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Over recent years, typhoid fever has gained increasing attention with several cases

reporting treatment failure due to multidrug resistant (MDR) strains of Salmonella enterica

serovar Typhi. While new drug development strategies are being devised to combat the

threat posed by these MDR pathogens, drug repurposing or repositioning has become

a good alternative. The latter is considered mainly due to its capacity for saving sufficient

time and effort for pre-clinical and optimization studies. Owing to the possibility of an

unsuccessful repositioning, due to the mismatch in the optimization of the drug ligand

for the changed biochemical properties of “old” and “new” targets, we have chosen a

“targeted” approach of adopting a combined chemical moiety-based drug repurposing.

Using small molecules selected from a combination of earlier approved drugs having

phenalenone and furanone moieties, we have computationally delineated a step-wise

approach to drug design against MDR Salmonella. We utilized our network analysis-

based pre-identified, essential chaperone protein, SicA, which regulates the folding

and quality of several secretory proteins including the Hsp70 chaperone, SigE. To this

end, another crucial chaperone protein, Hsp70 DnaK, was also considered due to

its importance for pathogen survival under the stress conditions typically encountered

during antibiotic therapies. These were docked with the 19 marketed anti-typhoid

drugs along with two phenalenone-furanone derivatives, 15 non-related drugs which

showed 70% similarity to phenalenone and furanone derivatives and other analogous

small molecules. Furthermore, molecular dynamics simulation studies were performed to

check the stability of the protein-drug complexes. Our results showed the best binding

interaction and stability, under the parameters of a virtual human body environment, with

XR770, a phenaleno-furanone moiety based derivative. We therefore propose XR770, for

repurposing for therapeutic intervention against emerging and significant drug resistance

conferred by pathogenic Salmonella strains.

Keywords: drug repurposing, salmonellosis, multidrug resistance, chaperones, SicA, DnaK

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sunway Institutional Repository

https://core.ac.uk/display/161864303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2018.00402
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2018.00402&domain=pdf&date_stamp=2018-11-14
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:chandrajitl@sunway.edu.my
https://doi.org/10.3389/fcimb.2018.00402
https://www.frontiersin.org/articles/10.3389/fcimb.2018.00402/full
http://loop.frontiersin.org/people/600937/overview
http://loop.frontiersin.org/people/615575/overview
http://loop.frontiersin.org/people/534029/overview


Mujawar et al. Drug Re-purposing to Combat MDR Salmonella

INTRODUCTION

Bacterial infections have been a life threatening problem to the
human population throughout the existence of our species. In
addition, with the advent of antimicrobial resistance (AMR),
this has become an ever-increasing concern, contributing nearly
one fifth of total global deaths every year. With a worldwide
prevalence of probably five hundred million cases and hundreds
of thousands of deaths every year, human salmonellosis or
typhoid fever, has become a major cause for concern with the
emergence of multidrug-resistance (MDR) serovars and strains
of Salmonella enterica (Zaidi et al., 2008). The severity of the
disease, depends on host factors and the individual emerged
MDR serotype of Salmonella (Neckers and Tatu, 2008). Thus,
it has become imperative to replace conventional anti-typhoid
treatment strategies with new ones more suitable for drug-
resistant pathogens. However, designing novel effective drugs
against the most important virulence protein targets, choosing
from the whole genome of Salmonella sp., is a highly challenging
task.

To encounter the aforementioned threats and challenges
of MDR, new strategies like drug repurposing have surfaced
as alternative approaches to novel therapeutics (Rangel-Vega
et al., 2015). This include computational drug repurposing
strategies based on transcriptional signatures, networks, ligands,
target structures using chemogenomics, machine learning,
and molecular docking techniques (March-Vila et al., 2017).
Nevertheless, drug repurposing approach may have some
limitations on its successful outcome (Aubé, 2012). For example,
the drug might act at the same target but with different outcomes
that depend on the new active site of biological action of the
repurposed drug (Aubé, 2012). Again, different structure-activity
relationshipmight be possible for old and new drug with different
biochemical targets, leading to an obsolete solution to be replaced
by further repurposed drugs (Aubé, 2012). However, a screening
of drugs identified for repurposing has proven to be useful
when used together in combination thereby making it the most
competing strategy to adapt the current pharmacopeia for new
uses (Aubé, 2012).

To repurpose drug(s) through a network based approach, the
technique of computationally analyzing the protein interaction
networks for Salmonella could be employed (Pan et al., 2015).
This pathogen is found to encode a Type III Secretion System
(T3SS) within a pathogenicity island that is essential for virulence
(Tucker and Galán, 2000). All T3SSs require the function of a
family of low-molecular-weight proteins that aid the secretion
process by acting as secretion factors (Tucker and Galán, 2000).
One such secretion associated protein is the chaperone SicA,
identified as a secretion factor from the network based approach
of the protein interactome analysis of Salmonella pathogenicity
islands (SPI) and two component signal transduction systems
(TCS) (Lahiri et al., 2014). In summary, chaperones aid in
folding, packaging, and secretion of synthesized proteins besides
inhibiting aggregation due to stress factors like heat shock,
thereby striking a balance between refolding and proteolytic
degradation (Liberek et al., 2008). The potential of exploiting
pathogenic chaperones as drug targets has also been reported

(Neckers and Tatu, 2008). Notably, chaperones that support
folding of newly synthesized proteins, namely Hsp60, Hsp70, and
Hsp90, have distinct mechanisms of action (Fink, 1999). Most
of these heat shock proteins (HSP) are constitutively synthesized
but are further induced in response to stress conditions, including
antibiotic therapies (Zügel and Kaufmann, 1999). In fact, DnaK,
the bacterial homolog of human Hsp70, has been found to play
an important role in pathogen survival (Chiappori et al., 2015).
Moreover, previous work has shown that the chaperone SicA, is
auto-regulated and required for the transcription of sigE (Darwin
and Miller, 2001). SigE is another Hsp70 molecular chaperone
protein required for stabilization of SopB/SigD secretory proteins
through prevention of premature association of effectors and
their degradation prior to secretion (Darwin et al., 2001). All
of these proteins could, therefore, form the new targets for
the newly proposed drug for repurposing. Targeting such HSPs
may, therefore, help to combat pathogen virulence by reducing
its capacity to respond to other treatments (Neckers and Tatu,
2008). Such treatments have been linked to the therapy of
inflammatory diseases and cancer which is possible due to the
molecular chaperone and antigen-binding properties of the HSPs
(Calderwood et al., 2012).

To repurpose drugs through a ligand based approach, a
combination of the chemical moieties of individually approved
and marketed drugs could be used. Typically, drugs used
mostly for treating infectious diseases caused by gram positive
pathogens contain phenalenone moieties (March-Vila et al.,
2017). Again, furanonemoiety-based drugs have gained attention
for treating other infectious (Chrystal et al., 2007). To address
the pressing need for better treatment alternatives for MDR
Salmonella, here we have used a combined phenaleno-furanone
moiety-based ligand XR770, which was previously shown to be
more preferable in performing as dual TCS inhibitor against
the catalytic domain of the histidine kinase BaeS and the
dimerization domain of the response regulator BaeR (Sivakumar
et al., 2013). In summary, using molecular dynamics simulation,
we have screened current typhoid drugs, non-typhoidal drugs
and Hsp70 modulators to propose XR770 as a drug candidate
against plausible chaperone protein targets, namely SicA, DnaK,
and SigE compared to our reference TCS protein pairs, SsrA/SsrB
and OmpR/EnvZ of the T3SS. We anticipate that targeting such
molecular chaperones might help in the rational development
of effective drugs for salmonellosis and thus, future control of
the pathogenic bacterial growth, in an era of rapidly increasing
antibiotic resistance. Furthermore, our combined-moiety ligand-
based molecular docking approach via indispensable targets, will
likely provide new opportunities of drug repurposing for MDR
Salmonella.

MATERIALS AND METHODS

Selection of Ligands
Ligand screening was performed with the aim of finding existing
drugs for treating systemic infections like typhoid (Kaur et al.,
2011). The molecular structures of the 19 typhoid-related drugs
were obtained from Drug Bank (Wishart et al., 2017), namely
Amoxicillin, Azithromycin, Ceftriaxone, Chloramphenicol,
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Ciprofloxacin, Levofloxacin, Ofloxacin, Sulfamethoxazole,
Trimethoprim, Rolitetracycline, Auranofin, Imiquimod,
Alverine, Lymecycline, Digitoxin, Rimonabant, Isosorbide
Mononitrate, Acenocoumarol, Doxycycline. Structures of
phenalenone-furanone derivatives XR770 and XR587 were
produced using MarvinSketch (Csizmadia, 1999). Furthermore,
we constructed a control set of 15 other drugs, not known to cure
typhoid, but already used to treat infections caused mostly by
gram positive bacteria like Staphylococcus aureus, Streptococcus
pneumonia etc. (Supplementary Table 2). The structures of
these drugs, containing moieties of either phenalenone or
furanone, were obtained from DrugBank viz. Moxifloxacin,
Grepafloxacin, Lomefloxacin, Gatifloxacin, Sparfloxacin,
Temafloxacin, Nemonoxacin, Besifloxacin, Finafloxacin,
Cadazolid, Nadifloxacin, Sitafloxacin, Clinafloxacin, Pilocarpine,
Matairesinol. The non-typhoidal drugs were found to possess
70% similarity to Phenaleno-furanone derivatives such as XR770
and XR587 (Sivakumar et al., 2013). Also, Hsp70 modulators
(analogous to Hsp90 inhibitors) were also used in this study
that are known to have significant effects on chaperone function
(Patury et al., 2009).

Selection of Targets
The secretion associated chaperone protein, SicA, was selected
on the basis of previous work (Lahiri et al., 2014) on the
interactome analysis of SPI and TCS. Another chaperone protein,
DnaK, of the Hsp70 class, was identified from the top-most
centrality ranking protein list of the whole genome protein
interaction network analysis of Salmonella Typhimurium strain
LT2 (Mujawar & Lahiri, unpublished data). For a comparison
with these identified targets, a similar Hsp70 chaperone protein,
SigE, required for the stabilization of secretory proteins, was
selected. These chaperone proteins were compared with the TCS
protein pairs of SsrA/B and EnvZ/OmpR as controls for the
binding efficacy of the ligand XR770 previously reported to
be effective for the TCS pair BaeS/R of Salmonella (Sivakumar
et al., 2013). As both the serovars of Salmonella, namely
Typhimurium and Typhi share almost similar genes/proteins, the
aforementioned proteins of Typhimurium have been utilized in
the context of Typhi as well. The sequences of target chaperone
proteins, SicA, DnaK, SigE, and the TCS proteins SsrA, SsrB,
OmpR and EnvZ were collected from UniprotKB database
with the accession IDs are P69066, Q56073, O30917, Q8ZPP5,
O54305, P0AA19, and P0AA20 for Salmonella Typhimurium
and P69065, Q8Z9R1, Q8Z7R2, Q8Z6K9, Q8XFU4, P08982, and
P41406 for Salmonella Typhi, respectively.

Target Structure Modeling
As the selected proteins above did not have any solved X-ray
crystallographic or NMR 3D structures in Protein Data Bank
(PDB), we have generated homology models and validated their
structure to pursue further docking studies.We have used Phyre2
(Kelley et al., 2015), SWISS MODEL (Schwede et al., 2003)
and I-TASSER (Zhang, 2008) and VERIFY 3D (Bowie et al.,
1991) protein modeling servers to generate the structures and
evaluated them through Ramachandran plot, Q-mean score, and
Z-score listed in SAVES server. Consensus studies of different

models generated by above mentioned servers was carried out
to identify the best structure. Table 1 represents the details of
protein structures that were used for further docking studies.

Binding Site Identification for Docking
To have an understanding of the binding activity, active sites
or binding pockets of the selected proteins were determined
by using CASTp server (Computer Atlas of Surface Topology
of protein) (Dundas et al., 2006). AutoDock v4.2 was used to
generate grid box and map files for docking (Morris et al., 2009).
The generated grid coordinates viz. X, Y, and Z were stored
in a grid parameter file (GPF). The atoms such as Hydrogen
(H), chlorine (Cl), bromine (Br), sulfur (S), phosphorus (P), and
fluorine (F) were added, as appropriate, to set the map types to
generate the grid box that covers the active site. The span of
the active sites in the 3D structures of SicA, DnaK, SigE, SsrA,
SsrB, OmpR, and EnvZ on X, Y, & Z coordinates were 40, 7,
and 17 Å, respectively. The grid dimensions for the receptor for
docking were taken as 60, 60, and 60 Å, respectively, to ensure
that the search spaces are large enough for the ligands to rotate
in. The execution of GPF files using MGLTools v1.5.7 was used
to generate the map files of the atoms mentioned above to be
used for docking. Upon GPF execution, grid log files (GLG) were
generated which consisted of all the atomic map files to be used
as the input parameter for docking calculated by the program
AUTOGRID (Morris et al., 2009).

Ligand Screening Against Salmonellosis
The aforementioned existing drugs, along with the hypothesized
signal transduction inhibitors (Chrystal et al., 2007), were used
for chaperone protein inhibition as shown in Figures 1, 2. XR770
and XR587 were further analyzed on the basis of Lipinski
Rule of five. ADME and Toxicity testing were also done using
Schrodinger Software (Friesner et al., 2006).

Lipinski’s Rule Prediction of Selected
Drugs
To evaluate drug likeness and determine if a chemical compound
with a certain pharmacological or biological activity has
properties that would make it a likely orally active drug in
humans, we have carried out the Lipinski’s rule prediction
method for the selection of drugs. Comparison of the marketed
drugs reflected some deviation to the above rule but are still used
for oral administration with the given inhibitory concentration
(Tables 2, 3).

Protein-Ligand Docking
To perform the docking process, a genetic algorithm is
used to furnish the docking conformations, binding energies,
interactions etc. For the docking of ligands into intended protein
binding pockets (Kitchen et al., 2004) and to approximate
the binding affinities of the ligands, the molecular docking
program AutoDock Vina was used (Trott and Olson, 2010).
Docking studies were performed on SicA, DnaK, SigE, SsrA, SsrB,
OmpR, and EnvZ against 21 typhoid related drugs (Table 4 and
Supplementary Figure 2), 15 non-typhoidal drugs (Table 5 and
Supplementary Figure 3), and 7 Hsp70 modulators (Table 6 and
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TABLE 1 | Comparison of the 3D structures generated for SicA, DnaK, and SigE using different protein modeling servers.

Protein Server Q-mean Z-score Favored region(%) Disallowed region(%) SASA (A2)

SicA PHYRE2 0.765 −0.23 95.5 0.0 101

SWISSMODEL 0.727 −0.55 94.7 0.0 97

I-TASSER 0.481 −2.84 87.0 0.0 103

VERIFY 3D 0.761 −0.26 93.2 0.0 91.6

DnaK PHYRE2 0.686 −0.86 89.7 0.2 106

SWISSMODEL 0.621 −0.81 81.0 0.5 105

I-TASSER 0.689 −0.80 90.5 0.1 106

VERIFY 3D 0.692 –0.67 89.4 0.1 106

SigE PHYRE2 0.712 −0.40 89.2 0.2 91

SWISSMODEL 0.741 −0.26 80.1 0.2 96

I-TASSER 0.622 –0.73 91.6 0.0 99.1

VERIFY 3D 0.644 –0.23 89.2 0.2 91.3

SsrA PHYRE2 0.721 −0.43 90.1 0.1 92.3

SWISSMODEL 0.702 −0.55 89.0 0.1 85

I-TASSER 0.753 –0.82 92.2 0.0 89.1

VERIFY 3D 0.719 −0.56 90.2 0.0 89.2

SsrB PHYRE2 0.681 −0.81 92.2 0.2 101

SWISSMODEL 0.723 –0.80 90.2 0.1 89.2

I-TASSER 0.695 −0.83 90.0 0.2 88.1

VERIFY 3D 0.69 −0.81 90.2 0.1 88.2

OmpR PHYRE2 0.721 −0.29 92.5 0.0 96.1

SWISSMODEL 0.786 −0.43 96.2 0.0 104.0

I-TASSER 0.681 –0.43 94.3 0.0 93.1

VERIFY 3D 0.732 –0.43 94.9 0.0 101

EnvZ PHYRE2 0.771 −0.36 94.6 0.0 101

SWISSMODEL 0.762 −0.33 94.4 0.0 100

I-TASSER 0.769 –0.33 93.2 0.0 98.3

VERIFY 3D 0.786 –0.34 94.4 0.0 98.0

Bold values indicates best representative.

FIGURE 1 | Structure of signal transduction inhibitors XR770 (a phenalenone derivative) produced by Penicillium cf. herquei 20421 and XR587 (streptopyrrole)

fermentation product of actinomycete strain.

Figure 2). The protein and the ligand files were changed into
the PDBQT format containing the protein atom coordinates,
partial charges and deliverance parameters. Auto Grid boxes were

predetermined around the active site of the protein based on the
Lamarckian Genetic Algorithm (LGA) and the obtained dock
scores were reported in kcal/mol. The utilized docking protocol
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FIGURE 2 | Structures of Hsp70 modulators (analogous to Hsp90 inhibitors) with selective chemical scaffolds that target the varied functions of chaperones.

comprised 35 autonomous iterations per ligand. The docked
log files (DLG) calculated by the program AutoDock consisted
of detailed information about binding energy, hydrogen bonds,
interacting residues etc. which were further used for the docking
analysis (Sousa et al., 2006).

Molecular Dynamics Simulation of SicA,
DnaK, and SigE Protein Complex From S.

Typhimurium and S. Typhi
To study the macromolecular interactions of SicA, DnaK,
and SigE with XR770, simulation studies were performed
using MOE (Chemical Computing Group, Montreal). Multiple
conformations of the SicA, DnaK, and SigE complex were
prepared based on minimum binding energy and number of
hydrogen bonds. For the SicA-XR770 protein ligand complex,
three docked poses were simulated as three replicates. All
structures were corrected using the clean protein application
in Discovery Studio (DS) 2.5 (Accelrys Inc., San Diego,
CA). This preparation of all molecular files followed by
Molecular Dynamics (MD) simulations were conducted using
the previously described energy minimized files. The all-atom
CHARMM 27 force field was assigned to all molecules for
topology generation, and the explicit extended simple point
charge (SPC/E) SPC216 water model was applied to solvate the
molecules. A triclinic box was generated with a minimum of
1.0 nm distance from the edges of the box to maintain periodic
boundary conditions throughout the simulations. Adequate
counter ions (Cl− and Na+) were added to the solvent to keep
the system neutral at physiological ionic strength (0.10M salt
concentration). Steepest descent minimization was performed
until the maximum force reached below 1,000.0 kJ mol−1 nm−1.
Before the MD simulations, the systems were equilibrated using
position restrained (PR) for 100 ps of isochoric-isothermal
(NVT) equilibration at 300K. This was followed by an
equilibration under an isothermal-isobaric (NPT) ensemble for

100 ps at the same temperature and 1.0 bar of pressure without
position restraints. In NVT and NPT ensembles, the short range
non-bonded interactions were defined as van der Waals (VDW)
and electrostatic interactions for particles within 1.0 nm. The
well-equilibrated systems SicA-XR770, DnaK-XR770, and SigE-
XR770 were used to run 100 ns production of MD simulation
in three replicates using velocity rescale thermostat. The long-
range electrostatic interactions i.e., Particle Mesh Ewald (PME)
treatments were also implemented as described in NVT and NPT
ensembles (Hansson et al., 2002; Shattuck, 2011).

RESULTS

Docking Analysis
Docking analysis of all the docked complexes of the
aforementioned proteins viz. SicA, Dnak, SigE, SsrA, SsrB,
OmpR, and EnvZ against the set of 19 typhoid related drugs, 15
non-typhoidal drugs and 7 Hsp70 modulators was performed.
The docking outcome was analyzed on the source of ranked
clusters of compound conformations with the binding energy
values of various ligands as shown in Tables 4–6. High affinity
is related to a high release of the free energy upon binding. The
binding pattern of XR770 and XR587, along with the list of
marketed drugs against typhoid and diarrhea, were compared
for their efficiency against SicA, DnaK, and SigE. Based on the
binding pattern of the aforementioned proteins, SicA showed
Lys143 as the most consistent residue for all the drugs with
the highest binding energy being −9.98 kcal/mol for XR770.
For DnaK, the prominent residues were Thr11 and Gly197
showing the highest binding energy (−8.76 kcal/mol) with
XR770. Similarly, SigE showed Thr69 and Arg84 to be the
residues at the active sites for all the drugs. Interestingly, XR770
showed the highest binding energy of −11.48 kcal/mol with
SigE which, notably, was the strongest binding affinity amongst
all the proteins compared. Moreover, the chaperone proteins
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TABLE 2 | Physicochemical properties of typhoid related drugs and phenaleno-furanone derivatives.

Drugs Compound_ID Molecular weight g/mol XLOGP3 HBond donor HBond acceptor Inhibitory conc.

(mol/ Kg)

Acenocoumarol DB01418 353.33 2.5 1 6 2.7869

Alverine DB01616 281.443 5.3 0 1 2.6539

Amoxicillin DB01060 365.404 −2.0 4 7 1.7036

Anacardic Acid 167551 348.527 9.5 2 3 NA

Auranofin DB00995 678.483 NA 0 10 3.1438

Azithromycin DB00207 748.996 4.0 5 14 2.5423

Ceftriaxone DB01212 554.571 −1.3 4 13 2.1681

Chloramphenicol DB00446 323.126 1.1 3 5 2.2247

Ulexone C 14583602 420.461 4.3 2 6 NA

CID_21591963 21591963 438.476 3.4 3 7 NA

Ulexin C 5323553 418.445 4.4 2 6 NA

Osajin 95168 404.462 5.9 2 5 NA

Ciprofloxacin DB00537 331.347 −1.1 2 7 NA

Digitoxin DB01396 764.95 2.3 5 13 4.4764

Doxycycline DB00254 444.44 −0.7 6 9 2.3159

Ergonovine DB01253 325.412 1.8 3 3 3.3967

Imiquimod DB00724 240.31 2.6 1 3 2.5683

Isosorbide_Mononitrate DB01020 191.139 −0.4 1 6 2.0753

Levofloxacin DB01137 361.373 −0.4 1 8 NA

Lymecycline DB00256 602.641 −4.4 9 13 2.5422

Ofloxacin DB01165 361.373 −0.4 1 8 2.1639

Rimonabant DB06155 463.787 6.5 1 3 2.5418

Rolitetracycline DB01301 527.574 −0.9 6 10 2.7094

Sulfamethoxazole DB01015 253.276 0.9 2 6 1.6422

Trimethoprim DB00440 290.323 0.9 2 7 1.7701

XR587 NA 281.611 −0.5 2 7 NA

XR770 NA 512.301 −0.6 2 8 NA

Bold values indicates best representative.

i.e., SicA, DnaK, and SigE, showing commendable interaction
with efficient binding energies with XR770, were considered for
further molecular dynamics simulation studies (Figure 3).

Binding Interactions Between SicA, DnaK,
and SigE With XR770 Protein-Ligand
Complex
Protein-ligand interaction depends on some bonded and non-
bonded interactions. To make a stable protein-ligand complex,
as well as for proper folding of proteins several H-bonds,
nonbonded electrostatic and van-der Waals (vdW) interactions
(Table 7 and Supplementary Figure 5). Among the amino acid
residues of SicA, the residues participating in protein-ligand
formation are Lys143 for S. Typhimurium and Arg61, Gln86,
Lys89 for S. Typhi which had more than −70 kJ mol−1 total
electrostatic and vdW energy terms. Similarly, in DnaK Thr11,
Gly197 for S. Typhimurium and Arg167, Asp38, and Ile418 for S.
Typhi and in SigE Arg84, Thr69 for S. Typhimurium and Ala74
for S. Typhi are the participating residues. Thus, the amino acid
residues from each of the complex i.e., SicA, DnaK, and SigE were
maximally involved in the interactions with XR770 throughout

MD simulation processes (Supplementary Figure 4). In order to
analyse the binding interactions between each chaperone protein
complex accurately, hydrogen bond pairing during all frames
of the MD production run were calculated in MOE with bond
pair distances within 3.6 Å and angles at 35◦. It was found
that, several amino acid residues formed hydrogen bonds in the
protein-ligand complex. MD simulation study showed the clear
indication of each amino acid interaction with the hydrogen
bond formation. Maximum occupancies of the following amino
acids were considered separately for each complex. The solvent
accessible surface area of the SicA, DnaK, and SigE complex
became higher after simulation. The sum of solvent accessible
surface area of SicA, DnaK, and SigE complex was 424 nm2

whereas for the DnaK and SigE complex it was 533 and 460 nm2,
respectively. The spatial changes denote that the XR770 complex
with each of the proteins becamemore accessible for free binding.

DISCUSSION

Multidrug resistance has increased dramatically in the last two
decades. Therefore, drug repurposing, is gaining in importance.
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TABLE 3 | Physicochemical properties of 70% similar phenalenone-furanone derivatives.

Drugs Compound_ID Molecular weight g/mol XLOGP3 HBond donor HBond acceptor Inhibitory Conc.

(mol/ kg)

Moxifloxacin DB00218 401.438 0.6 2 8 2.3267

Grepafloxacin DB00365 359.401 −0.2 2 7 2.0923

Lomefloxacin DB00978 351.354 −0.8 2 8 1.9971

Gatifloxacin DB01044 375.4 −0.7 2 8 2.3029

Sparfloxacin DB01208 392.407 0.1 3 9 1.9265

Temafloxacin DB01405 417.388 0.6 2 9 2.0973

Nemonoxacin DB06600 371.437 0.3 2 7 NA

Besifloxacin DB06771 393.84 0.7 2 6 2.3263

Finafloxacin DB09047 398.394 −0.5 2 8 NA

Cadazolid DB11847 585.561 1.4 3 10 NA

Nadifloxacin DB12447 360.385 0.8 2 6 NA

Sitafloxacin DB13261 873.68 0.2 2 6 NA

Clinafloxacin DB14025 365.79 0.3 2 6 NA

Pilocarpine* DB01085 208.256 1.1 0 3 2.6826

Matairesinol* DB04200 358.385 2.7 2 5 2.4961

The asterisk (*) indicate the furanone derivatives.

TABLE 4 | Interaction pattern of SicA, DnaK and SigE with the corresponding interacting residues and Binding energy against typhoid related drugs.

Drugs SASA Interacting residues Binding energy H bonds

(A2) SicA DnaK SigE SicA DnaK SigE SicA DnaK SigE

Amoxicillin 249 Lys143 Thr11,Lys70 Arg84,Thr69 −4.97 −6.91 −8.24 1 2 2

Azithromycin 225 Lys143 NA Thr69 −5.74 NA −7.07 1 NA 1

Ceftriaxone 167 Lys143 Thr11,Lys70 Arg84,Thr69 −2.96 −6.2 −7.2 1 2 2

Chloramphenicol 197 Lys143 Thr11,Gly197 Arg84,Thr69 −5.73 −6.85 −6.49 1 2 2

Ciprofloxacin 201 Lys143 Thr12,Lys270 Arg84,Thr69 −5.38 −8.18 −6.92 1 2 2

Digitoxin 236 Lys143 NA Arg84,Tyr83 −9.89 NA −8.07 2 NA 2

Ergonovine 240 NA Thr11,Lys70,Gly197 Arg84,Tyr83 NA −8.03 −7.63 NA 3 2

Imiquimod 155 NA Gly197 Arg84,Thr69 NA −6.69 −7.16 NA 1 2

Isosorbide 172 NA Thr11,Gly197 Arg84,Thr69 NA −5.94 −4.84 NA 2 2

Mononitrate

Levofloxacin 159 Lys143 Thr11,Lys70,Gly197 Arg84,Thr69 −5.49 −7.05 −7.39 1 3 2

Lymecycline 285 NA Thr11,Lys70 Arg84,Thr69 NA −8.05 −9.29 NA 2 2

Ofloxacin 174 Lys143 Thr11,Lys70,Gly197 Arg84,Thr69 −5.4 −7.69 −7.53 1 3 2

Rimonabant 104 NA NA Arg84 NA NA −9.21 NA NA 1

Rolitetracycline 223 NA NA Arg84,Thr69 NA NA −9.45 NA NA 2

Sulfamethoxazole 201 Lys143 Thr11,Lys70,Gly197 Arg84,Thr69 −5.22 −7.22 −8.29 1 3 2

Trimethoprim 263 Lys143 Thr11, Thr12, Lys55 Arg84,Thr69 −4.24 −7.4 −6.55 1 3 2

XR770 197 Lys143 Thr11,Gly197 Arg84,Thr69 -9.98 -8.76 -11.48 1 2 2

XR587 129 NA Thr11,Lys70,Gly197 Thr69 NA −7.04 −7.69 NA 3 1

Bold values indicates best representative.

The analysis and prediction of the activity of existing and
novel drug ligands for new protein targets is based on
the concept that similar compounds tend to have similar
biological properties. Similarly, incorporating a structure based
approach focusses on obtaining proteins likely to have similar
functions and/or to recognize similar ligands. Thus, in the
field of drug repurposing, protein comparison is used as a

method to identify secondary targets of an approved drug.
To hypothesize a new target for treating MDR Salmonella,
we have explored the results of a network based approach
(Lahiri et al., 2014) to identify the most indispensable proteins
important for available as well as next generation drugs.
The present study further develops this work at a structural
level.
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TABLE 5 | Interaction pattern of SicA, DnaK, and SigE with the corresponding interacting residues and binding energy against non-typhoidal drugs.

Drugs SASA Interacting residues Binding energy H bonds

(A2) SicA DnaK SigE SicA DnaK SigE SicA DnaK SigE

Moxifloxacin 265 Lys143 Lys70 Arg84 −5.21 −6.02 −6.30 1 1 1

Grepafloxacin 187 Lys143,Thr21 Thr11,Gly197 Thr69,Arg84 −6.42 −6.38 −6.31 1 2 2

Lomefloxacin 148 Lys143 Lys70, Thr11 Arg84 −5.96 −6.22 −7.24 1 2 1

Gatifloxacin 214 Lys143,Thr21 Thr11,Gly197 NA −6.76 −6.98 −6.67 2 2 NA

Sparfloxacin 216 Lys143 Thr11,Lys70 Thr69,Arg84 −5.18 −6.82 −5.23 1 2 2

Temafloxacin 191 Lys143 Gly197 Arg84 −6.11 −6.06 −6.15 1 1 1

Nemonoxacin 230 Thr21 Thr11, Lys70 Thr69 −6.48 −6.32 −6.33 1 2 1

Besifloxacin 228 Lys143 NA NA −4.20 NA NA 1 NA NA

Finafloxacin 165 NA Gly197, Lys70 NA −5.28 NA NA NA 2 NA

Cadazolid 214 Lys143,Thr21 Thr11, Gly197 Arg84 −5.94 −6.00 −5.32 2 2 1

Nadifloxacin 148 Lys143 NA Arg84,Thr69 −7.21 NA −6.29 1 NA 2

Sitafloxacin 191 Lys143,Thr21 Thr11,Lys70,Gly197 Arg84,Thr69 -7.57 -7.84 -7.39 2 3 2

Clinafloxacin 264 NA Thr11, Gly197 NA NA −7.66 NA NA 2 NA

Pilocarpine 165 Lys143 Thr11, Gly197 Arg84 −6.60 −6.85 −6.08 1 2 1

Matairesinol 255 Lys143 Thr11,Gly197 Arg84 −6.51 −6.73 −7.52 1 2 2

Bold values indicates best representative.

TABLE 6 | Interaction pattern of SicA, DnaK, and SigE with the corresponding interacting residues and Binding energy against Hsp70 modulators.

Drugs SASA Interacting residues Binding energy H bonds

(A2) SicA DnaK SigE SicA DnaK SigE SicA DnaK SigE

EGCG 151 Lys143 Gly197,Thr11 Arg84,Thr69 −6.93 −10.54 −10.87 1 2 2

MKT-077 189 NA Lys121 Arg84 NA −7.24 −9.07 NA 2 1

SW02 143 NA Lys70 Arg84,Thr69 NA −7.95 −8.21 NA 2 1

115–7c 146 Lys143 Gly197,Thr12 Arg84,Thr69 −7.31 −8.69 −9.86 1 2 2

Compound 1 229 Lys143 Thr12 Arg84,Thr69 −8.35 −8.39 −10.51 1 1 1

NSC-630668 183 NA NA Arg84,Thr69 NA NA −8.02 NA NA NA

MAL3-101 158 Lys143 NA Arg84,Thr69 −8.69 NA −6.53 1 NA NA

Bold values indicates best representative.

Furthermore, recent progress in proteomics has significantly
increased the plausible number of macromolecular targets as
candidates for drug discovery. Molecular docking studies have
been successfully exploited in drug repurposing. Such techniques
are used to predict the geometry and binding energy of the
interaction of a protein in complex with a small-molecule ligand.
Therefore, the method can be used to predict if a given drug
is potentially able to bind other targets. The ability of such
target proteins to be bound by the approved drugs shows the
druggability of these proteins and indicates their potential as drug
targets for the treatment of disease. Additionally, the binding
between these proteins and the drugs could also probably indicate
their involvement in the mechanism of action of the drugs.
Such mechanism might entail inhibition of the drugs, which
is exhibited computationally through the efficiency of docking
between proteins and ligands, and largely depends upon the
binding energy. Through molecular simulation studies, we have
observed the stability in the binding energy of the target-ligand
complexes and consistency of their interacting residues.

We therefore gain an insight into the ligand specificity of a
protein which depends on the consistently binding active site
residues of the target proteins. Thus, the homology models
of SicA, DnaK, SigE, SsrA, SsrB, EnvZ, and OmpR were
used for further docking studies (Table 1). Among the selected
drugs viz. 19 typhoid related, 15 non-typhoidal, and 7 Hsp70
modulators, some do not obey Lipinski’s rule of 5 but are
still in the market and thus, were further considered for drug
repositioning (Tables 2, 3). Blind docking was performed for all
the chaperones and TCS proteins. This was done to avoid any
bias of predictive binding sites of homology modeled proteins
and yet, eventually confirm the binding pockets through the
same binding residues of each different ligands at the same
site, yielding good binding energy against each chaperone and
TCS protein. To confirm the binding pocket with the same
residues of interaction, loop docking was performed with 35
conformations. To this end, structural alignment of the pockets
was also performed for chaperone and TCS proteins against
the selected pockets (Supplementary Figure 1). The structural
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FIGURE 3 | The best docked complex of DnaK, SicA, and SigE with XR770, a histidine kinase inhibitor. (A) DnaK with XR770, interacts with −8.76 binding energy,

the target residues being Gly197 and Lys55. (B) SicA with XR770, interacts with −9.78 binding energy, the target residue being Lys143. (C) SigE with XR770,

interacts with −11.48 binding energy, the target residues being Thr69 and Arg84.

TABLE 7 | Representative parametric values for predocked and postdocked conformations with respect to temperature, potential energy, pressure and RMSD.

Protein 3D structure (predocked) Temperature (300K) Potential energy(Kcal/mol) Pressure (bar) RMSD (A0)

SicA 298 −2942.36 130.0 1.15

DnaK 299 −2761.78 139.2 1.21

SigE 298 −2789.245 125 1.17

Protein-ligand complex (postdocked) Temperature (300K) Potential energy(Kcal/mol) Pressure (bar) RMSD (A0)

SicA-XR770 299 −2301.36 145.5 1.32

DnaK–XR770 296 −2263.78 160.10 1.19

SigE–XR770 298 −2298.245 170 1.26

alignment results showed the proper fitting of the pockets as each
protein has the same binding site, though the sequence length
varies from protein to protein. However, the docking sites of
each proteins are different, making it difficult to interpret the
difference between them emerging from the structural alignment
of the proteins (Supplementary Figure 1).

To have an insight of the same, the most effective
conformation, with the highest binding energy for every ligand,
was chosen from 30 assigned iterations with the formation
of hydrogen bonds between the ligand and protein. Our
docking results with XR770 showed hydrogen bond formation
with Lys143 of SicA having −9.78 kcal/mol binding energy.
Moreover, hydrogen bonds with Lys55 and Gly197 of DnaK

(−8.76 kcal/mol) and those with Arg84 and Thr69 of SigE
(−11.48 kcal/mol) were observed in S. Typhimurium (Figure 3).
Similarly, S. Typhi showed hydrogen bond interactions with
Arg61, Gln86, and Lys89 of SicA, Arg167, Asp388, and
Ile418 of DnaK and Ala74 of SigE, with respective binding
energies of −9.85, −9.57, and −7.35 kcal/mol (Tables 4, 5).
These interacting residues showed consistency and thus, ligand
specificity, conferring highest binding energy from the available
conformations. Notably, XR770, Sitafloxacin and Compound 1
topped the best in the individual set amongst the three sets of
drugs i.e., 19 typhoid related, 15 non-typhoidal, and 7 Hsp70
modulators, respectively. Again, XR587 showed comparatively
slightly less binding energy thanXR770, which has the probability
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to show better results if explored against different selected targets.
Even though functions of some of the non-typhoidal drugs
are unknown (Supplementary Table 2), they show interaction
against the selected proteins with lower binding energies
compared to XR770. We have also incorporated pharmacophore
based prediction to analyse the common features that reveal the
activity of the drugs. However, pharmacophore based screening
was not performed because our objective was to check the
available marketed typhoidal and non-typhoidal drugs against
the target proteins selected i.e., chaperone and TCS. The common
pharmacophore features for the best binding drugs are shown in
Supplementary Figure 6. These observations might help us to
delineate the broader perspective of typhoid drug repositioning
by either considering XR770 with the fused phenaleno-furanone
moiety as the repurposed ligand or the chaperone proteins like
SicA, DnaK, and /or SigE as the network based new targets
and pose them for experimental studies for revealing potential
side-effects, if any.

To determine the efficacy of inhibition, a comparative account
of the aforementioned binding patterns of XR770 showed it to
be conferring the greatest binding affinity among the selected
anti-typhoid drugs, like Amoxicillin and Ciprofloxacin (Table 2).
In fact, resistance to the approved drugs, like Amoxicillin and
Ciprofloxacin, in systemic infection, has been known in patients
with typhoid and diarrhea (Cui et al., 2008). Besides, these
drugs are also known to cause many unpleasant side effects,
such as stomach pain, nausea, vomiting, vaginal itching or
discharge, headache etc. (Leegaard et al., 1996). The toxicity for
patients against typhoidal and non-typhoidal drugs is given in
Supplementary Tables 3, 4.

Notably, XR770 in comparison to other drugs in this study
showed more consistent amino acid residues and highest binding
affinity toward the target proteins. Moreover, the greater number
of hydrogen bonding formed suggests more stability of the
binding interactions as are also conceived through molecular
dynamics simulation. Furthermore, in order to address the issue
about specificity, the parameters like relatively high difference in
binding energy and binding to specific active site residues in the
protein has been considered to project XR770 as the potential
candidate.

Pertaining to the above results observed, thus, proving the
effectiveness of the aforementioned selected proteins as drug
targets could be the real challenge. To cater to this need, we have
incorporated other known virulent TCS proteins of Salmonella
to be compared with the chaperones. In all the cases, XR770
turned out to be the promising chemical ligand in inhibiting
the selected targets viz. SicA, DnaK, SigE, SsrA, SsrB, EnvZ, and
OmpR. Based on the least energy score, best docked complex was
compared with the interaction pattern of XR770. Comparative
study of docking interaction pattern of the above listed proteins
was also performed in Salmonella typhi as well as shown in
Supplementary Table 1 which revealed similar results.

Potency of a drug does not depend solely on its overall binding
affinity with the target(s). On the contrary, it is a result of
the complex interaction of the drug binding efficacy, namely
the ability of the drug to exhibit a biological response upon
interaction with the target protein. This interaction may be an

agonist or antagonist depending on the physiological response.
Based on the docking energy scores and ADME properties, it
was found that XR770 has lower energy scores revealing higher
binding affinity toward the active site. The binding follows
Lipinski’s rule of five with a little higher molecular weight which
is acceptable when compared to several marketed drugs.

The binding free energies for the stable protein-ligand
complexes with XR770 for SicA, DnaK, and SigE were
−2301.36, −2263.78, and −2298.245 kJ mol−1, which also
denote stability with respect to temperature and pressure
(Supplementary Figure 5 and Table 7). The results of the
MD simulation run clearly indicated that these protein-ligand
complexes were held together by strong intermolecular non-
covalent forces. These strong binding interactions between the
XR770 and chaperone proteins make the complexes highly
stable and fit for possible involvement in various reactions
(Supplementary Figure 4).

Despite having such exemplary computational binding
activities against the chaperone and TCS proteins, it is
worthwhile to mention that XR770 has been reported to have
only inhibitory effect on NRII (or NtrB) histidine kinase from E.
coli but no effect is reported for the whole cell bacteria (Chrystal
et al., 2007; Bem et al., 2014). However, in the absence of proper
knowledge of the assay done to check for the activity of XR770, it
can be considered as the main caveat of this study.

CONCLUSION

From our study, chaperone proteins SicA, DnaK, and SigE along
with the TCS proteins SsrA SsrB, EnvZ, and OmpR have been
demonstrated to be potential druggable targets for the new
phenaleno-furanone based ligand XR770.Thus, XR770 confers
high binding affinity toward all the target proteins with a binding
affinity comparable to the approved drugs. Hence, XR770 might
prove to be potent inhibitor for the chaperone proteins. However,
pharmacological studies are required to confirm the inhibitory
activity of XR770 against the chaperones as effective drug targets.
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