 0.5mg/mL for 7 days 
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before cells were collection and lysed in Tri Reagent (Sigma) for RNA extraction. For medium 

conditioning studies prior to angiogenesis assays, glasses were added at a concentration of 0.25mg/ml 

to cells of the human macrophage cell line THP-1. Cells were seeded in RPMI 1640 medium 

containing 2mM L-glutamine, 200 U/ml penicillin, 200 μg/ml streptomycin, and 1% Fetal Calf 

Serum, at a density of 2x105 cells per ml, in 6 well plates, with a volume of 2ml per well. Conditioned 

medium samples for use in angiogenesis assays were taken after 20hrs exposure of cells to glass 

suspensions.

2.6. Angiogenesis assays were carried out using placental Human Umbilical Vein Endothelial Cells 

(HUVEC) and associated reagents from Life Technologies (Thermo Fisher, UK) following the 

manufacturer’s protocols. HUVEC cells are able to form blood vessel-like tubular structures within 

3-4 hrs of being seeded at a density of 4x104 cells per well of a 24 well plate in a volume of 400μL 

of Medium 200 PRF (Life Technologies) in the presence of angiogenic factors such as Vascular 

Endothelial Growth Factor (VEGF). Wells were coated with 100μL of GelTrex extracellular matrix 

(Life Technologies) for 30 mins at 37°C prior to addition of HUVEC cells. Addition of 2% Life 

Technologies Low Serum Growth Supplement, which contains known concentrations of pro-

angiogenic factors, was used as the positive control. Other wells were treated with 5μL of conditioned 

medium taken from THP-1 cells exposed to bioactive glasses for 20hrs as described above. After 

3.5hrs incubation the cell permeant fluorescent dye Calcein AM (Life Technologies), which stains 

live cells, was added to a final concentration of 1μM for 30 mins before brightfield and fluorescence 

microscopy.

2.7 RNA extraction and Real-Time RT-PCR: RNA was extracted using Tri Reagent (Sigma) 

according to the manufacturer’s instructions. Reverse transcription, gene specific primers for 

Vascular Endothelial Growth Factor (VEGF) and the housekeeping gene Beta-2 microglobulin 

(B2m), and PCR normalisation procedures, were as we previously described [27]. Real-Time PCR 
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was performed using a 96 well plate Roche Light Cycler 480 instrument, using Roche reagents as 

recommended by the manufacturer. PCRs were performed in triplicate using 45x : 95°C 10 sec, 60°C 

10 sec, 72°C 20 sec. 

2.8 Antimicrobial studies: cobalt doped phosphate-based glasses were investigated for their ability 

to inhibit or kill microorganisms via direct and indirect contact methods.  Two bacterial strains; 

Escherichia coli (NCTC 10538), Staphylococcus aureus (ATCC 6538) and a fungal strain, Candida 

albicans (ATCC 76615) were used in this study. These strains were maintained at -80°C on 

MicroBank beads (Pro-Lab Diagnostics Neston, Cheshire, UK). Escherichia coli and Staphylococcus 

aureus were cultured in nutrient broth/agar and incubated at 37°C whereas Candida albicans was 

maintained in Sabouraud dextrose broth/agar at 30°C.

The antimicrobial efficacy of the cobalt doped glass discs was studied using direct (film contact 

method, ISO-22196) and indirect method (effect of dissolution products from glasses).

2.8.1 Evaluation of antimicrobial activity of glass surfaces: To determine the antimicrobial 

potential of the different glass surfaces, the international standard protocol for testing non-porous 

surfaces; ISO-22196 was used [28]. To conduct experiments, an overnight microbial culture was 

adjusted, using fresh nutrient or Sabouraud dextrose broth depending upon the microbial strain, to 

produce ~106 CFU microbial density on the top surface of the glass discs. A thin sterile glass cover 

slip (Fisher Scientific, UK) was placed on the top of the inoculum and pressed gently so that the test 

inoculum spreads to the edges. The cover slip not only helps to create a thin bacterial film on the glass 

discs but also prevents the bacterial death due to desiccation. Inoculated glass discs were then placed 

in a Petri dish and incubated at 37°C and 30°C. Standard plastic coverslips with 12 mm diameter were 

used as the control. At each time point; 2, 4, 6 and 24 hours three glass discs were removed from each 

set of glass composition along with control plastic coverslips and washed with 5 ml of D/E broth 

(Becton Dickinson UK Ltd). This was achieved by placing the test glass discs in 5 ml D/E broth and 

vortexing for two minutes. The viable bacterial count in the broth was determined by the spread plate 
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method[29]. In addition, immediately after inoculation, untreated test specimens were processed, and 

the viable count determined was used as the recovery rate of the microorganisms from the test 

specimens under investigation. 

The antibacterial effect was evaluated according to the standard outlined in ISO-standard 222196. 

The number of viable bacteria, N, for each specimen was determined using

               N = (100  C  D  V)/A (2)× × ×

where C is the average plate count, D is the dilution factor for the plates counted, V is the volume in 

ml of D/E broth and A is the surface area of the cover film. 

The antibacterial activity, R, was determined using 

R = (Ut – U0) – (At – U0) = Ut - At (3)

where U0 and Ut are the average of the common logarithm of the number of viable microorganisms, 

in cells/cm2 recovered from the untreated test specimens immediately after inoculation (t=0) and at 

time t respectively; and At is the average of the common logarithm of the number of viable 

microorganisms, in cells.cm-2 recovered from the treated test specimens after time t.

2.8.2 Effect of dissolution products from the glasses on microbial growth: In this method 

sterilised glass discs were placed in 25 ml of nutrient broth containing  106 CFU/ml of the microbial 

culture. The test samples along with control (broth without glass discs) were then incubated in an 

aerobic incubator at 37°C (30°C for Candida albicans) with a shaking speed of 200 rpm. At various 

time intervals; 24, 48, 72, 96 and 120 hours, a 100 µl sample was taken out from each test container 

and serially diluted to determine the viable count. All experiments were undertaken in triplicate. 

2.9 Statistical analysis: Two-way analysis of variance was carried out to determine statistical 

significances (GraphPad Prism 7.0). If a significant difference was detected a Tukey test was carried 

Page 9 of 37

ACS Paragon Plus Environment

ACS Biomaterials Science & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



out to determine which values were significantly different. Differences were considered statistically 

significantly at a level of P < 0.05. 

3. Results 

3.1 Glass manufacture and degradation: a series of cobalt oxide doped glasses were successfully 

prepared. The glasses were fully amorphous with no visible signs of Bragg peaks as shown in 

Figure 1. A linear increase in weight loss as a function of time was observed for all samples as 

shown in Figure 2. As can be seen the weight loss decreased with increasing cobalt oxide content of 

the glass, i.e. the control glass (0% Co) has the largest weight loss whereas 10 mol % Co showed 

least solubility. The dissolution rates by applying line of best fit through the data were 5.3, 3.8, 2.6, 

2.3 and 1.4 mg.cm-2.day-1 for 0, 1, 3, 5 and 10 mol % Co doped glasses respectively. The general 

glass dissolution trend, decreasing dissolution with an increasing cobalt oxide content, is the same 

for both distilled water and nutrient broth. However, it is clear that the rate of degradation is 

strongly dependant on the media used. The dissolution rates in standard distilled water (which are 

usually quoted) were approximately twice as high compared to when the samples were placed in 

nutrient broth. For instance, the degradation value at day 7 for 1% cobalt glass in distilled water was 

27 mg.cm-2 whereas the degradation rate was 14 mg.cm-2 in nutrients broth. 

Figure 1. X-ray diffraction spectra, illustrating the absence of Bragg peaks.
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Figure 2: The degradation profiles obtained for 0, 1 3, 5 and 10 mol % CoO compositions, 
investigated in distilled water and nutrient broth. Error bars = ±SD for triplicate samples.

The rate of weight loss as a function of cobalt oxide concentration approximates an exponential decay 
curve as shown in Figure 3. It is apparent that the initial additions of small amounts of cobalt oxide 
(1 and 3%) have the greatest impact on glass dissolution and weight loss.

Figure 3. The rate of weight loss of the phosphate glasses as a function of cobalt oxide concentration, 
when placed in distilled water and nutrient broth.

3.2 pH analysis: A sharp decrease in pH was observed for all compositions glasses when placed in 

distilled water. A rapid decrease in pH was observed within the first 24 hours, where the values 

dropped from 6.7 to ~ 3.9 - 4.5, before the pH values began to plateau out as shown in Figure 4. 

Cobalt free composition showed the maximum decrease in the pH value followed by 1 mol % cobalt 

glass whilst the 10% cobalt glass showed the smallest reduction in pH. These values are consistent 

with the weight loss measurements shown in Figure 2. In contrast the pH of nutrient broth remained 

in the optimum range for the duration of the study between 6.3 and 6.7. Given that the weight loss in 

nutrient broth is approximately half of that observed in distilled water in may be anticipated that the 
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pH would drop significantly over the first 48 hours. However, it is clear that the broth has a strong 

buffering effect on the pH.

Figure 4. Resultant pH as a function of time for distilled water and nutrient broth containing cobalt 

doped phosphate glasses.

3.3 ICP-OES: The ion release analysis performed in deionised water over a seven-day period is 

shown in Figure 5. A linear increase in the release of both anions (PO4
3-) and cations (Ca2+ and Na+) 

was observed for all compositions over the timeframe investigated. The ion release kinetics revealed 

an inverse relationship between overall ion release rate and glass Co content, consistent with the 

findings from the weight loss profiles. Co2+ release rates ([Co2+]) were observed to be proportional 

with glass Co content when normalised for the rate of weight loss/solubility of the glass. This suggests 

the dominating parameter affecting [Co2+] from these composite materials be glass Co content 

although the weight loss also plays a significant role.
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Figure 5: Accumulative ion release phosphorous, calcium, sodium and cobalt as a function of time 

for 0, 1, 3, 5 and 10 mol % cobalt doped glasses. (Error bars = ±SD for triplicate samples).

3.4. Evaluation of the VEGF mRNA expression 

The relative mRNA expression levels for the pro-angiogenic cytokine Vascular Endothelial Growth 

Factor (VEGF) in the human SAOS-2 (osteosarcoma) and THP-1 (monocytic) cell lines after 7 days 

direct exposure to the cobalt free control glass and the 10% CoO glass are shown in Figure 6. 

Untreated was the negative control. At 7 days the 10% CoO doped phosphate glass produced a 5-fold 

increase in mean VEGF mRNA expression in SAOS-2 when compared with the cobalt free glass and 

the untreated cells. A 4-fold increase in mean VEGF mRNA expression in THP-1 macrophages was 

observed after 7 days compared with the cobalt free glass and the untreated cells. One-way ANOVA 

and Tukey’s multiple comparisons test was conducted to test for significance; data are presented as 

mean ± SD. Significance was set at p ≤ 0.05, N = 3.
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No significance was detected between the untreated and the 0% Co free phosphate glass samples. The 

10% CoO showed a significant increase compared to both the untreated and 0% CoO controls (p < 

0.0001). 

Figure 6. Relative VEGF mRNA expression for (a) SAOS-2 cells and (b) THP-1 cells.

Figure 7 shows the overlaid fluorescent and brightfield images of primary human umbilical vein 

endothelial cells (HUVEC) stimulated with media extracted from cell culture of THP-1 monocytes 

exposed to 0 and 10% CoO doped phosphate glasses for 1 day. For the positive control it is clear that 

tube–like (blood vessel) structures are beginning to form. In contrast for the negative control and the 

0% CoO control phosphate glass no tubule like structures are visible. For the 10% CoO doped glass 

tubule structures similar to the positive control are observed.

Page 14 of 37

ACS Paragon Plus Environment

ACS Biomaterials Science & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 7. Overlaid fluorescent and brightfield images of endothelial cells stimulated for 4 hours with 
medium extracted from cell cultures of untreated THP-1 monocytes (negative control), or with 
medium from THP-1 cells treated with 0% or 10% CoO doped phosphate glasses for 24 hours. The 
positive control was treated with known pro-angiogenic factors.

3.5- Evaluation of antimicrobial activity of glass surfaces: Figure 8 show the antimicrobial activity 

of cobalt doped phosphate glasses against E. coli, S. aureus and C. albicans at 2, 4, 6 and 24-hour 

time intervals. According the ISO-22196, an antimicrobial activity greater than 2 demonstrates that 

the test specimen is antimicrobial. 

Figure 8a shows the antimicrobial efficacy of un-doped phosphate glass (0 mol %) and 1, 3, 5 and 10 

mol % cobalt doped phosphate glass against E. coli when cultured directly on glasses. The cobalt 

doped glasses demonstrated a strong antimicrobial activity within 2 hours when compared with non-

treated control. At 2, 4 and 6 hour time points, significant differences in R value were observed for 
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1, 3, 5 and 10 mol % cobalt doped phosphate glasses compared to un-doped (0 %) phosphate glass 

samples (p < 0.0001)

Whilst a sharp increase in the activity was observed against E. coli within 2 hours, a gradual increase 

in antimicrobial activity was seen against S. aureus. As seen in figure 8b, the R value remained below 

2 for the initial 4 hours, but at the 6 hour time point all glass compositions showed an antimicrobial 

activity ≥ 2 except for the un-doped phosphate glass, however the difference observed was 

statistically non-significant. A similar trend in R value was observed at 24 hours. The R value of all 

glass compositions exhibited a non-significant increase when compared to un-doped glass except for 

10 mol % cobalt doped glass which showed a significant increase in R value when compared with 

un-doped phosphate glass (p < 0.001), 1 and 3 mol % cobalt doped glasses (p = 0.0027, p = 0.0044 

respectively). Overall, whilst E. coli showed a higher susceptibility with a complete kill seen within 

6 hours, complete killing of S. aureus was not seen within 24 hours.

Figure 8c shows the antimicrobial activity of the glasses against C. albicans when inoculated directly 

on glass discs. The R value in the first 2 hours remained below 2, however at 4 hours 3, 5 and 10 mol 

% cobalt doped glasses exhibited an antimicrobial activity ≥ 2, whereas un-doped glass value was 

less than 2 highlighting the importance of incorporating antimicrobial ions. A statistically significant 

difference in the activity was not seen until 6 hours, 10 mol % cobalt doped glass showed a strong 

antimicrobial effect when compared to un-doped phosphate glass (p = 0.0002). A complete kill of C. 

albicans was seen within 24 hours.
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Figure 8: The antimicrobial efficacy of un-doped phosphate glass and 1, 3, 5 and 10 mol % cobalt 
doped phosphate glass against E. coli, S. aureus, C. albicans over a 24 hours period. Data shown are 
expressed as mean ± SD (N=3) antibacterial activity as determined by ISO-22196. 

3.6 Effect of dissolution products of glasses on microbial growth: Figure 9 shows the effect of 

dissolution products of un-doped and cobalt doped phosphate-based glasses over a 5-day period under 
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an aerobic atmosphere at 37°C (30°C for Candida albicans) and 200 rpm shaking speed. It was 

observed that the dissolution products of the glasses failed to demonstrate antibacterial effect against 

E. coli (Figure 9a) over 5 days as the bacterial viability was approximately 100% when compared 

with microorganisms cultured in broth only. Similar results were seen against S. aureus (Figure 9b) 

and C. albicans (Figure 9c). 
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Figure 9: The effect of dissolution products of un-doped phosphate glass and 1, 3, 5 and 10 mol % 
cobalt doped phosphate glass against E. coli, S. aureus and C. albicans over a 5 days period. Data 
shown are expressed as mean ± SD (N=3). 
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4. Discussion

Cobalt doped bioactive glasses have been widely studied as hypoxia mimicking biomaterials for bone 

tissue regeneration, however, the majority of these studies have been in silicate based glasses [23, 30-

37]. Whilst many studies have been undertaken to elucidate the antimicrobial potential of various 

metal doped silicate and phosphate glass systems, to date none of the studies have evaluated the 

antimicrobial potential of cobalt doped bioactive glasses. The present study, therefore investigated 

the antimicrobial effect of an un-doped and doped (1, 3, 5 and 10 mol % cobalt oxide) phosphate 

based bioactive glass (P2O5-Na2O-CaO) against clinically important microorganisms. 

A decrease in dissolution of cobalt doped glasses was observed with an increasing cobalt oxide 

content at the expense of calcium oxide. The observed trend in dissolution pattern fits well with the 

literature available, several studies have demonstrated that the addition of metallic species decrease 

glass dissolution with an increasing metal oxide content [11, 12, 38]. The dissolution of 

metaphosphate glasses is mainly controlled by the bonding of the phosphate chains to the modifier 

atoms [39]. Since the ionic radius of cobalt is smaller than that of calcium, i.e. the charge to size ratio 

of cobalt is higher than that of calcium, the bonds formed by cobalt are therefore stronger than 

calcium. Thus, when cobalt content is increased, the weaker Ca-O bonds are replaced by stronger Co-

O bonds which makes cleavage of the bonds difficult and therefore the glasses less soluble in aqueous 

media. 

Since the addition of cobalt oxide reduces the rate of dissolution. It is important to take this into 

consideration when designing bioactive glasses. Incorporating 10% CoO compared to 1% CoO will 

not simply increase cobalt ion leaching by a factor of 10. For the present glasses the weight loss in 

distilled water are 3.8 and 1.4 mg.cm-2.day-1 for the 1% and 10% doped CoO. Therefore one would 

anticipate an increase in cobalt ion release by just a factor of ~3.7 given that the dissolution reduces 

by a factor of 2.7. This result is indeed confirmed in Figure 5d where concentrations of Co of 51 and 

13.5ppm are observed for the 10 and 1% Co glasses respectively giving a ratio of 3.8(1).
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The dissolution rate of bioactive glasses depends not only on their chemical stability but also on the 

nature of the media and its pH. Since the ionic strength of nutrient broth is higher than that of distilled 

water glass dissolution is supressed in nutrient broth relatively. A higher or lower pH can also promote 

glass dissolution. Nutrient broth also tends to buffer the pH of the system which explains why lower 

dissolution rates were observed in nutrient broth.

To date the majority of hypoxia mimicking glasses have focused on silicate based glasses [23, 30-

37]. Relative few studies have been undertaken on cobalt doped phosphate glasses and studies that 

have been undertaken were co-doped with titanium dioxide [40, 41]. The present study shows that 

sodium calcium phosphate is a suitable controlled release glass capable of delivering biologically 

relevant concentrations of cobalt ions. VEGF mRNA expression was found to increase by a factor of 

5 for SAOS-2 cells exposed to 10% CoO compared to the 0% CoO control glass. Similarly a 4-fold 

increase was observed for THP-1 cells exposed to 10% CoO compared to 0% CoO control glass.

The antimicrobial effect was determined using direct (ISO-22196) and indirect contact (effect of glass 

dissolution products) method. The results of direct contact showed a strong, time dependent, 

antimicrobial activity by cobalt oxide doped glasses compared to control specimens against E. coli, 

S. aureus and C. albicans. Whilst an antimicrobial effect was seen against the three strains studied, 

E. coli showed higher susceptibility compared to S. aureus and C. albicans. The higher susceptibility 

of E. coli is in agreement with several studies for cobalt free bioactive glasses [42, 43]. The indirect 

contact experiments were conducted to investigate the antimicrobial efficacy of metal ions leached 

from the given glasses. The results show that the number of cobalt ions required to illicit a toxic effect 

was not achieved in the test media, as the dissolution products failed to exhibit 

bacteriostatic/bactericidal effect against any of the test strains.

The variation in the results obtained with the two methods could be attributed to the varied mechanism 

of action involved when microorganisms are in direct or indirect contact with antimicrobial surface. 

Whilst a limited literature is available on the exact mechanism of action, nonetheless several factors 
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are believed to play a role in contact mediated killing. When microorganisms are in direct contact 

with an antimicrobial surface, bioactive glasses in the present case, it damages the outer membrane 

by creating holes which leads to loss of membrane potential. Additionally, reactive oxygen species 

are produced at the interface of microbial cell wall and the bioactive glass surface causing further 

structural damage to the membrane. The loss of membrane integrity results in leakage of the cell 

contents and thus cell death occurs. This has also been shown by studies conducted on metallic copper 

as an antimicrobial [44, 45]. A reduced level of ionic species was observed following a complete kill 

which suggested membrane leakage was observed [46].    

For indirect contact assays, the efficacy of bioactive glasses depends on their solubility and release 

of constituent ions such as calcium, sodium, phosphorus and cobalt. These ions then enter the 

microbial cells via non-specific ion channels and can target various cell components directly and 

indirectly to bring about cell death. Metal ions produce reactive oxygen species that results in 

oxidative damage to DNA, mitochondria and proteins restricting cell growth and metabolism [47, 

48]. The ions can also affect microorganisms indirectly by binding to enzymes and inducing 

conformational changes thus making them non-functional. Subsequently microorganisms fail to carry 

out metabolic processes and hence death occurs. Since the presence of metal ions is essential, the lack 

of antimicrobial activity could therefore be due to reduction in the availability of free ions in solution. 

Microbiological media such as nutrient broth provides a complex environment with several ionic 

species that may reduce the concentration of free metal ions by precipitation or by the formation of 

soluble complexes [49]. Silver ions have been shown to form insoluble silver salts when in contact 

with large amounts of ions such as chlorides and amino acids present in broth, thus causing 

inactivation of silver ions [50]. Similarly, a study on zinc doped bioactive glasses showed that the 

amount of zinc ions leached from the glass was reduced by the formation of complexes between zinc 

ions and components of broth [51].

The lack of activity in the suspension experiments could also be due to the buffering capacity of 

nutrient broth as demonstrated in the pH analysis. One of the most widely accepted mode of action 
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of glasses in solution is via a rapid change in the pH of the surrounding medium. A study by Brown 

et al., confirmed that a rapid change in the pH causes reduction in bacterial viability. Similar results 

were also reported by Stoor et al. and Allan et al. [52-54] therefore we can argue that the lack of 

activity of the glasses observed in the indirect contact study could be due to the neutralization of the 

pH to near optimal range. 

It is important to note that whilst pH may have played a role in the observed antimicrobial results 

observed for the direct contact studies the antimicrobial results were strongly dependant on the cobalt 

oxide concentration. It is difficult to compare the present results directly with existing literature given 

that a range of methods have been employed previously, many of the previous studies have not used 

the international protocols and/or previous studies have used different bacterial strains. However the 

direct contact antimicrobial efficacy of cobalt doped glasses appears to be highly promising. Even at 

low concentrations (1 and 3 mol %) significant antimicrobial activity (R> 2) was observed against all 

microbes. The 5 and 10% CoO provided a complete kill against E. coli within 4 hours. At six hours 

all glasses provided a complete kill against E. coli except for the 0% control glass. All glasses except 

the control glass (0%) provided a significant antimicrobial activity against C. albicans within 6 hours 

and a complete kill within 24 hours. In addition, a significant antimicrobial activity (R>2) was 

recorded against S. aureus within 6 hours and for the 10% CoO the antimicrobial activity approached 

4 after 24 hours. Mulligan et. al. have reported a 0.8-0.9 log reduction for bioactive glasses containing 

5% copper oxide and a of 1.0-1.3 log reduction for glasses containing 10% copper oxide against S. 

sanguinis [15]. Amhed et. al. have reported a ~2 log reduction in 24 hours for 5% AgO glasses against 

S. aureus [12]. Valapappil et. al. have reported a 1.7 log reduction against S. aureus in biofilms for 

phosphate glasses containing 10% silver oxide [55]. Valapappil et. al. have reported a 0.86 log 

reduction against P. aeruginosa for phosphate glasses containing 10% gallium oxide [56].
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5. Conclusion

A series of cobalt doped phosphate glasses were successfully prepared with no sign of 

crystallisation. The concentration of cobalt ions released from the glasses within 24 hours are within 

therapeutic range (10-14 ppm) reported for cobalt. Cobalt doped phosphate glasses significantly up-

regulated VEGF mRNA expression in the SAOS-2 and THP-1 human cell lines, and conditioned 

medium taken from THP-1 cells exposed to this glass stimulated the formation of tubular blood 

vessel-like structures in a HUVEC angiogenesis assay. Therefore cobalt doped phosphate glasses 

may have significant potential for angiogenic applications.

The present study suggests that cobalt doped bioactive glasses can be developed with dual 

functionality including antimicrobial properties. The study showed a complete kill of Gram negative 

Escherichia coli (NCTC 10538) within 6 hours under direct contact conditions and a complete kill of 

Candida albicans (ATCC 76615) within 24 hours. All glasses showed an antimicrobial effect (R>2) 

within 6 hours for Staphylococcus aureus (ATCC 6538) whilst at 24 hours the kill was dependant on 

cobalt concentration. 
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Figure 1. X-ray diffraction spectra, illustrating the absence of Bragg peaks. 
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Figure 2: The degradation profiles obtained for 0, 1 3, 5 and 10 mol % CoO compositions, investigated in 
distilled water and nutrient broth. Error bars = ±SD for triplicate samples. 
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Figure 3. The rate of weight loss of the phosphate glasses as a function of cobalt oxide concentration, when 
placed in distilled water and nutrient broth. 
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Figure 4. Resultant pH as a function of time for distilled water and nutrient broth containing cobalt doped 
phosphate glasses. 
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Figure 5: Accumulative ion release phosphorous, calcium, sodium and cobalt as a function of time for 0, 1, 
3, 5 and 10 mol % cobalt doped glasses. (Error bars = ±SD for triplicate samples). 
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Figure 6. Relative VEGF mRNA expression for (a) SAOS-2 cells and (b) THP-1 cells. 
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Figure 7. Overlaid fluorescent and brightfield images of endothelial cells stimulated for 4 hours with medium 
extracted from cell cultures of untreated THP-1 monocytes (negative control), or with medium from THP-1 
cells treated with 0% or 10% CoO doped phosphate glasses for 24 hours. The positive control was treated 

with known pro-angiogenic factors. 
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Figure 8: The antimicrobial efficacy of un-doped phosphate glass and 1, 3, 5 and 10 mol % cobalt doped 
phosphate glass against E. coli, S. aureus, C. albicans over a 24 hours period. Data shown are expressed as 

mean ± SD (N=3) antibacterial activity as determined by ISO-22196. 

170x221mm (300 x 300 DPI) 

Page 36 of 37

ACS Paragon Plus Environment

ACS Biomaterials Science & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Figure 9: The effect of dissolution products of un-doped phosphate glass and 1, 3, 5 and 10 mol % cobalt 
doped phosphate glass against E. coli, S. aureus and C. albicans over a 5 days period. Data shown are 

expressed as mean ± SD (N=3). 
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