Accepted Manuscript

Protein concentration and hydrocolloid effect on the rheological and tribological of resulting protein solution

Yang Zhu, Bhesh Bhandari, Zhihua Pang, Xinqi Liu, Sangeeta Prakash

PII: S0023-6438(18)30888-0

DOI: 10.1016/j.lwt.2018.10.042

Reference: YFSTL 7508

To appear in: LWT - Food Science and Technology

Received Date: 2 August 2018

Revised Date: 14 October 2018

Accepted Date: 15 October 2018

Please cite this article as: Zhu, Y., Bhandari, B., Pang, Z., Liu, X., Prakash, S., Protein concentration and hydrocolloid effect on the rheological and tribological of resulting protein solution, *LWT - Food Science and Technology* (2018), doi: https://doi.org/10.1016/j.lwt.2018.10.042.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Protein concentration and hydrocolloid effect on the rheological and tribological 1 2 of resulting protein solution 3 Yang Zhu^{ab}, Bhesh Bhandari^b, Zhihua Pang^{a*}, Xinqi Liu^a, and Sangeeta Prakash^{b*} 4 5 6 ^aBeijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, China 7 8 ^bSchool of Agriculture and Food Sciences, The University of Queensland, Brisbane, 9 Australia 10 *Corresponding author's details: Dr Sangeeta Prakash; Phone: +61 7 33469187; Fax: + 61 7 3365 1177; Email: s.prakash@uq.edu.au; Dr. Zhihua Pang; Phone: +86 10 11 12 68984481; Fax: +86 10 68984481; Email: pangzhihua@btbu.edu.cn

13 Abstract

14	In recent years, the consumption of high protein beverages has increased due to the				
15	consciousness among consumers about their body weight. This study investigated the				
16	rheological, tribological and visual properties of pure proteins solutions with variable				
17	protein concentrations and with/without hydrocolloids (gelatin, κ -carrageenan, low				
18	methoxy pectin and curdlan). Although whey protein addition did not have any				
19	obvious influence on the appearances of protein solutions, it increased the stability				
20	against agglomeration and improved viscosity and lubrication property (measured as a				
21	friction coefficient) to some extent. The protein solutions became less stable with				
22	addition of the hydrocolloids under investigation, however the flow and lubrication				
23	behaviour of the protein solutions improved as the amount of hydrocolloids increased.				
24	The protein solution containing 0.25g/100g of curdlan showed the best lubrication				
25	property at both 15 and 37 °C.				
26					

27 Keywords: Hydrocolloids; Protein; Tribology; Rheology

1. Introduction

29	The macronutrient protein can give a stronger feeling of satiety and increased energy
30	expenditure following consumption in comparison to carbohydrates and fats
31	(Anderson & Moore, 2004; Halton & Hu, 2004; Paddon-Jones et al., 2008). Therefore,
32	for body-weight control and treatment of obesity, high protein foods are considered
33	potential candidates. High-protein products are increasingly being developed in
34	several dairy and non-dairy areas, such as cheese, yoghurt, ice creams, fruits,
35	beverages, and specialized health products because of their unique health benefiting
36	properties (Uluko, Liu, Lv, & Zhang, 2015).
37	
38	Milk that contains approximately 3.0g/100g protein is ideally thought as high protein
39	food. Dairy proteins such as caseins and whey proteins are common in high protein
40	liquid formulations with; and the ratio of casein to whey protein in milk is 4:1
41	(O'Mahony & Fox, 2014). Although like most proteins, whey proteins are not stable
42	at high protein concentrations with increased viscosity and gelation after heat
43	treatment resulting in undrinkable products (Sağlam, Venema, Vries, & van Der

44	Linden, 2014). However, whey is still widely used as an important ingredient in many					
45	foods due its functionalities such as gelation, emulsification, thickening, foaming and					
46	fat & flavour binding capacity (Foegeding, 2015; Onwulata, Huth, & Huth, 2008).					
47	Hydrocolloids are normally used to help maintain a desired product property when					
48	developing high protein foods since unwanted interactions always occurs between the					
49	ingredients (Nguyen, Kravchuk, Bhandari, & Prakash, 2017; Sağlam et al., 2014). In					
50	this study, LM pectin, gelatin and κ -carrageenan that are commonly used in the dairy					
51	industry and curdlan that is gradually being introduced in dairy products as it can					
52	enhance the mouthfeel properties were used (Nakao et al., 1991; Phillips & Williams,					
53	2009; Salvador & Fiszman, 1998). The concentrations of hydrocolloids recommended					
54	to be used in dairy products is <0.3g/100g (Laaman, 2011; Phillips & Williams, 2009),					
55	thus we chose 0.01, 0.05 and 0.25 g/100g in this study.					
56						

57 Rheological (bulk) and tribological (thin-film) properties are essential characteristics
58 that provide cues of the viscosity (thickness) and mouthfeel attributes (smoothness
59 and creaminess) of the high protein solutions with and without hydrocolloids (Baier et

60	al., 2009; Kokini, 1987; Malone, Appelqvist, & Norton, 2003; O'Mahony & Fox,					
61	2014). Particularly there is limited information on the oral sensations (described by					
62	frictional forces) imparted by pure proteins and protein-hydrocolloid complexes that					
63	are essential to understand for product formulations.					
64						
65	The aim of the current study is to investigate the rheological, tribological and visual					
66	properties of pure protein solutions containing casein and whey proteins at different					
67	proportions with and without four different hydrocolloids, including gelatin,					
68	κ -carrageenan, low methoxy pectin and in particular curdlan to explore the possibility					
69	of their use in dairy high protein beverage. Besides, the effect of whey protein					
70	addition on the protein solution was also investigated.					
71						
72	2. Materials and methods					

73 2.1. Materials

74 Three hydrocolloids (gelatin, carrageenan and pectin) used in this study were obtained

75 from Melbourne Food Depot (Melbourne, Australia). The gelatin was a light colored

76	edible bovine skin (type B) powder with bloom 220. The Kappa type carrageenan and					
77	low methoxyl (LM) pectin were also commonly used in the food industry. The					
78	curdlan (Molecular weight is 74000) was bought from Shaanxi Orient Industrial Co.,					
79	Ltd (Shaanxi province, China). The milk protein ingredients, whey protein isolate					
80	(WPI, protein 94.4g/100g, moisture 4.5g/100g, fat 0.3g/100g, lactose 0.1g/100g and					
81	ash 1.9g/100g) was obtained from Fonterra Co-operative Group Ltd (Auckland, New					
82	Zealand) and micellar casein (protein 82.0g/100g, moisture 7.3g/100g, fat 1.3g/100g,					
83	lactose 4.6g/100g and ash 4.8g/100g) was purchased from Bulk Nutrients (Sydney,					
84	Australia). All the reagents were of food grade and used without further purification.					
85						

86 2.2. Protein solution preparation

Protein solutions were formulated by adding micellar casein and WPI to ultra-pure
water. The weight of micellar casein was 2.4g/100g in all samples while varying
amount of WPI was added to achieve the final protein concentration of 3.0, 4.0, 6.0,
8.0 and 10.0g/100g, respectively. The following preparation procedure was used for

91 all protein solutions. To ensure that no clumping occurred, the protein powder was

92	added slowly to the water in a beaker placed on a Fisher Thermix 310T stirring plate
93	(American Instruments Exchange, Inc., Haverhill, MA) and kept for 2 hours at 25 $^\circ \mathrm{C}$
94	under moderate agitation at 400 rpm. A second dispersion and hydration step
95	consisted of using an UltraTurrax Model T25 fitted with an S25N-18G dispersion tool
96	(IKA Works Inc., Wilmington, NC) for 5 min at 10,000 rpm and then sonicated in an
97	ultrasonic bath for 20 min at 300 W. The solutions were kept in 4 °C overnight for
98	further hydration. The next day the stock protein solution was mixed with the selected
99	hydrocolloids before heating (95 °C for 10 min), and the final concentration of
100	hydrocolloids in the system was 0.01, 0.05 and 0.25g/100g. A sample with no
101	hydrocolloids was treated as control. After heating the samples were cooled with
102	running water immediately and stored at 4 °C for 48 hours for instrumental analysis
103	and appearance evaluation.
104	

105 **2.3. Zeta-potential & particle size measurement**

106 The zeta-potential and particle size of protein solution was measured by dynamic light

107 scattering using the Zetasizer Nano ZS (Malvern Instruments Ltd., United Kingdom).

108	For the measurement, samples were diluted 500 times with deionised water before
109	measurement. The zeta-potential and particle size was reported as the average and
110	standard deviation of measurements made on three freshly prepared samples.
111	
112	2.4. Rheological measurement
113	Viscosities of protein samples were measured under steady state shear conditions by
114	stress-controlled rheometer (Discovery Hybrid Rheometer, TA Instrument, USA)
115	using 40 mm aluminium parallel plates at 1300 μ m gap, with shear rate ranging from
116	0.1 to 100 s $^{-1}$. At the beginning of each test, the samples were equilibrated again for
117	120 s at 15 or 37 °C between the plates at the measurement gap and subjected to a
118	pre-shear for 60 s at a shear rate of 0.1 s $^{-1}$. All tests were performed at 15 and 37 °C.
119	
120	2.5. Tribological measurement
121	Lubrication properties of protein samples were measured on a Discovery Hybrid
122	Rheometer, using ring on plate tribo-rheometry (TA Instrument, USA) on a rough

123 plastic surface of 3M Transpore Surgical Tape 1527-2 (3M Health Care, USA). A

124 3-ball spherical geometry was used to measure tribology in this work.

125

- 126 The tribology measurement was performed at 15 and 37 °C. Since the in-mouth force
- 127 was reported to be between 0.01 and 10 N (Miller & Watkin, 1996), we used a
- 128 constant normal force of 2 N to represent the moderate normal force applied on

samples during oral processing. The samples were pre-sheared at the speed of 0.01

- 130 rad/s for 1 min, and then equilibrated for another 1 min before each measurement. The
- results were recorded for rotational speeds from 0.01 to 100 mm/s with 10 points per

132 decade.

133

- 134 **2.6. Appearance evaluation**
- 135 After 48 hours of storage at 4 °C the protein solutions were equilibrated at room

136 temperature (22–25 °C) for 1 h followed by evaluation of appearance.

137

138 **2.7. Statistical analysis**

139 All the experiments were performed in triplicates and the results are expressed as the

140	mean of independent experiments \pm standard deviation. Experimental data were
141	subjected to one-way ANOVA (pairwise comparison of means with Tukey HSD
142	post-hoc test) in order to find differences in samples. Data was analyzed using SPSS
143	software 22.0 (SPSS, Chicago, IL). A p-value of <0.05 was considered statistically
144	significant.
145	
146	3. Results and discussion
147	3.1. Zeta-potential, particle size and appearance of protein solution
148	Tables 1 and 2 show the zeta potential and particle size of different protein solution with
149	and without hydrocolloids. With the exception of 10.0g/100g protein, the addition of
150	WPI increased the absolute zeta-potential (Table 1) and decreased the particle size
151	(Table 2) of the protein solution, suggesting improved stability of the solution. Casein
152	and WPI interact during heating and WPI will absorb on the surface of casein to form
153	a casein-WPI complex (Donato & Guyomarc'H, 2009), this may prevent congregation
154	and help the protein to be well dispersed in the solution. Additionally, disulfide
155	bridges formed between milk proteins due to heating (Pakseresht, Mazaheri Tehrani,

156	& Razavi, 2017), binds the proteins together hindering protein precipitation, thereby				
157	improving the stability.				
158					
159	Table 1				
160					
161	The particle size of protein solution increased with the addition of hydrocolloids,				
162	while the zeta potential value was the same with 0.01 and 0.05g/100g hydrocolloids				
163	(Table 1 and 2), suggesting hydrocolloid addition decreased the protein stability in the				
164	system. Moreover, for protein solution (<4.0g/100g) with 0.25g/100g gelatin, the zeta				
165	potential value changed from -22.37±1.10 mV to -15.70±0.87 mV (Table 1), the				
166	absolute zeta potential value decreasing significantly. It has been reported that gelatin				
167	has some interaction with milk protein (Pang, Deeth, Sopade, Sharma, & Bansal,				
168	2014), that causes aggregation of protein in the system thereby making the protein				
169	less stable. The non-ionic hydrocolloid, curdlan, may have segregative interaction				
170	with milk protein since it absorbs water and expands at the beginning of heating				
171	(Funami & Nishinari, 2007), which is not ideal for the stability of protein solution.				

172	While in this study, although the particle size increased, the zeta potential of protein
173	solutions with curdlan was almost the same compared with control, even with 0.25g
174	of curdlan (Table 1). Curdlan has thermal irreversible interactions between itself
175	during heating at high temperature (80 °C) (Nakao et al., 1991) that may help with the
176	stability of protein. Therefore, for the application in high protein dairy drinks curdlan
177	may have an advantage over gelatin because it has less influence on the stability of
178	milk protein system, even at high concentration. In addition, when the protein solution
179	reached 10.0g/100g protein, it showed large absolute zeta potential value even the
180	particle size in the solution was also big, especially after hydrocolloids were added.
181	Since the WPI has heat-gelling property, at high concentration (10.0g/100g) the
182	protein solution becomes semi-solid and very viscous after heating, hindering the
183	conglomeration and moving of particles in the system, that may be responsible for the
184	high absolute zeta potential value although the particle size were large.
185	¥, [*]

186

Table 2

187

188	The visual appearance of the protein solutions with/without the hydrocolloids (gelatin,
189	κ-carrageenan, LM pectin and curdlan) after 48 hours storage are shown in Fig. 1. As
190	can be seen, higher concentration of WPI (8.0g/100g and 10.0g/100g w/w) made the
191	protein solution more transparent. It is well known that the white color of milk is
192	largely due to the scattering of light by the casein micelles and pure whey protein is
193	transparent (O'Mahony & Fox, 2014), thus adding more WPI reduced the whiteness
194	to some extent. The addition of gelatin/curdlan did not change the visual aspect at all
195	concentrations of proteins, suggesting a possibility of curdlan being used in place of
196	gelatin in high protein drinks. However, with the addition of κ -carrageenan and LM
197	pectin all the protein solutions formed gel when the concentration reached 0.05 and
198	0.25g/100g, respectively (Fig. 1). This suggests that κ -carrageenan and LM pectin
199	easily interact with milk protein (κ -casein) and form gel, as previously observed by
200	Pang, Deeth and Bansal (2015). Overall, the gelation ability of the four hydrocolloids
201	was in the order gelatin/curdlan < LM pectin < κ -carrageenan, and for the utilization
202	of hydrocolloids in high-protein dairy drinks, the usage amount of κ -carrageenan and
203	LM pectin should be below 0.05 and 0.25g/100g, while it could be up to 0.25g/100g

204 for gelatin and curdlan	204	for	gelatin	and	curdlan.
-----------------------------	-----	-----	---------	-----	----------

205

206 Fig.1.

207

208 **3.2. Viscosity of protein solution**

209 In order to discuss the effect of the addition of WPI and four different hydrocolloids

210 on the viscosity of protein solutions, the viscosity values at the shear rate 50 s⁻¹ (η_{50})

211 was chosen since the viscosity at shear rate of 50 s $^{-1}$ has been suggested to relate to

212 perceived thickness, stickiness and sliminess for a wide range of food products from

213 Newtonian fluid to thick emulsion (Shama & Sherman, 1973). Besides, in order to

show the property during consumption, the measurements were done at 15 and 37 °C,

215 which are the two temperatures at the start and end of consumption. The η_{50} for all the

216	protein	solution	are	showed in	n Table 1	3 and 4.

217

218

Table 3

219

220	The viscosity of 3.0g/100g protein solution was 4.84 \pm 0.02 mPa·s under 15 °C, and
221	increased to 13.91 ± 0.10 mPa·s when the concentration reached $8.0g/100g$, and got
222	even significantly higher at 10.0g/100g (212.50 \pm 6.12 mPa·s), suggesting viscosity of
223	protein solution is concentration dependent. With WPI added, more protein denatured
224	during heating and they tended to interact with each other that network more closely
225	(Zhao, Wang, Tian, & Mao, 2016), which increased the viscosity. In addition, the
226	addition of hydrocolloids increased the viscosity of protein solution. For example, as
227	for 8.0g/100g protein solution, the viscosity increased from 13.91±0.10 mPa·s to
228	37.58±0.60 mPa·s, 26.69±0.98 mPa·s, 18.46±0.59 mPa·s and 27.82±0.47 mPa·s with
229	addition of 0.25g/100g gelatin, 0.01g/100g κ -carrageenan, 0.05g/100g LM pectin, and
230	0.25g/100g curdlan (Table 3). It was reported that gelatin, κ -carrageenan and LM
231	pectin had associative interaction with milk proteins (Pang et al., 2015), which
232	increased the viscosity. For curdlan, the swelling of the molecules occurs as heating
233	begins followed by interaction with each other to form network (Funami, Funami,
234	Yada, & Nakao, 2000), increasing the viscosity of the protein solution. In addition,
235	depletion flocculation of the casein micelles occurs at pH 6.7 when the exclusion of

236	the polymer hydrocolloids chains from the space between colloidal particles (casein
237	micelles), inducing an effective attractive interaction between the colloidal particles
238	(Maroziene & de Kruif, 2000), raising the viscosity. Besides, all the four
239	hydrocolloids have cold-gelling property that is the viscosity increases when stored at
240	4 °C. When the total protein concentration reached 10.0g/100g (w/w), the solution
241	transforms to a semi-solid state after heating at 95 °C for 10min due to the denaturing
242	and gelling property of WPI, thus the viscosity at this concentration is quite high.
243	
244	Table 4
244 245	Table 4
	Table 4 The viscosity of the protein solutions at 37 °C was lower compared to that at 15 °C
245	
245 246	The viscosity of the protein solutions at 37 $^{\circ}\mathrm{C}$ was lower compared to that at 15 $^{\circ}\mathrm{C}$
245 246 247	The viscosity of the protein solutions at 37 °C was lower compared to that at 15 °C (Table 3 and 4). This was markedly obvious for gelatin added protein solution. For
245 246 247 248	The viscosity of the protein solutions at 37 °C was lower compared to that at 15 °C (Table 3 and 4). This was markedly obvious for gelatin added protein solution. For instance, the viscosity of 8.0g/100g protein solution with 0.25g/100g gelatin added

252	samples' viscosity. However, it should be noted that the viscosity of protein solution
253	with κ -carrageenan and curdlan was still nearly twice compared to pure protein
254	solution (Table 4). Previous studies showed that κ -carrageenan presents strong
255	interaction with κ -casein (Pang et al., 2015) and curdlan has a thermo-irreversible
256	interaction with itself at high temperature (Funami et al., 2000; Funami & Nishinari,
257	2007), thus although the viscosity decreased due to temperature it is still significantly
258	higher than control (Table 4). Through viscosity results, we can say that
259	κ-carrageenan and curdlan could be an ideal choice for high-protein drinks since they
260	could even raise the viscosity of solutions under oral temperature conditions (37 °C).
261	

262 **3.3. Tribological properties of protein solution**

Lubrication properties of the protein solution with/without hydrocolloids, measured using the tribo-rheometer at 2N set at 15 or 37 °C is presented in Fig. 2-3 and Supplementary Fig.1.

266

267 (a) Effect of the addition of WPI and hydrocolloids

268	From Fig. 2, it can be seen that all protein solution showed a "stick and slide" pattern
269	(traditional Stribeck curve) that is the friction coefficient was constant at low sliding
270	speed (0.01~0.5 mm/s) and decreased with increasing sliding speed (Prakash, Tan, &
271	Chen, 2013). The reason for this pattern is at low speeds, the protein solution acts as a
272	thin lubricating film and the friction depends on the asperity interaction between the
273	two surfaces while at higher speeds more fluid is drawn into the contact zone to partly
274	separate the two surfaces in the mixed regime to decrease the friction coefficient. At
275	low sliding speeds (0.01~0.5 mm/s), the friction coefficient of protein solutions is
276	almost the same for all concentration. And during the medium speed range (0.5~10
277	mm/s), the coefficient of friction reduced with the addition of WPI (<10.0g/100g),
278	meaning the additional WPI in the protein solution contributes towards better
279	lubrication property. As mentioned in section 3.2, the WPI denature at high
280	temperature and easily form intramolecular and intermolecular interactions
281	(O'Mahony & Fox, 2014), which strengthens the absorbability of the protein solution
282	promoting the formation of thin layer separating the surfaces as the sliding speed
283	increases. Combined with the results in section 3.2, we can infer that higher viscosity

284	may lead to better lubrication property. Similar results were obtained previously by
285	Nguyen et al. (2017), who found the dairy samples with higher viscosity showed
286	better lubrication property (lower friction coefficient). However, when the
287	concentration of protein solution reached 10.0g/100g, the solution became semi-solid
288	and hindered the movement between the two surfaces, thus increasing the friction
289	coefficient.
290	
291	Fig.2.
292	
292 293	Besides, at high sliding speeds (> 10mm/s), the friction coefficient was almost the
	Besides, at high sliding speeds (> 10mm/s), the friction coefficient was almost the same for protein solutions \leq 6.0g/100g (w/w) protein and increased with further
293	
293 294	same for protein solutions \leq 6.0g/100g (w/w) protein and increased with further
293 294 295	same for protein solutions ≤ 6.0 g/100g (w/w) protein and increased with further increase in the protein concentration (Fig. 2). Based on the Stribeck curve, at the end
293 294 295 296	same for protein solutions \leq 6.0g/100g (w/w) protein and increased with further increase in the protein concentration (Fig. 2). Based on the Stribeck curve, at the end of mixed regime the friction coefficient decreases slowly that gradually increases

300	hydrodynamic regime earlier. This may explain the increasing friction coefficient as
301	the protein concentration increased.
302	
303	For the protein solution with added hydrocolloids (gelatin, κ-carrageenan, LM pectin
304	and curdlan), the friction coefficients were lower than the pure protein solution at
305	37 °C (Supplementary Fig. 1). Considering the friction coefficient of 3.0g/100g
306	protein (casein/WPI=2.4/0.6) solution at 37°C as an example, we can discuss the
307	friction coefficient at sliding speed of 0.1, 1 and 10 mm/s that are presented in Table 5.
308	At the beginning (0.1 mm/s), all the samples have similar coefficient of friction,
309	however at sliding speed 1 and 10 mm/s, the protein solution with hydrocolloids have
310	lower friction coefficient compared to control sample. This means the protein solution
311	containing hydrocolloids have better lubrication property. This is in agreement with
312	the results that adding hydrocolloids (κ -carrageenan and gelatin) improves the
313	lubrication properties of yoghurt (Nguyen et al., 2016). The interaction between dairy
314	protein and hydrocolloids possibly improves the surface adhesion of the resulting
315	solution, allowing formation of a thin film between the two surfaces with ease and

Table 5

- 316 lowering the friction coefficient.

320	In addition, the addition of curdlan has the best influence on the tribological property
321	of protein solution (Supplementary Fig.1). Adding 0.25g/100g curdlan to the protein
322	solution improved the lubrication property, showing the lowest friction coefficient.
323	Although curdlan is partly soluble or insoluble in neutral condition, it swells and
324	forms thermo-irreversible and thermo-reversible bonds during heating and cooling
325	(Funami et al., 2000), which may be the reason for the improved lubrication property.
326	Thus, curdlan may be the ideal choice for developing smooth and creamy foods.
327	However, the protein solutions with added gelatin did not show any significant
328	difference in friction curves compared with pure protein solution that was contrary to
329	our previous hypothesis. To investigate whether temperature affects the tribological
330	property, the protein solution with added gelatin/curdlan was also studied at 15 $^\circ\mathrm{C}$
331	that is discussed below.

Fig.3.

R

332

333 (b) Effect of temperature

334

335

336	Fig. 3 shows the friction curves of 3.0g/100g protein solution (casein/WPI=2.4/0.6)
337	with the addition of gelatin and curdlan at 15 and 37 °C. The friction curves showed a
338	classical "stick and slide" pattern (traditional Stribeck curve) at both 15 and 37 °C.
339	For friction curves at 15 °C, the friction coefficient decreased as the gelatin
340	concentration increased in the protein solution, especially at low sliding speed range
341	(0.01~0.5 mm/s) and the initial part of medium speed (0.5~6 mm/s). Although the
342	friction coefficient was lower than the pure protein solution at the later part of
343	medium speed (6~10 mm/s), it was almost the same for gelatin added protein solution.
344	In addition, when the speed reached high (> 10 mm/s), the friction curves overlapped
345	for all solutions (Fig. 3A). Gelatin has a good hydrophilic property and can form
346	hydrogen bonds with milk protein or itself (Fiszman & Salvador, 1999), thus adding
347	gelatin improved the surface adhesion of protein solution, forming a thick lubrication

348	film between the two surfaces. Therefore, the friction coefficient decreased. And for
349	protein solution with curdlan, the coefficient of friction was lower than the control
350	during the sliding speed measured in this study (Fig. 3C), especially for 0.25g/100g
351	curdlan added. It means the curdlan addition had similar influence on the lubrication
352	property of protein solution as gelatin addition at 15 °C.
353	
354	However, Fig. 3B shows that there was almost no difference between pure 3.0g/100g
355	protein solution and gelatin added protein solution at 37 °C. This may be due to the
356	weak hydrogen bonds formed between gelatin and protein that easily break. As
357	temperature increases from 15 to 37 °C, the interactions in the protein solution
358	decreases, thus the friction curves show less differences between pure protein solution
359	and protein solution with gelatin. While the protein solutions with curdlan added still
360	showed better lubrication property compared to pure protein solution (Fig. 3D). Thus,
361	curdlan addition had better influence on the lubrication property of protein solution
362	than gelatin added at 37 °C. Besides, during the sliding speed from 0.01~6 mm/s, the
363	friction coefficient of 3.0g/100g protein solution at 37 °C was 0.8~1.0, which was

higher than the friction coefficient $(0.6 \sim 0.8)$ at 15 °C (Fig. 3).

365

366 **4. Conclusion**

- 367 According to the results of this study, adding WPI to raise the protein concentration
- 368 did not have obvious effect on the visual appearance of protein solution, but increased

369 the protein stability against agglomeration and the viscosity of protein solution to

- 370 some extent. Besides, within a certain range of total protein (< 8.0g/100g), the
- addition of WPI led to better lubrication property.

372

373 The addition of hydrocolloids had no influence on the visual aspect of protein solution,

374 while the protein solution formed gel after adding $0.05g/100g \kappa$ -carrageenan and

375 0.25g/100g LM pectin for all protein concentrations investigated in this research.

376 Although adding hydrocolloids decreased the stability of protein solution, it increased

- 377 the viscosity of protein solution, and the viscosity of κ -carrageenan and curdlan added
- 378 protein solution was still nearly twice more than control under 37 °C. The effect of
- 379 gelatin on the tribological property of protein solution showed obviously under 15 °C,

380	while almost had no influence when the temperature increased to 37 $^\circ$ C. Interestingly,
381	curdlan addition improved the lubrication property both at 15 and 37 °C. Therefore,
382	curdlan might be an ideal choice for high-protein dairy drinks since it could increase
383	the viscosity and lubrication property of protein solution without effecting the visual
384	of solution. In the future, we will investigate the application of curdlan in real dairy
385	products. Since the addition of WPI alters the casein to WPI ratio, the influence of
386	fractions of casein to WPI at fixed protein concentration will also be studied in the
387	future.
388	
389	Acknowledgements
390	This research did not receive any specific grant from funding agencies in the public,
391	commercial, or not-for-profit sectors.
392	
393	References
394	Anderson, G. H., & Moore, S. E. (2004). Dietary Proteins in the Regulation of Food
395	Intake and Body Weight in Humans. In, vol. 134 (pp. 974S).

396	Baier, S., Elmore, D., Guthrie, B., Lindgren, T., Smith, S., Steinbach, A. (2009). A
397	new tribology device for assessing mouthfeel attributes of foods. In: 5th
398	International Symposium on Food Structure and Rheology, ETH Zurich,
399	Switzerland.
400	Donato, L., & Guyomarc'H, F. (2009). Formation and properties of the whey
401	protein/kappa-casein complexes in heated skim milk - A review. In Dairy Sci.
402	<i>Technol.</i> , vol. 89 (pp. 3-29).
403	Fiszman, S. M., & Salvador, A. (1999). Effect of gelatine on the texture of yoghurt
404	and of acid-heat-induced milk gels. Zeitschrift für Lebensmitteluntersuchung
405	und -Forschung A, 208(2), 100-105.
406	Foegeding, E. A. (2015). Food Protein Functionality-A New Model. Journal of
407	Food Science, 80(12), C2670-C2677.
408	Funami, T., Funami, M., Yada, H., & Nakao, Y. (2000). A rheological study on the
409	effects of heating rate and dispersing method on the gelling characteristics of
410	curdlan aqueous dispersions. Food Hydrocolloids, 14(5), 509-518.
411	Funami, T., & Nishinari, K. (2007). Gelling characteristics of curdlan aqueous

412	dispersions in the presence of salts. Food Hydrocolloids, 21(1), 59-65.
413	Halton, T. L., & Hu, F. B. (2004). The Effects of High Protein Diets on
414	Thermogenesis, Satiety and Weight Loss: A Critical Review. Journal of the
415	American College of Nutrition, 23(5), 373-385.
416	Kokini, J. L. (1987). The physical basis of liquid food texture and texture-taste
417	interactions. Journal of Food Engineering, 6(1), 51-81.
418	Laaman, T. R. (2011). Hydrocolloids in Food Processing. Blackwell Pub Professional.
419	Malone, M. E., Appelqvist, I. A. M., & Norton, I. T. (2003). Oral behaviour of food
420	hydrocolloids and emulsions. Part 1. Lubrication and deposition
421	considerations. Food Hydrocolloids, 17(6), 763-773.
422	Maroziene, A., & de Kruif, C. G. (2000). Interaction of pectin and casein micelles.
423	Food Hydrocolloids, 14(4), 391-394.
424	Miller, J. L., & Watkin, K. L. (1996). The influence of bolus volume and viscosity on
425	anterior lingual force during the oral stage of swallowing. Dysphagia, 11(2),
426	117-124.

427 Nakao, Y., Konno, A., Taguchi, T., Tawada, T., Kasai, H., Toda, J., & Terasaki, M.

428	(1991). Curdlan: Properties and Application to Foods. Journal of Food
429	Science, 56(3), 769-772.
430	Nguyen, P. T. M., Bhandari, B., & Prakash, S. (2016). Tribological method to measure
431	lubricating properties of dairy products. Journal of Food Engineering, 168,
432	27-34.
433	Nguyen, P. T. M., Kravchuk, O., Bhandari, B., & Prakash, S. (2017). Effect of
434	different hydrocolloids on texture, rheology, tribology and sensory perception
435	of texture and mouthfeel of low-fat pot-set yoghurt. Food Hydrocolloids, 72,
436	90-104.
437	O'Mahony, J. A., & Fox, P. F. (2014). Chapter 2 - Milk: An Overview. In Milk
438	Proteins (Second edition), (pp. 19-73). San Diego: Academic Press.
439	Onwulata, C., Huth, P. J., & Huth, P. (2008). Whey processing, functionality and
440	health benefits (1st ed ed.): Ames, Iowa : Wiley-Blackwell.
441	Paddon-Jones, D., Westman, E., Mattes, R. D., Wolfe, R. R., Astrup, A., &
442	Westerterp-Plantenga, M. (2008). Protein, weight management, and
443	satiety.(Author abstract). American Journal of Clinical Nutrition, 87(5),

444	1558S.
445	Pakseresht, S., Mazaheri Tehrani, M., & Razavi, S. (2017). Optimization of low-fat
446	set-type yoghurt: effect of altered whey protein to casein ratio, fat content and
447	microbial transglutaminase on rheological and sensorial properties. Journal of
448	Food Science and Technology, 54(8), 2351-2360.
449	Pang, Z., Deeth, H., & Bansal, N. (2015). Effect of polysaccharides with different
450	ionic charge on the rheological, microstructural and textural properties of acid
451	milk gels. Food Research International, 72, 62-73.
452	Pang, Z., Deeth, H., Sopade, P., Sharma, R., & Bansal, N. (2014). Rheology, texture
453	and microstructure of gelatin gels with and without milk proteins. Food
454	Hydrocolloids, 35, 484-493.
455	Phillips, G. O., & Williams, P. A. (2009). Handbook of Hydrocolloids (Second
456	edition). In G. O. Phillips & P. A. Williams (Eds.)): Woodhead Publishing.
457	Prakash, S., Tan, D. D. Y., & Chen, J. (2013). Applications of tribology in studying
458	food oral processing and texture perception. Food Research International,
459	54(2), 1627-1635.

460	Sağlam, D., Venema, P., de Vries, R., & van Der Linden, E. (2014). Exceptional heat
461	stability of high protein content dispersions containing whey protein particles.
462	Food Hydrocolloids, 34, 68-77.
463	Salvador, A., & Fiszman, S. M. (1998). Textural Characteristics and Dynamic
464	Oscillatory Rheology of Maturation of Milk Gelatin Gels with Low Acidity.
465	Journal of Dairy Science, 81(6), 1525-1531.
466	Shama, F., & Sherman, P. (1973). Identification of stimuli controlling the sensory
467	evaluation of viscosity. II. Oral methods. Identification of stimuli controlling
468	the sensory evaluation of viscosity. II. Oral methods. [Food], Apr(1), 111-118.
469	Uluko, H., Liu, L., Lv, JP., & Zhang, SW. (2015). Functional Characteristics of
470	Milk Protein Concentrates and Their Modification. Critical Reviews in Food
471	Science and Nutrition, 00-00.
472	Zhao, L. L., Wang, X. L., Tian, Q., & Mao, X. Y. (2016). Effect of casein to whey
473	protein ratios on the protein interactions and coagulation properties of low-fat
474	yogurt. Journal of Dairy Science, 99(10), 7768-7775.

475

Fig. 1. The appearance of protein solution with/without different concentration (0.01, 0.05 and 0.25g/100g) of gelatin, κ -carrageenan, LM pectin and curdlan. (A) 3.0g/100g Protein solution (casein/WPI=2.4/0.6); (B) 4.0g/100g Protein solution (casein/WPI=2.4/1.6); (C) 6.0g/100g Protein solution (casein/WPI=2.4/3.6); (D) 8.0g/100g Protein solution (casein/WPI=2.4/5.6); (E) 10.0g/100g Protein solution (casein/WPI=2.4/7.6). * Means gel formed and the other samples without mark kept solution after 4 °C storage 48 hours.

Fig. 2. The tribology curve of different pure protein solution at 37 °C. \times 3.0g/100g Protein solution (casein/WPI=2.4/0.6); \Box 4.0g/100g Protein solution (casein/WPI=2.4/1.6); \diamond 6.0g/100g Protein solution (casein/WPI=2.4/3.6); \bigcirc 8.0g/100g Protein solution (casein/WPI=2.4/5.6); \triangle 10.0g/100g Protein solution (casein/WPI=2.4/7.6)

Fig. 3. The tribology curves of 3.0g/100g protein solution (casein/WPI=2.4/0.6) with/without added gelatin or curdlan (0.01, 0.05 and 0.25g/100g) under (A and C) 15 °C and (B and D) 37 °C.
× Control; ◇0.01g/100g Gelatin; ◆0.05g/100g Gelatin; ★0.25g/100g Gelatin; ○0.01g/100g Curdlan; ●
0.05g/100g Curdlan; ●0.25g/100g Curdlan

Supplementary Fig. 1. The tribology curve of different protein solution with/without gelatin, κ -carrageenan, LM pectin and curdlan (0.01, 0.05 and 0.25g/100g) at 37 °C. (A) 3.0g/100g Protein solution (casein/WPI=2.4/0.6); (B) 4.0g/100g Protein solution (casein/WPI=2.4/1.6); (C) 6.0g/100g Protein solution (casein/WPI=2.4/3.6); (D) 8.0g/100g Protein solution (casein/WPI=2.4/5.6); (E) 10.0g/100g Protein solution (casein/WPI=2.4/7.6). ×Control; \diamond 0.01g/100g Gelatin; \blacklozenge 0.05g/100g Gelatin; \bigstar 0.25g/100g Gelatin; \triangle 0.01g/100g Carrageenan; \Box 0.01g/100g Pectin; \blacksquare 0.05g/100g Pectin; \bigcirc 0.01g/100g Curdlan; \blacklozenge 0.05g/100g Curdlan; \circlearrowright 0.25g/100g Curdlan

 Table 1
 The zeta potential of different protein solution with/without various concentrations (0.01, 0.05 and 0.25g/100g) of gelatin,

 κ-carrageenan, LM pectin and curdlan.

Samples	3.0g/100g protein	4.0g/100g protein	6.0g/100g protein	8.0g/100g protein	10.0g/100g protein
(g/100g)	(casein/WPI=2.4/0.6)	(casein/WPI=2.4/1.6)	(casein/WPI=2.4/3.6)	(casein/WPI=2.4/5.6)	(casein/WPI=2.4/7.6)
Control	-22.37 (1.10) Abc	-22.87 (0.97) ABc	-23.53 (0.73) ABb	-24.30 (0.65) ^{Bc}	-25.80 (0.31) ^{Cab}
0.01 Gelatin	-20.37 (0.93) Ab	-21.00 (0.61) Ab	-21.57 (0.49) Aa	-23.33 (0.36) ^{Bc}	-26.83 (0.48) ^{Сь}
0.05 Gelatin	-20.33 (0.74) Ab	-20.83 (0.35) ^{Ab}	-21.47 (0.90) Aa	-23.47 (0.36) ^{Bc}	-24.53 (0.41) ^{Ca}
0.25 Gelatin	-15.70 (0.87) ^{Aa}	-17.63 (0.71) ^{Ba}	-21.10 (0.85) ^{Ca}	-23.50 (0.74) ^{Dbc}	-24.83 (0.76) ^{Da}
0.01 Carrageenan	-21.13 (0.49) Abc	-21.57 (0.30) ABc	-22.00 (0.17) ^{Ba}	-22.87 (0.18) ^{Cbc}	-27.57 (0.18) ^{Dc}
0.05 Carrageenan	-	_ ^	<u> </u>	-	-
0.25 Carrageenan	-	-	· · ·	-	-
0.01 Pectin	-20.73 (0.35) ^{Ab}	-21.27 (0.59) ABbc	-21.90 (0.68) ^{Ba}	-24.57 (0.41) ^{Cd}	-24.93 (0.66) ^{Ca}
0.05 Pectin	-21.73 (0.36) Ac	-22.33 (0.65) Ac	-22.33 (0.66) Aab	-23.97 (0.33) ^{Bc}	-25.30 (0.43) ^{Ca}
0.25 Pectin	-	R I	-	-	-
0.01 Curdlan	-20.93 (0.66) Abc	-21.10 (0.57) Ab	-21.33 (0.58) Aab	-21.80 (0.40) Aa	-26.37 (0.71) ^{Bb}
0.05 Curdlan	-20.13 (0.41) Ab	-20.83 (0.93) ABbc	-21.87 (0.13) ^{Ba}	-22.60 (0.30) ^{Сь}	-25.77 (0.97) ^{Da}
0.25 Curdlan	-20.17 (0.48) Ab	-20.23 (0.59) Ab	-20.80 (0.40) ^{Aa}	-22.17 (0.30) ^{Bab}	-26.17 (0.20) ^{Сь}

Mean value (n=9) in mV and standard deviation shown in parenthesis. Different superscript capital letters in the same line indicate significant differences between different protein concentrations (P < 0.05).

Different superscript lower-case letters in the same column indicate significant differences between additions of hydrocolloids (P < 0.05).

 Table 2
 The particle size of different protein solution with/without various concentrations (0.01, 0.05 and 0.25g/100g) of gelatin,

 κ-carrageenan, LM pectin and curdlan.

Samples	3.0g/100g protein	4.0g/100g protein	6.0g/100g protein	8.0g/100g protein	10.0g/100g protein
(g/100g)	(casein/WPI=2.4/0.6)	(casein/WPI=2.4/1.6)	(casein/WPI=2.4/3.6)	(casein/WPI=2.4/5.6)	(casein/WPI=2.4/7.6)
Control	184.1 (2.46) Afg	175.9 (1.91) ^{Bf}	150.6 (0.33) ^{Dg}	134.3 (1.31) ^{Ef}	168.9 (0.99) ^{Cf}
0.01 Gelatin	197.4 (1.69) ^{Ad}	179.1 (2.47) ^{Bef}	171.3 (2.17) ^{Cd}	141.0 (1.87) ^{De}	183.0 (1.60) ^{Be}
0.05 Gelatin	201.8 (0.23) Ac	186.6 (0.58) ^{Bc}	175.3 (2.75) ^{Dcd}	152.5 (0.56) ^{Ed}	182.4 (1.05) ^{Ce}
0.25 Gelatin	260.8 (5.34) ^{Aa}	225.7 (0.60) ^{Ca}	178.3 (1.52) ^{Dc}	164.4 (1.39) ^{Eb}	246.1 (0.69) ^{Bb}
0.01 Carrageenan	208.9 (0.79) ^{Bb}	199.0 (1.85) ^{Сь}	194.8 (0.95) ^{Da}	184.1 (6.99) ^{Ea}	325.1 (6.78) ^{Aa}
0.05 Carrageenan	-	_ A	<u> </u>	-	-
0.25 Carrageenan	-	-	· · ·	-	-
0.01 Pectin	186.9 (0.66) ^{Bf}	184.4 (0.71) ^{Cd}	166.6 (1.88) ^{De}	165.2 (1.85) ^{Db}	201.2 (2.46) ^{Ad}
0.05 Pectin	186.0 (1.44) ^{Bfg}	184.8 (1.08) ^{Bd}	163.4 (2.47) ^{Cf}	158.4 (0.61) ^{Dc}	202.0 (5.25) ^{Ad}
0.25 Pectin	-	R'	-	-	-
0.01 Curdlan	181.5 (2.25) ^{Bg}	181.6 (0.53) ^{Be}	178.8 (0.39) ^{Cc}	178.6 (2.13) ^{BCa}	206.5 (3.75) Acd
0.05 Curdlan	184.0 (2.12) ^{Bg}	182.9 (1.51) ^{Bde}	180.0 (2.50) ^{BCbc}	178.1 (2.47) ^{Ca}	201.7 (4.20) ^{Ad}
0.25 Curdlan	188.6 (1.01) ^{Be}	186.5 (0.55) ^{Cc}	184.4 (2.46) ^{CDb}	182.2 (1.01) ^{Da}	215.7 (6.72) Ac

Mean value (n=9) in nm and standard deviation shown in parenthesis. Different superscript capital letters in the same line indicate significant differences between different protein concentrations (P < 0.05).

Different superscript lower-case letters in the same column indicate significant differences between additions of hydrocolloids (P < 0.05).

Table 3 The viscosity (η_{50}) of different protein solutions with/without various concentrations (0.01, 0.05 and 0.25g/100g) of gelatin, κ -carrageenan, LM pectin and curdlan under 15 °C.

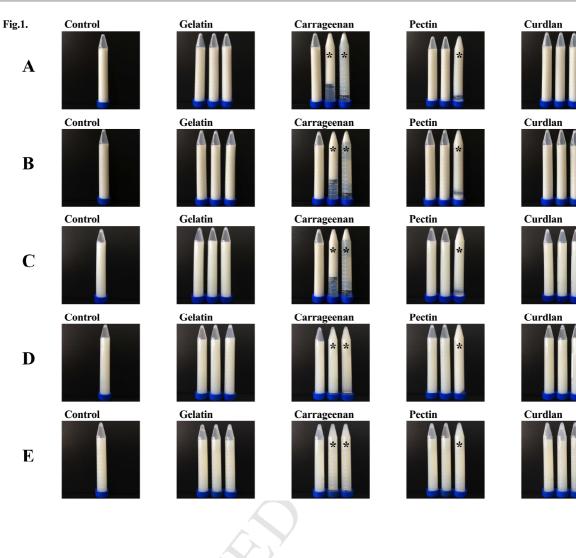
Samples	3.0g/100g protein	4.0g/100g protein	6.0g/100g protein	8.0g/100g protein	10.0g/100g protein
(g/100g)	(casein/WPI=2.4/0.6)	(casein/WPI=2.4/1.6)	(casein/WPI=2.4/3.6)	(casein/WPI=2.4/5.6)	(casein/WPI=2.4/7.6)
Control	4.84 (0.02) ^{Eg}	5.27 (0.09) ^{Df}	7.07 (0.27) ^{Ce}	13.91 (0.10) ^{Be}	212.50 (6.12) ^{Aj}
0.01 Gelatin	4.95 (0.03) ^{Ef}	5.35 (0.05) ^{Df}	6.86 (0.36) ^{Ce}	14.69 (0.50) ^{Bd}	290.25 (11.80) ^{Ai}
0.05 Gelatin	5.06 (0.05) ^{Ee}	5.55 (0.13) ^{De}	7.14 (0.13) ^{Ce}	14.52 (0.53) ^{Bde}	361.33 (10.05) ^{Ah}
0.25 Gelatin	7.69 (0.08) ^{Eb}	8.22 (0.13) ^{Da}	12.20 (0.28) ^{Ca}	37.58 (0.60) ^{Ba}	1249.68 (11.76) ^{Ab}
0.01 Carrageenan	5.80 (0.06) ^{Ed}	7.65 (0.08) ^{Db}	11.62 (0.45) ^{Cab}	26.69 (0.98) ^{Bb}	457.85 (4.59) ^{Ag}
0.05 Carrageenan	-			-	-
0.25 Carrageenan	-	-	· · ·	-	-
0.01 Pectin	5.02 (0.04) ^{Eef}	5.45 (0.05) Def	7.48 (0.27) ^{Ce}	14.62 (0.99) ^{Bde}	498.70 (10.81) ^{Af}
0.05 Pectin	6.17 (0.11) ^{Ec}	7.25 (0.03) ^{Dc}	9.21 (0.26) ^{Cc}	18.46 (0.59) ^{Bc}	891.45 (11.30) Ac
0.25 Pectin	-	Q '	-	-	-
0.01 Curdlan	4.85 (0.04) ^{Eg}	5.53 (0.09) ^{De}	7.14 (0.22) ^{Ce}	14.82 (0.35) ^{Bd}	642.14 (7.73) ^{Ad}
0.05 Curdlan	5.10 (0.04) ^{Ee}	6.38 (0.08) ^{Dd}	8.25 (0.32) ^{Cd}	15.45 (0.49) ^{Bd}	569.22 (6.69) ^{Ae}
0.25 Curdlan	8.03 (0.08) ^{Ea}	8.30 (0.06) ^{Da}	11.7 (0.16) ^{Сь}	27.82 (0.47) ^{Bb}	1799.34 (12.56) ^{Aa}

Mean value (n=3) in mPa·s and standard deviation shown in parenthesis. Different superscript capital letters in the same line indicate significant differences between different protein concentrations (P <

0.05). Different superscript lower-case letters in the same column indicate significant differences between additions of hydrocolloids (P < 0.05).

Table 4 The viscosity (η_{50}) of different protein solutions with/without various concentrations (0.01, 0.05 and 0.25g/100g) of gelatin, κ -carrageenan, LM pectin and curdlan under 37 °C.

Samples	3.0g/100g protein	4.0g/100g protein	6.0g/100g protein	8.0g/100g protein	10.0g/100g protein
(g/100g)	(casein/WPI=2.4/0.6)	(casein/WPI=2.4/1.6)	(casein/WPI=2.4/3.6)	(casein/WPI=2.4/5.6)	(casein/WPI=2.4/7.6)
Control	3.98 (0.09) ^{Dcd}	4.09 (0.04) ^{De}	4.67 (0.17) ^{Cfg}	7.79 (0.18) ^{Be}	88.71 (4.07) ^{Ag}
0.01 Gelatin	3.96 (0.12) ^{Dcd}	4.02 (0.10) ^{De}	4.49 (0.11) ^{Cg}	7.40 (0.08) ^{Bf}	103.29 (6.29) ^{Af}
0.05 Gelatin	3.90 (0.03) ^{Ed}	4.14 (0.12) ^{Dde}	4.83 (0.10) ^{Cf}	7.60 (0.09) ^{Be}	170.87 (5.73) ^{Ae}
0.25 Gelatin	3.98 (0.02) ^{Ec}	4.16 (0.10) ^{Dde}	5.03 (0.09) ^{Ce}	9.18 (0.27) ^{Bc}	363.65 (6.70) ^{Ab}
0.01 Carrageenan	4.47 (0.03) ^{Eb}	5.12 (0.08) ^{Db}	6.36 (0.18) ^{Сь}	13.17 (0.31) ^{Bb}	176.62 (16.47) ^{Ae}
0.05 Carrageenan	-		- 1	-	-
0.25 Carrageenan	-	-	· · ·	-	-
0.01 Pectin	4.01 (0.16) ^{Dcd}	4.12 (0.05) ^{De}	5.04 (0.01) ^{Ce}	8.10 (0.31) ^{Bde}	218.19 (7.81) Ad
0.05 Pectin	4.20 (0.03) ^{Ec}	4.52 (0.08) ^{Dc}	5.26 (0.11) ^{Cd}	9.41 (0.16) ^{Bc}	361.60 (11.09) Ab
0.25 Pectin	-	R Í	-	-	-
0.01 Curdlan	3.97 (0.05) ^{Dcd}	4.06 (0.09) ^{De}	4.94~(0.21) ^{Cde}	7.97 (0.50) ^{Bde}	251.34 (15.00) Ac
0.05 Curdlan	4.10 (0.15) ^{Dc}	4.32 (0.11) ^{Dd}	5.69 (0.12) ^{Cc}	8.36 (0.27) ^{Bd}	268.12 (6.65) ^{Ac}
0.25 Curdlan	6.38 (0.11) ^{Da}	5.98 (0.09) ^{Ea}	7.34 (0.17) ^{Ca}	14.93 (0.27) ^{Ba}	1067.05 (14.15) ^{Aa}


Mean value (n=3) in mPa·s and standard deviation shown in parenthesis. Different superscript capital letters in the same line indicate significant differences between different protein concentrations (P <

0.05). Different superscript lower-case letters in the same column indicate significant differences between additions of hydrocolloids (P < 0.05).

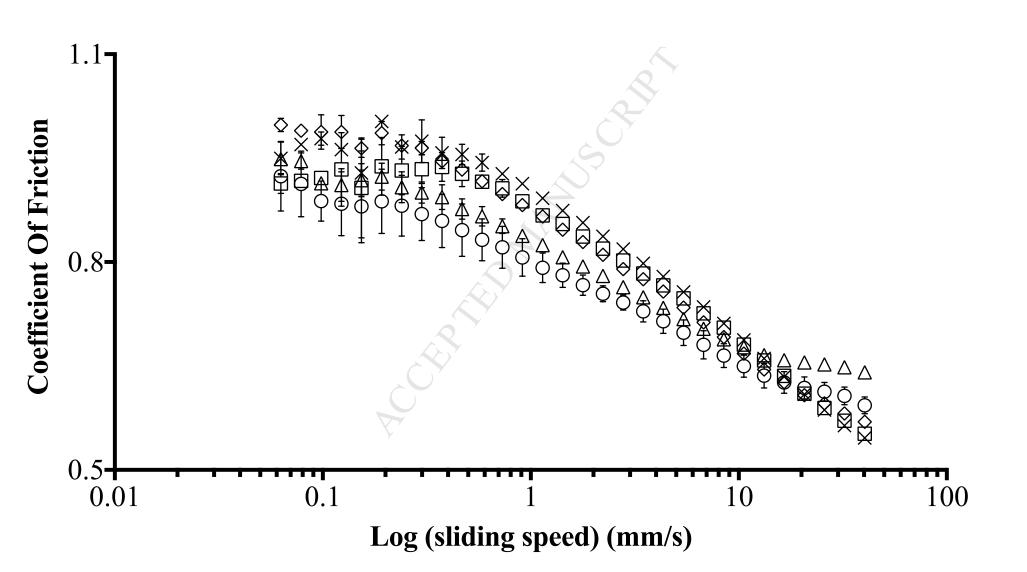
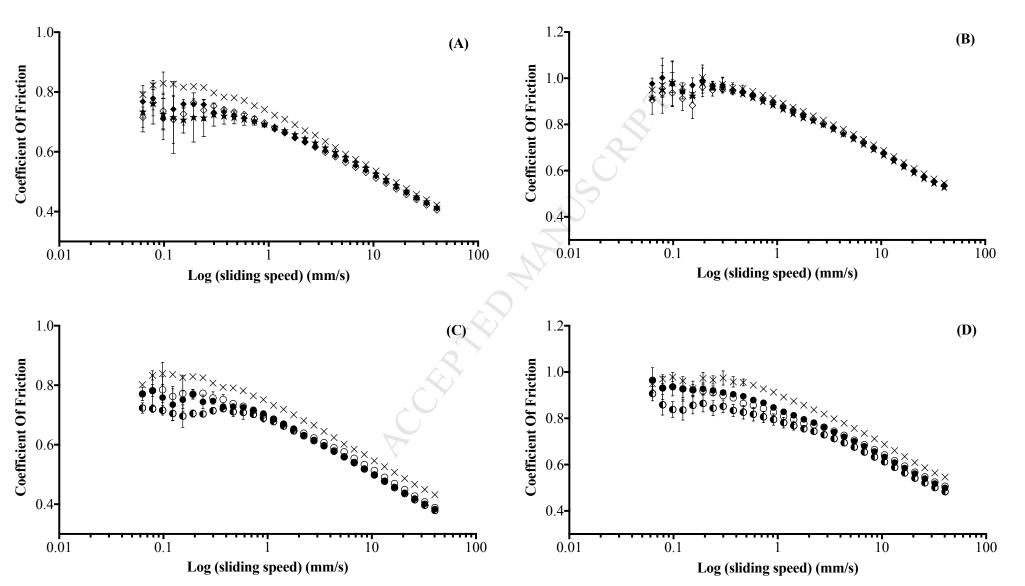
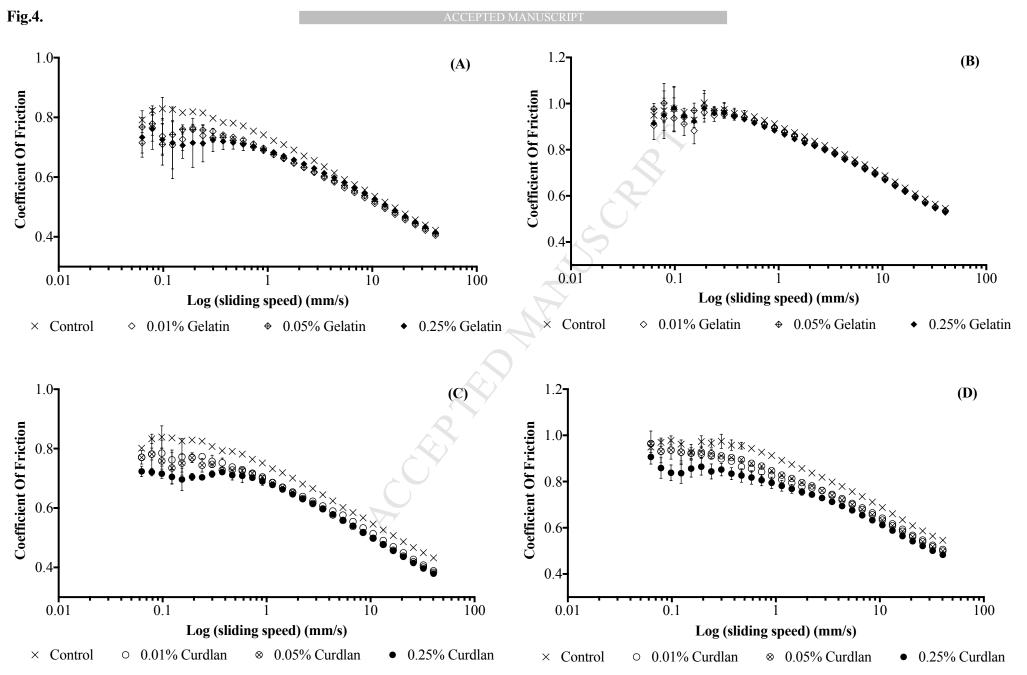

Samples	0.1 mm/s	1 mm/s	10 mm/s
(g/100g)			
Control	0.96 (0.004) ^{Aa}	0.89 (0.005) ^{Ba}	0.69 (0.001) ^{Ca}
0.01 Gelatin	0.96 (0.016) ^{Aa}	0.88 (0.009) ^{Bab}	0.68 (0.005) ^{Cb}
0.05 Gelatin	0.97 (0.024) ^{Aa}	0.87 (0.005) ^{Bb}	0.67 (0.001) ^{Cc}
0.25 Gelatin	0.95 (0.034) ^{Aa}	0.87 (0.003) ^{Bb}	0.67 (0.005) ^{Cbc}
0.01 Carrageenan	0.98 (0.057) ^{Aa}	0.84 (0.015) ^{Bc}	0.66 (0.002) ^{Cd}
0.05 Carrageenan	-	-	-
0.25 Carrageenan	-	-	_
0.01 Pectin	0.96 (0.015) ^{Aa}	0.86 (0.011) ^{Bbc}	0.66 (0.002) ^{Cd}
0.05 Pectin	0.95 (0.020) ^{Aa}	0.84 (0.015) ^{Bc}	0.66 (0.001) ^{Cd}
0.25 Pectin	-	\rightarrow	-
0.01 Curdlan	0.92 (0.012) Aa	0.81 (0.019) ^{Bcd}	0.64 (0.002) ^{Ce}
0.05 Curdlan	0.92 (0.023) ^{Aab}	0.83 (0.005) ^{Bc}	0.63 (0.004) ^{Cf}
0.25 Curdlan	0.86 (0.044) Ab	0.78 (0.023) ^{Bd}	0.61 (0.004) ^{Cg}

Table 5The friction coefficient of 3.0g/100g protein (casein/WPI=2.4/0.6)solution at 37 °C under sliding speed of 0.1, 1 and 10 mm/s.


Mean value (n=3) and standard deviation shown in parenthesis. Different superscript capital letters in the same line indicate significant differences between different sliding speed (P < 0.05). Different superscript lower-case letters in the same column indicate significant differences between additions of hydrocolloids (P < 0.05).



Highlight

- Addition of WPI improves rheological and tribological property of protein solution
- Hydrocolloids addition improves rheo-tribological property of protein solution
- Protein solution has better lubrication property at low temperature
- Curdlan might be an ideal choice for dairy high protein drinks