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Abstract 
Mine sites are routinely required to rehabilitate their post-mining landforms with a safe, stable and 

sustainable land-cover. To assess these post-mining landforms, traditional on-ground field 

monitoring is generally undertaken. However, these labour intensive and time-consuming 

measurements are generally insufficient to catalogue land rehabilitation efforts across the large 

scales typical of mining sites (>100 ha). As an alternative, information derived from Unmanned Aerial 

Vehicles (UAV) can be used to map rehabilitation success and provide evidence of achieving 

rehabilitation site requirements across a range of scales. UAV based sensors have the capacity to 

collect information on rehabilitation sites with extensive spatial coverage in a repeatable, flexible 

and cost-effective manner. Here, we present an approach to automatically map indicators of safety, 

stability and sustainability of rehabilitation efforts, and demonstrate this framework across three 

coalmine sites. Using multi-spectral UAV imagery together with geographic object-based image 

analysis, an empirical classification system is proposed to convert these indicators into a status 

category based on a number of criteria related to land-cover, landform, erosion, and vegetation 

structure. For this study, these criteria include: mapping tall trees (Eucalyptus species); vegetation 

extent; senescent vegetation; extent of bare ground; and steep slopes. Converting these land-cover 

indicators into appropriate mapping categories on a polygon basis indicated the level of 

rehabilitation success and how these varied across sites and age of the rehabilitation activity. This 

work presents a framework and workflow for undertaking a UAV based assessment of safety, 

stability and sustainability of mine rehabilitation and also provides a set of recommendations for 

future rehabilitation assessment efforts. 

 

Keywords: open cut mine; rehabilitation; monitoring; UAV; object-based image analysis; indicators. 

 

Highlights: 

• An automatic image based processing routine was developed. 

• UAV imagery was successfully used to map land-cover, landform and vegetation structure of 

three mine sites. 

• UAV image derived information can be used to assess mine site rehabilitation status. 

• A framework was designed to consistently assess the safety, stability and sustainability of 

mine rehabilitation. 
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1. Introduction 
In many countries, mine site rehabilitation is a mandated step that is undertaken with a goal of 

establishing a wide range of post-mining land uses and amenities. The redevelopment of formerly 

active mine sites is generally undertaken within broad goals of safety, stability, non-pollution and 

sustainability (here defined as the ability of a site to achieve an ecological balance to naturally 

maintain its landforms and vegetation cover, composition and structure) of rehabilitated landforms. 

Such remediation efforts are especially pertinent to open cut mining, which is a transformative 

process that has no obvious natural analogue, and where the local scale impacts can extend to 

thousands of hectares per mining operation. Significant expansion of open cut mining across the 

world has produced vast quantities of waste rock and spoil materials, which have been used to 

create new landforms (Otto, 2009). Recent estimates of rehabilitation costs (NSW Government, 

2017) for recreating pre-mining landforms range from AUD$81,000/ha for non-reactive materials up 

to AUD$170,000/ha for more problematic materials. Creating a stable landform with an appropriate 

vegetation cover that is similar to, or integrated with, surrounding vegetation and then monitoring 

the outcomes of these efforts require an ongoing commitment by the mining company to 

demonstrate the evolution of these constructed landforms.  

 

Traditional monitoring activities on mine-site rehabilitation areas are generally conducted over 

relatively small field plots to assess erosion, stability and ecosystem function (Erskine and Fletcher, 

2013), as these metrics are routinely provided as evidence, when a mine applies for lease 

relinquishment. However, such field-based monitoring activities are time-consuming, cover only a 

small (< 0.1%) proportion of the rehabilitation site, and are often unsuited to capture the inherent 

spatial variability of characteristics associated with substrate, construction and rehabilitation 

methodology (Chen et al., 2018). To achieve rehabilitation goals, monitoring and assessment must 

also provide mine managers with information to allow planning and corrective management actions, 

while developing comprehensive data sets that demonstrate sustainability through time (Lamb et 

al., 2015). Therefore, alternative methods to traditional plot monitoring are required to cost-

effectively inform rehabilitation efforts. 

 

Scaling up from field-based monitoring to whole-of-mine site areas is becoming more feasible with 

new remote sensing technologies (Gastauer et al., 2018; McCabe et al., 2017). One such technology 

driving these developments has been the use of Unmanned Aerial Vehicles (UAVs) for mapping and 

monitoring purposes, which has advanced rapidly over the last decade (Bagheri, 2017). UAVs are 

generally light-weight, relatively low-cost, suitable for autonomous data collection, and highly 

flexible, allowing remotely sensed imagery to be collected at any time for smaller areas (< 1 km2) 

under suitable weather conditions. Chen et al. (2015) highlighted the benefits of using UAV derived 

image data, including their high spatial resolution and ability to derive Digital Surface Models (DSM) 

using Structure-from-Motion for assessment of terrain, excavation stages and surface deformation 

of open cut mines. However, most research using UAV image data for mine sites has focussed on 

mapping topographic and geomorphic features (Rossi et al., 2017) rather than detailed land-cover 

distribution, vegetation structure and rehabilitation performance metrics.  

 

UAV imagery has been used in many different studies for mapping vegetation and ground 

characteristics (Ahmed et al., 2017; Zhang and Kovacs, 2012), but only to a limited extent for mine 
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site rehabilitation (Chen et al., 2015; Esposito et al., 2017). As the re-establishment of vegetation on 

mine sites is often one of the principal rehabilitation goals (Gastauer et al., 2018), there is potential 

to use existing knowledge from UAV based vegetation mapping research to support rehabilitation 

studies. Already, a number of research efforts have highlighted the potential of UAV based 

operational mapping and monitoring approaches, and identified their suitability for diverse 

environments, including open cut mines, and for land-cover and vegetation inventory assessments 

(Ahmed et al., 2017; Pajares, 2015; von Bueren et al., 2015). In related studies, Bao et al. (2014) 

utilized SPOT-5 satellite imagery to classify semi-arid vegetation to support mine rehabilitation and 

monitoring, but only managed to classify four broad land-cover classes, including tree cover, dense 

grassland, sparse grassland, and bare ground. However, Chen et al. (2018) emphasized the need for 

more detailed classes and high mapping accuracies for land-cover classification of open cut mine 

rehabilitation for effective monitoring. As opposed to satellite based efforts, UAV platforms allow 

the collection of imagery at the required spatial resolution to map detailed land-cover classes. A 

number of studies have argued that multi-temporal assessment of mine rehabilitation sites is 

needed to successfully assess its suitability for relinquishment (Fletcher and Erskine, 2013; Koch and 

Hobbs, 2007; Suh et al., 2017; Whiteside and Bartolo, 2016). However, in order to do this, a 

consistent mapping approach suited for repeated image acquisitions is paramount. 

 

While automated image-based approaches have been investigated previously for coal mines using 

high-cost, high spatial resolution aerial imagery (Freeburn and Mather 2011), this study advances 

this objective by capturing repeat UAV imagery and developing a transferable Geographic Object-

Based Image Analysis (GEOBIA) approach for rehabilitation sites. The purpose of this study was the 

development of novel methods for assessing the extent and progression of erosional processes and 

vegetation cover associated with the safety, stability and sustainability of these constructed 

landforms. Given this context, the research objectives include: 1) collect multi-temporal UAV 

imagery at several mine rehabilitation sites that cover a range of rehabilitation types, ages and land 

uses; 2) use these data sets to produce maps of land-cover, landform and vegetation structure to 

serve as metrics of rehabilitation performance; and 3) develop and apply an automatic labelling 

system of areas by rehabilitation status, based on the mapped land-cover, landform and vegetation 

structural information. The development of an automated system to detect change and condition, 

while providing the capacity to identify areas requiring further on-ground investigation, will be of 

direct benefit to other sites seeking to establish and monitor rehabilitation activities that are 

productive, sustainable and meet the necessary legislative requirements. 

 

2. Material and methods 

2.1 Study Sites 

Rehabilitation sites, covering a range of age classes and locations, were identified across three 

distinct mine sites in New South Wales (Ivanhoe North) and Queensland (Meandu and Curragh), 

Australia (Figure 1). These mines are spread across a large geographic range and present different 

rehabilitation histories. The site at the highest latitude is Ivanhoe North, which lies to the west of the 

Blue Mountains and Sydney. The Meandu mine is located west of Brisbane, while the Curragh mine 

site is to the west of Rockhampton, in the Bowen Basin coalfields of central Queensland. A brief 

summary of the rehabilitation history for each site is detailed below. 
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Figure 1. Locations of mines assessed in this study (a and b) and selected subsets of imagery for 

multi-temporal assessment of (c) Ivanhoe North (d) Meandu and (e) Curragh. 
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2.1.1 Ivanhoe North 

The Ivanhoe North project was a small three-year open-cut mining operation that ceased production 

in March 2012. Centennial Coal, the mine operator, recovered more than 600,000 tonnes of coal 

over this time and progressively undertook rehabilitation activities. The main areas that required 

rehabilitation included the open-cut floor, the angle of repose of overburden (spoil) dumps, coarse 

reject dumps and abandoned high walls. This area included approximately 23 ha. Ivanhoe North's 

remedial works included backfilling the open cut, land contouring, soil spreading, broadcast seeding 

and fertilising, drainage works and the removal of buildings and pit top infrastructure. This work was 

completed in late 2012. The rehabilitation aims to restore the mined area to match the natural 

surrounding areas within the next 20 years, subject to government approval (see Figure 2a). 

 

2.1.2 Meandu 

Overburden has been progressively rehabilitated at the Meandu open-cut coal mine since 1985. 

Rehabilitation processes have included the reshaping of spoil piles to defined landform criteria and 

the replacement of stockpiled topsoil. Topsoil and spoil are deep ripped along the contour, sown 

with improved pasture and native grass, native shrubs and trees and NPK fertilizer. The seed mixes 

and timing of application, equipment used, stockpile age and depth of topsoil (< 400 mm), the 

amount and type of fertilizer, plus the depth of ripping (300–1000 mm) have been somewhat 

variable over time (Gravina and Vickers 2010). For this research the southwestern areas (Figure 2b), 

which were rehabilitated from 1998 to 2010, were the primary areas assessed with the UAV and 

covered approximately 200 ha (Figure 2b). 

 

2.1.3 Curragh 

The Curragh site has undergone a significant program of rehabilitation activities since the late 1980s, 

with more than 1100 ha rehabilitated. The main site assessed for this project was established in 

1994 and is a large 180 ha landform reconstructed using the topsoil-spoil-strip method (McKenna et 

al. 2017a) of alternate strips (10 m wide) of bare overburden and freshly placed topsoil (to 20 cm 

depth). The block is an undulating landform. Seeding was carried out at the time of ripping and 

included a mix of introduced pasture grasses and legumes. On overburden strips, a range of woody 

Acacia and Eucalyptus tree and shrub species were sown. Over the course of this project, the 

landform was subjected to a controlled fire to examine the response of the rehabilitation to this type 

of disturbance. The progressive change of selected sites on the landform before and following the 

fire are illustrated in Figure 2c. 
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April 2015 

 

June 2015 June 2016 

Figure 2. (a) The eastern side of Ivanhoe North rehabilitation; (b) dense tree cover in the south-west 

Meandu rehabilitation area; and (c) three photos from Curragh mine, showing change in the 

vegetative cover of a 20 year old rehabilitation site exposed to a controlled burn on 28 May 2015, 

prior to the June 2015 image collection (McKenna and Glenn 2016). 

 

2.2 Field Data 

Rehabilitation conditions at Meandu were assessed using the BioCondition framework (Neldner and 

Ngugi, 2014) at sites ranging in age from 4 to 26 years. The BioCondition assessments collected 

multiple vegetation attributes (including basal area, stem density and cover attributes recorded for 

woody species) using a 200 m2 plot in August-September 2015. Curragh rehabilitation was assessed 

in the field within a month of each UAV image collection within 400 m2 plots (using a transect of 50 

m) for foliage projective cover of vegetation in three strata (canopy, understorey and ground layer) 

and soil surface cover along the transect (McKenna and Glenn, 2016). As the Ivanhoe North site had 

sparse vegetation cover (see Figure 2a), field data collection, which was carried out at the time of 

the UAV data collection, focused on locating woody debris and tree planting as well as the depth and 

width of selected gully erosion. For each UAV flight campaign, locations with senescent and 

photosynthetically active vegetation were field identified for these locations to serve as calibration 

for discriminating between these vegetation classes in the imagery. 

 

2.3 UAV Image Data 

Across the three mine sites, UAV imagery was collected with at least 80% forward overlap and 60% 

sidelap at altitudes between 100 and 120 m above the ground, using slightly different methods, 

depending upon resource availability, site access, and terrain of the covered area (Table 1). UAV 

operations at Ivanhoe North and the first two data collections at Curragh were consistent across the 

sampling periods, utilising the fixed-wing Swampfox platform with dual modified Sony A5100 

a 

c 

b 
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sensors to collect red-green-blue (RGB) and near infrared (NIR) imagery. The third data collection at 

Curragh was undertaken using a MicaSense RedEdge multi-spectral camera. The Swampfox platform 

was used for the first data collection at Meandu, whilst the second collection was conducted using a 

fixed-wing SenseFly eBee equipped with a Parrot Sequoia multi-spectral sensor. The orthomosaics 

(Figure 1) and DSM generation was undertaken using the Pix4D Mapper software. 

 

Table 1. Details of flight acquisition configurations and imagery collected by UAV platforms and 

sensors at the three mine rehabilitation sites. 

Site Data 

collection 

Time 

Flying height/ 

Speed / Imaged 

area / Pixel size 

Platform Sensor Image bands
a
 

Ivanhoe 

North 

Dec 2014  

Dec 2015  

100 m/ 17 m/s / 2.1 

km
2
 / 0.05 m 

Fixed-wing 

Swampfox 

 

2 X Sony A5100 (one with 

Bayer filter removed) 

RGB, NIR 

Meandu May 2015  

 

May 2016  

100 m/ 17 m/s / 2.9 

km
2
 / 0.05 m 

120m/ 14 m/s /2.9 

km
2
 / 0.18 m 

Fixed-wing 

Swampfox  

 

Fixed-wing 

SenseFly eBee 

2 X Sony A5100  

 

Parrot Sequoia 

RGB, NIR 

 

R, G, RE, NIR 

Curragh Apr 2015 

Jun 2015  

Jun 2016  

120 m/ 17 m/s / 2.1 

km
2
 / 0.06 m (2014 

and 2015) and 0.10 

m (2016) 

Fixed-wing 

Swampfox 

2 X Sony  A5100 (one with 

Bayer filter removed) 

MicaSense RedEdge 

RGB, NIR 

 

RGB, RE, NIR 

a R=Red, G=Green, B=Blue, RE=red edge, NIR=near infrared 

 

2.4 Mapped Parameters 

Open cut mine and rehabilitation sites are highly heterogeneous spectrally, which often prevents 

successful image based land-cover classification using conventional approaches (Cheng et al., 2018). 

However, GEOBIA is ideally suited for high spatial resolution image data such as UAV imagery, and 

can integrate additional information such as shape, size, context and multi-scale characteristics (Bao 

et al., 2014; Blaschke, 2010; Johansen et al., 2010). A number of land-cover classes were identified 

as being directly related to the assessment of safety, stability and sustainability of mine sites 

undergoing rehabilitation (Esposito et al., 2017; Cheng et al., 2018; Whiteside et al., 2014). These 

land-cover classes were selected because: 1) they are directly related to safety, stability and 

sustainability of mine sites undergoing rehabilitation; and 2) they have potential to be classified 

using not just spectral information, but also height information derived from Structure-from-Motion, 

e.g. trees, and shape and size characteristics, e.g. roads are elongated areas with consistent width. 

Specific land-cover classes derived from the UAV imagery included: 

 

• Bare ground: areas of sand, gravel, or rock. 

• Gully: incision in the landscape caused by concentrated flows. 

• Road: elongated areas of bare ground with little variation in width. 

• Senescent vegetation: non-photosynthetically active (based on field observations) 

vegetation. 

• Shadows: areas affected by landscape features above ground level casting shade. 

• Steep slopes in areas with bare ground: slope > 10° in areas mapped as bare ground. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

9 

 

• Grass or low shrub: photosynthetically active (based on field observations) and < 0.5 m in 

height. 

• Shrub and other vegetation < 2 m: photosynthetically active and between 0.5-2 m in height. 

• Trees 2-4 m in height: based on a height from ground level to the apex between 2-4 m. 

• Trees > 4 m in height: based on a height from ground level to the apex of the crown > 4 m. 

• Water bodies: any area with open water, e.g. a dam. 

 

The land-cover maps produced from the UAV imagery were validated against field data and points 

visually identified on the original UAV imagery. In the field and visual assessment used for validation, 

an area with dead trees or trees with no foliage were assigned as the dominant land-cover type from 

an aerial view instead, i.e. often shrub, grass or senescent vegetation, to correspond to the mapping 

scale of the GEOBIA. An error matrix was produced for each land-cover map. The overall, user, and 

producer accuracies were employed to assess the accuracy of the land-cover maps, with overall 

accuracy, representing the proportion of all reference sites that are correctly mapped, user accuracy 

being 100% minus commission error (i.e. false positives), and producer accuracy being 100% minus 

omission error (i.e. false negatives) (Congalton and Green, 1999). 

 

2.5 Geographic Object-Based Image Analysis 

For UAV imagery with small pixel sizes (in this case, 0.05-0.20 m), the pixels will in most cases be 

smaller than the features being mapped. Hence, each feature, such as a tree crown or patch of bare 

ground, will consist of multiple pixels. Variations in reflectance characteristics within a single feature 

e.g. because of leaf clumping, canopy gaps, sunlit side of tree crown versus shaded side, often make 

it challenging to use pixel-based approaches for land-cover mapping, as pixels belonging to an 

individual feature appear spectrally different (Blaschke, 2010). Hence, GEOBIA is well suited for UAV 

image data sets collected at high spatial resolution. 

 

The site specific image data sets had varying pixel sizes due to the camera types used and 

differences in flying heights and terrain (see Table 1). To standardise the image processing to a 

uniform scale, a pixel size of 0.20 m was selected, as this represented the largest pixel size of the 

collected data sets, while still meeting the high-resolution requirements for mapping all of the 

required land-cover classes. As the data sets were still computationally intensive to process at this 

pixel size, the workflow was based on a batch-processing approach of individual image polygons. 

These polygons represented an outline of different rehabilitation sites based on their age and 

characteristics and were provided by the mining companies as shapefiles. These included 2, 10 and 

17 delineated polygons for the mapped areas of Ivanhoe North, Curragh and Meandu, respectively. 

Each of the polygons were segmented into fine scale objects for land-cover classification using an 

automated mapping approach. 

 

The automated mapping approach was designed as a rule set in the eCognition Developer 9.2 

software. The overall workflow of this process is presented in Figure 3. As none of the UAV image 

data sets were radiometrically, vignette or BRDF corrected to at-surface reflectance (to reflect an 

“applications” based usage of UAVs, as opposed to research purposes), consistency in spectral 

reflectance of the same features could not be expected. Hence, some threshold values used several 

times in the rule set were specified as a “variable”, representing a set value specified only once in 

the rule set, rather than each time this threshold was used within the rule set. Hence, a change in 
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threshold values would only require the updating of the variable in one location of the rule set to 

ensure its suitability to each image data set. Those thresholds that were deemed to be different in 

different image data sets, because of the omission of the radiometric, vignette and BRDF 

corrections, were set, using a variable, so that these thresholds could be easily edited within the rule 

set to account for the omission of image data corrections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Flowchart of the image processing approach used to convert the UAV imagery into a land-

cover map. 

 

As the spectral bands of the UAV imagery did not cover the full range of the digital number range, 

each spectral band was stretched to cover the full range. These stretched bands were subsequently 

used in the remainder of the rule set. The next step produced various vegetation indices, such as the 

Workspace automation setup to segment imagery into 

polygons based on existing shapefiles of the mine sites 

Batch-processing of polygons 

Setting thresholds for variables used multiple times 

Band stretching 

Create additional layers, including vegetation indices 

Segmentation and object-based canopy height model 

Map woody debris and gully erosion based on imported 

shapefiles from manual delineation 

Map vegetation extent 

Map vegetation height classes 

Map bare ground 

Produce slope layer for areas of bare ground to classify 

areas with slopes > 10% 

Polygon assessment of the coverage of land-cover classes 
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Normalised Vegetation Difference Vegetation index and the Green Ratio index (Pickup et al., 1993; 

Kerr and Ostrovsky, 2003). An object-based canopy height model was also developed, based on the 

DSM and the assumption that the lowest location within a tree’s or shrub’s neighbouring area would 

represent the elevation of the ground (Jimenez-Brenes et al., 2017; Torres-Sanchez et al., 2015). A 

fine scale segmentation (multiresolution segmentation algorithm, scale factor = 5, shape = 0.1, 

compactness = 0.5) based only on the DSM layer was first performed to cluster pixels together with 

similar elevation. The difference in elevation between the lowest location (the fine scale object with 

the lowest DSM value) and all other nearby objects was then used to estimate the height of features 

above ground level. This required the search area of the lowest elevation to be large enough to 

include gaps in the canopy or areas of bare ground, but small enough to avoid variation in ground 

elevation. A search window of 50 m x 50 m was found feasible in areas with trees. This search 

window was further reduced to 20 m x 20 m for areas with sparse tree coverage, as this made it 

easier to identify areas with bare ground.  

 

Areas with ground and canopy vegetation were mapped using vegetation indices and thresholds of 

these. Thresholds of vegetation indices were set according to coincident field based observations to 

discriminate photosynthetically active and senescent vegetation. If areas smaller than 6 pixels were 

not classified as vegetation but were completely surrounded by vegetation, these were also 

classified as vegetation. If areas smaller than 4 pixels were classified as vegetation but were 

surrounded by pixels yet to be classified, these small vegetation patches were unclassified to avoid 

excessive details.  

 

The mapped vegetation and the object-based canopy height information were used to map trees > 4 

m, trees between 2-4 m, shrub and other vegetation between 0.50-2 m, as well as grass and low 

shrub of < 0.50 m in height. To avoid a tree being mapped with multiple height classes, because 

parts of the crown may occur at various height intervals, trees with a classified maximum height 

were grown outwards using a region-growing algorithm, so that the entire tree crown area appeared 

with the same height class as the tree apex.  

 

Bare ground was mapped using brightness for all four spectral bands and vegetation indices. Once 

mapped, the slope of these areas was calculated and bare ground areas with a slope > 10% were 

classified as steep slopes. If the edges of tree crowns were not accurately mapped, this caused the 

DSM to show an abrupt change in elevation because of the height differences between the tree 

edge and the ground over a short horizontal distance. To avoid this issue, a buffer of 2 m was 

created surrounding tree crown edges to exclude these areas in the calculation of slope. 

 

The derived land-cover information was used to assess the safety, stability and sustainability within 

each polygon of the rehabilitation sites. A polygon assessment was following the rule-based 

framework explained in Table 2 below. Pixels with > 10% slope were merged, and the object length 

of these was calculated. All objects classified as bare ground were merged and if their area covered  

> 1000 m2 then these were reclassified as “bare ground > 1000 m2”. The percentage coverage within 

a polygon of photosynthetically active ground and canopy cover was assessed by calculating the 

total area of grass, shrub and trees in relation to the total polygon area. Canopy cover within a 

polygon was assessed by calculating the total area of trees > 2 m in height in relation to the total 

polygon area. As a surrogate for species, height classes (i.e. 2-4 m and > 4 m tree heights) were used. 
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This is based on the assumption that different tree species in coal mine rehabilitation often appear 

with different heights, e.g. Acacia and Eucalyptus trees will often occupy different height intervals 

(Erskine and Fletcher 2013). Woody debris was only present at the Ivanhoe North site, but in most 

cases the trunks had similar brightness to bare ground. Hence, these could not be reliably mapped 

unless manual delineation was undertaken. Given this, it is recommended to manually delineate the 

woody debris prior to the eCognition processing and include these delineated areas as a shapefile. 

The rule set was designed to look for this shapefile to ensure the whole process for the larger area 

mapping could be undertaken automatically. Roads were mapped based on their elongated shape 

and narrow width of bare ground. 

 

2.6 Development of Framework and a Decision Based Approach 

Considering the mapped classes outlined above, a number of conditions were incorporated into the 

rule set to automatically label each polygon to one of five status categories. At the end of the rule 

set, the polygon status map and the land-cover and vegetation structure maps, including 

information on the indicators outlined in Table 2, were exported for visualisation and further GIS 

analysis. Based on the mapped land-cover types and indicators, Table 2 was used to categorise each 

polygon within the mapped areas into five status levels, based on safety, stability and sustainability: 

 

• Category 1: If either A or B or both A and B were not fulfilled, this would require site rework 

as the site was deemed unstable and unsafe. 

• Category 2: If A and B, but not C, were fulfilled, this means the site was safe but not stable 

and sustainable. 

• Category 3: If A, B and C were all fulfilled and none of the other indicators were achieved, 

this would mean that the site was safe and stable, but that it had not achieved a level of 

sustainability.  

• Category 4: If A, B and C were all fulfilled and some, but not all, of the other indicators (D-H) 

were achieved, this would mean that the site was safe and stable, but that it had only 

achieved some level of sustainability. 

• Category 5: If all indicators (A-H) were achieved, this would mean that the site was safe, 

stable and sustainable. 

 

Table 2. Specific thresholds to be achieved for each indicator to accomplish a high status of safety, 

stability and sustainability (at the polygon level) for each of the three mine sites. Some of the mine 

sites had different thresholds. These thresholds were set based on input from the mining companies 

in relation to each rehabilitation polygon’s age, environment, landscape and vegetation surrounding 

the mine site, and rehabilitation efforts and expectations. 

Indicators in 

rehabilitation polygons 

Curragh Ivanhoe North Meandu 

A Slope in areas with bare 

ground (slope towards a 

waterway is worse than 

towards pit) 

<10% slope < 100 

m long or <10-20% 

slope < 30m long 

<10% slope < 100 

m long or <10-20% 

slope < 30m long 

<10% slope < 100 m 

long or <10-20% 

slope < 30m long 

B Erosion (gullies/rills) < 50 cm rills (after 

5 years), <1 m in 

rock drains 

< 50 cm rills (after 

5 years), <1 m in 

rock drains 

< 50 cm rills (after 5 

years), < 1 m in rock 

drains 
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C Contiguous bare ground < 1000 m2, <50% of 

polygon 

< 500 m2, <50% of 

polygon 

< 500 m2, <50% of 

polygon 

D Photosynthetically 

active ground and 

canopy cover 

> 50% > 50% > 50% 

E Canopy cover (2m 

height) 

> 5% (after 5 years) > 30% (after 5 

years) 

50-70% (after 5 

years) 

F Canopy or framework 

species indicator (trees 

within both the 2-4 m 

and > 4 m threshold) 

≥ 2 ≥ 2 ≥ 2 

G Woody debris Not a concern >5% cover Present 

H Roads (contributor to 

erosion due to runoff) 

Absent Absent Absent 

 

 

3. Results and Discussion 

3.1 Land-Cover Mapping 

Accurate mapping of land-cover classes is a key requirement, as these form the input data for the 

generation of the rehabilitation status maps. The developed GEOBIA mapping routine was found to 

be transferable between all image data sets (with the exception of adjusting three vegetation index 

thresholds and those presented in Table 2), i.e. the same rule set could be used for processing all the 

image data sets to produce the land-cover maps. As can be seen from Figure 4, the maps produced 

for the two images of Ivanhoe North were similar, with the main differences being an increase in 

grass and low shrub and a reduction of bare ground, occurring in the 12 months between the 

images. As the same platform, camera and flight acquisition configurations were used for the two 

data collections at Ivanhoe North, variations in the DSM were attributed to changes in vegetation 

structure and greenness in response to rainfall and rehabilitation efforts. Overall, the DSM’s 

produced realistic height differences between ground and elevated features such as shrubs and 

trees when using the object-based canopy height model approach in the rule set. The rule set used 

for the Ivanhoe North imagery generated overall mapping accuracies of 85% and 87% for images 1 

and 2, respectively (see Appendix 1: Tables A1 and A2). 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14 

 

  
  

 

Figure 4. Land-cover maps of the Ivanhoe North site based on UAV images 1 (a) and 2 (b) collected in 

December 2014 and December 2015, respectively. 

 

Based on the classifications of the two images of Ivanhoe North, image 2 had more vegetative 

groundcover but less water. The DSM differences between the images resulted in a larger area being 

classified as shrub in image 2, possibly because of influences from both rehabilitation efforts and 

rainfall prior to the image data collections. This contributed to a larger area of bare ground being 

mapped in image 1 compared to image 2 (Table 3). 

 

Table 3. Spatial coverage and percentage distribution of land-cover classes for Ivanhoe North images 

1 and 2. 

Land-Cover Type Image 1 Coverage (m
2
) Image 2 Coverage (m

2
) 

Bare Ground 148,744 (64.1%) 107,528 (46.3%) 

Grass or Low Shrub 34,786 (15.0%) 60,397 (26.0%) 

Senescent Vegetation or Shade 7,740 (3.3%) 15,459 (6.7%) 

Shrub < 2 m in height 8,651 (3.7%) 18,265 (7.9%) 

Steep slope on bare ground 1,208 (0.5%) 225 (0.1%) 

Trees > 4 m  8,828 (3.8%) 11,247 (4.8%) 

Trees 2-4 m 6,979 (3.0%) 5,933 (2.6%) 

Water 4,617 (2.0%) 3,050 (1.3%) 

Woody Debris 10,446 (4.5%) 9,895 (4.3%) 

 

The land-cover maps produced for the Curragh site showed similar trends in land-cover distribution 

(Figure 5). The classification of trees > 2 m revealed high user and producer accuracies for the 

second and third images (>88%). Some misclassification occurred between shrub and grass. This was 

attributed to several locations with both grasses and shrub having heights close to the 0.50 m 

threshold used to discriminate these two land-cover classes. Image 1 presented high levels of errors 

of commission (false positives, i.e. overestimation) and omission (false negatives, i.e. 

underestimation), with only 20% of the trees mapped correctly and 50% of mapped trees belonging 
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to other land-cover classes (Appendix 1, Tables A3-A5). The main reason for this was the poor quality 

of the point cloud generation and derived DSM, which prevented several trees from being 

automatically mapped. Several tree crowns with very sparse canopy cover in image 1, had no canopy 

cover in image 2 after the fire (and were hence correctly characterized as the dominant land-cover 

class, e.g. grass or shrub, instead) and increased green canopy cover in image 3 after post-fire 

regrowth. Sparse vegetation and crown cover are likely to cause a less dense point cloud with fewer 

matching points between overlapping photos. This may cause the DSM to be less accurate, as the 

highest recorded points of trees and shrub within the point cloud, which the DSM generation is 

based upon, may not represent their apex. Hence, the DSM produced for image 1 caused 

discrepancies in the differentiation between trees > 2 m and shrubs < 2 m, grass, and senescent 

vegetation. To avoid these issues in the future, increasing the overlap between flight lines and flying 

lower and slower may improve the quality of the generated point cloud and DSM (Pix4D, 2018). 

However, flying lower and slower will compromise the size of the area that can be covered within 

one flight, with the overall data collection process taking longer. This will also increase the likelihood 

of introducing cloud shadows and differing illumination characteristics into the imagery because of 

the movement of the sun throughout the flight operation (Johansen et al., 2018; McKenna et al., 

2017b). It may also prevent required flights from being undertaken around solar noon and hence will 

increase shadows from trees and other features above ground level, which may require shadows to 

be masked to improve mapping accuracies (McKenna et al., 2017b). 

 

    
Figure 5. Land-cover maps of the Curragh site based on UAV images 1 (a), 2 (b) and 3 (c) collected in 

April 2015, June 2015 and June 2016, respectively. The polygon outline indicates the common focus 

area within which land-cover changes were quantified. 

 

The proportions of bare ground, senescent vegetation and grass cover varied between the three 

images of Curragh (Table 4), due primarily to the effects of the controlled fire disturbance, which 

occurred on 28 May 2015. However, the producer accuracy of mapped shrub was generally low 

(<39%), as several sites with shrub were incorrectly classified due to tall grass and similar multi-

spectral characteristics between shrub and grass in some places with sparse cover. Grass cover was 

misclassified as senescent vegetation in some cases in images 1 (15 out of 38) and 2 (22 out of 54), 

which was often caused by variations in background soil type and colour. Despite of this, a distinct 

increase in mapped bare ground in image 2, mainly at the expense of a reduction in senescent 
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vegetation, was attributed to the controlled fire prior to the data collection of image 2. An increase 

in gully erosion, and grass, shrub and tree cover could also be observed over time. 

 

Table 4. Spatial coverage and percentage distribution of land-cover classes for the Curragh site for 

images 1, 2 and 3. As the total area covered differed between the images, only land-covers, 

occurring within the common focus area outlined in Figure 5, are included. 

Land-Cover Type Image 1 Coverage 

(m
2
) 

Image 2 Coverage 

(m
2
)  

Image 3 Coverage 

(m
2
) 

Bare Ground 231,969 (16.4%) 458,653 (32.5%) 54,112 (3.8%) 

Grass or Low Shrub 703,814 (49.9%) 682,679 (48.4%) 775,539 (54.9%) 

Gully 30,834 (2.2%) 31,156 (2.2%) 40,884 (2.9%) 

Senescent Vegetation or Shade 362,156 (25.7%) 153,159 (10.8%) 396,155 (28.1%) 

Shrub < 2 m in height 30,366 (2.2%) 27,568 (2.0%) 64,826 (4.6%) 

Steep slope on bare ground 44 (0.003%) 40 (0.003%) 138 (0.01%) 

Trees > 4 m  28,681 (2.0%) 39,263 (2.8%) 35,493 (2.5%) 

Trees 2-4 m 23,905 (1.7%) 19,251 (1.4%) 44,622 (3.2%) 

 

At the Meandu site, vegetation (including trees, shrub and grass) was accurately mapped in both 

images. However, some misclassification occurred within the individual vegetation classes. Trees and 

shrub were underestimated in image 2, i.e. only 60.6% and 33.3% of field-identified trees and shrub 

were correctly mapped. The main cause of these mapping errors was the poor quality of the 

produced DSM for image 2, omitting many trees and shrub in the point cloud and subsequent DSM, 

causing overestimation of grass cover (commission error = 49%) (Appendix 1, Tables A6 and A7). 

These effects are visible in Figure 6 and Table 5. It is important to note that image 2 was collected 

using a different sensor (Parrot Sequoia), producing a lower spatial resolution (0.18 m pixels 

compared to 0.05 m pixels) than that of image 1 (collected with a Sony A5100). As a result, the 

inability of this sensor to identify features elevated above ground level caused the errors of omission 

for mapped trees and shrub, while overestimating grass cover. This effect has been identified 

recently in other studies, where increasing flying heights of 30 m, 50 m and 70 m gradually degraded 

the quality of the produced DSM and the ability to accurately estimate the height of trees above 

ground level (Johansen et al., 2018). 
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Figure 6. Land-cover maps of the Meandu site based for UAV images 1 (a) and 2 (b). 

 

Table 5. Spatial coverage and percentage distribution of land-cover classes for the Meandu site for 

images 1 and 2. 

Land-Cover Type Image 1 Coverage (m
2
) Image 2 Coverage (m

2
) 

Bare Ground 136,226 (8.5%) 342,078 (21.2%) 

Grass or Low Shrub 185,351 (11.5%) 452,665 (28.1%) 

Senescent Vegetation or Shade 219,152 (13.6%) 419,965 (26.1%) 

Shrub < 2 m in height 78,063 (4.8%) 95,939 (6.0%) 

Steep slope on bare ground 1,133 (0.1%) 279 (0.02%) 

Trees > 4 m  839,128 (52.1%) 228,665 (14.2%) 

Trees 2-4 m 150,972 (9.4%) 70,408 (4.4%) 

 

3.2 Mapping Rehabilitation Status 

To enable an automated approach for labelling the mine site polygons into categories of status 

(Table 2), the steps outlined in Figure 7 were implemented as part of the rule set in the eCognition 

software. The approach developed for categorising the mine site polygons into five different safety, 

stability and sustainability levels was based on the land-cover classification results. As it is not always 

possible to achieve high land-cover mapping accuracies for mine sites (Bao et al., 2014; Cheng et al., 

2018), the developed approach did not rely as heavily on accurate classification. This was achieved, 

as the framework for polygon assessment (Figure 7) was developed using features and thresholds 

(e.g. > 500 m2 bare ground, canopy cover > 0%, road cover = 0, etc.) that would not have significant 

effects on the categorisation of the polygons, if land-cover mapping inaccuracies were present. 
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However, polygons with land-cover percentages close to the set framework thresholds may be more 

vulnerable to mapping inaccuracies (Johansen et al., 2007). As such, it is important to ensure that 

the UAV imagery collected is suitable for producing high quality DSMs, as the higher the mapping 

accuracies are, the more reliable the framework results become. The inclusion of at least one near 

infrared band is also preferred in order to apply the framework to accurately map vegetation 

characteristics and discriminate senescent vegetation and photosynthetically active vegetation. 
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Figure 7. Flowchart of the approach used to categorise the mine site polygon status into five 

different safety, stability and sustainability levels. 

 

 

 

 

Calculate the percentage coverage of the following land-cover classes within each polygon: 

• Gullies; 

• Bare ground objects > 500 / 1000 m2; 

• Trees 2-4 m; 

• Trees > 4m; 

• Combined photosynthetically active ground and canopy cover (trees, shrub and grass) ; 

• Trees 2-4 m and Trees > 4 m combined, i.e. canopy cover > 2 m; 

• Shrub; 

• Grass; 

• Areas with a slope length > 100 m; and 

• Roads. 

Polygon Status Mapping 

• Category 1: If slope length > 100 m and / or gullies are present within polygon. 

• Category 2: Remaining polygons not classified yet 

• Category 2: If bare ground objects > 500 / 1000 m2 or bare ground covering > 50% of 

polygon within polygon. 

• Category 3: Remaining polygons not classified yet. 

• Category temp: Category 3 polygons having either: 

o Ground and canopy cover > 50%; 

o Canopy cover (trees > 2 m) > 5%; 

o Canopy cover > “Tree > 4 m cover” class (indicating two canopy height classes); or 

o Road cover = 0. 

• If these conditions were not fulfilled, Category 3 polygons remain as Category 3. 

• Category 5: If Category temp polygons fulfil the following criteria (i.e. indicators D-H in 

Table 2): 

o Ground and canopy cover > 50%; 

o Canopy cover (trees > 2 m) > 5%; 

o Trees 2-4 m cover > 0%; 

o Tree > 4 m cover > 0%; and 

o Road cover = 0. 

• If these conditions were not fulfilled, Category temp polygons are classified as Category 4. 

Create polygon level to assess land-cover classes and their spatial coverage within each polygon 
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The automated mapping approach was set up to sequentially evaluate the criteria for each category, 

starting with Category 1. If that was satisfied, the criteria for Category 2 were checked and so on. 

Once the criteria for a category were no longer fulfilled, the polygon was assigned to this category 

(Figure 7). For the whole Ivanhoe North site, both images were assigned as Category 2, indicating no 

change and that the site was safe, i.e. no significant slopes and gullies, but not stable and 

sustainable. The Category 2 labelling of the Ivanhoe North site was caused by the contiguous bare 

ground > 500 m2 (see Figure 4). 

 

The maps generated for the Curragh site produced polygons with poor status in most cases (i.e. 

Category 1), due to the presence of gully erosion, indicating a lack of safety, stability and 

sustainability (Figure 8). Most of the areas of bare ground had gully erosion and showed signs of rill 

development. Some of the areas with rills developed into gullies between the acquisition of images 1 

and 3, following exposure of the site to a controlled fire. Without the fire and gully erosion, most of 

the polygons would have been categorised with a status score one to three categories higher. The 

Category 4 polygon in the south-western part of image 1 changed to Category 2 in image 2 (Figure 8) 

due to the presence of mapped bare ground patches > 1000 m2, but went back to a Category 4 in 

image 3 due to a reduction in mapped bare ground. Both of the two Category 2 labelled polygons in 

image 1 in the north-eastern and south-eastern parts of the imaged area were reduced to a 

Category 1 status because of gully development within these two polygons in the subsequent 

images. 

 

   
 

Figure 8. Polygon based status maps of the Curragh site for images 1 (a), 2 (b) and 3 (c).  

 

The polygon status maps for Meandu (Figure 9) should be interpreted in relation to the mapping 

accuracies previously reported (Tables A6-A7). While the decrease in mapped trees > 2 m is to some 

extent attributed to the inability to map these accurately in image 2, a significant patch 

(approximately 3 ha) of Acacia trees in the western part of the site was cleared prior to the 

collection of image 2. This was the main contributor to the reduction in the category status from 4 to 

2 for this polygon. The other polygons with a Category 4 status in image 1 and a Category 2 status in 

image 2 appeared with the lower status score because of the exposure of more bare ground with 

contiguous patches over 500 m2 in image 2. The two polygons with a Category 1 status in image 1 

was caused by sloping ground, which did not occur in image 2, hence increasing the status score to 

Category 2 for these two polygons. 
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Figure 9. Polygon based status maps of the Meandu site for images 1 (a) and 2 (b). 

 

While the status maps provide a quick overview that can be used to assess changes and 

rehabilitation progress over time, it is important to include the maps of land-cover, vegetation 

structure and landform characteristics to properly interpret the status categories. During the 

rehabilitation process, which may occur over multiple decades, multi-temporal imagery and derived 

status maps allow identification of sites, requiring remedial action, where the detailed land-cover 

maps can be used as a guide to determine management implications at different spatial scales. As 

highlighted for the Curragh site, polygons can change their status in response to fire and other 

natural disturbances that are beyond management control. To use these status maps to support the 

relinquishment of a mine lease, it is therefore important to have consistently high status scores for 

multiple years and for a rehabilitated mine site to be able to recover quickly after fire and other 

natural disturbance events. A time-series of status and land-cover maps may also be used for 

negotiated residual risk assessments at the relinquishment stage (Lamb et al, 2015), to determine 

the residual risk payment by the leasing company for covering potential long-term costs of managing 

the final site. As this payment depends on the level of demonstrated certainty of landforms 

remaining stable and the sustainability of the site, a time-series of UAV based status and land-cover 

maps with complete spatial coverage may provide more convincing evidence than field data, 

covering selected parts of a mine rehabilitation site. Regulators may often lack adequate tools to 

assess compliance and sustainability of rehabilitation. Hence, this research may also support 

regulatory authorities that require validation of rehabilitation achievements claimed by mining 

companies. The main benefit of the developed approach is that it can be used by both mining 
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companies and regulators at different spatial scales, for both small and large polygons, as long as the 

specific thresholds for the indicators outlined in Table 2 are adjusted accordingly. 

 

Future work may focus on integrating additional status indicators of safety, stability and 

sustainability to provide a more detailed mine site rehabilitation status assessment. These additional 

indicators could include: information on vegetation composition, presence of invasive species, 

similarity to original vegetation, biodiversity and establishment of ecosystems, rates of landform and 

vegetation change under a disturbance regime (e.g. grazing, fire, flood events); presence of voids or 

tunnel erosion; soil and spoil metal and salt concentrations; and void water quality. The inclusion of 

these additional status indicators, especially with regards to species richness and composition and 

the presence of invasive species or similarity to original vegetation, may improve the developed 

framework and ability to evaluate rehabilitation success. This additional information might 

particularly affect the ability to successfully discriminate between status categories 4 and 5 related 

to the level of sustainability.  

 

It is also recommended to explore how to further increase the mapping accuracies, e.g. by 

performing radiometric corrections to normalize image digital numbers to at-surface reflectance 

(similar to Johansen et al., 2018), and by optimizing UAV flight acquisition configurations (height, 

speed, sidelap, time of year and day, camera type, etc.) to increase the accuracy of the Structure-

from-Motion derived DSMs. As a guideline for landscape monitoring, imagery collected at 

anniversary dates or within anniversary windows should be used in order to reduce changes 

occurring due to rainfall, temperature, plant phenology, solar geometry, etc. (Coppin and Bauer, 

1996). In terms of timing for detecting vegetation status, data collection of mine rehabilitation sites 

should occur soon after the wet season (particularly if grazing or biomass are important for the 

polygon status) to reflect maximum photosynthetic cover. To detect bare ground and gully change at 

mine rehabilitation sites, it is recommended that data collection occurs at the end of the dry season 

when vegetation cover is lowest and safety and stability of the polygon status are of highest 

importance. 

 

4. Conclusions 
An automated multi-temporal monitoring method was developed to assess the safety, stability and 

sustainability levels of mine site rehabilitation. The developed framework provides a new approach 

for using UAV derived land-cover and landform classes, together with vegetation structural 

information, to determine whether rehabilitated land is appropriately conditioned for post-mining 

use. It was integrated as a part of an automated mapping method so that a map with five status 

categories of selected polygons within a mine rehabilitation site could be produced. Importantly, the 

framework and automated mapping method offer the capacity to be applied to a range of mine 

rehabilitation cases, is not site-specific, and is therefore transferable to other locations and 

scenarios. However, it is important that the UAV imagery is collected with flight acquisition 

configurations that optimize the accuracy of the Structure-from-Motion derived DSMs to allow 

accurate discrimination of trees, shrub and grass based on height information. The derived maps can 

be used for both identification of site locations requiring further management action and to 

demonstrate rehabilitation achievements with complete spatial coverage. With the increasing use of 

UAVs for mine rehabilitation monitoring, the developed UAV based framework has potential to 
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support many future applications, including management implications, legislative compliance, 

negotiated residual risk assessments and mine lease relinquishment. 
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Appendix 

 
Table A1. Accuracy assessment of Ivanhoe North image 1. Overall accuracy = 85%. 

Classified\Reference Bare Ground Grass Shrub < 2 m Trees > 2 m Water Total 

Bare Ground 30     30 

Grass  24 9   33 

Shrub < 2 m  6 14 1  21 

Trees > 2m   7 29  36 

Water     31 31 

Total 30 30 30 30 31 151 

User Accuracy 100% 72.7% 66.7% 80.6% 100%  

Producer Accuracy 100% 80% 46.7% 96.7% 100%  

 

Table A2. Accuracy assessment of Ivanhoe North image 2. Overall accuracy = 87%. 

Classified\Reference Bare Ground Grass Shrub < 2 m Trees > 2 m Water Total 

Bare Ground 29 3 1 1 2 36 

Grass  21 3 2  26 

Shrub < 2 m  3 24   27 

Trees > 2m  2 2 27  31 

Water     28 28 

Total 29 29 30 30 30 148 

User Accuracy 80.6% 80.8% 88.9% 87.1% 100%  

Producer Accuracy 100% 72.4% 80% 90% 93.3%  

 

Table A3. Accuracy assessment of Curragh image 1. Overall accuracy = 45%. 

Classified\Reference Bare 

Ground 

Grass Shrub < 2 m Trees > 2 m Senescent 

Vegetation 

Total 

Bare Ground 19 4 5 4 8 40 

Grass 10 23  6 15 54 

Shrub < 2 m   7 1  8 

Trees > 2m 2  3 6 1 12 

Senescent Veg 9 4 3 13 16 45 

Total 40 31 18 30 40 159 

User Accuracy 47.5% 42.6% 87.5% 50% 40%  

Producer Accuracy 47.5% 74.2% 38.9% 20% 40%  

 

Table A4. Accuracy assessment of Curragh image 2. Overall accuracy = 73%. 

Classified\Reference Bare 

Ground 

Grass Shrub < 2 m Trees > 2 m Senescent 

Vegetation 

Total 

Bare Ground 32    1 33 

Grass  32 18  22 52 

Shrub < 2 m   12 1  13 

Trees > 2m   1 29  30 

Senescent Veg  1   14 15 

Total 32 33 31 30 37 163 

User Accuracy 97% 61.5% 92.3% 96.7% 93.3%  

Producer Accuracy 100% 97% 38.7% 96.7% 37.8%  
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Table A5. Accuracy assessment of Curragh image 3. Overall accuracy = 83%. 

Classified\Reference Bare 

Ground 

Grass Shrub < 2 m Trees > 2 m Senescent 

Vegetation 

Total 

Bare Ground 32    3 35 

Grass  30 16   46 

Shrub < 2 m  1 6 4  11 

Trees > 2m  1  31  32 

Senescent Veg  1   30 31 

Total 32 33 22 35 33 155 

User Accuracy 91.4% 65.2% 54.5% 96.9% 96.8%  

Producer Accuracy 100% 90.9% 27.3% 88.6% 90.9%  

 

Table A6. Accuracy assessment of Meandu image 1. Overall accuracy = 80%. 

Classified\Reference Bare 

Ground 

Grass Shrub < 2 m Trees > 2 m Senescent 

Vegetation 

Total 

Bare Ground 30 1   9 40 

Grass  15 5  3 23 

Shrub < 2 m  1 23  2 26 

Trees > 2m  2 3 28 2 35 

Senescent Veg  1  1 21 23 

Total 30 20 31 29 37 147 

User Accuracy 75% 65.2% 88.5% 80% 91.3%  

Producer Accuracy 100% 75% 74.2% 96.6% 56.8%  

 

Table A7. Accuracy assessment of Meandu image 2. Overall accuracy = 68%. 

Classified\Reference Bare 

Ground 

Grass Shrub < 2 m Trees > 2 m Senescent 

Vegetation 

Total 

Bare Ground 28    6 34 

Grass  28 13 9 5 55 

Shrub < 2 m  2 11 3  16 

Trees > 2m  1 2 20  23 

Senescent Veg  2 7 1 19 29 

Total 28 33 33 33 30 157 

User Accuracy 82.4% 50.9% 68.8% 87% 65.5%  

Producer Accuracy 100% 84.8% 33.3% 60.6% 63.3%  

 


