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Summary

In text, emotion can be expressed explicitly, using emotion-bearing words (e.g. happy, guilty) or

implicitly without emotion-bearing words. Existing approaches focus on the detection of explicitly

expressed emotion in text. However, there are various ways to express and convey emotions without

the use of these emotion-bearing words. For example, given two sentences: “The outcome of my

exam makes me happy” and “I passed my exam”, both sentences express happiness, with the first

expressing it explicitly and the other implying it.

In this thesis, we investigate implicit emotion detection in text. We propose a rule-based ap-

proach for implicit emotion detection, which can be used without labeled corpora for training. Our

results show that our approach outperforms the lexicon matching method consistently and gives

competitive performance in comparison to supervised classifiers. Given that emotions such as guilt

and admiration which often require the identification of blameworthiness and praiseworthiness, we

also propose an approach for the detection of blame and praise in text, using an adapted psychology

model, Path model to blame. Lack of benchmarking dataset led us to construct a corpus containing

comments of individuals’ emotional experiences annotated as blame, praise or others.

Since implicit emotion detection might be useful for conflict-of-interest (CoI) detection in

Wikipedia articles, we built a CoI corpus and explored various features including linguistic and

stylometric, presentation, bias and emotion features. Our results show that emotion features are

important when using Nave Bayes, but the best performance is obtained with SVM on linguistic

and stylometric features only.

Overall, we show that a rule-based approach can be used to detect implicit emotion in the ab-

sence of labelled data; it is feasible to adopt the psychology path model to blame for blame/praise

detection from text, and implicit emotion detection is beneficial for CoI detection in Wikipedia

articles.

Keywords: Implicit emotion detection, OCC model, Blame and praise detection,

Conflict-of-Interest detection, Rule-based approaches.
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Chapter 1

Introduction

1.1 Overview

The internet holds huge document collections which can provide various types of information [180,

289]. Studies in various areas such as Natural Language Processing (NLP), Affective Computing

and Computational Linguistics have begun to conduct various researches on these text document

collections [180, 63]. This text not only contains information that describes facts and events, they

can in most cases hold information about the writer’s attitudes or stances towards the subject matter

[75, 135, 62, 199].

The emergence of the web, combined with various social media platforms have changed the way

people live, with a constantly growing number of people sharing thoughts, opinions, and emotions

in these environments. Analyzing these contents from all kinds of platforms can provide both public

and private sectors with opportunities to grow and understand the general public. Private sectors can

use sentiment analysis results to track the view of the public on their services/products, as well as the

overall image of their organizations, as opinions published and shared on these online platforms can

have an effect on the reputation of the organization [295, 282]. These organizations have realized

that understanding public opinions from these platforms can help build good relationships with their

customers and respond appropriately to market and socio-economic changes. For the public sector,

various studies have shown the close relationship between events on social media platforms and

various issues in politics, for example, the role social media platforms played during civil uprising

in various Arab countries (known as Arab Spring). There was a ten-fold increase in the number of

tweets talking about a need for Egypt to have a political change, resulting in the resignation of the

12



Egyptian president [35, 104].

There is evidence that human emotions influence the design of software products, evidence

of how products also can influence human feelings and evidence of how those feelings can make

people buy or not. The points above show how important it is to detect and identify sentiments

and emotions in text. Key influences of our behavior as humans are our beliefs, view of reality

and the choices we make. It is constantly becoming difficult even in journalism to find objective

information because these beliefs make one write more subjective sentences than objective ones

[122, 101]. Subjective sentences are sentences which express personal views, beliefs, and feelings

while objective sentences present some factual information [140].

The concept of emotion is a complex one and the term is often used in various ways. An emotion

is considered a short-lived episode of coordinated brain activity, which creates specific changes in

response to both external and internal events [75, 135]. The subjective experience of these emotions

is often referred to as feelings (to feel fear, joy, or guilt). Feelings are subjective and best described

as the way an individual experiences an emotion [75]. Moods are a more spread out affective state,

with smaller intensity when compared to emotion but are of a more prolonged in duration than

emotion [75]. For example: receiving an “A” in one’s exam might put one in a good mood all day,

however, the emotion of happiness is short-lived and very intense [75].

Natural Language Processing (NLP) areas such as subjectivity and sentiment analysis have more

developed foundational methodologies which are beneficial to emotion analysis [112, 116, 166].

Emotion analysis in text aims at identifying and extracting emotions towards a specific subject mat-

ter. Given its importance, much research in the area of emotion recognition in text has been ongoing

in recent years and the attention the area is getting is constantly growing. Previous research on emo-

tion analysis of text focused on text content from web-blogs, stories, news, text messages, spoken

dialogs, etc [140, 235, 112, 199]. Emotion has been studied in depth in the field of psychology and

behavioural sciences, mainly as a result of its importance to the human nature and this has led to the

growth in this area of computing [251, 33, 52, 82, 93, 233].

Emotions play a big role in human intelligence, decision making, creativity, social interaction

and more [135, 75, 62, 61]. The study of emotions is very broad and includes areas such as emo-

tional responses to physiological reactions, gestures, and postures based on subjective experiences,

facial expressions and emotion intensities. There is a strong relationship between emotions and

13



sentiments. The intensity of an emotion can typically be linked to the strength of a sentiment or

opinion it produces.

Emotion is subjective and expressed with the use of subjective language, a language used mainly

for expressing opinions and/or evaluations [140, 135]. It can hence be said that emotion analysis

in text benefits from the ability to detect and distinguish objective from subjective language. Clues

on the attitude/position of the writer on a subject matter, are often provided in the lexical choices of

the writer, also in the structure of the text. These clues can be as a result of emotions, their writing

style or the presentation relations used in the text. These clues can be identified using a combination

of various NLP techniques and research from areas such as emotion and sentiment analysis in text,

detection of bias and many more. As previously mentioned, distinguishing objective from subjective

language is important and recent studies have shown that both languages when combined is effective

for accurate results when compared to methods that rely solely on subjective language as shown in

the area of subjectivity analysis [140].

In this thesis, we investigate emotion analysis, aiming mainly at the implicit emotion detec-

tion problem, which deals with classifying text documents into emotion categories in the absence

of words considered as emotion bearing words. In particular, we research several methods for

extracting emotion and sentiment in text. Our research in implicit emotion detection leads us to

identify that certain emotion categories such as ”Pride”, ”Shame”, ”Gratitude”, ”Admiration”,

”Remorse”, and many more require one to identify when the subject of the emotion is praiseworthy

or blameworthy. This leads us to study and investigate the detection of expressions of blame and

praise in text documents. Therefore, we propose adopting the psychology ”Path Model for Blame”

into a model that can be applied to text documents. We use various datasets in the experimen-

tal work and annotate a new dataset for the detection of blame. We study various applications of

implicit emotion analysis, looking at document types that should have less explicit expressions of

emotions as in reference sites like Wikipedia.

1.2 Challenges

As previously stated, emotion is subjective and with subjectivity, only the bearer (writer) truly

knows the underlining motivation. Hence, there are a few challenges to be tackled in emotion

detection from text such as:
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• Natural language is ambiguous, that is; words and sentences can have different meanings

[106] “The meaning of a word is its use in the language”. For example, “Pride” by definition:

“is a feeling that one respects oneself and deserving of respect by other people” or “a feeling

that you are more important or better than other people”. In both cases, the word is spelt the

same way but these are clearly different [106, 259]. A sentence can also be ambiguous even

if the words which make up the sentence are not. One type of such ambiguity is structural

ambiguity. For example: “Stolen rifle found by tree”.

• The lack of labeled data required for classifiers training [112, 199].

• Identify emotions in text when no emotion keywords or phrases have been used. This presents

the problem of trying to identify opinionated views in a document when the writers are avoid-

ing the use of explicit opinionated words [235, 199].

• Detecting emotion based on only the text content of the article without additional context. For

example in the sentence “When I was so sure I failed an exam but I did not fail” expresses joy

but none of the words are positive words. Additional context (“passing an exam”) is needed

to correctly detect the emotion from the aforementioned example correctly [140, 112, 199].

• A single compound/complex sentence can contain multiple subjects and objects, hence it can

express multiple emotions and views, which can be directed towards various subjects/objects

within a single sentence [140, 235, 112, 199].

Above are some of the major challenges when working on emotion detection in text. However,

due to time constraints, we would not be able to focus completely on all 5 points. In this thesis, we

try to address the following 3 challenges.

1. Identify emotions in text when no emotion keywords or phrases have been used: This is

the primary focus of our work and we propose a rule-based emotion detection approach for

implicit emotion detection.

2. The lack of labeled data required for classifiers training: To help mitigate this challenge,

we propose an approach that is independent of labeled data for emotion detection. We also
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provide an annotated dataset for the detection of blame and praise, which are useful variables

for the detection of emotions like guilt, admiration and many more.

3. Natural language word level ambiguity: We try to address this challenge by incorporating

contextual valence detection and context level word sense disambiguation. These techniques

help us to understand the context meaning of the words within the sentences they appear in.

Identifying when an entity in an article subject matter is overly praised/blamed, the style of

writings found in the text can help shed more light on the intentions of the writer.

We also touch briefly the detection of multiple emotions in a sentence but will not go into an

in-dept analysis of what these may entail.

In the rest of this chapter, we present our research questions which we will be addressing and the

hypotheses for our research. Next, we outline our contributions and a layout for the overall thesis.

1.3 The Research question, hypotheses, and contributions

The main research question investigated in this thesis is:

How can we detect and correctly classify text documents into emotion categories in the ab-

sence of emotion bearing words and labeled corpora?

The primary focus of this research is to detect implicit emotion in text. We hypothesize that by

adapting existing psychology models for use in text analysis, we are able to detect implicit emotions

from text without the use of labeled corpora.

To solve/answer the main question, the following sub-questions need to be addressed:

1. Can we identify implicit expressions of emotion in text without the use of labeled data ?

There is evidence which shows that an author’s emotions towards a subject matter can affect

his/her writing on the subject. Emotion detection in text is an area that much work has been

done in recent years. However, most existing studies either rely on keyword matching based

on emotion lexicons or supervised classifier training from labeled data. We instead propose

a rule-based approach for implicit emotion detection, using a model proposed by Ortony,

Clore and Collins in their book “The Cognitive Structure of Emotions” often referred to as
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the OCC-Model (OCC is taken from the names of the book authors) [191].

2. Can we detect praise and blame in text, elements necessary for the detection of emotions such

as guilt, remorse and many more ?

Emotions such as guilt require one to first establish oneself as “blameworthy” before the

emotion can be said to exist. We propose an approach for blame/praise detection based on the

“Path Model of Blame” presented by Malle et al [145].

3. Can the intelligent combination of emotion features help with conflict-of-interest detection in

Wikipedia articles ?

The conflict-of-interest problem is a complex one and we believe that emotions features as

well as other types of features such as linguistic, stylometric and bias features can aid in the

classification of such documents. We create a dataset from Wikipedia, investigate various

types of features and various feature combinations for the classification of conflict-of-interest

articles.

Our contributions from this research can be summarised as follows:

• We propose a new rule-based approach for implicit emotion detection using the OCC model,

which detects expressions of emotion in sentences and investigate the existence of multiple

expressions of emotions within a single sentence, which is largely ignored in existing work.

• We extend and annotate a dataset of over 7000 comments for blame and praise detection. We

propose an approach adapted from Path Model of Blame for detecting expressions of blame

and praise in text

• We conduct experiments and take into account the direction of emotions and blame (to see

if they are directed towards self or others), something we believe most existing work did not

take into consideration.

• We investigate the application of implicit emotion detection on conflict-of-interest (CoI) de-

tection in Wikipedia articles. In specific, we create a dataset and explore various features

apart from emotions for this task.
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We believe that our work in this thesis is the first to introduce and investigate implicit emotion

detection using the OCC model in text documents, blame and praise detection in text and conflict

of interest detection in Wikipedia articles based solely on content.

1.4 Overview of Thesis

The structure of the rest of this thesis is as follows:

In Chapter 2, we conduct a literature review of the emotion detection task and popular ap-

proaches. We also review recent work on the related tasks such as vandalism detection and bias

detection.

In Chapter 3, we propose a rule-based approach for implicit emotion detection. We also explore

multiple emotion detection from a single sentence and evaluate our work on three different datasets.

This chapter addresses the first research sub-question.

In Chapter 4, we describe our work on detecting expressions of blame in text, presenting a

model for blame detection in text. This chapter addresses the second research sub-question.

In Chapter 5, we present our work on conflict of interest detection using emotion, presentation,

stylometric and linguistic features. Our third research sub-question is addressed in this chapter.

In Chapter 6, we conclude our work in this thesis and outline our contributions and future work.
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Chapter 2

Literature Review

Overview

In this chapter, an overview of the emotion analysis literature is provided. In particular, the emotion

analysis problem is first introduced in Section 2.1. A literature review of the emotion analysis

research including a discussion of various approaches, their main strengths, limitations, and gaps

are provided in Section 2.2. Recent work on implicit emotion detection is discussed in Section 2.3.

Finally, a review of bias and vandalism detection is given in Section 2.4.

2.1 Emotion Analysis

There has been much research in sentiment analysis and emotion analysis of text [81, 76, 285]. This

section presents the literature of the previous work in emotion analysis, identifies their strengths and

weaknesses, and finally gives an overall comparison.

2.1.1 Theories of Emotion

Since early studies on emotion in the field of psychology, there have been controversies on what

actually causes emotions. There are many theories of emotion. Here are the three most frequently

mentioned in research from which all other theories originate.

In the James-Lange theory, the event which causes arousal and physical changes is interpreted

as the emotion [75]. For example: if you are taking a walk in the city at night and a man jumps

in front of you holding what appears to be a gun, according to James-Langes view, seeing the man

would cause an increase in your heart rate; you become aware of your heart beating faster and you

experience fear.

In the Cannon-Bard theory of emotion, emotion can be triggered by an event itself [135]. This
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theory states that the arousal caused by an event is not necessary for emotion. Thus, an event creates

both the emotion and physiological changes, without a dependency on one another. The cognitive

theory of emotion is similar to James-Langs theory, it states that emotions have more to do with

the interpretation process. Thus, it is the complete scenario and not just the arousal and physical

changes that determine emotion [75, 135].

Hot cognition is basically cognition coloured by feeling [39]. There are theories that state that

almost all human activities tend to implicate emotions in one manner or the other. This means that

day to day events are in some way controlled by our feelings and the expression options available

to us [62]. Our choice of words will tend to communicate information about our opinions, beliefs,

and judgments [76, 135, 62]. According to Brand, using a stage model one can show how cognition

and affect interact: “before, during, and after” writing. The “Before” affects are enthusiastic [39].

The “During” affects enables the continuation of writing towards its closure. The “After” affects

are the outcome emotions that lead to the next writing episode [39]. Emotions influence both what

and how we write, emotions also influence our writing process and our thinking process. Human

personal experience tells us that when one is feeling angry and when one is feeling happy lead to

different emotional outcomes and actions. A similar thing happens in writing, feeling angry and

feeling happy lead to different writing events [39].

Alice in her work [39] stated that the writing psychology must include cognitive as well as

affective attributes, because writing which requires thinking and analysis. This representation of the

human thought process employs both inductive and deductive reasoning. During writing, the act of

thinking deals with words and the sense of the word meaning in context. This sense is a collection

of associated psychological events that relate to the word. These word senses are filled with affect

[40].

2.1.2 Classification of Emotion

In the study of human emotions, there are various classifications which have been presented over the

years. Various researchers have postulated different sets of human emotions, Aristotle maintained

that there were 15 basic emotions; Descartes listed 6 emotions [135, 263].

In the Book “Emotions In Social Psychology” [198], the author classified emotions and placed

Love, Joy, Anger, Sadness, Fear, and Surprise on the primary level and explained the emotion sys-
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tem. Ekman made a case for these basic emotions, stating that each emotion has unique and shared

characteristics that distinguish them [68].

Figure 2.1: Plutchiks Wheel of Emotions [263].

Robert Plutchik created the “wheel of emotions” shown in Figure 2.1. He showed how various

emotions can combine with each other to create new emotions. Starting with 8 primary emotions:

trust versus disgust; surprise versus anticipation; anger versus fear and joy versus sadness, more

advanced emotions were identified based on differences in intensity [263]. Parrot presented a theory,

where he identified over 100+ emotions. He then used a tree structure to conceptualize them [198].
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In computational linguistics, it is becoming important to be able to detect human emotions and

this has led to various computational models of emotion [199].

2.1.3 Computational Models for Emotion

In this section, we look at the various computational models for emotion and try to reveal their

uses, techniques, and assumptions. Emotions are a big part of our day to day life as humans, and

as a result, there are commonsense interpretations to emotion research terminologies (appraisal,

emotion, feeling), which can differ from the technical definition of the said terms within a given

computational model for emotion [154].

Appraisal Theories

Appraisal theory is a predominant theory on emotion and a good source for parties interested in AI

systems. Appraisal theory explains the link between cognition and emotion [154]. According to

this theory, emotions stem from the types of judgment one makes about an event and one’s beliefs,

intentions as well as desires. These patterns are called the person-environment relationship [129].

These judgments, are technically referred to as appraisal variables [154]. They characterize parts

of the significance of an event to an individual. This theory presents appraisal as central to emo-

tion process. However, various appraisal theorists view “emotion” as an unattached component,

while others refer to appraisal configurations such as physical changes and subjective experience

as emotion. There is research work that focuses on the interdependence between appraisal vari-

ables and emotion labels [191]. In the Book “The Cognitive Structure of Emotion” Ortony, Clore,

and Collins defined emotions as valenced reactions, stating that how an individual understands the

eliciting conditions determines the emotion.

2.1.3.1 The OCC Model

The OCC model is a model under the appraisal theory of emotion. The model starts off by providing

a few assumptions on three major focus points when dealing with emotion types which include:

Events which people focus on when they are interested in the consequence of an event. Agents

which one focuses on because of their actions and Objects which one focuses on when one is

interested in the properties or aspects. The OCC Model provides a clear and convincing structure

of the eliciting conditions of emotions and the variables that affect emotional intensities [191]. It
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describes a hierarchy that classifies 22 emotion types. The hierarchy contains three branches. The

first branch is the “consequences of events” branch. The emotions on this branch express pleasure or

displeasure with event consequences. The second branch contains emotions in relation to “actions

of agents”. An agent can be self or other and these are the attribution type of emotions. When well-

being and attribution type emotions are mixed, we get the compound emotions such as anger and

remorse. The third branch contains emotions relating to liking or disliking in regards to “aspects

of objects”. The authors explain how focusing on events, agents, and objects can lead to various

emotion. Take an individual finding out that his neighbor is a child-beater. If one focuses on the

neighbor as an agent of beating, one will judge it as blameworthy as it violates standards. The

resulting emotional reaction towards the neighbor will be one of attribution such as reproach. If one

focuses on the undesirable child-beating event, it will cause him/her distress. If one focuses on the

children, one will feel pity for them. Thus by focusing on different parts of the same situation, one

can experience various emotions.
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Figure 2.2: The original OCC model [191].
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Table 2.1: OCC Model emotions and definitions [191]

Emotion OCC Model Definition
Well Being Emotions

Joy pleased about a desirable event
Distress displeased about an undesirable event

Prospect Emotions
Hope pleased about the prospect of a desirable event
Fear displeased about the prospect of an undesirable event
Satisfaction pleased about the confirmation of the prospect of a desirable event
Fear confirmed displeased about the confirmation of the prospect of an undesirable event
Relief pleased about the disconfirmation of the prospect of an undesirable event
Disappointment displeased about the disconfirmation of the prospect of a desirable event

Fortune of Others
Happy-for pleased about an event desirable to someone else
Resentment displeased about an event desirable to someone else
Gloating pleased about an event undesirable to someone else
Sorry-for displeased about an event undesirable to someone else

Attribution Emotions
Pride approving of one’s own praiseworthy action
Shame disapproving of one’s own blameworthy action
Admiration approving of someone else’s praiseworthy action
Reproach disapproving of someone else’s blameworthy action

Compound Emotions
Gratitude approving of someone’s praiseworthy action and pleased about the related desirable event
Anger disapproving of someone’s blameworthy action and displeased about the related undesirable event
Remorse disapproving of someone’s blameworthy action and displeased about the related undesirable event
Gratification approving of someone’s praiseworthy action and pleased about the related desirable event

Attraction Emotions
Love liking an appealing object
Hate disliking an unappealing object

Looking at the branch which reached from CONSEQUENCES OF EVENTS this branch con-

nects to being pleased and displeased. Here, being pleased or displeased refers to unspecific emotion

state that are valenced reactions to an event. This branch continues to reflect if the person experi-

encing the emotion is reacting to an event focusing on himself or to an event focusing on another

person. This gives the two branches CONSEQUENCES FOR SELF and CONSEQUENCES FOR

OTHER. Events can be in the past, future or concurrent(present) and can in turn, lead to different

types of emotion. The CONSEQUENCES FOR SELF the first group of emotions to consider here

are emotions which deal with the well being of self. These emotions do not take the prospect of an

events consequence into consideration but are simply what it is like to be pleased or displeased with

an event that affects one directly. Joy and distress are two emotions that correspond to one focusing

only on the desirability and undesirability of an event. Continuing under the CONSEQUENCES

FOR SELF branch we look at the prospect of emotions, these emotions are reactions to the prospect

of an event. It involves looking at events that are yet to occur, already occurred or failed to occur.
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With prospect-emotions, they are separated by the status of the event in question. First, emotions

where the experiencer of the emotion is unaware of if the event has occurred or has not occurred,

is referred to as an unconfirmed status. Second, the individual is aware that the event has occurred,

this is a confirmed status. Finally, the individual is aware that the event failed to occur, this is a

disconfirmed status. Looking at the CONSEQUENCES FOR OTHER branch, the event emotions

here are in relation to what happens to other people. For example, if one is pleased for someone who

is having a good fortune, the basis of this could just be that they like the person and wish them well.

The branch with ACTIONS OF AGENTS are for attribution emotions, as they deal with emotions

of responsibility for actions. A central part of this is our ability to find a person blameworthy/praise-

worthy for an action. With attribution emotion, the primary focus is the agent and his/her causal

role rather than the outcome. The model also discusses compound emotions, which are derived

by conditions of two different emotions. These emotions generally result from the combination of

well-being emotions and attribution emotions as presented in figure 2.3.

Figure 2.3: Combination for Compound emotions [191].

The model also looks at attraction emotions, which are object-based emotions. The appeal-

ingness of an object connected to how one associates/categorises objects and one’s disposition to

objects in said categories and said object’s attributes. The model also makes it clear that familiarity

has a correlation with liking or not liking an object. According to the model, a one’s evaluation of

a given emotion-inducing event is based on three variables desirability, praiseworthiness and ap-
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pealingness, which respectively apply to event-based, agent-based, and object-based emotions.

It then goes into detail to identify what it called global and local variables which affect the intensity

of the emotion. The global variables are variables that affect all emotions, while local variables

are those that affect only specific groups of emotions. The model is dependent on its variables and

the rules for implementing/identifying emotion. The variables are grouped into emotion-inducing

variable and emotion intensity variables. For a full list of the emotions and variables, see [191].

Depending on what is expressed, some of the variables may or may not have assigned values. Emo-

tion recognition aims to infer emotions from text by applying a set of pre-defined rules. Multiple

emotions can be inferred from a given situation.

The OCC model is rather complex and full of ambiguity. Steunebrink et al [246], outlined a

number of issues of the original OCC model and proposed changes to remove duplications and

ambiguities in the original OCC model. The result of these resolutions is evident as shown in the

revisited OCC model in Figure 2.4. In our work, we use the revisited OCC model [246] for emotion

detection in text.
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Figure 2.4: The revised OCC model [246].

Computational appraisal models create complex mechanisms for detecting and extracting ap-

praisal variables. Emotion in these models is not modeled as elaborately as the appraisal variables,

mostly treated as a label and in most cases without reference to intensity levels [154]. The modeling

of appraisal is such that it is the trigger that results in emotion, derived via rules placed on appraisal

variables [154].

The Appraisal theories of emotion are the most dominant emotion theories primarily because it

explains and emphasises the connection in relation to the process of emotion appraisal. Appraisal

theories have been used with great success in Artificial Intelligence systems and other machine

learning systems. The values of this theory to the understanding of emotion is one of the major
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reasons we choose to work with a model from the Appraisal theories.

Dimensional Theories

Dimensional theories state that emotions are not unattached entities, but points in a measurable

space [154]. Most computational dimensional models stem from the three-dimensional “PAD”

model presented by Mehrabian et al [154], which includes a measure of valence called pleasure,

affective activation known as arousal, and a measure of control called dominance. Dimensional

theory focuses on different emotion components and their relationships in comparison to appraisal

theories [154]. The model focuses more on core affect/moods and less on emotions. To the di-

mensional model, core affect is a non-rational construct of a non-intensional state, which provides

a summarized state of the individual [127]. Core affect is presented as a continuous time varying

process that is represented at a given period in time by a 3D space controlled by events. Computa-

tional models which stem from these theories, dwell on the processes that are related to affect as it

is affected by surrounding events [154].
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Figure 2.5: The PAD model [127].

Anatomic Approaches

These try to re-create an organism’s neural links for emotional reaction. They focus on sub-symbolic

processes and view emotions as discrete neural circuits. They then focus on the processes which

are associated with these discrete neural circuits. Thus, models inspired by these theories often

rely on process assumptions, and not as comprehensive as appraisal or dimensional theories [154].

Researchers who work with such models often focus on a specific emotion. Anatomic models often

present a dual perspective of emotion, “a fast, automatic, undifferentiated emotional response” and

“a slower, differentiated response that relies on higher-level reasoning processes” [154].
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Rational Approaches

These approaches view emotion for its adaptive function, and this function is abstracted and in-

corporated into a model of intelligence [154]. Models that stem from these theories are directed

towards improving theories of machine intelligence [154]. They focus more on the processes and

constraints but tend to overlook emotion.

Communicative Approaches

Communicative theories see emotion as a communicative system which is used for communicating

with other persons, one’s mental state and as a way of asking for changes in others behavior [154].

2.1.4 Emotion Detection Approaches

Emotion detection approaches are classified into four categories, lexicon-based, learning-based, a

hybrid of both and other approaches not falling into the aforementioned three categories. Here, we

look at these approaches and various researches conducted using these approaches

2.1.4.1 Lexicon-based Approaches

Here, emotion detection is approached as a keyword pattern matching problem. It is typically a

problem of finding predefined keywords in a text document. These words have been grouped into

various emotion categories such as happy, angry etc. The method typically consists of five steps

where the input is a text document and the output is the emotion class. These five steps include tok-

enization, identification of emotion keywords, identification of intensity of emotion words, negation

check, and then finally emotion classification [199, 235, 112]. Thelwall et al [265] in their work

proposed SentiStrength, an unsupervised system for emotion and sentiment analysis which utilizes

snippet- based and word-matching rules for detection, and handles intensifiers and negation. Vari-

ous works have been done using this method with different algorithms. Lexicons like NRC [172]

and Wordnet-Affect [248] are frequently used, either alone or in collaboration with other lexicons.

Discussion: This type of approach seems to have high accuracy rate as shown in various related

publications but as was observed in various works that lexicon-based emotion detection methods

have a few limitations [288, 235, 199] such as:

• Ambiguity in the definition of emotion keywords: Using emotion keywords is a direct way
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to identify associated emotions. However, the meanings of words can be diverse, ambiguous

and most often differ in meaning based on usage. In sentences such as ironic, sarcastic or

cynical sentences [199, 112, 235], these words could have a different meaning and thus have

a different emotion classifications.

• Failure of detecting emotion/sentiment of text without emotion-bearing words: Most of the

techniques rely heavily on the emotion keywords. Thus, sentences which do not have any

of the predefined keywords are assumed to be without emotion or neutral, and this is not

always true[199, 112, 235]. For instance, “I passed my qualifying exam today” and “Hooray!

I passed my qualifying exam today” should be categorised with the same emotion. However,

the absence of “hooray”in the first example makes it impossible to detect the underlying

emotion using lexicon-based approaches.

• Ignorance of linguistic information: The expression of emotion is influenced by syntactic

structures and semantics. For example, “I laughed at him” and “He laughed at me” should

have different emotions based on the speakers perspectives. Not considering linguistic infor-

mation raises a problem in most lexicon-based systems [199, 112, 235].

An extension of keyword spotting approach is to assign a probabilistic affinity for specific emo-

tion to words. These word probabilities can be derived from linguistic corpora and are often biased

toward the genre of texts in that specific corpus. However, such an approach only considers emo-

tional content at the word-level [199, 235, 112].

2.1.4.2 Learning-based Approaches

This type of approaches looks at the problem differently. It casts the emotion detection problem as

one of text classification. That is, a classifier is trained to determine if a text document falls in any

of the predefined emotion categories. This is different from the lexicon-based approach, as it tries

to detect emotions using a classifier which is trained with labeled or unlabeled data to determine

the emotion category of an input text [199, 292, 262, 235, 112, 292, 262]. More recent work on

emotion detection using learning based approach can be further classified into unsupervised, semi-

supervised and supervised learning approaches. These approaches often utilize one of the following

machine learning techniques:
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• Naive Bayes Algorithm(NB) : This is kind of classifier that uses Bayes Theorem [133]. Bayes

Theorem works on conditional probability, which is the probability that an event will occur,

given that another event has already occurred. Thus, the probability of an event can be cal-

culated based on prior knowledge [133]. It assumes that all the features are unrelated/inde-

pendent to each other. Naive Bayes is a fast, scalable and useful for binary and multi-class

classification. Its biggest drawback is that it considers all the features to be unrelated/in-

dependent, this results in an inability to learn the important relationships between features

[133].

• Support Vector Machines (SVM): In SVM, the training data is plotted in given dimensional

space [110]. A binary SVM predicts a straight hyperplane dividing these 2 classes. The

hyperplane is drawn by maximizing the distance between hyperplane and the nearest data

point of each class [110]. This is called the maximum-margin hyperplane. The subset of the

training data instances which are used to determine the hyperplane in SVM are known as the

support vectors. The dimensionality of feature/attribute space does not have an effect on the

performance of SVM classifiers [110].

• Logistic Regression Method: This uses a black box (Softmax function) function to under-

stand the relation between the categorical dependent variable and the independent variables

[164]. A dependent variable is the class to be predicted, while independent variables are the

features/attributes used for predicting the target class. A Softmax function output values are

always in the range of (0, 1) and their sum will always be equal to 1 [164].

• Neural Networks: Neural networks (NN) can be viewed as a complex function with numeric

inputs and outputs [98]. The output values are determined by a combination of the input

values, the hidden and output activation functions, and the weights/bias. A neural network

with i inputs, h hidden nodes, and o outputs has (i * h) + h + (h * o) + o weights and biases.

Neural networks are often trained using back propagation [98]. The aim of training a neural

network is to find weights/ biases values, in other for the computed network outputs to closely

match the training sets known outputs [98].
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2.1.4.3 Supervised Learning

Supervised learning put simply, is basically learning from examples. Here, two sets of data are

provided to the algorithm, training, and a testing set. The learner has to “learn” from the examples

in the training set which are labeled, to enable it to identify unlabeled test set examples with high

accuracy where possible [97]. Mohammad [166] conducted emotion detection experiments with

Logistic Regression and Support Vector Machines (SVM). They used binary features which repre-

sented the presence/absence of unigrams and bigrams identified in the dataset. Alm et al [6] worked

on fairy tales dataset and used Sparse Network of Winnows (SNoW) learning architecture which

is tailored for large-scale learning for the multi-class classifier. They experimented with different

feature combinations and achieved an average accuracy of 0.63. Strapparava et al [251], carried

out experiments focused on news headlines taken from news media websites and blog posts using

Nave Bayes classifier and Latent Semantic Analysis (LSA). Gliozzo et al [84] used a type of Latent

Semantic Analysis (LSA) which took into account the weighting schema of tf-idf. They carried out

corpus-based experiments of posts from LiveJournal.com. The posts were mapped using mood to

six emotion categories. Alm et al [6] used a manually annotated data set and explored automatic

classification of children’s fairy tales sentences into basic emotions as defined by Ekman [68].

Gupta et al [87], performed emotion detections on customer service emails. A total of 620

email messages were used for training and 457 emails as test samples selected at random from

a two million email corpus. They identified 8 reaction categories in the dataset such as business

threats, report threats, legal threats etc. They experimented with Boosting [224] and Support Vector

Machines (SVM). They used BoosTexter [225], a variation of AdaBoost which takes words and

n-grams as features used for emotion classification. AdaBoost is a meta-learning algorithm which

takes the outputs from many weak learners as a weighted sum to produce the final classification

output. They archived an F-measure of 0.746, having used unigram features and orthographical

features [87].

In Mohammad et al [167], worked with tweets. Each tweet had a hashtag corresponding to

Ekmans six emotions: disgust, anger, happy, fear, sadness, and surprise. They ignored tweets that

have a hashtag in the middle, do not contain a hashtag and all retweets. The experiments carried

out with supervised Support Vector Machine (SVM) algorithm was especially informative since
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it showed that when the hashtags are compared to human judge results, they correspond to the

annotations [167]. They found that the results were improved by combining labeled data in other

domains with the Twitter corpus.

Vo et al [277], compared support vector machine(SVM) and Naive Bayes algorithms on a Twit-

ter dataset containing tracking and updates on four earthquakes. They used hashtags to detect tweets

that were about the earthquakes. They collected and annotated the tweet data for calm, unpleasant-

ness, sadness, anxiety, fear, and relief emotions. Using supervised Multinomial Naive Bayes and

Sequential Minimal Optimization (SMO), they created models for detecting the annotated emotions,

with the best results produced by Naive Bayes [277].

In Li et al [137], their work was based on the theory that emotions triggering event are important.

A crucial step in their approach is the extraction of emotion cause. They examined the dataset

and constructed an automatic rule-based system to extract the emotion causes in the posts. They

used a corpus of Chinese micro-blogs labeled by human annotators of 16485 posts classified into 6

emotions and neutral. Using 75% of the dataset as training set and 25% for the test set, they made

use of a version of SVM proposed by Drucker et al (SVR) support vector regression [67], which

uses SVM principles but returns a real number [67]. The classifier is trained based on extracted

cause events to classify emotions in micro-blog posts.

Roberts et al [221] worked on experiments to detect emotions from suicide notes. These suicide

notes were annotated by the authors and used for the experiments. They used for their baseline

method for emotion detection an approach proposed by Robert and Harabagiu [220]. First, they use

independent binary SVM classifiers, with each classifier working on individual emotion categories,

they then create a single multi-label classifier by combining the individual SVM classifiers. This

allowed the tweets to be classified into multiple emotion categories. They used the implementation

of SVM found in WEKA [90, 221].

In Kunneman et al [124], their approach was training a classifier that will result in a balanced bi-

nary classifier with an equal amount of tweets with emotion hashtags and random counter-examples.

They used Balanced Winnow algorithm [139] and found that 12 of the 24 hashtags tested had an

AUC score of about 0.80 or higher and a precision score of 0.70 on two of the 24 hashtags [124].
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2.1.4.4 Semi-supervised Learning

This type of learning uses the techniques of supervised learning for training but with a combination

of labeled data and unlabeled data. This usually consists of a large quantity of unlabeled data and a

small quantity of labeled data [97].

Tsur et al [269] worked on a product review dataset and used a semi-supervised approach using

a strategy similar to the concept of k-nearest neighbors (kNN), to detect the presence of sarcasm in

products reviews. They used features such as content words, frequent words or punctuation marks,

to represent sarcastic texts, with results of high precision and recall scores.

Haggag used a semantic frame approach for detecting emotions in text [89]. By using a knowl-

edge base, they stored semantic and syntactic information. Learning is provided by training a

Knowledge-Based Artificial Neural Network (KBANN) to aid classification decision of detecting

emotions in text. Emotion detection is done by matching against the entries in the knowledge base.

The dataset had the following emotion categories: sad, happy, anger, joy, disgust, fear, astonish-

ment and natural, also comprised of short paragraphs of about 3 sentences with 600 labeled with

positive emotion and 400 negative emotion. Their model had higher accuracy when compared to

the linguistic, pragmatic and keyword models.

In Bann et al [30], they collected Twitter data of tweets that contain emotion keywords related

to Ekmans six basic emotions [68]. They used Document-Emotion Latent Semantic Algorithmic

Reducer (DELSAR) which uses emotion set and clusters documents emotion clusters. They also

make use of the Emotion Profile concept and conduct analysis of compound emotions [30].

2.1.4.5 Unsupervised Learning

In unsupervised learning, a type of machine learning that draw inferences from a datasets input data

in the absence of labeled responses, basically learning without a teacher.

Calvo et al [46] introduced a way of using normative databases for processing text and compare

it with categorical approaches. For their experiments, they utilized a lexicon and a bag-of-words

approach to build/create sentence vectors. They then applied Latent Semantic Analysis (LSA),

Probabilistic Latent Semantic Analysis (PLSA) and Non-negative Matrix Factorization (NMF) to

their dataset. Their experiments show that the categorical model with NMF performed best along

with the dimensional model [46].
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Tang et al [257] combined emotion lexicon, emoticons and emotion-shifting rules to detect

emotion in tweets. They use an unsupervised method to balance the effectiveness and the scalability.

They manually annotated data on earthquakes and conducted experiments whose results show that

the precision reaches 80% [257].

Agrawal et al [5] presented a context-based unsupervised approach for sentence level emotion

detection. Their approach does not depend directly on emotion lexicons such as WordNet-Affect,

rather refer to emotion-bearing words as NAVA (Noun, Adjective, Verb, Adverb) words. First, they

extract words considered as emotion bearing words. Using part-of-speech tagging, they extract all

words in an input sentence that fall into the NAVA words tagging by first assuming that all emotion-

bearing are NAVA words. They use a set of affiliated emotion words in order to calculate the emotion

vector of a given emotion bearing word. This is done by calculating the semantic relatedness score

of the word and the emotion concept score generated from the Point-wise Mutual Information (PMI)

score of the co-occurrence of the NAVA word and the affiliate emotion word [5].

2.1.4.6 Discussion

The algorithms in this category have very good performance and accuracy levels as shown in various

related publications. However, it has a few pitfalls such as:

• Identifying Emotion Indicators: Learning-based methods tend to inherit the problems of lex-

icon approach as they generate probabilities based on words in the input text. The classifiers

require features such as words and emoticons to assist in the detection of an authors emotion

[199, 112, 235].

• Dependence of labelled data for training: This type of approach require large training data,

and this data has to be manually labeled. It is both time consuming and labour intensive

to label data manually, and this labeling has to be done for each application domain. Do-

main specific data results in classifiers performing well in their trained domain and poorly on

different domains [112, 113, 257, 199].

• Most of the algorithms studied also show a lack of use of linguistic information to aid in

emotion identification, problems in detecting emotion cues, and sometimes biased toward the

corpus-specific genre of texts [199, 112].
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• The algorithms in this approach tend to stick to Ekmans 6 basic emotions [68] resulting in

over-simplified emotion categories and emotions outside these categories classified as neutral

(which they are not) or ignored completely.

2.1.4.7 Hybrid Approaches

Given the flaws of keyword-based and learning-based methods, some researchers adopt a hybrid

approach. This is most often the combination of keyword-based and learning-based methods. This

combination helps to improve the level of accuracy generated. In Wu et al [288], they use a rule-

based method to extract semantics of various emotions in text as well as lexicon ontology features.

These features are used in the training of their learning module. This method though with limited

emotion categories outperforms previous approaches [199, 235, 112].

Aman et al [10] used an annotated dataset of blog post sentence corpus, which contained infor-

mation about emotion category, intensity, and emotion indicators. They found that instances of fear

and happiness had high annotator agreement, as well as sentences with high emotional intensity.

They used General Inquirer [247], WordNet-Affect [248], and a combination of both with Support

Vector Machines (SVM) and Naive Bayes. The best performance was a significantly high accuracy

of 73.89%.

Discussion Hybrid approaches perform with a reasonable level of accuracy. However, it appears

to inherit both the pros and cons of learning and keyword-based approaches.

2.1.4.8 Other Detection Approaches

Neviarouskaya et al [182] used a rule-based method for detecting Ekmans primary emotions [40] in

data set of blog post sentences. Liu et al in their work used real-world knowledge from a common-

sense knowledge base for sentence level emotion detection. First, they extract from the knowl-

edge base sentences with emotion, which are then used for building emotion models for labeling

sentences with the corresponding emotions [68].

Singh et al [237] described sentence level emotion detection using supervised learning approach

and tagged dictionary and unsupervised learning approach using ISEAR database. They use a PCFG

parser, which is a probabilistic version of a CFG (context-free grammar) where each production has

a probability and is an important part in training machine. The algorithm used is Probabilistic Latent

38



Semantic Analysis (pLSA), which is a technique mostly used in topic modeling. It discovers un-

derlying semantic structure in data by modeling the co-occurrence information under a probabilistic

framework. The algorithm views data in terms of documents, words, and topics these are its main

variables.

Das et al [64] used preprocessed WordNet Affect lists for semi-automatic word level emotion

annotation process. Using Conditional Random Field (CRF) for word level based emotion detection,

they produced an overall accuracy score of 87.65% with a dataset of 250 sentences. Gill et al [81]

used a Latent Semantic Analysis (LSA) and Linguistic Inquiry and Word Count (LIWC) method for

determining basic emotions [68] in data set of sentences taken from blog posts [81].

2.1.5 Implicit Emotion Detection

The expression of emotion in written text is through the use of words and most often emotion-

bearing words such as “happy”. However, emotions can be adequately expressed without the use

of emotion-bearing words. For example, given two sentences “The outcome of my exam

makes me happy.” and “I passed my exam.” , both sentences express the emotion of

happiness, with the first expressing it explicitly and the second implying it. Most research in the area

of emotion detection focuses on explicit emotion detection [235, 154]. Implicit emotion detection

is a much more difficult task and the approaches which rely on emotion lexicons are inapplicable

here. Although it is possible to train supervised classifiers from annotated data, acquiring sufficient

annotated data for training requires heavy manual effort. Implicit emotion detection in text refers to

identifying and classifying text into emotion categories in the absence of emotion-bearing words.

Liu et al [142] argued that real-world knowledge of everyday emotional situations (e.g., “get-

ting into a car accident”) can be used to detect implicit emotions. They made use of the Open Mind

Common Sense Corpus (OMCS) [238] which holds 400,000 facts about the everyday world. From

OMCS, they extracted sentences which contain affect based on Ortony’s Affect Lexicon [191].

Those affect keywords from the lexicon were pre-classified into Ekman’s basic emotions and acted

as “emotion grounds” which propagated their value to concepts related to commonsense relations.

Based on the syntactic parse results obtained from text, they created four linguistic models coupled

with some hand-crafted rules to classify sentences into one or more of Ekmans basic emotion cat-

egories. Their approach is restricted by the knowledge source and the affect lexicon used. Also,
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the approach largely depends on the subject-verb-object-object structure of sentences which is not

always present.

Balahur et al [24] constructed the EmotiNet ontology which started with three knowledge cores

including kinship relations, emotions, and actions. The EmotiNet ontology was then extended and

populated using the situations found in International Survey On Emotion Antecedents And Re-

actions (ISEAR) dataset1, and was further expanded using existing resources and other common-

sense knowledge bases. EmotiNet holds real-world situations and emotional reactions in which

commonsense is key to the interpretation of affect. In subsequent work, EmotiNet was extended

to enable implicit emotion detection [25]. The problem with the EmotiNet approach is that it is

domain-dependent, since the approach would fail if the knowledge on certain actions is not defined

in EmotiNet.

There are also some other approaches not relying on commonsense knowledge, but can still be

used for implicit emotion detection. For example, Agrawal and An [5] already discussed above,

although this approach did not directly target at implicit emotion detection, it occasionally identi-

fied emotions of sentences without emotion-bearing words. Nevertheless, their approach depends

on the external knowledge sources such as Wikipedia for the calculation of PMI values which is

computationally expensive.

Discussion: Most of the approaches we encountered for implicit emotion detection in text rely

on some external knowledge sources. However, the use of knowledge sources is not robust enough

to be applicable in any real-world context as it is impossible to cover all possible entity specifica-

tions. Another limitation is that it does not give consideration to semantic relationships of linguistic

components in the given sentence and the contextual meanings of words in the sentence.

2.1.6 Summary on Emotion Detection

Given the progress and challenges in this field of study as presented above, the research work re-

ported in this thesis aims to address the following limitations of existing approaches to emotion

detection from text.

• The lack of labeled data: We propose an approach for implicit emotion detection which will

be able to classify text into emotion categories without the need for labeled data.
1http://www.unige.ch/fapse/emotion/databanks/isear.html
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• Dependence on emotion lexicons: We propose an approach for implicit emotion detection,

which will not have a dependency on emotion lexicons.

• Feature engineering perspective: Our proposed approach presents a set of rules used to

allocate values to the model variables and reduces the amount of feature engineering required.

• Over-simplified emotion categories: Our proposed solution utilizes the OCC model which

has 22 emotions, with emotions such as sorry-for and happy-for which indicate the direction

of the emotion, rather than classifying all emotions under the same category regardless of the

direction (towards self or towards others) of said emotion.

Our approach for the detection of blame and praise is discussed in detail in chapter 3 of this thesis.

2.2 Blame and Praise Detection

With the prevalence of social networking sites, the continual growth of social computing, there is a

need for more and more systems which utilise human insight for computer-related tasks [196]. In

recent years, social computing is becoming key in many research areas and technological systems

such as learning, human-computer interaction, entertainment and many more. A major aspect of

social computing is the ability of an entity to infer the social behaviour of not just itself but of other

entities as well [196, 151]. This inference includes the ability to pass judgment and determine if an

entity is blameworthy or praiseworthy and allocate blame or praise where appropriate [267]. Blame

and praise are closely related, to blame an entity is to hold that entity morally responsible for doing

something of a negative outcome while praise is to hold that entity morally responsible for doing

something of a positive outcome [69] . The volume of text data in recent years is continuously

growing, so is the need to understand the content of the data. 90 percent of today’s online commu-

nications is in text format [58]. Detection of blames can be used in a variety of applications such as

identifying entities holding moral responsibilities in multi-agent systems, in emotion detection from

text in helping with the identification of emotions such as guilt, remorse, admiration, shame [191],

in forensic linguistics for legal cases, and in automatic identification of relief efforts by crawling the

web during a disaster and many more.
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2.2.1 Theories of Blame

Blame is in the family of “moral judgments”. It deals with evaluating agents for their involvement

in events to determine if the agent is blameworthy or praiseworthy. As discussed in [145], in the

family of moral judgments one needs to distinguish at least three types :

1. Setting and attesting to norms for example, avowing one norm as overriding another or stating

an imperative.

2. Evaluating events, the outcome of events and behaviors in relation to norms, e.g. judging an

event as bad or good.

3. Performing agent evaluations to see their involvement in norm-related events, for example

judging someone as blameworthy or morally responsible.

The key difference between the three types of judgment includes the following: Type 1 is directly

involved with norms, while Types 2 and 3 are judgments through evaluation in relation to those

norms. Furthermore, Type 2 focuses on events, while Type 3 focuses on agents. Blame falls into

the category of Type 2 and 3 [145]. To find an entity as blameworthy, one is holding that said entity

morally responsible for doing something wrong. Blame is cognitive in relation to the process that

leads to the judgment of blame; blame is also social in relation to the act of showing a judgment of

blame to a different entity.

There is a variety of theories of blame, these theories could be organised in different dimensions

depending on the purpose. We consider here just two dimensions:

• First, we could categorise blame theories based on its blaming content [145]. This dimension

covers theories that believe that blame is found in judgments of ill will and the theories that

state that blame can be said to be a response to ill will which is emotional [145, 267].

• We could categorise blame theories based on psychological states which are in line with

blame. These would include: Cognitive theories where blame is viewed as an evaluation or

judgement an entity makes about an agent in relation to attitudes or actions; Conative theories

where blame is viewed with focus on aspect considered essential to blame the motivational

aspects such as intention; Emotional theories see blame as an emotional expression; and
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Functional accounts identify blame by its functional role and can be more flexible than other

three categories [267].

2.2.1.1 Cognitive Theories of Blame

These theories view blame as a judgment one makes about an agent based on their action. According

to Smart [240], it is a form of grading which is no different from how one decides if an orange is

better than another orange. He states that there is more to blame than mere evaluation of an agent’s

actions, blame implies responsibility of a negative evaluative judgment. The work of Gary Watson

[283] suggests that blaming someone is to say that the person is responsible for their actions and

have failed to meet a given criteria. In these theories, there is no need for the one passing judgement

to be conatively or emotionally exercised. These two theories are closely related but have differences

such as Smart theory believes blame requires moral responsibility, while Watson’s theory sees moral

responsibility as a virtue of blame and one of many by which we can blame others for their actions.

Pamela Hieronymi [99] articulates cognitive accounts of blame, an evaluation of the ill will shown

by a person. Our view or rating of other people’s judgments about our will ill or not, can carry a

level of blame. A potential problem of cognitive theories of blame is that there is risk conflating

blaming with judging blameworthy. According to Hieronymi [99], the fact that said judgment could

elicit such different responses means that the judgment alone cannot constitute blame.

2.2.1.2 Emotional Theories of Blame

Our attitudes and emotions are closely linked with our ability to function as morally responsible

agents, which is needed for day to day relationships with others. This theory views others as morally

responsible agents is an emotional response and not one of judgement [252].

According to Wallace [278] we hold people morally responsible as a form of response to the

person’s actions or as a way to find the appropriate response to the said action. For Wallace, blame is

essentially implicated in the stance we take holding an individual responsible. It states that one can

take a stance on ”holding responsible” another person and not be emotionally exercised, but in other

to actually blame an individual, one must be emotionally exercised by responding with emotions

such as anger/resentment [278, 279].

George Sher [234] argues that one can blame without responding with negative emotional reac-

tions, thus an emotional response in this view is not needed for blame. A good example of this is
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when we blame a loved one.

2.2.1.3 Functional Theories of Blame

Instead of identifying blame with judgment or emotion or combination of attitudes, functional ac-

counts of blame state that blame plays a functional role, which comes across as a form of protest.

Thus, when blaming others, we are upset about their actions/character. Hieronymi [99] and Talbert

[256] argue that reactive attitudes such as resentment serve as powerful forms of protest. When one

changes their attitude or stance, that change must serve a function which in the case of blame is a

protest [243]. Michael McKenna [158, 159] argues that blame serves functions like disapproval and

a form of communication.

There are some problems with this theory such as no clear indication that protest is independent

of blame, in other to protest without appealing to blaming attitudes. The nature of blame is not

clarified by using the notion of protest [267]. Second, protest seems to be more paradigmatically

expressed and difficult to understand unexpressed protest [267].

2.2.1.4 Conative Theories of Blame

Conative theories of blame focus on the elements like desires and intentions, this theory considers

both as essential to blame. George Sher [234] is of the view that ”when the cognitive component

of judging blameworthy is accompanied by this desire, which reflects our general commitment to

morality, then we are said to be blaming”. Smith [242], opposes Sher’s view on blame about the role

played by desire. He presents a case of blame which is placed on a politician who led his country

to war, even though the people do not desire this, it is unclear the role said desire to play on the act

of blaming the said politician.

2.2.2 Blameworthiness

One’s action is blameworthy when they are found to be morally responsible for some wrongdoing.

In contrast, they are praiseworthy for doing something right [145, 267]. The path model to blame

helps to answer the question: “When is it appropriate for X to blame Y?”. The answer is that “Only

when Y deserves it”. Hence in order for an agent to be blameworthy, certain conditions must be

satisfied:

• Moral Agency. As we stated earlier, being to blame is not adequate for being blamewor-
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thy. According to Gary Watson, elements like earthquakes are most often blamed for various

things that happen, but earthquakes are not actually blameworthy because it cannot react ef-

fectively and competently in moral matters [69]. There is a wide acceptance that blameworthy

agents must have the capacity to reason about and execute a decision, thus the agent must be

a moral agent [267]. This means that entities such as earthquakes and floods cannot be moral

agents.

• Freedom. When one thinks an individual is considered blameworthy if said individual exer-

cises free will [69]. Often times comments like “I couldn’t help it” and “I was forced to do

it” are excuses and are often enough to render blame inappropriate [267]. Free will is seen

as a person’s capability to control, by process of selection chose one of two futures presented

before one. Our vulnerability to coercion, situational pressures, and manipulation which robs

us of our freedom to chose, most often provides us with an exemption from blame [69, 267].

2.2.3 Path Model of Blame

The “Path Model of Blame” proposed by Malle et al [145], the model expresses that inside of the

theoretical structure currently in place, standard social cognition gives rise to blame judgments.

Blame judgments involve information which is important to other concepts and verifying the meet-

ing of various required criteria [69, 267]. Blame seems to be centered around events and outcomes

[145, 267]. According to Malle et al [145], the model applies equally well to both events which are

time-extended processes and outcomes which is the result of events.
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Figure 2.6: The Path Model of Blame [145].

Figure 2.6 shows the “Path Model of Blame”. On the hierarchy of en route to blame, the logic

has to proceed along particular paths, as represented in Figure 2.6. From the structure, blame

emerges if the perceivers first detect an event has violated the perceived norm (Event Detection);

after the detection of the negative event, it has to be identified that an agent caused the event (Agent

Causality) [145]. If no (moral) agent has caused the negative event, blame cannot be established.

The Path Model states that the causal involvement of an agent falls into two categories, either

intentional or unintentional. On the intentional path, if the negative event in question is evaluated

and found to be intentional, the perceiver must now consider reasons for this action (Reasons)

[145]. Blame is present, but the degree of blame is dependent on the reasons. When an agent is

found to have unintentionally caused the said event, the event perceiver considers the degree of

obligation and capacity (including the capacity to foresee or foreknowledge of the event) of the

agent to prevent the negative event. According to the Path Model, it is only when an agent is

found to have both the obligation and capacity that the agent will be blamed for the negative actions

[145]. Adding the capacity for practical reasoning to the power of free will, one ends up with a

morally responsible agent. As social intelligence is becoming central in a number of information

and communication systems, so is research in the area. Before starting this work, we found a lot
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of work in agent causation detection in text but very few in the area of detection of blame/praise

[145]. In this section, we discuss some articles which are related to our work. We did not find

much research in the area of blame/praise detection in text. We however present here work which

is close to what we are doing. Attribution Research looks at how one makes sense of the world

by attributing behavior and events to their causes. It is basically ascribing a cause to an event as

well as the judgements made [126]. There are other works not directly related to text processing but

useful in understanding computational models for blame/praise detection in text. In Mao et al [151],

they adopted the shaver model terminology and represented causal knowledge in hierarchies which

allow a conscience description of the causal relationship between events and states. An example was

presented, using the online text data crawled from 25,103 web pages from news outlets related to

Al-Qaeda [151]. A set of manually defined linguistic patterns and rules were used to extract actions

and the action preconditions and effects which were then used to represent causal knowledge [151].

Although the research presented in [151] shed light on analyzing the causal relationship be-

tween events and states, their reliance on manually defined linguistic patterns for identification and

extraction of actions and action precondition and effects limits the scope of study since it involved

heavy manual effort. Their approach is also domain dependent and cannot be generalized to other

application areas. In this chapter, we propose an approach for blame/praise detection from text.

2.2.4 Summary on Blame and Praise Detection

Given emotions such as guilt and admiration which often require the identification of blameworthi-

ness and praiseworthiness as stated in the OCC model, we propose an approach for the detection

of blame and praise in text. This approach is adopted from the “Path Model of Blame” focused for

the identification of expressions of blame and praise in text. The correct identification of blame and

praise in text helps us to achieve our greater goal of detecting expressions of implicit emotions in

text. Our approach for the detection of blame and praise is discussed in detail in chapter 4 of this

thesis.

2.3 Conflict of Interest Detection

A key feature of Wiki sites is to allow people from all over the world to add or modify articles

anonymously and without consequence [96]. This enables people with malicious intentions to use

articles for promotions or to try and discredit certain products/services, organisations, or individuals
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[2, 214].

Conflict of Interest (CoI) is defined as a situation in which a person or organisation is involved

in multiple interests, financial interest, or otherwise; one of which could possibly corrupt the moti-

vation of the individual or organisation2. According to Wikipedia, content on Wikipedia and other

Wiki-media projects “must be written from a neutral point of view (NPOV), which means represent-

ing fairly, proportionately, and without bias. NPOV is a fundamental principle of Wikipedia and a

policy which is non-negotiable”3. NPOV refers to representing all views in relation to this topic

which are published in reliable sources in a neutral and unbiased way. It is especially important for

articles on controversial issues, where a great variety of viewpoints and criticisms can be found. A

neutral representation according to Wikipedia will differ points of views presented but not as widely

accepted facts. To comply with the NPOV policy, editors must follow the principles below: “avoid

stating opinions as facts, avoid stating seriously contested assertions as facts, avoid stating facts

as opinions, prefer nonjudgmental language, indicate the relative prominence of opposing views”4.

CoI editing happens when an editor contributes to Wikipedia about themselves or their relationships

such as family, friends, clients, employers, and financial links, etc. Often times, CoI editing does not

comply with NPOV. CoI editing is discouraged strongly by Wikipedia as it tends to undermines the

confidence of the public in it, and causes public embarrassment to the individuals being promoted.

It is easy to assume that CoI is just bias; however while it is not possible for CoI to exist without

bias, bias can often exist in the absence of a CoI. One’s beliefs and desires can lead to biased editing,

but that does not constitute a CoI.

The growth of Wikipedia makes it increasingly difficult for both Wikipedia users and adminis-

trators to manually monitor articles. Wikiscanner5 or its open-source clone WikiWatchdog6 were

developed to identify edits that organisations made on Wikipedia by matching their IP addresses

with anonymous article edits. This shows that various organisations or their staff edited or removed

parts of Wikipedia articles that concern the organisation. In 2014, Sony Pictures Entertainment

confidential data were released online which contain thousands of emails and documents. Some

documents reveal that Sony employees edited Wikipedia pages relating to Sony Pictures Entertain-
2https://en.wikipedia.org/wiki/Conflict_of_interest
3https://en.wikipedia.org/wiki/Wikipedia:Neutral_point_of_view
4https://en.wikipedia.org/wiki/Wikipedia:Neutral_point_of_view
5https://en.wikipedia.org/wiki/WikiScanner
6http://wikiwatchdog.com/

48



ment and also Sony paid editors to edit their pages7. This shows that various organisations may be

doing this either to boost themselves or to play down their competitors. Bhosale et al. [34] presented

work on detecting promotional content in Wikipedia. They looked at the content features, structural

features, network features, edit history features, overall sentiment score, trigram language models

and PCFG language models. They found that the stylometric features influenced results the most.

Chandy et al [50] proposed Wikiganda which used article controversy indicators such as number

of revision and number of unique editors and revisions-level metrics such as vandalism, sentiment,

conflict of interest detected based on IP address of editors, etc., to identify propaganda in Wikipedia

articles.

When an edit is made on Wikipedia, the editor can either register for an account or edit anony-

mously. When done anonymously, Wikipedia uses the IP address to identify and distinguish the

article instead of a username. WikiScanner or WikiWatchdog listed “anonymous” edits related to

real-world organisations. They work by comparing a list of all IP addresses that have made edits

to Wikipedia with IP addresses which belong to real-world organisations and returning a list of

“anonymously” edited articles made from the organisations’ IP addresses. Although WikiScanner

or WikiWatchdog can be potentially used for CoI detection, they suffer from a number of limita-

tions, for example, they don’t analyse the content itself and don’t consider edits done by registered

users. Also, to avoid the detection by WikiScanner or WikiWatchdog, one would simply make an

edit from a IP address not belonging to a real-world organisation.

Apart from work relating to vandalism, bias or CoI detection, there has also been some re-

search focusing on developing a systemic-constructivist approach for knowledge construction in

Wikipedia. In particular, it was found that the NPOV policy and other Wikipedia rules are im-

portant in supporting Wikipedia editors in removing biased phrasing, personal speculations and

opinions [188].

The problem of content-based CoI has never been investigated before. We believe that our work

will inspire further development of automated systems for CoI detection based on text content.

However, CoI is closely related to other NPOV-disputes such as Bias and Vandalism. We take a

closer look at research work in these closely related areas.
7https://en.wikipedia.org/wiki/Wikipedia:Wikipedia_Signpost/2015-04-22/

Special_report
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2.3.1 Bias

The growth of the internet means that online reference sites play a big role in shaping the view of the

public and understanding the inner workings of these systems have become important for society

and businesses. This area has gained ground in recent years with researchers looking at subjective

components such as detection of sentiments, emphasis or perspective and topic categorization, all

of which has reached a reliable level of performance.

News website reports are generally expected to have an impartial depiction of facts. However, there

are some cases news website present news based on their own standpoints, sentiments or interests.

These biased reports are one-sided information that most often lead to wrong judgments and opin-

ions. Since such outlets want to appear objective, journalists avoid using opinionated vocabulary,

but sometimes use other means such as cherry-picking facts or quoting how other persons feel as a

means to express their opinion. Thus identifying sentiment expressed in such a way can be difficult.

Most of the work done in the area of bias detection is centered on bias in news articles. Balahur et al

[29] realized the difference in news opinion mining and other text types, and described subtasks for

news opinion mining: what is the target; separating news content from its polar sentiment directed at

the target; and clear explicit opinion. They also identified and made a distinction between possible

views of a news article author’s view, reader’s view and the text. Their work addressed these three

views. During analysis, the author may communicate opinion, by either omitting/stressing parts of

the text, from the reader’s viewpoint, the text can be highly subjective based on interpretations and

can be swayed by culture, religion and other factors. The experiment results showed that focusing

on the text content produces a better performance.

Zhang et al [297] focused on the sentiment in news articles and developed a system which can

detect and visualize sentiment of websites. The system can extract subtopics based on a topic and

subtopics level sentiment differences. The sentiment difference in topics of websites can aid users

in news credibility decisions. Experimental evaluations of their approach showed good accuracy of

sentiment extraction and subtopic extraction. Recasens et al [214] in their work, analyzed human

edits meant to correct biased articles. They identified that there are two bias classes: framing

bias, like praising which can be linked to subjectivity and epistemological bias. They find that the

system performs rather well and that features based on subjectivity and sentiment lexicons are very
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helpful in detecting bias. Other research work in this area builds upon previous works in areas such

as subjectivity detection and stance recognition in texts, varies in choices of semantico-syntactic

elements. Given the undesirable nature of bias in reference works, the expression of bias in this area

tend to be more implicit and thus harder to identify by both humans and computers algorithms.

2.3.2 Vandalism

Wikipedia being an open community can allow anyone to participate and contribute, this ability

became the essence and central to its success. This openness also creates problems which tend

to endanger overall growth of the Wikipedia project [210, 96]. One major problem is that some

users target Wikipedia for malicious purposes, which impacts the encyclopedia negatively [281, 96].

Vandalism can be defined as any modification of content with a cautious effort to put the integrity

of Wikipedia into question [281, 96, 210]. This definition makes the concept of vandalism highly

subjective. With the continual growth of Wikipedia, it becomes much harder for Wikipedia users

and administrators to police articles manually [53]. Given cost of vandalism to Wikipedia, it is not

surprising that various attempts for vandalism detection already exist and has given rise to various

research activities to understand and prevent vandalism. Early tools for vandalism detection used

handcrafted rules with encoding heuristic vandalism patterns for labelling vandalism articles, such

bots include ClueBot 8,MartinBot9 etc. These Bots typical rules were narrow and included items

like: the amount of text added or removed, capital letter ratio, and the presence of vulgarisms.

Potthast et al [210] manually crafted a feature set using various content-level properties and meta

information. They trained a logistic regression classifier with their dataset. With 0.83 precision and

0.77 recall and when compared to current systems used in Wikipedia, their approach was faster and

outperformed in F-Measure by 49%.

Chin et al [53] constructed a statistical language models for articles from their revision history.

This is an alternate view of content edit and stems from the understanding that non vandal content

belongs together. According to their approach, if bad content is added to edit, its compression level

is found to be lower than it would be if the text is related to the existing content. The approach

presents a flaw that huge edits are often tagged as vandalism regardless of content quality. West

et al [284] used reputations on users and edits. They showed that the use of meta-data is helpful
8https://en.Wikipedia.org/wiki/User:ClueBot
9https://en.Wikipedia.org/wiki/User:MartinBot
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for vandalism detection, and that there are more possible indicators of vandalism that cannot be

handcrafted. Wang and McKeown [281] present a linguistic approach based on shallow syntactic

patterns. Potthast et al [211] presented a survey of the various features that have been employed for

this task of vandalism detection.

Manoj et al [96] explored linguistically motivated approaches for detection of vandalism and

suggested that vandalism is a unique genre which constitutes of people with similar linguistic behav-

ior. Their experimental results show that statistical models provide proof of this unique vandalism

language styles.

2.3.3 Summary on Conflict of Interest Detection

In this section, we looked at Conflict of Interest (CoI) detection in Wikipedia. We identified that

CoI falls within the NPOV-dispute category of Wikipedia. Because there are no major work in

content-based CoI detection we have reviewed other works within its parent category such as Bias

and Vandalism to aid in identifying possible features and approaches that can aid with CoI detection

in articles. We have identified various forms of expressing bias and identified stylometric features

used in expressing vandalism, these will feed into our feature engineering process for identifying

best features for Conflict of Interest (CoI) detection in Wikipedia in subsequent sections.

2.4 Summary

In this chapter, we discussed emotion detection, its theories, models and computational approaches.

We introduced models and discussed related work in the emotion detection, blame/praise detection

and conflict of interest detection. In subsequent chapters we will present our approaches with the

models introduced in this chapter and present our experimental results and evaluations.
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Chapter 3

A Rule-Based Approach to Implicit Emotion Detection in

Text

In written text, emotions can be expressed explicitly or implicitly. Various research in written text

based emotion detection is often focused on explicit expressions of emotions in text. In this chapter,

we present a rule-based pipeline approach for detecting implicit emotions in written text( detecting

emotion in the absence of emotion-bearing words) based on the OCC Model. We have evaluated

our approach on three different datasets against five emotion categories.

3.1 Introduction

Researchers agree on some underlying factors of emotion which include that emotions are elicited in

reactions to our environment, they are subjective, they involve an appraisal process and they involve

physiological reactions. Our motivation for using the OCC model is because it defines emotions

as valenced reactions to events, agents and objects and uses valenced reactions as a means to dis-

tinguish between emotions and non-emotions. It also classifies emotion based on experiencer. As

such, the OCC model provides an opportunity for applying the NLP techniques for the identifica-

tion of emotion-inducing situations, the cognitive state of users (expressed usually as adverbs and

adjectives), and the variables causing emotions [228]. Particularly, the OCC model identifies differ-

ent emotions depending on the direction of the emotion. This overcomes the over-simplification of

emotion categories problem most approaches have.

For example, for the sentence “I passed my exam.”, the OCC model will return emotions

of self such as Joy. For another sentence “He passed his exam.”, the model will return

emotions of others such as Happy-For as opposed to simply returning Joy regardless of the direction
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of the emotion.

We also considered working with the PAD model but our motivation not to use the PAD model

is primarily because the PAD model has varying definitions and interpretations of Pleasure, Arousal

and Dominance [18]. We believe the PAD model was more suited for systems that required a

continuous emotional state of the subject than for text-based emotion detection which is just a

snapshot of an individual’s state at given point in time [18]. There is also a lack of testing and

training data available for research and set up for baseline systems for the PAD model.

3.2 Our Approach

In order to use the OCC model for emotion detection, we need to first assign values to a list of

variables defined in OCC, and then use a set of pre-defined rules to identify an emotion for a given

text. We focus on identifying emotion in relation to events and actions only and leave the detection

of emotions associated with objects as future work. The list of rules is shown in Table 3.1. For

example, the first row of Table 3.1(a) can be read as

If Direction = “Self” and Tense = “Future” and Overall Polarity = “Positive” and Event

Polarity = “Positive”, then Emotion = “Hope".

In this section, we describe how we assign values to various OCC variables. Here, the OCC

variables correspond to the set of specific rules that can be used to identify different emotional

responses. We are specifically interested in detecting implicit emotions from text where there are no

emotion-bearing words. It is worth noting that emotion-bearing words are different from polarity-

bearing words. An emotion-bearing word can be described as words which on their own can convey

emotions. For example, the word “passionate” can convey an emotion of Joy. Polarity-bearing

words, on the contrary, express positive or negative polarity in a given context. For example, the

word “pass” expresses a positive polarity as in “I passed my exam.”. But the word “pass”

does not have an explicit prior emotion associated with it. Hence, it is more likely that emotions-

bearing words also have a polarity, but not all polarity words convey specific emotions.

3.2.1 Overall Steps

We first perform pre-processing on text in order to be able to assign values to the OCC variables.

For pre-processing we carried out, we list the pre-processing steps below.
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Table 3.1: Rules for emotion detection.

Input Variables Output
Direction Tense Overall polarity Event polarity Emotion
Self Future Positive Positive Hope
Self Future Negative Negative Fear
Self Present Positive Positive Joy
Self Present Negative Negative Distress
Self Past Positive Positive Satisfaction
Self Past Negative Negative Fears-confirmed
Self Past Positive Negative Relief
Self Past Negative Positive Disappointment
Other All Positive Positive Happy-for
Other All Negative Positive Resentment
Other All Positive Negative Gloating
Other All Negative Negative Sorry-for

(a) Event-based.

Input Variables Output
Direction Polarity Emotion
Self Positive Pride
Self Negative Shame
Other Positive Admiration
Other Negative Reproach

(b) Action-based.

Input Variables Output
Event Action Emotion
Joy Pride Gratification
Distress Shame Remorse
Joy Admiration Gratitude
Distress Reproach Anger

(c) Compound emotions.

• Sentence splitting and tokenisation. We use the Stanford Tokenizer1 to split the text into

sentences and then further split each sentence into a sequence of tokens, which roughly cor-

respond to “words”.

• Part-of-Speech Tagging. We assign a part-of-speech tag such as nouns and verbs, etc., to each

individual word in a sentence using the Stanford part-of-speech tagger2.

• Word Sense Disambiguation (WSD). Words with more than one sense could have different

meanings in different contexts. We used NLTK (Natural Language Toolkit)3 which performs

the classic Lesk algorithm for WSD. The Lesk algorithm for WSD, works by looking at

the sense definitions of each sense for the individual words in a sentence. Each word in

the sentence is assigned the sense which has the maximum number of definition words in

common with the sense definitions of other words in the sentence.
1http://nlp.stanford.edu/software/tokenizer.shtml
2http://nlp.stanford.edu/software/tagger.shtml
3http://www.nltk.org/
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– Assume we have a sentence

W1W2W3

(where W is a word)

– Each word in our sentence has senses or synsets

W1 : (W1s1,W1s2,W1s3),W2 : (W2s1),W3 : (W3s1,W3s2)

– Creating a combination of the senses of all the words in the sentence:

(W1s1,W2s1,W3s1), (W1s1,W2s1,W3s2), ...(W1s3,W2s1,W3s2)

– Iterate through the sense combination and return the combination that provides maxi-

mum score of overlap of words.

• Dependency Parsing. This process is to provide a representation of grammatical relations

among words which are present in a sentence. The Stanford dependency parser4 is used to

extract textual relations.

• Subject, Object, Event and Action Detection. We need to identify events and actions from sen-

tences. It is possible that multiple events can be expressed in a single sentence and similarly

for actions and emotions. The subject(s) and object(s) of a sentence can be identified from

the dependency parse results. Based on the POS tagging results, we identify noun phrases as

events and verb phrases as actions. We also perform a passive test to determine if a sentence is

in an active voice or passive voice. This will be useful in identifying the direction of emotion.
4http://nlp.stanford.edu/software/stanford-dependencies.shtml
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Figure 3.1: Dependency parser output sample.

• Polarity Detection. Once the four elements (Subject, Object, Action, and Event) have been

identified from a sentence, we need to determine the polarity of each of them respectively.

The polarity word associated with each element can be determined from the dependency

parse results. We focus on classifying each sentence element as positive, negative or neutral,

instead of combining all the lexicons, we perform polarity detection separately using each of

the lexicons and determine the final polarity by majority vote as explained above.

• Sentence Tense Detection. To detect the tense of a sentence, we rely on the POS tagging re-

sults of verbs for the identification of present or past tense see 3.2. For future tense detection,

we use some simple tag patterns (shown in 3.2) along with the verb sense to identify frames

associated with that sense in the FrameNet5. If the frame is associated with “desiring”, the

tense of the verb is identified as future tense.
5https://framenet.icsi.berkeley.edu/fndrupal/

57



Table 3.2: Tense Patterns

Tense Pattern
Present ”VBG”, ”VBP”, ”VBZ”, ”VB”
Past ”VBD”, ”VBN”
Future (”going to have been”, ”VBG”)

(”will have been”, ”MD”)
(”going to have”, ”VBG”)
(”look forward to”, ”VBP”)
(”will have”, ”MD”)
(”will be”, ”MD”)
(”going to”, ”VBG”)
(”hope to”, ”VBP”)
(”will”, ”MD”)

3.2.2 Polarity Detection

Here, we explain various methods and algorithms used to carry out some of the NLP Tasks used

throughout this thesis.

3.2.2.1 Keyword Detection

Our keyword detection approach is simple and direct. It basically helps us answer the following

question: if given a word, is there an occurrence of the said word in a collection of words or lexicon.

First, we read the list of words from a file into an array, then we filter the array removing all words

that do not start with the first letter of said word, then we iterate through the list to find and extract

the string match of the word. Then a True or False output is returned depending on if the word was

found in the list or not. We use this approach for determining if a word is an Intensifier, a Negation

word or a stopword.

3.2.2.2 Negation Handling

Within a sentence, while some words are clearly positive or negative, there are words whose va-

lence can be altered by other words close by. There are various works that have shown that proper

detection of negation and intensifiers improves the accuracy of sentiment or emotion detection

[287, 206, 179, 265]. Overall, dealing with negation involves two subtasks, the first task deals

with finding the words in a sentence which signal negation (negation words). The second task iden-

tifies the words within the sentence context that are affected (negated) by the identified negation

word. There are various approaches for negation detection and handling of the scope of negation.
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Li et al [136], approached the problem as a simple shallow semantic parsing problem for negation

scope finding, using the negation word as a predicate for mapping the constituents arguments which

make up the negation scope of the negation word. Hogenboom et al [103] in their work considered

various negation scope determination approaches which included negating the rest of the sentence

after negation keyword, negating the first sentiment word following the negation keyword, negating

the first next non-adverb word following a negation keyword, using a fixed context window before

or after a negation keyword. Vilares et al [276] in their work used dependency types to determine

negation and the scope of the negation. the accuracy obtained by this approach is related to the

parsing accuracy.

We create a list of about 110 English intensifiers (see Appendix C) and about 55 English nega-

tion words. In our experiments, we worked with a context window of 2, which is 2 words before

the keyword. we choose a context window of 2 as various researchers have shown that it produces

reasonably good results when compared to higher window sizes for negation handling[103, 59].

The semantic intensity of the word can be modified by an intensifier, and this semantic intensity can

be increased by intensifiers called boosters or decreased by intensifiers called down-toner. Thelwall

et al in their work, used a booster word list that increases or reduces emotion strength by 1 or 2

[265]. However, identifying the specific weights of intensifiers is an area of research, we use a more

simplified weight approach: if the default weight of every word is 1, we assume that booster or

down-toner should increase or decrease that weight by 50%, thus we assign a weight or score to

the intensifiers: 0.5 for boosters and -0.5 for down-toners. We identify the presence of intensifiers

within the context window and add the weight to the score of the keyword. We identified 3 possible

frequently used negation patterns which include:

1. Negation + Intensifier + Keyword

For example: I don’t really like you.

In this example, the keyword is “like”, and the context window are the 2 words before it. The

negation word is “don’t” and the intensifier is “really”.

2. Word + Negation + Keyword

For example: I really don’t like you.
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In this example, the keyword is “like”, and the context window are the 2 words before it. The

negation word is “don’t” and the intensifier is “really”.

3. Negation + Word + Keyword

For example: This is not a problem for you.

In this example, the keyword is “problem”, and the context window are the 2 words before it.

The negation word is “not”. This pattern we found not to be as frequently used as the other

two patterns.

The GetContextString Function is a simple sub-string retrieval function that gets the first 2

words (if any) before the specified word in a given string (sentence). The GetWordBefore Function

is a simple sub-string retrieval function that gets the first word (if any) before the specified word in

a given string (sentence). Once we have determined that a given keyword is negated, we switch the

original polarity of the word form Negative to Positive and vise versa. However, if the keyword is

an emotion-bearing word, we use WordNet to lookup the antonyms of said keyword, and apply the

emotion of the first antonyms found in the emotion lexicon.

For example: I really don’t love you.

In this example the keyword is “love”, since it is negated the antonym lookup will return “hate” and

hate becomes the emotions attached to the sentence.
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Algorithm 1: Context Valence Detection(Negation Handling)
input : Sentence, keyword, ContextSize

output: bool IsNegated: True or False

isnegated=false;

contextText = GetContextString(sentence,keyword,windowsize);

if contextText IsNotNullOrEmpty then

beforeWord = GetWordBefore(contetextText,keyword);

if IsIntensifier(beforeWord) then

beforeWord = GetWordBefore(contextText,beforeWord);

if IsNegation(beforeWord) then

isnegated=true;

end

else

if IsNegation(beforeWord) then

isnegated=true;

else

beforeWord = GetWordBefore(contextText,beforeWord);

if IsNegation(beforeWord) then

isnegated=true;

end

end

end

end

return isnegated;

3.2.2.3 Polarity/Sentiment Detection based on Majority Voting

Here, we use a simple lexicon-based detection system to identify polarity or sentiment using 5 lex-

icons. We choose a lexicon based implementation for its simplicity in implementation and also its

relatively good performance in various research. In order to detect the polarity of words and sen-

tences, we required the use of lexical resources that contain a list of opinion-bearing words. These
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words in some resources contain additional meta-data such as a strength score, part of speech tags,

and many more. Some lexical resources may contain a list of just positive and negative words, but

with syntactic information and there are lexical resources which contain semantic information such

as senses of the positive and negative words. We wanted to have a system that considers these 3

lexical resource types. To this end, we used the following lexicons:

1. SentiWordNet [70]: This is an opinion mining resource that allocates sentiment score to

synsets in the WordNet. Each synset is assigned as score for objectivity, positivity, and neg-

ativity. It falls under the category of lexical resources which contain semantic information

such as senses, and has been successfully used in various research across multiple domains.

We multiply the score by +1 for each positive terms and -1 for each negative terms.

2. Bing Liu Sentiment lexicon [140]: This lexicon contains about 6789 terms of both negative

and positive items. The list holds no scores, no semantic or syntactic information. The

lexicon also contains words that are not spelt correctly, as it aims to try and represent the

use of language on the Internet. We assign +1 to each positive terms and -1 to each negative

terms.

3. Subjectivity lexicon [287]: Each word in this lexicon has a subjectivity level, part of speech

tag, stemmed/unstemmed, and semantic orientation. The lexicon provides cases where words

have a different orientation based on its part of speech tag. it also contains words as well as

phrases totaling 8225 subjectivity words. We assign +2 to each strongly subjective positive

terms and +1 to weak subjective positive terms. We assigned -2 to each strongly subjective

negative terms and -1 to weak subjective negative terms.

4. AFINN lexicon [185]: is a list of positive and negative English words with polarity scores

between -5 and +5. The words in this list have been human annotated with about 2477 entries

of both positive and negative words.We made use of the newer version of this lexicon.

5. Q-WordNet [3]: This is an automatically generated lexicon from the Senti-WordNet. It as-

sociates sense to a quality of a positive or a negative. The experiments conducted in various

research show that it preforms better than Senti-WordNet [3, 275].
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Figure 3.2: Polarity/Sentiment Detection based on Majority Voting

We first perform pre-processing on text such as Sentence splitting and tokenisation6, Part-of-

Speech Tagging, Dependency Parsing7. Note that we did not remove stop words as it would become

difficult to identify proper word senses without the presence of stop words. For example, using the

list of stop words from Stanford NLP (CoreNLP) 8 the sample sentence below becomes

example with stopwords

{

"text": "I would like to go on holiday not work",

"partOfspeechTags": "PRP MD VB TO VB IN NN RB VB"

}

example without stopwords

{

"text": "like go holiday work",

"partOfspeechTags": "IN JJ NN NN",

}

6http://nlp.stanford.edu/software/tokenizer.shtml
7http://nlp.stanford.edu/software/stanford-dependencies.shtml
8https://github.com/stanfordnlp/CoreNLP/blob/master/data/edu/stanford/nlp/patterns/surface/stopwords.txt
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The example shows that the POS tags of various words have changed, which will in turn affect

the sense of the word. For each sentence in a document, we carry out lexicon-based with each of the

lexicons individually using the algorithm below. Our voting system has three candidates Positive,

Negative, and Neutral. Each of the 5 lexicon implementations will return Positive, Negative or

Neutral which counts as a vote for the corresponding candidate for a particular sentence. The

sentence/phrase or word is assigned the value of the candidate with the highest vote.
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Algorithm 2: Sentence level Lexicon based calculation
input : Sentence

output: Positive or Negative or Neutral

SentenceScore=0;

contextWindow=2;

Tokens = Tokenize(Sentence);

Tags = POSTagger(Sentence);

for i = 0; i < Tokens.Count; i = i++ do

currentSentenceToken = Tokens[i];

if LexiconList Contains currentSentenceToken then

LexiconItem = GetLexiconItem(currentSentenceToken);

LexiconItem = LexiconItem.Value +

GetIntensifierScore(currentSentenceToken,Sentence,contextWindow);

if HasNegation(currentSentenceToken,Sentence,contextWindow) then
Reverse Lexicon term value by multiplying by -1 so +ve becomes -ve and vice

vasa

end

end

SentenceScore= SentenceScore + LexiconItem.Value;

end

SentencePolarity = Neutral;

if SentenceScore > 0 then

SentencePolarity = Positive;

end

if SentenceScore < 0 then

SentencePolarity = Negative;

else

end

return SentencePolarity;
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3.2.3 Assigning Values to the OCC Variables

We now describe how we assign values to each OCC variable.

Direction: The value for this variable can either be “Self” or “Other”. The former refers to

emotions expressed for oneself, while the latter refers to emotions expressed for others. This value

is assigned based on the dependency relationship (identified by the dependency parser) of a first-

person pronoun (such as “I”, “me”, “we”) with an action or event. We identify 3 possible scenarios

for assigning a value to this variable:

1. When dealing with a simple sentence, we simply apply the process mentioned above

2. When dealing with a complex sentence where multiple subjects are identified by the parser,

we assign values based on respective action/event relations with identified subjects;

3. No subject is identified OR no verbs exist in the text, here we just assign the value “Other”

to the variable.

Tense: The value for this variable can either be “Present”, “Past” or “Future”. The value

assignment is determined by the POS tags of the verbs in a sentence or by the results obtained from

the FrameNet as has been described in section 3.2.1. In the cases where no verbs are used in a

sentence, the value of the variable is set to “Present”.

Overall Sentence Polarity: The value for this variable can either be “Neutral”, “Negative”

or “Positive”. This is the overall polarity of a sentence which is determined by the polarity

detection method.

Event Polarity: The event is identified based on the verb-object relations revealed by the depen-

dency parser. The noun phrase which contains an identified object is treated as the event for its

relative verb. The polarity of an event is then determined using the aforementioned polarity detec-

tion method.

Action Polarity: The action is identified based on the subject-verb relations revealed by the depen-

dency parser. The verb phrase which contains the identified verb is treated as an action. Similar

to event polarity, the action polarity is also determined using the aforementioned polarity detection

method.
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We demonstrate with a walk-through sample given the sentence “When I passed the first ex-

amination that I had to repeat.”.

• Direction: The subject of the sentence is the pronoun “I” identified by the dependency parsing

result “nsubj(passed-3, I-2), nsubj(had-9, I-8)” and assigned the value SELF.

• Tense: This is identified by the verb tag “passed/VBD”, which is associated directly with the

subject, object and event based on the dependency results “nsubj(passed-3, I-2), nsubj(had-9,

I-8), dobj(passed-3, examination-6)”. The Tense variable is and assigned the value PAST.

• Overall Polarity: the overall polarity of the sentence is POSITIVE.

• Event Polarity: The event, which is the verb + object combination ”passed examination” has

a POSITIVE polarity.

If Direction = “Self” and Tense = “Past” and Overall Polarity = “Positive” and Event

Polarity = “Positive”, then Emotion = “Satisfaction”.

walk-through sample

{

"ExpectedEmotion": "Joy",

"Sentence": "When I passed the first examination that I had to repeat.",

"DataSet": "ISEAR",

"Analysis": [

{

"PosTagging": "When/WRB I/PRP passed/VBD the/DT first/JJ examination/NN that/IN I/PRP had/VBD to/TO repeat./VB",

"ContainsNegation": false,

"OverallPolarity": "Positive",

"Tense": "Past",

"Elements": [

{

"Type": "Object",
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"Phrase": "examination",

"polarity": "Positive"

},

{

"Type": "Event",

"Phrase": "passed examination",

"polarity": "Positive"

},

{

"Type": "Subject",

"Phrase": "I",

"Direction": "Self",

"polarity": "Positive"

}

],

"Dependency": [

"advmod(passed-3, When-1)",

"nsubj(passed-3, I-2)",

"root(ROOT-0, passed-3)",

"det(examination-6, the-4)",

"amod(examination-6, first-5)",

"dobj(passed-3, examination-6)",

"mark(had-9, that-7)",

"nsubj(had-9, I-8)",

"ccomp(passed-3, had-9)",

"aux(repeat-11, to-10)",

"xcomp(had-9, repeat-11)"

],
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"Identified_Emotions": [

{

"Emotion": "Satisfaction",

"EmotionMap": "Joy",

"Desc": "pleased about the confirmation of a desirable event"

}

]

}

]

}

Table 3.3: Variable assignment and possible values.

Variable Possible Values Description
Direction Self or Other The value is determined by the

dependency relationship of first-
person pronoun with an action or
event.

Tense Present, Past or Future. Determined by using POS tags
of the verbs in the sentence

Overall Polarity Neutral, Negative or Positive Overall polarity of a sentence
which is determined by the po-
larity detection method afore-
mentioned

Event Polarity Neutral, Negative or Positive The event is the verb-object re-
lations revealed by the depen-
dency parser. The noun phrase
which contains an identified ob-
ject relative to the verb is treated
as the event

Action Polarity Neutral, Negative or Positive The action is identified based
on the subject-verb relations re-
vealed by the dependency parser.
The verb phrase which contains
the identified verb is treated as
an action.

Once the variable values are identified, the rules defined in Table 3.1 are then applied to detect

the presence of emotions. The compound emotions are results of the output of the event-based and
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action-based emotions. For the ”sorry-for” emotion, we ensure that the subject is of positive

valence; otherwise, the emotion is identified as “resentment”. The same rule is applied to the

“admiration” and “reproach” emotion pairs.

3.3 Experiments

In this section, we present the evaluation results of our OCC-based emotion detection approach

on three different datasets, which include: The International Survey On Emotion Antecedents And

Reactions (ISEAR) Dataset, The SemEval-2007 Task 14 Affective Text dataset [249] and The Alm’s

Dataset [6].

• The International Survey On Emotion Antecedents And Reactions (ISEAR) Dataset was col-

lected during the 1990s by a large group of psychologists. This dataset contains 7,667 sen-

tences labelled with seven emotions (joy, fear, anger, sadness, disgust, shame, guilt) which

was developed by asking nearly 3,000 people with different cultural background about various

emotional events they have had.

• The SemEval-2007 Task 14 Affective Text dataset [249] consists of news headlines collected

from major newspapers such as New York Times, CNN, and BBC News. The dataset had

a training set of 250 annotated headlines, and a test set with 1,000 headlines. Each news

headline is labelled with six emotions (joy, fear, anger, sadness, disgust). In our work here,

we use only the test set.

• The Alm’s Dataset [6] contains 1,207 sentences annotated with five emotions (sad, angry-

disgusted, happy, fearful) extracted and annotated from 176 fairy tale stories. In our experi-

ments, we use only the data extracted from Grimm’s and Anderson’s tales, which have a total

number of 1,040 sentences.

As our goal is to detect emotions in the absence of emotion-bearing words, we filter out sen-

tences which contain emotion words as can be found in the emotion lexicon WordNet-Affect9.

The total number of sentences before and after filtering of emotion-bearing words in each emo-

tion category for these three datasets are shown in Table 3.4. It can be observed that according to

WordNet-Affect, 45% sentences in ISEAR and 87% news headlines in SemEval do not contain any
9http://wndomains.fbk.eu/wnaffect.html
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emotion words. Thus, it is quite common for people expressing emotions without the explicit use

of emotion words. Only 35% of sentences in fairy tales (the Alm’s dataset) do not contain emotion

words. This is expected since when telling stories to children, the good and bad lines are usually

made very clear. Thus, one can say that sentences derived from fairy tales dataset often tend to

contain explicit expressions of emotions.

It is worth noting that while each sentence in ISEAR or Alm’s was only labeled with one emotion

label, each news headline in the SemEval dataset can be labeled with multiple emotions, and each

emotion was further annotated with a score in [0, 100] indicating the degree of emotion load. We

take the emotion with the maximum score as the label for each news headline10.

We focus specifically on the 5 emotion categories which are shared across these three datasets

and map the OCC-output emotions to the five emotion categories in the following ways:

• Fear: Fear, Fear-confirmed

• Joy: Joy, Happy-For, Satisfaction, Admiration, Pride

• Anger: Anger, Reproach

• Sadness: Distress, Sorry-For, Disappointment, Shame

• Disgust: Resentment

We have also developed three baseline models. One is a lexicon matching method which uses

the NRC emotion Lexicon11 for sentence-level emotion detection, We also train supervised Naı̈ve

Bayes (NB), Support Vector Machine (SVM) classifiers using the implementation in Weka12 on

the three datasets with 10-fold cross-validation. NB and SVM were trained using unigram, bigram

and trigram for words. We report the results in terms of the F-measure scores, which is commonly

used to report such experiments along with recall and precision scores. Below are our experimental

results and findings for all and each individual dataset.
10In [249], it was suggested that for coarse-grained evaluation on SemEval, each emotion should be mapped to a 0/1

classification (0 = [0,50), 1 = [50,100]). However, we found that only 342 out of a total of 1000 news headlines are left
with emotion labels using this mapping method which would be insufficient for our experiments.

11http://www.saifmohammad.com/WebPages/lexicons.html
12http://www.cs.waikato.ac.nz/ml/weka
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Table 3.4: Statistics of the three datasets used in our experiments. “Total” denotes the original
number of sentences in each emotion category while “Implicit” denotes the number of sentences
which do not contain any emotion words according to WordNet-Affect.

Emotion Total Implicit
Joy 1095 537
Fear 1095 366
Anger 1096 483
Sadness 1096 488
Disgust 1096 484
Shame 1096 581
Guilt 1093 482
Total 7667 3421

(a) ISEAR

Emotion Total Implicit
Joy 362 317
Fear 160 130
Anger 66 60
Sadness 202 182
Disgust 26 24
Surprise 184 160
Total 1000 873

(b)

SemEval
Emotion Total Implicit
Happy 406 103
Fearful 121 33
Angry-Disgusted 174 84
Sad 247 90
Surprised 92 50
Total 1040 360

(c)

Alm’s

3.3.1 Results and Analysis

It can be observed from Table 3.5 that although we have filtered out sentences which contain emotion

words from WordNet-Affect, using other emotion lexicons such as the NRC emotion lexicon can

still identify emotions of some sentences. The simple lexicon matching method has very low F-

measure values and on average only achieves 33.35% in F-Measure for all emotion categories across

all 3 datasets. This is not surprising since most sentences do not contain any emotion-bearing words.

It fails to identify any sentences expressing the “Fear” emotion. Surprisingly, our unsupervised

OCC-based approach outperforms supervised NB in three emotion categories “Joy”, “Anger” and

Sadness”. Its overall average F-measure of 53% improving upon lexicon matching by about 20%

and better than NB across all three datasets by 10% and SVM by about 6%. If excluding the worst

performing “Fear” category, our approach even outperforms NB nearly 6% in F-measure.

For the SemEval dataset 3.5, our approach performs best on the “Sadness” category with 62%

F-measure. The worst performance is still in the “Fear” category (31% in F-measure). For the rest

three emotion categories, our approach achieves an average F-measure of around 60%. Compared
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Table 3.5: Performance comparison of F-measure (F) results on the 3 datasets. Alm dataset(F1),
ISEAR(F2) and SemEval(F3).

Emotion
NRC Lexicon Supervised NB Supervised SVM Our Approach

F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3
Joy/Happy 58.76 33.42 39.68 56.10 49.60 56.60 58.00 62.40 60.50 61.67 69.55 59.16
Fear/Fearful 0 0 0 32.70 46.80 38.30 19.60 52.40 54.80 14.04 18.27 31.79
Anger/Angry-Disgusted 48.92 23.01 55.78 56.60 31.40 16.10 54.60 38.30 27.80 66.57 61.34 61.41
Sadness/Sad 60.98 25.63 47.75 57.60 44.40 34.00 53.80 52.50 46.60 69.50 67.97 62.51
Disgust - 25.58 38.52 - 39.70 31.30 - 43.50 29.40 - 39.20 61.72
Average 42.17 21.53 36.35 50.75 42.38 35.26 46.50 49.82 43.82 52.95 51.27 55.32
Average (− Fear) 56.22 26.91 45.43 56.76 41.27 34.50 55.47 49.18 41.08 65.91 59.52 61.20

to the NRC lexicon results, our approach gives a superior performance with the average F-measure

result improved by 19%. Supervised NB only outperforms our approach on the “Fear” category

by about 6%. While SVM outperforms our approach in the“Joy” and “Fear” categories by 1%

and 23% respectively. SVM had the best f-measure in the “Fear” category for this dataset, with

a score of 54%. In the SemEval dataset, headlines may be labelled with multiple emotions with

varying intensity. We have also evaluated the ability of our approach to detect multiple emotions

in a sentence and identify instances of full match (identifying all the emotion labels correctly) and

partial match (identifying part of the emotion labels correctly). We found that in Figure 3.3, our

approach achieves an accuracy of 18% for full match and 53% for partial match. Thus, our approach

can indeed detect multiple emotions in sentences.

Figure 3.3: Multi-emotion detection distribution using SemEval dataset
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For the Alm’s dataset, our approach gives very good results on detecting emotions of “Happy”,

“Angry-Disgusted” and “Sad” with the F-measure scores ranging between nearly 61% and

over 69%. The improvement over the NRC lexicon labelling baseline is at the range of 19-38%.

The worst performance is still on the “Fearful” category where the F-measure score is only

14%. Supervised NB only outperforms our approach on the “Fearful” category and gives worse

results on all the other emotion categories. Overall, our approach improves upon NB by 4% (with

“Fearful”) and 11% (without “Fearful”) in F-measure, and improves on SVM by 8% (with

“Fearful”) and 12% (without “Fearful”) in F-measure.

For the ISEAR dataset, our approach performs best on the “Happy” category with 69% F-

measure. “Fear” category is still the worst performing (18% in F-measure). For the rest three

emotion categories, our approach achieves an average F-measure of around 63%. Our approach

also had a bad performance on the “Disgust” category (39% in F-measure). Compared to the

NRC lexicon results, our approach gives a superior performance with the average F-measure result

improved by 30%. Supervised NB only outperforms our approach on the “Fear” category by about

27%. While SVM outperforms our approach in the “Fear” category by 37% respectively. SVM

had the best f-measure in the “Fear” category for this dataset, with a score of 52%.

3.3.2 Error Analysis

Error analysis was conducted on the emotion detection results in order to better understand how

the proposed approach performs. Table 3.6 shows some example detection results. Within each

step in our approach, we log instances where an error may have occurred or a failure to proceed

to the next step is detected such as if returned emotion is neutral, or if WSD returns no results or

polarity detection is neutral or misclassification of emotion. In general, whenever the output of one

process is the input of another process we track it and log instances where a failure or error may have

occurred. We collected a sample size of 16 records for each dataset where an error has occurred and

examined them to identify causes of errors and possible mitigation. In total, we reviewed a total of

48 error instances across all 3 datasets.

Looking at example 1 in Table 3.6, our approach detected the comment as containing 2 core

sentences Findings: Can humanity survive? and Want to bet on it? and found both sentences to

be in the present tense and hence failed to detect any emotion since fear according to our model, is
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Table 3.6: Detection examples of correct and failed detection using our approach on SemEval
dataset

Example Expected Emotion Detected Emotion
1. Findings: Can humanity survive? Want to bet on it? Fear Distress
2. Firms on alert for letter bombs Fear Fear
3. Joseph Wambaugh’s new start Joy Neutral
4. Amazon.com has ’best ever’ sales Joy Joy
5. That’ll cost ya Anger Neutral
6. Anglicans rebuke U.S. branch on same-sex unions Anger Anger

found on past and future tenses only. Improving on our tense detection approach which we present

later in this chapter, can help with mitigating this error.

If we take a look at example 3 in Table 3.6, our approach failed to detect a tense and found the

polarity of the sentence and event to be neutral. This according to our model, means that it is not a

valanced reaction and as such will produce no emotion.

Looking at example 5 in Table 3.6, our approach correctly detected the comment as in future

tense. However, our approach found the polarity of the sentence and event ”cost ya” to be neutral.

This according to our model, means that it is not a valanced reaction and as such will produce no

emotion. To mitigate against this we would consider adding a fallback hybrid approach for polarity

detection to assist when our highest vote approach fails to detect polarity.

In summary, in this dataset our approach failed for 3 major reasons: Inability to identify the

sentences as valanced (polarity) accounted for 23.7% of overall errors, the low coverage of rules

for specific emotions accounted for 36.8% of overall errors and reliance on Verb+Object relationship

for event detection accounted for 12% of the overall errors in this dataset.

Table 3.7: Detection examples of correct and failed detection using our approach on ISEAR dataset

Example Expected Emotion Detected Emotion
1. Passing an exam I did not expect to

pass.
Happy Happy

2. When I got the loan for my studies. Happy Neutral
3. When I found out that my father had

lung cancer and they did not know how
long he would live.

Fear Sorry-For

Looking at example 2 in Table 3.7, our approach failed to correctly detect the emotion here,

because it failed to detect the polarity of the sentence and event. According to our model, it is not a
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valanced reaction and as such will produce no emotion. To mitigate against this we would consider

a hybrid approach for polarity detection to assist when our highest vote approach fails to detect

polarity.

Looking at example 3 in Table 3.7, our approach failed to correctly detect the emotion here,

because of the rules to detect the specific expected emotions. In example 3, there are 3 subjects

identified by the dependency parser nsubj(had-8, father-7), nsubj(live-20, he-18) and nsubj(found-

3, I-2). However, we found on object associated with the subject ’I’, which would lead our system to

assign a direction variable of ’other’ and in turn categorize the sentence as Sorry-For. To mitigate

against this type of errors, we need to add new emotion specific rules which are closely related to

real world scenarios of specific expressions of emotions.

example 3 explained

{

"Subjects": [

{

"word": "I",

"index": 1,

"dependencytag": "nsubj(found-3, I-2)",

"Polarity": 0

},

{

"word": "father",

"index": 6,

"dependencytag": "nsubj(had-8, father-7)",

"Polarity": 0

},

{

"word": "he",

"index": 17,

"dependencytag": "nsubj(live-20, he-18)",

76



"Polarity": 0

}

],

"Objects": [

{

"word": "cancer",

"index": 9,

"dependencytag": "dobj(had-8, cancer-10)",

"Polarity": -1

}

],

"Events": [

{

"phrase": "had cancer",

"Polarity": -1

}

]

}

In this dataset our approach failed for 2 major reasons: 27% of the overall errors were as a result

of Inability to identify the sentences as valanced (polarity) and the rules for identifying specific

emotion types and accounted for about 45% of the overall errors

If we take a look at example 1 and 2 in Table 3.8, we find that the emotion of fear is described

in example 1 and we found that in this dataset, our approach struggled greatly with such complex

sentences. In these cases, our approach failed to identify the emotion as fear, because the direction of

the emotion was other and hence identified it as sorry-for. To mitigate against this type of errors, we

need to add new individual emotion-specific rules which are closely related to real-world scenarios

of specific expressions of emotions.

Looking at example 3 and 4 in Table 3.8, our approach failed to correctly detect the emotion

here, because it failed to detect the polarity of the sentence and event, which it found to be neutral.
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Table 3.8: Detection examples of correct and failed detection using our approach on Alm dataset

Example Expected Emotion Detected Emotion
1. Then she threw herself upon Heaven

for help in her need, and went away,
and journeyed on the whole night, till
at last she came to a large wood.

Fear Sorry-for

2. The second did not want to go in at all,
but was forced

Fear Distress

3. I don’t want to sit here any longer. Anger-disgusted Neutral
4. Away with him! Anger-disgusted Neutral
5. It is overpowering, and yet it is delight-

ful.
Happy Happy

This according to our model, means that it is not a valanced reaction and as such will produce no

emotion. To mitigate against this we would consider a hybrid approach for polarity detection to

assist when our highest vote approach fails to detect polarity.

In this dataset our approach failed for 4 major reasons: Inability to identify the sentences as

valanced (polarity) which accounted for 17.7% of the overall errors, the low coverage of rules for

specific emotions which accounted for 22% of the overall errors, the use of complex descriptive

sentences which accounted for 24.7% of the overall errors, and not paying better attention to the

weight of punctuation marks such as ? and !, as they seemed to have a major influence in meaning

in this dataset and accounted for about 25% of the overall errors encountered.

3.3.3 Discussion

It can be observed from Table 3.5 that although we have filtered out sentences which contain emotion

words from WordNet-Affect, using other emotion lexicons such as the NRC emotion lexicon can

still identify emotions of some sentences, and that using the NRC lexicon fails to detect any “Fear”

emotion bearing sentences for all the datasets experimented here. Nevertheless, our approach is

still able to identify some of the sentences relating to “Fear”. Despite using no labelled data, our

approach achieves similar performance as supervised NB on the ISEAR and SemEval datasets (with

1% difference in F-measure) and outperforms NB by 9.5% in F-measure on the Alm’s dataset. The

results also show that our approach is largely affected by the quality of the text. ISEAR contains

personal experience expressed by a wide range of participants and hence, might contain lots of

informal and ill-grammatical text. SemEval contains news headlines which are often incomplete

78



sentences ignoring grammar conventions. The Alm’s dataset, on the other hand, contains fairy tales

which are formal text following rules of grammar very strictly. As such, the performance obtained

from the Alm’s dataset by our approach is significantly better than that obtained from the other two

datasets.

Our approach relies on results generated from a series of NLP tasks such as word-sense disam-

biguation, POS tagging, dependency parsing, and polarity detection to be able to be able to assign

values to a set of OCC variables for emotion detection. Thus, any error that occurs will be propa-

gated down the pipeline process. Furthermore, failure in detecting the polarity of text will make it

impossible for our approach to identify the underlying emotion. Also, we have not considered ironic

and sarcastic sentences in our current work. Nevertheless, we have shown that in the absence of an-

notated data, the OCC-based approach is able to identify implicit emotion in text with performance

competing with supervised classifiers, and even outperforms the supervised approach for formal

text (the Alm’s dataset). The emotion detection results generated by the OCC-based approach can

be used as seed examples to bootstrap more complicated emotion detection methods which require

a large amount of training data.

3.4 Improving Rule-Based Approach to Implicit Emotion Detection in Text

In this chapter, we have introduced our rule-based approach to implicit emotion detection, and

have identified some problems of our approach which contributed errors to our system and in turn

affected the overall performance of the system. In this section, we explore various ways to address

the problems of our initial approach by making improvements to tense detection, sentence type

detection and improvements to some of our variable rules.

3.4.1 Tense Detection

In English grammar, tense can be described as a term that provides a time reference in relation

to a moment expressed in writing/speaking [36, 71, 44]. Various verb forms are used to manifest

tenses, these verbs often change forms depending on combinations and number of verbs within

the sentence[36]. There are basic tenses types found in various languages such as future, past and

present[36, 71, 44]. The Penn treebank defines tags that can be used to identify both present and

past tenses based on the verbs. However, basing tense detection solely on the POS tags is not good

enough as most sentences have multiple verbs with various POS tags and the combination of these
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verbs put the sentence in a completely different tense from the POS tags.

In other to improve our current implementation of tense detection, we focus on auxiliary verbs

and their combinations. Auxiliary verbs are verbs which are used in creating tenses, voices, and

moods of verbs [36, 71, 44]. In the English language, the primary auxiliary verbs are be, do, and

have. Auxiliary verbs are must often both stand-alone verbs and auxiliary verbs, this means that

they can work with other verbs to create a verb phrase [36, 44, 274].

Figure 3.4: List of auxiliary verbs and their base forms [274]

Figure 3.5: List of modal auxiliaries [274]

Our approach is based on 3 key elements; the number of auxiliary verbs in the sentence, the base

form of identified auxiliary verbs and the Penn treebank tense definition of the identified auxiliary

verbs. Our approach is based on Pickbourn’s work on the English verb, which introduces the current

modern distinction between tenses, mainly for his recognition of the importance of context within

sentences. Pickbourn’s work is discussed in detail in Robert Binnick’s book (Time and the verb: A

guide to tense and aspect) [36].

Penn Treebank tag tense

{
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"TenseTags": [

"VBG":"gerund",

"VB":"present",

"VBP":"present",

"VBZ":"present",

"MD":"present",

"VBN":"past",

"VBD":"past"

]

}

3.4.1.1 Present Tense

The present tense is a tense type which draws attention to action/actions which are on-going or

actions which a performed habitually. It presents information about events which are currently

happening from the perspective of the speaker. There are 4 types of present tense which include

simple present, present progressive, present perfect, and present perfect progressive.

• Simple present tense is used to express events/actions commonly referred to as habitual ac-

tions which include factual, normal, or regular in occurring actions/events.

• Present progressive tense is used to express events/actions which are currently happening

now or currently in progress.

• Present perfect tense is used to express events/actions that happened at a non-specific time

and actions which started in the past but continued to the present.

• Present perfect progressive tense is used to express events/actions which most often started

in the past and has either recently stopped or has continued to the present.

3.4.1.2 Past Tense

The past tense is a tense type which is used to express actions/events which have already occurred.

These actions/events are considered to be finite and as such, they should have a start and a stop
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Figure 3.6: Present tense auxiliary examples [36]

Tense No of Auxiliaries Base Auxiliary Penn Tree Tag Tense
present simple 1 do present
present progressive 1 be present
present perfect simple 1 have present
present perfect progressive 2 have,be present , past

Table 3.9: Present tense Rules

point. There are 4 types of present tense which include simple past, past progressive, past perfect,

and past perfect progressive.

• Simple past tense is used to express events/actions that began and ended at a specific time.

• Past progressive tense is used to express events/actions which in the past lasted for a duration

of time.

• Past perfect tense is used to express events/actions in the past that completed before another

past event/action started.

• Past perfect progressive tense is used to express past events/actions which were in progress

before other events/actions.

Tense No of Auxiliaries Base Auxiliary Penn Tree Tag Tense
past progressive 1 be past
past simple 1 do past
past perfect simple 1 have past
past perfect progressive 2 have, be past, past

Table 3.10: Past Tense Rules
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Figure 3.7: Past tense auxiliary examples [36]

3.4.1.3 Future Tense

The future tense is a tense type which is used to express actions/events which have not yet occurred.

These actions/events are yet to happen or will happen at some point in the future. There are 4 types

of present tense which include simple future, future progressive, future perfect, and future perfect

progressive.

• Simple future tense is used to express actions/events that will occur.

• Future progressive tense is used to express events/actions which will be ongoing in the future.

• Future perfect tense is used to express events/actions which will be completed at future time,

as well as events/actions which will be completed before another future event/action.

• Future perfect progressive tense is used to express future events/actions to be finished at a

specified time.

Figure 3.8: Future tense auxiliary examples [36]
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Tense No of Auxiliaries Base Auxiliary Penn Tree Tag Tense
future simple (going) 3 be,go,to present, gerund
future simple 1 will present
future progressive 2 will , be present, present
future perfect 2 will, have present, present
future perfect progressive 3 will, have, be present, present, past

Table 3.11: Future Tense Rules

Algorithm 3: Auxiliary Verb Tense Detection
input : Sentence
output: String Tense: Past or Present or Future
tense=Present;
tokens = Tokenizesentence;
posTags =GetPOSTags(tokens);
rules = GetTenseRules(tokens);
IdentifiedAuxList=[ ];
auxCount = 0; for i = 0; i < tokens.Count; i = i++ do

token =tokens[i]; tag =posTags[i];
if IsAuxVerbtoken,tag then

auxCount++;
posTense = GetPOSTagTense(tag);
base =GetAuxBase(token);
AddToIdentifiedAuxList(base,posTense);

end
end
rule = FILTER rules FROM IdentifiedAuxList WHERE auxCount EQUAL rule.NoAux
AND rule.Base CONTAINS AuxListItem.Base AND rule.PennTagTense CONTAINS
AuxListItem.TagTense

tense = rule.Tense;
return tense;

We re-conducted our experiments using our approach to see is if the tense detection improve-

ment had any effect on the overall performance of the our approach. We found that in Table 3.12

the changes improves the average F-measure of SemEval dataset by 0.16%, average F-measure of

ISEAR dataset by 0.76% and average F-measure of Alm dataset by 1.98%. Across all 3 dataset the

average F- measure is improved by 0.97%. The highest improved performance is seen in the Alm

dataset while the least improvement is the SemEval dataset. This is because the SemEval dataset is

a collection of news headlines that most often have little or no verbs in them. Across all datasets,

there is an increased improvement in the F-Measure of the fear emotion. This tells us that our ap-

proach new tense detection approach is particularly better than our old approach in detecting past

84



and future tenses in sentences.

Table 3.12: Performance comparison of F-measure (F) results on the 3 datasets. Alm dataset(F1),
ISEAR(F2) and SemEval(F3).

Emotion
Our Approach

F1 F2 F3
Joy/Happy 64.83 69.65 59.53
Fear/Fearful 18.25 19.13 31.91
Anger/Angry-Disgusted 66.92 61.86 61.66
Sadness/Sad 69.73 68.56 62.57
Disgust - 40.95 61.72
Average 54.93 52.03 55.48

3.4.2 Using Word Relatedness Measure to Improve Implicit Emotion Detection

In linguistics, words are classified not only by meanings but also by their co-occurrence with other

words. To be able to automatically identify semantically associated words is a cornerstone for

many NLP applications. This study of co-occurrence of words is based on the assumption is that

words that frequently appear together in text are conceptually related. Words which often occur

in similar contexts also often tend to have meanings which are similar. This is done mostly to

ensure that within a corpus, all related documents to a particular word are considered for said NLP

task. This is often referred to as a co-occurrence based word association measure. These word

association measures calculate the strength of association between two words by comparing the

statistical distribution of the word pairs to the distribution of the individual words in the pair. This

is done using the bigram frequency of both words to a function of the individual word unigram

frequencies at a corpus-level.

The linguist J. R. Firth in 1957, made a statement which is closely associated with this principle

“You shall know a word by the company it keeps” [111]. The distribution of words around a given

word is closely related the meaning of a word. In this section, we make use of Pointwise Mutual In-

formation (PMI) and Retrofitted Word Embeddings with Semantic Lexicons in an effort to improve

the performance of our implicit emotion detection approach.

3.4.2.1 Extracting Emotion-bearing Words

As previously stated, not all words in a sentence are emotion bearing words, in most cases these

words fall into the categories of Nouns, Adjectives, Verbs and Adverbs (NAVA) words. Going by
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Figure 3.9: Our Approach

Figure 3.10: Fallback Flow chart

this assumption, we use the part-of-speech tagger to tag, identify and extract these NAVA words.

For example, for sentence “I failed my exams”, the NAVA words failed and exams are tagged Verb
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(VB) and Noun (NN) respectively. Due to the effect of negation on emotion detection, We check our

NAVA words during extraction for negation and replace the negated NAVA word with the WordNet

antonym of the word based on its sense. This essential as words convey different meanings/emotions

depending on the context.

3.4.2.2 Emotion Vector Representation

Vector distributional matrix is based on a co-occurrence and a way of showing the frequency word

co-occurrence. However, that simple frequency is not the best measure of association between

words. One problem is that raw frequency is very skewed and not very discriminative. When words

co-occur more frequently, they are often semantically related. Measuring semantic relatedness is

based on the principle that the meaning of a word can be induced by observing its statistical usage

across a large sample of language.

Pointwise mutual information (PMI) is a measure of association and in computational linguis-

tics, PMI has been used for finding collocations and associations between words. For instance,

counting of occurrences and co-occurrences of words in a text corpus can be used to approximate

the probabilities p(w) and p(w,c) respectively. Mathematically, the PMI between a word w and a

context word c is calculated as follows:

PMIw,c = lg
P (w, c)

P (w)P (c)

where occurrence(w)is the number of times that w appears in a corpus, and co-occurrence (w,c)

is the number of times that w and c co-occur within a specified window in the corpus. The numerator

in the equation above provides information given a corpus the frequency two words co-occur. While

the denominator provides information assuming each word occurred independently, how often the

two words to co-occur. However, PMI tends to be biased toward low frequency co-occurring events

and words which are rare in the corpus often have high PMI values. To mitigate against this bias is

to slightly change the computation for P(c) as follows:

Pc = lg
count(c)α∑
count(c)α

Levy et al, Pennington et al and Mikolov et al [134, 161, 202] found that in the equation above
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setting alpha = 0.75 on a variety of tasks yielded good performance. Most research that utilises PMI

uses Wikipedia as the corpus for PMI calculation. However, Wikipedia is a resource that is intended

to be void of sentiment and emotion as it advocates a neutral point of view. As a result, we have

chosen to use Amazon’s data corpus of 18 million reviews. We use a window size of 15 words as

previous findings report that counting co-occurrences within small windows of text produces’ better

results than larger contexts [43].

Word embeddings are techniques in which words are represented in a predefined vector space

with real-valued vectors. The usage words is used to learn this representation. As a result, words

which have similar usage often have similar representations and in turn, their meanings are captured

in the representation. There are publicly available pre-trained English word vectors, most of which

are created form Wikipedia or News corpus. However, these sources are designed to be objective

sources of information. We generate word vectors using the word2vec on the Amazon dataset which

contains 34,686,770 reviews, vectors were trained on a vocabulary size of 1,507,768 English words

and are of length 50.

In other to retrofit our vectors, we use the implementation provided in Faruqui et al [72]. In

their work, they indicated that word vectors are a reflection of the data corpus it was trained on

and as such, there are words which could make the vectors better and are available outside the data

corpus. Thus with their retrofitting approach, additional information can be added to a set of word

vectors by adjusting the vectors. They use three different semantic lexicons to retrofit with aim of

improving the word vectors. 13

• WordNet Synonyms: WordNet is a handmade semantic lexicon of English words, which puts

words into sets of synonyms called synsets, and holds the semantic relations between synsets

[162].

• FrameNet: FrameNet is a linguistic resource for lexical and predicate argument semantics in

English. Each frame hold word types and words that can invoke the same frame are consid-

ered to be semantically related [17].

• The Paraphrase Database: The paraphrase database is a semantic lexicon containing more

than 220 million paraphrase pairs of English. 8 million are lexical single word paraphrases.
13source code for retrofitting algorithm https://github.com/mfaruqui/retrofitting
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The key intuition behind the acquisition of its lexical paraphrases is that two words in one

language that align, in parallel text, to the same word in a different language, should be

synonymous [200].

Before Retrofitting After Retrofitting
prostitution 0.7041 theft 0.9220
vandalism 0.7030 larceny 0.9149
under-the-table 0.7012 stealing 0.9071
harassment 0.6919 thieving 0.9010
gambling 0.6903 felony 0.9000

Table 3.13: Top 5 related words returned for shoplifting before and after retrofitting

You can see from Table 3.13, that for the word shoplifting, the related words returned after

retrofitting have better relatedness with the keyword.

We use Ekmans emotion six emotions (happiness, sadness,anger, fear, surprise, disgust) and com-

pute the emotion vector for the individual NAVA words using the semantic relatedness of the words

to the emotion category for both word embeddings and PMI. For PMI, we identify the relatedness

for each NAVA word to an emotion category by calculating the PMI of said NAVA word to each

word in each emotion category as defined in WordNet Affect lexicon. While with Word embed-

dings, for each NAVA word, we identify the top 20 related words and try to match them with the

words in each emotion category as defined in WordNet Affect lexicon.

3.4.2.3 Sentence Level Analysis

The overall emotion vector of a sentence is calculated using the arithmetic mean of all identified

vector representation for each of the six emotion categories for both PMI and Word embedding

respectively. This is computed by aggregating the emotion vectors of all the affect words identified

in relation to the NAVA words. The sentence label is derived by choosing the most frequent emotion

in the sentence. The emotion category with the highest vector average is assigned to the sentence.

If there is a tie, one of the highest emotions is randomly selected.

3.4.2.4 Experiment Results

For our experiments, we use the ALM and ISEAR dataset. We re-conducted our experiments using

our approach to see is if the using the semantic relatedness as a fallback in the event that we cant
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detect the correct emotion with our rule-based approach. We found that in Table 3.14 the best

performing technique on the Alm dataset is the retrofitted word embedding generated from the 18

million Amazon reviews. Using the Amazon Word embeddings as a fallback for our rule-based

approach improves the average F-measure of Joy by 1.43%, Fear by 26.76% and Anger F-measure

by 0.28%. The highest improved performance in the Alm dataset is the Fear category. Across

all approaches PMI and Word Embeddings, there is a poor performance in F-Measure of the fear

emotion. This is because the Alm dataset occasionally uses idioms such as ’make your blood run

cold’ or ’shake like a leaf ’ to express fear.

Table 3.14: Tables showing results of the ALM data set

Emotion PMI Wiki Amazon Amazon + Our Approach

Anger-Disgust 0.36 0.41 0.50 0.67
Joy 0.13 0.24 0.46 0.63
Sadness 0.29 0.41 0.40 0.69
Fear 0.10 0.19 0.32 0.40

We found that in Table 3.15 the best overall performing technique across all emotion categories

on the ISEAR dataset is the retrofitted word embedding from Amazon reviews. It improves the

F-measure of Joy by 0.05%, Fear by 13% and Anger F-measure by 2% when combined with our

rule-based approach as a fallback. The highest improved performance in the ISEAR dataset is the

Fear category. Across all approaches PMI and Word Embeddings, there is a poor performance in

F-Measure of the fear emotion.

Table 3.15: Tables showing results of the ISEAR data set

Emotion PMI Wiki Amazon Amazon + Our Approach

Anger-Disgust 0.59 0.55 0.58 0.63
Joy 0.36 0.49 0.51 0.69
Sadness 0.36 0.41 0.48 0.67
Fear 0.20 0.16 0.31 0.44

In this section, results of evaluations show that using semantic relatedness fallback for our rule-

based approach yields significantly improved results, especially on the fear emotion category. One

of the weaknesses of our approach is that the semantic relatedness scores depend on the text corpus

from which they are derived. This means that in order to improve performance we could retrofit
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the vectors specifically for each emotion category. From the empirical results, we observed that the

retrofitted embeddings perform better than PMI.

In this chapter, we presented our work on implicit emotion detection using the OCC model, with

the aim of addressing our first research question: Can we identify implicit expressions of emotion in

text without the use of labeled data?.

To achieve this, we propose a rule-based approach for implicit emotion detection, using the

OCC model. We conducted experiments with three distinct datasets and compared our results with

standard baseline supervised classifiers. We showed that in the absence of annotated data, the rule-

based OCC model approach is able to identify implicit expressions of emotion.
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Chapter 4

Detection of Expressions of Blame and Praise in Text

Our investigations and work with the OCC model revealed that there are various emotions such

as guilt which require one to establish that blame/praise exists in other to state that such emotions

are present. In this chapter, we present our approach for detecting of blame and praise in text

documents. We construct a corpus which contains individuals comments relating to their respective

on an emotional experience and annotate them for blame and praise.

4.1 Introduction

In this chapter, we focus on detecting blameworthiness based on the “Path Model of Blame” pre-

sented in the work of Malle et al [145]. In particular, we propose an approach by adapting the

original Path Model of Blame and combine some natural language processing techniques for the

detection of blames or praises expressed in text. To the best of our knowledge, this is the first

piece of work exploring an automated approach for blame/praise detection from text. In order to

evaluate our proposed approach, we have created an annotated corpus by labeling each sentence as

expressing “blame” or “praise” from the ISEAR1 (International Survey On Emotion Antecedents

And Reactions) data set. We have also provided annotations at the more finer granularity level to

further distinguish the direction of blame/praise, i.e., “self-blame”, “blame-others”, “self-praise” or

“praise-others”. Our results show that even though our approach gives similar results compared

to supervised classifiers on “blame”, “praise” or “others”, it performs better than the supervised

classifiers with finer-grained classification of determining the direction of blame and praise, despite

using no labeled training data.

Prior to deciding on adapting the “Path Model of Blame” for text-based blame and praise de-
1http://www.affective-sciences.org/researchmaterial
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tection, we considered other approaches in relation to judgement and the attribution of blame. Such

as the work of Mao et al [152], which discusses agent responsibility and attribution. Although their

work in most cases is in line with the “Path Model of Blame” in relation to concepts, meaning and

definitions, they utilise a more complex model and have a primary focus on the identification of the

extraction of the causal reasons as a major path to the attribution of judgement/responsibility. Their

approach also depends a lot on manually configured rules and patterns which will not always be

present and creates a weakness in the approach.

In the rest of the chapter, we present our proposed approach for blame/praise detection. We

explain how we create the annotated dataset and discuss experimental results. Finally, we conclude

and outline future directions.

4.2 Our Approach

The detection of blame/praise from text can be cast as a classification problem. Where given a

comment, we aim to create a model which is able to classify the text as expressing “blame”, “praise”

or “neither”. We also explore a finer-grained distinction of the direction of blame and praise, i.e.,

“self-blame”, “blame others”, “self-praise” and “praise others”.

We started to explore the use of the Path Model of Blame [145] for the detection of blame/praise

from text. As we are not concerned with the identification of the degree of blame but the existence of

blame, there is no need to determine “Reasons” as in the original Path Model of Blame. Also, instead

of identifying “Intentionality”, “Capacity” and “Obligation”, we replace them with “Foreseeability”

and “Coercion”. According to the path model in Figure 2.6, “Capacity” deals with the ability of

the moral agent to have known about the actions and its effects beforehand, in other words, its

foreseeability. Foreseeability refers to an agent’s foreknowledge about actions and their effects.

Clearly, we can say that intentionality entails foreknowledge [151]. Various other papers in this

area [151, 152, 230] state that there is a close interplay between intentionality and foreseeability. As

such, we replace “Intentionality” and “Capacity” with “Foreseeability”. According to the Webster

dictionary to coerce is “to make (someone) do something by using force or threats”. In Figure 2.6,

obligation deals with the extent to which the moral agent had the ability to prevent the negative

event. In this case, the perceiver is considering “could the agent have been forced to carry out the

action” or “was the agent tricked into carrying out the actions”. Thus, coercion covers not only cases
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Figure 4.1: Revised Path Model of Blame.
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where the agent was forced but also where the agent was tricked to execute the action. Typically

coercion is thought to carry with it the implication to diminish the targeted agent’s freedom and

responsibility [11]. Thus, we replace “Obligation” with “Coercion”. The revised Path Model of

Blame is illustrated in Figure 4.1.

It is generally acknowledged that a blameworthy entity must be capable of reasoning, and ca-

pable of taking a decision. On the off chance that an entity does not have these requirements, it is

exempted from blame [267]. Thus we use named entity recognition focusing on entities of persons,

organization and country. We also identify the use of pronouns representing persons based on the

Part-of-Speech (POS) tagging results.

We first pre-process text by carrying out sentence splitting and tokenisation2, POS tagging3,word

sense disambiguation (WSD)4, named entity recognition (NER)5, dependency parsing6, and polarity

detection using majority vote based on the lexicon matching results obtained with three sentiment

lexicons as explained in section 3.2.2.3. Negation handling as explained in section 3.2.2.2 is also

considered during polarity detection process.

In order to use the revised Path Model of Blame for the detection of blame/praise from text, we

need to first detect events and then determine “Agent Causality”, “Foreseeability” and “Coercion”.

In the following, we describe how each of the steps can be performed.

4.2.1 Event Detection

We look at the “verb+object” combination as identified using the Stanford dependency parser

and take note of the agent of the verb. We use the majority voting mechanism mentioned above for

polarity detection. Negatively or positively valenced events are extracted from sentences expressing

negative or positive polarity respectively.

In the example shown in Figure 4.2, we see that the event detected by the “verb+object”

pattern is “passed exam”. And the agent of the verb “passed” here is “I”. We then detect the

polarity of the event by searching for positive or negative words modifying the event taking into

account of negation. In this example, the verb “passed” carries a positive polarity. As such, the
2http://nlp.Stanford.edu/software/tokenizer.shtml
3http://nlp.stanford.edu/software/tagger.shtml
4http://www.nltk.org/
5http://nlp.stanford.edu/software/CRF-NER.shtml
6http://nlp.stanford.edu/software/stanford-dependencies.shtml
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Figure 4.2: An example dependency parse result.

event is considered as a positively valenced event.

4.2.2 Agent Causality

Here, one must establish that a moral agent caused an event. We first make use of a popular explicit

intra-sentential pattern for causation expression which is “NP verb NP” where NP is a noun

phrase [83] and then we identify the agent within the noun phrase. If the intra-sentential pattern

is not found we consider verbs in the text that belong to the CAUSE class and the CAUSE-TO

semantic relation which are defined in the WordNet. In order for “Agent Causality” taking the value

”True”, the agent must be a person entity (including pronouns).

In the example shown in Figure 4.2, we see that the intra-sentential pattern “NP verb NP”

is present and the dependency parse result shows that verb “passed” is associated with the subject

“I” (first person pronoun). This tells us that the agent is a moral agent within the context of the

sentence.

For all the self categories (“self-blame” or “self-praise”), the agent must be a first person pro-

noun. For other categories (“blame others” or “praise others”), the agent must not be a first person

pronoun, but must be one of the following: a pronoun, a person, country or organization as identified

using the NER tool.
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4.2.3 Foreseeability

This is used to determine intentionality and foreseeability, as both work hand in hand and intention-

ality entails foreknowledge [152, 152] . It is generally the commitment and foreknowledge to work

toward a certain outcome. We rely on a set of verbs which indicate foreseeability. These include

verbs of communication as suggested in Mao et al [151] and other verb classes which include verbs

of creation, verbs of consumption, verbs of competition, verbs of possession and verbs of motion.

These classes of verbs are defined in the WordNet lexnames7 and can be identified by looking at the

WordNet sensekey of the verbs.

The first part of the lexname field is a two digit file number. Followed by the lexicographer

filename which the number represents, and then the syntactic category represented by a number

(1=NOUN,2=VERB,3=ADJECTIVE,4=ADVERB).

Example: When I did not speak the truth.

In the example above, the communication verb “speak” indicates that the subject “I” had fore-

knowledge of the event of “speaking the truth”. Using WSD we can identify the verb speak in the

sentence has a sensekey of speak%2:32:03:: and the number 32 indicates that it is a communication

verb which includes verbs of asking,telling,ordering,singing.

Figure 4.3 shows a list of the verb lexicographer files we focus on for determining foreknowl-

edge and by extension intentionality. We believe that form the description provided the actions they

represent requires the agent to have foreknowledge of said actions.
7https://wordnet.princeton.edu/man/lexnames.5WN.html
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Figure 4.3: List of lexicographer files with file numbers and a brief description of file’s contents.

Algorithm 4: Sentence level Foreknowledge detection.
input : Sentence

output: True or False

Tokens = Tokenize(Sentence);

Tags = POSTagger(Sentence);

WordSenseList = empty;

hasForeknowledge= false;

for i = 0; i < Tokens.Count; i = i++ do

Token = Tokens[i];

Tag = Tags[i];

WordSense = GetWordSenseOfWordinSentence(Sentence,Token,Tag);

WordSenseList.Add(WordSense);

end

for i = 0; i < WordSenseList.Count; i = i++ do

if VerbIsInForseeabilityClass(WordSenseList[i]) then
hasForeknowledge = true;

end

end

return hasForeknowledge;
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4.2.4 Coercion

To identify coercion, we look at the extension verb classes presented in [118] focusing on verbs in

the URGE (13 members), FORCE (46 members) and FORBID (17 members) classes.

Example: I was forced to quit the job in the city.

In the example above, using word sense disambiguation, the verb “forced” is of sense “to cause

to do through pressure or necessity, by physical, moral or intellectual means”. The agent “I” in this

case did not willingly quit the job and the sentence does not mention who forced the agent. Thus,

the sentence is classified as “Others” (i.e., no blame or praise).

example

{

"word": "forced",

"name": "coerce.v.01",

"key": "coerce%2:41:00::",

"pos": "VBN",

"index": 2

}
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Algorithm 5: Sentence level Coercion detection.
input : Sentence

output: True or False

Tokens = Tokenize(Sentence);

Tags = POSTagger(Sentence);

WordSenseList = empty;

hasCoercion= false;

for i = 0; i < Tokens.Count; i = i++ do

Token = Tokens[i];

Tag = Tags[i];

WordSense = GetWordSenseOfWordinSentence(Sentence,Token,Tag);

WordSenseList.Add(WordSense);

end

for i = 0; i < WordSenseList.Count; i = i++ do

if VerbIsInCoercion(WordSenseList[i]) then
hasCoercion = true;

end

end

return hasCoercion;

4.3 Corpus Creation

We created our data from the ISEAR dataset, which was collected during the 1990s by a large group

of psychologists by asking nearly 3,000 participants from different cultural background about their

emotional experiences. This dataset contains 7,660 comments, each of which is labelled with one

of the seven emotions (joy,fear, anger, sadness, disgust, shame and guilt).

We asked two English-speaking individuals to annotate each comment in the ISEAR dataset

as “blame”, “praise” or “others”. For comments expressing blame or praise, the annotators further

labelled them as “self-blame”, “blame others”, and “self-praise” and “praise others”. The annotators

were provided with the annotation guidelines and sample annotation results. A web-based interface

has been developed to ease the task of annotation. We did not provide them with the ISEAR emotion
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labels of the comment as we believe that the emotion label information, although might be helpful,

will create bias and influence the annotators.

Figure 4.4: Annotation User Interface.

The inter-annotator agreement for our data set is shown in Table 4.1. There are several agree-

ment measures which have been proposed in the literature [13], We measure the reliability of the

annotation results by using the kappa (k) coefficient [121], which is defined as k = Ao−Ae/1−Ae

where Ao is the observed agreement, and Ae is the expected agreement by chance. We obtained

a k score of 0.62. Using the scales for interpreting Kappa provided in [128] and [85] in terms of

strength of agreement, our score can be interpreted as a good and substantial agreement.

Annotation guidelines and instructions provided to our annotators is available in Appendix B.

Table 4.1: Annotation agreement matrix.

Annotator 1

A
nn

ot
at

or
2 Blame Praise Others Total

Blame 3483 222 279 3984
Praise 227 778 305 1310
Others 348 299 1719 2366
Total 4058 1299 2303 7660

It can be observed from Table 4.1 that, 45% of the comments in ISEAR are labeled as “blame”

and 10% as “praise. We only keep the comments where both annotators reach an agreement. On fine

grained labelling, we had a discrepancy of about 17%. We then got both annotators to re-examine

these 17% comments to reach an agreement. Our final dataset consists of 57.1% self blames and

42.9% blames directed towards others within the blame context; and 66.2% self praises and 33.8%

praises directed towards others in the praise context.
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4.4 Experiments and Analysis

Our approach uses a sentence level detection. A comment can contain 1 or more sentences, each

comment is split into individual sentences, we then classify each sentence to blame, neutral or

praise. The categories are then weighed and the category with the highest weight is allocated to the

comment. Neutral sentences carry no weight.

Cw =
Sc

St

Cw = Category Weight

Sc = Number of Sentences with class

St = Total Number of Sentences

In the event that we have equal number of praise and blame sentences, we categorize the com-

ment as blame as negative emotions outweigh positive ones. In this section, we present the evalu-

ation results of our blame detection approach and compare it with supervised learning approaches

trained on the “bag-of-words” features. Experiments for the supervised classifiers were carried out

using Weka8 with documents pre-processed with stopword removal. We report the results using

10-fold cross validation. Note that such a comparison is not fair since our approach does not make

use of any labelled data.

Class NB SVM Our Approach
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

blame 0.74 0.60 0.66 0.73 0.80 0.76 0.73 0.76 0.75
praise 0.40 0.38 0.39 0.60 0.44 0.51 0.43 0.63 0.52
others 0.47 0.66 0.55 0.61 0.57 0.59 0.63 0.53 0.58

Table 4.2: Classification results of blame, praise or others.

It can be observed from Table 4.2 that supervised SVM performed the best in classifying blame,

but only slightly outperforms our approach by about 1% in F-measure. Supervised NB gives much

worse results with F-measure lower than that of SVM. Our approach achieves similar performance

as SVM on the praise category and outperforms NB by 13% in F-measure. The dataset has a higher
8http://www.cs.waikato.ac.nz/ml/weka/
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number of negative comments and this is reflected in the results obtained on the blame category

having better performance than those from praise across all classifiers.

For fine-grained classification, it can be observed from Table 4.3 that SVM performed better

than NB on all categories. However, our approach performed better than both SVM and NB. In

classifying into self-blame (blame directed towards oneself) and blame others (blame directed to-

wards other people), our approach performs better than SVM and NB with an average F-measure

difference of about 6% and 12% respectively. In the self-praise and praise others categories, our

approach performs better than both SVM and NB with an average F-measure difference of about

20% and 17%.

Class NB SVM Our Approach
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

self-blame 0.54 0.40 0.46 0.52 0.58 0.55 0.58 0.59 0.59
blame others 0.43 0.49 0.46 0.50 0.47 0.48 0.53 0.68 0.57
self-praise 0.44 0.42 0.43 0.54 0.38 0.45 0.49 0.51 0.50
praise others 0.16 0.33 0.25 0.22 0.12 0.16 0.49 0.53 0.51
others 0.51 0.52 0.51 0.56 0.62 0.59 0.63 0.53 0.58

Table 4.3: Classification results of self-blame, self-praise, blame-others, praise-others or others.

4.4.1 Error Analysis

Error analysis was conducted on the blame detection results in order to better understand how the

proposed approach performs. Table 4.4 shows some sample detection results. Within each step in

our approach, we log instances where an error may have occurred or a failure to proceed to the next

step is detected or if WSD returns no results or polarity detection is neutral or misclassification.

In general, whenever the output of one process is the input of another process we track it and log

instances where a failure or error may have occurred. We select random error samples of about 5

records for each stage where an error has occurred and examined them to identify causes of errors

and possible mitigation. In total, we reviewed a total of 20 error instances in the dataset.
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Table 4.4: Detection examples of correct and failed detection using our approach on the dataset

Example Expected Outcome Outcome
1. When I learned that several people

had died in the street due to the cold
weather.

Blame Neutral

2. I had to decline an appointment which
had been very important for the other
person. For this reason we even got
into trouble.

Blame Blame

3. When I am in an environment or with a
person much worse off than me, I real-
ize how privileged I am.

Blame Neutral

4. I happened to overhear something
which I was not meant to hear.

Blame Neutral

5. When I got home from a pleasant trip
abroad, I got to know that I had been
accepted at university.

Pride Pride

6. My elder sister forced me to do a few
things which I did not like to do.

Blame Neutral

In example 1, we failed to identify blame as the model requires that the agent to be blamed must

meet moral requirement. However, the agent responsible for the event ”death of people” in this case

is the ”weather” and that cannot be responsible for blame. Thus, there is a huge distinction in how

the model attributes blame when compared to how the average person attributes blame. This type of

error accounted for about 32% of the overall errors encountered. Our model would benefit greatly

if the model was more inline with how human beings attribute blame to natural events (non-moral

agents).

In example 3, we failed to identify blame as the model requires that an event to be detected in

the sentence. Our approach failed to identify an event using the VERB + OBJECT relationship and

as a result failed to detect blame/praise. This type of error accounted for about 27% of the overall

errors encountered. We have begun investigating how to handle sentences which do not have an

outright OBJECT. Perhaps looking into the handling of transitive and intransitive verbs, we can also

look at analysing noun phases in the absence of OBJECTS.

In example 4, we failed to identify blame as the model requires that a non-neutral event must be
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detected. Our system failed to identify any positive or negative polarity in the sentence, as such the

sentence was classified as Neutral. Inability to detect the polarity of a sentence accounted for about

13% of the overall errors encountered. To mitigate the chances of a polar term not been correctly

identified, we decided to use a majority vote approach with 5 lexical resources. Perhaps we could

consider a hybrid approach for polarity detection.

In example 6, we failed to identify blame as the model requires that for blame to exist the agent

must be blameworthy. Our system did not classify the sentence as blame as it contained coercion of

the agent and as such the sentence is classified as Neutral. We don’t classify these as errors because

they are cases where the model as identified the presence of coercion and as such the agent is exempt

from blame.

ISEAR dataset contains personal experience expressed by a wide range of participants and hence

might contain lots of informal and ill-grammatical text, we can say that our approach performs rea-

sonably well with such dataset. Our approach relies on results generated from a series of NLP tasks

such as POS tagging, word-sense disambiguation, dependency parsing and polarity detection in or-

der to be able to assign values to a set of variables for blame/praise detection. Thus, any error that

occurs will be propagated down the pipeline process. Furthermore, failure in detecting the polarity

of text will make it impossible for our approach to identify the underlying blame/praise category.

However, our approach performs reasonably well especially on the fine-grained classification of

detecting the directions of blames or praises. This is very useful in not only identifying the entity

responsible but also for inferring emotions such as guilt, remorse, anger and many more.

For example, for the sentence “When I caused problems for somebody because he could not

keep the appointed time and this led to various consequences.”, the Agent (“I”) is blameworthy and

hence we can infer that the sentence expresses an emotion of guilt.

In this chapter, we presented our work on blame/praise detection in text based on the “Path

Model of Blame”, with the aim of addressing our second research question: Can we detect praise

and blame in text, elements necessary for the detection of emotions such as guilt,remorse and many

more?.

In order to answer this question, we created and annotated a dataset for blame/praise detection.

We proposed an approach adapted from the Path Model of Blame and used this adaptation for

detecting expressions of blame and praise in text. Experimental results on our dataset show that
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our approach gives similar performance compared to supervised classifiers when classifying text as 

blame or praise. For fine-grained classification of identifying the direction of blame and praise, our 

approach outperforms the supervised methods by a large margin of 14% in F-measure compared to 

NB and 13% in F-measure compared to SVM.
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Chapter 5

Content-Based Conflict of Interest Detection for Articles in

Wikipedia

In this chapter, we discuss an application area for implicit emotion detection, we believe that im-

plicit emotion detection may have potential usefulness for conflict-of-interest (CoI) detection in

Wikipedia articles. We build a CoI corpus and explore various types of features including linguistic

and stylometric features, presentation features, bias features and emotion features for CoI detection.

We also observe from the collected data, that 55% of our dataset were articles on company profiles

and 43% articles on individual profiles and 2% others. With only 21% anonymous edits

5.1 Introduction

Reference works writers put in a lot of effort to keep the language as unbiased as possible, in other to

maintain the objective perspective of such platforms. This has not always been the case as you find

that the writers and contributors often use other ways to express affect without using explicit opin-

ionated vocabulary. For example, Wikipedia’s policy called neutral point of view (NPOV), which

states that ”articles should represent fairly, proportionately, and as far as possible without bias, all

significant views that have been published by reliable sources”. It is then crucial to understand the

nature of bias, its linguistic realization and perhaps automatically detect it.

Take two example documents from our Wikipedia dataset, one is an article classified as CoI

while the other is not:

• CoI example: Kaizaad Kotwa, born in Mumbai, India, is an award winning professor and

writer, actor, director, producer and designer. Currently he is a professor of theatre and film

at Ohio State University in Columbus, Ohio. He recently won the Griffin Society Award for
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Best Professor and in 2007 was named one of the top professors in Ohio. He is the co-owner

and co-Artistic Director of Poor-Box Productions, along with his mother Mahabanoo Mody-

Kotwal, a famous actor, director and producer in India.

• Non-CoI example: “Enrica Zunic” is the pseudonym of “Enrica Lozito”, an Italian science-

fiction writer. She lives and works in Turin. Her work is partly inspired by her activities with

Amnesty International. In 2003 she won the Premio Italia award for science fiction.

Using our proposed approach, a number of interesting features are identified as shown in Figure 5.1.

It can be observed that the CoI example when compared to the non-CoI one contains more subjective

sentences, bias sentences, emotion and more praise/blame expressions.

Our main aim in this work is to detect CoI articles based solely on the content of the articles

without relying on any related metadata. We explore a rich set of features including stylometric

features, the presentational features by focusing on the existence of Rhetorical Structure Theory’s

(RST’s) presentational relations, various forms of language biases and implicit/explicit emotions.

We then investigate using different combinations of features to train supervised binary classifiers for

CoI detection. Our results show that the best result of 0.67 in F-measure is obtained when training

Support Vector Machines (SVMs) from a combination of all features. Also, further combining

various features with document-level representations either in the form of bag-of-words or dense

representations by combining pre-trained word vectors does not bring any performance gains. As

we only have the labeled CoI class, but not the non-CoI class, we have also explored the use of one-

class classification for CoI detection. The results show that using stylometric features outperforms

other types of features or a combination of them. Also, one-class classifier gives higher precision

values compared to binary classifiers. To the best of our knowledge, we are the first to carry out

automatic CoI detection on Wikipedia articles based solely on text content.

Our main contributions are summarised below:

• We have built a CoI dataset which contains 3,280 CoI articles and 3,450 non-CoI articles,

which could be used in future research on CoI detection;

• We have proposed a set of features based on our research of existing work close to CoI detec-

tion and analysis of the data collected and have identified the most effective features through
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Kaizaad	Kotwal,	born	in	Mumbai,	India,	is	an	award	winning	professor	and	
writer,	actor,	director,	producer	and	designer.	
	
	
Currently	he	is	a	professor	of	theatre	and	film	at	Ohio	State	University	in	
Columbus,	Ohio.	
	
	
He	recently	won	the	Griffin	Society	Award	for	Best	Professor	and	in	2007	was	
named	one	of	the	top	professors	in	Ohio. 	 		
	
	
He	is	the	co-owner	and	co-ArJsJc	Director	of	Poor-Box	ProducJons,	along	with	
his	mother	Mahabanoo	Mody-Kotwal,	a	famous	actor,	director	and	producer	in	
India.	

Emo$on:	trust	
Sen$ment:	PosiJve	
Bias:	0.018	
Praise/Blame:	Neutral		
Type:	AcJve	Sentence	

Emo$on:	joy,	trust,	anJcipaJon,	surprise	
Sen$ment:	posiJve	
Bias:	0.056	
Praise/Blame:	Praise	
Type:	AcJve	Sentence	

Emo$on:	joy,	trust,	anJcipaJon,	surprise	
Sen$ment:	PosiJve	
Bias:	0.19	
Praise/Blame:	Praise	
Type:	AcJve/Passive	Sentence	

Emo$on:	trust,	joy	
Sen$ment:	PosiJve	
Bias:	0.083	
Praise/Blame:	Praise	
Type:	AcJve	Sentence	

(a) CoI example article

“Enrica	Zunic”	is	the	pseudonym	of	“Enrica	Lozito”,	an	Italian	science-fic=on	writer.		
	
	
	
She	lives	and	works	in	Turin.	
	
	
	
Her	work	is	partly	inspired	by	her	ac=vi=es	with	Amnesty	Interna=onal.	

	 		
	
	
In	2003	she	won	the	Premio	Italia	award	for	science	fic=on.	

Emo$on:	Neutral	
Sen$ment:	Neutral	
Bias:	0	
Praise/Blame:	Neutral	
Type:	Ac=ve	Sentence	

Emo$on:	Neutral	
Sen$ment:	Neutral	
Bias:	0	
Praise/Blame:	Neutral	
Type:	Ac=ve	Sentence	

Emo$on:	joy	
Sen$ment:	Posi=ve	
Bias:	0.181	
Praise/Blame:	Neutral	
Type:	Passive	Sentence	

Emo$on:	trust,	surprise,	joy,	an=cipa=on	
Sen$ment:	Posi=ve	
Bias:	0.1	
Praise/Blame:	Praise	
Type:	Ac=ve	Sentence	

(b) Non-CoI example article

Figure 5.1: Two sample documents with features identified by our approach. Words/phrases under-
lined in text are those which be found in an emotion or sentiment lexicon. Due to space constraint,
we only show some key features here such as the emotion/sentiment label, bias score, praise/blame
indicator, and sentence type.
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extensive experiments on our CoI dataset;

• We have also investigated the effectiveness of using one-class classification for CoI detection.

5.2 Our Approach

We address the CoI detection problem as binary classification which determines if a given document

belongs to the category of CoI or non-CoI. We make the following hypotheses:

1. Since CoI is a sub-category of the “NPOV disputes” Wikipedia category, CoI articles inherit

various linguistic and stylometric characteristics from their parent Wikipedia categories in-

cluding those typically found in vandalism and bias;

2. CoI articles contain more subjective sentences than non-CoI articles;

3. The presentation of content in CoI articles will tend to increase the reader’s interest/regard for

the subject matter;

4. Since the choice of words projects opinions and preferences, CoI articles likely contain more

expressions of implicit or explicit emotions.

In this section, we explore a rich set of features to test our hypotheses above and to train super-

vised classifiers for CoI detection. Figure 5.2 shows the work flow of our approach.

5.2.1 Stylometric Features

Stylometric features these thy to recognise patterns or writing styles in text. This technique has been

applied in the area of authorship attribution [216, 245, 12], opinion mining [195], and forensic lin-

guistics [270, 189]. We create a list of features selected from previous research work in vandalism

and bias as mentioned in the Related Work section. Since not all features are relevant to our CoI

detection task, We perform feature selection using the implementation of InfoGain and Chi-Square

available in Weka1 to eliminate insignificant features. We also include the nine universal depen-

dency groups2, detection of which is done using the Stanford Dependency Parser3. The final set of

features is listed in Table 5.1. This set of features is relating to Hypothesis 1.
1http://www.cs.waikato.ac.nz/ml/weka/
2http://universaldependencies.org/docsv1/u/dep/index.html
3http://nlp.stanford.edu/software/stanford-dependencies.shtml
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Figure 5.2: The overall work flow of our proposed approach.

5.2.2 Bias Features

In Recasens et al [214], two major classes of bias in Wikipedia edits have been discussed, framing

bias and epistemological bias. The former is related to subjective words and phrases that state

a particular point of view, while the latter deals with linguistic features which are related to the

believability of a proposition. We use the same classes of bias as discussed in their work [214]

and identify the existence of the classes in a Wikipedia article based on a bias lexicon4. We also

consider other words/phrases which may introduce bias as illustrated in the Wikipedia’s manual of

style/Words to Watch5. The bias features are shown in Table 5.2. This set of features is relating to

Hypothesis 1 and 2.

5.2.3 Presentational Features

Rhetorical Structure Theory (RST) is a discourse theory, which offers an explanation of the coher-

ence of texts. It provides a way to describe the relations among text and has been used to successfully

analyse a variety of text types [254, 255]. In RST, presentational relations are relations that tend to

increase the inclination in the reader or to increase the acceptance of the content [148] by the reader.
4http://www.mpi-sws.org/˜cristian/Biased_language.html
5https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Words_to_watch
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Table 5.1: Stylometric features.

Feature Name Description
Sentence Level

Average Sentence Length Average length of the sentences in the document
Average Unique Word Count Average # of unique words per sentence
Average Punctuation Average number of punctuations per sentence
Adjective Rate Rate of adjectives per sentence
CC Rate Rate of coordinating conjunctions per sentence
Pronouns Rate Rate of pronouns per sentence
Word Count Score Total # of words / Total # of sentences
Unique POS per Sentence Rate of unique Part-of-Speech (POS) tags per sentence

Document Level
Sentence Count Total # of sentences in the document
Unique Word Count Total # of unique words in the document
No of Verbs Total # of verbs in the document
No of CC Total # of coordinating conjunctions in the document
No of CompAdverbs Total # of comparative adverbs in the document
No of Adjectives Total # of adjectives in the document
Special clausal dependents Total # of special clausal dependents in the document
Active Sentences Total # of non-passive sentences
Non core dependents of clausal predicates Total # of non-core dependents of clausal predicates
Core dependents of clausal predicates Total # of core dependents of clausal predicates
Noun dependents Total # of Noun dependents
Compounding and unanalyzed Total # of Compounding and unanalyzed dependencies
Case-marking, prepositions, possessive Total # of Case-marking, prepositions, possessive
Coordination Total # of Coordination dependencies
Loose joining relations Total # of loose joining relations
Sentence head and Unspecified dependency Total # of Sentence head and Unspecified dependency
Complexity Score Text complexity score

Subject matter relations are relations whose intended effect is that the reader recognises the relation

in question [149].

We focus our work on identifying the existence of presentational relations6 using cue words

as relation signals. We use 10 presentational relations as shown in Table 5.3, as they increase

readers’ acceptance of text in one form or the other. We built a simple cue phrase detector with

phrases provided in various RST research [254] and relation nucleus/satellite positioning described

in [148]. This set of features is relating to Hypothesis 3.

5.2.4 Emotion Features

We focus on Ekman’s six basic emotions (joy, sadness, anger, surprise, fear, disgust) and imple-

ment both explicit and implicit emotions detection. Emotions can be expressed explicitly by using
6http://www.sfu.ca/rst/01intro/definitions.html
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Table 5.2: Bias features and subtypes.

Bias Subtypes
Epistemological Factive verbs / Entailments / Assertives / Hedges
Framing Subjective terms / Intensifiers
Others Puffery / Contentious labels / Unsupported attributions /

Expressions of doubt / Editorialising

Table 5.3: Definitions of 10 presentational relations used (N stands for nucleus, R for reader and W
for writer).

Relation Name Intention of W
Antithesis R’s positive regard for N is increased
Background R’s ability to comprehend N increases
Concession R’s positive regard for N is increased
Enablement R’s potential ability to perform the action in N increases
Evidence R’s belief of N is increased
Justify R’s readiness to accept W’s right to present N is increased
Motivation R’s desire to perform action in N is increased
Preparation R is more ready, interested or oriented for reading N

“emotion-bearing words” or implicitly without such words. For explicit emotions, we use a simple

lexicon-based approach with negation handling based on a modified version of the NRC lexicon

[173]; and for implicit emotions, we use the rule-based approach [272]. In addition, we also per-

form polarity detection (positive and negative) using majority voting based on the lexicon matching

results obtained with three sentiment lexicons, SentiWordNet [70], AFINN [95] and the Subjectivity

Lexicon [287]. We implement a contextual valence shifter as described in [206] to detect polarity

change in context. Apart from emotion and polarity features, we also consider the expressions of

blame and praise as additional features using the method proposed in [190] for detection. This set

of features is relating to Hypothesis 4.

5.3 Experiments

5.3.1 Data

We construct our dataset by collecting 4,050 articles from Wikipedia which have been categorised

as conflict of interest (CoI) items7. This CoI category is a sub-category of “NPOV disputes”.

Wikipedia encourages its editors to pick an article from this category and decide whether it meets

its notability policy8. If one believes the article should be kept, he/she needs to review the text to
7https://en.wikipedia.org/wiki/Category:Wikipedia_articles_with_possible_

conflicts_of_interest
8https://en.wikipedia.org/wiki/Wikipedia:Notability
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ensure that it complies with NPOV. This human categorisation of Wikipedia articles will be our

basis for evaluating our results.

In order to build a dataset containing both CoI and non-CoI articles, for each CoI article, we

randomly select non-CoI articles from its first associated Wikipedia category. For example, a CoI

article might be associated with two categories, “1932 births” and “Living people”. We randomly

select a non-CoI article from the category “1932 births”. This resulted in a total of 4,600 non-CoI

articles selected from over 100 Wikipedia categories. We have considered various criteria for the se-

lection of non-CoI articles such as the age of article, number of views, editor information. We found

that identifying a threshold on these meta-data properties which cuts across the various Wikipedia

categories and Wikipedia sectors would require a fine-tooth comb. For example, an article maybe

older but has fewer views than a newer article OR articles from a particular category may have more

views than other categories. As a result, we chose the random selection approach as long as the

article was from the same category as a CoI article and did not belong to CoI disputes category. We

focus on the article content as our means of classification and ignore the meta information provided

by Wikipedia such as the editor(s) of a Wikipedia edit, time and date of creation, associated IP

address, etc. Our dataset is made available at9

5.3.2 Preprocessing

We pre-process the dataset by removing the top 1% articles and the lower 5% of the articles based

on the document length. This reduces the total number of documents to 3,280 CoI articles and 3,450

non-CoI articles. The vocabulary size for the dataset is 52,302. We then carry out sentence splitting

and tokenisation, stopword removal, stemming and remove words occurred less than ten times.

For implicit emotion detection and blame/praise detection, we also perform part-of-speech (POS)

tagging using the Stanford POS Tagger10, word sense disambiguation (WSD) using the classic Lesk

algorithm for WSD in NLTK11, and dependency parsing using the Stanford Dependency Parser.

To represent documents, apart from the commonly used bag-of-words approach, we also con-

sider using doc2vec [130] which modifies the word2vec algorithm [160] for unsupervised learning

of continuous representations for larger blocks of text, such as sentences, paragraphs or entire docu-
9The dataset will be made available upon publication.

10http://nlp.stanford.edu/software/tagger.shtml
11http://www.nltk.org/howto/wsd.html
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ments. Recent work in the area of NLP has shown it to be a strong alternative for both bag-of-words

and bag-of-n-grams models. We use Gensim12 which has an implementation of doc2vec. We ig-

nore words occurred less than 10 times and generate a vector representation of each article using the

pre-trained vectors from the Google News dataset13 with about 100 billion words, 300-dimensional

vectors. The size of the context window we use is 3 before and after the predicted word. The final

generated document vectors have 100 dimensions.

5.3.3 Feature Selection

Here we aim to identify the features that are mostly useful for prediction of CoI. The guiding idea is

that a good feature set should contain features that are highly correlated with the class, yet uncorre-

lated to each other. We use Correlation-based Feature Subset Selection (CFS) and Information Gain

Ratio (IGR) to rank features on all our feature sets from the training set. Table 5.4 shows the top

ranked features by CFS and IGR respectively. It is interesting to see that the top 3 features (Blame,

Praise and Polarity Score) returned by CFS all belong to the Emotion category. These three features

are ranked among the top 12 positions by IGR. This indicates that CoI articles tend to contain more

expressions of “Blame” or “Praise” and show clearer polarity compared to non-CoI articles. We

also see that Active Sentences, being ranked at 4th by CFS and 3rd by IGR, is an important dis-

criminative feature for CoI detection. Average Sentence Length and Average Unique Word Count,

ranked at the 7th and 8th positions by both CFS and IGR, are another two stylometric features

that are important for CoI classification. Other common stylometric features ranked among the top

15 positions by both CFS and IGR include Non core dependents of clausal predicates, No of CC,

Adjective Rate, CC Rate and Sentence Count. This shows that CoI articles tend to use more coor-

dinating conjunctions and adjectives, and have more sentences compared to non-CoI articles.

In summary, among the top 15 features ranked by IGR and CFS, 11 are the same (73%). The

merged features obtained by each individual method are listed in Table 5.5. Most of the top features

are Stylometric features (74%) followed by the Emotion (21%) and Bias (5%) features. We also

found that no Presentational features appear in the top 15 positions. The feature selection results

indicate that stylometric features are very important in determining whether an article should be

classified as CoI. Among various emotion features, Blame, Praise, Polarity Score and Suprise seem
12http://radimrehurek.com/gensim/
13https://code.google.com/archive/p/word2vec/
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Table 5.4: Individual feature ranking results from Correlation-based Feature Subset Selection (CFS)
and Information Gain Ratio (IGR).

Rank CFS Ranked Features IGR Ranked Features
1 Blame No of CC
2 Praise Sentence Count
3 Polarity Score Active Sentences
4 Active Sentences Non core dependents of clausal predicates
5 Non core dependents of clausal predicates Unique POS per Sentence
6 Coordination Polarity Score
7 Average Sentence Length Average Sentence Length
8 Average Unique Word Count Average Unique Word Count
9 No of CC Praise

10 Adjective Rate CC Rate
11 CC Rate Complexity Score
12 Pronouns Rate Blame
13 Word Count Score Adjective Rate
14 Sentence Count Surprise
15 Bias Score Special clausal dependents

more important than others. The Bias Score is also relevant, but less important compared to many

Stylometric or some Emotion features. Presentational features do not seem to contribute much to

CoI detection. We merge the top 15 ranked features from both CFS and IGS and form our best

feature set.

Table 5.5: Merged features from the feature selection results from Correlation-based Feature Subset
Selection (CFS) and Information Gain Ratio (IGR).

Feature Set Description
Blame Emotion Total # of expressions of “Blame”
Praise Emotion Total # of expressions of “Praise”
Polarity Score Emotion Aggregated polarity score of the document
Surprise Emotion Total # of expressions of “Surprise”
Active Sentences Stylometric Total # of non-passive sentences
Non core dependents of clausal predicates Stylometric Total # of non-core dependents of clausal predicates
Average Sentence Length Stylometric Average length of sentences in the document
Average Unique Word Count Stylometric Average # of unique words per sentence
No of CC Stylometric Total # of coordinating conjunctions in the document
CC Rate Stylometric Rate of coordinating conjunctions per sentence
Adjective Rate Stylometric Rate of adjectives per sentence
Pronouns Rate Stylometric Rate of pronouns per sentence
Sentence Count Stylometric Total # of sentences in the document
Coordination Stylometric Total # of Coordination dependencies
Word Count Score Stylometric Total # of words / Total # of sentences
Unique POS per Sentence Stylometric Rate of unique Part-of-Speech (POS) tags per sentence
Complexity Score Stylometric Text complexity score
Special clausal dependents Stylometric Total # of special clausal dependents
Bias Score Bias Aggregated bias score of the document

5.3.4 Binary Classification Results

We train supervised classifiers including Support Vector Machines (SVMs), Maximum Entropy

(MaxEnt) and Naı̈ve Bayes (NB) using various feature sets and different combinations of them.
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10-fold cross-validation is used and the results are averaged over 10 such runs.

We can observe from Table 5.6 that among the four feature sets, Stylometric gives the best

performance followed by Emotion. This is consistent with our feature selection results discussed in

Section 5.3.3. It also confirms our hypothesis that the writing styles of editors of CoI articles are

similar. Bias and Presentational features appear to be less useful. This shows that CoI is more than

just bias. Presentational features had no member appeared in the top 20 features ranked by CFS

or IGR. Although SVM or MaxEnt trained from Presentational or Bias features give much worse

results compared to other feature sets, NB trained from these two types of features sets performs

only slightly worse than trained from Stylometric or Emotion features.

We have also tried combinations of different features sets. For both SVM and MaxEnt, the

best performance is given by All features. SVM achieves much higher recall than precision with

an overall F-measure of 0.67. MaxEnt gives more balanced precision and recall values, but with

slightly worse F-measure compared to SVM. We also notice that using Best features as listed in

Table 5.5 does not lead to improved performance for SVM or MaxEnt. However, the Best features

set boosts the recall value to 0.94 for NB, although it only gives the precision value of 0.51.

Table 5.6: Conflict-of-Interest (CoI) detection results in Precision, Recall and F-measure using
SVM, MaxEnt and NB with various feature sets.

Feature Sets SVM MaxEnt NB
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Stylometric 0.57 0.74 0.64 0.60 0.61 0.60 0.50 0.91 0.65
Presentational 0.07 0.06 0.06 0.57 0.36 0.44 0.49 0.90 0.63
Bias 0.18 0.16 0.17 0.57 0.26 0.35 0.48 0.91 0.63
Emotion 0.26 0.16 0.24 0.56 0.39 0.46 0.49 0.92 0.64
Stylometric+Emotion 0.57 0.73 0.64 0.60 0.61 0.61 0.50 0.91 0.65
Stylometric+Emotion+Bias 0.57 0.73 0.64 0.61 0.61 0.61 0.50 0.91 0.65
All features 0.58 0.81 0.67 0.64 0.67 0.66 0.62 0.51 0.56
Best features 0.61 0.30 0.40 0.61 0.65 0.63 0.51 0.94 0.66
Bag of Words (BOW) 0.62 0.61 0.61 0.62 0.61 0.62 0.60 0.70 0.64
BOW + Stylometric 0.62 0.62 0.62 0.61 0.62 0.62 0.58 0.76 0.66
BOW + Presentational 0.62 0.62 0.62 0.62 0.61 0.62 0.60 0.71 0.65
BOW + Bias 0.61 0.61 0.61 0.62 0.61 0.62 0.60 0.70 0.65
BOW + Emotion 0.61 0.62 0.61 0.62 0.61 0.61 0.59 0.71 0.65
BOW + Stylometric+Emotion 0.62 0.61 0.62 0.63 0.61 0.62 0.52 0.90 0.66
BOW + Stylometric+Emotion+Bias 0.62 0.62 0.62 0.63 0.61 0.62 0.51 0.90 0.65
BOW + All features 0.62 0.63 0.62 0.62 0.62 0.62 0.57 0.79 0.66
BOW + Best features 0.62 0.62 0.62 0.62 0.61 0.61 0.59 0.73 0.66
doc2vec 0.60 0.64 0.62 0.61 0.62 0.62 0.53 0.67 0.59
doc2vec + Stylometric 0.63 0.63 0.63 0.62 0.63 0.62 0.53 0.71 0.60
doc2vec + Presentational 0.60 0.63 0.61 0.60 0.61 0.61 0.53 0.68 0.59
doc2vec + Bias 0.61 0.63 0.62 0.62 0.62 0.62 0.53 0.69 0.59
doc2vec + Emotion 0.60 0.64 0.62 0.61 0.62 0.61 0.53 0.69 0.60
doc2vec + Stylometric+Emotion 0.63 0.63 0.63 0.62 0.63 0.62 0.53 0.72 0.61
doc2vec + Stylometric+Emotion+Bias 0.63 0.63 0.63 0.62 0.62 0.62 0.53 0.73 0.61
doc2vec + All features 0.62 0.62 0.62 0.61 0.61 0.61 0.53 0.74 0.62
doc2vec + Best features 0.53 0.76 0.63 0.59 0.53 0.55 0.54 0.79 0.64

We have next experimented with document representations using Bag-of-Words (BOW) weighted

by TFIDF or doc2vec, and a combination of BOW or doc2vec with various feature sets. The results
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show that CoI classification is not relevant to words presented in documents. Hence, training super-

vised classifiers from BOW or doc2vec does not give better results compared to using Stylometric

features only. Adding the Stylometric features to BOW or doc2vec offers marginal improvement for

SVM or NB, although it has no effect for MaxEnt.

5.3.5 One-Class Classification

In Section 5.3.4, we train supervised classifiers from a dataset containing both CoI and non-CoI

documents for binary classification. One problem we encountered is that there is no-degree of

assurance that the items in our non-CoI category are purely non-CoI documents, as they where

merely selected randomly from the same Wikipedia categories as CoI articles, with no concrete cer-

tainty that they are all non-CoI. Our problem could be potentially solved by one-class classification

[146, 260, 115], in which one of the target class is well represented by instances in the training

data with little or no other class present. One-class classification has been used and referred to

as different concepts depending on application areas such as Outlier Detection, Novelty Detection

or Concept Learning [115]. The problem of One-class classification is harder than the problem of

conventional classification as a result of the one-sided nature of the dataset. One-class classification

makes it difficult to decide which attributes should be used to best separate target and non-target

(i.e., CoI and non-CoI in our case).

In [226], adapting SVM to the one-class classification problem has been proposed. Essentially,

the input data are first mapped into a high dimensional feature space via a kernel. The origin is

considered as the only member of the second class. Then the algorithm iteratively finds the maximal

margin hyperplane which best separates the training data from the origin. In our experiments here,

we used one-class SVM implementation in the LIBSVM14 with default parameters.

Table 5.7: CoI detection results using one-class classification.

Feature Sets Precision Recall F-Measure
Stylometric 0.74 0.55 0.63
Presentational 0.69 0.52 0.59
Bias 0.72 0.54 0.62
Emotion 0.73 0.55 0.62
All Features 0.72 0.53 0.61
Best features 0.73 0.54 0.62

Table 5.7 shows the CoI detection results using one-class classification by 10-fold cross-validation
14http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
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trained on the CoI-related documents only. It can be observed that using Stylometric features gives

the best results compared to other feature sets although the improvement in F-measure compared

to the Bias or Emotion features is only marginal. We also notice that the precision values, which

are in the rage of 0.69 to 0.74, are much higher than those achieved based on binary classification

where the typical precision values are between 0.58 and 0.64. However, the recall values are lower

(0.52∼0.55 cf. 0.81∼0.94). This shows that if we aim to achieve high recall values for CoI detec-

tion, then binary classification should be used. However, if high precision values are more desirable,

then one-class classification should be used instead. From our results, when comparing the best F-

measure performance between one-class and binary classification, we find that binary classification

outperforms one-class classification by 4%, we can say that given that this margin is not very large

one-class classification can be considered reasonably effective for CoI detection.

5.3.6 Comparison with an Existing Approach to Vandalism Detection

There is no prior approach to content-based CoI detection from Wikipedia. Existing work to bias or

vandalism detection often made use of metadata such as anonymity, edit frequency, author reputa-

tion, etc., and performed classification at the sentence-level. As we don’t have the relevant metadata

available and there are no sentence-level annotations in our dataset, directly comparing our approach

with existing work is difficult. Nevertheless, we re-implemented an approach proposed in [177] in

which their best F-measure and AUC were achieved using LogitBoost and Random Forest, respec-

tively, ranking in the first place of the PAN’10 Wikipedia vandalism detection task [211]. Since

we don’t have edit histories available, we exclude features relating to edit histories and only extract

other stylometric features and features analogous to vulgarism frequency and vulgarism impact and

train LogitBoost for 500 iterations. The results in comparison to our best ones are listed in Table

5.8. It can be observed that both our binary and one-class classifiers outperform LogitBoost with

the performance gain in F-measure ranging from 6% to 10%.

Table 5.8: Comparison with an existing approach to vandalism detection.

Method Precision Recall F-Measure
LogitBoost [177] 0.56 0.58 0.57
SVM (binary) 0.74 0.55 0.63
SVM (one-class) 0.58 0.81 0.67
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5.3.7 Discussion

Our finding of the importance of stylometric features confirms our original hypothesis in Section

5.2 that CoI will inherit linguistic and stylometric features from its parent Wikipedia Category. But

our hypothesis that presentation relations would affect CoI was not supported by our experimental

results. We found that our hypothesis on CoI articles being more subjective holds true based on the

experiment results. Also, the hypothesis that CoI articles contain more expressions of implicit and

explicit emotions is also supported by our experimental results.

Our feature selection results show that Blame, Praise and Polarity Score are discriminative

features for the CoI class as they are ranked in the top 3 positions by CFS. However, in binary

classification results, using features from the Emotion category gives worse results compare to the

Stylometric category, although it outperforms both Presentational and Bias categories. The same

observation holds for one-class classification. Using Stylometric features consistently outperform

other feature sets for both binary and one-class classification. Also, it seems that articles with

a higher rate of coordinating conjunctions and adjectives per sentence have a higher chance of

belonging to the CoI category.

We have also compared our approach with existing work to vandalism detection. The results

show that using our defined set of features, we are able to achieve better results. Existing work

largely made use of metadata such as anonymity, edit frequency, author reputation, etc. We could

consider exploring features extracted from metadata in addition to content-based features for CoI

detection in our future work.

In this chapter, we presented our work on blame/praise detection in text based on the “Path

Model of Blame”, with the aim of addressing our third research question: Can the intelligent com-

bination of emotion features help with conflict-of-interest detection in Wikipedia articles?.

The work presented in this chapter tackles a unique problem for the automatic detection of

Conflict of Interest (CoI) articles in Wikipedia entries based on the content of the articles. We have

shown that the CoI detection task is a complex problem but with carefully engineered feature sets,

it is possible to identify CoI articles with an F-measure of 0.67 using SVM. We have also found

that out of four different sets of features, Stylometric features help the most with CoI detection. In

addition to binary classification, we have experimented with one-class classification and shown that
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while binary classification gives higher recall values, one-class classification attains higher precision

values.
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Chapter 6

Conclusion and Future Work

This thesis investigated the problem of emotion detection in text, focusing primarily on implicit

emotion detection and application areas for implicit emotion detection. We started by introducing

the problem and our motivation for addressing this problem. We explained the role of emotions in

everyday life and hence the benefits of our work in various sectors.

Next, we carried out a review of existing work highlighting both the pros and cons of various

approaches, explained the methodologies and datasets used in detecting the emotion in text. We

proposed a rulebased approach for implicit emotion detection, which can be used for classification

in the absence of labelled data. We conducted experiments with three distinct datasets and compared

our results with standard baseline supervised classifiers and our approach outperformed the baseline.

We identified a gap in detecting complex emotions such as guilt and remorse. These complex

emotions require one to establish blameworthiness or praiseworthiness. We created a dataset for this

task, annotating over 7000 comments for blame, praise and fine-grained self-blame, other-blame,

self-praise and other-praise. We created a model for blame detection by adapting the psychology

Path Model to Blame and conducted experiments with our dataset using our adapted model for

blame/praise detection and compared our results with baseline algorithms trained with the same

dataset. Our approach performed reasonably well with the fine-grained classification against the

baseline.

Since implicit emotion detection might be potentially useful for conflict-of-interest (CoI) de-

tection in Wikipedia articles, we built a CoI corpus by crawling Wikipedia and explored various

types of features including linguistic and stylometric features, presentation features, bias features

and emotion features for CoI detection. Our results showed that although emotion features are more
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important than others when using Naive Bayes, the best performance is obtained by training SVM

on linguistic and stylometric features only

6.1 Analysis and Evaluation

In chapter 3, we proposed a rule-based approach for implicit emotion detection. We also explore

multiple emotion detection from a single sentence and evaluate our work on three different datasets.

The work in this chapter addressed our first research sub-question. In chapter 4, we presented our

work on detecting expressions of blame in text, presenting a model for blame detection in text. The

work in this chapter addresses our second research sub-question. However, we identified various

items that may affect the performance of our approach in these two chapters:

• Error propagated from other NLP tasks: Our work relies on various natural language process-

ing tasks such as word sense disambiguation, part of speech tagging and many more. These 

tasks enable our approach to correctly assign values to the various variables used to detect the 

underlying implicit emotion in text. To this end, if an error exists in any of the NLP tasks, said 

error will be propagated through the pipeline to the final implicit emotion categorization task. 

For example, if there is an error in the part of speech tagging task, this error will affect the 

word sense disambiguation task as well as the tense detection task and eventually the emotion 

detection task. We try to reduce the overall impact of this error by working on a sentence 

level (processing whole documents sentence by sentence) and by ensuring that the NLP 

task approaches used and libraries are up to date and utilising latest research and models.

• The OCC model emotion detection rules: Looking at the data in our various datasets, aspects 

of the OCC model’s rules seem to have a reasonable effect on the overall performance of the 

approach. Such as if a sentence does not contain an Object or a Verb as with some of the 

news headlines in the semeval dataset. This inability to detect a Verb+Object relation makes 

detecting an event difficult and in turn the detection of an emotion. The rules can also affect 

the detection of specific emotions as all the variable parameters for said emotion must be met. 

For example, an emotion like Fear can only be identified if the sentence is identified to be in 

the PAST or FUTURE tense. The effect of this flaw can however be reduced by identifying 

additional semantic and syntactic attributes that could be associated with the rules along with 

a fuzzy matching technique to reduce the rigidness of the rules.
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• Polarity detection dependence: Although our approach has shown reasonable performance

when compared to supervised machine learning approaches, it has a very strong reliance on

polarity detection. To mitigate the chances of a polar term not been correctly identified, we

decided to use a majority vote approach with 5 lexical resources. However, it remains that

failure to correctly detect the polarity of an event, action or sentence can ultimately result in

an inability to detect the emotion of the sentence.

• Morality requirement for detection of blame VS real-world expression of blame: In chapter

4, we presented our work on blame/praise detection in text based on the “Path Model of

Blame”. We identified that for blame to exist that the agent to be blamed must meet a moral

requirement, i.e mosquitoes cannot be blamed for malaria or earthquake for the destruction of

buildings. However, we find that in our day to day communication people tend to blame such

agents for the various outcomes of events. This also means that expressions of blame/prasie

in the dataset where the agent is not considered to be morally responsible will not be correctly

classified as blame/praise. This is primarily because although the model is psychologically

correct, real-world expression of blame may not always follow this path.

6.2 Contributions

Here we highlight our main contribution as a result of this thesis. In our research, we made use of

models from the area of psychology of emotions and combined our understanding of these psychol-

ogy models with computational linguistics.

Previous work on emotion detection in text relied heavily on labeled data and there was also very

little work done on implicit emotion detection. In this thesis, we investigated and created a rule-

based approach for implicit emotion detection which does not rely on the availability of labeled

data.

Most of the prior work on emotions in text is limited to the available datasets to the point that

the limitation in resources has also affected the direction of the research on emotion recognition. In

this thesis using the ISEAR dataset, we built our own dataset that is labeled with praise, blame and

with blame/praise direction (self or other). We created a model for blame and praise detection in

text, an area which to the best of our knowledge is the first of its kind.

We researched the use of emotion features for content-based conflict-of-interest detection in
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Wikipeida articles. We found that this area has not been researched extensively and created a dataset

which can be used by future researchers in this area. We also found the emotion features influence

results in CoI detection but the best features are the linguistic and stylometric features.

6.3 Future work

The current work can be extended in several ways as discussed below:

• Text can trigger emotions of the reader and can also reflect emotions of the writer. Our

approaches do not try to distinguish between these two types of emotions. In future, it is

important to discriminate explicitly these two emotion types by investigating and utilizing the

work of Tang et al. [258] on emotion modeling from writer/reader perspectives and Yang et al.

[293] on emotion analysis of social media from writer/reader perspectives. This distinction

helps improve the oversimplification of emotion categories problem, as the emotions of the

writer may vary from that of the reader. For example, in the health sector, a comment on

a health-related forum may arouse emotions of sadness among readers but the writer my be

experiencing a deep level of guilt.

• For the Fear emotion, we found that exclamation marks and idioms were most often used as

clues for fear. Perhaps looking into the work of Hancock et al [94], they conducted experi-

ments on 40 dyadic interactions and found that users tend to use both verbal strategies such as

changes in disagreement, sentence types, the use of affect terms and verbosity, and nonverbal

strategies such as the use of punctuation (e.g., exclamation marks) to convey emotion in text.

• We currently do not try to identify ironic and sarcastic sentences. In future it would be appro-

priate to investigate performance on ironic/sarcastic sentences and help distinguish sentences

of such category.

• Our approaches have been largely evaluated on formal text. It would be interesting to see how

our approaches perform on informal short text such as tweets and social media posts. We will

also improve the identification of emotions involving intensity variables and unexpectedness

variables by examining how adverbs and adjectives influence the emotion of sentences. Our

approach has not taken into considerations elements of modern informal short text such as
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hashtags, emojis and the language specifically in such environments (OMG, LOL and many

more).

• Our implicit emotion detection approach performs very poorly with the ”Fear” emotion. We

believe that by taking a close look at the construction of the fear sentences in the datasets,

as well as some of the patterns presented in the work of Fellbaum et al [73] on emotion verb

scales, the performance of the algorithm on the ”Fear” category can be greatly improved.

• Investigate methods to improve our approach with informal short text such as tweets. We will

also improve the identification of emotions involving intensity variables and unexpectedness

variables by examining how adverbs and adjectives influence the emotion of sentences (for

emotions like “Surprise” and “Shock”).

• Investigate possibility to consider a hybrid of the OCC model and other closely related models

such as the one proposed in [271] to help improve general performance.

• Explore other types of features extracted from metadata of Wikipedia articles such as editors’

information, editing history, article history, associated IP addresses and evaluate their impact

on the performance of CoI detection. It is possible that articles in different Wikipedia cate-

gories might follow different writing styles (e.g., Wikipedia entries about people and about or-

ganisations). One possible direction is to build category-specific classifiers for CoI detection.

Finally, to avoid expensive feature engineering, it is possible to learn feature representations

and classifiers simultaneously by investigating various deep learning architectures.

126



Appendix A

List of Publications

Below is the list of publications that contributed to various chapters in this thesis:

1. U. Orizu and Y. He. A Rule-Based Approach to Implicit Emotion Detection in Text, The

20th International Conference on Applications of Natural Language to Information Systems

(NLDB), Passau, Germany, June 2015.

2. U. Orizu and Y. He. Detecting Expressions of Blame or Praise in Text, The 10th edition of

the Language Resources and Evaluation Conference (LREC), Portoro, Slovenia, May, 2016.

3. U. Orizu and Y. He. Content-Based Conflict of Interest Detection for Articles in Wikipedia,

The 11th edition of the Language Resources and Evaluation Conference (LREC), Miyazaki,

Japan, May 2018.
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Appendix B

Annotation Sample and Guidelines

These are the instructions provide along with sample comments provided to our two annotators for

their task.

Aim: The following instructions are for the annotation of blame and praise expressed in text, in

order to produce a dataset that is to be used in automated evaluation of blame and praise detection

algorithms.

Using the web interface provided:

Figure B.1: User Interface sample.

• Read each comment at least twice. The first time, read for overall meaning and impressions.

The second time, read more carefully and identify relevant ideas and purpose.

• Begin to annotate.

– Select from the ” Sentence Type ” dropdown which category the overall sentence be-

longs to

– A second dropdown will appear depending on you previous selections
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– Select from the ” Sentence Class ” dropdown which direction the overall sentence be-

longs to

• Use the next and previous buttons to move forward and backwards between comments

Literary Term Definitions

Blame: feel that (someone or something) is responsible for a fault or wrong. For example: I

feel guilty when when I realize that I consider material things more important than caring for my

relatives. I feel very self-centered.

Praise: the expression of approval or admiration for someone or something. For example: When

I was informed that I had been accepted as a student of Psychology.

Other: when a sentence does not fall into praise or blame category. For example: When I left

New York, and all my family and my friends behind me.

Self Blame: blaming one’s self for something

Other Blame: blaming other people for something

Self Praise: praising one’s self for something

Other Praise: praising other people for something
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Appendix C

List of Intensifiers

word, category, weight

absolutely,booster,0.5

altogether,booster,0.5

blind,booster,0.5

clean,booster,0.5

completely,booster,0.5

dead,booster,0.5

downright,booster,0.5

entirely,booster,0.5

fast,booster,0.5

full,booster,0.5

fully,booster,0.5

outright,booster,0.5

perfectly,booster,0.5

plain,booster,0.5

quite,booster,0.5

stark,booster,0.5

thoroughly,booster,0.5

totally,booster,0.5

utterly,booster,0.5

wholly,booster,0.5
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wide,booster,0.5

awfully,booster,0.5

damn,booster,0.5

damned,booster,0.5

deeply,booster,0.5

truly,booster,0.5

genuinely,booster,0.5

really,booster,0.5

dreadfully,booster,0.5

enormously,booster,0.5

exceedingly,booster,0.5

extremely,booster,0.5

frightfully,booster,0.5

greatly,booster,0.5

heavily,booster,0.5

highly,booster,0.5

horribly,booster,0.5

immensely,booster,0.5

incredibly,booster,0.5

infinitely,booster,0.5

jolly,booster,0.5

remarkably,booster,0.5

so,booster,0.5

strongly,booster,0.5

terribly,booster,0.5

tremendously,booster,0.5

very,booster,0.5

well,booster,0.5

all-fired,booster,0.5

bloody,booster,0.5
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damn,booster,0.5

mighty,booster,0.5

powerful,booster,0.5

mightily,booster,0.5

right,booster,0.5

in truth,booster,0.5

deucedly,booster,0.5

insanely,booster,0.5

deadly,booster,0.5

madly,booster,0.5

devilishly,booster,0.5

literally,booster,0.5

candidly,booster,0.5

candid,booster,0.5

scoldingly,booster,0.5

frankly,booster,0.5

always,booster,0.5

honestly,booster,0.5

generally,booster,0.5

marvellously,booster,0.5

marvelously,booster,0.5

superbly,booster,0.5

terrifically,booster,0.5

toppingly,booster,0.5

wonderfully,booster,0.5

wondrous,booster,0.5

wondrously,booster,0.5

goddam,booster,0.5

goddamn,booster,0.5

goddamned,booster,0.5
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hellishly,booster,0.5

infernally,booster,0.5

about,downtoner,-0.5

almost,downtoner,-0.5

most,downtoner,-0.5

nearly,downtoner,-0.5

near,downtoner,-0.5

nigh,downtoner,-0.5

virtually,downtoner,-0.5

well-nigh,downtoner,-0.5

approximately,downtoner,-0.5

about, downtoner,-0.5

close to, downtoner,-0.5

just about, downtoner,-0.5

some, downtoner,-0.5

roughly, downtoner,-0.5

more or less, downtoner,-0.5

around,downtoner,-0.5

or so ,downtoner,-0.5

slightly,downtoner,-0.5

somewhat,downtoner,-0.5

partially, downtoner,-0.5

partly, downtoner,-0.5

part, downtoner,-0.5

in part,downtoner,-0.5

barely, downtoner,-0.5

hardly, downtoner,-0.5

just, downtoner,-0.5

scarcely, downtoner,-0.5

scarce downtoner,-0.5
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[32] Núria Bel, Sheila Queralt, Maria Spassova, and M Teresa Turell. The use of sequences of

linguistic categories in forensic written text comparison revisited. In Proceedings of The

International Association of Forensic Linguists Tenth Biennial Conference, pages 192–209.

Centre for Forensic Linguistics, Aston University, 2012.

[33] Jerome R Bellegarda. Emotion analysis using latent affective folding and embedding. In

Proceedings of the NAACL HLT 2010 workshop on computational approaches to analysis

and generation of emotion in text, pages 1–9. Association for Computational Linguistics,

2010.

138



[34] Shruti Bhosale, Heath Vinicombe, and Raymond J Mooney. Detecting promotional content 

in wikipedia. In EMNLP, pages 1851–1857, 2013.

[35] Serajul I Bhuiyan. Social media and its effectiveness in the political reform movement in 

egypt. Middle East Media Educator, 1(1): pages 14–20, 2011.

[36] Robert I Binnick. Time and the verb: A guide to tense and aspect. Oxford University Press, 

1991.

[37] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. the Journal 

of machine Learning research, 3: pages 993–1022, 2003.

[38] Alice Brand. Social cognition, emotions, and the psychology of writing. Journal of Advanced 

Composition, pages 395–407, 1991.

[39] Alice G Brand. Hot cognition: Emotions and writing behavior. Journal of Advanced Com-

position, pages 5–15, 1985.

[40] Alice G. Brand. The why of cognition: Emotion and the writing process. College Composi-

tion and Communication, 38(4): pages 436–443, 1987.

[41] Felipe Bravo-Marquez, Marcelo Mendoza, and Barbara Poblete. Combining strengths, emo-

tions and polarities for boosting twitter sentiment analysis. In Proceedings of the Second In-

ternational Workshop on Issues of Sentiment Discovery and Opinion Mining, page 2. ACM, 

2013.

[42] Samuel Brody and Noemie Elhadad. An unsupervised aspect-sentiment model for online re-

views. In Human Language Technologies: The 2010 Annual Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics, pages 804–812. Association 

for Computational Linguistics, 2010.

[43] John A Bullinaria and Joseph P Levy. Extracting semantic representations from word co-

occurrence statistics: A computational study. Behavior research methods, 39(3):  pages 

510–526, 2007.

139
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[222] Saulo A. Santos, Aêuser J. S. Valença, and Aarmelo J. A. Bastos-Filho. Antelligent Aata 

Engineering and Automated Aearning - ADEAL 2012: 13th Anternational Aonference, Natal, 

Brazil, August 29-31, 2012. Proceedings, Ahapter Aomparing Particle Swarm Aptimization 

Approaches Aor Training Aulti-Layer Perceptron Neural Networks Aor Aorecasting, pages 

344–351. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. 

[223] J Savoy. Ir multilingual resources at unine, 2011 (accessed JUNE 21, 2016).

http://members.unine.ch/jacques.savoy/clef/index.html.

[224] Robert E Schapire. A brief introduction to boosting. In International Joint Conference on

Artificial Intelligence, volume 99, pages 1401–1406, 1999.

156



[225] Robert E Schapire and Yoram Singer. Boostexter: A boosting-based system for text catego-

rization. Machine learning, 39(2-3):135–168, 2000.

[226] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C

Williamson. Estimating the support of a high-dimensional distribution. Neural computa-

tion, 13(7):1443–1471, 2001.

[227] Yong-Soo Seol, Dong-Joo Kim, and Han-Woo Kim. Emotion recognition from text using

knowledge-based artificial neural network. In ITC-CSCC: International Technical Confer-

ence on Circuits Systems, Computers and Communications, pages 1569–1572, 2008.

[228] Mostafa Al Masum Shaikh, Helmut Prendinger, and Mitsuru Ishizuka. A linguistic inter-

pretation of the occ emotion model for affect sensing from text. In Affective information

processing, pages 45–73. Springer, 2009.

[229] Beaux Sharifi, Mark-Anthony Hutton, and Jugal Kalita. Automatic summarization of twitter

topics. In National Workshop on Design and Analysis of Algorithms, Tezpur, India, pages

121–128, 2010.

[230] Kelly Shaver. The attribution of blame: Causality, responsibility, and blameworthiness.

Springer Science & Business Media, 2012.

[231] Chao Shen, Fei Liu, Fuliang Weng, and Tao Li. A participant-based approach for event

summarization using twitter streams. In Proceedings of NAACL-HLT, pages 1152–1162,

2013.

[232] Liping Shen, Minjuan Wang, and Ruimin Shen. Affective e-learning: Using” emotional” data

to improve learning in pervasive learning environment. Educational Technology & Society,

12(2):176–189, 2009.

[233] Yang Shen, Shuchen Li, Ling Zheng, Xiaodong Ren, and Xiaolong Cheng. Emotion mining

research on micro-blog. In Web Society, 2009. SWS’09. 1st IEEE Symposium on, pages 71–

75. IEEE, 2009.

[234] George Sher. In praise of blame. Oxford University Press, 2005.

157



[235] Shiv Naresh Shivhare and Saritha Khethawat. Emotion detection from text. arXiv preprint 

arXiv:1205.4944, 2012.

[236] Lidan Shou, Zhenhua Wang, Ke Chen, and Gang Chen. Sumblr: continuous summarization 

of evolving tweet streams. In Proceedings of the 36th international ACM SIGIR conference 

on Research and development in information retrieval, pages 533–542. ACM, 2013.

[237] Pranjal Singh and Divyanshu Bhartiya. Identification of certain emotions in text. 2012.

[238] Push Singh et al. The public acquisition of commonsense knowledge. In Proceedings of 

AAAI Spring Symposium: Acquiring (and Using) Linguistic (and World) Knowledge for In-

formation Access, 2002.

[239] Valentina Sintsovaa and Claudiu Musata. Fine-grained emotion recognition in olympic tweets 

based on human computation. WASSA 2013, 12, 2013.

[240] John Jamieson Carswell Smart. Free-will, praise and blame. Mind, 70(279):291–306, 1961.

[241] Koen Smets, Bart Goethals, and Brigitte Verdonk. Automatic vandalism detection in 

wikipedia: Towards a machine learning approach. In AAAI workshop on Wikipedia and 

artificial intelligence: An Evolving Synergy, pages 43–48, 2008.

[242] Angela M Smith. Character, blameworthiness, and blame: comments on george shers in 

praise of blame. Philosophical Studies, 137(1): pages 31–39, 2008.

[243] Angela M Smith. Moral blame and moral protest. Blame: Its nature and norms,  Oxford 

University Press Oxford, pages 27–48, 2013.

[244] Ahmad Soleimani and Ziad Kobti. Toward a fuzzy approach for emotion generation dynamics 

based on occ emotion model. IAENG International Journal of Computer Science, 41(1), 

2014.

[245] Efstathios Stamatatos. A survey of modern authorship attribution methods. Journal of the 

Association for Information Science and Technology, 60(3): pages 538–556, 2009.

158



[246] Bas R Steunebrink, Mehdi Dastani, and John-Jules Ch Meyer. The occ model revisited. In 

Proceedings of the 4th Workshop on Emotion and Computing, volume 65, pages 2047–2056, 

2009.

[247] Philip J Stone, Dexter C Dunphy, and Marshall S Smith. The general inquirer: A computer 

approach to content analysis. MIT press 1966.

[248] C. Strapparava and Valitutti A. Wordnet-affect: An affective extension of wordnet. In Pro-

ceedings of the 4th International Conference on Language Resources and Evaluation, pages 

1083–1086, 2004.

[249] Carlo Strapparava and Rada Mihalcea. Semeval-2007 task 14: Affective text. In Proceed-

ings of the 4th International Workshop on Semantic Evaluations, SemEval ’07, pages 70–74, 

2007.

[250] Carlo Strapparava and Rada Mihalcea. Semeval-2007 task 14: Affective text. In Proceedings 

of the 4th International Workshop on Semantic Evaluations, pages 70–74. Association for 

Computational Linguistics, 2007.

[251] Carlo Strapparava and Rada Mihalcea. Learning to identify emotions in text. In Proceedings 

of the 2008 ACM symposium on Applied computing, pages 1556–1560. ACM, 2008.

[252] Peter Frederick Strawson. Freedom and resentment, 1963.

[253] Alistair Sutcliffe. User-oriented requirements engineering. In Usability and Accessibility 

Focused Requirements Engineering (UsARE), 2014 IEEE 2nd International Workshop on, 

pages 1–8. IEEE, 2014.

[254] Maite Taboada. Discourse markers as signals (or not) of rhetorical relations. Journal of 

pragmatics, 38(4): pages 567–592, 2006.

[255] Maite Taboada and William C Mann. Rhetorical structure theory: Looking back and moving 

ahead. Discourse studies, 8(3):423–459, 2006.

[256] Matthew Talbert. Moral competence, moral blame, and protest. The Journal of ethics, 

16(1):89–109, 2012.

159



[257] Duyu Tang, Bing Qin, Ting Liu, and Qiuhui Shi. Emotion analysis platform on chinese 

microblog. arXiv preprint arXiv:1403.7335, 2014.

[258] Yi-jie Tang and Hsin-Hsi Chen. Emotion modeling from writer/reader perspectives using 

a microblog dataset. In Proceedings of IJCNLP Workshop on sentiment analysis where AI 

meets psychology, pages 11–19, 2011.

[259] Siddiqui Tanveer and U S Tiwary. Natural language processing and Information Retrieval. 

Oxford University Press, 2008.

[260] David Martinus Johannes Tax. One-class classification. PhD thesis, Delft University of 

Technology, 2001.
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