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Abstract 

Classical phonetic studies have shown that acoustic-

articulatory cues can be interchanged without affecting the 
resulting phoneme percept (‘cue trading’). Cue trading has so 
far mainly been investigated in the context of phoneme 
identification. In this study, we investigate cue trading during  
recognition of words, the units of speech through which we 
communicate. This paper aims to provide a method to quantify 
cue trading effects by using a computational model of human 
word recognition. This model takes the acoustic signal as input 
and represents speech using articulatory feature streams. 

Importantly, it allows cue trading and underspecification. Its 
set-up is inspired by the functionality of Fine-Tracker, a recent 
computational model of human word recognition. This 
approach makes it possible, for the first time, to quantify cue 
trading in terms of a trade-off between features and to 
investigate cue trading in the context of a word recognition 
task. 

Index Terms: cue trading, human word recognition, 

computational modeling, articulatory features. 

1. Introduction 

The cue trading phenomenon plays a major role in human 
speech perception. A trading relation between two cues occurs 
when "... a change in the setting of one cue (which, by itself, 
would have led to a change in the phonetic percept) can be 
offset by an opposed change in the setting of another cue so as 
to maintain the original phonetic percept." ([1], p. 87).  Cues 
that support such a percept can be smeared out in the temporal 

domain (e.g., nasalization of vowels before nasals), can 
change in the spectral domain (/p/ before /a/ is spectrally 
different from /p/ before /i/), or can primarily manifest 
themselves in the articulatory domain (e.g., articulatory 
compensation). Moreover, the set of cues that ‘make’ the 
percept of a certain phoneme is not unique: i.e., the perception 
of a phoneme can be based on different combinations of cues; 
it might be that none of these cues are essential for this 

phoneme, or that cue combinations can be interchanged with 
other cue combinations. 

Cue trading effects have been extensively shown in 
classical phonetic studies (e.g., [2], [3]), which mostly focused 
on phoneme identification in stimuli ranging in duration from 
short phoneme sequences up to sentences. But these effects 
also play a major role in recent technological applications. For 
example, cue trading effects are of immediate practical 
importance for optimization schemes of hearing devices (e.g., 

see [4]). The novelty of our approach is that the cue trading 
phenomenon is studied in the context of a word recognition 
framework rather than pure phoneme identification. This 
approach addresses one of the open problems in human speech 
perception: exactly how cues are traded and integrated to 
support the perception of a certain speech unit in the context of 

the recognition of words. The aim of this study is to shed light 
onto this issue by investigating cue trading in a computational 
model of human spoken-word recognition. To that end, we 

address three research questions: 1) how can cue trading be 
quantitatively dealt with within a model; 2) how can trading 
relations be found in an automatic way within the paradigm of 
word recognition, and 3) how to describe the relationship of 
cue trading with the temporal dynamics of features?  

Since the speech signal is not a sequence of discrete 
invariable units but is characterized by articulatory 
anticipation, coarticulation, and assimilation, cue trading goes 

hand-in-hand with asynchronous transitions of features 
varying over time (see also [5],[6]). For example, nasalization 
of vowels preceding /n/ may be described by an early rise 
(already during the vowel) of the feature nasality (i.e., an 
effect in the temporal domain); at the same time this leads to 
spectral changes in the vowel and so to a trade-off between the 
features present at a specific moment in the nasalized vowel 
allophone, compared to its non-nasalized variant. 

Albeit not under the same term, cue trading also plays a 
role in automatic speech recognition (ASR). There, cue trading 
is actually closely related to cue weighting. During training of 
the ASR model, the training algorithm adjusts the ASR model 
parameters in order to optimize the likelihood of the speech 
training data given the model. A number of these model 
parameters are specifically used to weigh features, since they 
are applied in a weighted sum of feature values that is used in 

the “goodness of fit” (in terms of the likelihood) between 
signal and model. In this paper, we will make use of the fact 
that ASR systems are able to automatically adapt such 
weightings via the model training (see following sections). 

In our model, we will use articulatory features (AFs) as 
cues to represent the speech signal. AFs describe the speech 
signal in terms of estimated values of speech production 
parameters, e.g., manner and place of articulation, tongue 
height,and lip rounding – often inspired by [7] (see e.g., [8]). 

Our motivation to use AFs is two-fold. Firstly, AFs have 
already proven useful in the computational modeling of the 
prelexical level in human spoken-word recognition [9]. 
Moreover, AFs are not constrained to change synchronously, 
and therefore allow addressing possible asynchronicity 
between features. Table 1 lists the articulatory features used in 
this study. 

2. The computational model 

In line with [9], our computational model assumes that the 

speech recognition process consists of a prelexical level and a 
lexical level. First, listeners map the incoming acoustic signal 
onto so-called prelexical representations (i.e., AFs, see Section 
2.1). At the lexical level, all lexical representations are stored 
in the form of sequences of AFs, and lexical representations 
that (partly) match the prelexical representations are activated 
in parallel (see Section 2.2). 



Table 1.  Specification of the AFs; nil is a code for non-
applicable. 

Articulatory Feature AF values 

manner plosive, fricative, nasal, glide, 
liquid, vowel, retroflex, silence 

place bilabial, labiodental, alveolar, 
palatal, velar, glottal, nil, silence 

voice +voice, -voice 

front-back front, central, back, nil 

round +round, -round, nil 

height high, mid, low, nil 

duration-diphthong long, short, diphthong, silence 

 
 

 
Figure 1. The 33 AF estimates for a Dutch sentence (‘Do you 
have the red bird?’). The horizontal axis represents time (in 

terms of frames). For the sake of clarity, the AFs have not 
been labeled separately. 

2.1. The prelexical level 

The prelexical level consists of seven artificial neural 
networks (ANNs) used in parallel. Each ANN was trained for 
one of the seven AFs groups using the NICO Toolkit [10], an 

artificial neural network toolkit designed for speech 
applications. For training the ANNs, 3410 randomly selected 
utterances from the manually transcribed read speech part of 
the Spoken Dutch Corpus [11] were used. These data were 
labeled at the phoneme level, and prior to training of the 
ANNs converted to their canonical AF value representation 
using a fixed phoneme-AF value translation table. Each ANN 
consists of an input, a hidden, and an output layer. The output 

layer presents an estimate for each of the AF values for that 
particular AF (see Table 1), with estimates between 0 
(property absent) and 1 (present). An example of the estimates 
for all 33 AF values in the prelexical level over time for the 
utterance “Heb je de rode vogel?” (Do you have the red bird?) 
is displayed in Figure 1. The horizontal axis represents time 
(frame index), while the 33 AF value estimates are presented 
along the vertical axis. The leading and trailing silences are 

clearly visible in the figure. For the sake of clarity, the 33 AF 
values have not been labeled separately. 

2.2. The lexical level 

The implementation of the lexical level in our computational 
model consists of a hidden Markov Model (HMM) recognition 
system (based on HTK [12]) – a conventional technique in 

ASR. The set-up of the model, however, is largely inspired by 
the architecture in Fine-Tracker, a recently developed 
computational model of human word processing [9]. Because 

of our model’s embedding in an ASR framework, it has the 
additional option of optimizing parameters based on real 
speech. 

Following Fine-Tracker, in our model, AFs can change 
asynchronously in time at the prelexical level and at the lexical 

level are mapped in a left-to-right fashion onto sequences of 
‘lexical’ AF vectors. Each lexical vector consists of 33 AF 
values. Each value is either an ‘ideal’ canonical target value or 
is left unspecified (‘underspecification’).  For example, for /a/ 
only those AFs that differentiate the /a/ are specified, while 
other AFs are left unspecified: e.g., manner:vowel = 1, 
manner:silence = unspecified, while all other values of manner 
are 0; for the feature voice:–voice = 0, voice:+voice = 1; etc. 

In Fine-Tracker, the lexical level is represented by a word 
search module. This word search module uses a probabilistic 
word search to match the prelexical feature vectors with the 
candidate words in the lexicon in order to find the most likely 
sequence of words. For each of the prelexical vectors the 
“goodness of fit” (GOF) with the lexical vector is calculated, a 
worse fit results in a lower ‘activation’ of that word and vice 
versa. The ‘unspecified’ values in the lexical vectors are 

ignored in the calculation of the GOF between the input AF 
vectors and the lexical AF vectors (note that there are no 
‘unspecified’ components in the vectors created by the 
prelexical level as these vectors are created by the ANNs). The 
GOF in Fine-Tracker weights the features equally within the 
set of specified features. 

Inspired by Fine-Tracker’s implementation, our HMM-
based model also deals with underspecification. This is done 

by representing each lexical vector by a single-state HMM 
with a single Gaussian distribution (with diagonal covariance 
matrix) as follows. Because each lexical vector has 33 
components, its Gaussian is characterized by 33 means and 33 
variances. First, each specified value in the Fine-Tracker 
lexical vector is directly used as the corresponding mean in the 
Gaussian; the remaining mean values are set to 0.5. Secondly, 
for each specified AF value in the lexical vector, the variance 
of the Gaussian is set to a small value (0.05), while for the 

unspecified AF values the variance is set to 0.4. In this study, 
the variances are the important parameters, since the inverse of 
the variance determines the AF weight used in the GOF 
between the prelexical AF value and the HMM. Therefore 
variances fully determine the trade-off between the features. 
The 8 times larger variance for unspecified components imply 
that these components hardly matter in the calculation of the 
GOF compared to the specified components. 

This architecture addresses our first research question by 
showing how cue trading can be dealt with in a computational 
model. The mean and variance settings described here will be 
referred to as the baseline settings. 

3. Methodology 

3.1. Experimental set-up 

Our second research question concerns how cue trading 

relations can be found in an automatic way within the 
paradigm of word recognition. This is addressed by the ASR 
training step. In this research, this training step is specifically 
constrained to only update the variances; the means remain 
fixed. Starting from the baseline settings, each training 
iteration will lead to updated variances, which in general will 
be different for each AF and each Gaussian (i.e., each 
phoneme). The ASR model training is done via Expectation 

Maximization (EM), a conventional way to optimize model 
parameters in ASR [12]. 



The model will be evaluated on the basis of its recognition 
performance measured by means of Word Error Rates (WER) 
(Section 4). If the word recognition performance can be 
improved through the adaptation of the lexical vector HMMs, 
this signals that cue trading takes place (because the variances 

are the only parameters that can be adjusted).  
Our third research question will be addressed in section 5, 

where we analyze the resulting cue trading by studying the 
feature weights per AF and the relation with feature 
asynchrony. 

3.2. Material 

3.2.1. Test set 
The test set used in our study is taken from a speech database 
that was developed as part of the ACORNS project [13], 
which aimed at investigating and modeling language 
acquisition by young infants. Therefore, all utterances use a 
small lexicon and have a simple syntax, similar to child-
directed speech. There are 83 different words in the lexicon. 
The total number of speakers is 10 (4 females, 6 males). The 

average duration of the speech files in the test set is 5.4 s. 
The data chosen for the experiments consisted of a set of 

5986 utterances from the Dutch part of the ACORNS 
database. 5386 of these utterances were used for adjusting the 
Gaussian variances, while 600 utterances were used for testing 
the model and investigating cue trading. 

3.2.2. Language model 
It is well known that word frequency and the context of a word 

play a role in human word processing. We therefore applied a 
straightforward bigram (containing 83 unigrams and 688 
bigrams) that was built on a set of 4490 utterances (disjoint 
from the training and test sets) with the same syntactical 
structure as the test utterances used in the experiments. The 
test set perplexity of this bigram was 20.1. There are no out-
of-grammar words in the test set. 

4. Word recognition results 

The results obtained by our model are presented (in 

percentages) in Table 2. The final column presents Word Error 
Rates (WER). For the sake of completeness, the table also 
shows the word accuracy, substitutions, deletions and 
insertions (denoted Acc, Subs, Del, Ins, respectively). The row 
‘Baseline’ presents results obtained with the baseline settings 
of the lexical vector HMMs while the rows indicated with 
‘After N iteration(s)’ show the word recognition results of our 
model after training the model for N iterations. After 5 

iterations, the performance has stabilized. 
The improvement of the model (compared to the baseline 

model) shows that cue trading indeed takes place, and vice 
versa: this trading indeed helps to improve the recognition 
performance. 

5. Feature weighting and asynchrony 

5.1. Feature weighting per AF 

While in the baseline lexical model all specified AF 
components have equal weight, this is no longer the case after 
training: each lexical AF vector HMM model drifts away from 
its initial setting and is thereby updated in its own (phoneme-
specific) way.  

Figure 2 shows the effect of the automatic adaptation of 
the cue weights, split out per AF. It displays the weight of 
each of the 33 individual AF values (along the horizontal 
axis), for the baseline model and the models after 1 to 5 

training iterations, averaged across all lexical vectors (i.e., 
phonemes). In this averaging, the silence and short pause (sp) 
model were excluded in order to focus on the ‘real’ speech 
models.  

For clarity, all weights are normalized such that the 

baseline model corresponds to the constant value 1 
(represented by the horizontal dashed curve). The other curves 
show that each subsequent iteration makes the weights more 
and more pronounced. Comparing Figure 2 with Table 1, 
Figure 2 clearly shows the emerging relevance of the manner 
and place features in comparison to the other features, 
evidenced by the higher weights for the manner and place AF 
values. This means that, among all AFs used, the manner and 

place features help most to distinguish phonemes from each 
other within this word recognition task. Moreover, Figure 2 
reveals differences between the weights within the group of 
each AF. The ‘nil’ and ‘silence’ components correspond to the 
valleys in the plots - they hardly gain weight during further 
training. This reflects that these AFs never become relevant in 
the decision which word has been produced.  

Table 2. Performance of the computational model on a 3450-

word recognition task. 

 Acc Subs Del Ins WER 

Baseline LM 80.95 16.79 2.26 2.28 21.33 

After 1 iteration 83.17 14.82 2.01 2.12 18.95 

After 3 iterations 89.28 8.76 1.96 1.84 12.56 

After 5 iterations 89.58 8.44 1.98 1.83 12.25 

 

 
Figure 2. Weightings of the AF values, shown for the 
baseline model (dashed curve) and after N training 

iterations. The ordering of the AFs is the same as in Table 1. 

5.2. Relation with feature asynchrony 

To address our third research question, i.e., how cue trading 
relates to the temporal dynamics of features, we analyzed AFs 

in terms of their temporal organization using a method 
motivated by findings about feature asynchrony [14]. To that 
end, the training corpus was first automatically aligned (via 
forced alignment) by using the baseline models with the 
‘canonical’ phoneme representations. Next, we select an AF 
value (e.g., plosive) and we compare the time course of the 
plosive AF value (as measured in the speech signal by the 
ANNs) with the position of the frames of a plosive (e.g., for 

/p/) as specified by the forced alignment. 
Figure 3 provides an example of this analysis. For the sake 

of transparency, we focus on three manner features (since 
manner AF values undergo prominent weight updates, as 
demonstrated in the previous section), namely plos(ive), 



nas(ality), and fric(ative). The fourth curve (ave(rage)) shows 
the average time course of all AF values. Each curve is 
calibrated in the x-direction such that the center frame in the 
curve coincides with the first frame in the speech signal that 
was assigned to the canonical lexical vector. 

 

 
Figure 3. The time course of three manner AF values 

(plos(ive), nas(al), fric(ative)) after synchronization via 
forced alignment with the canonical lexical representation. 

The horizontal axis displays time (in  frames), while the 
vertical axis shows the average estimation of the AF value. 
The thicker curve shows the average (ave) curve across all 

AFs. (Best seen in color.) 

Figure 3 clearly shows differences in the dynamic 
behavior of these AFs. For example, the (red) dashed curve, 
which represents nasality, shows, compared to the three other 
curves, an early rise, while fricative (blue dashed) shows a late 

rise and a lower peak (around 0.73, compared to 0.85 for the 
average curve). As can be seen in Figure 3, none of the AFs 
reaches value 1 at the center frame (at x=0), showing that the 
actual AF value at the prelexical stage often ‘undershoots’ the 
target canonical lexical AF values in the lexicon. 

 The non-parametric Kolmogorov-Smirnov test shows that 
the three displayed manner features (i.e., plosive, nasality, and 
fricative) differ significantly from the average contour (all ps < 

0.01). Figure 3 shows that, among the manner features, the 
nasality feature undergoes the most prominent effect of 
articulatory anticipation. 

6. Discussion and conclusion 

In this work, we addressed three research questions: 1) how 
can cue trading be quantitatively dealt with within a 
computational model; 2) how can cue trading relations be 
found in an automatic way within the paradigm of word 
recognition, and 3) how to describe the relation between cue 
trading and the temporal dynamics of features. These 

questions were addressed by investigating cue trading in a 
computational model of human word recognition. The main 
finding is that the word recognition performance of the model 
using the baseline settings for the AF weights can be improved 
by automatic adjustment of these weights on the basis of real 
speech data, showing that cue weighting takes place and that 
cue trading relations can be found automatically.   

Figure 2 shows that manner and place are the most 

relevant AFs for word recognition; it further shows different 
weights within each group of AFs (especially manner). These 
differences across AFs reflect the different distinctive ‘power’ 
of AF values to distinguish words in a recognition task. The 

‘nil’ and ‘silence’ components in the AF specifications do not 
gain much weight by further training: These features do not 
carry distinctive information for word recognition. 

Because each HMM represents a different phoneme, our 
computational model not only generates feature-dependent 

weightings but is also able to produce phoneme-dependent cue 
weightings. In the near future, we will investigate how cue 
trading differs across phonemes. We will further deepen the 
relationship (pointed out in Section 5) between the feature 
weighting on the one hand and the feature asynchrony on the 
other. This refined analysis will require more speech data than 
used in our experiments here to avoid data sparseness.  

For HSR research, these results show that ASR-based 

speech analysis methods inspired by knowledge about human 
speech processing can be of great value to investigate 
properties of speech on a large speech corpus. The availability 
of models like the one proposed here is an indispensible asset 
to narrow the gap between computational models of human 
speech processing on the one hand, and ASR-based speech 
analysis methods on the other. As a proof of this, we plan to 
apply the cue weightings found in section 5 to refine the 

goodness of fit mechanism in Fine-Tracker [9].  
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