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Abstract

This thesis is comprised of two parts. The first presents several advances in Sequential Monte Carlo
methods. A new class of sequential Monte Carlo methods called Nested Sampling via Sequential Monte
Carlo (NS–SMC), which reframes the Nested Sampling method of Skilling in terms of sequential
Monte Carlo techniques is introduced. In contrast to NS, the analysis of NS-SMC does not require
the (unrealistic) assumption that the simulated samples be independent. This new framework allows
one to obtain provably consistent and unbiased estimates of marginal likelihoods when Markov
chain Monte Carlo (MCMC) is used to produce new samples. As the original NS algorithm is a
special case of NS–SMC, this provides insights as to why NS seems to produce accurate estimates
despite a typical violation of its assumptions. Novel calibration methods that apply generally to SMC
Samplers are introduced, and applied in a numerical study where the performance of NS–SMC and
temperature–annealed SMC is compared on several challenging and realistic statistical problems.

The second part of the dissertation presents several novel Monte Carlo methods for the estimation of
distributional quantities relating sums of random variables. For the sum of dependent log–normal
random variables, novel estimators for the left tail (cumulative distribution function), the right tail (or
complementary distribution function), and the probability density function are introduced. Numerical
experiments demonstrate that in all three settings, our proposed methodology delivers accurate
estimators in settings for which existing methods have large variance and tend to underestimate the
quantity of interest. Theoretical efficiency results are presented for the left and right tail estimators,
and a method for efficiently sampling dependent log–normal random variables conditional on a left tail
rare event exactly is also presented. Finally, a novel estimator for estimating the probability density
function of a sum of random variables in a more general setting is studied, which allows estimation of
marginal probability density functions in the context of approximate sampling with MCMC.
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Chapter 1

Introduction

The evaluation of complicated integrals is a problem that is ubiquitous in the sciences, engineering,
finance, and statistics. Often, exact evaluation of quantities of interest is not possible, so approximate
methods must be used. A powerful and nowadays widely used approach in that of the Monte Carlo
method. Here, difficult to compute numerical quantities, such as high-dimensional integrals, are
estimated via the outcomes of random computational experiments. The aim of this thesis is the
development of novel Monte Carlo methodology with improved theoretical properties and/or practical
performance for problems of interest, as well as obtaining a better understanding of existing methods.

The first part of this thesis is concerned with Sequential Monte Carlo (SMC) methodology. SMC is
a general class of methods that, broadly speaking, uses an interacting population of samples (called
particles) to approximate a sequence of distributions and estimate their normalizing constants. Certain
features of SMC are shared with a method called Nested Sampling (NS), that latter of which being a
widely used tool in computational physics and amongst practitioners of Bayesian statistics in astronomy.
However, NS lacks convergence results in the common practical setting where Markov Chain Monte
Carlo is used to produce (dependent) samples. The primary contribution of the first part of this thesis
is a new perspective through which to apply the Nested Sampling approach that resolves this issue and
several others.

Chapter 2 introduces a novel class of Sequential Monte Carlo methods called Nested Sampling via
Sequential Monte Carlo (NS–SMC), which reframes NS entirely in terms of Sequential Monte Carlo
techniques. As a result, several new Sequential Monte Carlo methods are presented, including a variant
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for which convergence results in the context of Markov Chain Monte Carlo samples are established.
Moreover, the proposed methodology also allows for the unbiased estimation of normalizing constants,
and provides an entirely new avenue through which to approach Nested Sampling based research. It is
also demonstrated through the NS–SMC framework how an improved version of NS can be derived
without requiring that the simulated samples be independent. As a result, insight is provided as to
why the original Nested Sampling method seems to perform well in settings where there is a large
amount of dependency in the simulated samples. The secondary contribution of Chapter 2 is the
introduction of novel calibration methods for SMC samplers, and their subsequent use in a numerical
study examining how NS–SMC and the popular temperature–annealed SMC approach compare when
applied to challenging and realistic problems in Bayesian statistics.

In the second part of this dissertation, the area of study is Monte Carlo methods for estimating
distributional quantities relating sums of random variables. Chapter 3 considers specifically sums of
dependent log-normals; which are of interest in finance, risk management, and wireless communications.
Novel methodology is proposed for many quantities of interest. Specifically, estimators for (i) the
cumulative distribution function, (ii) the probability density function, and (iii) the complementary
cumulative distribution function, are introduced. While, in cases (i) and (iii), the proposed estimators
are shown to be theoretically efficient, the major contribution of the chapter is that the proposed
methodology also exhibits excellent practical performance, particularly in cases where existing methods
(some with stronger theoretical properties) perform poorly and, in the case of estimators for the
complimentary cumulative distribution function, tend to underestimate the quantity of interest. An
additional contribution of Chapter 3 is the introduction of the first method to efficiently generate exact
samples of lognormal factors conditional on their sum being less than a quantity that is sufficiently
small to make the event rare.

Finally, Chapter 4 considers probability density function estimation for the sum of more general
dependent summands. Here, an unbiased estimator based on sensitivity analysis is proposed. We
conduct a short numerical study that demonstrates it performs favourably in terms of variance when
compared to other unbiased estimators, and examine its extensions to marginal density estimation in
the context of Markov Chain Monte Carlo.
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Chapter 2

Unbiased and Consistent Nested Sampling
via Sequential Monte Carlo

2.1 Introduction

A canonical problem in the computational sciences is the estimation of integrals of the form

π(ϕ) = Eπ[ϕ(X)] =

∫
E
ϕ(x)π(x)dx, (2.1)

where π is a probability density on E ⊆ Rd and ϕ : E → R is a π-integrable function. Note the
“overloading” of notation for π(·), depending on whether the argument is a function ϕ or a vector x. In
Bayesian computation, which is the focus of this work, π(x) is typically known only up to a normalizing
constant, that is, π(x) = γ(x)/Z for some known positive function γ which, in turn, decomposes
into a product ηL, where η is another probability density function. In particular, in this setting, π
is the posterior probability density, η is the prior probability density, L the likelihood function, and
x ∈ E represents a parameter. For clarity, the correspondence to the usual Bayesian notation (which is
typically written in terms of paramater θ and data D) is as follows:

p(θ | D)︸   ︷︷   ︸
π(x)

∝ p(θ)︸︷︷︸
η(x)

p(D | θ)︸   ︷︷   ︸
L(x)

. (2.2)

Even though π, η and L are general functions, and do not have to be interpreted in terms of Bayesian
computation, we henceforth refer to them as posterior, prior and likelihood function, respectively.
Another quantity of interest is the normalizing constant

Z =

∫
E
η(x)L(x)dx, (2.3)
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which, in the Bayesian context, is called the marginal likelihood (or model evidence) and is often used
in model selection.

The most popular methodology for estimating (2.1) is to useMarkov ChainMonte Carlo (MCMC). Here,
an ergodic Markov chain with π as its invariant density is simulated, yielding samples approximately
from π after a suitably long duration known as the burn–in period. The empirical distribution of these
samples can then be used to estimate (2.1). For more details, see [46, Chapters 6–12].

Nested Sampling (NS) [48] is a Monte Carlo/numerical quadrature method proposed initially for
the estimation of marginal likelihoods, which also provides estimates of Eπ[ϕ(X)] without requiring
additional likelihood evaluations. The method is based on a sampling scheme that samples from
progressively constrained (nested) versions of the prior. NS has achieved wide-spread acceptance
as a tool for Bayesian computation in certain fields, being particularly popular in astronomy (see for
example [50] and [51]) and more generally as a computational method in physics (examples here
include [1] and [39]). However, NS has failed to achieve popularity more broadly in the statistical
community, largely owing to a variety of theoretical problems, most notable of which is that the
methodology assumes that one can obtain perfect and independent samples from constrained versions
of the prior at each iteration, which is clearly unrealistic.

On the other hand, Sequential Monte Carlo (SMC) is a general methodology that involves using an
interacting population of particles to approximate a sequence of distributions via a combination of
mutation, correction, and selection steps. SMC has a rich theoretical basis, as it can be analyzed through
interacting particle approximations to a flow of Feynman-Kac measures, see for example the technical
monograph [15], or the tutorial [16]. The use of SMC methodology in a statistical setting began with
the “Bootstrap Particle Filter” of [28] for online inference in hidden Markov models, and has been the
topic of much research in the statistical community (see for example, the survey [20]). However, SMC
methods in general date much further back to the multilevel splitting method of [32] for the estimation
of rare–event probabilities. An overview of splitting techniques can be found in [47, Chapter 9], and
such methods have continued to be active topic for research, see for example [4], [10], and [9].

The special case of SMC where all sampling distributions live on the same space E is discussed in [17].
In this setting, one can sample from an arbitrary density π by introducing an artificial sequence of
densities bridging from an easy to sample distribution (say η) to π. This approach is often referred to as
SMC in the static setting. While static SMC samplers often make use of MCMC moves, they possess
advantages over the pure MCMC approach in that they are naturally parallelizable, can cope with
complicated posterior landscapes such as those containing multimodality, and have the added benefit
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of being able to produce consistent (and unbiased) estimates of the marginal likelihood as a byproduct.

The aim of this paper is to explore the connection between NS and SMC samplers, resolve some
long–standing theoretical issues with NS by placing it in the SMC framework, and demonstrate not
only how the resulting algorithm can be implemented effectively in practice, but also that it is able
to obtain similar quality of results to existing SMC approaches under similar conditions on highly
challenging examples.

To those ends, the contributions of this work are as follows:

1. We show that by implementing a special type of SMC sampler that takes two importance sampling
paths at each iteration, one obtains an analogous SMC method to NS that resolves its main
theoretical and practical issues. Most notably, the consistency of estimates of marginal likelihood
and posterior inferences with our algorithm is easily established from the properties of SMC
methods, and does not rely on obtaining perfect independent samples. Moreover, estimates of
the marginal likelihood are unbiased.

2. We introduce an improved version of NS, of which the original NS method can be interpreted as
a “rough” version. This gives insights as to why NS seems to work in practice when samples are
dependent, despite the original formulation of the method requiring independent samples.

3. We provide recommendations on how to ensure robust performance of SMC samplers in practice,
including how to tune MCMC kernels and determine an appropriate amount of MCMC repeats.

4. Using these techniques, we present the first extensive comparison between the popular
temperature–annealed SMC approach and our NS–SMC approach, for both the purpose of
marginal likelihood estimation and posterior sampling on difficult realistic statistical problems.

5. Having demonstrated that the ideas behind NS find their true home within SMC methodology,
we conclude by discussing the variety of theoretical and methodological avenues of possible
future research.

2.2 Nested Sampling

Nested Sampling (NS) [48] is based on the identity

Z =

∫
E
η(x)L(x) dx = Eη[L(X)] =

∫ ∞

0
P(L(X) > l)d l, (2.4)
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where L is a function mapping from some space E to R+, and X ∼ η. Note that P(L(X) > l) is simply
the tail cdf (survival function) of the random variable L(X). We denote this survival function by FL(X).
A simple inversion argument yields∫ ∞

0
FL(X)(l)dl =

∫ 1

0
F
−1
L(X)(p)dp, (2.5)

where F
−1
L(X)(p) is the (1− p)–quantile function of the likelihood under η. This simple one-dimensional

representation suggests that if one had access to the function F
−1
L(X), the integral could then be

approximated by numerical methods. For example, for a discrete set of values, 0 < pT < · · · < p1 < p0 = 1,
one could compute the Riemann sum

T∑
t=1
(pt − pt−1)F

−1
L(X)(pt), (2.6)

as a (deterministic) approximation of Z. Unfortunately, the quantile function of interest is often
intractable. NS provides an approximate way of performing quadrature such as (2.6). The core insight
underlying NS is as follows. For N independent samples X1, . . .,XN from a density of the form

η(x; l) :=
η(x)I{L(x) > l}
Pη(L(X) > l)

, x ∈ E, l ∈ R+, (2.7)

we have that
FL(X)

(
mink L(X

k)
)

FL(X)(l)
∼ Beta(N,1). (2.8)

Put simply, consider that one has N independent samples distributed according to the prior subject to a
given likelihood constraint, and then introduces a new constraint determined by choosing the minimum
likelihood value of the samples. This will define a region that has less (unconstrained) prior probability
by a factor that has a Beta(N,1) distribution. As samples from this new distribution will be compressed
into a smaller region of the original prior, (2.8) is often referred to as a compression factor.

With this in mind, Skilling [48] proposes the NS procedure that proceeds as follows. Initially, a
population of N independent samples (henceforth called particles) are drawn from η. Then, for each
iteration t = 1, . . .,T , the particle with the smallest value of L is identified. This “worst performing”
particle at iteration t is denoted by X̆ t and its likelihood value by Lt . Finally, this particle is moved to
a new position that is determined by drawing a sample according to η( · ; Lt). By construction, this
procedure results in a population of samples from η that is constrained to lie above higher values of L
at each iteration.

AfterT iterations, we then have {Lt}
T
t=1. Each Lt corresponds to an unknown pt satisfying Lt = F

−1
L(X)(pt).

Skilling proposes to (deterministically) approximate the pt values by assuming that at each iteration the
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compression factor (2.8) is equal to its geometric mean, i.e., exp
(
E log(C)

)
= exp(−1/N). Thus, we

have the approximation pt = exp(−t/N). This is the most popular implementation, and thus will be the
version we consider for the remainder of this paper; however, it is worth noting that there exists another
variant which randomly assigns pt+1 = pt Bt at each iteration, where Bt ∼ Beta(N,1). With the pairs
(Lt, pt)

T
t=1 in hand, the numerical integration is then of the form

Ẑ =

T∑
t=1
(pt − pt−1)Lt︸         ︷︷         ︸

Ẑt

. (2.9)

In practice, the number of iterations T is not set in advance, but rather the iterative sampling procedure
is repeated until some termination criterion is satisfied. The standard approach is to continue until
pt ·max1≤ j≤N L(X

j) < ε
∑t

j=1 Ẑj , where ε is some small value, say 10−8. This choice attempts to
ensure that the remaining integral is sufficiently small so that error arising from omission of the final
[0, pT ] in the quadrature is negligible.

In addition to estimates of the model evidenceZ, estimates of posterior expectations Eπ[ϕ(X)], as in
(2.1), can be obtained by assigning to each X̆ t the weight wt = Ẑt , and using

T∑
t=1

ϕ(X̆ t)wt

/ T∑
t=1

wt, (2.10)

as an estimator. A formal justification for this is given in [13, Section 2.2], though in essence it is based
on the fact that the numerator and denominator of (2.10) are (NS) estimators of their corresponding
terms in the identity

Eπ[ϕ(X)] =

∫
E
η(x)L(x)ϕ(x) dx

/∫
E
η(x)L(x) dx. (2.11)

Pseudocode for NS is provided in Algorithm 1.

While the estimator (2.10) bears some resemblance to importance sampling (which is introduced in
Section 2.3) in its use of a ratio estimator and weighted samples, it is not precisely the same.

2.2.1 Why isn’t nested sampling more popular with statisticians?

There are several potential issues with NS that we speculate are the reasons why it has not achieved
mainstream adoption in the statistics community. We outline what we believe to be the main four
objections to NS below (in decreasing order of severity), as well as a discussion on relevant works that
have attempted to address them.
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Algorithm 1: Nested Sampling
input : population size N
t← 0
for k = 1 to N do draw X k ∼ η
while (not terminate) do

t← t +1
m← argmin1≤k≤NL(X

k) // identify worst-performing sample
Lt ←L(X

m)

wt ←
(
exp(−(t −1)/N)− exp(−t/N)

)
Lt

X̆ t ← Xm // save sample for inference
Xm← a sample from η( · ; Lt) // move worst-performing particle

end
T ← t
return estimator of the evidence Ẑ =

∑T
t=1wt and weighted samples {X̆ t,wt}

T
t=1.

1. Assumption of Independent Samples. The property (2.8) requires at each iteration independent
samples with the correct distribution. This is a strong condition, as generating samples from
constrained densities of the form (2.7) is in general difficult. The sampling method originally
proposed is to move the worst performing particle at each iteration to the position of one of the
other particles, and then run an MCMC algorithm for sufficiently many iterations to create an
(approximately) independent sample. This procedure itself does not ensure the assumption of
independence is satisfied, as it only produces independent samples asymptotically in the number
of MCMC iterations. Moreover, for problems with likelihoods that have multiple well-separated
modes, the constrained density will have increasingly isolated islands of support as the algorithm
progresses, making it difficult for most samplers to cross between modes in any reasonable
amount of time. Thus, even approximate independence may be difficult to achieve (and verify)
in practice.

Indeed, now over a decade after the introduction of the NS method, establishing consistency
when MCMC transitions are used for sampling with NS remains a challenging open problem.
Chopin and Robert [13] remark that “a reason why such a theoretical result seems difficult to
establish is that each iteration involves both a different MCMC kernel and a different invariant
distribution”. In order to overcome the need for MCMC sampling, they propose a variant of NS
for which the sampling can be performed exactly, and that demonstrate it can perform well in low
dimensional problems for which π is approximately Gaussian.

In a separate attempt to overcome dependency between samples, there is a class of approximate
sampling methods called region sampling that attempts to generate independent samples
by reparameterizing the problem so the constrained sampling problem is one of sampling
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uniformly within constrained regions of a unit hypercube. The most popular of these methods is
MultiNest [24], which uses the population of particles to construct a region that is a union of
hyperellipsoids, sampling from this region, and accepting samples which satisfy the constraint.
There is no way however to ensure the proposal region is a superset of the actual region.
Buchner [7] proposes a method that is more robust (but still not immune) to this problem;
however, the results show it can be an order of magnitude more inefficient and is more susceptible
to the curse of dimensionality.

2. Effect of Quadrature on Posterior Inferences. As shown in (2.10), the ratio of two NS
estimators (from a single run) can be used for posterior inferences. However, the precise effect
of the use of quadrature in both estimators on estimates of π(ϕ) is not well understood. The
algorithm replaces the integral of L over a (random) shell {x ∈ E : Lt < L(x) < Lt+1} with a
single value, and assigns a volume to that shell according to a geometric expectation. To our
knowledge, the only work toward better understanding this unique form of error is [30], which
quantifies it through bootstrapping techniques.

3. Parallelization. While NS can be parallelized across runs, NS does not allow one to make use of
parallel computing architectures within runs without modifying the algorithm. The most natural
way to parallelize NS, first proposed in [8] is as follows. If we generalize (2.8) to consider the
K–th order statistic instead of simply the minimum (K = 1), then 1−C has a Beta(K,N +1−K)

distribution, with expectation K/(N +1). Thus, at each iteration, we can instead remove the K

points with the lowest likelihood, set pt = (1−K/(N +1))t , and parallelize the sampling across K

threads. The approach will not only increase the bias of the algorithm by introducing additional
quadrature error, but will also compound the problem mentioned in the previous issue (as a
single value will now be used to represent the mean of a larger shell).

4. Truncation Error. Finally, of lesser concern, yet still worth noting is that NS commits an
O(exp(−T/N)) truncation error [22] in the evidence estimate as a result of not performing
quadrature on the entire [0,1] interval. A heuristic originally proposed by Skilling, which we call
the filling in procedure is to simply add 1

N
∑N

k=1L(X
k) after termination to the final evidence

estimate. However, this is somewhat out of place with the rest of the quadrature. Using point
process theory and techniques from the literature on unbiased estimation, Walter [52] proposes
an unbiased version of NS. However, this unbiasedness relies on the assumption of independent
sampling, and comes with a cost of additional variance.

As mentioned earlier, all of these potential issues stem from the use of quadrature in NS. Indeed, the
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combined Monte Carlo/quadrature approach of NS seems to give somewhat of an overall awkwardness
to the method. In the next section, we introduce SMC methodology, which we will soon discover
allows us to retain the essence of NS, but allay the objections just discussed.

2.3 Sequential Monte Carlo

We begin with an introduction to importance sampling, which is the fundamental idea behind SMC.
Recall that, in our setting, π(x) ∝ γ(x), where γ is a known function. For any probability density ν
such that ν(x) = 0⇒ π(x) = 0, it holds that

π(ϕ) = Eπ[ϕ(X)] =

∫
E
ϕ(x)w(x)ν(x)dx

/∫
E
w(x)ν(x)dx

= Eν[ϕ(X)w(X)]/Eν[w(X)],

(2.12)

where w(x) = γ(x)/ν(x) is called the weight function.

This suggests that one can draw X1, . . .,XN ∼ ν and estimate (2.12) via the ratio

N∑
k=1

ϕ(X k)w(X k)

/ N∑
k=1

w(X k) =

N∑
k=1

ϕ(X k)

(
w(X k)

/ N∑
k=1

w(X k))

)
︸                      ︷︷                      ︸

Wk

,

where we call the {W k}Nk=1 the normalized weights.

A common measure of the quality of using ν with regard to approximating π(ϕ) is the effective sample
size (ESS),

ESS := Eν
[
w(X)

]2/
Eν

[
w(X)2

]
.

In practice, this can be estimated via

ÊSS =

(
N∑

k=1
w(X k)

)2 / N∑
k=1

w(X k)2 =

(
N∑

k=1

(
W k

)2
)−1

, (2.13)

see [35, Chapter 2.5] for a full discussion. Unfortunately, in difficult high-dimensional settings, it
is often hard to make a choice of importance sampling density to ensure that the ESS will be high
(equivalently, that the variance of the normalized weights will be low).

SMC samplers [17] extend the idea of importance sampling to a general method for sampling from a
sequence of probability densities {πt}

T
t=1 defined on a common space E , as well as estimating their

associated normalizing constants {Zt}
T
t=1 in a sequential manner. This is accomplished by obtaining at
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each time step t = 1, . . .,T a collection of random samples (called particles) with associated (normalized)
weights {X k

t ,W
k
t }

T
t=1, for k = 1, . . .,N , such that the weighted empirical measures of the cloud of

particles,

πN
t (dx) =

N∑
k=1

W k
t δXk

t
(dx), t = 1, . . .,T, (2.14)

converge to their corresponding target measures πt(dx) as N→∞.

SMC samplers have three main elements:

1. Mutation. For each iteration t > 1, the population of particles are moved from {X k
t−1}

N
k=1 to

{X k
t }

N
k=1 according to a (forward in time) Markov kernel Kt , for which we denote the associated

density Kt(x
′ | x). This implicitly defines a new importance sampling density at each iteration

via the recursive formula
νt(x

′) =

∫
E
νt−1(x)Kt(x

′ | x)dx. (2.15)

2. Correction. The weights of the particles are updated via an incremental importance weight
function w̃t , to ensure the particle system is correctly reweighted with respect to the next target
density. This update involves multiplying the current weight of each particle by a corresponding
incremental weight.

3. Selection. The particles are resampled according to their weights, which are then reset to 1/N .
A variety of resampling schemes can be used (see for example [20, Section 3.4]. However, the
simplest is multinomial resampling. Here, the resampled population contains Ck copies of X k

t

for each k = 1, . . .,N , where (C1, . . .,CN ) ∼Multinomial(N, (W k
t )

N
k=1)).

Del Moral et al [17] show that one can use an arbitrary mutation kernel at each stage, without being
required to compute the corresponding importance sampling density νt at each iteration. This is
achieved by introducing an artificial backward (in time) kernel, which transforms the problem into one
in the well–understood setting of filtering (for a comprehensive survey, see [20]). Here, sample paths
of the particles’ positions take values on the product space ET , with the artificial joint distribution
admitting each πt ∝ γt (where γt is the unnormalized density) as a marginal. SMC samplers can be
formulated in many different ways. For our purpose, we require SMC samplers for which Kt for t > 1
is a πt-invariant MCMC kernel (or several iterations thereof). This approach is most straightforward
and related directly to NS. For this case, a suitable choice of the incremental weight function at time t

(i.e., one that will ensure the convergence (2.14)) is

w̃t(xt−1) = γt(xt−1)/γt−1(xt−1). (2.16)
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In this setting, the implicit backward kernel will be a good approximation to the optimal backward
kernel, provided that πt and πt−1 are sufficiently close.

SMC samplers give an approximation of πt(ϕ) at each iteration via

πN
t (ϕ) :=

N∑
k=1

W k
t ϕ(X

k
t ). (2.17)

Further to this, at each iteration SMC samplers give estimates of the ratios of normalizing constants

�Zt/Zt−1 =

N∑
k=1

W k
t−1w̃t(X

k
t−1)︸                ︷︷                ︸

πN
t (w̃t)

, and �Zt/Z1 =

t∏
k=2

�Zk/Zk−1.

Somewhat remarkably, the estimators �Zt/Z1 are unbiased, i.e, E
[ �Zt/Z1

]
=Zt/Z1. It follows readily

that one can also obtain unbiased estimates ofZt ifZ1 is known, by including theZ1 term when γ1

appears in the incremental weights.

Remark 1. (Adaptivity) Introducing any sort of adaptivity into the SMC algorithm, for example
resampling only if some criteria is met, choosing the next distribution online, or setting the parameters
of Kt according to the particle population, will not necessarily preserve the unbiasedness or convergence
properties of the SMC estimators. The analysis of adaptive SMC methods is technically involved.
However, there are consistency results for certain adaptive schemes, see for example [2], and [9],
and [19]. Of course, one can always first run the algorithm adaptively, save the values of any adaptively
chosen parameters, and then rerun the algorithm a second time and with these fixed.

SMC Samplers for Static Models

Del Moral et al [17] provide a strategy for using an SMC sampler to sample from a fixed density π by
defining a sequence of densities π1, π2, . . ., πT that transition from something that is easy to sample
from (for example, the prior density) to π. This can be accomplished in a number of ways. We outline
the two most common in the SMC literature. One approach ( [11]) is to define the sequence of target
distributions such that at each stage the effect of the likelihood is gradually introduced by considering
more data than the last. The second method, first explored by Neal [40] is called temperature annealing.
Here, we have the sequence of densities

πt(x) ∝ ν(x)
1−lt π(x)lt, t = 1, . . .,T . (2.18)
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parametrized by some temperature schedule

l1 = 0 < l1 < · · · < lT−1 < lT = 1,

where ν is some initial importance sampling density. In the Bayesian setting, a natural choice is the
gradual change from prior to the posterior:

πt(x) ∝ η(x)L(x)
lt, t = 1, . . .,T .

In practice, it is often difficult to make a good choice for the temperature schedule. This can be
achieved (approximately) by choosing the next temperature lt+1 ∈ (lt,1] adaptively online according to
the criterion of effective sample size (ESS), as proposed in [31]. This ensures successive distributions
are sufficiently close. For some α ∈ (0,1), one can approximately maintain an ESS of αN between
successive distributions by choosing the next temperature online so that a given ESS is maintained.
In other words, for a collection of particles, we choose Lt+1 (and thus the next density) so that the
ESS for the current importance sampling step is equal to some desired amount. Formally stated, for
w̃k

t+1(l) :=W k
t exp

(
−(l − Lt) logL(X k

t
) )
, we solve

Lt+1 = inf
l:Lt<l≤1


(

N∑
k=1

w̃t+1(l)

)2 / N∑
k=1

w̃k
t+1(l)

2 = αN
 , (2.19)

via the bisection method, for example. Pseudocode for adaptive temperature–annealed SMC (TA–SMC)
is given in Algorithm 2.

Algorithm 2: Adaptive Temperature–Annealed SMC
input :population size N
t← 1, L1← 0,Z← 1
for k = 1 to N do draw X k

1 ∼ η and set W k
1 = 1/N

while γt , 1 do
t← t +1
Lt ← solution to (2.19) obtained via bisection
for k = 1 to N do wk

t ←W k
t−1L(X)

Lt−Lt−1

Ẑ ← Ẑ

(∑N
k=1w

k
t

)
{X̃

k
t−1}

N
k=1← resample {X k

t−1}
N
k=1 according to {w

k
t }

N
k=1

for k = 1 to N do W k
t ← 1/N

{X k
t }

N
k=1← move

(
{X̃

k
t−1}

N
k=1, Kt

)
end
return samples {X t}

N
k=1 and estimator of the marginal likelihood, Ẑ.
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2.4 Nested Sampling via Sequential Monte Carlo

The similarity between SMC and NS at this point is evident. Both methods draw from some initial
distribution (in our case, the prior distribution), and involve traversing a population of particles through
a sequence of distributions, which is of an adaptive nature in NS, but may be either adaptive or fixed in
SMC. From the outset, it would seem that nested sampling is some sort of SMC algorithm, yet it is
distinct in its use of a quadrature rule. Further, it has an interesting point of difference in that NS does
not transition from the prior to the posterior.

It turns out, somewhat suprisingly, that this difference is largely a matter of interpretation. Nested
Sampling is a special type of adaptive SMC algorithm, where weights are assigned in a suboptimal
way. In order to demonstrate this in a straightforward manner, we proceed as follows. We first present a
general class of SMC methods called Nested Sampling via Sequential Monte Carlo (NS-SMC) methods.
Then, we will proceed to show the correspondence with the original NS method by introducing an
adaptive version of NS–SMC, and finally modifying this adaptive version further so that it more closely
resembles (and is equivalent as N→∞) to NS.

We begin by considering a set threshold schedule,

l1 = −∞ < l2 < · · · < lT < lT+1 =∞, (2.20)

which in turn parametrizes a sequence of nested sets

E1 = E ⊃ E2 ⊃ · · · ⊃ ET−1 ⊃ ET,

via
Et := {x ∈ E : L(x) ≥ lt}, t = 1, . . .,T .

Next, define the sequence of constrained densities:

ηt(x) =
η(x)I{x ∈ Et}

Pη(X ∈ Et)︸       ︷︷       ︸
Pt

, t = 1, . . .,T . (2.21)

We now consider directly shells of L, via the sets,

Ĕt = {x ∈ E : lt < L(x) ≤ lt+1}, t = 1, . . .,T .

Observe that sets (Ĕt)
T
t=1 form a partition of E , Ĕt ⊂ Et for t = 1, . . .T −1, and that because lT+1 =∞,

we have that ĔT = ET . Next, we define a second set of densities, corresponding to constrained versions
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of π to these shells,

πt(x) =
γ(x)I{x ∈ Ĕt}∫

E
γ(x)I{x ∈ Ĕt}dx︸                    ︷︷                    ︸

Zt

, t = 1, . . .,T .

With the above in mind, we define a class of SMC Samplers called NS-SMC samplers, that have the
following two properties:

1. Given samples targeting ηt−1, the importance sampling branches into two paths. One path targets
the next constrained prior ηt , while the second targets (and terminates at) the constrained posterior
πt−1. This branching of importance sampling paths occurs for all but ηT , which proceeds only to
πT . This is illustrated in Figure 2.1.

η1 ηT

π1

η2

π2

· · ·
πT

Figure 2.1: Importance sampling scheme for NS-SMC.

The importance sampling procedure just described results in T (dependent) SMC samplers which
output estimators ofZt , as well as samples that can be used to estimate πt(ϕ) for each t = 1, . . .,T .

2. The resulting estimators for bothZt and πt(ϕ) for t = 1, . . .,T are used together to estimate (2.1)
via use of the identity

π(ϕ) =

T∑
t=1
Pπ(X ∈ Ĕt)Eπt [ϕ(X)] =

T∑
t=1

Zt

Z
πt(ϕ). (2.22)

For simplicity (and similarity to the original NS method), we consider the case where each ηt is used
directly as an importance sampling density for πt without any further resampling or moving. In such a
case, we need only consider an SMC sampler that sequentially targets η1, . . ., ηT , because all terms in
(2.22) can be rewritten in terms of expectations with respect to those densities. Thus, NS–SMC can be
viewed as an extension to the rare–event SMC (multilevel splitting) method of Cérou et al [10], which
uses density sequences of the form (2.21) in order to estimate the probability (normalizing constant)
PT .

For ease of presentation, below we use shorthand notation analogously to (2.17). For example, instead
of

∑N
k=1 W k

t I{X
k
t ∈ Et}L(X

k
t )ϕ(X

k
t ), we write ηN

t (IEtLϕ).
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Noting that πt/ηt = L IĔt
, we have

π(ϕ) =

T∑
t=1

Zt

Z
πt(ϕ) =

T∑
t=1

Zt

Z

ηt(LIĔt
ϕ)

ηt(LIĔt
)
, (2.23)

which is estimated via

πN (ϕ) =

T∑
t=1

Ẑt∑T
s=1 Ẑs

·
ηN

t (L IĔt
ϕ )

ηN
t (L IĔt

)
. (2.24)

Note that

Ẑt
ηN

t (L IĔt
ϕ )

ηN
t (L IĔt

)
= P̂t η

N
t (L IĔt

)︸         ︷︷         ︸
Ẑt

ηN
t (L IĔt

ϕ )

ηN
t (L IĔt

)
= P̂t η

N
t (L IĔt

ϕ)

=

N∑
k=1
P̂tW k

t L(X
k
t )I{X

k
t ∈ Ĕt}ϕ(X

k
t ).

(2.25)

The final equality above implies that reweighting with respect to the (full) posterior requires that each
particle targeting ηt at iteration t is assigned the weight

w̆k
t = P̂t W k

t L(X
k
t )I{X

k
t ∈ Ĕt}.

In turn, we have that

πN (ϕ) =

T∑
t=1

N∑
k=1

W̆ k
t ϕ(X

k
t ), W̆ k

t =
w̆k

t∑T
t=1

∑N
k=1 w̆

k
t

. (2.26)

is an estimator of π(ϕ).

Pseudocode for this version of NS–SMC is given in Algorithm 3. We call this version Fixed NS–SMC
(as opposed to adaptive) as one specifies {lt}Tt=1 apriori. Note that resampling occurs at each iteration
in order to avoid wasting computational effort moving particles with zero weight.

The issue of how to appropriately set {lt}T+1
t=1 will be addressed shortly. However, for now we return to

the concerns with NS outlined earlier in Section 2.2.1, and note how they are addressed by NS–SMC:

1. Assumption of Independent Samples. NS-SMC has no requirement that the samples be
independent. Moreover, the unbiasedness and consistency properties of Fixed NS–SMC are
established in Appendix 2.8 via a straightforward application of Feynman–Kac formalism.
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Algorithm 3: Fixed NS–SMC
input :population size N and thresholds {lt}T+1

t=1 satisfying (2.20).
P̂1← 1, t← 1
for k = 1 to N do draw X k

1 ∼ η and W k
1 ← 1/N

while true do
t← t +1
for k = 1 to N do

wk
t ←W k

t−1I{L(X
k
t−1) ≥ lt} // weight update for ηt → ηt+1

w̆k
t−1← P̂t−1W k

t−1L(X
k
t−1)I{L(X

k
t−1) < lt} // weight for π

end
P̂t ← P̂t−1

(∑N
k=1w

k
t

)
and Ẑt−1←

∑N
k=1 w̆

k
t−1

if
∑N

k=1w
k
t = 0 then T ← t and break

{X̃
k
t−1}

N
k=1← resample {X k

t−1}
N
k=1 according to

{
wk

t
}N

k=1
for k = 1 to N do W k

t ← 1/N
{X k

t }
N
k=1← move

(
{X̃

k
t−1}

N
k=1, Kt

)
—where Kt is an ηt–invariant MCMC kernel

end
Ẑ =

∑T
t=1 Ẑt

return weighted samples {{X k
t , w̆

k
t }

N
k=1}

T+1
t=1 and estimator of the marginal likelihood, Ẑ.

2. Effect of Quadrature on Posterior Inferences. All errors in NS–SMC are solely Monte Carlo
errors. The analogous error to that of NS in estimating π(ϕ) is more natural and occurs as the
result of the error in the ratios Ẑt

/
Ẑ for t = 1, . . .,T .

3. Parallelization. NS-SMC is easily parellizable without any further modification. After
resampling, the move step, which is often the most computationally intensive, can be parallelized
at the particle level.

4. Truncation Error. NS-SMC commits no truncation error as the final density πT accounts for
the interval [0, pT ] which is omitted from the NS quadrature. However, it is important to note
that the choice of the final threshold lT will still have an effect on the variance of NS–SMC.
Nevertheless, the absence of truncation error is a key factor in allowing NS–SMC to obtain
unbiased estimates ofZ.

2.4.1 Adaptive NS-SMC

Generally one does not have a good idea of a choice of {lt}Tt=1 that will perform well. In a similar
manner to adaptive TA–SMC, at each iteration t in Algorithm 3 we can replace lt with a random
threshold Lt that is chosen adaptively. Ensuring an estimated ESS for ηt that is at least (1− ρ)N simply
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reduces to choosing Lt to be the (1− ρ) quantile of the values
(
L(X k

t−1)
)N

k=1. Such a choice in NS–SMC
results in the online specification of both ηt and πt−1. While (1− ρ) is analogous to α, we use this
notation as it is common in adaptive multilevel splitting algorithms [3, 4, 10], where ρ is interpreted as
the proportion of particles that one desires to lie above each successive adaptively chosen threshold.
For NS–SMC, (1− ρ) can be interpreted as the desired proportion of samples with non–zero weight for
πt−1.

As with NS, Adaptive NS–SMC also requires that the iteration at which termination occurs is determined
online in some manner. The termination criterion/procedure we use compares the evidence estimate
after an iteration with an estimate that would be obtained by instead terminating at that iteration. At
each iteration, after computing Lt , we compare the ratio of the two evidence estimates, and if it is
greater than 1− ε , we instead set Lt =∞, and declare T = t −1. In our examples, we found that the
choice ε = 10−2 was suitable.

Remark 2. For a given adaptive choice of the next threshold Lt , experiments indicate that there is
considerably less bias (particularly for small N) in the estimates of Z if one sets ηt ∝ η I{L>Lt } and
πt−1 ∝ γ I{Lt−1<L≤Lt } instead of ηt ∝ η I{L≥Lt } and πt−1 ∝ γ I{Lt−1≤L<Lt }.

2.4.2 Improved NS

In this section, we follow the original NS sampling scheme more closely and derive an SMC estimator
using a similar two-branched importance sampling scheme as illustrated in Figure 2.1. Specifically, we
choose the sequence of distributions adaptively so only one particle lies below the next threshold and
conduct our move step in a similar manner to NS. Just as Algorithm 3 can be viewed as an extension
to rare-event SMC algorithm of Cérou et al [10], the more direct variant of NS we describe here can
be viewed as an extension of the static Last Particle Method (LPM) for rare-event simulation [29].
Unfortunately, there is a lack of theoretical results for the LPM in the setting where MCMC is used
(due mainly to the special type of move step, outlined shortly).

We call this method Improved Nested Sampling (INS). The sampling scheme is identical for NS and
INS, and thus one can obtain both estimates from the same nested sampling run. Somewhat surprisingly,
provided the filling in procedure is used, the NS and INS estimators of model evidence and posterior
quantities also become identical as N→∞. This provides insight into why NS seems to perform well
in practice despite a violation of the independence assumption that underlies its quadrature.

INS is a modified version of ANS–SMC with the following differences:
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1. We enforce for iterations t < T that a single particle has non-zero incremental weight for πt . That
is, like NS, we have only one particle that does not have support on the next constrained version
of η.

2. We conduct the resampling and mutation step in a manner that ensures that MCMC is only
required to replenish the “worst–performing particle”.

Unfortunately, setting ρ = (N −1)/N alone in ANS–SMC does not always ensure the first property
above, which requires that all particles correspond to a unique value of L. In discrete settings it is
common for some particles to have the same value of L. However, even if Pη(L(X) = l) = 0 for all
l ∈ R, there may still be duplicate particles if there is a non–zero probability that the MCMC kernel
will return the same point (as is the case in Metropolis–Hastings MCMC).

The solution is reasonably straightforward. We employ auxiliary variables in a similar manner
to [38, pgs. 96–98], who proposes a variant of NS that can be applied to discrete spaces. A similar
approach is used in [9] to break ties in the theoretical analysis of adaptive multilevel splitting.

For brevity, we assume the aforementioned condition that Pη(L(X) = l) = 0 for all l ∈ R, which is
typically the case for continuous E . However, this condition excludes certain cases of what [48] refers
to as “degenerate likelihoods”. Under this assumption, the approach about to be described is entirely
implicit if one does not consider any auxiliary variables, ignores any duplicate particles, and just moves
a single particle at each iteration, yielding the same Lt for multiple iterations. However, in discrete
cases, one must consider the extended space explicity and conduct the move step differently, see [39]
and [38].

We extend the space from E to E ×(0,1) via a uniformly distributed variable U. That is, we have

η(x,u) = η(x)I{0 < u < 1}, and π(x,u) ∝ γ(x)I{0 < u < 1}.

In this setting, define the augmented threshold schedule:

(l1,v1) = (−∞,0) < (l2,v2) < · · · < (lT,vT ) < (lT+1,vT+1) = (∞,1),

where (l,v) < (l′,v′) is to be understood as either l′ > l, or that both l′ = l and v′ > v.

Applying a similar derivation of NS–SMC to that given earlier in this section, we have the sets

Et = {(x,u) ∈ E ×(0,1) : (L(x) > lt,0 < u < 1)∪ (L(x) = lt,vt < u < 1)}

Ĕt = {(x,u) ∈ E ×(0,1) : (lt < L(x) < lt+1,0 < u < 1)∪ (L(x) = lt,vt < u ≤ vt+1)},
(2.27)
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and the densities

ηt(x,u) ∝ η(x,u)I{(x,u) ∈ Et}, and πt(x,u) ∝ π(x,u)I{(x,u) ∈ Ĕt}, for t = 1, . . .,T .

Note that this setup ensures that the Et sets are nested and that the Ĕt sets form a partition.

Prior to demonstrating how INS relates to NS, we stress the following. Due to the special type of
mutation step, the algorithm falls outside of the standard SMC sampler framework (which requires the
same forward kernel for all particles).

Despite this, we continue to use incremental weight functions of the form (2.16). While this choice
seems to be a natural one (and matches the approach used in the LPM), it implicitly assumes that
the INS procedure produces a population of particles that are marginally distributed according to
(the adaptively chosen) ηt at each time step. This may only hold approximately in practice, and even
establishing that the property holds as N →∞ is difficult due to the complicated combination of
adaptively chosen distributions and non–standard mutation step.

Nevertheless, we present the method for the purpose of making clear the connection of NS with the
NS–SMC framework. Moreover, we point out that while our assumption on the marginal distribution
of the particles at each iteration is a strong one, it is substantially weaker than that required in the
original formulation of NS, which assumes not only the same condition on the marginal distributions
of the particles, but also that the particles are independent. Recall that both of these conditions are
required for the property (2.8) to hold.

With the above in mind, we sketch the key aspects of the INS below.

Adaptive Choice of Densities. At each (non–final) iteration, we determine πt−1 and ηt adaptively (via
the choice of of the next threshold parameters Lt andVt) as follows. First, we set Lt =min1≤k≤NL(X

k
t−1).

Next, denote the indices of the particles satisfying L(x) = Lt by I. We “break ties” by choosing
Vt =mink∈I{Uk

t−1}.

Reweighting. Importance sampling takes place for ηt and πt−1 with the incremental weight functions
IEt and L IĔt−1

, respectively.

By construction, we will have N −1 samples with non-zero incremental weight for ηt , giving

P̂t =

(
N −1

N

) t−1

︸       ︷︷       ︸
P̂t−1

N −1
N︸︷︷︸

ηN
t−1(IEt )

=

(
N −1

N

) t

.
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Similarly, only one particle, denoted (X̆ t−1,Ŭt−1), will have non–zero incremental weight for πt−1 (and
thus non–zero weight for π), so we have

Ẑt−1 =

(
N −1

N

) t−1

︸       ︷︷       ︸
P̂t−1

1
N
L(X̆ t−1)︸       ︷︷       ︸

ηN
t−1(L IĔt−1

)

.
(2.28)

Note that (2.28) is not only Ẑt−1 but also precisely the weight of X̆ t−1 with respect to π as in (2.25).
Recall that this is also the case with NS.

Resampling and Mutation. We resample according to a residual scheme, and reset all weights to
1/N . As we have N −1 samples with equal (non-zero) weight, residual resampling will result in N −1
unique particle positions {X̃

k
t−1,Ũ

k
t−1}

N−1
k=1 , as well as a final particle (X̃

N
t ,Ũ

N
t ) that is a copy of one of

the others.

The mutation step is as follows. We begin by applying the identity map all particles except the N–th
one, moving {X̃

k
t−1,Ũ

k
t−1}

N−1
k=1 to {X k

t ,U
k
t }

N−1
k=1 . Then, we perform the following two ηt–invariant moves

in sequence to move (X̃
N
t−1,Ũ

N
t−1) to (X

N
t ,U

N
t ).

First, we move X̃
N
t−1 to XN

t by applying some fixed number of iterations of an ηt(x |u)–invariant MCMC
kernel. Note that

ηt(x |u) ∝

η(x)I{L(x) ≥ Lt} u > Vt

η(x)I{L(x) > Lt} u ≤ Vt

,

so this is simply sampling from a constrained version of η as in standard NS or NS–SMC. Next, we
draw from a new u position according to

ηt(u | x) ∝

I{0 < u < 1} L(x) > Lt

I{Vt < u < 1} L(x) = Lt

.

Final Iteration. The reweighting and mutation steps continue up until a termination criteria is satisfied.
At this point, we declare T = t −1, and set the final threshold parameters Lt =∞, Ut = 1. Here, all
samples will have non–zero incremental weight for πT , and we have

ẐT =

(
N −1

N

)T 1
N

N∑
k=1
L(X k

T ). (2.29)

Note that the above normalizing constant estimator bears similarity to the “filling in” heuristic in

NS. However, here it arises naturally as a final step, and uses
(

N−1
N

)T
to estimate pT , as opposed to

exp(−T/N).
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Despite this similarity, it still appears that (2.28) is distinct from its analogous term in NS. However, by
means of some simple algebraic manipulation, we obtain the identity(

N −1
N

) t

=

(
N −1

N

) t−1 (
1−

1
N

)
=

(
N −1

N

) t−1
−

(
N −1

N

) t−1 1
N
,

which, after rearrangement, reveals that(
N −1

N

) t−1 1
N
=

(
N −1

N

) t−1
−

(
N −1

N

) t

, (2.30)

resembling precisely the Riemann sum quadrature rule, with the choice pt =
(

N−1
N

) t
. The most notable

aspect of this is that at no stage in the derivation of INS did we require the property given in (2.8),
which would require samples to be independent.

We give this version of NS with the “improved” moniker as the alternative choices for pt have been
found to yield superior estimators of Pt when compared to those proposed originally by Skilling [48].
Guyader et al [29] show (under the same idealized sampling assumption as NS) that the LPM estimators
P̂t =

(
N−1

N

) t
are unbiased estimators of Pη(L(X) ≥ Lt). Further to this, [52, Remark 1] shows that this

estimator results in superior estimates over exp(−t/N) in terms of variance so long as pt > exp(−1). In
light of this, Walter suggests using Riemann sum quadrature using these alternative values for pt as it
will result in a superior NS estimator.

The final piece of the puzzle connecting NS with INS and the overall NS–SMC framework, is that as

N→∞ we have that
((

N−1
N

) t
− e−t/N

)
→ 0, so NS’s weights become equal to those of INS. We give a

simple illustration of this convergence in Figure 2.2, where we plot the ratio of (2.30) to the standard
NS Riemann sum / trapezoidal rule terms after T/N = 10 iterations of NS for different N (NS gives
identical estimates for pt for this choice, regardless of N). The convergence will be slower for larger
T/N .

This provides some insight as to why NS seems to deliver correct results in practice, even when particles
are far from independent (as will soon be demonstrated numerically). In essence, NS is an adaptive
SMC algorithm on an extended space, where the choice of weights are, in a sense, sub–optimal.

2.4.3 Phase Transition Example

In order to compare the different variants of NS–SMC and NS, we shall use a phase transition example.
Nested sampling is robust to models that contain phase transitions, i.e., models for which the graph of
log p against logL(F−1

L(X)
(p)) is not concave. For a full discussion of the challenges of phase transition
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Figure 2.2: Ratio of weights for INS for T/N = 10, relative to NS estimators.

phenomena, including why they can be challenging for temperature based methods such as TA-SMC
and the power posteriors method of [25], we refer back to the original NS paper [48]. In a Bayesian
context, a phase transition can be understood intuitively as having a likelihood function that is spiked
and changes rapidly in certain regions. While this would seem to be a pathological type of behaviour
restricted to problems in physics, it is known to occur in statistical settings, see for example [5].

Similar to [48], we consider the estimation of

Z =

∫
Rn

(
2∑

k=1
akφσk

(x)

)
︸             ︷︷             ︸
L(x)

I{| |x | | < 1}
V(Bn)︸        ︷︷        ︸
η(x)

dx,

where φσ denotes the pdf of a multivariate normal distribution with standard deviation σ for each
component, centred at the origin, and V(Bn) denotes the volume of an n–dimension unit hypersphere.
This problem can be viewed as estimating the model evidence of a model with uniform “prior” on the
unit ball, and a mixture of two multivariate normals centered at the origin as a “likelihood function”.
Despite the conceptual simplicity of this problem, it is still difficult computationally, and we can
introduce a phase transition by varying parameters appropriately. In our case, we introduce a phase
transition by specifying σ = (0.1,0.01) and a = (0.25,0.75), which introduces a large “spike” in L due
to the second mixture component. This particular example is also interesting as we are able to perform
exact sampling from each ηt . This corresponds to using the optimal forward kernel.
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In order to illustrate the effects of particle dependency, we also implement a version with MCMC. For
an MCMC kernel, we perform ten iterations of a variant of the random walk sampler where we simply
propose a movement along a randomly chosen coordinate axis. In order to ensure the sampler is well
suited across progressively narrower densities, we choose h to be 1/10 or 1/40 with equal probability.
We remark that this method strongly outperforms the obvious first choice of the standard random walk
sampler. For NS and ANS-SMC, we use our knowledge of the problem to set the termination criterion
to be Lt/L(0) ≥ 0.75; i.e., we stop when the current threshold is higher than 75% of the maximum.
While this ensures that the truncation error for NS is very small, we still use the filling–in procedure.
For (fixed) NS–SMC, we use the thresholds obtained via a pilot run of ANS–SMC.

In terms of simulation effort, it is worth noting that a choice of ρ = 0.37 (≈ exp(−1)) for ANS-SMC
yields around the same number of likelihood evaluations as NS. This is because for one iteration of
NS-SMC, we spend an effort proportional to N (each particle is moved/generated), whereas for NS the

effort is proportional to 1. As exp(−1) ≈
(

N−1
N

)N
, we would expect roughly (discounting the effect of

resampling and moving all the particles at once in the case of NS-SMC) that the two algorithms will
have compressed a similar amount for prior mass for the same amount of likelihood evaluations. Thus,
for purposes of a more direct comparison with NS / INS, we use this choice of ρ. We also implement
adaptive TA–SMC for this example, where we we use the conservative choice of α = 0.95 and 20
MCMC repeats. Note that TA–SMC with α = 0.95 will attempt to maintain an ESS of 0.95N between
successive distributions, and thus will progress slower and allow the particles to move around the space
more.
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Figure 2.3: Phase transition diagnostic plot for the ten-dimensional sphere example. The phase
transition appears around log p = −27, corresponding to approximately 10−12 remaining prior mass.
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The results given in Table 2.1 demonstrate several things. Firstly, we see that both the variance and
bias in the integral estimate seems more pronounced for small N when MCMC is used. The observed
(upward) bias for low N is a problem which seems to become more severe when samples are dependent.

Most notable is the exceptionally poor performance of TA–SMC, which fails on two accounts. Firstly,
temperature–based methods are ill–suited to phase transitions. In the context of SMC, the nature of
such problems means that the actual ESS will be low unless successive temperatures are very close.
Secondly, at each iteration, TA–SMC vastly overestimates its ESS for any given l as a result of there
being no particles in the spike. That is, TA–SMC is unable to identify when it has a poor approximation
of the current target. This results in the adaptive choice of levels failing to achieve its goal, and
producing very poor estimates as a result. For example, notice how for N = 102 and N = 103, it appears
to have missed three quarters of the integral belonging to the spike completely. Interestingly, we see
TA–SMC occasionally successfully find the spike in the N = 104 case, now giving a more accurate
result, but with enormous variance. In contrast, NS–SMC’s estimates of its own ESS will generally be
better behaved, as the incremental weights along the ηt path will be either zero or one.

Table 2.1: Results for the 10-dimensional sphere example with phase transition. Results for N = 102

correspond to 1000 runs, while N = 103 and N = 104 correspond to 100 runs. We have thatZ = 1.

N = 102 N = 103 N = 104

sampler method Ẑ (SE%) evals Ẑ (SE%) evals Ẑ (SE%) evals
Exact NS 1.14 (1.9) 5.0×103 1.01 (1.8) 5.0×104 1.000 (0.5) 5.0×105

INS 0.99 (1.6) 5.0×103 1.00 (1.8) 5.0×104 0.999 (0.5) 5.0×105

ANS–SMC 1.00 (2.2) 4.9×103 1.00 (2.1) 4.9×104 1.009 (0.7) 4.9×105

NS–SMC 0.99 (2.4) 5.0×103 0.99 (2.1) 5.0×104 1.010 (0.6) 5.0×105

MCMC NS 1.52 (9.8) 4.9×104 1.11 (5.2) 4.9×105 1.01 (1.6) 4.8×106

INS 1.33 (8.6) 4.9×104 1.10 (5.1) 4.9×105 1.01 (1.5) 4.8×106

ANS-SMC 1.19 (5.8) 4.8×104 1.06 (4.0) 4.8×105 1.02 (1.2) 4.8×106

NS-SMC 1.01 (4.4) 4.8×104 0.94 (3.5) 4.8×105 1.00 (1.1) 4.8×106

TA-SMC 0.24 (0.5) 4.7×104 0.25 (0.2) 4.8×105 1.03 (73) 4.8×106

While this example illustrates the similarity between NS and NS–SMC methods, showing how they
can each handle phase transitions where TA–SMC has difficulty, the question arises as to how NS–
SMC compares to TA–SMC on challenging and realistic problems. However, prior to conducting a
comparative study, we first consider how one can attempt to ensure the best possible performance for
both methods.
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2.5 Calibration Methods

The implementation of SMC methods requires a specification of kernel parameters, and the number of
MCMC iterations at each time step. As making a judicious choice of these parameters at each time
step is a daunting task, it is common to use the same MCMC kernel parameters through the entire
sequence. Likewise, it is common to use the same number of MCMC kernel iterations at each time
step. Unfortunately, using a fixed scheme for kernel parameters and number of iterations does not
take into account that the targets can become more (or less) difficult to sample from in later iterations.
While SMC methods retain their convergence properties regardless of these factors, one would ideally
like to choose them in a way that is in some sense optimal at each iteration, especially if we aim to
make a fair comparison between different SMC methods. In this section we present some novel ways
of approximately achieving this goal in practice.

2.5.1 Choice of Kernel Parameters

One of the major advantages of SMC samplers over MCMC and NS is the ability to use the population
of particles at each time step to inform the choice of MCMC kernel parameters. For example, it is
common (see, for example, [12]) to use the sample covariance matrix of the particles Σ̂ (an estimator of
the global covariance Σ) in local proposals. However, when it comes to more general kernel parameter
selection, it unfortunately remains common practice to use the same fixed kernel parameter across all
time steps.

For MCMC samplers, Pasarica and Gelman [44] propose to select kernel parameters by maximizing the
expected square jump distance (ESJD) for a single MCMC iteration, which is equivalent to minimizing
the first order (lag–1) autocorrelation. For current state Xcurr and state after an MCMC iteration Xnew,
the ESJD is

ESJD := E | |Xnew−Xcurr | |
2,

where | | · | | denotes some norm, and Xcurr is distributed according to the target density. In the context
of Metropolis–Hastings MCMC with proposal density q(x′ | x), the ESJD is given by

E[| |Xprop−Xcurr | |
2αMH(Xcurr,Xprop)],

where Xprop ∼ q(x′ | xcurr) , and αMH(Xcurr,Xprop) is the Metropolis Hastings acceptance probability of
moving from Xcurr to the proposal Xprop. In this context, we can estimate the ESJD via

| |Xprop−Xcurr | |
2αMH(Xcurr,Xprop).
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Fearnhead and Taylor [23] propose an adaptive SMC sampler that uses the estimated ESJD in its
selection ofMCMC kernel parameters. Themethod starts with an initial population of kernel parameters
which is used in the first mutation step. After the first and all subsequent mutation steps, the population
of kernel parameters is resampled according to ESJD and then jittered. Generally there will be many
poor–performing kernel parameters in the early iterations, and this may lead to poor mixing that can
affect later distributions. Moreover, the kernel parameters that were roughly optimal for the previous
iteration are used as a basis for those in the next iteration. If the targets change in a way that significantly
affects the optimal tuning parameter (for example, the separation of modes due to a new threshold in
NS–SMC), then poor results can be expected. To avoid the use of many poor choices of parameters
in early iterations and to make selection robust to changes in the optimal tuning parameter between
iterations, we opt to select a single optimal tuning parameter per target based on a single MCMC
iteration on all the particles.

Specifically, to automate the selection of a single optimal tuning parameter, we do the following. We
specify a finite set of values for the tuning parameter and at each t > 1, each particle is randomly
assigned one of these choices. We then perform a single MCMC iteration per particle and record
the corresponding estimate of the ESJD. We follow both [44] and [23] in the choice ofMahalanobis

distance as a norm, i.e., | |y | |̂
Σ

:=
√
y Σ̂−1 y , where Σ̂ is an estimate of the global covariance matrix

obtained from the particle positions.

The kernel parameter that produces the highest median estimated ESJD per target evaluation is selected
and the remaining MCMC repeats are subsequently performed. Our method works well in combination
with the method for tuning the number of MCMC repeats (which is explained shortly) and we illustrate
how these methods work in an example in Figure 2.4.

Remark 3. When sampling from {ηt}
T
t=1 in NS–SMC using Metropolis–Hastings with proposal density

q(x′ | x), the acceptance probability becomes

αMH =min
{
1,
η(x′)q(x′ | x)
η(x)q(x | x′)

I{x′ ∈ Et}

}
.

While computing this quantity explicitly is required for estimating ESJD in the pilot run, we remark
that when this is not required, it is more efficient to accept a proposal in two stages as follows. We
conditionally accept with probability min {1, η(x′)q(x′ | x)/η(x)q(x | x′)}. Then, if a proposal has
been conditionally accepted, we accept the proposal iff x′ ∈ Et . This approach reduces the number
of likelihood evaluations required for the same number of iterations, and is an additional benefit of
NS–SMC samplers.
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2.5.2 Choosing the Number of MCMC Iterations

Choosing the number of MCMC iterations per particle at each iteration in an efficient manner remains
a challenging open problem. Computational effort aside, one would like the particles to be close to
independent. However, in practice, we consider this too lofty a goal. For example, in the case of
temperature annealing, at the final move step, achieving this is equivalent to ensuring burn-in for N

standard MCMC samplers for π. Alternatively, one could focus less on attempting to ensure particle
independence and instead try to ensure that there are N unique particles after the move step. For
example, one could perform a single iteration of Slice Sampling to guarantee unique particles, but the
average distance moved may be extremely small. In practice, a balance must be struck.

Drovandi and Pettitt [21] propose a formula to estimate the number of repeats required to move particles
at least once with a specified probability in the context of a Metropolis–Hastings MCMC move step.
The formula uses an average acceptance probability which can be estimated from the previous SMC
iteration, or calculated with a single MCMC repeat for the current target as in [49]. Although this
method is relatively simple to implement, it does not consider the quality of the proposed moves in
terms of jumping distance. Large proposals that are accepted with small probability are given more
repeats than small proposals that are accepted with high probability. In practice, this method is effective
at ensuring a collection of unique particles, but the uniqueness of particles does not guarantee quality
of the particle approximation. Furthermore, this method is not sensible in the context of moves with
guaranteed acceptance, such as Slice Sampling. A second approach, given by Ridgway [45], is to
check for convergence or stabilization of the moves. The sum (over the particles) of the absolute move
distances at each MCMC is recorded and one should iterate until this quantity stabilizes. However,
suggestions are not given as to precisely what defines stabilization of this quantity, or how to check for
this in an automatic manner. Furthermore, we find that if the resampled particles already represent a
reasonable approximation to the target, as they do in the context of NS–SMC and TA–SMC with a
sufficiently large ρ/α, then stabilization becomes even more difficult to determine.

In light of this, we propose an approach that allows the particles to perform a reasonable level
of exploration. Define the expected jump distance for a single MCMC repeat and particle to be
J := E | |Xnew−Xcurr | |̂Σ. In Metropolis–Hastings (MH) MCMC, we can estimate J via

| |Xprop−Xcurr | |̂Σ αMH(Xcurr,Xprop).

For R iterations of an MCMC kernel, we have

Ĵ(R) :=
R∑

r=1
Ĵr, (2.31)



2.6. COMPARISON WITH TEMPERATURE–ANNEALED SMC 31

where Ĵr denotes the estimate of expected jump distance obtained from the r-th iteration. For some
specified quantity Jdesired, we propose to continue iterating the MCMC kernel over all particles until a
specified proportion of the particles satisfies Ĵ(R) > Jdesired. Note that the sum in (2.31) is over the
MCMC iterations, rather than over the particles as was the case in [45].

Our proposed method requires a choice of the proportion of particles as well as a choice of Jdesired.
Both can be chosen based on how conservative the move step should be. In all of our examples, we
choose Jdesired online by using the (weighted) mean Mahalanobis distance between particles before
resampling. We continue to perform repeats until 50% of particles satisfy Ĵ(R) > Jdesired.

This method can be implemented to tune the repeats online and is well–suited to comparing/selecting
different MCMC kernels that differ in terms of acceptance rate and jumping distance. Our experiments
also find it to be more robust to sub–optimal tuning parameters than the acceptance probability based
method of [21]. While the method does not account for possible back–and–forth behaviour of the
sampler, we find that it works well for all samplers across both SMC methods. We note that the
underlying method of iterating until a desired criteria is observed for a specified number of particles is
quite general and can encompass a wide range of goals for the move step. For example, using other
measures of distance is possible, as is considering the sum of actual distances moved.

It is important to note that choosing the number of MCMC repeats online is a form of adaptivity. Thus,
we recommend this approach is only used in the pilot run (where the sequence of distributions and
kernel parameters are also chosen adaptively), in order to determine the number of repeats for fixed
SMC runs.

2.6 Comparison with TA–SMC

While we saw in Section 2.4.3 that variants of NS–SMC are capable of handling phase transitions
as well as NS, with less bias, the question of how NS–SMC compares with TA–SMC arises. In this
section, we compare the different SMC approaches on two challenging Bayesian statistical inference
problems.

Our intention is not necessarily to demonstrate the superiority of our proposed method over TA-SMC.
Given the variety of possible parameters for SMC (i.e., N and ρ/α) as well as many possible MCMC
kernels, methods of tuning them, and choices for number of MCMC repeats at each iteration, there most
likely exists an appropriate choice of these factors for any given problem that will allow one method to
outperform the other. Thus, we instead aim to simply make our best efforts using our experience with
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SMC to get the best out of both algorithms in an automated manner, and observe the results.

Since we have introduced NS–SMC as a way to overcome theoretical issues in NS, particularly when
there is particle dependency, in our experiments we restrict ourselves to MCMC kernels. We point out
that region samplers are only a valid ηt-invariant kernel at each t if they are able to make proposals on
all of Et . However, as discussed earlier, one cannot guarantee this.

To give a fair comparison, we considered three choices of MCMC kernels:

1. The classic Random Walk (RW) sampler, where proposals take the form Y ∼ N(X, h2Σ̂). This
sampler was selected as it a widely applicable and common sampler.

2. The Metropolis Adjusted Langevin Algorithm (MALA), with proposals

Y ∼ N(X +∇x log π̃(X), h2
Σ̂),

where π̃ is the target distribution. MALA is applicable when the derivatives of the log target
with respect to the parameters are available analytically or can be estimated unbiasedly. One of
the strengths of TA-SMC is that there is rich literature of samplers that are straightforward to
apply (see [34, Ch.6] for example). We feel it important to include MALA because it is more
suited to unconstrained targets. The derivatives of the log likelihood are not used in NS–SMC
MALA because the likelihood is only used in defining the constraints.

3. Slice Sampling [41], specifically the slicesample function from the Statistics and Machine
Learning Toolbox in MATLAB . This implementation is based on the basic stepping out and
shrinkage implementation described in [41]. The step out distance in each dimension is chosen
to be wσ̂i where σ̂i is the standard deviation of the ith parameter estimated from the population
of particles. Unlike RW and MALA, Slice Sampling is not disadvantaged by working in a
constrained space, as it requires constrained sampling regardless of the underlying distribution.

In this section, we wish to compare the two SMC methods in a setting resembling what is typically
used in practice. Thus, we use the stratified resampling scheme of Kitagawa [33] for both methods as
this results in lower variance over that of the simpler multinomial scheme. For recent convergence
results and justification for choosing this scheme over other alternatives, see [26].

We conduct an initial pilot run to determine the sequence of distributions, before executing 100 runs
with fixed choice of distributions and MCMC parameters/repeats determined from the pilot run (chosen
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as described previously in Section 2.5). In the pilot run, we used ρ = 0.5 for NS-SMC, and α = 0.5
for TA-SMC, as this leads to the same proportion of ESS out of the total and in our experience these
choices tend to generally perform well. As the same choice of ρ and α typically yields more iterations
(i.e., target distributions) for NS-SMC, in the pilot run we used N = 4 ·104 and N = 104 samples for
TA-SMC and NS-SMC, respectively, in order to keep the number of likelihood evaluations roughly
equivalent across methods. For 100 fixed runs, we used N = 4 · 103 and N = 103 samples for TA-SMC
and NS-SMC, respectively. We felt it was important to use a larger number of samples in the pilot run
in order to tune the MCMC kernels better, and to ensure differences in performance were not simply
due to poor selection of tuning parameters.

Figure 2.4 illustrates that the typical behaviour of our methods for the selection of kernel parameter
and repeats is what one should expect for TA–SMC. Specifically, as the target becomes increasingly
complex, the number of repeats increases, and smaller step sizes are made. Note how TA–SMCMALA
makes larger steps and therefore uses fewer repeats. Further plots for our experiments in this section
can be found in Section 2.10.
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Figure 2.4: Tuning parameter and repeats selection for TA–SMC RW and TA–SMC MALA for the
challenging three component factor analysis model considered in Section 2.6.

When comparing results, we examine estimates of posterior means, posterior lower (2.5%) and upper
(97.5%) quantiles, and model evidence. We measure efficiency in terms of work–normalized variance
(WNV), specifically the variance of the quantity of interest (a measure of statistical efficiency) multiplied
by the number of likelihood evaluations (a measure of computational efficiency). The relative WNV
measure shown in some tables is the WNV for that method divided by the WNV for TA–SMC RW.
Thus, smaller values are considered evidence of superior performance.
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2.6.1 Example 1: Factor Analysis

This model choice example demonstrates how NS–SMC and TA–SMC perform on three different
posterior distributions of varying complexity. We consider the monthly exchange rate dataset used
in [53], where exchange rates (relative to the British Pound) of six different currencies were collected
from January 1975 to December 1986, for a total of n = 143 observations. As in [36], we model the
covariance of the (standardized) monthly-differenced exchange rates, using a factor analysis model, i.e.,
for k ≤ d factors, our data is assumed to be drawn independently from a N(0,Ω) distribution, where Ω
can be factorized as Ω = ββ>+Λ, for β ∈ Rd×k lower triangular with positive diagonal elements, and
Λ a diagonal matrix with diagonal given by λ ∈ Rd

+. Thus, we have that for each additional factor in the
model, we introduce 6(k +1)− k(k −1)/2 additional parameters, giving 12, 17, and 21 parameters for
one, two and three factors, respectively. For priors, we follow [36] and specify

βi j ∼ N(0,1), i < j, i = 1, . . ., k, j = 1, . . .,d

βii ∼ TN(0,∞)(0,1), i = 1, . . ., k

λi ∼ IG(1.1,0.05), i = 1, . . .,d,

where TN(0,∞)(µ,Σ) denotes a N(µ,Σ) distribution truncated to the interval (0,∞), and IG(a,b)
denotes the Inverse–Gamma distribution with probability density function

f (x) =
ba

Γ(a)
x−a−1 exp(−b/x), x > 0.

In order to facilitate improved sampling, we take a log transform of βii for i = 1, . . ., k, which obviates
the need to deal with any constraints at all in TA–SMC.

The one factor posterior (FA1) is relatively easy to sample from in that the marginal densities are
all unimodal. The two factor (FA2) posterior possesses highly separated modes that are challenging
to capture for standard MCMC methods (for example, the reversible jump sampler of [36] failed to
capture this). Finally, the three factor posterior (FA3) contains an exceptionally complex landscape, as
shown by Figure 2.6.

We also include results from an extended “gold standard” run of TA-SMC, for which we used
N = 5×104, and the extremely conservative α = 0.999 to ensure the particles adequately explored the
space. We also note that log p vs. logL plots do not indicate the presence of any phase transitions in
any of the three cases. Results for evidence estimation are shown in Table 2.2 and Figure 2.8, and
results for posterior inference are given in Appendix 2.9. It appears that RW and slice kernels are more
efficient for NS–SMC than TA–SMC for both of the challenging models. Given the earlier discussion
on using MALA in a constrained space, it is not surprising to see that NS–SMC has performed poorly.
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Figure 2.5: FA2 posterior marginal estimates for the gold standard and for 5 runs of TA–SMC with a
RW and NS–SMC with a RW sampler. Shown are parameters (a) logΛ22 which is highly skewed and
(b) β32 which has well separated modes.

Table 2.2: Factor Analysis model evidence results for 100 runs. Efficiency factor is relative to TA–SMC
RW.

Factors Method Sampler logẐ avg.evals relative WNV
One TA–SMC RW -1014.28 7.3×105 1.0

MALA -1014.28 3.0×105 0.1
Slice -1014.27 9.5×105 2.6

NS–SMC RW -1014.27 5.3×105 1.1
MALA -1014.24 8.2×105 2.2
Slice -1014.32 8.2×105 2.5

Two TA–SMC RW -903.21 1.3×106 1.0
MALA -903.24 7.5×105 0.1
SLICE -903.38 1.3×106 2.5

NS–SMC RW -903.23 1.2×106 0.3
MALA -903.02 1.9×106 1.9
SLICE -903.18 1.3×106 2.1

Three TA–SMC RW -905.29 1.5×106 1.0
MALA -905.36 6.1×105 0.1
SLICE -905.02 1.8×106 11.8

NS–SMC RW -905.39 1.7×106 0.4
MALA -905.40 1.4×106 0.7
SLICE -905.30 2.2×106 1.2

In the 2 and 3 component models, multimodality introduces additional difficulty. In SMC, the main
issues with multimodality are that (a) resampling can change the proportion of particles in each mode
and (b) many MCMC kernels do not correct for this by moving between modes. In NS–SMC, the
constraints mean that modes become well separated quickly which compounds problem (b). On the
other hand, TA–SMC suffers more from problem (a) because if resampling removes all samples from
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Figure 2.6: A selection of the most challenging bivariate distributions. Plots are FA3 bivariate posterior
scatterplots from the gold standard run.

a given mode, then unless the unlikely event that the mode is rediscovered occurs, it will not be
captured at all by the particles on the final target (even with recycling methods as described in [42], the
highest weights will be on the final few targets). This may explain why one method does not seem to
significantly outperform the other in the 2 and 3 component models.

2.6.2 Example 2: Ordinary Differential Equation

Models for which the posterior density exhibits strong and complicated tail dependencies present a
unique challenge for samplers. Thus, it is natural to consider to what extent NS–SMC is robust to these
issues by testing it on such an example.
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Figure 2.7: FA3 posterior marginal estimates for the gold standard (thick line) and for 100 runs of
NS–SMC and TA–SMC (thin lines). Shown are parameters (a,b) logΛ33 which is highly skewed and
(c,d) β32 which is multimodal.

We consider a system of ordinary differential equations for modelling biochemical pathways [27],
specifically the following system of coupled ordinary differential equations (ODEs)

dS
dt
= −k1S

dD
dt
= k1S

dR
dt
=
−V1RS

Km1+R
+

V2Rpp

Km2+Rpp

dRpp

dt
=

V1RS
Km1+R

−
V2Rpp

Km2+Rpp
.

Following [27], Gamma priors are specified for all parameters,

k1,V1,Km1,V2,Km2,σ ∼ G(1,1)

S(0),R(0) ∼ G(5,0.2)

D(0),Rpp(0) ∼ G(1,0.1).
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Figure 2.8: FA model probabilities based on 100 runs.

where G(α, β) has the density

f (x) =
βα

Γ(α)
xα−1 exp(−βx), x ≥ 0.

As in [27], we generate a synthetic dataset using

y(t) ∼ N
(
Rpp(t),σ2

)
, t = 0,3,6, . . .,57,

where σ = 0.02, and Rpp(t) is obtained via forward simulation of the model (this is a stiff system, so
MATLAB’s ODE15s solver is used) with
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We perform all sampling on a transformed space where the natural logarithm is applied element-wise
to each parameter, in order to remove the need to sample on a constrained space. Despite being only a
nine–dimensional parameter space, sampling from the posterior density in this example is challenging
due to complex tail dependencies.

The “gold standard” for this example is a 107 iteration random walk MCMC run, with a burn-in of 105

iterations and thinning by taking every 103–th sample. This extended run uses roughly 5-10 times the
number of likelihood evaluations as any of the SMC samplers considered here.

From Figure 2.10 and Tables 2.13 and 2.14 in Section 2.9, it can be seen that both TA–SMC and
NS–SMC fall short, somewhat surprisingly, in a very similar manner with respect to tail coverage
for parameters log k1, log Km2 and logV2. Observe in Figure 2.10 that the occasional run produces
a disproportionate amount of samples in the tails, indicating that the failure to obtain representative
samples in the tails is a largely a manifestation of high variance.

Table 2.3: ODE model evidence results for 100 runs.

Method Sampler logẐ avg. evals relative WNV
TA–SMC RW 21.98 1.3×106 1.0

MALA 21.85 9.6×105 8.1
SLICE 22.20 2.2×106 13.0

NS–SMC RW 22.15 2.1×106 3.1
MALA 22.00 8.8×105 1.2
SLICE 21.97 2.0×106 3.8
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Figure 2.9: Boxplots of the log evidence for the ODE example based on 100 runs.

Once again, the choice of MCMC kernel has more of an impact on evidence and posterior estimation
than the choice of SMC method. An interesting case here is TA–SMC MALA which performs poorly
both in terms of evidence estimation and posterior approximation. TA–SMC MALA makes proposals
which are guided by the (estimated) global covariance and the derivatives of the log target. As this
does not take local dependencies into account, the use of derivative information here actually results in
something that performs worse than the RW sampler by a significant factor. In general, one must keep
in mind that the use of additional derivative information does not necessarily translate into superior
performance.
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Figure 2.10: ODE posterior marginal estimates for the gold standard and for 100 runs of NS–SMC RW,
TA–SMC RW and TA–SMC MALA. Shown are parameters (a,b,c) log k1 where lower tail coverage
is an issue, (d,e,f) log Km2 where lower tail coverage is an issue, and (g,h,i) logV2 where upper tail
coverage is an issue.

2.7 Discussion

The results of our numerical study demonstrate that the NS-SMC approach is capable of performing
well on very difficult problems. The results in Section 2.6 indicate that the performance of the model
evidence estimator is more a product of the performance of an MCMC kernel than of the overarching
SMC method. However, as illustrated by the phase transition example in Section 2.4.3, there are
problems for which NS–SMC is preferable. Such cases asides, the question whether SMC is preferable
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using the TA or NS approach is really one of whether it is preferable to sample (relatively) easy
distributions subject to a constraint or to sample potentially difficult distributions. Overall, our results
provide evidence that the NS approach to SMC has its merits and deserves further attention.

In terms of extensions and variants to NS-SMC from the NS literature, we identify several promising
directions. An analogous SMC method to the Diffusive Nested Sampling of Brewer [6] may be be
possible through the use of specifying a sequence of mixtures of densities of the form (2.21). Such
an approach may increase robustness to the tail coverage issues such as those in the ODE example,
and would perhaps improve the performance of NS-SMC in multimodal settings. A NS-SMC version
of the ellipsoidal nested importance sampling method of Chopin and Robert [13] is straightforward.
We note however that as Pη(X ∈ Ĕt) is easily computed in this setting, and as exactly sampling from η

constrained to the shells Ĕt is possible (as Nested Importance Sampling reformulates the problem so
that η is Gaussian and Ĕt are ellipsoidal regions), the method reduces to a stratified form of importance
sampling.

Conversely, improvements to NS-SMC may also be made by borrowing from the SMC literature.
Again, there are several exciting possible directions in this regard. For example, use of the particle
population at each stage to construct independence samplers as in [49], which not only are capable of
providing highly effective MCMC kernels at each iteration, but have the added advantage of allowing
one to recycle proposals to further improve estimates. Furthermore, with the absence of a deterministic
quadrature rule, and Monte Carlo estimators in their place, NS-SMC may be improved further by
control variate techniques such as zero–variance control variates [37] or control functionals [43].

In terms of theoretical developments, convergence results for ANS–SMC may be possible by extending
the results of Cérou and Guyader [9] for adaptive multilevel splitting, and would require taking into
account the dual importance sampling at each iteration, as well as the random termination condition.
Convergence results for INS (and in turn NS with MCMC) remain difficult due to the combined
adaptivity and special choice of move step, however the connection of NS to SMC provides a new way
of looking at the problem.

Finally, as the performance of NS–SMC largely depends on the performance of the MCMC kernel
used in the move step, further research on how to best sample from distributions subject to complicated
constraints is also of interest. Such samplers are also of interest for SMC methods for Approximate
Bayesian Computation (see for example, [18]).
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2.8 Appendix: Theoretical Properties of Fixed NS–SMC

For the purposes of theoretical analysis, SMC algorithms can be interpreted as interacting particle
approximations to a flow of associated Feynman–Kac measures. We proceed using the convention in
the main text and [17] that t ≥ 1, as opposed to t ≥ 0. We note this point as the latter is typically used
in the analysis of Feynman–Kac flows. However, the difference is simply one of presentation.

Consider the sequence of densities η1, . . ., ηT defined in the nested manner described at the beginning of
Section 2.4. Cérou et al [10, Proposition 2] show that the associated measures have the Feynman–Kac
representation

ηt( f ) = Eηt [ f (X)] =
E[ f (X t)

∏t−1
p=1 I{X p ∈ Ep+1}]

E[
∏t−1

p=1 I{X p ∈ Ep+1}]
,

where f is any test function, and (X p)
t
p=1 is a Markov chain such that X1 ∼ η. Precise details regarding

the transition kernel of this time–inhomogeneous chain can be found in [10, Section 2]. However, the
key aspect is that the kernel Kt that governs transitions from X t−1 to X t is ηt–invariant.

For t = 1, . . .,T , we thus have the unnormalized and normalized Feyman–Kac measures, given by

γt(ϕ) := E
 f (X t)

t−1∏
p=1
I{X p ∈ Ep+1}


and ηt( f ) := γt( f )/γt(1),

respectively.

The population of particles in NS–SMC (equivalently, the fixed levels algorithm in [10]) approximate
these measures with the particle approximation measures

γN
t ( f ) :=

©«
t−1∏
p=1

ηN
p (IEp+1)

ª®¬︸             ︷︷             ︸
γN

t (1) = P̂t

(
1
N

N∑
k=1

f (X k
t )

)
︸             ︷︷             ︸

ηN
t ( f )

,

(2.32)

and
ηN

t (ϕ) := γ
N
t ( f )/γ

N
t (1).

Feynman–Kac particle approximation measures have the well–known properties (see for example, [15])
that for all bounded measurable f : (1) E[γN

t ( f )] = γt( f ), and (2) as N →∞, γN
t ( f )

a.s.
→ γt( f ) and

ηN
t ( f )

a.s.
→ ηt( f ) . These properties are often presented in the context of multinomial resampling.
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However, they also hold for other resampling schemes that satisfy certain mild conditions; see Chapter
11.8 of [14].

We have that

Pt = γt(1) =
t−1∏
p=1

ηp(IEp+1) and Zt = γt(L IĔt
) = Pt ηt(L IĔt

)︸    ︷︷    ︸
Zt/Pt

.

Henceforth, we proceed under the assumption that L is bounded. As a result of Property (1), it follows
that the estimators

Ẑt = γ
N
t (L IĔt

) =
©«

t−1∏
p=1

ηN
p (IEp+1)

ª®¬︸             ︷︷             ︸
P̂t

ηN
t (L IĔt

)︸     ︷︷     ︸�Zt/Pt

, for t = 1, . . .,T,

are unbiased. By linearity of expectation, it follows that Ẑ =
∑T

t=1 Ẑt is an unbiased estimator of
Z =

∑T
t=1Zt . By Property (2), we have that Ẑt

a.s.
→Zt , for t = 1, . . .,T , and thus Ẑ

a.s.
→Z.

The NS-SMC estimator for π(ϕ) is based on the simple identity:

π(ϕ) =

T∑
t=1

Zt

Z
πt(ϕ) =

T∑
t=1

Zt∑T
s=1Zs

·
ηt(L IĔt

ϕ)

ηt(L IĔt
)
,

which we approximate via

πN (ϕ) =

T∑
t=1

Ẑt∑T
s=1 Ẑs

·
ηN

t (L IĔt
ϕ)

ηN
t (L IĔt

)
.

Combining the almost–sure convergence of Ẑ1, . . .,ẐT with Property (2), as N →∞ we have that
πN (ϕ)

a.s.
→ π(ϕ) for any bounded measurable function ϕ.
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Supplementary Material for Part I

2.9 Inference Results

We present posterior expectation and quantile results from 100 runs, N = 4 · 103 for TA–SMC and
N = 103 for NS–SMC for the Factor Analysis and ODE examples. In this section and the next, we refer
to the one, two, and three component factor analysis models as FA1, FA2, and FA3, respectively.

In brackets we report the ratio of (sample variance × average number of evaluations of L) for the
associated method to that of TA–SMC with the Random Walk Sampler. Thus, lower values indicate
lower work–normalized variance.
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Table 2.4: Inference Results for FA1 — Part 1 of 2

�mean �lower �upper
logΛ11 Gold standard −0.23 −0.46 0.01

TA–SMC RW −0.23(1.0) −0.47(1.0) 0.01(1.0)
MALA −0.23(0.2) −0.46(0.3) 0.01(0.4)
SLICE −0.23(4.5) −0.47(1.4) 0.01(2.1)

NS–SMC RW −0.23(1.3) −0.47(0.5) 0.01(1.1)
MALA −0.24(3.7) −0.47(1.3) 0.01(2.2)
SLICE −0.23(3.2) −0.47(1.2) 0.01(1.7)

logΛ22 Gold standard −0.25 −0.48 −0.00
TA–SMC RW −0.25(1.0) −0.48(1.0) −0.00(1.0)

MALA −0.25(0.2) −0.48(0.3) −0.00(0.2)
SLICE −0.25(3.4) −0.48(1.3) −0.00(1.3)

NS–SMC RW −0.24(1.3) −0.48(0.7) −0.00(0.7)
MALA −0.25(1.7) −0.48(1.0) −0.01(1.0)
SLICE −0.25(4.6) −0.48(1.2) −0.00(1.5)

logΛ33 Gold standard −0.43 −0.66 −0.19
TA–SMC RW −0.43(1.0) −0.66(1.0) −0.18(1.0)

MALA −0.43(0.2) −0.66(0.3) −0.18(0.2)
SLICE −0.43(3.0) −0.66(1.6) −0.18(1.5)

NS–SMC RW −0.43(1.0) −0.66(0.6) −0.19(0.6)
MALA −0.43(3.7) −0.66(1.7) −0.19(1.2)
SLICE −0.43(4.0) −0.66(1.4) −0.18(1.7)

logΛ44 Gold standard −2.65 −3.51 −2.05
TA–SMC RW −2.65(1.0) −3.51(1.0) −2.04(1.0)

MALA −2.66(0.1) −3.52(0.2) −2.05(0.3)
SLICE −2.65(4.4) −3.51(2.2) −2.05(2.2)

NS–SMC RW −2.66(1.2) −3.52(0.9) −2.05(0.7)
MALA −2.66(3.5) −3.52(2.4) −2.05(1.3)
SLICE −2.65(3.6) −3.51(2.4) −2.05(1.4)

logΛ55 Gold standard −1.45 −1.73 −1.17
TA–SMC RW −1.45(1.0) −1.73(1.0) −1.16(1.0)

MALA −1.45(0.2) −1.73(0.4) −1.16(0.3)
SLICE −1.45(3.1) −1.73(1.8) −1.16(1.9)

NS–SMC RW −1.45(1.2) −1.73(0.9) −1.17(0.8)
MALA −1.45(2.6) −1.73(1.7) −1.16(1.1)
SLICE −1.45(3.4) −1.73(1.9) −1.16(1.4)

logΛ66 Gold standard −1.44 −1.73 −1.16
TA–SMC RW −1.43(1.0) −1.72(1.0) −1.15(1.0)

MALA −1.44(0.2) −1.73(0.4) −1.15(0.3)
SLICE −1.44(4.5) −1.73(1.5) −1.15(1.7)

NS–SMC RW −1.44(1.5) −1.73(1.0) −1.15(0.8)
MALA −1.44(3.6) −1.73(1.5) −1.16(1.5)
SLICE −1.44(5.3) −1.72(1.5) −1.15(1.7)
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Table 2.5: Inference Results for FA1 — Part 2 of 2

�mean �lower �upper
log β11 Gold standard −0.81 −1.24 −0.48

TA–SMC RW −0.81(1.0) −1.24(1.0) −0.48(1.0)
MALA −0.81(0.2) −1.23(0.3) −0.48(0.3)
SLICE −0.81(4.1) −1.23(2.5) −0.48(2.0)

NS–SMC RW −0.82(1.1) −1.24(1.2) −0.48(0.7)
MALA −0.81(3.2) −1.23(2.3) −0.48(1.3)
SLICE −0.81(4.2) −1.24(2.5) −0.48(1.3)

β21 Gold standard 0.46 0.30 0.63
TA–SMC RW 0.46(1.0) 0.30(1.0) 0.63(1.0)

MALA 0.46(0.3) 0.30(0.3) 0.63(0.4)
SLICE 0.46(3.4) 0.30(1.6) 0.63(2.1)

NS–SMC RW 0.46(1.8) 0.30(0.8) 0.63(1.0)
MALA 0.46(3.6) 0.30(1.1) 0.63(1.5)
SLICE 0.46(4.5) 0.30(1.3) 0.63(2.3)

β31 Gold standard 0.59 0.44 0.75
TA–SMC RW 0.59(1.0) 0.44(1.0) 0.75(1.0)

MALA 0.59(0.2) 0.44(0.3) 0.75(0.3)
SLICE 0.59(4.9) 0.44(2.2) 0.75(2.2)

NS–SMC RW 0.59(1.6) 0.44(0.7) 0.75(1.2)
MALA 0.59(4.1) 0.44(1.2) 0.75(2.0)
SLICE 0.59(7.3) 0.44(2.0) 0.75(3.2)

β41 Gold standard 0.97 0.86 1.10
TA–SMC RW 0.97(1.0) 0.85(1.0) 1.10(1.0)

MALA 0.97(0.2) 0.86(0.4) 1.11(0.2)
SLICE 0.97(5.7) 0.86(2.4) 1.10(1.9)

NS–SMC RW 0.97(1.3) 0.86(0.8) 1.10(0.7)
MALA 0.97(3.2) 0.86(1.4) 1.11(1.3)
SLICE 0.97(8.4) 0.86(2.9) 1.10(2.5)

β51 Gold standard 0.88 0.76 1.02
TA–SMC RW 0.88(1.0) 0.76(1.0) 1.02(1.0)

MALA 0.88(0.2) 0.76(0.3) 1.02(0.3)
SLICE 0.88(6.3) 0.76(2.5) 1.02(1.8)

NS–SMC RW 0.88(1.7) 0.76(0.8) 1.02(0.9)
MALA 0.88(2.7) 0.76(1.2) 1.02(1.6)
SLICE 0.88(8.4) 0.76(2.4) 1.02(2.7)

β61 Gold standard 0.88 0.76 1.02
TA–SMC RW 0.88(1.0) 0.75(1.0) 1.02(1.0)

MALA 0.88(0.2) 0.75(0.4) 1.02(0.4)
SLICE 0.88(5.2) 0.75(2.5) 1.02(2.3)

NS–SMC RW 0.88(1.2) 0.75(0.9) 1.02(0.8)
MALA 0.88(3.3) 0.76(2.0) 1.02(1.4)
SLICE 0.88(7.6) 0.75(2.7) 1.02(3.3)
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Table 2.6: Inference Results for FA2 — Part 1 of 3

�mean �lower �upper
logΛ11 Gold standard −3.08 −4.41 −1.91

TA–SMC RW −3.05(1.0) −4.38(1.0) −1.91(1.0)
MALA −3.07(0.3) −4.39(0.3) −1.91(0.3)
SLICE −2.94(7.4) −4.10(6.6) −1.97(13.0)

NS–SMC RW −3.07(0.4) −4.41(0.4) −1.90(0.5)
MALA −3.05(4.1) −4.30(3.9) −1.93(5.6)
SLICE −3.03(3.6) −4.25(3.2) −1.95(6.6)

logΛ22 Gold standard −2.20 −3.50 −1.70
TA–SMC RW −2.22(1.0) −3.49(1.0) −1.70(1.0)

MALA −2.21(0.2) −3.48(0.4) −1.70(0.3)
SLICE −2.29(10.8) −3.31(5.5) −1.73(22.6)

NS–SMC RW −2.22(0.4) −3.53(0.6) −1.70(0.6)
MALA −2.23(3.5) −3.48(5.1) −1.71(9.4)
SLICE −2.23(3.5) −3.38(3.9) −1.72(8.0)

logΛ33 Gold standard −0.48 −0.70 −0.24
TA–SMC RW −0.48(1.0) −0.71(1.0) −0.24(1.0)

MALA −0.48(0.6) −0.71(0.4) −0.24(0.6)
SLICE −0.48(56.6) −0.71(25.3) −0.23(34.0)

NS–SMC RW −0.48(1.3) −0.71(1.1) −0.24(1.4)
MALA −0.47(11.7) −0.70(8.4) −0.23(7.8)
SLICE −0.48(23.0) −0.70(18.9) −0.24(18.1)

logΛ44 Gold standard −3.45 −4.49 −2.54
TA–SMC RW −3.44(1.0) −4.49(1.0) −2.53(1.0)

MALA −3.44(0.3) −4.47(0.4) −2.53(0.4)
SLICE −3.36(16.6) −4.26(14.8) −2.52(22.2)

NS–SMC RW −3.44(0.3) −4.49(0.5) −2.54(0.6)
MALA −3.45(7.6) −4.43(9.7) −2.56(7.3)
SLICE −3.41(7.5) −4.38(8.7) −2.53(9.3)

logΛ55 Gold standard −1.39 −1.65 −1.13
TA–SMC RW −1.39(1.0) −1.65(1.0) −1.12(1.0)

MALA −1.39(0.6) −1.65(0.5) −1.12(0.6)
SLICE −1.40(39.1) −1.66(23.8) −1.13(21.2)

NS–SMC RW −1.38(1.4) −1.64(1.3) −1.12(1.8)
MALA −1.39(8.9) −1.65(5.9) −1.13(7.1)
SLICE −1.39(16.6) −1.65(11.2) −1.13(13.4)

logΛ66 Gold standard −1.37 −1.63 −1.10
TA–SMC RW −1.37(1.0) −1.63(1.0) −1.10(1.0)

MALA −1.37(0.4) −1.63(0.3) −1.11(0.6)
SLICE −1.37(28.0) −1.64(18.6) −1.11(18.3)

NS–SMC RW −1.37(1.0) −1.63(1.2) −1.11(1.3)
MALA −1.37(7.1) −1.63(4.6) −1.10(7.0)
SLICE −1.37(15.2) −1.63(10.6) −1.11(14.4)
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Table 2.7: Inference Results for FA2 — Part 2 of 3

�mean �lower �upper
log β11 Gold standard −0.02 −0.15 0.11

TA–SMC RW −0.02(1.0) −0.15(1.0) 0.11(1.0)
MALA −0.02(0.3) −0.15(0.3) 0.11(0.5)
SLICE −0.02(29.2) −0.14(16.4) 0.11(32.8)

NS–SMC RW −0.02(0.7) −0.15(0.8) 0.11(1.6)
MALA −0.02(6.0) −0.15(7.3) 0.11(7.8)
SLICE −0.02(14.0) −0.14(6.8) 0.11(22.1)

β21 Gold standard 0.95 0.83 1.09
TA–SMC RW 0.95(1.0) 0.83(1.0) 1.09(1.0)

MALA 0.95(0.4) 0.83(0.4) 1.09(0.4)
SLICE 0.96(25.3) 0.84(27.1) 1.09(24.3)

NS–SMC RW 0.95(0.8) 0.83(0.9) 1.09(1.2)
MALA 0.95(4.9) 0.83(6.1) 1.09(6.3)
SLICE 0.95(15.6) 0.83(12.5) 1.09(13.5)

β31 Gold standard 0.45 0.30 0.62
TA–SMC RW 0.45(1.0) 0.30(1.0) 0.62(1.0)

MALA 0.45(0.4) 0.30(0.4) 0.62(0.4)
SLICE 0.46(28.7) 0.30(26.3) 0.62(24.6)

NS–SMC RW 0.46(0.8) 0.30(1.0) 0.62(1.2)
MALA 0.45(8.3) 0.30(6.5) 0.62(7.2)
SLICE 0.46(20.9) 0.30(14.1) 0.62(18.8)

β41 Gold standard 0.39 0.23 0.56
TA–SMC RW 0.39(1.0) 0.23(1.0) 0.56(1.0)

MALA 0.39(0.4) 0.23(0.4) 0.56(0.3)
SLICE 0.40(22.9) 0.23(23.0) 0.56(22.4)

NS–SMC RW 0.40(0.7) 0.23(1.0) 0.56(0.9)
MALA 0.39(5.7) 0.23(6.1) 0.56(4.9)
SLICE 0.39(18.6) 0.24(15.3) 0.56(15.3)

β51 Gold standard 0.41 0.25 0.58
TA–SMC RW 0.41(1.0) 0.25(1.0) 0.58(1.0)

MALA 0.41(0.4) 0.25(0.5) 0.58(0.3)
SLICE 0.42(22.6) 0.25(22.3) 0.58(17.6)

NS–SMC RW 0.41(0.8) 0.25(1.1) 0.58(0.8)
MALA 0.41(5.3) 0.25(5.3) 0.58(3.2)
SLICE 0.41(18.6) 0.26(14.4) 0.58(13.0)

β61 Gold standard 0.41 0.25 0.57
TA–SMC RW 0.41(1.0) 0.25(1.0) 0.58(1.0)

MALA 0.41(0.4) 0.25(0.3) 0.57(0.4)
SLICE 0.41(25.6) 0.25(22.4) 0.57(27.1)

NS–SMC RW 0.41(0.6) 0.25(1.0) 0.58(1.0)
MALA 0.41(5.9) 0.25(6.2) 0.57(5.3)
SLICE 0.41(19.3) 0.25(14.9) 0.57(19.0)



56 SUPPLEMENTARY MATERIAL FOR PART I

Table 2.8: Inference Results for FA2 — Part 3 of 3

�mean �lower �upper
log β22 Gold standard −3.54 −6.34 −2.21

TA–SMC RW −3.57(1.0) −6.06(1.0) −2.23(1.0)
MALA −3.53(0.3) −6.17(0.6) −2.22(0.3)
SLICE −3.46(6.0) −5.15(2.7) −2.26(11.4)

NS–SMC RW −3.57(0.4) −6.34(1.0) −2.22(0.4)
MALA −3.50(4.6) −5.49(2.5) −2.26(11.3)
SLICE −3.49(3.8) −5.39(1.9) −2.25(7.5)

β32 Gold standard 0.25 −0.50 0.56
TA–SMC RW 0.22(1.0) −0.47(1.0) 0.56(1.0)

MALA 0.25(0.2) −0.49(0.0) 0.56(0.2)
SLICE 0.16(3.1) −0.37(6.5) 0.54(75.5)

NS–SMC RW 0.22(0.5) −0.49(0.4) 0.56(0.5)
MALA 0.23(2.2) −0.42(5.6) 0.56(4.1)
SLICE 0.22(1.5) −0.41(4.6) 0.56(1.7)

β42 Gold standard 0.55 −0.97 1.03
TA–SMC RW 0.47(1.0) −0.93(1.0) 1.03(1.0)

MALA 0.54(0.2) −0.96(0.0) 1.03(0.2)
SLICE 0.35(3.0) −0.68(7.1) 0.99(658.8)

NS–SMC RW 0.47(0.5) −0.95(0.5) 1.03(0.3)
MALA 0.49(2.2) −0.80(6.1) 1.03(4.3)
SLICE 0.46(1.5) −0.77(5.1) 1.03(2.4)

β52 Gold standard 0.46 −0.84 0.90
TA–SMC RW 0.40(1.0) −0.80(1.0) 0.90(1.0)

MALA 0.46(0.2) −0.83(0.0) 0.90(0.2)
SLICE 0.29(3.1) −0.60(7.0) 0.86(482.9)

NS–SMC RW 0.40(0.5) −0.82(0.5) 0.90(0.7)
MALA 0.42(2.2) −0.69(6.0) 0.90(4.9)
SLICE 0.39(1.5) −0.67(5.0) 0.90(2.4)

β62 Gold standard 0.46 −0.84 0.90
TA–SMC RW 0.40(1.0) −0.80(1.0) 0.90(1.0)

MALA 0.46(0.2) −0.83(0.0) 0.90(0.2)
SLICE 0.29(3.1) −0.60(7.0) 0.86(405.4)

NS–SMC RW 0.39(0.5) −0.82(0.5) 0.89(0.5)
MALA 0.41(2.2) −0.69(6.0) 0.89(3.5)
SLICE 0.39(1.5) −0.67(5.0) 0.90(2.0)
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Table 2.9: Inference Results for FA3 — Part 1 of 4

�mean �lower �upper
logΛ11 Gold standard −2.89 −4.31 −1.86

TA–SMC RW −2.89(1.0) −4.25(1.0) −1.86(1.0)
MALA −2.88(0.1) −4.28(0.1) −1.86(0.1)
SLICE −2.84(5.0) −4.14(3.4) −1.89(11.0)

NS–SMC RW −2.88(0.4) −4.30(0.5) −1.86(0.6)
MALA −2.87(0.9) −4.28(0.8) −1.86(1.1)
SLICE −2.87(2.6) −4.23(2.0) −1.86(4.0)

logΛ22 Gold standard −2.38 −3.88 −1.73
TA–SMC RW −2.38(1.0) −3.82(1.0) −1.73(1.0)

MALA −2.38(0.1) −3.84(0.1) −1.73(0.1)
SLICE −2.43(6.8) −3.71(4.7) −1.76(10.7)

NS–SMC RW −2.39(0.5) −3.85(0.8) −1.73(0.4)
MALA −2.41(1.1) −3.84(1.1) −1.74(1.0)
SLICE −2.40(3.2) −3.84(3.4) −1.74(3.9)

logΛ33 Gold standard −1.08 −3.84 −0.27
TA–SMC RW −1.15(1.0) −3.63(1.0) −0.28(1.0)

MALA −1.12(0.1) −3.81(0.1) −0.27(0.1)
SLICE −1.09(2.3) −3.21(3.4) −0.28(4.9)

NS–SMC RW −1.10(0.4) −3.75(0.4) −0.27(0.3)
MALA −1.11(0.6) −3.63(1.1) −0.28(1.1)
SLICE −1.11(1.0) −3.68(1.2) −0.27(1.0)

logΛ44 Gold standard −3.17 −4.42 −1.96
TA–SMC RW −3.19(1.0) −4.41(1.0) −2.01(1.0)

MALA −3.18(0.1) −4.41(0.1) −1.99(0.1)
SLICE −3.13(4.9) −4.28(6.6) −2.05(4.2)

NS–SMC RW −3.18(0.5) −4.42(0.9) −1.99(0.4)
MALA −3.20(1.0) −4.43(0.8) −2.05(2.1)
SLICE −3.16(2.1) −4.37(4.1) −2.00(1.8)

logΛ55 Gold standard −1.77 −3.80 −1.16
TA–SMC RW −1.77(1.0) −3.68(1.0) −1.16(1.0)

MALA −1.76(0.1) −3.74(0.1) −1.16(0.1)
SLICE −1.80(4.6) −3.40(3.7) −1.17(6.0)

NS–SMC RW −1.75(0.4) −3.69(0.5) −1.16(0.3)
MALA −1.73(1.6) −3.35(2.7) −1.16(2.3)
SLICE −1.77(2.1) −3.62(2.1) −1.16(2.1)

logΛ66 Gold standard −1.75 −3.73 −1.14
TA–SMC RW −1.74(1.0) −3.56(1.0) −1.14(1.0)

MALA −1.73(0.1) −3.64(0.1) −1.15(0.1)
SLICE −1.75(3.9) −3.28(3.3) −1.15(5.5)

NS–SMC RW −1.74(0.5) −3.64(0.5) −1.14(0.5)
MALA −1.74(1.7) −3.47(2.5) −1.14(1.6)
SLICE −1.74(1.8) −3.45(2.0) −1.15(1.7)
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Table 2.10: Inference Results for FA3 — Part 2 of 4

�mean �lower �upper
log β11 Gold standard −0.02 −0.16 0.11

TA–SMC RW −0.02(1.0) −0.16(1.0) 0.11(1.0)
MALA −0.02(0.1) −0.16(0.1) 0.11(0.2)
SLICE −0.03(10.7) −0.16(7.5) 0.10(11.9)

NS–SMC RW −0.02(1.0) −0.16(1.3) 0.11(1.4)
MALA −0.02(1.3) −0.16(1.4) 0.11(1.3)
SLICE −0.03(7.3) −0.16(6.7) 0.10(8.2)

β21 Gold standard 0.96 0.83 1.10
TA–SMC RW 0.96(1.0) 0.83(1.0) 1.09(1.0)

MALA 0.96(0.1) 0.83(0.2) 1.09(0.2)
SLICE 0.96(10.2) 0.84(9.2) 1.09(10.5)

NS–SMC RW 0.96(1.0) 0.83(1.4) 1.10(1.6)
MALA 0.96(1.0) 0.83(1.4) 1.10(1.2)
SLICE 0.96(5.4) 0.83(6.6) 1.09(9.6)

β31 Gold standard 0.46 0.30 0.63
TA–SMC RW 0.46(1.0) 0.30(1.0) 0.63(1.0)

MALA 0.46(0.1) 0.30(0.2) 0.63(0.2)
SLICE 0.46(15.0) 0.30(11.0) 0.62(10.3)

NS–SMC RW 0.46(1.6) 0.30(2.1) 0.63(1.9)
MALA 0.46(1.3) 0.30(1.5) 0.63(1.2)
SLICE 0.46(8.3) 0.30(8.4) 0.62(7.9)

β41 Gold standard 0.40 0.23 0.57
TA–SMC RW 0.40(1.0) 0.23(1.0) 0.57(1.0)

MALA 0.40(0.1) 0.23(0.2) 0.57(0.2)
SLICE 0.40(16.9) 0.23(17.7) 0.56(12.6)

NS–SMC RW 0.40(1.1) 0.23(1.9) 0.57(1.3)
MALA 0.40(1.0) 0.23(1.5) 0.57(1.4)
SLICE 0.40(8.0) 0.23(13.2) 0.56(7.3)

β51 Gold standard 0.42 0.25 0.58
TA–SMC RW 0.42(1.0) 0.25(1.0) 0.58(1.0)

MALA 0.41(0.1) 0.25(0.2) 0.58(0.2)
SLICE 0.41(18.3) 0.25(16.2) 0.58(12.3)

NS–SMC RW 0.41(1.5) 0.25(1.9) 0.58(1.5)
MALA 0.42(1.1) 0.25(1.2) 0.58(1.7)
SLICE 0.41(8.3) 0.25(11.8) 0.58(7.7)

β61 Gold standard 0.41 0.25 0.58
TA–SMC RW 0.41(1.0) 0.25(1.0) 0.58(1.0)

MALA 0.41(0.1) 0.25(0.2) 0.58(0.3)
SLICE 0.41(16.1) 0.25(14.8) 0.58(14.1)

NS–SMC RW 0.41(1.1) 0.25(1.4) 0.58(1.8)
MALA 0.41(0.8) 0.25(0.9) 0.58(1.2)
SLICE 0.41(8.3) 0.25(11.7) 0.58(9.3)
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Table 2.11: Inference Results for FA3 — Part 3 of 4

�mean �lower �upper
log β22 Gold standard −3.23 −6.06 −1.63

TA–SMC RW −3.22(1.0) −5.83(1.0) −1.67(1.0)
MALA −3.23(0.1) −5.99(0.3) −1.65(0.1)
SLICE −3.20(5.7) −5.42(2.8) −1.73(2.5)

NS–SMC RW −3.24(0.6) −6.01(0.8) −1.64(0.6)
MALA −3.10(2.5) −5.19(2.1) −1.64(1.2)
SLICE −3.22(1.8) −5.74(2.1) −1.68(1.3)

β32 Gold standard −0.06 −0.83 0.58
TA–SMC RW −0.06(1.0) −0.79(1.0) 0.57(1.0)

MALA −0.06(0.1) −0.83(0.1) 0.59(0.2)
SLICE −0.06(4.0) −0.69(4.8) 0.55(3.5)

NS–SMC RW −0.06(0.6) −0.81(0.7) 0.58(0.9)
MALA −0.08(1.2) −0.76(1.8) 0.56(1.6)
SLICE −0.06(1.9) −0.77(2.5) 0.56(1.9)

β42 Gold standard 0.23 −0.87 0.94
TA–SMC RW 0.23(1.0) −0.82(1.0) 0.93(1.0)

MALA 0.24(0.1) −0.86(0.1) 0.94(0.1)
SLICE 0.19(5.4) −0.72(6.7) 0.88(29.9)

NS–SMC RW 0.23(0.6) −0.85(0.3) 0.94(0.5)
MALA 0.22(1.9) −0.78(2.2) 0.92(2.6)
SLICE 0.22(2.1) −0.81(2.2) 0.93(4.2)

β52 Gold standard 0.23 −0.79 0.89
TA–SMC RW 0.23(1.0) −0.74(1.0) 0.87(1.0)

MALA 0.24(0.1) −0.78(0.1) 0.88(0.1)
SLICE 0.20(5.7) −0.65(5.7) 0.82(15.4)

NS–SMC RW 0.23(0.7) −0.77(0.3) 0.88(0.6)
MALA 0.22(1.9) −0.70(1.9) 0.86(2.6)
SLICE 0.22(2.2) −0.74(2.3) 0.87(2.9)

β62 Gold standard 0.15 −0.81 0.86
TA–SMC RW 0.15(1.0) −0.77(1.0) 0.84(1.0)

MALA 0.16(0.1) −0.80(0.1) 0.86(0.1)
SLICE 0.12(4.9) −0.70(6.0) 0.79(16.8)

NS–SMC RW 0.15(0.5) −0.80(0.4) 0.86(0.5)
MALA 0.13(1.8) −0.74(2.2) 0.82(1.9)
SLICE 0.14(1.9) −0.76(1.9) 0.84(3.0)

log β33 Gold standard −1.21 −3.63 −0.16
TA–SMC RW −1.16(1.0) −3.30(1.0) −0.19(1.0)

MALA −1.23(0.2) −3.71(0.3) −0.17(0.1)
SLICE −1.23(6.7) −2.98(2.1) −0.28(4.2)

NS–SMC RW −1.22(0.7) −3.69(1.3) −0.18(0.5)
MALA −1.17(2.8) −3.00(2.5) −0.21(1.6)
SLICE −1.23(3.8) −3.50(3.4) −0.20(1.6)
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Table 2.12: Inference Results for FA3 — Part 4 of 4.

�mean �lower �upper
β43 Gold standard 0.57 −0.54 0.97

TA–SMC RW 0.57(1.0) −0.40(1.0) 0.97(1.0)
MALA 0.56(0.1) −0.49(0.1) 0.97(0.1)
SLICE 0.55(5.6) −0.24(2.3) 0.96(13.1)

NS–SMC RW 0.56(0.5) −0.50(0.7) 0.97(0.5)
MALA 0.57(1.7) −0.35(1.2) 0.97(2.0)
SLICE 0.57(1.7) −0.38(1.6) 0.97(2.7)

β53 Gold standard 0.47 −0.53 0.89
TA–SMC RW 0.47(1.0) −0.45(1.0) 0.89(1.0)

MALA 0.46(0.1) −0.52(0.1) 0.89(0.1)
SLICE 0.44(5.5) −0.32(3.6) 0.87(6.7)

NS–SMC RW 0.46(0.5) −0.51(0.6) 0.89(0.6)
MALA 0.47(1.8) −0.40(1.6) 0.88(2.0)
SLICE 0.47(1.5) −0.43(1.7) 0.88(1.9)

β63 Gold standard 0.53 −0.44 0.90
TA–SMC RW 0.53(1.0) −0.33(1.0) 0.90(1.0)

MALA 0.51(0.1) −0.41(0.1) 0.90(0.1)
SLICE 0.51(6.2) −0.19(2.6) 0.88(5.5)

NS–SMC RW 0.51(0.6) −0.40(0.8) 0.90(0.6)
MALA 0.53(1.9) −0.27(1.4) 0.89(1.3)
SLICE 0.53(2.1) −0.30(1.9) 0.90(2.1)
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Table 2.13: Inference Results for ODE model – Part 1 of 2

�mean �lower �upper
log k1 Gold standard −3.40 −4.46 −2.71

TA–SMC RW −3.33(1.0) −4.06(1.0) −2.71(1.0)
MALA −3.18(1.3) −3.67(0.4) −2.66(4.2)
SLICE −3.36(8.3) −4.09(6.8) −2.71(7.3)

NS–SMC RW −3.34(4.2) −4.10(3.4) −2.71(2.5)
MALA −3.36(2.7) −4.06(1.7) −2.72(2.0)
SLICE −3.33(9.8) −3.99(4.8) −2.70(7.6)

logV1 Gold standard −0.98 −2.02 0.19
TA–SMC RW −1.03(1.0) −2.02(1.0) 0.04(1.0)

MALA −1.09(3.2) −2.03(4.2) −0.09(2.2)
SLICE −1.00(6.7) −1.98(12.0) 0.00(6.8)

NS–SMC RW −1.03(1.7) −2.03(2.9) 0.06(2.4)
MALA −0.96(1.3) −1.95(3.9) 0.15(1.4)
SLICE −1.02(5.1) −1.99(11.0) −0.00(6.9)

log Km1 Gold standard −1.01 −4.12 1.04
TA–SMC RW −0.98(1.0) −3.69(1.0) 0.95(1.0)

MALA −1.00(3.2) −3.57(2.0) 0.79(2.2)
SLICE −0.98(6.8) −3.56(4.7) 0.93(4.3)

NS–SMC RW −0.96(2.2) −3.62(2.9) 0.95(2.6)
MALA −0.90(2.8) −3.43(2.0) 0.94(2.2)
SLICE −1.07(4.9) −3.69(3.3) 0.88(4.6)

log Km2 Gold standard −2.86 −4.38 −1.79
TA–SMC RW −2.77(1.0) −3.92(1.0) −1.81(1.0)

MALA −2.58(1.9) −3.46(1.0) −1.76(3.2)
SLICE −2.80(7.0) −3.93(4.8) −1.82(5.6)

NS–SMC RW −2.79(3.9) −3.97(3.3) −1.81(2.3)
MALA −2.81(2.1) −3.93(1.4) −1.81(1.6)
SLICE −2.76(8.3) −3.84(4.4) −1.80(6.6)

logV2 Gold standard −2.05 −2.64 −1.07
TA–SMC RW −2.11(1.0) −2.65(1.0) −1.47(1.0)

MALA −2.24(1.1) −2.70(4.7) −1.82(0.3)
SLICE −2.09(9.0) −2.64(8.8) −1.43(6.6)

NS–SMC RW −2.10(4.6) −2.65(2.7) −1.42(3.3)
MALA −2.09(3.0) −2.64(2.2) −1.46(1.6)
SLICE −2.10(10.4) −2.65(8.0) −1.52(4.4)
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Table 2.14: Inference Results for ODE model – Part 2 of 2

�mean �lower �upper
log S(0) Gold standard −0.23 −1.24 0.61

TA–SMC RW −0.22(1.0) −1.18(1.0) 0.59(1.0)
MALA −0.24(3.0) −1.15(2.9) 0.56(2.6)
SLICE −0.23(7.8) −1.14(10.0) 0.56(9.5)

NS–SMC RW −0.21(1.6) −1.17(2.5) 0.61(1.6)
MALA −0.26(1.6) −1.22(2.3) 0.55(2.8)
SLICE −0.24(4.5) −1.16(7.5) 0.57(7.4)

log D(0) Gold standard −2.88 −6.05 −1.02
TA–SMC RW −2.85(1.0) −5.76(1.0) −1.01(1.0)

MALA −2.85(2.5) −5.49(1.2) −1.06(4.4)
SLICE −2.84(6.0) −5.53(5.3) −1.04(14.5)

NS–SMC RW −2.89(2.7) −5.84(3.3) −1.02(5.0)
MALA −2.90(1.1) −5.75(1.0) −1.02(2.1)
SLICE −2.95(6.5) −5.66(4.3) −1.06(12.5)

log R(0) Gold standard 0.31 −0.28 0.83
TA–SMC RW 0.30(1.0) −0.24(1.0) 0.80(1.0)

MALA 0.30(2.1) −0.22(1.7) 0.77(2.2)
SLICE 0.31(7.2) −0.21(5.3) 0.79(8.2)

NS–SMC RW 0.31(1.9) −0.24(2.6) 0.81(2.6)
MALA 0.32(2.1) −0.20(1.9) 0.82(2.4)
SLICE 0.30(5.0) −0.23(4.6) 0.80(5.8)

log Rpp(0) Gold standard −4.17 −6.89 −2.90
TA–SMC RW −4.14(1.0) −6.60(1.0) −2.91(1.0)

MALA −4.09(1.1) −6.25(0.9) −2.93(3.7)
SLICE −4.14(4.3) −6.32(2.6) −2.93(6.6)

NS–SMC RW −4.19(6.9) −6.50(2.1) −2.93(2.8)
MALA −4.15(1.6) −6.40(1.0) −2.93(2.3)
SLICE −4.10(2.8) −6.27(2.3) −2.92(3.9)
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2.10 Calibration Plots

The following plots display the evolution of the automated choice of MCMC kernel parameters h (for
RW/MALA) and w (for Slice Sampling), as well as the evolution of the choice of MCMC iterations
(repeats) chosen by the Calibration methods described in Section 2.5.

We use a range of twenty possible values for h that are logarithmically spaced on the interval [0.01,1],
and ten possible values for w that are linearly spaced on the interval [0.02,2].

Note here that iteration on the x–axis refers not to MCMC iteration, but instead the time step of the
SMC sampler.
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Factor Analysis – One Factor
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Figure 2.11: MCMC parameter selection for FA1.
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Figure 2.12: Repeats selection for FA1
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Factor Analysis – Two Factors
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Figure 2.13: MCMC parameter selection for FA2.
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Figure 2.14: Repeats selection for FA2.
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Factor Analysis – Three Factors
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Figure 2.15: MCMC parameter selection for FA3.
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Figure 2.16: Repeats selection for FA3.



2.10. CALIBRATION PLOTS 67

ODE
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Figure 2.17: MCMC parameter selection for the ODE model.
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Figure 2.18: Repeats selection for the ODE model.
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Chapter 3

Fast and Accurate Computation of the
Distribution of Sums of Dependent
Log-Normals

3.1 Introduction

The distribution of the sum of log-normals (SLN) has numerous practical applications [26] —
in the pricing of Asian options under a Black-Scholes model [10, 15, 28]; in wireless systems in
telecommunications [18, 30]; in insurance value-at-risk computations [16,27, 33]; and recently even
in the modelling of viral social media phenomena [14]. For this reason, the accurate computation of
characteristics of the SLN distribution are receiving increasing attention.

The first left-tail efficient Monte Carlo method for the estimation of the SLN cumulative distribution
function (cdf) was proposed by Gulisashvili and Tankov [19]. This was then followed by Asmussen et
al. [6,7,25] who approximate the cdf using Laplace transform techniques. Up until these seminal works,
the only available approximations of the cdf were deterministic moment-matching heuristics [17, 21],
whose accuracy quickly deteriorates when the sum is not iid, as seen from the example in Figure 3.5.

With the exception of the defining works [5, 19], all of the existing proposals can only deal with the
distribution of the sum of independent log-normals, or, in the case of [25], with the Laplace transform
of the SLN distribution. Other examples of research in the area include the efficient estimation of the
right tail of the SLN distribution under the assumption of independent log-normal factors [8, 29], and,
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of more consequence for practical applications, under the assumption of correlated factors [4, 9, 22,23].

In this article, we present new Monte Carlo estimators for the cdf, pdf (density function), and right tail
(complementary distribution function) of SLN distribution. Regarding these three new estimators, our
original contributions can be summarized as follows.

Cdf estimator. We propose a new asymptotically efficient estimator of the cdf with competitive
practical performance. Overall, we find that our proposed estimator is the preferred choice when the
goal is to compute the left tail of the general SLN distribution (for the special case of iid log-normals,
we also find that the estimator of Asmussen et al. [7] is also an excellent choice).

Pdf estimator. Our novel estimator of the pdf of the SLN distribution is infinitely smooth in the
model parameters. As a result of this, in a quasi Monte Carlo setting, this smoothness accelerates
the rate of convergence beyond that of the canonical Monte Carlo rate of O(

√
n ) (n is the Monte

Carlo sample size). Our numerical experiments show that the new estimator is preferable to the
existing Fenton–Wilkinson-type [17,21] approximations and can be used the validate the accuracy of
an ingenious orthogonal series [5] approximation.

Right tail estimator. We show both numerically and theoretically that many of the existing proposals
for estimating the right tail of the SLN distribution [3, 4, 8, 19, 22] can be unreliable in some simple
examples of applied interest. More precisely, while the existing estimators work satisfactory when the
log-normal variates are independent, these estimators exhibit exploding variance in cases of positively
correlated log-normals. Unfortunately, dependence structures which induce strong positive correlation
are precisely the cases of practical interest in finance and reliability (the computation of such tail
probabilities arises, for example, in estimating the likelihood of a large loss from a portfolio with asset
prices driven by the Black–Scholes geometric Brownian motion model [24, Chapter 15]).

In addition to proving that our estimator is asymptotically efficient as we move deeper and deeper into
the right tail, we show that, at least on the limited number of examples we consider, it is more accurate
than its competitors by many orders of magnitude.

Further to this, we provide a refinement of the tail asymptotics of the log-normal distribution (item 1 of
Lemma 2), and use this refinement to prove that our estimator is second-order efficient. A second-order
efficient estimator is one whose precision or standard error can be estimated reliably from simulation, a
property only enjoyed by our new estimator (Corollary 2). The second-order efficiency results resolve
the following paradox: a weakly efficient estimator can perform significantly better than its strongly
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efficient competitors. In other words, a strongly efficient estimator that is not second-order efficient
may perform poorly compared to a weakly efficient estimator that is second-order efficient.

Finally, it is frequently the case that we not only wish to estimate the probability of a rare-event, but
also wish to draw random states conditional on the rare-event. In this article we propose a sampler for
exact simulating from the SLN distribution conditional on a left-tailed rare event.

The rest of the paper is organized around the three qualitatively different parts of the SLN distribution:
(1) the left tail of the SLN distribution; (2) the density of the main body of the distribution; (3) the
right tail of SLN distribution. In all three cases we wish to control the (quasi) Monte Carlo error of the
estimator.

The left tail and main body is covered in Section 3.2, and the right tail is considered in Section 3.3.
In Section 3.3.2 we review the importance sampling vanishing error (ISVE) estimator [4], and
demonstrate that in certain cases it yields highly inaccurate estimates that tend to severely underestimate
the true probability. Intuition is provided for the poor practical performance of the estimator and
then, in Section 3.3.3, we propose a novel estimator and describe its theoretical properties. Numerical
illustrations of the main theoretical findings and a concluding section follow.

3.2 Left Tail and Density

We start by considering the cumulative distribution function of the SLN:

`(γ) = P(X1+ · · ·+ Xd ≤ γ),

where: (1) X = (X1, . . .,Xd) has (dependent) log-normal random components governed by a Gaussian
copula, so that lnX ∼ N(ν,Σ) for some positive definite covariance matrix Σ; and (2) the parameter
γ > 0 is allowed to be a small enough threshold so that ` is a small or rare-event probability.

Then, if LL> = Σ is the lower triangular decomposition of the covariance matrix, we can write (li j is
the (i, j)-th element of L)

` = P(exp(ν1+ l11Z1)+ · · ·+ exp(νd +
∑

j ldj Z j) ≤ γ),

where under the measure P, we have Z ∼ N(0, I). In other words, under P we can set Xk(Z) =

exp
(
νk +

∑
i≤k lki Zi

)
, which we henceforth assume. To proceed, note that the events

{X1 ≤ γ} ⊇ {X1+ X2 ≤ γ} ⊇ · · · ⊇ {X1+ · · ·+ Xd ≤ γ}
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are nested. In other words, if we define

α j(z1, . . ., z j−1)
def
=

ln(γ−
∑

k< j xk(z1, . . ., z j−1))− ν j −
∑

k< j l j k zk

l j j
, j > 1,

then, the following events are nested:

{Z1 ≤ α1} ⊇ {Z2 ≤ α2(Z1)} ⊇ · · · ⊇ {Zd ≤ αd(Z1, . . ., Zd−1)},

with the last one being equivalent to the event of interest.

Let TN(l,u)(µ,σ2) denote the normal distribution N(µ,σ2) truncated to the interval (l,u). Further, let
I{·} be the indicator function that equals unity when the statement inside the curly brackets is true
and zero otherwise. The above nested sequence of events then suggests that the following sequential
simulation of Z will entail the occurrence of the (possibly rare) event1:

Z1 ∼
φ(z1)I{z1 ≤ α1}

Φ(α1)
≡ TN(−∞,α1)(0,1),

Z2 |Z1 ∼
φ(z2)I{z2 ≤ α2(z1)}

Φ(α2(z1))
≡ TN(−∞,α2)(0,1),

...

Zd |Z1, . . ., Zd−1 ∼
φ(zd)I{zd ≤ αd(z1, . . ., zd−1)}

Φ(αd(z1, . . ., zd−1))
≡ TN(−∞,αd)(0,1).

With the above sampling scheme, the unbiased importance sampling estimator of ` (based on a single
realization) is:

∏d
j=1Φ(α j(Z1, . . ., Z j−1)). We note that Ambartzumian et al. [1] also simulate from

truncated normal densities sequentially. However, their approach applies only to a Gaussian random
vector restricted to a rectangular set and does not apply to the sum of log-normal variables considered
here and restricted to a half-line.

3.2.1 Sequential Importance Sampling Estimator

Although under the sequential sampling scheme above, the rare-event occurs with probability one, and
the estimator is smooth, it is not necessarily an efficient one when γ is allowed to be arbitrarily small.
To achieve asymptotic efficiency, we instead suggest the following parametric change of measure for Z ,

1We denote the standard normal pdf with covariance Σ via φΣ(·) (φ(·) ≡ φI(·)) and the univariate cdf and complementary
cdf by Φ(·) and Φ(·), respectively.
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where the parameter µ still remains to be determined:

Z1 ∼ TN(−∞,α1)(µ1,1),

Z2 |Z1 ∼ TN(−∞,α2)(µ2,1),
...

Zd |Z1, . . ., Zd−1 ∼ TN(−∞,αd)(µd,1).

Denote the measure used to simulate Z as Pµ and the corresponding expectation (variance) operators
as Eµ (Varµ). Let the logarithm of the Radon-Nikodym derivative, dP/dPµ, be denoted as

ψ(z;µ) def
=
‖µ‖2

2
− z>µ+

d∑
j=1

lnΦ(µ j −α j(z)),

and letW = {w : w ≥ 0,1>w = 1} be the set of discrete probability distributions with support on d

states in R. Then, our proposed unbiased estimator is

ˆ̀= exp(ψ(Z ;µ∗)), Z ∼ Pµ∗, (3.1)

where µ∗ is the solution to the program:

(w∗,µ∗) = argmin
w∈W,µ

{
‖µ‖2+ lnΦ

(
w>(ν −Lµ)− lnγ−w> lnw

√
w>Σw

)}
. (3.2)

Why is (3.1) a good estimator? In addition to its superior numerical performance (see Section 3.2.4)
compared to the Gulisashvili and Tankov (GT) estimator [19, Equation (65)], it is also a logarithmically
efficient estimator as γ ↓ 0. The efficiency label stems from the fact that the relative error,Var( ˆ̀CMC)/`

2,
of the crude Monte Carlo estimator,

ˆ̀CMC = I{X1+ · · ·+ Xd ≤ γ}, lnX ∼ N(ν,Σ),

grows exponentially (in γ), while the relative error of (3.1) grows only polynomially as γ ↓ 0. This is
formally stated in the following theorem, which is proven in the appendix.

Theorem 1 (Logarithmic Efficiency of Estimator). The estimator (3.1) is logarithmically efficient; that
is,

liminf
γ↓0

lnEµ∗ ˆ̀2(γ)
ln`(γ)

= 2,

with relative error 2 that grows as Eµ∗
ˆ̀2(γ)

`2(γ)
= O((− lnγ)(d+1)).

2The notation f (x) ' g(x) as x → a stands for limx→a f (x)/g(x) = 1. Similarly, we define f (x) =
O(g(x)) ⇔ limx→a | f (x)/g(x)| < const. < ∞; f (x) = o(g(x)) ⇔ limx→a f (x)/g(x) = 0; also, f (x) = Θ(g(x)) ⇔ f (x) =
O(g(x)) and g(x) = O( f (x)).
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A significant advantage of (3.1) is that it is amenable to a randomized quasi Monte Carlo implementation
[24, Chapter 2, Algorithm 2.3]. This is because (3.1) is a smooth infinitely differentiable estimator and
as a result has finite Koksma–Hlawka discrepancy bound [24, Chapter 2, Equation 2.3]. While the
standard error of a Monte Carlo estimator, driven by pseudorandom numbers, decays at the canonical
rate of O(n−1/2), the standard error of a Quasi Monte Carlo estimator, driven by quasirandom numbers,
decays at the superior rate of O(n−1/2−δ) for some δ > 0 that depends on the dimension d and the
smoothness of the estimator.
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Figure 3.1: The relative error of estimator (3.1) for γ = ES = 5exp(1/2),d = 5, Σ = I,ν = 0. Also
displayed is a reference line with the canonical slope of −1/2.

Figure 3.1 below shows that for d = 5, the rate of decay of (3.1) improves from the canonical rate
of O(n−0.5) (when using a pseudorandom sequence) to approximately O(n−0.94) when using Sobol’s
quasirandom sequence [24, Section 2.5]. Here the relative error is estimated using 100 independent
random shifts of Sobol’s quasirandom pointset [24, Section 2.7], and the number −0.94 is simply the
slope of the line of best fit.

The advantage of smoothness even carries over to the estimator of the density of the SLN distribution.
The result is that we achieve significant variance reduction — a point illustrated in Figure 3.4 later on.
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3.2.2 Density Estimator

To derive the smooth density estimator, we use the so-called push-out method [32, Chapter 7]. In
particular, observe that we can “push-out" γ as follows:

`(γ) = P(exp(ν1− ln(γ)+ l11Z1)+ · · ·+ exp(νd − ln(γ)+
∑d

j=1 ldj Z j) ≤ 1).

Therefore, the pdf of the SLN distribution can written as the integral:

f (γ) =
∂`

∂γ
=

∫
∑

i exp(ui)<1

∂

∂γ
φΣ(u−ν +1 lnγ)du

=

∫
∑

i exp(ui)<1
φΣ(u−ν +1 lnγ)

−1>Σ−1(u−ν +1 lnγ)
γ

du

=

∫
∑

i exp(ui)<γ
φΣ(u−ν)

−1>Σ−1(u−ν)

γ
du

=

∫
Rd
φ(z)
−z>L−11

γ
I{exp(ν1+ l11z1)+ · · ·+ exp(νd +

∑d
j=1 ldj z j) < γ}dz

As a result, our smooth unbiased estimator of the SLN pdf is:

f̂ (γ) = exp(ψ(Z ;µ∗))
−Z>L−11

γ
, Z ∼ Pµ∗ . (3.3)

Our numerical experiments suggest (see, for example, Table 3.4 and 3.5 below) that this estimator
performs very well for the wide range of γ.

3.2.3 Exact Simulation from Conditional Distribution

One of advantages of our approach is that, when d is not too large, it is possible to simulate exactly
from the distribution of X conditional on the rare-event

{∑d
k=1 Xk ≤ γ

}
. As ψ(z;µ∗) is concave in z

for any fixed µ∗ (see, for example, [12, Lemma 1]), we can easily obtain its maximum. This can then
be used in the following acceptance-rejection sampling procedure.

1. Require: c =maxz ψ(z;µ∗)

2. Until E > c−ψ(Z ;µ∗) do
Simulate Z ∼ Pµ∗ and E ∼ Exp(1), independently.

3. Return X = exp(ν +LZ) as a sample from the conditional distribution.



78
CHAPTER 3. FAST AND ACCURATE COMPUTATION OF THE DISTRIBUTION OF SUMS OF

DEPENDENT LOG-NORMALS

0 0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

30

40

50

60

Figure 3.2: Stock price trajectory, conditional on X̄T ≤ 30.

As an example, we consider the exact simulation of the stock price trajectories of an Asian option with
positive payoff, where the average value of a stock price observed at a set of discrete times on the
interval [0,T]:

X̄T =
1

d+1

d∑
i=0

Xti, t0 = 0 < t1 < t2 < · · · < td = T .

Recall that, under the Black–Scholes model, Xt = X0 exp
(
(r −σ2/2)t +σWt

)
, where (1) Wt is the

Wiener process at time t; (2) σ is the volatility coefficient; (3) r is the risk-free interest rate. Then, for an
Asian Put option with maturityT and strike price K the payout is (K− X̄T )

+. Since X =
(
Xt1,Xt2, . . .,Xtd

)
is a log-normal random vector with

νi = ln(X0)+ (r −σ2/2)ti, i = 1, . . .,d

Σi j = σ
2 min

(
ti, t j

)
, i, j = 1, . . .,d,

we can use our algorithm above to simulate a realization of the stock price path conditional on the event
{X̄T < K} = {Xt1 + · · ·+ Xtd < (d+1)K − X0}. Simulation of such an X conditional on the rare-event
{X̄T ≤ 30} provides insight into how the rare event occurs, that is, how the stock price must behave for
a positive payoff.

Figure 3.2 shows one stock price realization with parameters X0 = 50,K = 30,σ = 0.25,r = 0.07,T =
4/12,d = 88. We note that, since P(X̄T ≤ 30) ≈ 2×10−11 is a rare-event probability, exact simulation of
such a stock price trajectory is not possible using a naive acceptance-rejection, because the acceptance
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rate would be approximately 2×10−11. Instead, our algorithm enjoys the (estimated) acceptance rate of
5.9%.

3.2.4 Numerical Comparison with Monte Carlo Estimators

In the following two subsections we separately consider Monte Carlo estimators for the cdf (left tail)
and the density function.

Cumulative distribution function (left tail)

First, we compare the performance (3.1) against the GT estimator [19, Equation (65)]. In comparing

relative performance, we use the (estimated) relative error in percentage, RE(̂̀) =√
Var( ˆ̀)/n /` and

work-normalized relative variance,

WNRV( ˆ̀) = RE2(̂̀)× (total computing time in seconds).

Table 3.1 shows the numerical results using a sample size of n = 106 and the parameters d = 20,ν =
0,Σ = diag(σ), where σ2

k = k. The results are self-explanatory — we can see that for γ = 1, the relative

Table 3.1: Results for d = 20,ν = 0,Σ = diag(σ), where σ2
k = k.

γ ̂̀ ̂̀GT RE(̂̀)% RE(̂̀GT)% WNRV(̂̀) WNRV(̂̀GT)

12 1.68×10−4 1.67×10−4 0.198 4.81 2.37×10−5 1.75×10−3

10 6.82×10−5 6.88×10−5 0.217 6.66 2.84×10−5 3.26×10−3

8 2.01×10−5 2.02×10−5 0.244 4.91 3.69×10−5 1.85×10−3

6 3.54×10−6 3.46×10−6 0.285 5.17 5.00×10−5 2.00×10−3

4 2.13×10−7 2.17×10−7 0.368 5.46 8.44×10−5 2.27×10−3

3 2.20×10−8 2.35×10−8 0.439 6.89 1.21×10−4 3.65×10−3

2 6.05×10−10 5.63×10−10 0.567 10.9 2.04×10−4 9.19×10−3

1 4.24×10−13 4.31×10−13 0.937 17.8 5.47×10−4 2.35×10−2

error of the GT estimator is large.

In our numerical simulations we observe that the GT estimator performs at its best when all ν’s are the
same, and otherwise it may not perform so well. For example, in Table 3.2 the relative error is larger,
because we use the different means νk = k − d, k = 1, . . .,d.

In the above setting, it appears that the accuracy of the GT estimator initially deteriorates before it
improves. One explanation for this phenomenon is that the asymptotic approximation upon which the
GT estimator is built is poor in a non-asymptotic regime – a point explained in detail in [13, Section
2.2].



80
CHAPTER 3. FAST AND ACCURATE COMPUTATION OF THE DISTRIBUTION OF SUMS OF

DEPENDENT LOG-NORMALS

Table 3.2: Results for Σ = diag(σ), νk = k − d,σ2
k = k,d = 10.

relative error % work normalized rel. var.
γ ̂̀ ̂̀GT RE(̂̀) RE(̂̀GT) WNRV(̂̀) WNRV(̂̀GT)

1 1.25×10−1 5.47×10−9 0.0389 41 4.68×10−7 6.58×10−2

1×10−1 2.75×10−3 5.39×10−5 0.0956 51.4 2.82×10−6 1.02×10−1

1×10−2 7.10×10−7 7.47×10−7 0.209 38 1.33×10−5 5.67×10−2

1×10−3 8.59×10−14 8.13×10−14 0.466 7.58 6.80×10−5 2.29×10−3

1×10−4 1.03×10−25 1.07×10−25 0.967 9.68 2.99×10−4 3.77×10−3

1×10−5 1.10×10−43 8.92×10−44 1.79 11.9 1.01×10−3 5.49×10−3

1×10−6 4.27×10−68 2.61×10−68 2.81 14.2 2.48×10−3 8.03×10−3

Finally, we observe that both estimators benefit from positive correlation. For example, if we take ν to
be a linearly spaced vector on the interval [0,1/4] with d = 50, and ρ = 0.25,Σ = 0.252(ρ11>+ (1− ρ)I),
then Table 3.3 shows the slowly increasing relative error for both estimators as γ becomes smaller.
Again, observe that the variance of the new estimator (3.1) is typically more than a hundred times
smaller.

Table 3.3: Results for covariance matrix with positive correlation.

relative error % work normalized rel. var.
γ ̂̀ ̂̀GT RE(̂̀) RE(̂̀GT) WNRV(̂̀) WNRV(̂̀GT)

40 1.85×10−3 1.86×10−3 0.169 2.45 4.41×10−5 1.07×10−3

38 4.83×10−4 5.10×10−4 0.178 3.24 4.92×10−5 1.93×10−3

36 9.96×10−5 9.63×10−5 0.189 2.01 5.49×10−5 7.57×10−4

34 1.57×10−5 1.56×10−5 0.199 4.47 6.09×10−5 3.62×10−3

32 1.79×10−6 1.89×10−6 0.209 7.62 6.78×10−5 1.06×10−2

30 1.41×10−7 1.36×10−7 0.219 2.86 7.43×10−5 1.52×10−3

28 7.06×10−9 7.10×10−9 0.230 2.70 8.25×10−5 1.32×10−3

26 2.09×10−10 2.13×10−10 0.241 4.11 9.00×10−5 3.18×10−3

24 3.25×10−12 3.37×10−12 0.251 3.13 9.73×10−5 1.84×10−3

22 2.28×10−14 2.42×10−14 0.263 3.83 1.08×10−4 2.66×10−3

Recently, Asmussen et al. [7] proposed a highly accurate Monte Carlo estimator that is designed to
work exclusively in the special case when the sum of log-normals is iid. We found that, at least on the
numerical examples considered in the supplementary material by Asmussen et al. [7], our estimator
is as accurate as theirs (results not shown here). Thus, in the special case of iid sums, their simpler
estimator may be preferable to our more complex estimator with one important caveat — our estimator
will be useful in the few cases (e.g., when d = 64,σ2 = 0.035) for which [7] report NaN or numerical
errors.
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Density Function

Using estimator (3.3), we can estimate accurately the effect of the correlation coefficient ρ on the shape
of the SLN pdf. Figure 3.3 shows that as ρ increases the tail of the SLN pdf becomes thicker.
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Figure 3.3: Estimate of the SLN pdf for d = 32,ν = 0, Σ = ρ11>+ (1− ρ)I, and varying ρ.

The pdf estimator proposed in [7, Equation 13] works only when the log-normal factors are independent,
but one can extend it to the dependent case as shown in [2]. Let us denote the estimator proposed
in [2,7] by f̂A. Tables 3.4 and 3.5 below compare the two estimators on two distinct numerical examples.
The results suggest that (3.3) becomes significantly more efficient than f̂A when the Xi’s have different
marginal distributions. Note that, as expected, the efficiency of (3.3) deteriorates as we approach the
right tail.

Finally, we confirmed that, as expected, quasi Monte Carlo again accelerates the speed of convergence
of the smooth estimator (3.3) by as much as approximately O(n−0.92). The qualitative behavior is
depicted on Figure 3.4, where we also show the rate of convergence of its competitor ˆ̀A. Here, again,
the relative error (in percent) is estimated using 100 independent random shifts of Sobol’s quasirandom
pointset [24, Section 2.5].

The reason that estimator (3.3) achieves a better convergence rate is that, while f̂A is continuous, but not
differentiable, the estimator (3.3) is infinitely differentiable, and hence more amenable to acceleration
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Table 3.4: The SLN distribution for d = 32,ν = 0, ρ = 0.5, Σ = ρ11>+ (1− ρ)I, using n = 106 samples.

relative error % work normalized rel. var.
γ ˆ̀(γ) f̂ (γ) RE( f̂ ) RE( f̂A) WNRV( f̂ ) WNRV( f̂A)
140 0.957 9.12×10−4 0.960 0.914 7.93×10−4 1.50×10−3

100 0.894 2.53×10−3 0.421 0.643 1.52×10−4 7.42×10−4

80 0.826 4.46×10−3 0.260 0.538 5.84×10−5 5.05×10−4

60 0.705 7.96×10−3 0.151 0.462 2.00×10−5 3.61×10−4

50 0.613 1.06×10−2 0.113 0.436 1.14×10−5 3.23×10−4

40 0.490 1.38×10−2 0.090 0.426 7.05×10−6 3.08×10−4

30 0.336 1.69×10−2 0.084 0.444 6.23×10−6 3.31×10−4

20 0.163 1.71×10−2 0.098 0.543 8.70×10−6 4.94×10−4

15 0.083 1.41×10−2 0.113 0.693 1.17×10−5 7.99×10−4

Table 3.5: The SLN distribution for d = 10, ρ = 0, νi = i− d, σ2
i = i, estimated with n = 106 samples.

relative error % work normalized rel. var.
γ ˆ̀(γ) f̂ (γ) RE( f̂ ) RE( f̂A) WNRV( f̂ ) WNRV( f̂A)
500 0.964 5.28×10−5 6.22 12.0 1.09×10−2 2.60×10−2

100 0.881 8.01×10−4 1.86 30.2 9.91×10−4 1.66×10−1

30 0.746 4.81×10−3 0.88 13.3 2.08×10−4 3.23×10−2

15 0.633 1.21×10−2 0.59 7.23 9.56×10−5 9.52×10−3

7 0.484 2.96×10−2 0.39 5.26 4.26×10−5 5.05×10−3

3 0.310 6.58×10−2 0.27 3.51 2.09×10−5 2.22×10−3

1 0.125 1.29×10−1 0.17 2.42 8.86×10−6 1.03×10−3

0.5 0.0548 1.50×10−1 0.14 2.24 5.56×10−6 9.12×10−4

with quasirandom sequences.

3.2.5 Numerical Comparison with Deterministic or Hybrid Approximations

While in this work we use the Monte Carlo method to estimate the right/left tails and pdf of the SLN
distribution, there is a long history of using deterministic methods to approximate the pdf of the SLN
distribution.

The most notable classical method is the Fenton-Wilkinson approximation [17], which finds the
log-normal density that matches the first and second moments of the SLN distribution and delivers this
log-normal density as a global approximation.

A more recent deterministic method is the skew log-normal approximation [21], which builds on the
Fenton-Wilkinson idea to propose a skew log-normal pdf as the approximating density (instead of the
simpler log-normal).
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Figure 3.4: The relative error of estimator (3.3) (in blue with slope -0.92) for γ = ES = 5exp(1/2),d = 5,
Σ = I,ν = 0, as well as that of f̂A (in black with slope -0.67).

Finally, Asmussen et al. [5] propose an ingenious approximation based on the sum of k orthogonal
Hermite polynomials, whose unknown coefficients are estimated from n Monte Carlo draws from the
SLN pdf (which we wish to approximate). This method is in fact a hybrid method, as it combines
features from deterministic and Monte Carlo methods.

In what follows we provide a numerical example of approximating the SLN pdf with parameters
µ = (4,3,2,1)>,Σ = ρσσ>+ (1− ρ)I, where ρ = 1/5,σ = (1,2,3,4)>, and discuss the pros and cons of
each method.

For our pdf estimator f̂ (γ) in (3.3) we take n = 104 and run 50 quasi Monte Carlo runs to estimate the
pdf values as well as the margin of error for a 95% confidence intervals. For the orthogonal Hermite
polynomials, we use n = 107 and experiment with k = 10 and k = 25.

The results are given in the Table 3.6 and Figure 3.5. The Fenton-Wilkinson approximation can be seen
to be widely inaccurate in Figure 3.5, and for this reason is omitted from the table. Also, the Hermite
polynomial approximation with k = 25 is indiscernible from our Monte Carlo estimate on Figure 3.5.

We make a number of comments and recommendations regarding each of the methods.

First, both the Fenton-Wilkinson and skew log-normal approximations are extremely fast and simple
to implement. In all cases we tested, the skew log-normal approximation performed better than the
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Figure 3.5: Comparison of four different methods for approximating the main body of the SLN density.

Table 3.6: Pdf estimates for σ = (1,2,3,4)>, µ = (4,3,2,1)>, ρ = 1/5 and Σ = ρσσ>+ (1− ρ)I. The
relative error multiplied by 1.96 (the error margin for 95% confidence interval) is displayed in brackets
for the Monte Carlo estimator. No simple error estimates are available for the other methods.

γ f̂γ Hermite, k = 10 Hermite, k = 25 Skew-Lognomal
5 3.79×10−4 (2.99×10−8) 3.29×10−4 3.79×10−4 7.19×10−4

50 6.08×10−3 (4.11×10−7) 6.08×10−3 6.08×10−3 6.36×10−3

100 4.15×10−3 (3.79×10−7) 4.11×10−3 4.15×10−3 3.87×10−3

150 2.59×10−3 (3.46×10−7) 2.58×10−3 2.59×10−3 2.33×10−3

200 1.66×10−3 (3.14×10−7) 1.68×10−3 1.67×10−3 1.49×10−3

250 1.11×10−3 (2.79×10−7) 1.13×10−3 1.11×10−3 1.00×10−3

300 7.72×10−4 (2.51×10−7) 7.85×10−4 7.72×10−4 7.06×10−4

simpler Fenton-Wilkinson approximation.

Second, both deterministic approximations do not provide simple error estimates and can be wildly
inaccurate when the SLN distribution is not a sum of iid variables, as seen in Figure 3.5. The inaccuracy
of these methods is exacerbated in the right and left tail of the SLN distribution. Unless we are
dealing with iid sums, we do not recommend the use of the Fenton-Wilkinson or the skew log-normal
approximations.

Third, in theory the error of the Asmussen et al. [5] orthogonal series approximation can be made
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arbitrarily small by increasing k (the truncation parameter in the infinite orthogonal series representation
of the SLN density) and n (which improves the accuracy with which the coefficients of the series
representation are estimated).

However, in practice, with a finite precision arithmetic, a large k may pose numerical instability issues.
One consequence of this is that the Hermite polynomial approximation may oscillate wildly in the right
tail or be inaccurate in the left tail (the approximation may take negative values in the tail).

In addition, with a fixed computational budget, there appears to be a tradeoff between two distinct
sources of error — the series approximation and Monte Carlo estimation errors. A large k reduces
the truncation approximation error (in the infinite series representation), but also increases the Monte
Carlo estimation error, because there is a greater number of coefficients to estimate.

Finally, just like with the Fenton–Wilkonson-type approximations, there is no simple error estimate
for the orthogonal series approximation, given a pair of values for k and n. In practice, one has to
experiment with different combinations for k and n, and check if the approximation converges free
from any numerical instability artifacts.

For the above stated reasons, our recommendation is to use both the Hermite polynomial approximation
and the Monte Carlo estimator (3.3). In this way, the two methods can independently validate the
accuracy of their output and ensure that there are no numerical artifacts due to numerical instability (in
the orthogonal series approximation). In addition, if the sum is comprised of iid log-normals, then the
Asmussen et al. [7] Monte Carlo estimator is also an excellent choice and can be used as an alternative
to our Monte Carlo estimator.

3.3 Accurate Estimation of the Right Tail

In this section, we provide an estimator of the right tail of the SLN distribution, that is,

P(X1+ · · ·+ Xd ≥ γ), lnX ∼ N(ν,Σ),

that works well for many parameter settings for which all existing estimators fail. In order to keep the
notation minimal, we recycle the notation for the left tail and henceforth let

`(γ)
def
= P(exp(Y1)+ · · ·+ exp(Yd) ≥ γ), Y ∼ N(ν,Σ).

Further, we set S = X1+ · · ·+ Xd,M =maxi Xi, and σ2
i = Σii,σ =maxk σk, ν =max{νk : σk = σ}. Note

that with all random variates defined on the same probability space, we can write X = exp(Y ).
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One of the reasons why estimating the right tail is difficult is due to the heavy-tailed behavior of `(γ) as
γ ↑∞ (see Corollary 1 here or [9]):

`(γ) ' `as
def
=

d∑
k=1
P(Yi ≥ lnγ) =

d∑
k=1
Φ((lnγ− νk)/σk). (3.4)

To tackle this problem, the authors of [4,11,19,22] propose a number of theoretically efficient estimators.
The problem with these estimators, however, is that their established theoretical efficiency does not
necessarily translate into estimators with reasonably low Monte Carlo variance. Before proceeding
to remedy this problem, we next explain why these existing proposals can fail to estimate `(γ)—we
provide both numerical evidence and theoretical insight.

3.3.1 Variance Boosted Estimator

We call the first estimator proposed in the literature the variance boosted estimator [4, 11, 13], which is
defined as follows.

Define Pθ to be a change of measure such that Y ∼ N(ν,Σ/(1− θ)), where θ ∈ [0,1) is a parameter to be
determined. If we take θ sufficiently close to unity, then we can inflate the variance of Y to induce the
event {S > γ}. We thus obtain the variance boosted estimator:

ˆ̀
θ(γ) =

exp(−θ(Y −ν)>Σ−1(Y −ν)/2)
(1− θ)d/2

I{S > γ}, Y ∼ Pθ . (3.5)

One can choose θ optimally and show [4] that:

Eθ ˆ̀2
θ

`2 = Θ([lnγ]
d/2+1γ1/4).

Therefore, we expect that the variance boosted estimator will only be useful for small d and γ. In
contrast, in Section 3.3.3 we show that our new proposal has relative error which grows at the much
slower rate of Θ(lnγ), independently of d.

Suppose that all log-normals are iid with σ = 0.25,Σ = I×σ2,ν = 0,d = 30. Using n = 107 replications,
the (estimated) values for the probability `(γ) are shown in Table 3.7 for varying γ and for the following
competitors: our proposed estimator ˆ̀ in Section 3.3.3; the variance boosted ˆ̀

θ ; the Asmussen–Kroese
estimator [8],

ˆ̀AK = dΦ
(

1
σ ln

[
(γ−

∑
j<d X j)∨max j<d X j

] )
, lnX ∼ N(0,σ2I). (3.6)

The computing times are not given in the table, because they were all very similar for all methods (in
the range of 7 to 10 seconds). The table suggests that the variance boosted estimator, true to its name,
suffers from very high statistical variance.
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Table 3.7: Efficiency of variance-boosted and Asmussen—Kroese methods. Column two gives the
estimate ˆ̀ from Section 3.3.3 — our novel estimator.

relative error %
γ ˆ̀ ˆ̀AK RE( ˆ̀) RE( ˆ̀AK) RE( ˆ̀θ)
30 0.74 0.74 0.199 0.0321 0.314
33 0.079 0.079 0.26 0.0871 3.67
36 0.00052 0.00052 0.403 0.684 39.8
39 2.94×10−7 3.31×10−7 0.725 17.9 51.9
42 2.29×10−11 9.23×10−14 1.45 54.6 99.9
45 3.92×10−16 7.78×10−20 2.57 64.4 97.8
48 1.93×10−21 2.13×10−25 4.44 31.7 97
51 3.98×10−27 2.40×10−29 7.85 25.2 81.5
54 8.58×10−33 3.96×10−33 3.22 15.3 100
57 3.44×10−36 3.07×10−36 0.418 13.3 69.8
60 4.26×10−39 3.86×10−39 0.203 5.21 99.7
63 1.06×10−41 1.01×10−41 0.18 2.92 99
66 4.38×10−44 4.39×10−44 0.162 1.58 64.8
69 2.75×10−46 2.74×10−46 0.16 1.09 100
72 2.42×10−48 2.40×10−48 0.155 0.686 98.3
75 2.83×10−50 2.81×10−50 0.153 0.498 72.1
78 4.24×10−52 4.21×10−52 0.151 0.414 95.7
81 7.87×10−54 7.86×10−54 0.15 0.287 99.3
84 1.78×10−55 1.78×10−55 0.15 0.26 100
87 4.74×10−57 4.75×10−57 0.15 0.251 90.5
90 1.48×10−58 1.48×10−58 0.15 0.189 100

3.3.2 Vanishing Relative Error Estimator

Since the previous estimator is too variable, researchers have also studied the importance sampling
vanishing relative error (ISVE) estimator [4, 11], in which the probability ` is represented as:

` = P(M > γ)+P(S > γ,M < γ).

With this representation, the terms `1 = P(M > γ) and `2 = P(S > γ,M < γ) are estimated via two
different estimators. The estimator for `1 is

ˆ̀1 =
`as(γ)∑d

k=1 I{Xk > γ}
, X ∼ g(x), (3.7)

where X is simulated from:

g(x)
def
=
φΣ(x−ν)

∑d
k=1 I{xk > γ}

`as(γ)
. (3.8)
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For the second term we use the estimator with θ = 1−Θ(ln−2(γ)):

ˆ̀2,θ(γ) =
exp(−θ(Y −ν)>Σ−1(Y −ν)/2)

(1− θ)d/2
I{S > γ,M < γ}, Y ∼ Pθ, (3.9)

which is of the variance-boosted type. Hence, we obtain the ISVE Monte Carlo estimator:

ˆ̀ISVE = ˆ̀1+ ˆ̀2,

which has been shown [4] to have vanishing relative error:

Var( ˆ̀ISVE)

`2(γ)
↓ 0, γ ↑∞.

We now describe one problem with this estimator.

In practical simulations one estimates the precision of an estimator l̂ of ` by first generating n independent
realizations l̂1, . . ., l̂n, and then computing the sample variance of the estimator S2

n =
1
n
∑n

i=1(l̂i − l̄)2,

where l̄n = (l̂1 + · · ·+ l̂n)/n. Generally, it is typical to use this to estimate the relative error of the
estimator or to construct confidence intervals for the quantity of interest. However, the sample variance
of n independent replications of (3.7) is not an accurate estimator of the variance of ˆ̀1, and so these
simple precision estimates cannot be applied to ˆ̀ISVE. This is formalized in the following result, proved
in the Appendix.

Lemma 1 (Variance Estimate Inefficiency). Suppose S2
n is the sample variance computed from n iid

versions of (3.7). It follows that S2
n is not a logarithmically efficient estimator:

limsup
γ↑∞

lnVar(S2
n)

lnVar( ˆ̀1)
< 2,

so that the relative error in estimating the precision of ˆ̀ISVE grows at an exponential rate in ln2(γ).

This lemma suggests that the relative error of ˆ̀ISVE can be severely underestimated in practice. In other
words, the ISVE estimator is not second-order efficient. In contrast to this negative result for the ISVE
estimator, in Corollary 2 we show that our new estimator enjoys an asymptotically efficient estimator of
its true variability. Even better, estimation of the precision of our estimator is not more difficult than
estimating ` itself.

3.3.3 Exponentially Tilted Estimator

Given the failure of the estimators described above, a natural question arises. What kind of estimator
will succeed in being both theoretically efficient and exhibit low variance in practical simulations?
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To answer this question we start by examining the quite natural proposal of Gulisashvili and Tankov
(GT) [19, Equation (70)], which can be written as follows:

ˆ̀GT
def
= exp

(
µ>Σ−1µ

2
− µ>Σ−1(Y −ν)

)
I{S ≥ γ}, Y ∼ N(µ+ν,Σ), (3.10)

where the parameter µ is chosen by minimizing an asymptotic approximation to the second moment [19,
Equation (71)].

Unfortunately, (3.10) also performs poorly, just like the estimators in the last section.3 This poor
practical performance is compounded by the fact that there is no proof of the asymptotic efficiency of
(3.10) as γ ↑∞ (see [19, Page 40]).

The reason why the estimator (3.10) performs poorly is that it uses a single exponential tilting parameter
µ, which is insufficient to induce the mutually-exclusive mode of occurrence of the rare-event:
P(Xk = M |S > γ) ' P(Xk>γ)

` (see part 1 of Lemma 2). In other words, with asymptotic probability
P(Xk > M)/`, each Xk is the maximal term that causes the sum to up-cross γ, and the single exponential
tilting parameter µ in (3.10) cannot account for this mutually-exclusive behavior.

Instead, to obtain a provably efficient estimator with excellent practical and theoretical performance,
we must introduce d distinct exponential tilting parameter vectors µ1, . . .,µd , where each µk is tasked
to deal with the event {S > γ,Xk = M}. The new set of d tilting parameters are also determined using
an error estimate different from the one used in (3.10) when we have a single tilting parameter. Thus,
our proposal uses an estimator of the form (3.10) for each term, h̄i(γ), in the decomposition:

`(γ) =

d∑
i=1
P(S > γ,Xi = M)︸               ︷︷               ︸

h̄i(γ)

.

The estimator of each h̄k based on one replication is

ˆ̄hk(γ) = exp

(
µ>k Σ

−1µk

2
− µ>k Σ

−1(Y −ν)

)
I{S > γ,Xk = M}, (3.11)

where under the measure Pµk
with expectation Eµk

we have lnX = Y ∼ N(ν + µk,Σ), and µk is the
solution to the non-linear optimization:

min
µ

1
2
µ>Σ−1µ, (3.12)

3We remark that the GT estimator applies to the more general setting of sums and differences of log-normals. This
generality of the GT estimator, however, comes at the cost of not being the most efficient estimator for sums — the case we
consider here.
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subject to:

g1(µ) = exp(µk + νk)+
∑

i,k exp(µi + νi +
σ2
i

2 )−γ ≥ 0

g2(µ) = µk + νk +
σ2
k

2 −max j,k{µ j + ν j +
σ2
j

2 } ≥ 0
(3.13)

To construct the overall estimator ˆ̀ of `, we can use stratification with a total computing budget of
n = n1+ · · ·+nd replications, whereby we allocate nk samples to estimate each h̄k independently. We
then take the sum of the estimators of h̄k’s as our stratified estimator of `. In other words,

ˆ̀(γ) =
d∑

k=1

1
nk

nk∑
j=1

ˆ̄hk, j(γ), (3.14)

where
∑

k nk = n and ˆ̄hk,1, . . ., ˆ̄hk,nk are iid copies of (3.11). We then have the following efficiency result.

Theorem 2 (Logarithmic Efficiency). Suppose we select the stratified allocation such that ni ∝

n×P(Xi > γ). Then, the estimator (3.14) is unbiased and logarithmically efficient with relative error
Var( ˆ̀(γ))/`2(γ) = O(lnγ) as γ ↑∞.

Proof. First note that choosing nk = n×P(Xk > γ)/`as satisfies the constraint n =
∑

k nk , but is in
conflict with the constraint that the nk’s have to be integers. One simple solution is to simply round up
to the nearest integer, and violate the constraint n =

∑
k nk . For large enough n, the residual n−

∑
k nk

will be negligible. Another solution, which we adopt in our computer implementation, is to use a
widely-used randomized stratification scheme, as described in, for example, [24, Algorithm 14.2].

Next, with the above allocation for each nk , the variance of the stratified estimator (3.14) is:

Var( ˆ̀) =
1
n

d∑
k=1

n
nk
Var( ˆ̄hk) =

`as

n

d∑
k=1

Var( ˆ̄hk)

P(Xk > γ)
.

Therefore, using the result 3. in Lemma 2, the relative error of ˆ̀ as γ ↑∞ is

nVar( ˆ̀(γ))
`2(γ)

'
nVar( ˆ̀(γ))
`2

as(γ)
=

1
`as(γ)

d∑
k=1
P(Xk > γ)

Var( ˆ̄hk)

[P(Xk > γ)]2
= O(lnγ). (3.15)

The last equation shows that lnVar( ˆ̀2(γ))
ln`(γ) → 2 as γ ↑∞. �

We can now see that the rate of growth of the relative error of our estimator, namely O(lnγ), is
significantly slower than the rate of growth of the variance boosted estimator, O([lnγ]d/2+1γ1/4).

Since the proof of the following lemma is long, it is delegated to the appendix.
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Lemma 2 (Asymptotics for ˆ̄hk). As γ ↑∞, we have that:

1. Eµ[ ˆ̄hk(γ)] = P(S > γ,Xk = M) ' P(Xk > γ).

2. The asymptotic solution to (3.12) is

µ∗ =
ln(γ)− νk

σ2
k

Σek,

where ek is the unit vector with 1 in the k-th position.

3. We have Var( ˆ̄hk )
[P(Xk>γ)]2

= O(lnγ), and with µ solving (3.12) the (m+1)-st moment satisfies:

Eµ ˆ̄hm+1
k = Θ(lnm(γ)h̄m+1

k ). (3.16)

Note that part 1. of the above lemma immediately yields the following corollary, which was originally
proved in [9] using a different argument.

Corollary 1 (Right-Tail Asymptotics). `(γ) '
∑d

i=1P(Xk > γ) as γ ↑∞.

More importantly, part 3. of Lemma 2 gives us a robustness guarantee that is not enjoyed by any of the
competing estimators.

Corollary 2 (Logarithmically Efficient Variance Estimator). Let S2
nk be the sample variance based on

nk independent replications of (3.11). Then, S2
n is a logarithmically efficient estimator:

liminf
γ↑∞

lnVar(S2
nk )

lnVar( ˆ̄hk)
= 2,

where the rate of growth is
Var(S2

nk
)

Var2( ˆ̄hk )
= O(lnγ).

Proof. Using (3.16), consider the following calculations:

nkVar(S2
nk )

Var2( ˆ̄hk)
=
Eµ( ˆ̄hk(γ)− h̄k(γ))

4

[Eµ( ˆ̄hk(γ)− h̄k(γ))2]2
−1+

2
nk −1

=
Θ(ln3(γ)h̄4

k)+ h̄4
k + h̄2

kΘ(ln(γ)h̄
2
k)− h̄kΘ(ln2(γ)h̄3

k)−4h̄4
k

[Θ(ln(γ)h̄2
k)− h̄2

k]
2

−1+
2

nk −1

=
Θ(ln3 γ)+Θ(lnγ)−Θ(ln2 γ)−3

[Θ(lnγ)−1]2
−1+

2
nk −1

= Θ(ln(γ))−1+
2

nk −1
.

�
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Therefore, a major advantage of our proposed estimator (3.14) is that estimating its variance is
asymptotically not more difficult than estimating ` itself.

In retrospect, we can see that the excellent theoretical properties of our estimator are due mainly to
the breaking of the symmetry in the sum S = X1+ · · ·+ Xd by distinguishing each and every Xi as the
overall maximum. In contrast, the poorly performing estimators (3.10) and (3.9) (and hence ˆ̀ISVE)
both induce a simple change of measure that does not conform to the mutually-exclusive asymptotic
behavior of P(S > γ,Xk = M) ' P(Xk > γ), k = 1, . . .,d.

Finally, we remark on the unusual way of selecting µ via the optimization (3.12). Why do we not
simply use the asymptotic approximation µ∗ in Lemma 2? The answer is that, while asymptotically the
matrix Σ is irrelevant, it is still relevant for very large values of γ, and our change of measure should
reflect this dependence. The asymptotic solution µ∗ does not reflect this dependence. Thus, (3.12) was
designed with two objectives in mind: (1) good practical performance for finite γ <∞, where the full
Σ is relevant; (2) asymptotic optimality as γ ↑ ∞, where Σ is irrelevant. The optimization program
(3.12) transitions from objective (1) to objective (2) in a continuous way.

3.3.4 Numerical Comparison

In this section we show that the better theoretical properties of (3.14) convert into excellent practical
performance.

Comparison with ISVE estimator

For the first example we use

d = 30, ρ = 0.9, ν = 0, Σ = 0.252×(ρ×11>+ (1− ρ)× I).

Table 3.8 gives the results using n = 106 replications for different values of γ. We tried to maximize
the accuracy of the ISVE estimator by experimentally choosing the best θ (see brackets, column three).

From the table we can observe that the variance of the ISVE estimator is large for almost any γ.
Further, in the last experiment with γ = 104, despite our best effort at selecting an optimal θ via careful
experimental tuning, we were not able to induce the event {S > γ,M < γ}. The event {S > γ,M < γ}

simply persists in being rare whatever θ ∈ [0,1) we choose. In other words, ˆ̀ISVE = ˆ̀1+ ˆ̀2 is with high
probability equal to ˆ̀1.

In summary, the performance of the ISVE estimator is consistent with an estimator that lacks second-
order efficiency, and even worsens its performance for large d (number of log-normals in the sum). In
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Table 3.8: Efficiency of ISVE and exponentially tilted estimators for ρ = 0.9.

relative error % work normalized rel. var.
γ ˆ̀ ˆ̀ISVE RE( ˆ̀) RE( ˆ̀ISVE) WNRV( ˆ̀) WNRV( ˆ̀ISVE)

40 0.116 0.114 (θ = 0.5) 0.63 2.0 0.00032 0.00080
100 2.17×10−7 1.18×10−7 (θ = 0.6) 0.98 40 0.00061 0.31
150 6.83×10−12 5.75×10−13 (θ = 0.75) 1.1 84 0.00093 1.12
200 7.75×10−16 2.09×10−17 (θ = 0.8) 1.2 95 0.0010 1.22
400 6.57×10−28 3.08×10−39 (θ = 0.9) 1.4 80 0.0011 1.34
103 1.61×10−49 1.21×10−80 (θ = 0.95) 1.7 100 0.002 2.02
104 3.60×10−132 1.80×10−294 (θ =?) 2.1 - 0.0024 -

contrast, the next example in Table 3.9 suggests that our estimator remains robust even in very high
dimensions of up to d = 60.

Table 3.9: Performance for d = 60, n = 106, ν = 0, Σ = 0.5×11>+0.5× I.

relative error % work normalized rel. var.
γ ̂̀ ̂̀ISVE RE(̂̀) RE(̂̀ISVE) WNRV(̂̀) WNRV(̂̀ISVE)

600 1.98×10−3 5.77×10−7 0.837 51.6 1.02×10−3 4.88
900 2.81×10−4 4.00×10−10 0.893 15.4 1.20×10−3 4.42×10−1

1200 5.91×10−5 4.16×10−11 0.93 3.16 1.36×10−3 1.75×10−2

1500 1.57×10−5 7.92×10−12 0.964 1.23 1.52×10−3 2.56×10−3

1800 5.01×10−6 2.01×10−12 0.987 1.50 1.57×10−3 3.41×10−3

2100 1.79×10−6 6.05×10−13 1.012 0.0543 2.03×10−3 5.10×10−6

2400 7.18×10−7 2.12×10−13 1.029 2.84×10−3 1.56×10−3 1.11×10−8

2700 3.08×10−7 8.30×10−14 1.046 8.93×10−4 1.63×10−3 1.15×10−9

3000 1.44×10−7 3.54×10−14 1.057 6.82×10−4 2.02×10−3 5.97×10−10

3300 7.02×10−8 1.63×10−14 1.069 8.30×10−4 2.05×10−3 9.60×10−10

Comparison with Modified Asmussen–Kroese estimator

In addition to the ISVE estimator, the modified Asmussen–Kroese (MAK) estimator [22, Equation 3.6]
also enjoys the vanishing relative error property. In comparing (3.14) with the MAK estimator, we
make the following observations.

First, the MAK estimator requires the solution of a non-linear equation for every replication. This
aspect of the estimator poses nontrivial problems: (1) sometimes no solution exists; (2) Newton’s
method may take many iterations to converge, making the running time of the estimator large.
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Table 3.10: Comparative performance for d = 10,n = 106,ν = 0, ρ = 0.2,Σ = 0.252(ρ11>+ (1− ρ)I).

relative error % work normalized rel. var.
γ ˆ̀MAK ˆ̀ RE( ˆ̀MAK) RE( ˆ̀) WNRV( ˆ̀MAK) WNRV( ˆ̀)
15 0.00195 0.00198 0.420 0.669 0.00531 4.15×10−5

16 0.000373 0.000370 0.660 0.724 0.0130 5.03×10−5

17 6.47×10−5 6.47×10−5 1.07 0.775 0.0349 5.20×10−5

18 1.00×10−5 1.02×10−5 1.80 0.823 0.096 0.000102
19 1.57×10−6 1.52×10−6 3.10 0.87 0.28 6.71×10−5

20 2.02×10−7 2.15×10−7 5.60 0.937 0.941 8.09×10−5

21 3.11×10−8 2.99×10−8 9.2 1.00 2.56 0.000166
22 3.80×10−9 3.91×10−9 15.9 1.06 7.58 0.000108
23 3.22×10−10 5.15×10−10 19.0 1.07 11.2 0.000327
24 5.63×10−11 6.61×10−11 44.7 1.14 61.5 0.000123
25 6.09×10−12 8.42×10−12 42.0 1.18 55.0 0.00036
26 4.63×10−13 1.05×10−12 71.6 1.23 159 0.000197
27 1.90×10−14 1.33×10−13 31.5 1.40 30.0 0.000176
28 4.85×10−15 1.69×10−14 60.0 1.49 110 0.000187
29 9.12×10−17 2.15×10−15 60.4 1.5 113 0.000213
30 6.37×10−18 2.74×10−16 53.1 1.54 87.5 0.000188

Second, while our estimator (3.14) was shown to be second-order efficient, ensuring reliable estimation
of its precision, no such efficiency result is provided for the MAK estimator, and in numerical
experiments we sometimes observed significant underestimation of the true variance of the MAK
estimator.

Third, observe that the MAK estimator reduces to the Asmussen–Kroese (AK) estimator (3.6) in
the independent case: ν = ν1,Σ = σ2I. Table 3.7 shows that when σ is small our estimator can
outperform the (modified) Asmussen-Kroese estimator by orders of magnitude. For example, note how
for γ ∈ [42,51] the AK estimator severely underestimates the true probability by as much as an order of
10−4. Interestingly, the Asmussen-Kroese estimator has superior and unrivaled performance only in
cases with larger σ, say σ ≥ 1.

Finally, Table 3.10 confirms that the MAK estimator inherits the poor performance of the Asmussen–
Kroese estimator for small σ. In this particular example we use

d = 10, ν = 0, ρ = 0.2, Σ = 0.252(ρ11>+ (1− ρ)I).

Observe how for γ ∈ [26,30] the MAK estimator underestimates the true probability by as much as an
order of 10−3.
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3.4 Conclusions

In this paper, we propose a number of novel Monte Carlo estimators for the cdf, pdf, and tails of the SLN
distribution. In the cdf and pdf cases, we propose estimators that permit variance reduction via quasi
Monte Carlo. In the right-tail case, we propose an exponentially tilted estimator that performs well for
certain parameter settings that are currently intractable with existing methods. This new exponentially
tilted estimator is shown to be, not only logarithmically/weakly efficient, but also second-order efficient.
This permits us to have greater confidence in all error estimates derived from simulation.

One of the crucial observations drawn from our experiments is that sometimes a strongly efficient
estimator ( ˆ̀ISVE, ˆ̀MAK) can have high variance in practical settings, and be bettered by a much simpler
weakly efficient estimator.

In subsequent work, we will explore using the sequential sampling ideas in Section 3.2 for the estimation
of the distribution of the sum of dependent random variables with an arbitrary distribution (not just
log-normal).

3.5 Appendix: Proofs

Proof of Theorem 1

Proof. Toproceedwith the proofwe recall the following three facts. First, note that `(γ)= P(1> exp(Y ) ≤
γ), where Y = ν +LZ . Using Jensen’s inequality, we have that for any w ∈W:

`(γ) = P(w> exp(Y − lnw) ≤ γ) ≤ P(w> ln(w)−w>Y ≥ − lnγ)

≤ Φ

(
w>ν−lnγ−w> lnw
√
w>Σw

)
≤ exp

(
−
(w>ν−lnγ−w> lnw)2

2w>Σw

) (3.17)

Second, denote w̄ = argminw∈W w>Σw and the set Cγ ≡ {z : 1> exp(Lz +ν) ≤ γ}. Then, we have the
asymptotic formula, proved in [19, Formulas (13) and (63)]:

ln`2(γ) ' c1−
(ln(γ)− w̄>ν + w̄> ln w̄)2

w̄>Σw̄
−(1+ d) ln(− lnγ), γ ↓ 0, (3.18)

where c1 is a constant, independent of γ. Thirdly, consider the nonlinear optimization

µ̄ = argmin
µ

{
‖µ‖2−

(ln(γ)− w̄>(ν −Lµ)+ w̄> ln w̄)2

2w̄>Σw̄

}
(3.19)

with explicit solution

µ̄ =
lnγ− w̄>ν + w̄> ln w̄

w̄>Σw̄
L>w̄ (3.20)
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Then, we obtain the following bound on the second moment:

Eµ∗ ˆ̀2(γ) = Eµ∗ exp(2ψ(Z ;µ∗)) = Eexp(ψ(Z ;µ∗))I{Z ∈ Cγ}

= Eexp(‖µ∗‖22)I{(Z − µ
∗) ∈ Cγ}

∏
jΦ(µ

∗
j −α j(Z − µ

∗))

≤ exp(‖µ∗‖22)P((Z − µ
∗) ∈ Cγ)

using (3.17) ≤ exp(‖µ∗‖22)Φ
(
(ν−Lµ∗)>w∗−lnγ−(w∗)> lnw∗

√
(w∗)>Σw∗

)
via (3.17)+(3.19) ≤ exp

(
‖ µ̄‖22 −

(w̄>(ν−Lµ̄)−lnγ−w̄> ln w̄)2
2w̄>Σw̄

)
By substituting (3.20) in the last line, we obtain the upper bound

Eµ∗ ˆ̀2 ≤ exp
(
−
(lnγ−w̄>ν+w̄> ln w̄)2

w̄>Σw̄

)
In other words, from (3.18) we deduce that

Eµ∗ ˆ̀2(γ)
`2(γ)

= O((− lnγ)(d+1)), γ ↓ 0

and therefore

liminf
γ↓0

lnEµ∗ ˆ̀2(γ)
ln`(γ)

= 2,

which implies that the algorithm is logarithmically efficient with respect to γ. �

Proof of Lemma 1

Proof. Let N def
=

∑d
i=1 I{Xi > γ}, so that `1(γ) = P(N ≥ 1) ' `as and the residual

r(γ) def
= `as− `1(γ) =

∑
i< j P(Xi > γ,X j > γ)+ o

(∑
i< j P(Xi > γ,X j > γ)

)
.

Note that P(N > 1) = Θ(r(γ)) and Pg(N = 1) = P(N = 1)/`as(γ) = Θ(1), where g is the mixture density
defined in (3.8). We thus obtain

Eg
�� ˆ̀1− `1(γ)

��m = d∑
j=1
Eg

[�� ˆ̀1− `1(γ)
��m I{N = j}

]
= |`as(γ)− `1(γ)|

mPg(N = 1)+
d∑

j=2

����`as(γ)

j
− `1(γ)

����mPg(N = j)

= rm(γ)Pg(N = 1)+Θ(`m
as)Pg(N > 1)

= rm(γ)Pg(N = 1)+Θ(`m−1
as )P(N > 1)

= Θ (rm(γ))+Θ
(
`m−1

as r(γ)
)
.
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Therefore, since r(γ) = o(`as(γ)), we have:

nVar(S2
n) = Eg( ˆ̀1− `1(γ))

4+

(
2

n−1
−1

)
Var2( ˆ̀1)

= Θ(r4)+Θ(`3
as(γ)r(γ))+Θ(Var2( ˆ̀1))

= Θ(`3
as(γ)r(γ))+Θ(Var2( ˆ̀1)),

and
Var2( ˆ̀1) = Θ(r4)+Θ(`as(γ)r3(γ))+Θ(`2

as(γ)r
2(γ)) = Θ(`2

as(γ)r
2(γ))

Therefore, the relative error is Var(S2
n)/Var2( ˆ̀1) = Θ(`as(γ)/r(γ)). By Lemma 4 there exists an α > 1

such that
r(γ)
`as(γ)

=
r(γ)
`as(γα)

×
`as(γ

α)

`as(γ)
= o(1)×O

(
exp(− (α

2−1) ln2(γ)

2σ2 )

)
,

which shows that `as(γ)
r(γ) grows at least at the exponential rate exp( (α

2−1) ln2(γ)

2σ2 ). �

This completes the proof. The proof also fills in the omitted details for [13, Proposition 1].

Proof of Lemma 2

Proof. First we show 1. To this end, recall that X = exp(Y ), where Y ∼ N(ν,Σ). Further, recall the
well-known property (which is strengthened in Lemma 4) that for i , j and Corr(Yi,Yj) < 1, the pair
Yi,Yj is asymptotically independent in the sense that

P(Yi > γ |Yj > γ) = o(1), γ ↑∞.

In fact, Lemma 4 shows that this decay to zero is exponential. The consequences of this are
P(maxi Yi > γ) '

∑
i P(Yi > γ), and

P(Yk > γ,max
i,k

Yi > γ) = o(P(Yk > γ)).

With these properties, we then have the lower bound:

P(S > γ,Xk = M) ≥ P(Xk = M > γ)

≥ P(Xk > γ,max
j,k

X j < γ)

= P(Yk > lnγ,max
j,k

Yj < lnγ)

= P(Yk > lnγ)+ o(P(Yk > lnγ))

= P(Xk > γ)+ o(P(Xk > γ)).
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Next, using the result P(S > γ,Xk = M < lnγ) = o(P(Xk > lnγ)) from Lemma 3, we also have the
analogous upper bound:

P(S > γ,Xk = M) = P(Xk = M > γ)+P(S > γ,Xk = M < γ)

≤ P(Xk > γ)+P(S > γ,Xk = M < γ)

= P(Xk > γ)+ o(P(Xk > γ)),

whence we conclude that P(S > γ,Xk = M) ' P(Xk > γ).

Next, we show point 2. Using the facts that: (1) the fewer the active constraints in any solution, the
closer its minimum is to zero (without constraints the minimum of (3.12) is zero); (2) any solution
satisfies the Karush-Kuhn-Tucker (KKT) necessary conditions:

Σ
−1µ−λ1∇g1(µ)−λ2∇g2(µ) = 0

λ ≥ 0, g(µ) ≥ 0, λ>g(µ) = 0,

we can verify by direct substitution that µ∗ satisfies the KKT conditions asymptotically as γ ↑∞ and
that it causes only one constraint to be active (g1(µ

∗) = o(1)). Moreover, it yields the asymptotic
minimum:

1
2
(µ∗)>Σ−1µ∗ =

(ln(γ)− νk)
2

2σ4
k

e>k ΣΣ
−1
Σek =

(ln(γ)− νk)
2

2σ2
k

Finally, we show point 3, which is the linchpin of the proposed methodology. To this end, consider the
(m+1)-st moment with µ→ µ∗ as γ ↑∞:

Eµ ˆ̄hm+1
k = E0 ˆ̄hm

k = Eexp
(

mµ>Σ−1µ
2 −mµ>Σ−1(Y −ν)

)
I{S > γ,Xk = M}

= exp
(
(m2+m)µ>Σ−1µ

2

)
P−mµ(S > γ,Xk = M)

' exp
(
(m2+m)(ln(γ)−νk )2

2σ2
k

)
P−mµ∗(S > γ,Xk = M).

Next, notice that the measure P−mµ∗ is equivalent to first simulating

Yk ∼ N(νk −m(ln(γ)− νk),σ
2
k ),

and then, given Yk = yk , simulating all the rest of the components, denoted Y−k , from the nominal
Gaussian density φΣ(y − ν) conditional on Yk = yk , that is, Y−k ∼ φΣ(y − ν |yk). In other words,
asymptotically, the effect of the change of measure induced by (3.12) is to modify the marginal
distribution of Xk only. Thus, repeating the same argument used to prove part 1, we have

P−mµ∗(S > γ,Xk = M) ' P−mµ∗(Yk > lnγ) = Φ
(
(m+1)(lnγ− νk)

σk

)
.
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Therefore, as γ ↑∞,

Eµ ˆ̄hm+1
k ' exp

(
(m2+m)(ln(γ)−νk )2

2σ2
k

)
Φ

(
(m+1)(lnγ−νk )

σk

)
= Θ

(
1

lnγ exp
(
−
(m+1)(ln(γ)−νk )2

2σ2
k

))
= Θ(lnm(γ)h̄m+1

k ).

Then, the part 3 of Lemma 2 follows from putting m = 1, and observing that

Var( ˆ̄hk)

h̄2
k

=
Eµ ˆ̄h2

k

[P(S > γ,Xk = M)]2
−1 '

Eµ ˆ̄h2
k

[P(Xk > γ)]2
−1 = Θ(ln(γ)).

�

Lemma 3. We have P(S > γ,Xk = M < γ) = o(P(Xk > γ)) as γ ↑∞.

Proof. Let β ∈ (0,1) and M−k =max j,k X j . Then, using the facts:

Φ(ln(γ−γβ))
Φ(lnγ)

' exp
(
−

ln2(γ−γβ)− ln2(γ)

2

)
γ− βγβ

γ−γβ

and
ln2(γ)− ln2(γ−γβ) ' 2

ln(γ)
γ1−β + o

(
ln(γ)
γ1−β

)
,

we obtain Φ(ln(γ−γβ)) ' Φ(lnγ) for any β ∈ (0,1). More generally,

P(ln(γ−γβ) ≤ Yk ≤ lnγ) = o(P(Yk > lnγ)).

Then, we have P(S > γ,Xk = M < γ) =

= P(M−k > γ
β,S > γ,Xk = M < γ)+P(M−k < γ

β,S > γ,Xk = M < γ)

≤ P(γβ < M−k < Xk < γ)+P(M−k < γ
β, γ−(d−1)M−k < Xk < γ)

≤ P(γβ < M−k, γ
β < Xk)+P(γ−(d−1)γβ < Xk < γ).

Since for large enough γ there exists a β′ ∈ (β,1) such that (d−1)γβ < γβ′, we have

P(γ−(d−1)γβ < Xk < γ) ≤ P(γ−γ
β′ < Xk < γ) = o(P(Xk > γ))

The proof will then be complete if we can find a β ∈ (0,1), such that (u = lnγ).

P(M−k > γ
β,Xk > γ

β) = P(max
j,k

Yj > βu,Yk > βu) = o(P(Yk > u)).

Since P(max j,k Yj > βu,Yk > βu) = O
(∑

j,k P(Yj > βu,Yk > βu)
)
, the last is equivalent to showing that

the bivariate normal probability P(Yj > βu,Yk > βu) = o(P(Yk > u)) for some β ∈ (0,1). This last part
then follows from Lemma 4, which completes the proof. �
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Lemma 4 (Gaussian Tail Probability). LetY1 ∼ N(ν1,σ
2
1 ) andY2 ∼ N(ν2,σ

2
2 ) be jointly bivariate normal

with correlation coefficient ρ ∈ (−1,1). Then, there exists an α > 1 such that

P(Y1 > γ,Y2 > γ) = o(P(Y1 > αγ)∧P(Y2 > αγ)),

where a∧ b stands for min{a,b}.

Proof. Without loss of generality, we may assume that σ1 > σ2, so that

P(Y1 > αγ)∧P(Y2 > αγ) ' P(Y2 > αγ) = Θ(γ
−1 exp(− (αγ−ν2)

2

2σ2
2
)).

Define the convex quadratic program:

min
y

1
2
y>Σ−1y

subject to: y ≥ γ1−ν,
(3.21)

where Σ11 = σ
2
1 ,Σ12 = Σ21 = ρσ1σ2,Σ22 = σ

2
2 . Denote the solution as y∗. Then, we have the following

asymptotic result [20]:

P(Y1 > γ,Y2 > γ) = Θ
(
γ−d1 exp

(
−
(y∗)>Σ−1 y∗

2

))
,

where d1 ∈ {1,2} is the number of active constraints in (3.21). Next, consider the quadratic programing
problem which is the same as (3.21), except that we drop the first constraint (that is, we drop y1 ≥ γ−ν1).
The minimum of this second quadratic programing problem is (γ−ν2)

2

2σ2
2

, and is achieved at the point

ỹ = ((γ− ν1)ρσ2/σ1, γ− ν2)
>. Note that since ỹ1 < γ− ν1, we have dropped an active constraint. Since

dropping an active constraint in a convex quadratic minimization achieves an even lower minimum, we
have the strict inequality between the minima of the two quadratic minimization problems:

0 <
(γ− ν2)

2

2σ2
2

<
(y∗)>Σ−1y∗

2
.

for any large enough γ > ν2. Hence, after rearrangement of the last inequality, we have

ν2+σ2
√
(y∗)>Σ−1y∗

γ
> 1,

and therefore there clearly exists an α in the range

1 < α <
ν2+σ2

√
(y∗)>Σ−1y∗

γ
.

For such an α (in the above range), we have
(αγ− ν2)

2

2σ2
2

<
(y∗)>Σ−1y∗

2
.

Therefore, exp(− (y
∗)>Σ−1 y∗

2 ) = o
(
exp(− (αγ−ν2)

2

2σ2
2
)

)
, γ ↑ ∞, and the exponential rate of decay of P(Y1 >

γ,Y2 > γ) is greater than that of P(Y2 > αγ). This completes the proof. �
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Addendum: Vanishing Relative Error
Estimator for the Left Tail

In this section, an additional theoretical result and numerical example is provided for the left tail
estimator. These results were obtained after submission and thus do not appear in the main manuscript.

Recall the sequential sampling scheme from Section 3.2.1. Denote the measure used to simulate Z
with µ = 0 as P0 and the corresponding expectation (variance) operators as E0 (Var0). With the above
sampling scheme, recall that the unbiased importance sampling estimator of the cdf ` (based on a
single realization) is:

ˆ̀0 =
d∏

j=1
Φ(α j(Z1, . . ., Z j−1)), Z ∼ P0. (3.22)

Under the condition that Σii < Σi j for some i , j (see [31]), the estimator (3.22) is strongly efficient.

Theorem 3 (Vanishing Relative Error). Suppose there exists an index i such that Σii < Σi j for all i , j,
and, without loss of generality, assume that i = 1. Then, the estimator (3.22) enjoys the vanishing
relative error property:

lim
γ↓0

Var0 ˆ̀0(γ)
`2(γ)

= 0

Proof. Under the assumption that Σ11 < Σ1 j for j , 1, we have `(γ) ' P(X1 < γ), see [19] for a proof.
Therefore, using the upper bound

E0 ˆ̀2
0(γ) = E0

d∏
j=1
Φ

2(α j(Z1, . . ., Z j−1)) ≤ EΦ
2(α1) = [P(X1 < γ)]

2 ' `2(γ),

we have as γ ↓ 0,
Var0( ˆ̀0)

`2 =
E0 ˆ̀2

0(γ)

`2(γ)
−1 ≤

[P(X1 < γ)]
2

`2(γ)
−1→ 0.
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Consider the numerical example from [31], where ν = (4,4,4,4)> and

Σ =


1 2 2 2
2 5 4 4
2 4 4.5 4
2 4 4 4.5


This Σ satisfies the property that Σ11 < Σ1 j for all j , 1. Table 3.11 shows that in this case the gains
from using the strongly efficient estimator are significant — the relative error is easily more than a
thousand times smaller.

Table 3.11: Comparison between the strongly efficient estimator (3.22) and the weakly efficient
estimator (3.1).

relative error %
γ ̂̀0(γ) ̂̀(γ) RE(̂̀0) RE(̂̀)
10 1.91×10−2 1.91×10−2 0.104 0.098
1 2.40×10−5 2.39×10−5 5.05×10−2 0.137

10−1 1.39×10−10 1.39×10−10 1.98×10−2 0.182
10−2 3.78×10−18 3.80×10−18 7.36×10−3 0.218
10−3 5.29×10−28 5.25×10−28 2.51×10−3 0.249
10−4 3.82×10−40 3.81×10−40 9.04×10−4 0.276
10−5 1.42×10−54 1.42×10−54 3.09×10−4 0.300
10−6 2.68×10−71 2.68×10−71 1.58×10−4 0.323
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Chapter 4

Monte Carlo Estimation of the Density of the
Sum of Dependent Random Variables

4.1 Introduction

Sums of random variables are fundamental to modeling stochastic phenomena. In finance, risk
managers need to predict the distribution of a portfolio’s future value which is the sum of multiple
assets; similarly, the distribution of the sum of an individual asset’s returns over time is needed
for valuation of some exotic (e.g. Asian) options [16, 21]. In insurance, the probability of ruin (i.e.
bankruptcy) is determined by the distribution of aggregate losses (sums of individual claims of random
size) [3, 13]. Lastly, wireless system engineers model total interference in a wireless communications
network as the sum of all interfering signals (often lognormally distributed) [10].

In this article, we consider estimating the probability density function (pdf) of sums of random variables
(rvs). That is, we wish to estimate the pdf of S =

∑n
k=1 Xk , where X is simulated according to the

joint pdf fX . A major motivation for obtaining accurate pdf estimates of a rv is to produce confidence
intervals for quantiles. For example, the US Nuclear Regulatory Commission specifies regulations in
terms of the “95/95” rule, i.e. the upper 95% confidence interval for a 95% quantile [9]. The most
common approach [22] is to first estimate the cumulative distribution function (cdf) via

F̂X(x) =
1
R

R∑
r=1
I{X [r]≤x} for X [1], . . .,X [R] iid

∼ FX ,
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and then the quantile q̂α = F̂−1
X (α). In the obvious notation, we then have the convergence in distribution:
√

R (q̂α − qα)
D
−→ N

(
0, α(1−α)/[ fX(qα)]2

)
as R→∞, where the limiting variance depends on the unknown density fX(qα). Thus, any confidence
intervals for q̂α require estimation of the density fX(qα), which is a highly nontrivial problem.

In general, the pdf of a sum of random variables is only available via an n-dimensional convolution. The
convolution usually cannot be computed analytically (except in some special cases, e.g., iid gammas
or normals) or numerically via quadrature (unless n is very small). Approximations have long been
applied to this problem in the iid case for large n. These include the central limit theorems [17],
Edgeworth expansions [7], and inversion of integral transforms [1].

An Edgeworth expansion is a generalization of the Central Limit Theorem, which constructs a non-
normal approximation based on the first K moments (equivalently, cumulants) of S (the first term of the
edgeworth expansion is the Central Limit Theorem approximation, which may not be accurate for small
n). Moreover, when the summands of S are dependent, then the moment sequence of S is unknown
and needs to be estimated (e.g. by Monte Carlo), and small errors in the approximation of the higher
moments can lead to large errors in the approximation. Hence, the method is not fully deterministic (as
it may first appear), and requires careful calibration of the value K to avoid numerical instabilities.

Another common method is to construct the Laplace transform (or characteristic function) of S and
numerically invert it, using a method such as those described in [1]. However, when the summands are
dependent, the Laplace transform of the sum is unknown, so one has to first estimate it (e.g. by Monte
Carlo), and then numerically invert this approximation. Specialized methods have been developed for
certain marginals and dependence structures (for example, the sum of lognormals case is considered
by [14]), but an approach for general distributions is still too difficult.

Finally, Monte Carlo estimators such as Conditional Monte Carlo [2] and the Asmussen–Kroese
estimator [6] utilize details of X’s distribution to produce unbiased estimates with a dimension–
independent rate of convergence of O(1/n).

The purpose of this work is to explore an unbiased Monte Carlo estimator for the problem, with a
focus on dependent summands. The estimator is based on treating the pdf estimation problem as a
derivative (of the cumulative distribution function) estimation problem. There are several advantages
to the proposed estimator. First, we show that in certain settings it enjoys smaller variance than those
based on the Conditional Monte Carlo approach. Secondly, the estimator only requires evaluation of
the joint pdf up to a (typically unknown) normalizing constant, a situation similar to the application of
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Markov chain Monte Carlo. As a result of this, the sensitivity–based approach is useful in estimating
posterior marginal densities in Bayesian inference (Section 4.5).

Remark (Notation). In our notation, we use lowercase boldface letters like c, x, y for non-random
vectors and uppercase boldface letters like X for random vectors, and 1 for the vector of 1’s. If X is of
length n, we write: X = (X1, . . .,Xn)

>. The inner-product is denoted x · y. For a differentiable function
f : Rn 7→ R, we write

∇ f (z) = (∂ f (x)/∂x1, . . ., ∂ f (x)/∂xn)
>
��
x=z

,

and use ∇i f (z) to denote the i’th component of ∇ f (z).

4.2 Sensitivity Estimator

The estimator is derived from a simple application of Likelihood Ratio method [12,18], also known
as the Score Function method [20]), that is typically used for derivative estimation of performance
measures in Discrete Event Systems. We thus tackle the pdf estimation problem by viewing it as a
special type of sensitivity analysis. The basic idea appears in [5, Chapter VII, Example 5.7], and our
contribution is to consider the approach in a more general setting, weaken a technical condition, and
use a control variate to reduce variance.

Assumption 1. The random vector X has a density fX , each Xi is supported either on the entire real
line or a half-real line, the gradient ∇ fX is a continuous function on the support of X , and we have the
integrability condition E |X · ∇ log fX (X)| <∞ (here X ∼ FX ). ^

This assumption is slightly weaker than the one in [5, Prop. 3.5 on page 222], which requires that
| d
ds ( fX (sx)s

n)| is uniformly bounded by an fX -integrable function of x. The proposed estimator is
based on the following simple formula, proved in the appendix.

Proposition 1. For the rv S =
∑n

i=1 Xi = 1 · X where X satisfies Assumption 1,

fS(s) =
1
s
E

{
I{1·X≤s}[X · ∇ log fX (X)+n]

}
(4.1)

for any s , 0. ^

It is straightforward to show that (4.1) still holds if the indicators I{·} are replaced by −(1− I{·}). This
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suggests the pair of (unbiased) estimators (X ∼ FX ):

1
s
I{1·X≤s}

[
X · ∇ log fX

(
X

)
+n

]︸                                  ︷︷                                  ︸
f̂1(s)

, and −
1
s
I{1·X>s}

[
X · ∇ log fX

(
X

)
+n

]︸                                    ︷︷                                    ︸
f̂2(s)

.

We make use of both of these estimators by using one as a base estimator and the difference of the two
as a control variate (the difference has a known expectation, namely, zero) [5]. In order to ensure the
unbiasedness, we may, for example, obtain the control variate coefficient from a pilot (independent)
sample, as explained in Section 4.4.

4.3 Conditional Monte Carlo Methods

In the following Sections 4.3.1 and 4.3.2 we describe the Conditional Monte Carlo approach [2], as
well as an extension of the Asmussen–Kroese estimator. We then use these methods as benchmarks to
illustrate the performance of the proposed estimator in various settings.

4.3.1 Conditional Monte Carlo estimator

The Conditional Monte Carlo estimator [2] takes the form

f̂Cond(s) =
1
n

n∑
i=1

fXi |X−i (s− S−i), X ∼ FX,

where the notation X−i denotes the vector X with the i-th component removed and S−i = 1 · X−i. This
is particularly simple for the independent case, as fXi |X−i = fXi .

We now examine the dependent case where X’s dependence structure is given by an Archimedean
copula with generator ψ; i.e., the cdf yields

P(X1 ≤ F−1
X1
(u1), . . . ,Xn ≤ F−1

Xn
(un)) = φ

(∑n
i=1ψ(ui)

)
, u ∈ [0,1]n,

where φ ≡ ψ−1 is the functional inverse of ψ. The conditional densities of X can be calculated from the
formula (φ(n) denotes n-th derivative)

fXi |X−i (xi |x−i) = fXi (xi)ψ
(1)(FXi (xi))

φ(n)(
∑n

j=1ψ(FXj (x j)))

φ(n−1)(
∑

j,iψ(FXj (x j)))
. (4.2)

Some Archimedean copulas, such as the Clayton and Gumbel–Hougaard copulas, have what is called a
Marshall–Olkin representation. An Archimedean copula is in the Marshall–Olkin representation class
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if φ(s) = E[e−sZ ] for some positive rv Z with cdf FZ . Then an X with this dependence structure can be
simulated via

X =
(
F−1

X1

(
φ
(E1

Z

))
, . . ., F−1

Xn

(
φ
(En

Z

)))
, Ei

iid
∼ Exp(1), Z ∼ FZ . (4.3)

For this case, Asmussen [2, Proposition 8.3] conditions upon the Z as well as X−i to obtain what we
call the extended Conditional Monte Carlo estimator

f̂ExtCond(s) =
1
n

n∑
i=1

fXi |X−i,Z (s− S−i), (4.4)

where fXi |X−i,Z (xi) = −zψ′(Fi(xi)) fXi (xi)e−zψ(Fi(xi)) and X is given by (4.3).

We will use this estimator as a benchmark in our comparisons later on.

4.3.2 Asmussen–Kroese estimator

The Asmussen–Kroese estimator [6] (typically for tail probabilities) is defined as

F̂AK(s) = 1−
n∑

i=1
FXi |X−i (max{M−i, s− S−i})

where: M−i =max{X1, . . .,Xi−1,Xi+1, . . .,Xn} and FXi |X−i (x) = 1−FXi |X−i (x).

Each FXi |X−i (max{M−i, s− S−i}) = FXi |X−i (s− S−i), whenever M−i + S−i < s. Thus, we can take the
derivative of this piecewise estimator to obtain

f̂AK(s) =
n∑

i=1
fXi |X−i (s− S−i)I{M−i+S−i≤s},

which can be viewed as alternative conditional estimator. When it is applicable, we use the “extended”
form of this estimator where fXi |X−i is replaced with fXi |X−i,Z as in Section 4.3.1. Notice that the term
1/n in (4.4) does not appear here. We remark that (to the best of our knowledge) this variant of the AK
estimator for estimation of a density has not been previously considered.

4.4 Numerical Comparisons

In this section, for various distributions of X we compare: i) our proposed method, ii) the conditional
MC estimator, and iii) the Asmussen–Kroese (AK) estimator.
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We conduct 3 experiments, each one depicted on Figures 4.1 to 4.3 below. Each experiment uses
R = 105 iid replicates of X which are common to all estimators (our estimator uses the first 5% of these
to obtain the control variate coefficient, and the remaining samples for pdf estimation).

For each experiment we display a subplot of the estimated density function, as well as the estimated
standard deviation and (square root of the) work-normalized relative variance: WNRV( f̂ (x)) =
(CPU_Time)×Var( f̂ (x))/(R[ f̂ (x)]2). Here, CPU_Time is the (wall) time taken the by method to
produce the estimates for the grid of 50 points.

These examples show sums with dependent summands. When the copula has a Marshall–Olkin
representation (4.3) we use it to simulate X and give results for the extended version (4.4) of the
conditional MC estimator. All distributions and copulas are parametrized as they are in Mathematica.

Figure 4.1 considers the sum of dependent identically-distributed heavy-tailed variables. The estimates
plot shows us that the estimators basically agree with each other, as is to be expected when all methods
perform well. In terms of WNRV and standard deviation the sensitivity estimator outperforms the
others. Figure 4.2 considers a sum of dependent light-tailed variables. The results here are similar to
Figure 4.1. Again, the sensitivity estimator outperforms the others on WNRV and standard deviation.

Figure 4.3 shows the sum of dependent heavy-tailed variables. Instead of the standard multivariate
lognormal distribution which has a Gaussian copula, we take the Frank copula. The Frank copula is
unique among these tests as it is an Archimedean copula which lacks a Marshall–Olkin representation.
Here, the Asmussen–Kroese estimator outperforms the other estimators.
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Figure 4.1: Sum of n = 10 Weibull(0.3,1) random variables with a Clayton(1/5) copula.
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Figure 4.2: Sum of n = 15 Exp(1) random variables with a GumbelHougaard(5) copula.
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Figure 4.3: Sum of n = 10 random variables where Xi ∼ Lognormal(i−10,
√

i ) with a Frank(1/1000)
copula. The choice of marginals mimic the challenging (and somewhat pathological) example
considered in [4].

4.5 Extension to Estimation of Marginal Densities

One extension of the sensitivity estimator is in the estimation of marginal densities, which has
applications in Bayesian statistics. For an X which satisfies Assumption 1, a similar derivation to the
one in Proposition 1 gives the following representation of the marginal densities:

fXi (s) =
1
s
E

{
I{Xi≤s}

(
Xi∇i log fX (X)+1

)}
(4.5)

for i = 1, . . .,n, and s , 0. We use the estimator with associated control variate that is based on (4.5). A
nice feature of the corresponding estimator is that, due to the presence of the ∇ log fX (x) term, the
normalizing constant of f need not be known. As an example, we use Markov Chain Monte Carlo to
obtain samples from the posterior density of a Bayesian model, and use these to estimate the posterior
marginal pdfs with our sensitivity estimator.

We consider the well-known “Pima Indians” dataset (standardized), which records a binary response
variable (the incidence of diabetes) for 532 women, along with seven possible predictors. We specify a
Logistic Regression model with predictors: Number of Pregnancies, Plasma Glucose Concentration,
Body Mass Index, Diabetes Pedigree Function, and Age (see [11] for justification). The prior is
β ∼ N(0, I), as in [11].
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To obtain samples from the posterior density, we implement an isotropic Random Walk sampler, using
a radially symmetric Gaussian density with σ2 = 7.5×10−3 (trace plots indicate this choice mixes well
for the model). We ran the RandomWalk sampler for 103 steps for burn-in, then used the next 2.5×104

samples (without any thinning) to obtain a KDE, as well as density estimates using our sensitivity
estimator (with control variate). As a benchmark, we compare the accuracy with a KDE constructed
using every 50-th sample from an MCMC chain of length 50×5×106. The result of this comparison is
depicted in Figure 4.4.
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Figure 4.4: Density estimation of posterior marginal corresponding to the coefficient parameter of the
Body Mass Index predictor variable (results from two runs are shown).

As expected, using the same set of samples, the sensitivity estimator yields a more accurate estimate
than KDE. The reason for the lower accuracy of KDE in this context is well-known — a mean square
error convergence of O(n−4/5), instead of the canonical Monte Carlo rate of O(n−1), due to the presence
of non-negligible bias in the KDE estimator (see [8], for example).

Remark (Shifting). It is worth noting that, due to the 1/s term, it is possible that the sensitivity
estimator can have large variance for very small s, even when F(s) or 1−F(s) is not close to zero. This
problem can be resolved with a simple linear shift, as follows. If one summand, say X1, is supported on
R, then fS(s) = fS̃(s− a) for a ∈ R, where S̃ = (X1+ a)+ X2+ · · ·+ Xn. We can then use the original
estimator (with shifted values of s and X1) to obtain estimates of the density of S near or at zero.

4.6 Conclusion

In this paper we derived a sensitivity-based estimator of the pdf of the sum of (dependent) random
variables and performed a short numerical comparison. Overall, the numerical comparison indicates
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that there isn’t a single best estimator in all settings. Nevertheless, the proposed sensitivity estimator
will likely be preferable in settings where ∇ log fX can be computed very quickly, and most useful
when the conditional Monte Carlo approach is difficult to apply.

4.7 Appendix: Proof of Proposition 1

There are many ways to derive this formula. One of the simplest is to use the likelihood ratio method
( [6, Ch.VII, (4.1)], [12, 18, 20]), which requires the interchange of differentiation and integration. A
general sufficient condition for this interchange to be valid is given in [15, Theorem 1]. The proof in
this reference uses the dominated convergence theorem, which requires that | d

ds fX (sx)sn | is uniformly
bounded by an fX -integrable function of x. In our derivation below, we instead use the Fubini-Tonelli
theorem, which only requires the integrability of |x · ∇ log fX (x)| with respect to fX .

Define the cdf FS(s) =
∫
1·x≤s fX (x)dx , so that the pdf is fS(s) = d

ds FS(s). The change of variables
x = sy yields:

FS(s) =
∫
Rs

fX (sy)|s |n dy s , 0,

where the notation
∫
Rs

means
∫
1·y≤1 if s > 0, else

∫
1·y>1 for s < 0.

Let ϕ(s) :=
∫
Rs

d
ds ( fX (sy)|s |

n)dy. We will use the fact that ϕ(s) = fS(s) almost everywhere (i.e. except
possibly on sets of zero Lebesgue measure) on s < (−ε, ε) for an arbitrarily small ε > 0.

In order to justify the identity ϕ(s) = fS(s) (almost everywhere) in the case of s > ε (similar arguments
apply for s < ε), we use the Fubini-Tonelli theorem for exchanging the order of integration. This
exchange holds under the integrability condition∫ s

ε

∫
1·y≤1

���� d
dt
( fX (t y)tn)

����dy dt <∞ (4.6)

and the existence of a continuous ∇ fX , both of which follow from Assumption 1 (verified at the end of
this proof). Using the Fubini-Tonelli theorem [19] we then write:∫ s

ε
ϕ(t)dt =

∫ s

ε

∫
1·y≤1

d
dt
( fX (t y)tn)dy dt =

∫
1·y≤1

∫ s

ε

d
dt
( fX (t y)tn)dt dy

=

∫
1·y≤1
( fX (sy)sn− fX (ε y)εn)dy = FS(s)−FS(ε)

Hence, by the fundamental theorem of Calculus, ϕ equals the derivative of FS up to a set of measure zero.
In other words, ϕ(s) = fS(s), s > ε almost everywhere. To proceed, we write sign(x) = x/|x | = d

dx |x |

fS(s) = ϕ(s) =
∫
Rs

[
y · ∇ log fX (sy)+

nsign(s)
|s |

]
|s |n fX (sy)dy,
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so after a change of variables y = x/s and using sign(x)/|x | = 1/x, we obtain

fS(s) =
∫

1·x≤s

[ x
s
· ∇ log fX (x)+

n
s
]

fX (x)dx =
1
s
E

{
I{1·X≤s}[X · ∇ log fX (X)+n]

}
.

To verify (4.6), note that after using the change of variable above, it can be upper bounded by∫ s
ε

1
t E

{
I{1·X≤t} |X · ∇ log fX (X)+n|

}
dt ≤ (E

��X · ∇ log fX (X)
��+n)

∫ s
ε

1
t dt <∞,

which is bounded by assumption.
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Chapter 5

Conclusion

Several novel Monte Carlo methods have been proposed and their unique advantages over existing
methdology demonstrated.

In Chapter 2, a novel class of SMC methods was proposed. By interpreting the Nested Sampling
method through the lens of sequential Monte Carlo, novel methodology was introduced that allowed
for an unbiased and consistent variant in the non–idealized setting where MCMC is used. The new
perspective was also valuable in allowing us to derive an improved version of the of the original Nested
Sampling algorithm without requiring the assumption of independent particles. The SMC approach to
Nested Sampling has opened up a new avenue through which to approach the theoretical analysis of
Nested Sampling, as well as a means to develop methodological extensions or improvements thereof.

Novel SMC sampler calibration methods were introduced in Section 2.5, and applied as part of a
simulation study in Section 2.6. The results indicated that NS–SMC is capable of handling difficult
statistical problems and performing similarly to the temperature–annealed SMC approach, with the
unique advantage of being able to handle problems with phase transitions. While the calibrationmethods
presented were developed out of necessity in an attempt to provide an even–handed comparison between
the two SMC methods, they provide a means for practitioners to ensure more robust performance
regardless of their chosen SMC approach.1 The further development of methods for the principled
calibration of SMC samplers is another possible avenue of future research.

In Chapter 3, new methods for estimating distributional quantities of the sum of dependent log–normals
were introduced. Estimators for the left and right tail, as well as the probability density function were

1MATLAB code for the methods in Chapter 2 is available at https://github.com/LeahPrice/SMC-NS.

https://github.com/LeahPrice/SMC-NS
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presented. A number of examples were provided that demonstrated the proposed methodology performs
well in a wide variety of settings, including those where existing methods perform poorly. Additionally,
a method for exactly sampling conditional on a rare event in the left tail was proposed. A key insight
from the chapter is that stronger theoretical properties of rare–event estimators do not necessarily
translate into good practical performance, and that great caution should be taken in placing trust solely
in asymptotic efficiency results. For this reason, future development of rare-event probability estimation
methods would ideally place increased focus on ensuring good practical performance in the pre-limit.

In Chapter 4, an unbiased estimator for the pdf of sums of random variables in a more general setting
was explored. Overall, the estimator performed well when compared with other unbiased estimators.
An extension for the estimation of marginal pdfs was also provided, and exploring further potential
applications of the latter (beyond visualization) would be interesting.
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