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Abstract 

The pursuit of targeted drug delivery leading to improved efficacy, mitigated side effects 

and desirable therapeutic outcomes has drawn much interest in recent decades. In this context 

this research aimed to develop a lipoid microbubble (LMB) platform, which upon application 

of ultrasound (US) cavitates the LMBs releasing energy pulses in the form of micro-jets and 

shockwaves facilitating penetration of drug into tissues. The energy released following 

cavitation of micron-sized, echogenic vesicles is purported to have potential in enhancing 

localized cellular uptake of drug and/or increase the depth of penetration of drug into tissue.  

In this research novel, for the first time, a reproducible method for preparation of 

ciprofloxacin filled US-responsive LMBs (CLMB) with high loading efficiency (i.e. ≅ 90%) 

and extended in vitro stability was developed and optimized. Moreover, a range of US 

parameters, namely frequency, duration, power and duty cycle were optimized to ensure 

negligible hyperthermic effects on the LMBs and surrounding media. To study the effects of 

cavitation, LMBs were first prepared and mixed with a low viscosity Carbopol®-based gel 

infused with rhodamine B, a red water-soluble dye, which was then applied to agarose models 

of varying rigidity/permeability. Optimized US was then applied to the gel and dye penetration 

into agarose films was measured. One of the main challenges observed in this study was the 

gradual unassisted diffusion of dye into the agarose films hindering an accurate measurement 

of depth of penetration as potentiated by US. Therefore, a Franz cell diffusion apparatus-based 

study was designed/performed next, to further investigate the effect of LMB cavitation on 

penetration of dye across a 3.5 kDa molecular weight cut-off SnakeSkin™ dialysis membrane, 

using the aforementioned optimized US parameters. The results did not show any 

improvements in penetration of dye across agarose barrier models compared to the control 

arms.  

Next, bacteria time kill studies were designed/performed to test if the LMBs synergistically 

increase the efficacy of the fluoroquinolone antibiotic, ciprofloxacin on Pseudomonas 

aeruginosa, which commonly colonises burns/chronic wounds. The results did not show any 

synergistic bactericidal effects of the cavitation in the presence of ciprofloxacin. Next, another 

study using Trypan blue, an agent impermeable to bacteria, was trialled to ascertain whether 

cavitation facilitated its penetration into the aforementioned bacteria. However, the recorded 

absorbance correlating to intracellular Trypan blue fell below the limit of detection in this 

assay, and an inconclusive result was recorded.  

From the collection of studies presented in this thesis limitations in the low intensity US 

device in imparting effective dye permeation/drug delivery became apparent. In light of this, 
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access to and development of a more versatile US unit is required in order to prove the 

applicability of US-assisted drug delivery from LMBs. It is expected this could be facilitated 

through a set-up comprising of an oscilloscope, hydrophone, and high-speed camera, which 

would pave the way for effective monitoring of the cavitation effects of LMBs assisted by a 

tunable US device.   
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Chapter 1: literature review 

 

1. Introduction  

The main aim of this research was to develop stable LMBs, derived from lipoid-based 

particles (i.e. liposomes), and investigate if their US mediated cavitation  could assist drug 

delivery/efficacy in wound models. While having a complete discussion about clinical 

applications of lipoid based particles is beyond the scope of the thesis, the focus of this chapter 

is to first review some of the successful lipoid particles and their clinical applications (i.e.  

optimizing the pharmacokinetics of drugs for better therapeutic outcomes). Then the discussion 

further continues by explaining chronic wounds, current treatments and the potential of 

different carrier systems to better manage and treat wounds. At the end of this chapter, LMBs 

and their clinical applications have been elaborated.  

1.1. Lipoid based drug delivery systems in clinic 

Despite a plethora of new techniques being available in the design and development of drug 

molecules, the success rate in proceeding to the clinic remains low. Therefore, one of the 

emerging strategies to improve systemic treatments is to alter the pharmacokinetics (PK) and 

pharmacodynamics (PD) of classic drugs with the aid of carrier systems. Successful delivery 

of a molecule to its site of action is the cornerstone of modern treatments and remains a 

challenge particularly following systemic treatment with drugs having a high volume of 

distribution (Vd). The correlation between the expected effect(s) of the drug and the severity of 

its side effect(s) invariably dictates the loading/maintenance dose for a given condition in the 

development of each treatment (1).  

In the case of chemotherapeutics many lack specificity for the proposed site of action 

resulting in both healthy and cancerous cells being affected, which leads to debilitating side 

effects. Nano carrier systems, with ability to preferentially deliver and trap chemotherapeutics 

in tumour site  thus minimising the exposure of healthy tissues to the cytotoxic drugs, are 

proposed as ideal vectors tomitigate the incidence and severity of side effects (2). The 

phenomenon is referred to as the enhanced permeation and retention (EPR) effect, which is due 

to the immature vasculature system in tumours (Figure 1-1). That said, in the context of cancer 

treatment even when employing a carrier system to deliver a drug, chemotherapy is far from 

perfect in clinical settings (e.g. cardiotoxicity in treatment with Doxil® (3) and/or peripheral 

neuropathy in treatment with Abraxane® (4)). The complex vasculature of a tumour can lead to 

unpredictable drug deposition, while lymphatic drainage is an often-overlooked parameter (5). 
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Figure 1-1: Enhanced permeation and retention (EPR) effect: The cells inside the vasculature system are simplified for a better demonstration. Images are taken from Servier Medical Art (http://smart.servier.com/) 

Only a small proportion of drug filled liposomes extravasate from 
tumour vasculature in each passage. 
Liposomes primarily remain in the vicinity of vasculature as a result 
of physical barriers such collagen, densely packed cells, and high 
intratumoural fluid pressure. 

Tumour 
microvasculature 
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Another example in enhancing the therapeutic efficacy of classic drugs using lipoids is 

liposomal amphotericin B (AmBisome®). Compared to conventional amphotericin, this FDA 

approved product has higher fungicidal effects and a better toxicity profile (i.e. less 

nephrotoxicity and infusion-related reactions) (6), which is due to a higher affinity of the 

liposomes (containing amphotericin B) for the fungi cell membrane compared to free drug (7).  

DepoFoam® is another successful lipid based drug delivery platform with local applications 

(i.e. infiltration administration) in which spherical micron sized lipoid particles together form 

multi-vesicular honeycomb-like structures (Figure 1-2) (8). The aforesaid scaffold provides 

numerous internal aqueous chambers with ability to store and slow-release the core drug. 

Bupivacaine, a local anaesthetic of the amide type, has been successfully reformulated using 

the aforementioned platform to induce longer anaesthesia (i.e. EXPAREL®) obviating the need 

for post-surgery administration of opioids, especially in patients undergoing 

haemorrhoidectomy (9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2: Electron micrograph showing the honeycomb structure of a freeze-fractured multivesicular liposomes in 

DepoFoam®, Reprinted with permission from (8) Copyright (1996) American Chemical Society 
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1.2. Challenges in the design of nanosized carriers with systemic applications 

The use of nanomaterials to improve the PK/PD profile leading to better therapeutic 

outcomes faces a range of challenges from design (e.g. formulation from lab to industry) to 

clinical (e.g. different response in different patients) perspectives. Therefore, a multi-faceted 

approach considering all the aforesaid challenges is benchmark for the successful design and 

translation of nanomedicine. Despite significant advancements in nanomedicine, high toxicity 

in preclinical studies arising from the nanocarrier itself or undesirable pharmacodynamics 

delays the development of new generation nanocarriers (10). Detection of nanomaterials by the 

immunity system and/or their clearance from the body are other challenges in this regard and 

should be taken into consideration during developing nanoparticle based carrier systems for 

the purpose of systemic treatments (11). For example, a solute smaller than 10 nm is rapidly 

cleared from blood by the kidneys whereas micronize particles (12) are detected and eliminated 

by organs of the reticuloendothelial system (e.g. spleen, liver) (10).   

1.3. Liposomes – from preparation to systemic application  

Liposomes were first described by Bangham et al. in 1965 (13-15) as phospholipid-based 

amphipathic molecules with two ends: a hydrophilic head (phospho-) and a hydrophobic tail (-

lipid) (Figure 1-3 A, B). In aqueous media, they together form bilayered-spheroid-like 

structures with an inner aqueous core (i.e. liposome) (Figure 1-3 C) (16, 17).  

 

 

 

 

                                  

                                               

                                      

 

 

 

 

Figure 1-3:  Molecular structure of phospholipid (A, B) and array of phospholipids in bilayer membrane of liposome (C). 

Adapted/Translated with permission from (17) copyright (2013)  

Anthracyclines, such as doxorubicin, are a chemotherapeutic class widely used in 

combination with other chemotherapeutics in the treatment of different cancers such as ovarian 

cancer, AIDS-related Kaposi’s sarcoma and haematological malignancies (18). However, 

(C) (B) (A) 
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debilitating side effects derived from these compounds have limited their use and 

administration. For example, it has been shown around 10% of patients treated with 

doxorubicin present with cardiac related problems up to 10 years after receiving chemotherapy 

(19). Doxil®, a US-FDA approved doxorubicin liposomal formulation (20), is widely 

administered in treatment of Kaposi sarcoma in patients with compromised immunity system 

(e.g. AIDS) (21, 22). As mentioned earlier, tumour vasculature has higher permeability whilst 

normal tissues are nurtured by vessels with tight capillary junctions. In this case, the nano-sized 

liposomes prevents preferential penetration and deposition into tissues other than the tumour 

site, which is known as passive targeting highlighted earlier in this chapter (23, 24) (please see 

Figure 1-1).  

One of the main challenges in the formulation of liposomes, is to retain the intra-liposomal 

hydrophilic drugs before administration. The challenge has led to the use of fluid membrane 

tightening materials, in particular cholesterol in bilayer membrane (25-27). However, lack of 

ability to retain hydrophobic drugs is still known as an inherent drawback in this carrier system. 

The liposomal membrane is similar to biological membranes in molecular composition 

allowing hydrophobic molecules freely cross the bilayer membrane. This has prevented 

liposomes from being a suitable carrier system for hydrophobic drugs such as paclitaxel (28). 

Table 1-1 briefly shows some commercial formulations based on lipid(29).  

To date, different methods have been developed for the preparation of liposomes, and a 

summary of these along with their advantages and disadvantages are shown in Table 1-2.  

 

 

 

 

 

 

 

 

 

 



22 | P a g e  

 

 

Table 1-1: US-FDA approved liposome/lipid based formulations, reproduced with permission from (29) 

Brand name 
Administration 

route 

The containing 

drug 

Size/type of 

particle 

Drug form/ 

storage period 
Lipid composition Indication Ref. 

Ambisome® Intravenous (IV) Amphotericin B Liposome 
Powder/36 

months 

HSPC/DSPG/ 

Cholesterol and 

amphotericin B 

(2:0.8:1:0.4 molar ratio) 

Severe fungal infections (30-32) 

Abelcet® IV Amphotericin B Lipid complex 
Suspension/ 24 

months 

DMPC/DMPG (7:3 

molar ratio) 
Sever fungal infections (33) 

Amphotec® IV Amphotericin B Lipid complex 
Powder/24 

months 
Cholesteryl sulphate Sever fungal infections (34) 

DaunoXome® IV Daunorubicin Liposome 
Emulsion/12 

months 
DSPC/Cholesterol Blood tumours (32, 35, 36) 

Doxil® IV Doxorubicin 
PEGylated 

liposome 

Suspension/20 

months 

HSPC, cholesterol, and 

PEG 2000-DSPE 

(56:39:5 molar ratio) 

Kaposi’s sarcoma, 

Ovarian/breast cancer 
(32, 37, 38) 

Lipo-dox® IV Doxorubicin 
PEGylated 

liposome 

Suspension/36 

months 

DSPC, cholesterol, and 

PEG 2000-DSPE 

(56:39:5 molar ratio) 

Kaposi’s sarcoma, 

Ovarian/breast cancer 
(39) 

Myocet® IV Doxorubicin Liposome 
Powder/18 

months 

EPC and cholesterol 

(55:45 molar ratio) 

Combination therapy with 

cyclophosphamide in 

metastatic breast cancer 

(32, 38, 40) 

Visudyne® IV Verteporfin Liposome 
Powder/48 

months 

EPG and DMPC (3:5 

molar ratio) 

Age-related macular 

degeneration, pathologic 

myopia, ocular 

histoplasmosis 

(41, 42) 

Depocyt® Spinal Cytarabine Liposome 
Suspension/18 

months 

Cholesterol, Triolein, 

DOPC, and DPPG 

(11:1:7:1 molar ratio) 

Neoplastic meningitis and 

lymphomatous meningitis 
(32, 43) 

DepoDur® Epidural Morphine sulphate Liposome 
Suspension/24 

months 

Cholesterol, Triolein, 

DOPC, and DPPG 

(11:1:7:1 molar ratio) 

Pain management (44, 45) 

Epaxal® Intramuscular 

Inactivated 

hepatitis A virus 

(strain RG-SB) 

Liposome 
Suspension/36 

months 
DOPC and DOPE Hepatitis A (46) 

Inflexal V® Intramuscular 

Inactivated 

hemaglutinine of 

Influenza virus 

strains A and B 

Liposome 
Suspension/12 

months 
DOPC and DOPE Influenza (47) 
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Table 1-2: Advantages vs. disadvantages of different methods of liposome preparation 

 

In general, loading the liposomes with drug molecules of interest is another challenge in the 

production procedure. This step is termed “remote loading” because encapsulation of drug 

happens after the formation of vesicles (28).The efficiency of loading step can be calculated 

via the following equation: 

% 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑇ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑒𝑛𝑡𝑟𝑎𝑝𝑝𝑒𝑑 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑙𝑖𝑝𝑜𝑠𝑜𝑚𝑒 

𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑎𝑑𝑑𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
× 100 

The most common technique used for remote loading is to precipitate the drug inside the 

vesicle via (55-57): 

1. Establishment of transmembrane pH gradients;  

2. Using a proton-generating dissociable salt such as ammonium sulphate (Figure 1-4) 

(58).  

 

 

 

 

 

Method Advantage Disadvantage Ref. 

Lipid film 

hydration 

Simple and quick production 

method 

Formation of 

polydisperse 

multilamellar vesicles  

(48) 

Reverse phase 

evaporation 

Production of bulky liposomes 

with high entrapment capacity, 

easy to scale up 

The use of organic 

solvent 
(48, 49) 

Detergent 

removal 
High entrapment efficiency 

Preparation issues, bio-

macromolecule 

denaturation caused by 

detergent 

(50) 

The ethanol 

injection method 

Simplicity of the method, fast 

preparation with good 

reproducibility, negligible lipid 

degradation and/or oxidative 

alterations 

Use of organic solvent 

in manufacturing 

process, 

low encapsulation 

efficiency, diluted 

liposomes 

(51-53) 

Proliposome-

liposome 

method 

Simple and practical technique, 

high entrapment efficiency, 

suitable for various drugs with 

different water and alcohol 

solubilities 

Scaling up issues, the 

use of organic solvent 
(52, 54) 
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Figure 1-4: Chemical mechanism of  remote loading of drug into liposomes, entrapment of drug molecules inside liposomes 

occurs via conjugation with sulphate ions, the remote loading is performed at 10 °C above the transition temperature of the 

phospholipids in the bilayer membrane, reprinted with permission from (58) copyright (2016) American Chemical Society 

Mononuclear phagocytic (MP) cells constantly detect exogenous particles and clear them 

from the body. Therefore, liposomes , being an exogenous particle, can be identified and 

rapidly cleared from the blood circulation by these cells(59-61). Hence, in order to prevent this 

, polyethylene glycol (PEG) is widely used and incorporated onto lipid bilayers  to disguise 

liposomes from MP cells (32). 

As mentioned previously, an ideal drug carrier for cancer chemotherapy sustains the release 

of chemotherapeutics while accumulating in tumour site (see chapter 1.1 ) (62, 63). Liposomal 

formulations have shown better therapeutic efficacy compared to their conventional 

formulations (64) by having lower side effects (65), improved tumour targeting (66), longer 

half-life of the drug (67) and slow drug releasing properties (68).  

 

1.4. Chronic wounds  

Chronic wounds are long lasting non healing wounds which are generally classified to: 

diabetic foot ulcers, pressure ulcers and vascular ulcers (69). Several pathophysiological factors 

have been postulated to be responsible for failure of these wounds to heal including: persistent 

inflammation caused by local hypoxia, presence of microbial biofilms resistant to antibiotics, 

and lack of respond to reparative stimuli by dermal and/or epidermal cells (70, 71).  
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Chronic wounds are reported to place a significant burden (i.e. ≅ A$2.8 billion) on 

Australian healthcare system and the estimated cost is anticipated to increase by the growing 

aging population (72). Therefore, from an economical aspect, there is a substantial need for 

design and develop of new treatment platform(s) which can accelerate the healing procedure 

in these wounds hence reducing the cost(s) of treatment while increasing the patients’ comfort.     

   

1.4.1. Management of chronic wounds 

The success rate in treatment of these wounds relies on choosing the right strategies to 

concurrently address the aetiology and the underlying cause in these wounds. Accordingly, the 

first approach in the management of chronic wounds is to diagnose and identify the cause of 

delay in healing. The next step is to cover as many aspects as possible in these wounds via a 

multidisciplinary patient-centred approach (73).  

 

1.4.2. Wound debridement 

Arguably, surgical treatment (also known as sharp debridement) is considered as the most 

efficient treatment strategy for chronic wounds which can accelerate the healing of these 

wounds via remove of necrotic tissue, senescent cells, and biofilms (74). However, one setback 

in debridement is the delay of healing caused by excessive sharp debridement (69). 

Alternatively, the following non-surgical debridement are performed in patients who cannot 

undergo surgery (74): 

• Mechanical debridement: using hydrotherapy, wound irrigation and negative pressure 

wound therapy 

• Enzymatic debridement: using debriding enzymes such as collagenase  

• Biologic debridement: using sterilized maggots which would selectively attack and digest 

the necrotic tissue while secreting bactericidal enzymes  

1.4.3. Wound dressings 

Today, a wide range of wound dressings are available for the treatment of these wounds 

such as gauzes, films, hydrogels, hydrocolloids, alginates, hydrofibres, and foams (75). Ideal 

dressings for these wounds  are the ones with ability to cover as many aspects as possible such 

as: removing the excess exudates while maintaining the moist, preventing contaminants to enter 

the wound bed, having no discomfort for patient on its removal, leaving no debris behind in 

wound bed after removal, mitigating pain, and negligible allergic reactions(76). Given the 
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complex pathophysiology of these wounds, none of the currently marketed dressings have been 

able to cover all the aforesaid aspects simultaneously in such wounds.   

ENLUXTRA™ is a smart wound dressing with unique properties due to its proprietary 

smart polymers embedded with hydrogels. The dressing senses and responds to the ‘changing’ 

wound via absorbing exudates from wound zones while hydrating other dry zones (77).  

Figure 1-5 briefly describes the principles involved in the management of chronic wounds 

(78).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-5: Principles in the management of chronic wounds (78) 

 

1.4.4. Antibiotics in chronic wound management 

Inadequate blood perfusion in chronic wounds prevents sufficient delivery of intravenously 

administered antibiotic(s) to the bacteria in the wound. Therefore, having the advantage of 

delivering a bolus dose directly to the intended site with negligible off-target toxicities of 

topical antibiotics is a preferred (79). However, despite sustained delivery in topical antibiotics, 

tightly packed polymeric matrices (i.e. biofilms) around the present bacteria creates another 

major obstacle against drug delivery to the bacteria in these wounds (80) and is deemed to play 

a crucial role in delay of healing via: 

Management 
of chronic 

wound

To diagnose and 
treat tissue 

hypoxia

To never allow 
open wounds to 

dry

To control any 
infection

Debridement

To reduce 
autonomic 

vasoconstriction
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• Blocking the delivery of therapeutic molecule of interest to their target (i.e. the present 

bacteria) 

• Impeding the immune cells reach the present bacteria which would consequently result in 

constant stimulation of immune system with no considerable therapeutic outcome(s) hence 

collateral damage of the peri-wound tissue (81). 

1.4.5. Nanotechnology in chronic wounds 

Despite a myriad of nanomaterials have been tested to enhance/accelerate the healing course 

in chronic wounds, silver NPs have been the only successful NPs paving their way to clinic 

with inherent antimicrobial and anti-inflammatory properties (82). Moreover, a number of NPs 

with/without intrinsic healing properties are currently under development for this purpose. For 

example, chitosan-based copper nanocomposites have shown their ability to accelerate healing 

of wound in rat models via regulating cells, cytokines and growth factors in these wounds (83). 

In another attempt, gold-NPs-conjugated-nucleic-acids dispersed in Aquaphor® have shown 

their ability to penetrate into skin and preventing synthesis of ganglioside-monosialic acid 3 

synthase, a substance known to impede wound healing, thus accelerating the healing process 

in these wounds (84). 

1.5. LMBs and their potential chemotherapeutic application 

LMBs are most typically made from liposomes and an US responsive, echogenic gas. It is 

shown that the linear oscillation of bubbles induced by US (85) concentrates the US energy on 

a microscale with ability to rupture lipid membranes in their vicinity (86). Oscillation of 

bubbles in presence of ultrasound with larger amplitudes is followed by their violent collapse 

(Figure 1-6) creating a burst release of energy in the form of micro jets and shockwaves (87).  

 

 

 

 

 

 

 

Figure 1-6: US consistently expands and contracts bubbles via compression and rarefaction of the surrounding media, bubble 

collapses violently once it grows to a particular size, reprinted with permission from (87) copyright 2015 

The resulting shockwaves and micro jets from collapse of bubbles have been suggested as 

potential percutaneous penetration enhancer benefiting drug delivery across the aforesaid 

barrier (88). The most important parameters playing key role in bubble-US induced oscillation 
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are: the size of bubbles and nature of the gas inside, US frequency, liquid pressure and liquid 

density (89, 90). When considering liquid density, it has been reported that in viscous media 

(e.g. plasma with a viscosity circa. 4 cP) wideband emissions from LMBs is far less (i.e. up to 

10.2 times) than non-viscous media (e.g. water or saline 0.9%w/v with a viscosity circa. 1 cP). 

Hence, there is an inverse nonlinear correlation between the likelihood of LMB cavitation and 

the viscosity of the media surrounding LMBs (91)Table 1-3 shows bubbles behaviour in 

presence of different US frequencies and their potential applications.  

 

Table 1-3: Bubble application and US frequency (90) 

Frequency 
Bubble behaviour in presence of 

US 
Application Ref. 

20 kHz 

Generation of large bubbles and 

strong shockwaves generated from 

their collapse  

Mechanical agitating applications 

such as emulsification 
(92) 

100 to 

1000 kHz 

Smaller bubbles compared to 20 kHz 

with higher increase in temperature 

during cavitation 

Sonochemical purposes (93) 

1 MHz 

and above 

Weaker cavitation hence lower 

toxicity 
Medical imaging (94) 

 

Cavitation caused by US (also termed as acoustic cavitation) in body has been 

defined/studied (95) whereby the likelihood of cavitation for a particular bubble at different 

US frequencies relies on different parameters including the US peak negative pressure (96, 97). 

This burst release of energy, not only can trigger release of drug from the liposomes (via 

disarrangement of phospholipid molecules in liposomes bilayer membrane) (89, 98), but also 

increases the cellular uptake of drugs via generation of transitory pores in nearby cellular 

membranes (99). To date, LMBs and US have been successfully applied to a range of 

preclinical settings such as gene delivery (100-104) and augmentation of blood flow to muscles 

in mice (105). Table 1-4 and Table 1-5 show the LMB based diagnostic products and some of 

the most recent published in vivo applications of bubbles and US respectively. 
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Table 1-4: LMBs products and their clinical applications 

Name Composition Application Ref. 

Definity® 

Dipalmitoylphosphatidylcholine (DPPC), 

dipalmitoylphosphatidic acid (DPPA), 

dipalmitolyphosphatidylethanolamine–

PEG5000 (DPPE–PEG5000) 

Octafluoropropane 

Echocardiography 
(89, 

106) 

Sonazoid™ 
Hydrogenated egg phosphatidyl serine 

(HPSC), perfluorobutane, sucrose 

Characterisation of focal 

liver lesions 
(107) 

SonoVue® 

Macrogol 4000, 

distearoylphosphatidylcholine (DSPC), 

dipalmitoylphosphatidylglycerol (DPPG), 

sodium palmitic acid sulphur hexafluoride 

Echocardiography, doppler 

of vasculature 

(108, 

109) 

 

Table 1-5: Proposed applications of bubble cavitation 

Bubble type US settings and parameters Effect(s) Ref. 

Lipoid 

microbubble 

1.3 MHz with a 5-second 

interval, pulse repetition 

frequency of 9.3 kHz, 

mechanical index 

(MI) of 1.3 

Therapeutic US cavitation 

increased muscle perfusion by 

7-fold in normal mice 

(105) 

Lipoid 

microbubble 

In-house probe with following 

input parameters: 10-cycle 

sinusoidal at 620 kHz, MI with 

planar and concave aperture 

design were 0.4 and 1.0 

respectively 

Thrombolysis rate of 0.7% ± 0.15% 

in vitro without any use of 

thrombolytic drugs 

(110) 

Lipoid bubble 

1 MHz, intensity of 2 W/cm2 

and duty cycle of 50% for 1 min 

repeated every 2 days in 19 

days 

Enhanced the gene silencing of 

siRNA-NBs both in vitro and in 

vivo, elevated levels of cancer cell 

apoptosis 

(111) 

Microbubbles 

(SonoVue®, 

Definity® and 

USphere®) 

0.4 MHz focused US with MI 

ranging from 0.62 to 1.38 

Creating openings in blood brain 

barrier 
(112) 

Lipoid 

microbubbles 

9 MHz, MI 1.3, duration = 10 

seconds, 10 times repetition 

Liposomal -CoQ10 in combination 

with cavitation of bubbles were 

able to reverse diabetic 

nephropathy  

(113) 

1.6. Ultrasound parameters and its biological effects  

US is high frequency inaudible acoustic vibration (i.e. >20 kHz) currently used in clinic for 

diagnostic and therapeutic purposes. Although a detailed discussion about US transducers is 

beyond the scope of this chapter, in brief, each probe has a main US emitting compartment 

made of a piezoelectric crystal or ceramic which converts electricity to mechanical energy via 
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changes in its size and shape (i.e. convexity to concavity and vice versa) (114). An electricity 

generator is the other key compartment generating high-frequency alternating currents 

matching the properties of the transducer’s piezoelectric crystal (115).  

The general rule of thumb relating to depth of penetration of US is that higher frequencies 

penetrate tissue to a lesser degree (i.e. 1 MHz penetrates deeper than that of 3 MHz) (116). The 

phenomenon (also known as dissipation or loss of US energy in the media (117)) is a result of 

US attenuation caused by reflection, scattering and absorption of the waves by the molecules 

of the media during the transmission leading to gradual decrease in US intensity in deeper 

tissues (118). The most known bio-effects observed in application of US are generation of 

heat(119), increase in cellular drug uptake (120) and gas body activation (i.e. cavitation of 

stabilized gas within the body) which happens at lower frequencies and higher 

energies/intensities (121, 122).  

The ability of US to cause cavitation is defined by its mechanical index (MI) which can be 

calculated via the following equation(123): 

MI =  
𝑃𝑁𝑃

√𝑓
 

Where: 

PNP: Peak Negative Pressure (or peak rarefaction pressure) which depends on the transducer’s 

piezoelectric crystal. 

f: Frequency  

Therefore, two different US frequencies with similar PNPs would present different MIs. 

(i.e. lower frequency would have higher mechanical index, thus having more cavitational 

effects). 

𝑀𝐼1

𝑀𝐼2
= √

𝑓2

𝑓1
   →  If 𝑓2 > 𝑓1→ 𝑀𝐼1 >  𝑀𝐼2 

Moreover, the effect of the therapeutic US on cells has been tested at various intensities 

between 0.1-1.5 W/cm2 (124) while 1.5 W/cm2 is used to induce hyperthermia in periwound 

tissue (125). 
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1.7. Research hypotheses and aims 

1.7.1. Hypotheses 

The main aim of this research was to prepare stable LMBs and test if the cavitation of the 

prepared LMBs could accelerate the healing of wound models via enhancing the delivery of 

antibiotics. Therefore, it was postulated that:  

• Stable, highly echogenic LMBs encapsulating a clinically relevant chemotherapeutic 

can be prepared with high drug entrapment efficiency and low polydispersity. 

• Ultrasound-assisted cavitation of LMBs can increase the penetration of a model agent 

(dye) into barrier models of infectious disease. 

• Enhanced cellular uptake of antibiotic-containing LMBs assisted by ultrasound leads 

to reduced bacterial burden and consequently presents a platform for improved 

management of chronic wounds.   

1.7.2. Aims 

• To develop a reproducible preparation method for liposomal ciprofloxacin with high 

loading efficiency and low polydispersity.  

• To develop a highly echogenic formulation of liposomal ciprofloxacin using a patented 

process established by Parekh et al (WO 2018/053601 A1). 

• To evaluate the stability of optimized, drug filled LMBs over a 28-day period.  

• To perform ultrasound optimization studies to find US parameters able to cavitate the 

bubbles while having negligible hyperthermia  

• To study the effect(s) of the optimised US and LMBs on:  

o Penetration pattern of rhodamine B into/across different barrier models.  

o Antibacterial efficacy of ciprofloxacin HCl on P. aeruginosa via time kill study  

o Cellular uptake of Trypan blue by P. aeruginosa 
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Chapter 2: Formulation and characterisation of drug-filled lipoid microbubbles  

 

2. Development of liposomal-drug formulations with potential for ‘on-demand’ US-mediated 

release 

As described earlier in section 1.3 above, remote loading is a key step in preparation of drug 

filled liposomes through which drug molecules are entrapped inside liposomes and can be done 

via conjugation with sulphate ions. This step (compared to passive loading technique) has 

advantage of entrapping higher number of drug molecules within the liposomes. Therefore, in 

order to determine whether drug-filled liposomes can be transformed into LMBs, active remote 

loading of drug was first chosen and optimised to achieve high drug entrapment. For this 

purpose, ciprofloxacin, a fluoroquinolone, was chosen based on the literature showing its 

ability to be remote loaded into liposomes with high loading efficiency (126). 

2.1. Materials and methods 

DSPC (Mw ≅ 790 g/mol), DSPEmPEG-2000 (Mw ≅ 2805 g/mol), Whatman® Nuclepore 

Track-Etched membranes and polycarbonate extrusion filters were ordered from Avanti®. 

Ciprofloxacin HCl was purchased from Sigma-Aldrich®. Ammonium sulphate was purchased 

from chem-supply. Dialysis membrane, 1 mL shell vials and 20 mm aluminium cap, plain, 

centre hole; Pharma-Fix-Septa, butyl/PTFE, 50° shore A, 3.0mm were purchased from 

ThermoFisher Scientific. For extrusion of liposomes LIPEX liposome extrusion system 

equipped with N2 cylinder was used. Perfluoropropane (PFP) was purchased from Coregas. 

Sephadex G-50 was purchased from GE healthcare. Shimadzu Nexera-i LC-2040C 3D and a 

C18 HL 5µL Vision HT column were used for HPLC assay studies. The temperatures of the 

media were measured using an ISO-LAB “desk-top” digital Thermometer equipped with a 

probe. For US exposure, a digital Johari US device (JUS2) with dual frequency (i.e. 1 and 3 

MHz) and maximum intensity of 3 W/cm2 was used. Ellex eyecubed™ US unit (Ellex, 

Adelaide) was used to record echograms. Triethylamine (TEA) and Orthophosphoric acid 85% 

were purchased from Ajax Finechem. Acetonitrile was purchased from Merck. An Osmomat 

3000 was used to measure the osmolality of the media. 

2.2. Data analysis 

All the data were analysed using GraphPad Prism® 7 and for t-tests and one-way ANOVA, 

a p-value < 0.05 was considered to be significant. 

2.3. Preparation of ciprofloxacin-filled liposomes 

Liposomes were prepared using a well-established lipid film hydration preparation method 

(127). In brief, DSPC and DSPEmPEG-2000 (at molar ratio of 94:6) were dissolved in ethanol. 
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The organic solvent was then removed by rotary evaporation to form a uniform lipid film in a 

round bottom flask. The resulting lipid film was left overnight under vacuum to remove all 

traces of solvent. Next, the lipid film was hydrated using a 135 mM ammonium sulphate 

solution at 65 ºC for 30 minutes to reach a final lipid solution of 11 mM of giant MLV. Then, 

they were extruded respectively through 800 and 200 nm polycarbonate filters five times each, 

using N2 at high pressure to form unilamellar liposomes (PDI ≤ 0.1) followed by snap cooling 

of the final liposomes in an ice filled Eski. The external ammonium sulphate buffer was 

replaced with isosmotic saline (0.9% w/v) via dialysis in 4-8 ºC over 48 hours, to ensure all 

traces of ammonium sulphate was removed from the external buffer solution. After dialysis, 

ciprofloxacin HCl (1 mg/mL) was remotely loaded into the liposomes with different loading 

times (i.e. 5, 10, 20 and 30 minutes); this being performed at a temperature 10 ͦ C higher than 

the transition temperature of the primary phospholipid (i.e. DSPC) used to prepare the 

liposomes (i.e. 65 °C). The amount of ciprofloxacin HCl successfully loaded into the liposomes 

was then quantified using size exclusion chromatography, the technique of which is described 

later in section 2.5.  

2.4. Characterization of ciprofloxacin-filled liposomes 

The ciprofloxacin-loaded liposomes were characterised by dynamic light scattering (DLS) 

technique using a Malvern Zetasizer Nano. A manual measurement protocol employing the 

following conditions were used to determine the hydrodynamic diameter and PDI through 

cumulative analysis: 

• Temperature 25 º C with 120 seconds for equilibration time  

• For the material: Refractive index (RI) 1.45, absorption 0.010 

• Dispersant parameters: 25 º C, viscosity 0.8910 cP and RI 1.333 

• Measurement angle: 173 Backscatter (NIBS default) 

 

2.5. Determination of ciprofloxacin entrapment efficiency in liposomes 

To measure the loading efficiency and/or the concentration of liposomal drug, a size 

exclusion chromatography method was utilised and separation of extra-liposomal and 

liposomal drug was undertaken using Sephadex® G50 spin columns as previously described in 

literature (128). Accordingly, fresh in-house Sephadex® columns were made via the following 

established protocol developed by Torchilin et al: briefly, 1 g Sephadex® G-50 was swelled 

with 12 mL NaCl 0.9% w/v for 5 hours. The plunger of 1 mL syringe was removed and a small 

ball of cotton was placed in the barrel to support the Sephadex®. Then, the swelled Sephadex® 
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was transferred to the barrel and the final column was placed into a 15 mL Falcon tube (Figure 

2-1) (128).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1: Schematic representation of Sephadex® spin column, the plunger of 1mL syringe was removed and the cotton ball 

inside the barrel was to support the gel, 1g Sephadex® G-50 is swelled with 12 mL saline 0.9% w/w for 5 hours, the barrel 

was placed inside a 15 mL Falcon tube, the separation is performed by centrifugation of this column for 3 min at 1000 g   

 

The separation of the liposomal ciprofloxacin from the free drug was performed by addition 

of 100 µL of crude formulation (i.e. containing extra-liposomal and liposomal ciprofloxacin) 

and 100 µL of normal saline (0.9% w/v) to the prepared Sephadex® column and centrifugation 

of the column at 1000 g for 3 minutes (Figure 2-2). The eluent was collected and the procedure 

was repeated twice by adding 200 µL saline each time to the column and repeating the 

centrifuging process at 1000 g × 3 minutes. All the eluents were collected and diluted 5 times 

(made up to 1000 µL) and analysed using a Malvern Zetasizer Nano instrument.  
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Figure 2-2: Size exclusion chromatography technique for quantification of intraliposomal ciprofloxacin HCl, the first eluent 

contains the liposomes only whereas the 2nd and 3rd eluent contain drug + liposomes, only the 1st eluent is taken for 

quantification by HPLC, liposomes are ruptured by Triton X-100, 0.5% v/v before HPLC 

 

The derived count rate, a parameter that correlates with the number of particles scattering 

light and is measured as kilo counts per second (KCPS), was recorded to determine the 

percentage of liposomes in each wash relative to the total amount of liposomes in the all 

washes. The following equation was used to calculate the ratio of liposomes in each wash: 

 

𝑋𝑛 =
𝐾𝐶𝑃𝑆𝑛

𝐾𝐶𝑃1 + 𝐾𝐶𝑃2 + ⋯ + 𝐾𝐶𝑃𝑛
 

Where:  

𝑋𝑛= Ratio of liposome in the wash number n 

𝐾𝐶𝑃𝑆𝑛= Derived count rate in the wash number n 

Once the percentage of liposomes in the first wash was determined the following steps were 

taken to quantify the amount of liposomal drug (Figure 2-3):  
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Figure 2-3: Liposomal ciprofloxacin quantification steps 

In order to confirm that the separation of free drug from liposomal drug was performed 

flawlessly the aforesaid experiment was performed using a stock solution of free drug (i.e. 

ciprofloxacin HCl) with high concentration (i.e. 3000 µg/mL). Since the crude solution does 

not contain liposomes nor Triton X-100, a UV assay was used to detect the amount of drug in 

each wash. Figure 2-4 illustrates that the first wash contained mainly liposomal formulation, 

whereas free drug starts to elute from the second and subsequent washes. 
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Figure 2-4: Sephadex® studies, percentage of liposomal ciprofloxacin vs. free ciprofloxacin HCl in each eluents from size 

exclusion chromatography technique, 100 µL of 11mM liposomes + 100 µL saline 0.9% w/v was used as the starting solution 

for the experiments illustrated in green dots, 200 µL of ciprofloxacin HCl (3000 µg/mL) was used as the starting solution for 

the drug determination experiments illustrated in red, the gel used in the columns was prepared by swelling 1 g Sephadex® 

G50 in 12 mL saline 0.9% w/v for 5 hours, the derived count rate was used to determine the percentage of the liposomes in 

each wash, ciprofloxacin HCl was quantified using UV spectroscopy at 275 nm (n=3 independent experiments, mean ± SD ) 
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Figure 2-5 is ciprofloxacin calibration curve from an in-house HPLC gradient method which 

was performed at 25 °C and flow rate of 1 mL/min with the following mobile phases based on 

the USP monograph for ciprofloxacin HCl:  

• Mobile phase A: 0.025 M phosphoric acid pH adjusted to 3.0 ± 0.1 with triethylamine.  

• Mobile phase B: acetonitrile.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-5: Calibration curve for quantification of ciprofloxacin HCl, using HPLC with the following mobile phases: A) 0.025 

M phosphoric acid pH adjusted to 3.0 ± 0.1 with triethylamine and B) acetonitrile. The flow rate was 1 mL/min, the column 

used was Vision HT C18 RP, The UV wavelength was 275 nm, and the column temperature was set to 25 º C (data shown as 

mean ± SD) 

Figure 2-6 depicts the percentage of different remote loading efficiencies achieved from 

performing the remote loadings with different durations (i.e. 5, 10, 20, and 30 min.). The remote 

loadings were performed at 65 °C (using a Heidolph® incubator1000) and the liposomes 

(11mM) were made of DSPC: DSPEmPEG-2000 (94:6).  
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Figure 2-6: % of loading efficiency in ciprofloxacin HCl remote loading technique, comparison between the 4 different remote 

loading times (i.e.5, 10, 20 and 30 min) performed at 65 ºC using Heidolph® incubator1000, the concentration of lipid solution 

was 11mM, liposomes were made of DSPC:DSPEmPEG-2000 at molar ratio of 94:6, the lipid film was hydrated by 135 mM 

ammonium sulphate solution, liposomes were prepared via extrusion and the PDI was ≤ 0.1  for all of the groups, the % of 

remote loading is determined via size exclusion chromatography assay, the liposomes were ruptured using Triton X-100, 0.5% 

v/v and the amount of liposomal ciprofloxacin was quantified by HPLC, the remote loading time with the highest % of lading 

efficiency is coloured in green, (n=3 independent experiments, data shown as mean ± SD) 

2.6. Supercharging of liposomes 

The ciprofloxacin-filled liposomes were subjected to supercharging with PFP (US contrast 

agent), this being performed under pressure using an earlier standardized and established 

protocol (129). Briefly, the liposomal solution (2 mL) was transferred to an air evacuated 9 mL 

crimp sealed vial. Next, PFP (20mL at 7 psi) was added using a 30 mL Eterna Matic Sanitex 

syringe equipped with a 25 G hypodermal needle to facilitate entrapment of the contrast agent. 

To confirm the echogenicity, 50 µL of supercharged formulation was added to 50 mL of 

isosmotic saline and imaging was performed using an Ellex eyecubed™ US unit (Ellex, 

Adelaide). As shown in Figure 2-7 below echogenic formulations create contrast which is 

observed as white noise. 
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Figure 2-7: Echogenicity of 45 mL saline 0.9% w/v before (A) and after addition of 50 µL LMBs (B), LMBs were made of 

DSPC:DSPEmPEG-2000 (94:6) at 11mM and PFP, the echograms were recorded using 50 mL Falcon tubes at room 

temperature, the white cloud in the figure A is noise  

2.7. Characterization of drug-filled LMBs 

2.7.1. Echogenicity studies 

It was observed that using the same supercharging protocol, lipoids prepared in iso-

osomolar mannitol or sucrose solutions showed no echogenicity whereas lipoids prepared in 

iso-osmolar sodium chloride or ammonium sulphate became highly echogenic. Figure 2-8 

shows that echogenicity was only achieved in solutions containing either saline or ammonium 

sulphate indicating that presence of such ions in the final formulation is critical to ensuring 

echogenicity.  

 

 

 

 

 

 

 

Figure 2-8: Echograms of the lipoids (11mM, DSPC:DSPEmPEG-2000 (94:6)) prepared in 4 different media subjected to the 

same supercharging protocol: A) Ammonium sulphate 135 mM B) Mannitol 10% w/v C) Sucrose 5% w/v  D) Sodium chloride 

0.9% w/v, for echogenicity studies 50 µL of the lipoid solutions was added to 45 mL of the same hydrating media (e.g. 50 µL 

of A in 45 mL ammonium sulphate 135 mM), LMBs prepared in mannitol and sucrose (B and C) showed no echogenicity 

whereas LMBs prepared in ammonium sulphate and sodium chloride (A and D) showed high echogenicity 
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2.7.2. Microscopic characterization 

Electronic microscopy techniques (e.g. TEM/SEM) require sample imaging under high 

vacuum, which is incompatible with gas filled bubbles leading them to burst under such 

negative pressures. Therefore, dark field and epifluorescence microscopy as well as optical 

microscopy were chosen to visualise and image LMBs (Figure 2-9 and Figure 2-10). 

For epifluorescence microscope imaging, LMBs were labelled using rhodamine B according 

to an established protocol (130). In brief, and to avoid self-quenching of rhodamine B, a low 

concentration of rhodamine B (i.e. ≤2% mol) in 0.9% w/v saline was prepared. Next, 25 µL of 

the prepared stock was added to 200 µL of the LMBs and then they were imaged using an 

epifluorescent microscope. The fluorescent labelled micron sized bubbles (arrows in Figure 

2-9) indicates the localisation of micron sized hydrophobic gas (PFP) along the lipoid bilayer. 
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Figure 2-9: Localisation of micron sized hydrophobic gas (PFP) along the lipoid bilayer, dark field microscopy (A) vs. 

epifluorescence images (B), LMBs (11mM) were made of DSPC:DSPEmPEG-2000 (94:6) and PFP in saline 0.9% w/v and 

were labelled using rhodamine B, the images were acquired using a 63× objective. (The scale bar represents 20 µm)  

 

 

 

 

 

 

 

 

A 

B 



42 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-10: Optical microscopy image of LMBs, LMBs (11mM in saline 0.9% w/w) made of DSPC:DSPEmPEG-2000 (94:6) 

and PFP, (The scale bar represents 10 µm) 

2.8. Stability studies 

2.8.1. Liposomal drug retention, size and polydispersity index 

The optimized CLMBs formulations were monitored every 7 days up to 28 days after their 

preparation for size, PDI and liposomal drug concentration (Figure 2-11) and the results were 

compared via a one-way ANOVA test (Dunnett's multiple comparisons test, n=6 for each time 

point, ns= not significant, p-value > 0.05 indicates non-significance).  
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Figure 2-11: 28 day stability study of CLMBs (11mM, DSPC:DSPEmPEG-2000 (94:6), and PFP), The CLMBs were 

transferred to 1 mL shell vials after the preparation and the vials were closed by inserting the caps, then the caps and the vials 

were further sealed by parafilm, the storage temperature was 2-8 ºC, A) amount of ciprofloxacin HCl in LMBs, the free drug 

was separated from liposomal drug using size exclusion chromatography method, LMBs were lysed using Triton X-100,  0.5% 

v/v and the amount of the liposomal ciprofloxacin HCl was determined by HPLC at 275 nm, (B and C) belong to the size and 

PDI of LMBs respectively,  B and D are from DLS measurements of the eluents from the size exclusion chromatography 

performed for quantification of the drug, the DLS were performed at 25 °C using cumulative analysis using the following 

settings: The material parameters: Refractive index (RI) 1.45, absorption 0.010, dispersant parameters: 25 º C, viscosity 

0.8910 cP and RI 1.333, measurement angle: 173 backscatter (NIBS default), data presented are mean ± SD, one-way ANOVA 

(Dunnett's multiple comparisons test, n=6 independent experiments for each time point, ns= not significant, p-value > 0.05 
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2.8.2. Echogenicity stability studies 

Echogenicity of the optimized CLMBs was also recorded every 7 days up to 28 days after their preparation. The results below confirm the 

echogenic stability of the LMBs over this time course.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-12: Echogenicity of 50 µL LMBs in 45 mL saline 0.9% w/v on the day of preparation (day 0) and 7, 14, 21 and 28 days after the preparation, the echogenicity stability study was 

performed for all of the 10 prepared LMB formulations mentioned in Table 2-1 , the echograms shown above belong to the sample A from batch 1, the echogenicity was recorded at room 

temperature, the lipid concentration of the crude LMBs was 11mM and they were made of DSPC:DSPEmPEG-2000 (94:6) and PFP, The LMB solutions were transferred to 1 mL shell vials after 

the preparation and the vials were closed by inserting the caps, then the caps and the vials were then further sealed by parafilm, the storage temperature was 2-8 ºC 
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Table 2-1: Echogenicity of 3 different batches (10 samples in total) of CLMBs measured every 7 days over 28 days after their 

preparation, echograms were recorded after addition of 50 µL to 45 mL saline 0.9% w/v CLMBs, the concentration of the 

crude LMBs was 11mM and the LMBs were made of DSPC: DSPEmPEG-2000 (94:6) and PFP, The CLMBs were stored in 

1 mL shell vials after the preparation and the vials were closed by inserting the caps, then the caps and the vials were further 

sealed by parafilm, the storage temperature was 2-8 ºC 

 

 

 

✓: Echogenic 

≈✓: Poorly echogenic 

×: Not echogenic 

Nil: Not measured 

 
 
  

Sample name 
Day 

0 7 14 21 28 

B
at

ch
 1

 A ✓ ✓ ✓ ✓ ✓ 

B ✓ Nil ✓ ✓ ✓ 

C ✓ Nil Nil ✓ ≈✓ 

B
at

ch
 2

 A ✓ ✓ ≈✓ Nil × 

B ✓ Nil Nil ✓ × 

C ✓ Nil Nil ✓ ✓ 

B
at

ch
 3

 

A ✓ ✓ ✓ ✓ ≈✓ 

B ✓ Nil ✓ ✓ ✓ 

C ✓ Nil ✓ ✓ ✓ 

D ✓ Nil ✓ ✓ ✓ 
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2.9. Optimization of ultrasound parameters  

US increases the temperature of the sonicated media/tissue and this hyperthermia depends 

on different parameters such as frequency, intensity and duration of US exposure. In order to 

avoid any possible interference caused by hyperthermia in the final results, the following US 

optimization experiments were performed to optimise US parameters with negligible effect on 

media’s temperature while causing the loss of echogenicity. Accordingly, solutions were 

sonicated in a 24 well plate and US was applied to each well individually from underneath 

(Figure 2-13). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-13: US exposure study design: US is applied from underneath of well in a 24 well plate, a coupling gel was used 

between the US probe and well plate  

It was observed that using JUS2 at its highest intensity (i.e. intensity of 2.5 W/cm2 and 100% 

duty cycle), any volumes more than 2.25 mL/well (in a 24 well plate) would lead to formation 

of condensate (as a result of agitation caused by US) on the ceiling of the lid inserted over the 

samples. This could consequently change the final volume of the samples causing variations 

between each treatment. Hence, 2.25 mL was chosen as the volume of solution/well for the 

experiments performed in the aforesaid plate. Moreover, in order to avoid cross exposure of 

the solutions in wells during US exposure and due to the diameter of the JUS2 probe (≅ 38 

mm), only 2 wells (defined in blue in Figure 2-14 A) from each plate were chosen for the 

experiments. In parallel studies, 10 seconds US exposure was found to be sufficient for the loss 

of bubbles (Echograms and microscope images confirm the loss of bubbles after US exposure 

Figure 2-15 and Figure 2-16).  
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Figure 2-14: (A) A 24 well plate and the chosen wells for the sonication purposes (i.e. B2 and B5), (B) the effect of 10 seconds 

US exposure on the temperature of 2.25 mL media (i.e. saline 0.9% w/v) using a) 1 MHz, 100% duty cycle and intensity of 2.5 

W/cm2, b) 1 MHz, 50% duty cycle and intensity of 3 W/cm2, c) 3 MHz, 100% duty cycle and intensity of 2.5 W/cm2, d) 3 MHz, 

50% duty cycle and intensity of 3 W/cm2 , US was applied from underneath of the solutions using JUS2, the experiments were 

performed in a temperature controlled room at 35ºC ± 2 ºC, the temperature was measured using a digital thermometer, in 

the first group (i.e. a) sonication raised the temperature from ≅ 32.9° C to  ≅ 34.8 ° C (n=3 independent experiments, mean 

± SD, two way ANOVA, Sidak multiple comparison test, ** = significant , p-value < 0.05) 
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Figure 2-15: Echogenicity of LMBs after application of US using the well plate setup, LMBs ( 11 mM) were made of DSPC: DSPEmPEG-2000 (94:6) and PFP, echograms were measured in 45 mL saline 0.9% w/v 

using 50 mL Falcon tubes at room temperature, US parameters were 1MHz 100% duty cycle and intensity of 2.5 W/cm2 (A) echogenicity of the solution before US and after (B) 5 seconds and (C) 10 seconds 

sonication,  B and C show the loss of echogenicity after sonication
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Figure 2-16: Microscope images confirming loss of LMBs after sonication, LMBs (11mM) were made of DSPC: DSPEmPEG-2000 (94:6) and PFP, US parameters were: 1 MHz, 10 seconds, 100% duty cycle and 

intensity of 2.5 W/cm2, the experiments were performed at room temperature using 24 well plate, three independent experiments (The scale bar represents 10 µm)
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2.10.  Discussion 

This chapter describes the formulation and characterisation of CLMBs with an emphasis on 

analysing their behaviour in the presence of US (i.e. loss of echogenicity). Crude uniform 

liposomes (i.e. PDI ≤ 0.1) were prepared using extrusion method. The first challenge in this 

study was finding a proper candidate to remote-load into liposomes. Since the purpose of this 

study was to enhance the efficacy of topical antibiotics in the treatment of chronic wounds, the 

antibiotic of interest should have had different specifications such as: A) Being able to be 

remotely loaded into the liposomes B) Being stable at the temperature required for the remote 

loading (i.e. 65 °C), C) Being effective on the common bacteria found in chronic wounds (i.e. 

P. aeruginosa), and D) Not irritating the skin at low doses when applied topically (131). 

Therefore amongst different antibiotics, ciprofloxacin HCl was chosen and the preparation 

method was optimised to achieve the highest possible loading efficiency. The efficiency of 

remote loadings in the current study matches those reported in previous studies (i.e. ≅ 

90%)(132, 133). 

The next challenge in the preparation of CLMBs was to supercharge the prepared 

ciprofloxacin filled liposomes using an already established supercharging method to achieve 

final stable CLMBs. For this purpose, the ciprofloxacin filled liposomes were subjected to the 

aforesaid supercharging protocol and the stability of the final CLMBs was confirmed via a 28-

day stability study indicating the successful combine of the two preparation methods. 

The last aim of this chapter was to find US parameters capable of cavitating the bubbles 

while having negligible effects on the temperature of the sonicated media. Hence, LMBs were 

sonicated using different US parameters and microscopic images of LMBs, echograms and 

temperature of the sonicated media were recorded before and after the sonication. It was 

observed that the temperature of the media sonicated using 1 MHz for 10 seconds at 100% duty 

cycle and intensity of 2.5 W/cm2 significantly increased (i.e. from ≅ 32.9 °C to ≅ 34.8 °C). 

However, from clinical perspective, localised induced hyperthermia is a strategy to increase 

the blood perfusion hence better healing rate in these wounds (134) therefore the observed rise 

in temperature (i.e. ≅ 1.9 °C) is not considered as clinically significant in this regard.  
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Chapter 3: In vitro evaluation of lipoid microbubbles 

 

3. Introduction - Localised drug delivery using lipoid microbubbles 

As discussed previously, persistent infection is postulated to be a key underlying cause of 

delay in healing of chronic wounds (69). The healing of these wounds are believed to be 

impeded by the bacteria when their number exceeds 105 organism/g of tissue (135). These 

wounds contain a range of bacteria including Enterococcus faecalis, Staphylococcus aureus, 

P. aeruginosa, Proteus spp, coagulase-negative staphylococci, and anaerobic bacteria (135). 

Presence of bacteria at such numbers requires high doses of topical antibiotics. Accordingly, 

the use of high dose topical antibiotics in treatment of these wounds has been controversial 

considering the possibility of triggering delayed hypersensitivity reactions, which would 

consequently exacerbate the patient’s condition, and/or developing resistance in bacteria as a 

result of exposure of the bacteria present in the deep layers of the wound to sub-lethal dose of 

antibiotics (135, 136). 

The objective of the work presented in this chapter was to test if the US assisted cavitation 

of LMBs can accelerate the healing procedure of these wounds by increasing the efficacy of 

low dose topical antibiotic against the present infection via: 

• Increasing the depth of penetration of the drug in these wounds, therefore exposing the 

live bacteria present in deep layers of the wounds to higher doses of antibiotics and/or: 

• Enhancing the cellular penetration of the drug into the bacteria.  

Hence, different experiments were performed to determine the effect(s) of US assisted 

cavitation of LMBs on: 

• The penetration pattern of water-soluble molecules into tissue barrier models: Using 

two different barrier models, the penetration patterns of rhodamine B across/into these 

barriers were studied. 

• The efficacy of antibiotics: Using optical density and quantitative culture method the 

antibacterial efficacy of ciprofloxacin HCl on P. aeruginosa was studied. 

• The penetration of solutes across the cell wall of the bacteria: Using Trypan blue, the 

amount of dye uptake by P. aeruginosa was studied.  

3.1.  Materials and methods 

The LMBs were prepared using the same materials mentioned earlier in chapter two. 

Agarose was borrowed from Steadman’s lab. Rhodamine B was purchased from Sigma 

Aldrich. 3.5 kDa SnakeSkin™ dialysis membrane was purchased from ThermoFisher 

SCIENTIFIC. P. aeruginosa ATCC® 27853™ was borrowed from CTAB lab. Cationic adjusted 
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Mueller Hinton (MH) agar and cationic adjusted broth was purchased from BD Life Sciences. 

A benchtop surgical microscope (i.e. Olympus SZ-3060) equipped with TUCSEN ISH500 

microscope camera was used for the dye migration studies. A JUS2 and a XUB-5 ultrasonic 

bath (with 22.2 W/L and 32 – 38 kHz operating frequency) were used for sonication purposes. 

Trypan blue solution 0.4% Sigma® was borrowed from Cabot’s lab. For the Franz cell diffusion 

studies, a LOGAN DHC-6T Dry Heat Transdermal System was used. Triethylamine (TEA) 

UNILAB was purchased from Ajax Finechem. Carbopol® 941 was used for gel preparation. 

FLUOstar Omega Filter-based multi-mode microplate reader was used for detection of 

rhodamine B. SPECTROstar Nano absorbance plate reader with cuvette port was used for 

determination of Trypan blue.  

3.2. Data analysis 

All the data were analysed using GraphPad Prism® 7 and for t-tests, a p-value < 0.05 was 

considered to be significant. 

3.3. In vitro study of lipoid microbubbles cavitation 

Shockwaves from cavitation of LMBs might have the potential to benefit drug delivery via 

enhancing the depth of penetration of drug in localized tissues. Therefore, experiments on 

different barrier models were designed and performed using LMBs and US to enhance dye 

migration. 

3.3.1. Agarose barrier model  

Agarose is reported as a model mimicking open wounds (137). It was observed that among 

different available water-soluble dyes, rhodamine B acted as the best visual reference for 

penetration across/into agarose barrier films. The amounts of dye penetration in the agarose 

disks were imaged using a benchtop surgical microscope (Olympus SZ-3060) equipped with 

TUCSEN ISH500 microscope camera and a graticule eyepiece. The configuration was 

calibrated each time before the image recording using a stage micrometre where 1mm was 

represented by 100 gradated ruled lines 0.01mm apart.  

Highly echogenic LMBs were transferred into a gel (Carbopol® 0.5% w/w containing 

rhodamine B (50 µg/mL), pH adjusted to 6.5 with TEA) and US was applied transiently (≅ 10 

seconds) to the dye-infused gel and depth of dye penetration into the agar was measured (Figure 

3-1 and Figure 3-2). 
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Figure 3-1: Depth of penetration of rhodamine B in agarose 1.5% w/w using Carbopol ® 0.5% w/w containing rhodamine B (50 µg/mL) and the pH was adjusted to 6.5 with TEA, A) no LMBs B) with LMBs (DSPC:DSPEmPEG-2000 94:6 and 

PFP, the US was applied using JUS2 probe with the following parameters: 1 MHz, 10 seconds, 100% duty cycle and intensity of 2.5 W/cm2,  three independent experiments (The scale bar represents 100 µm) 

A 

B 
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Figure 3-2: Depth of penetration of rhodamine B in agarose 1.5% w/w using Carbopol® gel 0.5% w/w containing rhodamine B (50 µg/mL) and the pH was adjusted to 6.5 with TEA, A) no LMBs B) with LMBs (DSPC:DSPEmPEG-2000, 94:6 and 

PFP, the US was applied using JUS2 probe with the following parameters: 3 MHz, 10 seconds, 100% duty cycle and intensity of 2.5 W/cm2, three independent experiments (The scale bar represents 100 µm) 

A 

B 
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Figure 3-3: Depth of penetration of rhodamine B in agarose disks (1.5% w/w) with and without LMBs, LMBs were made of 

DSPC:DSPEmPEG-2000 (94:6) in saline 0.9% w/v and PFP, the LMBs were infused in Carbopol® gel 0.5% w/w containing 

rhodamine B (50 µg/mL) and the pH was adjusted to 6.5 with TEA, the depth of penetration was measured using the calibrated 

graticule eyepiece, US parameters were: 1 and 3 MHz, 10 seconds, 100% duty cycle and intensity of 2.5 W/cm2, n=3 

independent experiments, the data shown is mean ± SD, t-test, ns= non-significant,  P>0.05  
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Figure 3-4: Depth of penetration of rhodamine B in agarose disks (1% w/w) with and without LMBs, LMBs were made of 

DSPC:DSPEmPEG-2000 (94:6) in saline 0.9% w/v and PFP , LMBs were infused in Carbopol® gel 0.5% w/w containing 

rhodamine B (50 µg/mL) and the pH was adjusted to 6.5 with TEA, the depth of penetration was measured using the calibrated 

graticule eyepiece,  US parameters were: 1 and 3 MHz, 10 seconds, 100% duty cycle and intensity of 2.5 W/cm2, the data 

shown is mean ± SD, n=6 independent experiments, t-test, ns= non-significant,  P>0.05   

The results above did not show any statistically significant enhancement in the penetration 

of the dye into the agarose models using JUS2. However, gradual auto-diffusion of rhodamine 

B into the agarose disks resulting in a fading dye border pattern was a major issue preventing 

accurate measurements of the dye’s depth of penetration into the disks. Hence, a different 
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barrier model, Franz cell apparatus, was chosen to determine the effect of cavitation on 

rhodamine B penetration pattern across a semipermeable membrane. 

3.3.2. Effect of cavitation on semi permeable membranes  

The pulsatile nature of LMB assisted topical drug delivery system requires a barrier model 

with negligible auto-diffusion of the dye. Therefore, Franz cell apparatus was chosen to 

determine the effect of cavitation on diffusion of the dye across a semi permeable SnakeSkin™ 

membrane (Figure 3-5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5: Franz cell diffusion apparatus setup for studying the penetration pattern of rhodamine B (50 µg/mL) across a 3.5 

kDa SnakeSkin™ dialysis tubing in presence of US assisted cavitation of LMBs, LMBs were made of DSPC: DSPEmPEG-

2000 (94:6) and PFP, the experiment was performed at 35°C ± 2°C, samples were taken from the receptor chamber via the 

sampling tubing   

In brief, SnakeSkin™ dialysis tubing with a 3.5 kDa molecular weight cut off was trimmed 

into circular disks to cover the donor-receptor interface. The donor chamber was clamped to 

the cell body and the samples were periodically taken from the receptor chamber using a 1 mL 

syringe. In order to determine the auto diffusion pattern of the dye, 50 µg/mL rhodamine B was 

placed in the donor chamber and the amount of the dye diffusing into the receptor chamber was 

measured via sampling of the receptor chamber at 0, 2, 4, 6 and 30 minutes. Next, 100 µL of 

the collected samples were transferred into a 96 well plate and the fluorescent emissions were 

recorded using Fluostar omega plate reader (at 544nm for excitation and 620 nm for emission). 

For cavitation studies, 0.5% w/w Carbopol® gel was infused with 100mL of LMBs and the 

amount of fluorescence emission in the receptor chamber was recorded after applying 1 and 3 
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for 10 seconds, 100% duty cycle and intensity of 2.5 W/cm2. The results are shown below in 

Figure 3-6.  
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Figure 3-6: Franz cell diffusion apparatus study results performed at 35°C ± 2°C, (A) Auto-diffusion pattern of rhodamine B 

(50 µg/mL) across a 3.5 kDa SnakeSkin™ dialysis tubing within 30 minutes (B) The fluorescence emissions of the samples 

taken from the receptor chamber of the Franz cell diffusion apparatus after application of LMBs and US for 10 seconds, 100% 

duty cycle and intensity of 2.5 W/cm2, LMBs were made of DSPC:DSPEmPEG-2000 (94:6) and PFP (n ≥ 3 independent 

experiments, mean ± SD,  t-test, ns= non-significant, P>0.05)  

The diffusion pattern of rhodamine B (50 µg/mL) in the Franz cell diffusion apparatus study 

is shown in Figure 3-6 (A). In this experiment, rhodamine B had negligible unassisted diffusion 

within the first starting minutes of the experiment. Figure 3-6 (B) is the amount of fluorescence 

emission in the receptor chamber after the US treatment. In this experiment, using LMBs, no 

significant enhancement in penetration of the dye across the 3.5 kDa dialysis membrane within 

the range of JUS2 was observed.  

A 

B 
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3.4. Bacterial time kill studies 

As mentioned earlier, persistent infection plays a key role in delaying the healing of chronic 

wounds. Hence, one of the proposed mechanisms to improve the healing procedure in chronic 

wounds is to tackle this underlying cause. The earlier barrier models in the current study, did 

not show any change in penetration rate of rhodamine B using LMBs and US. Therefore, 

bacterial time kill studies were performed to: 

• Determine the efficacy and/or modelling the pharmacodynamics of the LMBs and 

ciprofloxacin using a sigmoidal dose response curve and identify any potential 

synergism(s) between the LMBs and the drug. 

In order to determine that the nonsterile preparation of LMBs would not result in growth of 

contaminating organisms affecting the bacterial time kill studies, individual samples (i.e. 200 

µL each, from 3 different batches of LMBs solution with no ciprofloxacin), were separately 

plated on cationic adjusted MH agar plates and were cultured at 37 º C for 48 hours. After this 

time, the plates were visually inspected for presence of microorganisms. No colonies were 

detected visually paving the way for bacterial kill studies.  

P. aeruginosa is a gram-negative bacterium susceptible to ciprofloxacin HCl (MIC = 0.5 

µg/mL) and is commonly found in chronic wounds (138) therefore, was chosen for the bacterial 

time kill studies using ciprofloxacin and LMBs.  

3.4.1. Optical density 

Samples (250 µL) containing bacteria (1×108 CFU/mL) were added into 50 mL MH cationic 

adjusted broth and cultured for 12 hours. Then, 2 mL of the cultured bacteria was aliquoted 

into the wells and 250 µL of 11mM LMBs containing ciprofloxacin at a final concentration of 

0.5×MIC (i.e. 0.25 µg/mL) was added to each well. US was applied using the parameters below 

and the Optical density (OD) was measured every 2 hours at 620 nm for 8 hours. The cells 

were cultured 37 ºC in a Heidolph® 1000 incubator shaker during the experiment.  

a. 1 MHz for 10 seconds at 100% duty cycle and intensity of 2.5 W/cm2 

b. 1 MHz for 10 seconds at 50% duty cycle and intensity of 3 W/cm2 

c. 3 MHz for 10 seconds at 100% duty cycle and intensity of 2.5 W/cm2 

d. 3 MHz for 10 seconds at 50% duty cycle and intensity of 3 W/cm2 

 

Figure 3-7 depicts the OD study results of the bactericidal efficacy of ciprofloxacin on P. 

aeruginosa within the 8 hours after the treatment with US and LMBs.  
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Figure 3-7: Optical density results, time kill study using P. aeruginosa ATCC® 27853™, effect of LMBs+10 sec US on bactericidal activity of ciprofloxacin HCl (0.25 µg/mL), the readings are from before (time=0), 

and 5 min, 2, 4, 6 and 8 hours after the US treatment, the control group does not contain drug nor LMBs confirming the exponential growth of the bacteria, the interferences caused by LMBs are subtracted from 

each of the readings in the arms containing LMBs, the US parameters were: A) 1 MHz, 100% duty cycle and intensity of 2.5 W/cm2, B) 1 MHz, 50% duty cycle and intensity of 3 W/cm2, C) 3 MHz, 100% duty cycle 

and intensity of 2.5 W/cm2, D) 1 MHz, , 50% duty cycle and intensity of 3 W/cm2, the cells were cultured at 37 ºC in MH cationic adjusted broth (the data shown are mean ± SD) 

A B 

C D 
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3.4.2. Colony counting via quantitative culturing 

The quantitative culturing (139) protocol used in the current study is detailed in Figure 3-8. 

In this study, samples containing free ciprofloxacin HCl were washed via centrifugation (9888 

g for 5 minute) to eliminate bactericidal effect of free ciprofloxacin during the plate culturing.  

In order to optimize US parameters for 10 mL solutions used for quantitative culturing assay, 

a second series of preliminary studies were performed to determine the optimal US parameters 

which would result in a comprehensive loss of echogenicity in 10 mL samples. Briefly, 10 mL 

of echogenic medium (i.e. 1 mL LMBs (11mM) + 9 mL saline 0.9% w/v) was transferred to 

15 mL Falcon tube and the tube was sealed using nitrile sheath. Next, the tube was inverted 

and US was applied from below (Figure 3-9). Echograms were recorded before and after US 

exposure. Surprisingly in this setting, in none of US frequencies (i.e. 1 and 3 MHz) using JUS2 

probe, loss of echogenicity was observed. Therefore, a different US generating device (i.e. 

XUB-5 US bath) was trialled and the loss of echogenicity was confirmed using this device 

(Figure 3-10). The quantitative culturing results showing the bactericidal efficacy of 

ciprofloxacin HCl with and without LMBs on P. aeruginosa using the optimised US are shown 

in Figure 3-11.   
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Figure 3-8: Colony counting procedure 

P. aeruginosa was obtained from the stock The cells were plated on agar for 12-24 hours
The cells were suspended in sterile water and compared to 

McFarland standard to reach a final concentration of ≅
1.5×10 8

200 µL was added to each 40 mL of sterile CAMHB and 
cultured for ≅ 16 hours to reach a final bacterial inoculum 
of 1x108 CFU/mL. Next, they were mixed in a sterile Schott 

bottle. 10 mL of sample was aliquoted into each 50 mL 
Falcon tubes and 1.25mL was removed from each tube.

1mL LMBs was added to the treament arm and 1mL sterile 
0.9% NaCl was added to the control arm. Then, 250 µL of 

ciprofloxacin HCl 10 µg/mL was added to the treatment arm 
while 250 µL sterile 0.9% NaCl was added to the control 

arm.

Time 0: Quantitative culture was performed prior to the US 
treatment

Quantitative culture was performed after US treatment at 
different time points

For quantitative culturing:

1. 100 µL of the treated media was added to 900 µL PBS. 

2. centrifugation 9888 g for 5 minutes. 

3. The supernatent was removed and 900 µL PBS was 
added.

4. 8-fold serial dilution was performed in PBS

5. 100 µL of each dilution was added to CAMH Agar.

6. the plates were incubated overnight and the colonies 
were counted after 24 hours.
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Figure 3-9: Experiment design, the Falcon tube was sealed with nitrile sheath and US was applied through the sheath 

US probe 

1 mL LMB + 9 mL saline 

0.9% w/v in 15 mL falcon 

tube  

Air 

Direction of US 

Nitrile sheath 
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Figure 3-10: Effect of US on echogenicity of 1 mL LMBs (11 mM, made of DSPC:DSPEmPEG-2000 (94:6) and PFP) added to 9 mL saline 0.9% w/v using the setup detailed in the Figure 3-9, the echograms (A-E) 

are from: before US (A) and after 45 seconds sonication with B) 1 MHz, 50% duty cycle and intensity of 3 W/cm2, C) 1 MHz, 100% duty cycle and intensity of 2.5 W/cm2, D) 3 MHz, 50% duty cycle and intensity of 

3 W/cm2, E) 3 MHz, 100% duty cycle and intensity of 2.5 W/cm2, only 30 seconds bath sonication with power = 100 W/L and the frequency = 32 – 38 kHz resulted in the loss of echogenicity (F) 

A B C 

D F E 
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Figure 3-11: Observed viable counts of two independent experiments, P. aeruginosa ATCC® 27853™ treated with 

ciprofloxacin HCl (0.5 MIC) and LMBs using 30 seconds bath sonication, power100 W/L and frequency 32 – 38 kHz. LMBs 

were made of DSPC:DSPEmPEG-2000 (94:6) and PFP, the cells were cultured in MH cationic adjusted broth and plated on 

MH cationic adjusted agar, viability was counted at the indicated time points by 8 serial dilution and plating each arm at each 

time points (504 agar plates in total), the arms containing ciprofloxacin HCl were washed via centrifugation (9888 g for 5 

min) before plating, the Y-axis starts from 1 (the limit of detection), Cipro= ciprofloxacin HCl, A) the time points were 0 min 

(i.e. before treatment with US), 5 min after US treatments (for the sonicated arms), 2,4,6,8 and 24 hours after US treatment 

B) the time points 0 min (before treatment with US), 2 and 4 hours after the sonication 

 

3.4.3. Effect of cavitation of LMBs on intracellular uptake of solutes 

In order to confirm the results of the bacterial time kill study and determine whether 

cavitation can enhance/facilitate the penetration of solutes across the cell wall of P. aeruginosa, 

a further Trypan blue exclusion assay study was performed.  

Trypan blue is known to be impermeable to live cells (140), hence, was chosen so that would 

only penetrate the bacteria via external assistance, which in this study refers to US-mediated 

cavitation.  
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For this purpose, P. aeruginosa was cultured in 40 mL MH cationic adjusted broth at 37º C 

for 24 hours using a shaker incubator at 230 rpm. Next, the inoculum was centrifuged at 5000 

g for 20 min and the supernatant was removed. Fresh Muller Hinton cationic adjusted broth 

was added and the volume was adjusted to the final volume of 20 mL. In this experiment the 

arms were: 

1. 200 µL LMBs (prepared by vortexing) + 750 µL bacteria + 50 µL Trypan blue 

2. 200 µL LMBs (in-house, provisionally patented method) + 750 µL bacteria + 50 

µL Trypan blue 

3. 200 µL liposome + 750 µL bacteria + 50 µL Trypan blue (control) 

Each sample was transferred to a 15 mL falcon tubes and was exposed to bath sonication 

(power100 W/L frequency 32 – 38 kHz at 37 º C) followed by centrifugation for 10 min at 

4500 g. next: 

1. 900 µL of the supernatant was carefully collected (labelled as A in Figure 3-12)  

2. 900 µL of fresh broth was added and the tubes were vortex shaken to resuspend the 

pellets. Next, the samples were centrifuged again (4500 g, 10 min) and 900 µL of the 

supernatant was collected (labelled as B in Figure 3-12). 

The final colourless pellets were resuspended in 900 µL fresh broth and were subjected to 

probe sonication (amplitude 60 for 60 seconds (1 sec on 1 sec off)) to lyse the bacteria and the 

absorbance was recorded at 585 nm (labelled as C in Figure 3-12). Before the readings at 585 

nm: 1st, 2nd wash and lysed cells were centrifuged at 9888 g for 5 minutes to remove any 

remaining cells and/or debris interfering with UV visible reads. 
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Figure 3-12: Trypan blue exclusion assay, absorbance at 585 nm, the cells were treated by 200 µL LMBs (11 mM, made of 

DSPC:DSPEmPEG-2000 (94:6) and PFP)and bath sonication, power100 W/L frequency 32 – 38 kHz, after the sonication the 

cells were centrifuged at 4500 g for 10 min A) Trypan blue in the supernatant after the first centrifugation B) Trypan blue in 

the supernatant after the 2nd centrifugation C) Intracellular Trypan blue after the lysis of the washed cells by probe sonication 

and centrifugation at 9888 g for 5 minutes, the average means of absorbance for C is 0.005, 0.005 and 0.012 for the blue, light 

green and dark green arms respectively (the data shown are mean ± SD)   
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3.5. Discussion 

It has been reported that US as well as US assisted cavitation of LMBs have synergistic 

effects in increasing the susceptibility of in vitro derived Staphylococcus epidermis biofilms to 

vancomycin and therefore has been suggested as an efficient non-invasive adjunct treatment of 

such biofilm related infections (141). In another study, the efficacy of vancomycin against in-

vitro biofilms of methicillin-resistant Staphylococcus aureus has been enhanced using acoustic 

cavitation of bubbles (142). Moreover, cavitation of nanobubbles and doxycycline have been 

shown to have synergistic bactericidal effects on intracellular Chlamydia trachomatis (143). 

This effect is reported to be due to higher cellular uptake of the drug, caused by cavitation of 

the bubbles, leading to higher concentrations of intracellular doxycycline. Therefore, bacteria 

present inside host mammalian cells are exposed to a higher dose of doxycycline, correlating 

with previous reports of enhanced cellular uptake of different drugs using US-induce cavitation 

(144-147). 

The experiments in this chapter were trialled to determine the efficacy of ciprofloxacin 

against P. aeruginosa. The OD results could not show any synergism between the drug and 

cavitation due to the overlap of the dose response curves. The overlap could be a result of: 

• The interference of the LMBs (made of phospholipids) with absorbance reads at 620 nm. 

Although the observed interferences (≅ 0.054) have been subtracted from all the 

absorbance reads in the arms containing LMBs, but such issue limits the accuracy of the 

assay 

• The gradual evaporation of the media through condensate formation during the 8-hour 

incubation at 37 ºC. Since the total volume of sample per each vial was 2.25 mL at the start 

of the study evaporation of the media would increase concentration of the drug hence 

resulting in increased bactericidal efficacy bias over the duration of the assay.  

In light of the drawbacks presented by these former experiments, a quantitative culture 

study, which is a direct and accurate technique in assessing bacterial kill was performed next, 

to investigate possible synergism between cavitation of LMBs and activity of ciprofloxacin 

HCl against P. aeruginosa. However, once again this colony counting study did not show any 

synergism between cavitation of the LMBs and the bactericidal effects of ciprofloxacin HCL 

on P. aeruginosa ATCC® 27853™ within the technique’s limit of detection i.e. 1 log10 

CFU/mL (148). 

In a final attempt to assess whether there was any measurable detrimental effect to the 

bacteria a Trypan blue exclusion assay was performed to explore the effect of cavitation on 
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facilitating the penetration of molecules across the bacterial cell wall and also to corroborate 

the outcome from the colony counting method. Trypan blue is a cell impermeable dye (149) 

and therefore deemed to be a suitable candidate to determine any enhancement in cellular 

uptake of the dye by US mediated cavitation of LMBs. Here, P. aeruginosa was exposed to the 

dye and then treated by LMBs and US (using XUB-5 bath sonicator). Next, the intracellular 

dye was determined using the protocol described earlier in this chapter. However, the 

absorbance readings for intracellular dye shown in Figure 3-12 (above) were negligible, 

indicating the limitation of this assay in identifying the cellular uptake of the dye therefore an 

inconclusive result was recorded.  
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4. Chapter 4: Overall conclusions and future directions and outlook 

 

4.1. Overall conclusions 

It is estimated that each year around 433,000 Australians are afflicted by chronic wounds, 

costing around A$2.8 billion to the Australian healthcare system. The Australian Bureau of 

Statistics have predicted that the number of patients with chronic wounds will triple from 

around 2.8 million in 2007 to around 7.5 million in 2050, driven by an aging population. Thus, 

there is an unmet clinical need for more efficacious interventional approaches to treating 

chronic wounds, given it is inadequately managed by currently available therapies. Chronic 

wounds share a range of features such as having high levels of proinflammatory cytokines, 

reactive oxygen species (ROS), which results in premature aging of cells i.e. senescence (150, 

151). In addition, excessive levels of protease, persistence of infection,  lack of stem cells (69) 

and presence of biofilms (152) are other common features observed in these wounds. As 

described earlier, the most efficient approach to managing chronic wounds is debridement, 

which can be performed via surgery, the bio-debridement by maggots (153), or using dressings 

for a gradual auto-debridement of slough and crusts. The latter is preferred particularly in 

patients with ischaemia who cannot tolerate surgical debridement (69). In addition, reports 

suggest that using LMBs and US can increase the susceptibility of in vitro Staphylococcus 

epidermis biofilms to vancomycin (141, 142) and therefore this platform has been suggested 

as an effective non-invasive adjunct treatment of such biofilm related infections. However, the 

aforesaid studies were performed in vitro without the other physical barriers that typically exist 

in chronic wounds, such as coating and slough of the wound, which could further hinder access 

of LMBs to biofilms.  

The potential enhancement in delivery/efficacy of drugs using this platform could decrease 

the number of cycles of debridement via tackling the biofilms embracing bacteria, which are 

present in majority of chronic wounds (154), therefore leading to a faster rate of healing, lower 

treatment cost and improved patient comfort.  

In the design and development of nanomedicine, one of the major challenges is the 

reproducibility of formulation preparation methods. To this end, and for the first time a 

reproducible method for preparing CLMBs with high loading efficiency (i.e. ≥ 90%), high 

echogenicity with acceptable stability and desired uniformity (i.e. PDI ≤ 0.1) was successfully 

developed and optimized. 
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The first challenge in this research was to develop a preparation method for liposomal 

ciprofloxacin with high loading efficiency. Therefore, a systematic review of the literature was 

performed to find a biocompatible agent capable of entrapping ciprofloxacin inside liposomes, 

the main component of LMBs, using a well-established remote loading protocol. Next, this 

preparation method was optimised to achieve the highest loading efficiency via remote loading 

performed using a range of loading times. Then, with this aspect addressed the next challenge 

was to combine the aforesaid optimised preparation method with an already-developed 

supercharging method to achieve the final echogenic CLMBs with an acceptable stability 

profile. All the characterisation studies along with the results from the stability studies 

confirmed the successful combination of the two preparation methods (as depicted in Figure 

2-11) paving way for the next phase where in vitro characterisation studies were developed and 

optimized. 

Based on a previously published observational study on bubbles and their collapse 

characteristics (155), loss of bubbles was deemed to occur as a consequence of bubble 

cavitation. Accordingly, the first task here involved a study of US parameters able to cause 

bubble loss via cavitation while having negligible hyperthermic effects. Thus, a series of 

optimisation studies were performed to determine such US parameters and these were then 

applied in . different US-induced cavitation experiments along with the prepared LMBs in line 

with the hypotheses to ascertain whether it was possible to:  

1. Increase the penetration of a model agent (dye) into barrier models of infectious disease; 

2. Enhance the ingress of antibiotic in a gram negative bacteria, leading to reduced 

bacterial burden.    

However, using a low intensity ultrasound unit, and over the course of the systematic studies 

presented in this thesis i.e. a range of barrier models such as agarose-based barrier model, Franz 

cell diffusion model as well as in vitro studies such as optical density, quantitative bacterial kill 

assay and Trypan blue assay, it became apparent that the cavitation of LMBs, although 

achieved as observed under optical microscopy and by echograms, did not show any 

statistically significant enhancement on depth of penetration of any agent nor did it appear to 

impact the burden of P. aeruginosa.   

This could be due to a multitude of factors which are elaborated on below: 

1. The off-the-shelf US apparatus used (i.e. JUS2 and XUB-5 bath sonicator): As discussed 

earlier in chapter one, mechanical index (MI) is a key parameter in US-induced 

cavitation of LMBs driven by wave amplitude, this being defined as the difference in 

pressure between peak and baseline in a sound wave. The piezoelectric crystal used in 
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any US probe dictates its amplitude and consequently MI. Most of the published work 

in this area have used a device with a MI ranging from 0.4 to 1.6. However, the MI for 

the devices used in this research remained unknown. 

2.  The greater relative thickness in bacterial cell walls c.f. eukaryotes: Unlike eukaryotes, 

prokaryotes have a meshlike peptidoglycan envelope which is known to act as a barrier 

protecting them from their harsh environment (156). Therefore, this layer might serve 

to prevent ingress of antibiotic assisted by cavitation of the bubbles and therefore make 

the phenomenon inconsequential to the bacterial cells.  

3. The limitation of the assays such as: 

a.  The gradual auto-diffusion of rhodamine B into the agarose disks resulting in a 

fading dye border pattern preventing accurate measurements of the dye’s depth 

of penetration into the disks. 

b.  The interference of the LMBs with absorbance at 620 nm in OD studies and/or 

gradual evaporation of the media during the incubation period resulting in a 

relative increase in concentration of the drug. 

Therefore, the following alternative experiments were performed to gauge whether the 

negative results from the abovementioned experiments could be overcome by: 

1. Franz cell diffusion apparatus studies with desired rhodamine B diffusion pattern across 

the barrier model. 

2. Quantitative culture method to avoid the UV interference issues observed during OD 

studies. 

3. Trypan blue studies as a second alternative to the OD method. 

The alternative experiments here did not show the anticipated effects contradicting the 

numerous published studies in enhanced drug delivery to eukaryotes using this platform (please 

refer to section 1.5). Therefore, the following factors can potentially play role in this regard:  

1. Limitations of these assays such as:  

a. The thickness of dialysis membranes (20 – 45 µm) (157) used in Franz cell 

diffusion apparatus could act as a physical barrier and absorb the shockwaves 

generated by cavitation of bubbles in microscale. 

b. The limit of detection in quantitative culture method (i.e. 1 log10 

CFU/mL)(please refer to section 3.5 Discussion) therefore this assay was not 

able to show any enhancement in efficacy of antibiotic using US assisted 

cavitation of LMBs within this range. 
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c. The small intracellular space within the bacteria result in inadequate 

accumulation of Trypan blue inside the cell therefore UV vis plate reader cannot 

detect the dye. 

2. The structural difference between the two class of cells which is detailed later in this 

chapter (please see Figure 4-1 below). 

 

Figure 4-1: Prokaryote cell (A) vs eukaryote cell (B) P. aeruginosa has an outer membrane (defined in red) made of 

lipopolysaccharides and porins (158) + thick cell wall (defined in blue) consisting of plasma membrane + periplasmic space 

+ peptidoglycan (159) (Fig. A), whereas eukaryote cells have a ‘single’ membrane with lipid molecules in a bilayered 

configuration (Fig. B), (160). The organelles inside the cells are simplified for a better demonstration, intracellular organelles 

images are taken with permission from Servier Medical Art (http://smart.servier.com/)    

4.2. Future directions and outlook 

US-mediated cavitation of echogenic microbubbles has been reported to create transient 

pores in the membrane of eukaryotes resulting in increase of cellular uptake of encapsulated 

therapeutics (147).  Therefore from a different perspective, LMBs might benefit patients via an 

indirect synergism with antibiotics which could consequently reduce the treatment courses in 

these patients. For example in the tuberculoid form of leprosy, Mycobacterium leprae usually 

starts to multiply in skin through invading and colonizing inside Schwann cells (161). This 
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consequently leads to appearance of large skin patches via induction of immunological 

responses (162). In this case, LMBs could increase the delivery of the chemotherapeutics into 

Schwann cells thus eradicating M. leprae, the underlying cause of leprosy. Moreover, LMBs 

might be able to augment the bactericidal efficacy of antibiotics in patients with lepromatous, 

another form of leprosy, via the same strategy. In this case, LMBs can expose the M. leprae, 

proliferating inside macrophages (163), to higher levels/dose of intracellular antibiotics, 

therefore improving the efficacy of antibiotics used in this form of leprosy resulting in shorter 

period of treatments. 

From a bacteriology point of view, the relatively thick cell wall in prokaryotes might play a 

key role in impeding the effects sought from using LMBs and ultrasound in this class of cells 

(i.e. enhancing ingress of therapeutic agents). These cells are generally classified into two 

subgroups based on existing architectural differences in their cell walls (164) (Figure 4-2 

(156)):  

1. Gram-negative bacteria with three principal layers including an outer membrane, a 

peptidoglycan cell wall, and cytoplasmic membrane. The thickness of peptidoglycan in 

this class of bacteria is reported to be 7.5 to 10 nm (165).  

2. Gram-positive bacteria with a thick (30–100 nm) multilayered peptidoglycan meshwork 

membrane. 

Hence, optimising a pre-treatment protocol using antibiotic(s) that diminish/weaken the cell 

wall (e.g. β-Lactams and/or glycopeptide antibiotics (166)) prior to application of LMBs has 

the potential to enhance the cellular uptake of antibiotics using LMBs overcoming the 

resistance caused by the lack of penetration of these agents such as the acquired resistance to 

β-Lactams in P. aeruginosa (167) . In addition, the aforesaid combination strategy has the 

potential to increase the efficacy of antibiotics, which could consequently obviate the need for 

higher doses.   
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Figure 4-2: Gram-positive with thick peptidoglycan layer (left) vs. Gram-negative with three layers: outer membrane, 

peptidoglycan cell wall, and cytoplasmic membrane (right) Reprinted from (156), Copyright (2016), with permission from 

Elsevier 

From a practical perspective, access to a ‘tunable’ US device allowing wider modulation of 

parameters such as frequency, intensity, duty cycle, and mechanical index is imperative to 

further optimising the cavitation of LMBs. Moreover, despite the challenges in the 

measurement of cavitation, the phenomenon has been scrutinized in different studies. For 

example in one study, using an in house needle-type hydrophone, US-mediated cavitation of 

bubbles was reported to decrease sound pressures (168) suggesting the method’s potential in 

correlating/quantifying the resulting energy with the decrease in sound pressure. It has also 

been shown that MBs create acoustic emissions during cavitation and these broadband acoustic 

emissions can be recorded by hydrophones connected to an amplifier and oscilloscope, (Figure 

4-3; (169)) therefore such a set-up can be proposed as a measurement device to quantify the 

cavitation of LMBs.  

 

 

 

 

 

 

 

 



74 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3: Detection and quantification of MBs cavitation in medium using hydrophone, reprinted with permission from 

(169) Elsevier, copyright 2017
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Another important approach that could facilitate our understanding of cavitation is a 

chemiluminescence assay. Here, conversion of US from sound-to-light energy can be used to 

quantify the energy released from cavitation of microbubbles. During cavitation, a high amount 

of energy is released and the temperature of the cavitating bubbles is reported to reach up to 

5000 K (4727 °C). This energy is believed to create hydroxyl radicals in the media, which 

reacts with luminol resulting in emission of light (170). Data obtained from generated 

chemiluminescence can be used to validate the data obtained from the abovementioned assays. 

The assays can be further scrutinized by characterising the physicochemical properties of 

the media in which LMBs reside, and correlating them to the energy released from cavitation, 

which is quantified by the hydrophone setup and chemiluminescence assay mentioned earlier. 

This approach includes an appreciation of viscosity, density and surface tension, which is 

claimed to play important role in the collapse of bubbles (171, 172). This can be expected to 

vastly improve the understanding of the complex interrelationships at play and so serve to 

advance the field of MB-US assisted chemotherapy.  

Another important method which can shed more light on the US assisted cavitation of 

LMBs, is to image/record the bubble(s) during cavitation using high speed cameras. These 

cameras have been used to record the formation and collapse of bubbles using shock-induced 

waves (173) therefore, the resulting videograms, if combined with the data from the 

aforementioned assays, can potentially assist in correlating the influence of US parameters and 

surrounding media on the behaviour of bubbles during the cavitation e.g. the magnitude and 

the rate of growth of bubble in different media and different US parameters. 

On a final note, the aforementioned studies which can be expected extend our understanding 

of LMB-US based cavitation require highly specialised instrumentation, which would not be 

typically present in a pharmaceutics lab, therefore in any future work of this nature the need to 

collaborate with an engineering faculty is likely required, so more elaborate studies as alluded 

to above can be comprehensively undertaken. 
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