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Lower temperature leads to a higher probability of visiting low-energy states. This intuitive belief
underlies most physics-inspired strategies for addressing hard optimization problems. For instance,
the popular simulated annealing (SA) dynamics is expected to approach a ground state if the
temperature is lowered appropriately. Here we demonstrate that this belief is not always justified.
Specifically, we employ the cavity method to analyze the minimum strong defensive alliance problem
and discover a bifurcation in the solution space, induced by an inflection point in the entropy–energy
profile. While easily accessible configurations are associated with the lower-free-energy branch,
the low-energy configurations are associated with the higher-free-energy branch within the same
temperature range. There is a discontinuous phase transition between the high-energy configurations
and the ground states, which generally cannot be followed by SA. We introduce an energy-clamping
strategy to obtain superior solutions by following the higher-free-energy branch, overcoming the
limitations of SA.

Statistical physics associates the probability of visiting
low-energy states with low temperatures. This has in-
spired the introduction of Metroplis-like algorithms [1],
such as simulated annealing (SA), which sample low-
energy configurations while gradually decreasing the tem-
perature T , to progress towards equilibrium configura-
tions close to the ground states [2]. An implicit funda-
mental assumption in SA is that the configuration en-
tropy S(E) is a concave function of the energy E so
that higher inverse temperature β (≡ 1/T ) corresponds
to lower E. In this work we show that for an important
class of discrete-state systems, the entropy function is not
always concave but is characterized by an inflection point
that separates the concave higher-energy branch from the
convex lower-energy branch (Fig. 1). Because low-energy
configurations are associated with high microcanonical
temperatures, they cannot be accessed by lowering the
ambient temperature in a quasi-equilibrium manner. The
convex section of S(E) also violates results obtained for
canonical ensembles, suggesting a discrepancy between
canonical and microcanonical ensemble analyses, as in [3–
5]. Advanced multicanonical methods, [6–10] that allow
for an exchange between different temperatures will fail
as well, being rooted in the Boltzmann-Gibbs equilibrium
framework, while the entropy inflection means there must
be a discontinuous phase transition between the ground
state and high-energy configurations.

The exemplar optimization task adopted here is
the minimum Strong Defensive Alliance (SDA) prob-
lem [11], a special case of finding substructures in a large
graph [12–14]. More specifically, one aims to identify the
smallest group A of vertices (the alliance) in the graph

such that at least one half of the nearest neighbors of each
alliance-vertex also belong to the alliance (Fig. 1). It is
a nondeterministic polynomial hard (NP-hard) problem
and has raised considerable interest among mathemati-
cians [15–17]. In statistical physics the SDA is closely
related to the concepts of self-sustained clusters [18–20]
and metastable states [21, 22], which are important for
understanding the slow dynamics in spin systems. The
synergetic excitation of a SDA may also drive rare but
catastrophic cascading processes in real-world complex
networks [23]. In this paper we apply the cavity method
of spin glasses [24–26] to the SDA problem. We find that
the entropy function S(E) is non-concave for relatively
sparse graphs but recovers concavity when the graph be-
comes sufficiently dense. In addition, we develop a prin-
cipled energy-clamping algorithm to construct nearly op-
timal alliance solutions. The insights gained in this study
are applicable to a range of similar problems concerning
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FIG. 1: (left) Two strong defensive alliance solutions for
a small graph: the one denoted by filled circles has energy
E = 5; the other denoted by filled squares is the minimum
alliance, E = 4. (right) Two qualitatively different entropy
curves S(E): curve A is concave, its slope β(E) decreases
with energy E; curve B is non-concave, it has an inflection
point (‘X’) at which the slope β attains the maximum value.
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densely connected subgraphs.
Strong Defensive Alliance.– Given a graph G of N ver-

tices and M edges, a non-empty subset A of vertices is
regarded as an alliance if and only if at least half of the
nearest neighbors of every vertex i ∈ A are also in A.
The minimum SDA problem aims to construct such an
alliance of smallest cardinality, which requires a careful
choice of vertices because SDA is a collective property
of all vertices involved. For regular graphs in which ev-
ery vertex has the same number K of attached edges,
the minimum alliance number is 2 if K = 1, 2 and it is
equal to the graph’s girth (the length of shortest loops)
if K=3, 4. But for all K≥5 the minimum SDA problem
is intrinsically hard to solve, and the minimum alliance
number is unknown and is difficult to bound [27]. Here
we apply methods and algorithms of statistical physics
to tackle this challenging problem. For clarity we focus
on regular random (RR) graphs, in which every vertex is
linked to K randomly drawn vertices. The formulation
is generic and can be applied to other degree profiles.

We cast the problem into a Hamiltonian form E(c) =∑N
i=1 δ

1
ci , where ci = 1 (the occupied state) if vertex

i belongs to the alliance and ci = 0 otherwise, and
c ≡ (c1, c2, . . . , cN ) denotes an occupation configuration
of the N vertices; the Kronecker symbol δc

′

c = 1 if c= c′

and 0 otherwise. Let us denote by ∂i the set of nearest
neighbors of vertex i and by di≡ |∂i| its degree (di =K
if G is regular). Each vertex i gives rise to a constraint
on c: if ci = 1 then

∑
j∈∂i cj ≥ di/2 must hold. Under

these vertex constraints the partition function is

Z(β) =
∑
c 6=0

N∏
i=1

[
δ0ci + e−βδ1ciΘ

(∑
j∈∂i

cj −
di
2

)]
, (1)

where the Heaviside function Θ(x) = 1 if x ≥ 0 and 0
otherwise. The all-zero crystalline state 0≡ (0, 0, . . . , 0)
has been excluded from the summation since it does not
correspond to an alliance. Each satisfying configuration
(alliance) c contributes a term e−nβ to Z(β), where n ≡∑N
i=1 ci is the size of the alliance.
Simulated annealing.– We implement a Markov-chain

Monte Carlo dynamics to explore the SDA configura-
tion space, which includes both single-vertex flipping and
the simultaneous flipping of a connected chain or tree
of vertices (details in [28]). The Monte Carlo simula-
tion runs for w0 time steps at each ambient inverse tem-
perature β (one step contains N flipping trials selected
by importance sampling which guarantees detailed bal-
ance [1, 29]), and then β is increased by a constant value
ε (e.g., ε = 0.001). We run SA to identify SDA on two
large RR graphs with degrees K= 3 and K= 5, and the
results are shown in Fig. 2(a) and 2(b) respectively. In
both cases, the average SDA relative size ρ (i.e. the en-
ergy density) first decreases gradually with increasing β
as anticipated; but it then violently fluctuates between
two distinct levels as illustrated in the inset of Fig. 2(a)
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FIG. 2: The energy density ρ of SDA identified by simulated
annealing on a single RR graph of size N = 104 and degree
K = 3 (a) or K = 5 (b), as a function of ambient inverse-
temperature β. Evolution trajectories obtained at three dif-
ferent waiting times w0 are shown. The solid lines represent
the theoretical curves of ρ(β); the dotted horizontal lines and
the circles mark the theoretical value of minimum energy den-
sity and the corresponding theoretical β. SA can reach the
predicted minimum SDA size for K = 3 but not for K = 5.
Dashed vertical lines mark β values at the predicted discon-
tinuous phase transition. The inset shows the fluctuation of
ρ at β=0.75 for K=3, with ∆t being the elapsed simulation
time starting from an initial equilibrium configuration.

when β reaches a certain value βSA (≈ 0.75 for K = 3
and ≈ 0.98 for K = 5); finally it settles at a low level
as β further increases. These simulation trajectories in-
dicate the existence of a discontinuous phase transition,
which is surprising since we do not expect the low-energy
and minimum SDA solutions to be qualitatively different
from the higher-energy SDA solutions.

For RR graphs with K = 3 and 4, the minimum SDA
are triangular loops, which are frequently visited by the
SA dynamics after ρ drops to ρ ∼ 1/N . Since SA also
saturates at a low energy level for the instance of K= 5
(Fig. 2b), one would naively claim the observed final
value ρ≈0.187 to be the minimum energy density. How-
ever, it turns out that the true minimum energy density
is much lower (≈ 0.1067). Similar SA failures to visit
low-energy configurations are observed on other graph in-
stances [28]. This might look unsurprising initially, since
SA is well known to get trapped in metastable states if
the low-energy configuration space fragments to an expo-
nential number of disconnected ergodic domains [30, 31].
However, our analysis does not support the emergence of
such an explosive ergodicity-breaking phase transition at
a high level of energy density [32–34] (additional discus-
sions in [28]).

The performance of SA does not improve even in the
presence of multiple-vertex flipping processes to guaran-
tee ergodicity [28]. We also implemented an ergodic SA
algorithm with a relaxed Hamiltonian, whereby energy
penalty terms rather than hard constraints are employed
to penalize vertices which violate the SDA condition. The
obtained results are similar to those observed in Fig. 2b,
confirming the robustness of our simulation results [28].
It turns out that the peculiar sudden drop followed by
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jamming as experienced by SA is due to another impor-
tant but rarely discussed reason: the entropy curve as
function of ρ has an inflection point.

Mean field theory.– Random sparse graphs are charac-
terized by long loops that diverge with graph sizeN . This
allows us to consider the neighborhood of single vertices i
as tree-like, and for the neighboring vertices j∈∂i as mu-
tually independent in the absence of i. Under this Bethe-
Peierls factorization approximation [24–26], the marginal
probability qi of vertex i belonging to the alliance is

qi=

e−β
∑
c∂i

Θ
( ∑
j∈∂i

cj − di
2

) ∏
j∈∂i

q
cj ,1
j→i

e−β
∑
c∂i

Θ
( ∑
j∈∂i

cj− di
2

) ∏
j∈∂i

q
cj ,1
j→i+

∏
j∈∂i

(q0,0j→i+q
1,0
j→i)

.

(2)
Here c∂i≡{cj : j ∈ ∂i} denotes an occupation pattern of
vertices in ∂i; and q

cj ,ci
j→i is the probability of two nearest

neighbors i and j being in states ci and cj simultaneously
after lifting the constraint of vertex i. Following the same
factorization approximation we obtain a closed set of self-
consistent equations for the cavity probabilities q

cj ,ci
j→i :

q0,0j→i ≡ q0,1j→i =
1

zj→i

∏
k∈∂j\i

(q0,0k→j + q1,0k→j) ,

q1,0j→i =
e−β

zj→i

∑
c∂j\i

Θ
( ∑
k∈∂j\i

ck −
dj
2

) ∏
k∈∂j\i

qck,1k→j , (3)

q1,1j→i =
e−β

zj→i

∑
c∂j\i

Θ
( ∑
k∈∂j\i

ck + 1− dj
2

) ∏
k∈∂j\i

qck,1k→j ,

where the set ∂j\i contains all the nearest neighbors of
vertex j except for i and c∂j\i≡{ck :k∈∂j\i}; zj→i is the
normalization constant ensuring that

∑
ci,cj

q
cj ,ci
j→i = 1.

This set of equations is collectively referred to as the
belief-propagation (BP) equations [26].

Under the Bethe-Peierls approximation the expression
for the free energy, F ≡ −(1/β) lnZ(β), of the system
is [25, 26]

F =

N∑
i=1

fi+∂i −
∑

(i,j)∈G

fij , (4)

where fi+∂i is the contribution of vertex i and all its
attached edges, and fij is the contribution of a single
edge (i, j). Because each edge (i, j) contributes to both
fi+∂i and fj+∂j its effect is subtracted once in Eq. (4).
The explicit expressions for fi+∂i and fij are:

fi+∂i = − 1

β
ln
[
e−β

∑
c∂i

Θ
(∑
j∈∂i

cj−
di
2

) ∏
j∈∂i

q
cj ,1
j→i

+
∏
j∈∂i

(q0,0j→i+q
1,0
j→i)

]
, (5)

fij = − 1

β
ln
[∑
ci,cj

q
ci,cj
i→j q

cj ,ci
j→i

]
. (6)
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FIG. 3: The BP equation (3) has two branches of fixed-
point solutions for RR graphs of degree K = 5. The lower-
free-energy and higher-free-energy branches are drawn as solid
and dashed lines, respectively. (a) Free energy density f and
entropy density s versus inverse temperature β. (b) Entropy
density s and its first derivative ds/dρ versus energy den-
sity ρ. The dotted horizontal line and the circles mark the
ground-state free energy density and the corresponding β and
ρ values.

Equations (2)–(6) constitute the replica-symmetric
(RS) cavity theory [26] for the SDA problem. For the
RR graph ensembles they can be further simplified after
considering the vertex uniformity [28]. We can iterate
the BP equation either at fixed inverse temperature β,
or at fixed energy density ρ≡

∑N
i=1 qi/N while adjusting

β [28]. The free energy density f≡F/N and the entropy
density s≡ (ρ − f)β are then computed at a fixed point
of BP.

Entropy Inflection.– The results of f , s and ρ for graphs
with K=5 are shown in Fig. 3, which are representative
of all observed RR graphs with 3 ≤ K ≤ 22. There is no
fixed-point solution in the range of β≥0.9866 (K=5, see
another explicit example for K = 3 in [28]); on the other
hand there are two branches of BP fixed points when β
is smaller, a lower-free-energy (LFE) branch where f in-
creases while both s and ρ decrease with β, and a higher-
free-energy (HFE) branch with opposite behaviors. Both
branches are locally stable for fixed ρ (microcanonical
ensemble) but unstable with respect to message pertur-
bations at fixed β (canonical ensemble) [28]; but because
the HFE branch has a higher free energy it cannot be the
dominant equilibrium state at a given ambient temper-
ature (the canonical ensemble), even though its energy
density ρ is lower. This is a consequence of the much
higher entropy of the LFE branch, arguably due to the
large number of possible subset selections in larger al-
liances. The entropy density function s(ρ) is monotoni-
cally increasing from zero to the maximum; it is initially
convex until an inflection point is reached at ρx=0.3775
with a maximum slope βx=0.9866. The entropy density
approaches zero at ρo = 0.1067, indicating that a mini-
mum alliance contains only 0.1067N vertices [35]. The
free energy density of the LFE branch exceeds that of
the ground state at βc = 0.8815, implying a discontinu-
ous equilibrium phase transition between the high-energy
solutions (ρ≈0.511) and the ground state (ρ=ρo) at this
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critical value βc (the corresponding value is βc = 0.7491
for K = 3). The predicted discontinuous transition is
exactly followed by SA on the K = 3 graph instance
(βSA = βc, Fig. 2a) but it is much delayed by SA on
the K = 5 graph instance (βSA > βc, Fig. 2b). Our
numerical analysis [28] reveals that the energetic and en-
tropic barriers at the phase transition are finite and low
for K = 3, 4 but they are very high for K = 5. The dif-
ferent SA behaviors of Fig. 2 are consistent with the fact
that the minimum SDA problem is easy for K=3, 4 but
NP-hard for K≥5.

Qualitatively the same theoretical results are obtained
for other RR graphs of degree K ≤ 22 [28]. The exis-
tence of an inflection point indicates a discrepancy be-
tween analyses of the canonical and the microcanonical
statistical ensembles [3–5]. Since the slope of s(ρ) de-
fines the intrinsic (microcanonical) inverse temperature,
as the temperature T decreases below 1/βx the system
is no longer capable of finding a matching stable equi-
librium and will stay out-of-equilibrium if it has not for-
tuitously reached a ground state. Notice that entropy-
inflection is qualitatively different from the temperature-
inflection phenomenon of [36] (see also [37]) as the latter
does not result in a non-concave entropy curve. Non-
concave microcanonical entropy was also discussed earlier
in the contexts of ferromagnetic metastable states [21, 22]
and constraint satisfiability problems [38]. Interestingly,
we find that the entropy density s(ρ) is concave for the
entire physical region of s ≥ 0 (i.e., ρ ≥ ρo) in high-K
graphs (K≥23, see [28]). In these cases SA indeed suc-
cessfully finds near-minimum SDA solutions [28].

Message-passing algorithm.– Because of entropy inflec-
tion, all configurations of low energy densities ρ∈(ρo, ρx)
are invisible in the Boltzmann-Gibbs equilibrium frame-
work where temperature is gradually decreased. It ap-
pears that this discontinuity in the equilibrium energy
spectrum causes extensive energetic and entropic barriers
to the SA dynamics and prohibits the equilibrium tran-
sition from the high-energy configurations to the ground
states (except the special K = 3, 4 cases for which the
barriers are finite [28]). The optimization goal there-
fore is difficult to accomplish by quasi-equilibrium tem-
perature annealing. One must adopt out-of-equilibrium
search strategies. Inspired by the success of mean field
theory in exploring the low-energy configuration space
we propose a heuristic algorithm termed Clamp-Alliance
(CA) for the SDA problem. This algorithm builds on
the experiences of earlier message-passing methods [39–
43] to perform BP-guided decimation with the objective
size of the alliance set A clamped at a low value nobj .
At each CA iteration: (1) the cavity probabilities q

ci,cj
i→j

are updated several times, with a fine-tuned β to ensure
fixed mean energy nobj ; and (2) the occupation proba-
bility for every free vertex is evaluated by Eq. (2), and
vertices i with the lowest qi values are deemed unsuitable
for alliance membership and are fixed to be non-members

TABLE I: The theoretical minimum energy density ρo for
RR graphs, compared with the mean energy density of al-
liances obtained by the Clamp-Alliance (ρCA) and simulated
annealing (ρSA) algorithms on 50 RR graph instances of size
N=104 and degree K.

K 5 6 7 8 9 10
ρo 0.1067 0.0466 0.2166 0.1430 0.2761 0.2108
ρCA 0.126(3) 0.062(3) 0.237(2) 0.159(2) 0.295(1) 0.227(2)
ρSA 0.180(2) 0.101(2) 0.283(2) 0.202(1) 0.334(2) 0.265(1)

(ci = 0). After the CA iteration stops an initial alliance
set will be obtained. This set is then further refined until
no other vertices can be removed. More details on the
CA algorithm are provided in [28].

The performance of CA on some RR graphs is demon-
strated in Table I. By setting the objective (clamped)
alliance size to nobj≈ρoN , we see that the solutions ob-
tained by CA indeed have relative sizes ρ close to the
theoretically predicted minimum value ρo. Let us point
out that the CA algorithm can also be used to construct
a near-minimum alliance set that is associated with a
given seed vertex. This latter problem might be partic-
ularly relevant for practical applications.

Conclusion and discussion.– We studied a system with
bifurcating branches of low and high free-energy con-
figurations within the same temperature range, and re-
vealed a discontinuous phase transition between the high-
energy configurations and the non-crystalline ground
states. Due to the presence of an inflection point in the
entropy–energy profile of the system, the ground states
are not associated with a low equilibrium temperature,
and simulated annealing generally fails to follow the dis-
continuous phase transition to reach the ground state.
Such a phenomenon is generic to the class of systems with
an inflection point, for instance, the presence of a high
and a low free-energy branch in the same temperature
range is observed in the color-diversity problem studied in
[41], but its significance may have been overlooked. Our
analyses on entropy inflection are thus crucial as peo-
ple typically assume a monotonic and concave relation
between energy and temperature, but do not verify the
concavity property. We introduced an energy-clamping
strategy to explore lowest-energy states located in the
higher-free-energy branch, which overcomes the limita-
tions of SA. This method can be extended to solve similar
problems with a bifurcating configuration space.

The conventional liquid–crystal phase transition is as-
sociated with a change in symmetry, but the same does
not hold for the present discontinuous phase transition
between the high-energy configurations and the ground
states, which originates from an inflection point of the
entropy-energy profiles. It is interesting to search for
such a distinct phase transition in finite-dimensional spin
systems.
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[25] M. Mézard and G. Parisi, The bethe lattice spin glass
revisited, Eur. Phys. J. B 20, 217–233 (2001).
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