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Abstract

A decomposition of a graph G is a set {D1, D2, ..., Dr} of subgraphs of G whose edge sets
partition the edge set of G. A graph decomposition is uniform if the union of any two distinct
subgraphs of the decomposition is isomorphic to the union of any other two distinct subgraphs,
that is, Di ∪Dj

∼= Dk ∪Dl whenever 1 ≤ i < j ≤ r, 1 ≤ k < l ≤ r. This is a natural extension
of the notion of uniformity of 1-factorisations (graph decompositions in which each subgraph
is a 1-factor). In this project, we initiate the study of uniform decompositions of complete
multigraphs into cycles, stars and paths.

A complete multigraph µKn is a graph with n vertices and precisely µ edges between each pair
of vertices. An m-cycle is a connected graph with m vertices in which each vertex has degree
two, that is, a graph with the vertex set {v1, v2, ..., vm} and the edge set {{v1, v2}, {v2, v3}, ...,
{vm−1, vm}, {vm, v1}}. We show that if there exists a uniform decomposition of µKn into m-
cycles then (A) n = m and n ≤ 7, or (B) µ = 2 and m = n− 1, or (C) µ = 1, m = (n− 1)/2
and n ≡ 3 (mod 4) or (D) µ = 1 and 2m(m + 1) = n(n − 1). We fully characterise the
complete multigraphs which admit uniform cycle decompositions in case (A). In cases (B)
and (C), we construct uniform decompositions for infinitely many values of n and categorise
those decompositions into isomorphism classes. In case (D) we have no examples of uniform
decompositions, but we prove that the existence of such a decomposition would imply the
existence of a large quasi-residual design which is not residual.

We discuss the computational methods and algorithms used to examine small cases of these
problems, including the proof that there is no uniform decomposition in case (A) when n = 9
or n = 15, or in case (C) when n = 15. We also present some tables of results from those
algorithms, giving the uniform decompositions in case (B) when n ≤ 11.

A k-star is a connected graph in which one vertex has degree k and k vertices have degree
one. An m-path is a connected graph with m + 1 vertices and m edges in which two vertices
have degree one and the remaining vertices have degree two, that is, a graph with vertex set
{v1, v2, ..., vm, vm+1} and edge set {{v1, v2}, {v2, v3}, ..., {vm, vm+1}}. We show that there exists
a uniform star decomposition of µKn with n > 2 precisely when µ = 2, or µ = 1 and there
exists a skew Hadamard design of order n or order n−1. Finally, we prove that uniform m-path
decompositions of µKn exist only when n ≤ 6, and construct all such decompositions.
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Chapter 1

Introduction

This thesis is structured as a sequence of four chapters. Chapter 1 introduces the problem of
uniform graph decompositions, and provides a review of existing literature on cycle decompo-
sitions and uniform factorisations. Chapter 2 is a paper which was submitted to the Journal of
Combinatorial Designs on 22 January 2018, revised and resubmitted to the same journal on 20
June 2018 (revised version included). The bibliography has been merged with the bibliography
of this thesis. Chapter 3 discusses the use of computer programs to solve problems in uniform
graph decomposition. Chapter 4 consists of a conclusion, a discussion of minor results obtained
during the project, and a discussion of potential future directions for this research.

1.1 Definitions and notation

1.1.1 Graphs

In order to talk about graph decompositions, we must begin by defining graphs. A graph is a
pair (V,E) such that the following are satisfied:

(1) V is a non-empty set of elements called vertices, and

(2) E is a multiset of elements called edges in which each edge is a multiset consisting of two
(possibly identical) vertices.

The vertex set of a graph G is denoted by V (G), and the edge multiset of G is denoted by
E(G).

The union of two graphs G1 ∪ G2 is the graph {V (G1) ∪ V (G2), E(G1) ] E(G2)} (where ]
denotes multiset union, keeping multiple edges consisting of the same vertices). When using
single-character vertex labels, we may refer to an edge {x, y} as xy.

An edge consisting of two identical vertices is called a loop. A simple graph has no loops, and
its edge multiset contains no duplicates; i.e. in a simple graph G, there cannot be ei = xy and
ej = xy where ei, ej ∈ E(G), i 6= j and x, y ∈ V (G). Note that we use the term “graph” to
include both simple graphs and multigraphs (graphs that may have loops and duplicate edges).

Consider an arbitrary graph G. Then a graph H is a subgraph of G if V (H) ⊆ V (G) and
E(H) ⊆ E(G). We then write H ⊆ G. If H is a subgraph of G and V (H) = V (G), we say
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that H is a spanning subgraph of G.

Two graphs G,H are isomorphic, denoted G ∼= H, if there exists a bijection φ : V (G)→ V (H)
which maps E(G) to E(H) under the operation eφ = {vi, vj}φ = {viφ, vjφ} for e = {vi, vj} ∈
E(G) and vi, vj ∈ V (G). Then φ is called an isomorphism from G to H. An isomorphism from
G to G is called an automorphism of G, and the set of all automorphisms of a graph G with
the operation composition of functions forms the automorphism group of G.

The complete graph on n vertices, denoted Kn, is a graph with n vertices where there is exactly
one edge between each pair of distinct vertices. The complete multigraph on n vertices with
multiplicity µ, denoted µKn, is a graph with n vertices where there are exactly µ edges between
each pair of distinct vertices. A complete multigraph does not contain loops.

A graph G is bipartite if there exists some partition of V (G) into two sets V1, V2 such that every
edge of G contains one vertex of V1 and one vertex of V2. A bipartite graph G is complete if
E(G) contains every edge v1v2 where v1 ∈ V1, v2 ∈ V2; a complete bipartite graph in which
|V1| = n, |V2| = m is denoted Kn,m.

A path [v1, v2, ..., vr] is a graph with vertex set {v1, v2, ..., vr} (vi 6= vj whenever i 6= j, 1 ≤ i, j ≤
r) and edge set {{v1, v2}, {v2, v3}, ..., {vr−1, vr}}. We say that v1 and vr are the endpoints of the
path, and that the path is between its endpoints. The length of a path is equal to its number
of edges. A path with n vertices is denoted Pn, and is also referred to as an (n − 1)-path (as
it has length n − 1). A graph G is connected if, for each pair of vertices vi, vj ∈ V (G), i 6= j,
there is some path between vi and vj.

The degree of a vertex v in a loopless graph is the number of edges containing v. If every vertex
in a graph G has degree k, we say G is k-regular. A cycle is a connected 2-regular graph.
A cycle with vertex set {v1, v2, ..., vr} and edge set {{v1, v2}, {v2, v3}, ..., {vr−1, vr}, {vr, v1}} is
denoted (v1, v2, v3, ..., vr). If G is a graph, H is a cycle, and H is a spanning subgraph of G,
then H is a Hamilton cycle of G. We say that a cycle has length equal to its number of edges.

1.1.2 Factorisations and decompositions

Consider an arbitrary graph G. A k-factor of G is a k-regular spanning subgraph of G. If G
has 2m vertices, a 1-factor of G consists of m nonadjacent edges. If G has 2m + 1 vertices, a
subgraph consisting of m disjoint edges is a near 1-factor ; note that there can be no 1-factor
in a graph with an odd number of vertices. In the context of graph decompositions, we use the
symbol I to denote an arbitrary 1-factor.

A decomposition of a graph G is a set {D1, D2, ..., Dr} of subgraphs of G whose edge sets
partition E(G). If H is a graph, then a decomposition D = {D1, D2, ..., Dr} of a graph is an
H-decomposition if each Di ∈ D is isomorphic to H. A k-factorisation F = {F1, F2, ..., Fr} of
a graph G is a decomposition of G where each Fi ∈ F is a k-factor of G. A decomposition of a
graph G into cycles is a cycle decomposition of G, and a decomposition of G into Hamilton cycles
is a Hamilton decomposition of G. It is clear that a Hamilton decomposition is a 2-factorisation.

Let D = {D1, D2, ..., Dr} and F = {F1, F2, ..., Fs} be decompositions of graphs G and H
respectively. Then D and F are isomorphic, denoted D ∼= F , if there exists an isomorphism
φ from G to H which maps {D1, D2, ..., Dr} to {F1, F2, ..., Fs} under the operation Diφ =
{V (Di)φ,E(Di)φ} for each Di ∈ D. Then φ is called an isomorphism from D to F . An
isomorphism from D to D is called an automorphism of D, and the set of all automorphisms of
a graph decomposition D with the operation composition of functions forms the automorphism
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group of D. It is clear that the automorphism group of a decomposition of a graph G is a
subgroup of the automorphism group of G.

1.1.3 Perfect and uniform 1-factorisations

A 1-factorisation {F1, F2, ..., Fr} of a graph G is perfect if the union of any two distinct 1-
factors Fi ∪ Fj is a Hamilton cycle in G, and uniform if the union of any two distinct 1-
factors Fi ∪ Fj is isomorphic to the union of any other two, i.e. Fi ∪ Fj ∼= Fk ∪ Fl whenever
1 ≤ i < j ≤ r, 1 ≤ k < l ≤ r. Clearly, every perfect 1-factorisation is uniform.

Similarly, a decomposition {D1, D2, ..., Dr} of a graph is uniform if the union of any two distinct
subgraphs Di∪Dj is isomorphic to the union of any other two, i.e. Di∪Dj

∼= Dk∪Dl whenever
1 ≤ i < j ≤ r, 1 ≤ k < l ≤ r. There is no obvious way to extend the definition of perfect
1-factorisations to general graph decompositions.

Kotzig’s conjecture [40], which remains unresolved, states that every complete graph of even
order has a perfect 1-factorisation. Two infinite families of complete graphs are known to
have perfect 1-factorisations: Kotzig [39] constructed a perfect 1-factorisation of Kp+1, and
Anderson [3] and Nakamura [49] independently constructed perfect 1-factorisations ofK2p where
p is an odd prime. Kobayashi [38] proved that Anderson’s and Nakamura’s constructions are
isomorphic.

More recently, Bryant, Maenhaut and Wanless [16] constructed a new perfect 1-factorisation of
each Kp+1 where p is prime and p ≥ 11, and proved that these perfect 1-factorisations are not
isomorphic to those produced by Kotzig’s construction.

Perfect 1-factorisations of Kn have also been constructed for all other even n ≤ 52. Ander-
son constructed a perfect 1-factorisation of K16 [4] and K28 [5], Seah and Stinson constructed
perfect 1-factorisations of K36 and K40 [55] [56], Ihrig, Seah and Stinson constructed a perfect
1-factorisation of K50 [33], and Wolfe constructed a perfect 1-factorisation of K52 [66]. Per-
fect 1-factorisations of some other large complete graphs have also been constructed. Dinitz
and Stinson [26] constructed perfect 1-factorisations of K126, K170, K730, K1370, K1850, K2198

and K3126, and Kobayashi and Kiyasu-Zen’iti [37] constructed perfect 1-factorisations of K1332

and K6860. Wanless [63] identified several complete graphs with perfect 1-factorisations and
maintains an updated list at [64].

Wagner [61] took a different approach to Kotzig’s conjecture. Consider all 1-factorisations F of
Kn where n is even. For each F , let tn(F) be the number of Hamilton cycles formed by unions
of two 1-factors in F . Then Wagner defined c(n) to be the maximum value of tn(F) over all F .

Wagner proved that c(n) ≥ (n−1)φ(n−1)
2

where φ is the Euler totient, while Kotzig’s conjecture

is equivalent to saying c(n) =
(
n−1
2

)
for each even n.

In 1994 Dinitz, Garnick and Mckay [25] counted all the nonisomorphic 1-factorisations of K12,
finding that there are 526 915 620 of them. Of these, they found that exactly 6 were uniform,
5 of which were perfect; hence, there is exactly one non-perfect uniform 1-factorisation of K12,
up to isomorphism. In this uniform 1-factorisation the union of two factors forms two disjoint
6-cycles. More recently, Meszka and Rosa [48] extended this result by enumerating all the
uniform 1-factorisations of Kn where n is even and n ≤ 16, except for possibly some perfect
1-factorisations of K16.

Dinitz and Dukes [24] proved that if k,m ∈ Z such that k is even, k ≥ 6 and m is positive,
then there exists a uniform 1-factorisation of some large complete graph where the union of
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each pair of 1-factors has at least m cycles of length k.

Complete bipartite graphs are closely related to complete graphs. A complete bipartite graph
Kn,m is only regular if n = m, and as such can only have a 1-factorisation if n = m. Furthermore,
Laufer [41] proved that if Kn,n has a perfect 1-factorisation, then n = 2 or n is odd. It has
been proved by several authors that if Kn+1 has a perfect 1-factorisation, so does Kn,n (see, for
example, [62]); as such, if Kotzig’s conjecture is true then Kn,n has a perfect 1-factorisation for
every odd integer n. For each odd prime p and n = p2, Bryant, Maenhaut and Wanless [15]
constructed a family of p−1

2
nonisomorphic perfect 1-factorisations of Kn,n. Bryant, Maenhaut

and Wanless [16] later constructed new families of perfect 1-factorisations of Kp,p where p is
prime, in part using their new family of perfect 1-factorisations of Kp+1.

In 2013, perfect and uniform 1-factorisations of Cayley graphs began to be considered. Herke
and Maenhaut [30] characterised the connected 3-regular circulant graphs with perfect 1-
factorisations, and proved that if G is a connected 3-regular circulant graph on n vertices
where n > 6, then there exists a perfect 1-factorisation of G if and only if n = 2 (mod 4) and
G is bipartite. They also proved that Circ(n, {1, 2}) does not have a uniform 1-factorisation
when n > 6, a slight extension of their result on perfect 1-factorisations.

Herke [31] constructed perfect 1-factorisations of several infinite classes of 4-regular circulant
graphs, and proved that for all even n > 6 the circulant graph Circ(n, {1, 4}) does not have a
perfect 1-factorisation. Herke and Maenhaut [32] defined a class of graphs, provided necessary
and sufficient conditions for an element of that class to form a Cayley graph, and used that class
to construct an infinite family of connected bipartite 4-regular circulant graphs of order con-
gruent to 2 (mod 4) which do not have perfect 1-factorisations. These results do not completely
characterise the set of connected 4-regular circulant graphs with perfect 1-factorisations.

1.1.4 Cycle decompositions of complete multigraphs

Uniform cycle decompositions of complete multigraphs form a major component of this project.
Here we discuss the existing literature on cycle decompositions of complete multigraphs.

We begin by restating a theorem of Bryant et al [12], which shows that the obvious necessary
conditions for the existence of an m-cycle decomposition of µKn are sufficient.

Theorem 1.1. [12]. Let n,m, µ be integers such that n ≥ 2 and m,µ ≥ 1. Then there exists
an m-cycle decomposition of µKn if and only if the following are true:

(A) µ(n− 1) is even

(B) 2 ≤ m ≤ n

(C) m|µn(n−1)
2

, and

(D) if m = 2, then µ is even.

In addition, if n ≥ 3, there exists an m-cycle decomposition of µKn \ I if and only if the
following are true:

(A) µ(n− 1) is odd

(B) 3 ≤ m ≤ n, and
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(C) m|µn(n−1)−n
2

.

While this result is relatively recent (2011), some partial results on cycle decompositions are
substantially older. In 1892 Walecki [43] proved Theorem 1.1 in the specific case where m = n
and µ = 1, i.e. for Hamilton decompositions of the complete graph, and in 1847 Kirkman [36]
considered the case where m = 3.

We now consider two special properties that cycle decompositions can have. A cycle decom-
position of a graph G is cyclic if the decomposition has an automorphism that permutes
V (G) in a single cycle. The existence of a cyclic Hamilton decomposition of Kn or Kn − I
where n is odd or even respectively, was resolved by Buratti and Del Fra [17] and Jordon
and Morris [34] respectively. Building on these results, Buratti, Capparelli and Del Fra [18]
proved that λKn has a cyclic Hamilton decomposition if and only if n ≥ 3, λ(n − 1) is even,
(n, λ) 6= (15, 1) and (n, λ) 6= (pα, λ) where p is an odd prime and λ ≤ 2 ≤ α. A cycle decomposi-
tion D = {D1, D2, ..., Dr} of a graph G is 2-transitive on the cycles if for each Di, Dj, Dk, Dl ∈ D
such that Di 6= Dj, Dk 6= Dl, there exists some automorphism φ of G such that φDi = Dk and
φDj = Dl. Mazzuoccolo [46] proved that if n > 3 and Kn has a Hamilton decomposition
which is 2-transitive on the cycles, then n = 5. Note that 2-transitivity on the cycles in a cycle
decomposition implies uniformity, but is a stronger property than uniformity.

1.1.5 Balanced incomplete block designs

Graph decompositions have some connections with balanced incomplete block designs (hence-
forth abbreviated as BIBDs). In the course of this project we used these connections and
existing results for BIBDs to construct some uniform graph decompositions and to prove that
others do not exist.

Let v, b, r, k, λ be positive integers where v > k ≥ 2. A balanced incomplete block design or
BIBD with the parameters (v, b, r, k, λ) is a pair (V,B) where the following are true:

(A) V is a set of points with |V | = v.

(B) B is a collection of sets with |B| = b. We say that the members of B are the blocks of the
design.

(C) Each Bi ∈ B is a k-subset of V .

(D) Each point in V occurs in precisely r blocks. We say that r is the replication number of
the design.

(E) Each pair of distinct points in V occurs in precisely λ blocks. We say that λ is the index
of the design.

We will see that the values of b and r can be determined from v, k, λ. Thus we say a (v, k, λ)-
design is a BIBD with v vertices, block size k, and index λ.

Theorems 1.2 and 1.3 and Lemmas 1.5, 1.6 and 1.8 are well known and can be found in many
combinatorics textbooks, for example [58].

Theorem 1.2. Let (V,B) be a (v, b, r, k, λ)-BIBD. Then:

(A) r = λ(v−1)
k−1 ,
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(B) b = λv(v−1)
k(k−1) , and

(C) b ≥ v (Fisher’s inequality).

Proof. Consider a point x ∈ V . We will use two different methods to count the number of
occurrences of x in pairs of points where each pair is a subset of a block, in order to prove (A).

For each y ∈ V \ {x}, {x, y} occurs in λ blocks. Since |V \ {x}| = v − 1, it follows that there
are λ(v − 1) occurrences of pairs {x, y} in blocks.

The point x occurs in r blocks. Each block containing x contains k − 1 other vertices. Thus
there are r(k − 1) occurrences of pairs {x, y} in blocks.

It follows that λ(v − 1) = r(k − 1) and so r = λ(v−1)
k−1 as required.

There are v points in the design, each occurring in r blocks. There are b blocks each containing
k points. Thus vr = bk and so by (A), b = vr

k
= λv(v−1)

k(k−1) as required.

We have now proved (A) and (B). In order to prove (C) we need to define the incidence matrix
of a design. The incidence matrix of a (v, b, r, k, λ)-BIBD is a v × b matrix M = (mi,j) such
that mi,j = 1 if the vertex i is in the block j, or 0 otherwise.

Then MMT is a v× v matrix in which every value on the diagonal is r and every value not on
the diagonal is λ; since λ 6= r, it follows that MMT has non-zero determinant and so the rank
of MMT is v. However, the rank of M must be at least the rank of MMT and at most b (since
M is a v × b matrix); thus v ≤ b.

A (v, b, r, k, λ)-BIBD is symmetric if r = k (and equivalently v = b, the extreme case of Fisher’s

inequality). It follows from Theorem 1.2 that in a symmetric design, v = k(k−1)
λ

+ 1.

Some balanced incomplete block designs can be constructed from others. We introduce three
constructions of BIBDs from other BIBDs: dual designs, complements of designs, and residual
designs. We use dual designs solely to prove Theorem 1.3. The complement and residual designs
are used later in this thesis.

Let (V,B) be a (v, b, r, k, λ)-BIBD and let V = {v1, v2, ..., vv} and B = {B1, B2, ..., Bb}. The dual
of (V,B) is the pair (B, V ∗) where V ∗ is the set {Vi : Vi = {Bj : vi ∈ Bj, Bj ∈ B} for each vi ∈
V }. We will show in the proof of Theorem 1.3 that the dual of a symmetric BIBD is a symmetric
BIBD.

The complement of a BIBD (V,B) is the pair (V,B∗) where B∗ = {V \ Bi : Bi ∈ B}. We will
prove in Lemma 1.5 that the complement of a (v, k, λ)-BIBD is a BIBD whenever k ≤ v − 2.

Let (V,B) be a symmetric BIBD and let B be a member of B. In addition, let B∗ denote the
set {Bi ∩Bc : Bi ∈ B \ {B}}. Then the pair (V \B,B∗) is a residual design of (V,B). We will
prove in Lemma 1.6 that a residual design of a symmetric BIBD is a BIBD.

Theorem 1.3. A (v, k, λ)-BIBD is symmetric if and only if each pair of blocks intersects in λ
points.

Proof. Let (V,B) be a (v, b, r, k, λ)-BIBD in which V = {v1, v2, ..., vv},B = {B1, B2, ..., Bb},
and each pair of blocks intersects in µ points. Then in the dual (B, V ∗), each pair of points
Bi, Bj ∈ B occurs precisely in the µ blocks Vl ∈ V ∗ such that vl ∈ Bi ∩ Bj. In addition, each
Vi ∈ V ∗ is an r-subset of B, as there are r occurrences of the vertex vi in blocks of B, and each
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Bi ∈ B occurs in precisely the k blocks Vj ∈ V ∗ where vj ∈ Bi. It follows that (B, V ∗) is a
(b, v, k, r, µ)-BIBD, and so b ≤ v by Fisher’s inequality. Thus b = v and r = k, and so (V,B) is
symmetric.

Let (V,B) be a symmetric (v, b, r, k, λ)-BIBD and let M be the incidence matrix of (V,B). In
addition, let J be the v × v matrix in which every element is 1, and I be the v × v identity
matrix. Since each vertex is in exactly r blocks, each row of M contains exactly r elements
with the value 1, and v− r elements with the value 0; thus rJ = MJ. By the proof of Theorem
1.2, M is non-singular and so MJ = JM = kJ.

We proved in Theorem 1.2 that MMT = λJ + (r − λ)I. Thus MTM = M−1MMTM =
M−1(λJ + (r − λ)I)M = M−1M(λJ + (r − λ)I) = (λJ + (r − λ)I). It follows that the dual of
(V,B) is a symmetric (v, k, λ)-BIBD, and so each pair of blocks in (V,B) intersects in λ points
as required.

Corollary 1.4. In a non-symmetric (v, k, λ)-BIBD, there exist two pairs of distinct blocks
{Bi, Bj}, {Bk, Bl} of the design such that |Bi ∩Bj| 6= |Bk ∩Bl|.

Lemma 1.5. Let (V,B) be a (v, b, r, k, λ)-BIBD with k ≤ v−2. Then the complement of (V,B)
is a (v, b, b− r, v − k, b− 2r + λ)-BIBD.

Proof. Let (V,B∗) be the complement of (V,B). Then each block B∗i = V \ Bi in B∗ consists
of v − k points, each point is in b − r blocks of B∗, and each pair of points {x, y} occurs in
b − 2r + λ blocks of B∗ (as there are r blocks containing x and r containing y, but λ of these
blocks contain both x and y).

In addition, v − k ≥ 2 (as k ≤ v − 2), b − r ≥ 2 (as b − r = vr
k
− r = (v−k)r

k
≥ 2r

k
and

r ≥ k), and b− 2r+ λ ≥ 1 (as every pair of points occurs in b− 2r+ λ blocks of (V,B∗) and at
least one pair occurs in each block B∗i ). It follows that (V,B∗) is a BIBD with the parameters
(v, b, b− r, v − k, b− 2r + λ).

Lemma 1.6. A residual of a BIBD (V,B) is a BIBD if and only if (V,B) is symmetric.

Proof. Let (V,B) be a (v, k, λ)-BIBD. Suppose (V,B) is symmetric and let B be a member of
B. For each block Bi ∈ B \ {B}, let B∗i = Bi \ B, and let B∗ be the set of all such B∗i (and so
|B∗| = b−1 = v−1). Then |B∗i | = k−λ for each i, since |Bi| = k and |B∩Bi| = λ by Theorem
1.3. In addition, it is clear that each point a /∈ B or each pair of points a, b /∈ B occurs in
precisely those (r or λ, respectively) blocks B∗i where a ∈ Bi or {a, b} ⊆ Bi, respectively. It
follows that any residual of (V,B) is a (v − k, v − 1, k, k − λ, λ)-BIBD.

Suppose (V,B) is non-symmetric and let B be a member of B. For each block Bi ∈ B \ {B},
let B∗i = Bi \ B, and let B∗ be the set of all B∗i . Then there exist two blocks Bi, Bj such that
|Bi ∩ B| 6= |Bj ∩ B|, since (V,B) is not symmetric. It follows that |B∗i | 6= |B∗j | and so the pair
(V \B,B∗) is not a BIBD. Thus any residual of (V,B) is not a BIBD.

From this proof we obtain the following:

Corollary 1.7. A residual (v, b, r, k, λ)-BIBD must have r = k + λ.

Since the condition r = k+λ considerably restricts the possible values of v, k, λ, there is a term
for designs meeting this condition: a (v, b, r, k, λ)-design is quasi-residual if r = k + λ.

Several authors have considered quasi-residual designs which are not residual. For example,
Mackenzie-Fleming constructed an infinite family of quasi-residual Hadamard designs which
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are not residual [45], and an infinite family of quasi-residual (2(3d+1), 2(3d), 3d)-BIBDs (where
d > 1) which are not residual [44].

Hadamard designs are a particular type of symmetric BIBD. We encountered Hadamard designs
repeatedly in the course of this project. A Hadamard design is a BIBD with parameters
(v, b, r, k, λ) = (n, n, n−1

2
, n−1

2
, n−3

4
) for some integer n.

Since λ is a positive integer for any (v, k, λ)-BIBD, it follows that any Hadamard design must
have n ≡ 3 (mod 4) and n ≥ 7. It has been proved that whenever n is a prime, n ≡ 3 (mod 4)
and n ≥ 7, there exists a Hadamard design with parameters (n, n−1

2
, n−3

4
); see, for example,

[58]. The standard proof relies on difference sets. Let G be an additive group of order v and
let k, λ be integers less that v. Then a (v, k, λ)-difference set in G is a k-subset D of G where
the multiset {a− b : a, b ∈ D, a 6= b} contains each non-identity element of G exactly λ times.

A difference set can be used to construct a symmetric BIBD. Let D be a (v, k, λ)-difference set
of G, let V be the underlying set of G and let B = {D + g : g ∈ G}. Then it can be proved
(see for example [58]) that the pair (V,B) is a symmetric (v, k, λ)-BIBD. When n is a prime
power and n ≡ 3 (mod 4), the set {i2 : i ∈ Zn \ 0} is an (n, n−1

2
, n−3

4
)-difference set and so the

set {{i2 : i ∈ Zn \ 0}+ j : j ∈ Zn} gives the blocks of a Hadamard design. The construction of
Yq,ω given in Definition 2.9 of this thesis is based on this difference set.

Hadamard designs are associated with Hadamard matrices. A Hadamard matrix of order n
is an n × n matrix H such that each entry of H is ±1 and HHT = nI where I is the n × n
identity matrix. It is clear that multiplying any row or column of a Hadamard matrix by −1
produces another Hadamard matrix, and so any Hadamard matrix can be transformed into one
where every element of the first row and first column is 1. We say such a Hadamard matrix is
standardised. We will see that a standardised Hadamard matrix of order n+1 > 4 is equivalent
to the incidence matrix of a Hadamard design with parameters (n, n−1

2
, n−3

4
).

Lemma 1.8. There exists a Hadamard matrix of order n+ 1 where n > 3 if and only if there
exists a Hadamard design with parameters (n, n−1

2
, n−3

4
).

Proof. Suppose H = (hi,j) is a standardised Hadamard matrix of order n + 1 where n > 3,
and let ri denote the i’th row of H for 1 ≤ i ≤ n + 1. Then r1 · ri = 0 for any 1 < i ≤ n + 1,
and so ri contains n+1

2
elements with the value 1 and n+1

2
with the value −1.

Let M = (mi,j) be the matrix formed by deleting the first row and column of H and replacing
each −1 entry with 0. Then each row and column of M contains n−1

2
elements with the value

1 and n+1
2

elements with the value 0. In addition, since HHT has entries hi,j = 0 whenever
i 6= j, it is clear that each ri · rj = 0 for i 6= j. It follows that n+1

2
of the pairs (hi,k, hj,k) (where

1 ≤ k ≤ n + 1) are either (1,−1) or (−1, 1), while the other half are (1, 1) or (−1,−1). Since
ri and rj each contain n+1

2
ones, it is clear that precisely one-quarter of the pairs (hi,k, hj,k) are

(1, 1). Furthermore, since hi,1 = hj,1 = 1, it follows that each pair of distinct rows of M have
ones in exactly n−3

4
of the same columns. By the same argument, each pair of distinct columns

of M have ones in exactly n−3
4

of the same rows, and each column of M has n−1
2

ones.

Let V = {1, 2, ..., n} and let Bi = {j : mi,j = 1} for each i ∈ V . Then |Bi| = n−1
2

and
|Bi ∩ Bj| = n−3

4
for each i, j ∈ V where i 6= j. In addition, each point i is in n−1

2
blocks and

each pair of points occurs in λ blocks in the set B = {Bi : 1 ≤ i ≤ n}. It follows that (V,B) is
an (n, n−1

2
, n−3

4
)-BIBD, that is, a Hadamard design.

Conversely, suppose (V,B) is an (n, n−1
2
, n−3

4
)-BIBD. Let M = (mi,j) be the incidence matrix
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of (V,B), and let H be the (n+ 1)× (n+ 1) matrix (hi,j) in which

hi,j =


1, if i = 1 or j = 1

−1, if mi−1,j−1 = 0

1, if mi−1,j−1 = 1

Let ri denote the i’th row of H. Then ri · ri = n + 1, as each row of H contains n+1
2

ones and
n+1
2

minus ones (or n+1 ones and no minus ones if i = 1). When i 6= 1, we have ri ·r1 = 0, as r1
consists entirely of ones and ri contains n+1

2
ones and n+1

2
minus ones. When i 6= j and i, j > 1,

we have ri · rj = 0, as ri and rj contain n+1
2

ones each and n+1
2

minus ones each, and precisely
half of the ones in ri are multiplied by ones in rj by the dot product (since |Bi−1∩Bj−1| = n−3

4
).

It follows that HHT = nI and so H is a Hadamard matrix.

Corollary 1.9. If there exists a Hadamard matrix of order n > 4 then n ≡ 0 (mod 4).

It can then be shown (see for example [58]) that if there exist Hadamard matrices of order
n1 and n2, then there exists a Hadamard matrix of order n1n2 and thus a Hadamard (n1n2 −
1, n1n2

2
− 1, n1n2

4
− 1)-design.
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Chapter 2

Uniform decompositions of complete
multigraphs into cycles

This chapter is the publication D. Berry, D. Bryant, M. Dean, B. Maenhaut, Uniform decom-
positions of complete multigraphs into cycles (originally submitted to the Journal of Combina-
torial Designs on 22/01/18, revised version, which is included here, resubmitted to the Journal
of Combinatorial Designs on 20/06/18).

2.1 Introduction

A decomposition of a graph into edge-disjoint subgraphs is uniform if the union of any two
distinct subgraphs is isomorphic to the union of any other two. The notion of uniformity
has been considered in the context of 1-factorisations, with perfect 1-factorisations being a
special case where the union is required to be a Hamilton cycle. Here, we investigate uniform
decompositions of complete multigraphs into cycles. These have interesting connections with
Hadamard designs, quasiresidual designs that are not residual, and orthogonal double covers
of graphs. We make use of the Bruck-Ryser-Chowla Theorem and Fisher’s Inequality in our
investigations, and we encounter Pell’s equation in connection with simultaneously triangular
and centred triangular numbers.

Them-cycle with vertices x1, x2, . . . , xm and edges {x1, x2}, {x2, x3}, . . . , {xm−1, xm} and {xm, x1}
will be denoted (x1, x2, . . . , xm), and the complete graph with vertex set N and multiplicity µ,
which has µ edges joining each pair of distinct vertices in N , will be denoted µKN . Throughout
the paper we assume µ ≥ 1 is an integer, and when µ = 1 we may write just KN instead of 1KN .
If n = |N |, then the notation µKn is used to denote any graph isomorphic to µKN . A decom-
position of a graph K is a set {X1, X2, . . . , Xt} of subgraphs of K such that E(Xi)∩E(Xj) = ∅
for 1 ≤ i < j ≤ t and E(X1)∪E(X2)∪· · ·∪E(Xt) = E(K). A decomposition {X1, X2, . . . , Xt}
is said to be uniform if Xi ∪Xj

∼= Xk ∪Xl for 1 ≤ i < j ≤ t and 1 ≤ k < l ≤ t.

The topic of this paper is uniform decompositions of complete multigraphs into m-cycles. In
Section 2.2, we establish several necessary conditions for existence, thereby showing that for
n > 3, any uniform decomposition of µKn into m-cycles falls into one of the following four
cases.

(A) uniform decompositions of µKn into n-cycles where (n, µ) ∈ {(5, 1), (7, 1), (4, 2), (5, 3)}.

10



(B) uniform decompositions of 2Kn into m-cycles where m = n− 1.

(C) uniform decompositions of Kn into m-cycles where n ≡ 3 (mod 4) and m = (n− 1)/2.

(D) uniform decompositions of Kn into m-cycles where 2m(m+ 1) = n(n− 1).

For n ≤ 3, uniform decompositions of µKn into m-cycles are easily classified. The case n = 1
is trivial. There is a decomposition of µK2 into 2-cycles if and only if µ is even, and these
decompositions are uniform. There is a decomposition of µK3 into 2-cycles if and only if µ is
even, and the decomposition is uniform if and only if µ = 2. Finally, there is a decomposition
of µK3 into 3-cycles for all µ ≥ 1, and these decompositions are uniform. In the remainder of
the paper we focus on decompositions of µKn where n ≥ 4.

In Section 2.3, we construct uniform decompositions of µKn into n-cycles for each of the four
values of (n, µ) in Case (A). In each of Cases (B) and (C), we show that there is a uniform
decomposition whenever n is a power of a prime, and also that there is a uniform decomposition
of 2K6 into 5-cycles. We do not have any examples of uniform decompositions in Case (D). In
Section 2.4 we determine the isomorphism classes of the uniform decompositions presented in
Section 2.3. Somewhat surprisingly, we find that in constructions based on the finite field Fq,
distinct (non-isomorphic) uniform decompositions of 2Kq into (q − 1)-cycles, and of Kq into
((q − 1)/2)-cycles, can be obtained by choosing distinct primitive elements of Fq.

Uniform decompositions into m-cycles have interesting connections with balanced incomplete
block designs. In Lemma 2.3, we show that any uniform decomposition of µKn into m-cycles
gives rise to a balanced incomplete block design, or (v, b, r, k, λ)-BIBD, which we call the as-
sociated design of the decomposition. See [22, 58] for background on design theory. In Section
2.2, we use this result together with Fisher’s Inequality, to rule out the existence of uniform
decompositions in many cases, see Corollary 2.4.

The associated designs of the uniform decompositions in Cases (A) and (B) are uninteresting,
with each block containing all of the points for decompositions in Case (A), and with the
blocks being every (n − 1)-subset of an n-set for decompositions in Case (B). The associated
designs of the uniform decompositions in Case (C) are Hadamard designs (a Hadamard design
is a (v, v, (v − 1)/2, (v − 1)/2, (v − 1)/4)-BIBD), see Theorem 2.6. The associated designs of
decompositions in Case (D) are quasiresidual designs which are not residual, see Lemma 2.5. A
BIBD is residual if it can be obtained from a symmetric BIBD by deleting a block and all of the
points belonging to that block. The residual of a (v, v, k, k, λ)-BIBD is a (v−k, v−1, k, k−λ, λ)-
design. A (v, b, r, k, λ)-BIBD with r = k + λ is called quasiresidual.

As mentioned above, the topic of uniform decompositions of graphs has been considered previ-
ously in the context of 1-factorisations (decompositions into 1-factors), and interest has focused
on the special case of perfect 1-factorisations, where the union of any two distinct 1-factors is
a Hamilton cycle. Kotzig’s 1964 conjecture [40] that there is a perfect 1-factorisation of Kn for
all even n remains unresolved, and it is also unknown whether there is a uniform 1-factorisation
of Kn for all even n. Several infinite families of perfect or uniform 1-factorisations of complete
graphs, and several sporadic examples, are known. See [16, 24, 48, 66] for some of the more
recent results on uniform and perfect 1-factorisations of complete graphs, and see [6] for a
survey.

If the requirement of uniformity is removed, then for n,m ≥ 3 and µ ≥ 1 there exists a
decomposition of µKn into m-cycles if and only if m ≤ n, µ(n− 1) is even, and m divides µ

(
n
2

)
[12]. The case µ = 1 was settled in [1, 53]. The more general problem of decomposing µKn

into cycles of arbitrary specified lengths has also been settled [13, 14].
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2.2 Necessary conditions for existence

We begin this section with the following lemma which shows that in any uniform decomposition
of µKn into m-cycles, the number of triangles in the union of any two of the m-cycles from the
decomposition is given by the values of µ, n and m.

Lemma 2.1. For m ≥ 4, if X is a uniform decomposition of µKn into m-cycles and X and
X ′ are distinct cycles in X , then the number of triangles in X ∪X ′ is

4µm2

µn(n− 1)− 2m
.

In particular, if there exists a uniform decomposition of µKn into m-cycles, then the above
quantity is an integer.

Proof. Let X be a uniform decomposition of µKn into m-cycles and consider those triangles
of µKn whose edge sets intersect exactly two cycles of X . For any cycle X ∈ X , there are µm
such triangles that have exactly two edges in X. Since |X | = µn(n − 1)/2m, it follows that
there are exactly µ2n(n− 1)/2 triangles of Kn whose edges lie in exactly two cycles of X .

Now, since X is uniform, for any distinct X,X ′ ∈ X , the number of triangles in X ∪ X ′ is a
constant C, independent of X and X ′. Since there are

(|X |
2

)
=
(
µn(n−1)/2m

2

)
pairs of distinct

cycles in X , and since these pairs contain all the triangles considered in the previous paragraph,
it follows that

C =
µ2n(n− 1)

2
/

(µn(n−1)
2m

2

)
=

4µm2

µn(n− 1)− 2m

is an integer.

We now consider the case m = n, that is, uniform decompositions of µKn into Hamilton cycles.
Lemma 2.1 will be used to show that uniform decompositions of µKn into Hamilton cycles may
exist for only for a few small values of µ and n, and existence of two of these is ruled out by
exhaustive computer search.

Corollary 2.2. For n ≥ 4, if there exists a uniform decomposition of µKn into Hamilton
cycles, then

(n, µ) ∈ {(5, 1), (7, 1), (4, 2), (5, 3)}.

Proof. If there exists a uniform decomposition of µKn into Hamilton cycles with n ≥ 4, then
by Lemma 2.1 we have that (4µn2)/(µn(n− 1)− 2n) = (4µn)/(µ(n− 1)− 2) is an integer. It
is routine to check that the only values of n and µ (with n ≥ 4) for which (4µn)/(µ(n− 1)− 2)
is an integer are

(n, µ) ∈ {(5, 1), (7, 1), (4, 2), (5, 3)}

and
(n, µ) ∈ {(4, 1), (6, 1), (9, 1), (15, 1), (6, 2), (10, 2), (7, 5), (4, 6), (6, 10)}.

Thus, to complete the proof we need only rule out those values of n and µ in the second of
these sets.

Firstly, there are no decompositions of K4 nor K6 into Hamilton cycles (and so certainly none
that are uniform). Secondly, the number of 2-cycles in µKn is

(
µ
2

)(
n
2

)
. Thus, if there exists a

uniform decomposition of µKn into Hamilton cycles, then these 2-cycles are distributed equally
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amongst the
(
µ(n−1)/2

2

)
pairs of Hamilton cycles in the decomposition. Thus,

(
µ(n−1)/2

2

)
divides(

µ
2

)(
n
2

)
, but this is not the case when (n, µ) ∈ {(6, 2), (10, 2), (4, 6), (6, 10)}.

Now suppose X is a uniform decomposition of 5K7 into Hamilton cycles. For each pair {x, y}
of distinct vertices in 5K7, let

Bx,y = {X ∈ X : x and y are adjacent in X},

and let B = {Bx,y : x, y ∈ V (5K7), x 6= y}. Using the same counting as in the preceding
paragraph, for any two distinct cycles X and X ′ in X , there are exactly two 2-cycles in X ∪X ′.
Since |X | = 15, it follows that (X ,B) is a (15, 21, 7, 5, 2)-BIBD. It is well known that no such
design exists (see [22]), and so there is no uniform decomposition of 5K7 into Hamilton cycles.

This leaves only the cases (n, µ) = (9, 1) and (n, µ) = (15, 1), and we have shown by exhaustive
computer search that there is no uniform decomposition in either of these cases.

We remark that up to isomorphism, there are 122 distinct decompositions of K9 into Hamilton
cycles [21, 27]. Our computer search shows that none of these is uniform. In Section 2.3 we
present uniform decompositions of µKn into Hamilton cycles for (n, µ) = (5, 1), (7, 1), (4, 2) and
(5, 3).

Our next result shows that a uniform decomposition of µKn into m-cycles implies the existence
of a (v, b, r, k, λ)-BIBD, where the values of v, b, r, k and λ are functions of µ, n and m.

Lemma 2.3. If n ≥ 4 and there exists a uniform decomposition of µKn into m-cycles, then
there exists a (v, b, r, k, λ)-BIBD with v = µn(n − 1)/2m, b = n, r = m, k = µ(n − 1)/2, and
λ = m2(µ(n− 1)− 2)/(µn(n− 1)− 2m).

Proof. Let N be a set such that |N | = n and let X = {X1, X2, . . . , Xt} be a uniform decom-
position of µKN into m-cycles. We construct a design (V,B) with point set V = X , and where
for each vertex x ∈ N we have a block Bx ∈ B such that the points in Bx are the cycles of X
containing x. That is, for each vertex x ∈ N we let Bx = {X ∈ X : x ∈ V (X)}, and we let
B = {Bx : x ∈ N}.

It is clear that the design (V,B) has µn(n− 1)/2m points, n blocks, constant block size µ(n−
1)/2, and replication number m. Moreover, since {X1, X2, . . . , Xt} is uniform, |V (Xi)∩V (Xj)|
is a constant λ for 1 ≤ i < j ≤ t, independent of i and j, and it follows that the design (V,B)
is balanced.

It remains only to show that λ = m2(µ(n−1)−2)/(µn(n−1)−2m). Since there are n vertices
and

(
µ(n−1)/2

2

)
pairs of distinct cycles on each vertex, and since there are

(
µn(n−1))/2m

2

)
pairs of

distinct cycles, each pair of distinct cycles has exactly

n

(µ(n−1)
2

2

)
/

(µn(n−1)
2m

2

)
common vertices. Simplifying this expression we obtain λ = m2(µ(n − 1) − 2)/(µn(n − 1) −
2m).

Lemma 2.3 allows us to use results from design theory to rule out the existence of uniform
decompositions of µKn into m-cycles for many values of µ, n and m. In particular, we can use
Fisher’s Inequality to prove the following result.

Corollary 2.4. If n ≥ 4 and there exists a uniform decomposition of µKn into m-cycles, then
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(a) m = n and (n, µ) ∈ {(5, 1), (7, 1), (4, 2), (5, 3)}; or

(b) µ = 1 and (n− 1)/2 ≤ m ≤ n− 1; or

(c) µ = 2 and m = n− 1.

Proof. If m = n, then (n, µ) ∈ {(5, 1), (7, 1), (4, 2), (5, 3)} by Corollary 2.2. Thus, we can
assume m < n. By Lemma 2.3, if there exists a uniform decomposition of µKn into m-cycles,
then there exists a BIBD with µn(n− 1)/2m points and n blocks. Thus, by Fisher’s Inequality
we have µn(n− 1)/2m ≤ n. That is, µ(n− 1) ≤ 2m. It is easy to see that if n ≥ 4, m < n, and
µ(n− 1) ≤ 2m, then either µ = 1 and (n− 1)/2 ≤ m ≤ n− 1, or µ = 2 and m = n− 1.

It turns out that the values of µ, n, and m satisfying (b) of Corollary 2.4 fall into two cases,
namely Cases (C) and (D) mentioned in the introduction. Case (C) is where m = (n − 1)/2,
and Lemma 2.5 shows that any other values of µ, n, and m satisfying (b) of Corollary 2.4 fall
into Case (D).

Lemma 2.5. If there exists a uniform decomposition of Kn into m-cycles with (n − 1)/2 <
m < n, then n ≥ 697, 2m(m + 1) = n(n − 1), and there exists a quasiresidual (m + 1, n, n −
m, (2m− n+ 3)/2, (3n− 4m− 3)/2)-BIBD that is not residual.

Proof. If m = 3, then by the hypothesis (n− 1)/2 < m < n we have 3 < n < 7. But there is
no decomposition of Kn into 3-cycles for 3 < n < 7, and so we can assume m ≥ 4. Let X be a
uniform decomposition of Kn into m-cycles with (n− 1)/2 < m < n, and let T be the number
of triangles in the union of two distinct cycles of X . By Lemma 2.1, T = 4m2/(n(n− 1)− 2m).

If m = n − 1, then we have T = 4(n − 1)/(n − 2) and n ≥ 5 (because m ≥ 4), from which it
follows that n = 6. However, n must be odd for a decomposition of Kn into cycles to exist, and
we conclude that m 6= n− 1. Thus, we have (n− 1)/2 < m ≤ n− 2.

Now, it follows from (n− 1)/2 < m that

T =
4m2

n(n− 1)− 2m
>

(n− 1)2

n(n− 1)− (n− 1)
= 1,

and it follows from m ≤ n− 2 that

T =
4m2

n(n− 1)− 2m
≤ 4(n− 2)2

n(n− 1)− 2(n− 2)
<

4(n− 2)2

n(n− 2)− 2(n− 2)
= 4.

Thus, we have T ∈ {2, 3}.

For a contradiction, assume T = 3. Then using T = 4m2/(n(n− 1)− 2m) it is straightforward
to obtain (

2m+ 2

2

)
= 3

(
n

2

)
+ 1. (2.1)

We note as an aside that solutions to (2.1) correspond to numbers that are simultaneously
triangular and centred triangular numbers (the right-hand side of (2.1) is the (n−1)-th centred
triangular number), see [54]. By Lemma 2.3, λ = m2(n− 3)/(n(n− 1)− 2m) is an integer, and
combining this with 4m2/(n(n−1)−2m) = 3, we obtain 4λ = 3(n−3) and hence n ≡ 3 (mod 4).
Thus,

(
n
2

)
is odd, and so by (2.1) we have

(
2m+2

2

)
is even and m is odd.
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Now, it follows from (2.1) that (4m+ 3)2 = 3(2n− 1)2 + 6. Putting x = 4m+ 3 and y = 2n− 1
we obtain

x2 − 3y2 = 6. (2.2)

Equation (2.2) is a generalised Pell equation with positive integral solution (xi, yi) where xi +
yi
√

3 = (3 +
√

3)(2 +
√

3)i for each i ∈ Z, or alternatively

xi = 4xi−1 − xi−2

with x0 = 3 and x1 = 9 (see Section 3 of [23], and see [20] or [57] for background on Pell’s
equation). However, each term xi is congruent to 1 or 3 (mod 8), and we have x = 4m+ 3 with
m odd, which implies x ≡ 7 (mod 8). This is a contradiction and we conclude that T 6= 3.

Thus, we are left with T = 2, which implies

2m(m+ 1) = n(n− 1). (2.3)

Equation (2.3) can be rewritten as (2n−1)2−2(2m+ 1)2 = −1. With substitutions x = 2n−1
and y = 2m+ 1, this is again a generalised Pell equation

x2 − 2y2 = −1

with positive integral solution (xi, yi) where xi + yi
√

2 = (1 +
√

2)(3 + 2
√

2)i for each i ∈ Z, or
alternatively

xi = 6xi−1 − xi−2 (2.4)

with x0 = 1 and x1 = 7 (again, see Section 3 of [23], and see [20] or [57] for background on Pell’s
equation). Equation (2.4), together with the requirement that n is odd, imply that n belongs
to {1, 21, 697, 23661, . . .} = {n0, n1, . . .} where n0 = 1, n1 = 21 and ni = 34ni−1 − ni−2 − 16 for
i ≥ 2.

It remains to show that n 6= 21 and that there exists a quasiresidual (m + 1, n, n −m, (2m −
n + 3)/2, (3n − 4m − 3)/2)-BIBD that is not residual. By Lemma 2.3, since X is a uni-
form decomposition of Kn into m-cycles with 2m(m + 1) = n(n − 1), there exists an (m +
1, n,m, (n − 1)/2, (n − 3)/2)-BIBD. Here, the expressions for the number of points and the
index are simplified using 2m(m + 1) = n(n − 1). The complementary design of this BIBD is
an (m+ 1, n, n−m, (2m− n+ 3)/2, (3n− 4m− 3)/2)-BIBD, and is quasiresidual because the
sum of the block size and the index equals the replication number. If n = 21, then m = 14 and
this complementary design is a (15, 21, 7, 5, 2)-BIBD. Since it is well known that there does not
exist a (15, 21, 7, 5, 2)-BIBD (see [22]), we can conclude that n 6= 21.

Finally, we show that our quasiresidual (m+1, n, n−m, (2m−n+3)/2, (3n−4m−3)/2)-BIBD
is not residual. If it were residual, then it would be the residual of an (n+ 1, n+ 1, n−m,n−
m, (3n−4m−3)/2)-BIBD, but we can use the Bruck-Ryser-Chowla Theorem (see [58]) to show
that no such design exists. Since the number of points is even, it suffices to show that the block
size minus the index is not a perfect square. That is, we only need to show that (2m−n+ 3)/2
is not a perfect square.

Now, it is routine to check that

(n−m− 1)2 = m(m+ 1)− n+ n(n− 1) +m− 2nm+ 1,

from which we obtain

(n−m− 1)2 = 1
2
n(n− 1)− n+ 2m(m+ 1) +m− 2nm+ 1
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by using 2m(m+ 1) = n(n− 1). Thus, we have

(n−m− 1)2 = 1
2
(n2 − 3n) + 2m2 + 3m− 2nm+ 1

and from here it follows easily that

(n−m− 1)2 = 1
2
(2m− n+ 1)(2m− n+ 2).

Since (2m − n + 1)/2 and 2m − n + 2 are relatively prime integers, and since (n −m − 1)2 is
their product, (2m− n+ 1)/2 is a perfect square. Thus, (2m− n+ 1)/2 + 1 = (2m− n+ 3)/2
is not a perfect square, and this completes the proof.

We summarise the necessary conditions we have proved for the existence of a uniform decom-
position of µKn into m-cycles in the following theorem.

Theorem 2.6. For n ≥ 4, if there exists a uniform decomposition of µKn into m-cycles, then

(A) m = n and (n, µ) ∈ {(5, 1), (7, 1), (4, 2), (5, 3)}; or

(B) µ = 2 and m = n− 1; or

(C) µ = 1, n ≡ 3 (mod 4) and m = (n− 1)/2; or

(D) µ = 1, n ≥ 697 and 2m(m+ 1) = n(n− 1).

Moreover, in case (B) n 6= 10, in case (C) n 6= 15 and there exists a Hadamard design with n
points, and in case (D) there exists a quasiresidual (m+ 1, n, n−m, (2m−n+ 3)/2, (3n−4m−
3)/2)-BIBD that is not residual.

Proof. The non-existence of uniform decompositions of 2K10 into 9-cycles and K15 into 7-
cycles has been proved by exhaustive computer search. By Corollary 2.4 and Lemma 2.5, it
remains only to show that if µ = 1 and m = (n− 1)/2, then n ≡ 3 (mod 4) and there exists a
Hadamard design with n points. This follows immediately from Lemma 2.3.

2.3 Some existence results

For n ≥ 4, any uniform decomposition of µKn into m-cycles falls into one of the four cases, (A),
(B), (C) or (D), which are listed in Theorem 2.6. In this section we give our existence results
for uniform decompositions of µKn into m-cycles in each of cases (A)–(C) (we have no such
results for Case (D)). The following lemma gives decompositions for each of the four values of
(n, µ) in Case (A).

Lemma 2.7. There exist uniform decompositions of K5, K7, 2K4 and 3K5 into Hamilton
cycles.

Proof. Up to isomorphism, there is a unique decomposition of K5 into Hamilton cycles and
it is trivially uniform. Any decomposition of K7 into Hamilton cycles is uniform because the
union of any two of the three cycles is necessarily the complement of a 7-cycle. Thus,

{(1, 2, 3, 4, 5, 6, 7), (1, 3, 5, 7, 2, 4, 6), (1, 4, 7, 3, 6, 2, 5)}
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(for example) is a uniform decomposition of K7 into Hamilton cycles. The set

{(1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 2, 4)}

of all Hamilton cycles of K4 is a uniform decomposition of 2K4 into Hamilton cycles. A uniform
decomposition of 3K5 into Hamilton cycles is given by

X = {(1, 2, 3, 4, 5), (1, 3, 2, 5, 4), (2, 4, 3, 1, 5), (3, 5, 4, 2, 1), (4, 1, 5, 3, 2), (5, 2, 1, 4, 3)}.

To see that X is indeed a uniform decomposition of 3K5, observe that X is the orbit of the
cycle (1, 2, 3, 4, 5) under the action of A5, the alternating group acting on {1, 2, 3, 4, 5}, and
that A5 acts 2-transitively on the cycles of X .

Of course, if there is a 2-transitive action on the cycles of any decomposition into cycles, then
the decomposition is uniform. To see this, observe that if Xi and Xj are distinct cycles, and
Xk and X` are distinct cycles, then 2-transitivity tells us that there is an automorphism f such
that f(Xi) = Xk and f(Xj) = X`. Thus, f is a graph isomorphism between Xi ∪ Xj and
Xk ∪X`.

In the next lemma, we present an isolated specific example of a uniform decomposition of 2K6

into 5-cycles.

Lemma 2.8. There exists a uniform decomposition of 2K6 into 5-cycles.

Proof. A uniform decomposition of 2K6 into 5-cycles is given by

X = {(1, 2, 3, 4, 5), (4, 2, 3, 1, 6), (5, 3, 4, 2, 6), (1, 4, 5, 3, 6), (2, 5, 1, 4, 6), (3, 1, 2, 5, 6)}.

To see that X is indeed a uniform decomposition of 2K6, observe that X is the orbit of the
cycle (1, 2, 3, 4, 5) under the action of the group G = 〈(1 2 3 4 5), (1 4)(5 6)〉, and that G ∼= A5

acts 2-transitively on the cycles of X .

In Definition 2.9 we define various sets of (q− 1)-cycles and ((q− 1)/2)-cycles in KFq , where Fq
denotes the field of order q. We show in Lemmas 2.10 and 2.11 that many of these form uniform
decompositions of 2Kq into (q − 1)-cycles or of Kq into ((q − 1)/2)-cycles. Isomorphisms of
these decompositions are discussed in Section 2.4. The decomposition Xq,ω,0 was introduced in
[2], where it was used in the context of decompositions of complete symmetric digraphs on n
vertices into directed cycles of length n− 1 such that any two distinct cycles have exactly one
oppositely directed edge in common. The notation introduced in Definition 2.9 will be used
throughout the rest of the paper.

Definition 2.9. Let q ≥ 4 be a prime power and let ω be primitive in Fq. For each s ∈ Fq, we
define Xs

q,ω,0 to be the cycle

Xs
q,ω,0 = (1 + s, ω + s, ω2 + s, . . . , ωq−2 + s),

and we define Xq,ω,0 = {Xs
q,ω,0 : s ∈ Fq}. Further, if q is odd then for each non-zero integer r

and each s ∈ Fq we define Xs
q,ω,r and Y s

q,ω to be the cycles

Xs
q,ω,r = (1 + s, ω2r+1 + s, ω2 + s, ω2r+3 + s, ω4 + s, . . . , ω−2 + s, ω2r−1 + s),

Y s
q,ω = (1 + s, ω2 + s, ω4 + s, . . . , ω−2 + s),

and we define Xq,ω,r = {Xs
q,ω,r : s ∈ Fq} and Yq,ω = {Y s

q,ω : s ∈ Fq}.
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Lemma 2.10. If q ≥ 4 is a prime power and ω is primitive in Fq, then

• Xq,ω,0 is a uniform decomposition of 2Kq into (q − 1)-cycles;

• if q ≡ 3 (mod 4) and r ∈ Z, then Xq,ω,r is a uniform decomposition of 2Kq into (q − 1)-
cycles; and

• if q ≡ 1 (mod 4) and r ≡ 0 (mod (q − 1)/4), then Xq,ω,r is a uniform decomposition of
2Kq into (q − 1)-cycles.

Proof. For each a, b ∈ Fq with a 6= 0, let ga,b : Fq → Fq be given by ga,b(x) = ax + b for all
x ∈ Fq, let Gq be the group Gq = {ga,b : a, b ∈ Fq, a 6= 0}, and if q is odd let Hq be the subgroup
of Gq given by Hq = {ga,b : a ∈ Q, b ∈ Fq} where Q is the set of non-zero quadratic residues
in Fq. It is well known, and easily verified, that Gq is sharply 2-transitive on Fq, and that if
q ≡ 3 (mod 4), then Hq is sharply 2-homogeneous on Fq. In particular, Gq is transitive on the
edges of KFq and the stabilizer in Gq of an edge has order 2, and if q ≡ 3 (mod 4), then Hq is
transitive on the edges of KFq and the stabilizer in Hq of an edge is trivial.

Let r = 0 if q is even, let r ∈ Z if q is odd, and let f = gω,0. It can be seen that f 2 is an
automorphism of the cycle X0

q,ω,r, and that f is an automorphism of the cycle X0
q,ω,0. It is also

clear that if q = 1 (mod 4) and r ≡ (q − 1)/4 (mod (q − 1)/2), then f is an automorphism of
the cycle

X0
q,ω,r = (1, ω

q+1
2 , ω2, . . . , ω

q−1
2 , ω, ω

q+3
2 , . . . , ωq−3, ω

q−3
2 ) = (1,−ω, ω2,−ω3, . . . , ω−2,−ω−1).

It follows from these observations that Hq ≤ Aut(Xq,ω,r) when q is odd, and that Gq ≤
Aut(Xq,ω,r) when r = 0 and when q ≡ 1 (mod 4) and r ≡ 0 (mod (q − 1)/4) (when r ≡
0 (mod (q − 1)/2) we have X0

q,ω,r = X0
q,ω,0).

Now, note that in general if V is any set of vertices, X is any set of m-cycles in KV and
G ≤ Aut(X ) such that G is transitive on the edges of KV and transitive on the cycles of X ,
then each edge of KV occurs λ times in the cycles of X where λ = m|StabG({x, y})|/|StabG(X)|,
{x, y} is any edge of KV , and X is any cycle of X . Thus, if q ≡ 3 (mod 4), then Xq,ω,r is a
decomposition of 2KFq because Hq ≤ Aut(Xq,ω,r) is transitive on the edges of KFq and on the
cycles of Xq,ω,r, and because |StabHq({x, y})| = 1 and |StabHq(X

0
q,ω,r)| = (q − 1)/2. Also, if

r = 0, or if q ≡ 1 (mod 4) and r ≡ 0 (mod (q − 1)/4), then Xq,ω,r is a decomposition of 2KFq
because Gq ≤ Aut(Xq,ω,r) is transitive on the edges of KFq and on the cycles of Xq,ω,r, and
because |StabGq({x, y})| = 2 and |StabGq(X

0
q,ω,r)| = q − 1.

It remains to show that Xq,ω,r is uniform. Since s is the only element of Fq that is not a vertex

of the cycle Xs
q,ω,r, if g is any automorphism of Xq,ω,r, then g maps Xs

q,ω,r to X
g(s)
q,ω,r. Thus, if

q ≡ 3 (mod 4), then Hq acts transitively on unordered pairs of cycles of Xq,ω,r, and if r = 0,
or if q = 1 (mod 4) and r ≡ 0 (mod (q − 1)/4), then Gq acts transitively on unordered pairs of
cycles of Xq,ω,r (in fact, Gq acts transitively on ordered pairs of cycles of Xq,ω,r). Thus, Xq,ω,r is
uniform.

Lemma 2.11. If q ≥ 7 is a prime power such that q ≡ 3 (mod 4) and ω is primitive in Fq,
then Yq,ω is a uniform decomposition of Kq into ((q − 1)/2)-cycles.

Proof. As in Lemma 2.10, let ga,b : Fq → Fq be given by ga,b(x) = ax + b for all x ∈ Fq,
let Gq be the group Gq = {ga,b : a, b ∈ Fq, a 6= 0}, and let Hq be the subgroup of Gq given
by Hq = {ga,b : a ∈ Q, b ∈ Fq} where Q is the set of non-zero quadratic residues in Fq. Let
m = (q − 1)/2. We claim that Yq,ω is a uniform decomposition of KFq into m-cycles.
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Noting that ga,0 is an automorphism of Y 0
q,ω when a ∈ Q, it is routine to verify that if ga,b ∈ Hq,

then ga,b maps Y s
q,ω to Y as+b

q,ω . It follows that the stabiliser in Hq of Y 0
q,ω is {ga,0 : a ∈ Q}, and

that |orbHq(Y
0
q,ω)| = q. Now, Gq has a regular action on the set of ordered pairs of distinct

elements of Fq, the unique element of Gq that maps (x, y) to (y, x) is g−1,x+y, and g−1,x+y /∈ Hq

because q ≡ 3 (mod 4) implies −1 /∈ Q. It follows that Hq has a regular action on the set of
unordered pairs of distinct elements of Fq. This, together with the fact that |orbHq(Y

0
q,ω)| = q

guarantees that orbHq(Y
0
q,ω) = Yq,ω is a decomposition of KFq into m-cycles. Moreover, together

with the fact that ga,b ∈ Hq implies ga,b maps Y s
q,ω to Y as+b

q,ω , it guarantees that Hq has a regular
action on the set of unordered pairs of distinct cycles of Yq,ω. Thus, Yq,ω is uniform.

The combined results of this section are stated in the following theorem.

Theorem 2.12. Let n ≥ 4. There exist uniform decompositions of µKn into m-cycles in each
of the following cases.

(A) m = n and (n, µ) ∈ {(5, 1), (7, 1), (4, 2), (5, 3)};

(B) m = n− 1, µ = 2 and n = 6 or n is a prime power;

(C) m = (n− 1)/2, µ = 1 and n ≡ 3 (mod 4) is a prime power.

2.4 Isomorphism classes

In this section we determine the isomorphism classes of the uniform decompositions given by
Lemma 2.10 and Lemma 2.11, which belong to Cases (B) and (C) respectively from Theorem
2.6. However, first we briefly discuss isomorphism classes of uniform decompositions of complete
multigraphs into Hamilton cycles (Case (A) of Theorem 2.6), and uniform decompositions of
2K6 into 5-cycles (see Lemma 2.8).

Up to isomorphism, there exists only one decomposition of K5 into Hamilton cycles, and it is
trivially uniform. The number of pairwise non-isomorphic decompositions of K7 into Hamilton
cycles is 2 [21, 27], and, as noted in the proof of Lemma 2.7, both of these are uniform. It is
easily verified that the uniform decompositions of 2K4 and 3K5 into Hamilton cycles given in
the proof of Lemma 2.7 are unique up to isomorphism. For 3K5, simple counting shows that
the union of any pair of cycles must contain exactly two 2-cycles, and then it is easily seen that
these 2-cycles must be vertex disjoint, and that the decomposition is unique. Also, we have
shown by a computer search that up to isomorphism the decomposition given in Lemma 2.8 is
the only uniform decomposition of 2K6 into 5-cycles.

We now determine the isomorphism classes of the uniform decompositions Yq,ω given by Lemma
2.11. We will use these results later in this section to determine the isomorphism classes of the
uniform decompositions Xq,ω,r given by Lemma 2.10.

Lemma 2.13. Let p be prime, let q = pα ≥ 4 such that q ≡ 3 (mod 4), and let ω1 and ω2 be

primitive in Fq. Then the decompositions Yq,ω1 and Yq,ω2 are isomorphic if and only if ω2 = ω±p
k

1

for some k ∈ Z.

Proof. We begin by noting that we have Yq,ω1 = Yq,ω2 if and only if ω1 ∈ {ω2, ω
−1
2 }. Now,

if f : Fq → Fq is the well-known Frobenious automorphism given by f(x) = xp (recall that
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q = pα) for each x ∈ Fq, then it is easily verified that for any primitive element ω, we have
f(Y s

q,ω) = Y sp

q,ωp . Thus, we have Yq,ω ∼= Yq,ωp and hence Yq,ω ∼= Yq,ω±pk (since Yq,ω = Yq,ω−1).

Conversely, suppose there exists an isomorphism f from Yq,ω1 to Yq,ω2 . When q = 7 the result
is trivial, and the result also holds when q = 11 because the decompositions Y11,2 and Y11,7 are
easily seen to be non-isomorphic. Thus, we can assume q > 11. For any primitive element ω, if
we consider the elements of Fq as points and the vertex sets of the cycles of Yq,ω as blocks, then
we obtain the Paley design on q points (the Hadamard design whose blocks are the translates
of the set of quadratic residues in Fq). Thus, f is a Paley design automorphism and so by
Theorem 8.1 of [35], we know that our isomorphism f is given by f(x) = a2σ(x) + b for all
x ∈ Fq where a, b ∈ Fq, a 6= 0, and σ(x) = xp

k
for some k. Noting that any permutation

of the form x 7→ a2x + b is an automorphism of Yq,ω2 , it follows that σ(Yq,ω1) = Yq,ω2 . But

σ(Yq,ω1) = Yq,σ(ω1), and it follows that ω2 = ω±p
k

1 .

The preceding result gives us a lower bound on the number of non-isomorphic uniform decom-
positions of Kq into ((q − 1)/2)-cycles when q ≡ 3 (mod 4) is a prime power. In what follows,
φ denotes Euler’s totient function. Thus, φ(q − 1) is the number of primitive elements in Fq.

Theorem 2.14. If p is prime and q = pα ≥ 7 such that q ≡ 3 (mod 4), then there are at least
φ(q−1)/2α non-isomorphic uniform decompositions of Kq into ((q−1)/2)-cycles. In particular,
the number of isomorphism classes of uniform decompositions of Kq into ((q − 1)/2)-cycles in
{Yq,ω : ω is primitive in Fq} is exactly φ(q − 1)/2α.

Proof. By Lemma 2.13, for primitive elements ω1 and ω2 in Fq, the decompositions Yq,ω1 and

Yq,ω2 are isomorphic if and only if ω2 = ω±p
k

1 for some k ∈ Z. There are φ(q − 1) primitive
elements in Fq, and for each primitive element ω1, there are 2α primitive elements ω2 such

that ω2 = ω±p
k

1 for some k ∈ Z (ω±p
k

1 for each k ∈ {0, 1, . . . , α − 1}). Thus, the number of
isomorphism classes of uniform decompositions of Kq into ((q − 1)/2)-cycles in {Yq,ω : ω is
primitive in Fq} is exactly φ(q − 1)/2α.

We now investigate isomorphism classes of our decompositions Xq,ω,r, which belong to Case (B)
(see Definition 2.9 and Lemma 2.10). In Lemma 2.10 we showed that Xq,ω,r (q a prime power,
ω primitive in Fq) is a uniform decomposition of 2Kq into (q − 1)-cycles where r = 0 when q
is even, r ≡ 0 (mod (q − 1)/4) when q ≡ 1 (mod 4), and r ∈ Z when q ≡ 3 (mod 4). However,
many of these decompositions are identical. It can be verified easily that

• Xq,ω,r = Xq,ω,r+ q−1
2

when q is odd;

• Xq,ω,r = Xq,ω−1,−r; and

• Xq,ω,r = Xq,−ω,r+ q−1
4

when q ≡ 1 (mod 4).

It follows that when q ≡ 1 (mod 4) (and when q is even), any one of the uniform decompositions
of 2Kq into (q − 1)-cycles given in Lemma 2.10 is equal to a decomposition Xq,ω,r with r = 0,
and that when q ≡ 3 (mod 4), any one of the uniform decompositions of 2Kq into (q−1)-cycles
given in Lemma 2.10 is equal to a decomposition Xq,ω,r with r ∈ {0, 1, . . . , (q − 3)/4}. Thus,
from here on we consider only these values of r.

Lemma 2.15. Let p be prime, let q = pα ≥ 4, let ω be primitive in Fq, and let r ∈ {0, 1, . . . , (q−
3)/4} such that r = 0 if q is even or q ≡ 1 (mod 4). Then
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(I) Xq,ω,r ∼= Xq,ωp,r; and

(II) Xq,ω,r ∼= Xq,ω−1,r.

Proof. (I) We have Xq,ω,r = {(1 + s, ω2r+1 + s, ω2 + s, ω2r+3 + s, . . .) : s ∈ Fq}. Thus, since the
mapping x 7→ xp for all x ∈ Fq is an automorphism of Fq, we know that

Xq,ω,r ∼= {(1p + sp, (ω2r+1)p + sp, ω2p + sp, (ω2r+3)p + sp, . . .) : sp ∈ Fq}
= {(1 + s, (ωp)2r+1 + s, (ωp)2 + s, (ωp)2r+3 + s, . . .) : s ∈ Fq}
= Xq,ωp,r.

(II) If r = 0, then X0
q,ω,r = X0

q,ω−1,r and so Xq,ω,r is actually equal to Xq,ω−1,r. Thus, we can
assume that q ≡ 3 (mod 4), and in this case it is routine to check that the mapping x 7→ −x
for all x ∈ Fq is an isomorphism from Xq,ω,r to Xq,ω−1,r, because the image of Xs

q,ω,r under this
mapping is X−sq,ω−1,r.

The next lemma states that there are no isomorphisms between Xq,ω1,0 and Xq,ω2,0 other than
those generated by the isomorphisms of Lemma 2.15.

Lemma 2.16. Let p be prime, let q = pα ≥ 4, and let ω1 and ω2 be primitive in Fq. Then

Xq,ω1,0
∼= Xq,ω2,0 if and only if ω2 = ω±p

k

1 for some k ∈ Z.

Proof. By Lemma 2.15, if ω2 = ω±p
k

1 for some k ∈ Z, then Xq,ω1,0
∼= Xq,ω2,0. Thus, we only

need to prove the converse; namely that Xq,ω1,0
∼= Xq,ω2,0 implies ω2 = ω±p

k

1 .

Assume Xq,ω1,0
∼= Xq,ω2,0. We noted in the proof of Lemma 2.10 that the automorphism

group of Xq,ω1,0 is 2-transitive (on the vertex set). Thus there is an isomorphism f from
Xq,ω1,0 to Xq,ω2,0 such that f(0) = 0 and f(1) = 1. For any primitive element ω and any
s ∈ Fq, the cycle Xs

q,ω,0 contains every vertex of KFq except s, and it follows that for all

s ∈ Fq we have f(Xs
q,ω1,0

) = X
f(s)
q,ω2,0

. In particular, we have f(X0
q,ω1,0

) = X0
q,ω2,0

. That

is, f((1, w1, w
2
1, . . . , w

−1
1 )) = (1, w2, w

2
2, . . . , w

−1
2 ). Since f(1) = 1, this implies that either

f(ωi1) = ωi2 for i = 0, 1, . . . , q − 2 or f(ωi1) = (ω−12 )
i

for i = 0, 1, . . . , q − 2. We first deal with
the case f(ωi1) = ωi2 for i = 0, 1, . . . , q − 2.

It is easy to see that f(xy) = f(x)f(y) for all x, y ∈ Fq. We now proceed to show that
f(x+ y) = f(x) + f(y) for all x, y ∈ Fq, thereby showing that f is a field automorphism. Since
f(0) = 0, we have f(x+ y) = f(x) + f(y) when either x or y is 0.

Now, let i ∈ {0, 1, . . . , q − 2} and consider the cycle

X
ωi1
q,ω1,0

= (1 + ωi1, ω1 + ωi1, ω
2
1 + ωi1, . . . , ω

i−1
1 + ωi1, ω

i
1 + ωi1, ω

i+1
1 + ωi1, . . .).

We have

f(X
ωi1
q,ω1,0

) = X
ωi2
q,ω2,0

= (1 + ωi2, ω2 + ωi2, ω
2
2 + ωi2, . . . , ω

i−1
2 + ωi2, ω

i
2 + ωi2, ω

i+1
2 + ωi2, . . .).

If q is even, then f(ωi1 + ωi1) = f(0) = 0 = ωi2 + ωi2. If q is odd, then the vertex opposite

ωi1 + ωi1 in X
ωi1
q,ω1,0

is 0 (this can be seen by noting that ωi1 is opposite −ωi1 in X0
q,ω1,0

because

ω(q−1)/2 ≡ −1 (mod q)), and similarly the vertex opposite ωi2 +ωi2 in X
ωi2
q,ω2,0

is 0. Thus, we have
also f(ωi1 + ωi1) = ωi2 + ωi2 when q is odd.

Looking at the neighbours of ωi1 +ωi1 in X
ωi1
q,ω1,0

and the neighbours of ωi2 +ωi2 in f(X
ωi1
q,ω1,0

) (see
the above displayed cycles), it follows from f(ωi1 + ωi1) = ωi2 + ωi2 that either
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(1) f(ωi−11 + ωi1) = ωi−12 + ωi2 and f(ωi+1
1 + ωi1) = ωi+1

2 + ωi2; or

(2) f(ωi−11 + ωi1) = ωi+1
2 + ωi2 and f(ωi+1

1 + ωi1) = ωi−12 + ωi2.

Assume, for a contradiction, that (2) holds and now consider the cycle

X
ωi+1
1

q,ω1,0
= (1 + ωi+1

1 , ω1 + ωi+1
1 , ω2

1 + ωi+1
1 , . . . , ωi1 + ωi+1

1 , ωi+1
1 + ωi+1

1 , ωi+2
1 + ωi+1

1 , . . .)

and its image under f , namely

X
wi+1

2
q,ω2,0

= (1 + ωi+1
2 , ω2 + ωi+1

2 , ω2
2 + ωi+1

2 , . . . , ωi2 + ωi+1
2 , ωi+1

2 + ωi+1
2 , ωi+2

2 + ωi+1
2 , . . .).

Similarly to previously, we have f(ωi+1
1 + ωi+1

1 ) = ωi+1
2 + ωi+1

2 and it follows that either

(3) f(ωi1 + ωi+1
1 ) = ωi2 + ωi+1

2 and f(ωi+2
1 + ωi+1

1 ) = ωi+2
2 + ωi+1

2 ; or

(4) f(ωi1 + ωi+1
1 ) = ωi+2

2 + ωi+1
2 and f(ωi+2

1 + ωi+1
1 ) = ωi2 + ωi+1

2 .

However, the first equation of (2) and the first equation of (3) together imply that ω1 ∈ {1,−1},
which is a contradiction (recall that q ≥ 4). Similarly, the first equation of (2) and the second
equation of (4) together imply that ωi−11 +ωi1 = ωi+2

1 +ωi+1
1 , and again we have the contradiction

that ω1 ∈ {1,−1}.

We conclude that (1) holds. Looking again at the cycles X
ωi1
q,ω1,0

and f(X
ωi1
q,ω1,0

), this implies

that we have f(ωi1 + ωj1) = ωi2 + ωj2 for all i, j ∈ {0, 1, . . . , q − 2}. Since we are in the case
f(ωi1) = ωi2 for i = 0, 1, . . . , q − 2 (and since we already noted that f(x + y) = f(x) + f(y)
when either x or y is 0) this completes the proof that f(x+ y) = f(x) + f(y) for all x, y ∈ Fq,
thereby showing that f is a field automorphism. Thus, ω2 = ωp

k

1 for some k ∈ Z. In the other

case, where f(ωi1) = (ω−12 )
i

for i = 0, 1, . . . , q−2, the same argument yields ω2 = ω−p
k

1 for some
k ∈ Z. This completes the proof

Lemma 2.17. Let p be prime, let q = pα ≥ 7 such that q ≡ 3 (mod 4), let ω1 and ω2 be
primitive in Fq, and let r1, r2 ∈ {0, 1, . . . , (q − 3)/4}. Then Xq,ω1,r1

∼= Xq,ω2,r2 if and only if

r1 = r2 and ω2 = ω±p
k

1 for some k ∈ Z.

Proof. By Lemma 2.15, if ω2 = ω±p
k

1 for some k ∈ Z and r1 = r2, then Xq,ω1,r1
∼= Xq,ω2,r2 .

We now prove the converse. For q = 7 it is easily verified that the decompositions X7,3,0

and X7,3,1 are non-isomorphic, and for q = 11 it is easily verified that the decompositions
X11,2,0,X11,2,1,X11,2,2,X11,7,0,X11,7,1 and X11,7,2 are pairwise non-isomorphic (for distinct (ω1, r1), (ω2, r2) ∈
{(2, 0), (2, 1), (2, 2), (7, 0), (7, 1), (7, 2)}, the graphs X0

11,ω1,r1
∪ X1

11,ω1,r1
and X0

11,ω2,r2
∪ X1

11,ω2,r2

are not isomorphic). This proves the result for q ∈ {7, 11} and thus we can assume q > 11.

Suppose there exists an isomorphism f from Xq,ω1,r1 to Xq,ω2,r2 . For each ω ∈ {ω1, ω2} and each
s ∈ Fq, let Zs

q,ω be the cycle (ω + s, ω3 + s, . . . , ω−1 + s), and let Zq,ω = {Zs
q,ω : s ∈ Fq}. As in

the proof of Lemma 2.16, we have f(Xs
q,ω1,r1

) = X
f(s)
q,ω2,r2 for all s ∈ Fq. It follows that for each

s ∈ Fq we have f(Y s
q,ω1

) = Y
f(s)
q,ω2 or f(Y s

q,ω1
) = Z

f(s)
q,ω2 .

We will show that either f(Y s
q,ω1

) = Y
f(s)
q,ω2 for all s ∈ Fq or f(Y s

q,ω1
) = Z

f(s)
q,ω2 for all s ∈ Fq. That

is, we will show that either f(Yq,ω1) = Yq,ω2 or f(Yq,ω1) = Zq,ω2 . To do this we observe the
following properties of Paley designs.
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Recall that the Paley design on q points, which we denote by Pq, has the elements of Fq as its
points and the translates of the set Q of quadratic residues in Fq as its blocks. It is a symmetric
(q, q−1

2
, q−3

4
)-design, and as such any two distinct blocks intersect in exactly (q − 3)/4 points.

The translates of the set Q′ of quadratic non-residues in Fq also form a symmetric (q, q−1
2
, q−3

4
)-

design, which we will denote by P ′q, and the mapping x 7→ −x for all x ∈ Fq is an isomorphism
from Pq to P ′q.

It is easy to verify that if B = Q + s is a block of Pq and B′ = Q′ + s′ is a block of P ′q, then
|B ∩ B′| = (q − 3)/4 if and only if s′ − s ∈ Q (for this, observe that any two blocks of P ′q
intersect in exactly (q − 3)/4 points, and that the additive inverse of a quadratic residue is
a quadratic non-residue). Thus, for each block B in Pq there are exactly (q − 1)/2 blocks of
P ′q that intersect B in exactly (q − 3)/4 points, and for each block B′ in P ′q there are exactly
(q − 1)/2 blocks of Pq that intersect B′ in exactly (q − 3)/4 points. It follows that the only
(q, q−1

2
, q−3

4
)-designs with each block being either a block of Pq or a block of P ′q are Pq or P ′q

themselves.

Now, as we saw in the proof of Lemma 2.13, for any primitive element ω in Fq, if we consider the
elements of Fq as points and the vertex sets of the cycles of Yq,ω as blocks, then we obtain Pq.
Similarly, the vertex sets of the cycles of Zq,ω form the design P ′q. Thus, since the vertex sets

of the cycles of Yq,ω1 form a (q, q−1
2
, q−3

4
)-design, so do the vertex sets of the cycles of f(Yq,ω1).

From our above observations concerning Paley designs, this means that either f(Yq,ω1) = Yq,ω2

or f(Yq,ω1) = Zq,ω2 .

If f(Yq,ω1) = Zq,ω2 , then consider the mapping f ′ : Fq → Fq given by f ′(x) = −f(x) for
all x ∈ Fq. As noted in the proof of Lemma 2.15, the mapping x 7→ −x is an isomorphism
from Xq,ω2,r2 to Xq,ω−1

2 ,r2
, and it is easy to see that x 7→ −x is an isomorphism from Zq,ω2 to

Yq,ω2 . Thus, when f(Yq,ω1) = Zq,ω2 , we have f ′(Xq,ω1,r1) = Xq,ω−1
2 ,r2

and f ′(Yq,ω1) = Yq,ω2 .

Thus, in either case (the case f(Yq,ω1) = Yq,ω2 or the case f(Yq,ω1) = Zq,ω2), there exists a
mapping h : Fq → Fq (h = f if f(Yq,ω1) = Yq,ω2 , and h = f ′ if f(Yq,ω1) = Zq,ω2) such that
h(Xq,ω1,r1) ∈ {Xq,ω2,r2 ,Xq,ω−1

2 ,r2
} and h(Yq,ω1) = Yq,ω2 .

As in the proof Lemma 2.13, since h(Yq,ω1) = Yq,ω2 , the mapping h is a Paley design automor-
phism, and so by Theorem 8.1 of [35], we know that h is given by h(x) = a2σ(x) + b for all
x ∈ Fq where a, b ∈ Fq, a 6= 0, and σ is a Frobenius automorphism. Noting that any permuta-
tion of the form x 7→ a2x + b is an automorphism of each of the decompositions Yq,ω2 , Xq,ω2,r2

and Xq,ω−1
2 ,r2

, it follows that σ(Xq,ω1,r1) ∈ {Xq,ω2,r2 ,Xq,ω−1
2 ,r2
} and σ(Yq,ω1) = Yq,ω2 .

It is easily verified that σ(Yq,ω1) = Yq,σ(ω1), and so we have Yq,σ(ω1) = Yq,ω2 . This last equality
tells us that σ(ω1) ∈ {ω2, ω

−1
2 } (as noted at the beginning of the proof of Lemma 2.13). Thus,

we have ω2 = ω±p
k

1 for some k ∈ Z, and it remains only to prove that r1 = r2. For this, we
note that σ(Xq,ω1,r1) = Xq,σ(ω1),r1 . Since σ(ω1) ∈ {ω2, ω

−1
2 }, and recalling that σ(Xq,ω1,r1) ∈

{Xq,ω2,r2 ,Xq,ω−1
2 ,r2
}, this implies that

Xq,ω2,r1 ∈ {Xq,ω2,r2 ,Xq,ω−1
2 ,r2
} or Xq,ω−1

2 ,r1
∈ {Xq,ω2,r2 ,Xq,ω−1

2 ,r2
},

and in particular that

X0
q,ω2,r1

∈ {X0
q,ω2,r2

, X0
q,ω−1

2 ,r2
} or X0

q,ω−1
2 ,r1

∈ {X0
q,ω2,r2

, X0
q,ω−1

2 ,r2
}.

However, it is easily verified (for example by considering the vertex adjacent to both vertex 1
and vertex ω2 in the cycles X0

q,ω,r and X0
q,ω−1,r for r = 0, 1, . . . , (q− 3)/4) that for any primitive

ω, the cycles
X0
q,ω,1, X

0
q,ω−1,1, X

0
q,ω,2, X

0
q,ω−1,2, . . . , X

0
q,ω, q−3

4

, X0
q,ω−1, q−3

4

23



are pairwise distinct, and also distinct from X0
q,ω,0 = X0

q,ω−1,0. It follows immediately that
r1 = r2.

As a consequence of Lemmas 2.16 and 2.17, we obtain the following theorem.

Theorem 2.18. If p is prime and q = pα ≥ 4, then the number of non-isomorphic uniform
decompositions of 2Kq into (q − 1)-cycles is

• at least (q + 1)φ(q − 1)/8α when q ≡ 3 (mod 4) and

• at least φ(q − 1)/2α otherwise.

In particular, the number of isomorphism classes of uniform decompositions of 2Kq into (q−1)-
cycles in {Xq,ω,0 : ω is primitive in Fq} is exactly φ(q − 1)/2α, and when q ≡ 3 (mod 4)
the number of isomorphism classes of uniform decompositions of 2Kq into (q − 1)-cycles in
{Xq,ω,r : ω is primitive in Fq, r ∈ {0, 1, 2, . . . , (q − 3)/4}} is exactly (q + 1)φ(q − 1)/8α.

Proof. By Lemma 2.16, for primitive elements ω1 and ω2 in Fq, we have Xq,ω1,0
∼= Xq,ω2,0 if and

only if ω2 = ω±p
k

1 for some k ∈ Z. There are φ(q − 1) primitive elements in Fq, and for each

primitive element ω1, there are 2α primitive elements ω2 such that ω2 = ω±p
k

1 for some k ∈ Z.
Thus, the number of isomorphism classes of uniform decompositions of 2Kq into (q − 1)-cycles
in {Xq,ω,0 : ω is primitive in Fq} is exactly φ(q − 1)/2α.

By Lemma 2.17, when q ≡ 3 (mod 4), ω1 and ω2 are primitive elements in Fq, and r ∈
{0, 1, 2, . . . , (q − 3)/4}, we have Xq,ω1,r1

∼= Xq,ω2,r2 if and only if ω2 = ω±p
k

1 for some k ∈ Z
and r1 = r2. There are φ(q − 1) primitive elements in Fq and (q + 1)/4 values of r1 in
{0, 1, . . . , (q−3)/4}, and for each primitive element ω1, there are 2α primitive elements ω2 such

that ω2 = ω±p
k

1 for some k ∈ Z. Thus, the number of isomorphism classes of uniform decom-
positions of 2Kq into (q − 1)-cycles in {Xq,ω,r : ω is primitive in Fq, r ∈ {0, 1, 2, . . . , (q − 3)/4}}
is exactly (q + 1)φ(q − 1)/8α.

2.5 Concluding Remarks

In this section we summarise our results, make some observations, and mention some open
questions. Theorem 2.6 shows that for n ≥ 4, any uniform decomposition of µKn into m-cycles
falls into one of the following four cases.

(A) m = n and (n, µ) ∈ {(5, 1), (7, 1), (4, 2), (5, 3)}.

(B) µ = 2 and m = n− 1.

(C) µ = 1, n ≡ 3 (mod 4) and m = (n− 1)/2.

(D) µ = 1 and 2m(m+ 1) = n(n− 1).

We discuss each of these in turn.

Case (A) covers uniform decompositions of µKn into Hamilton cycles, and such decompositions
exists for K5, K7, 2K4 and 3K5 only (and for µK2 for all even µ, and for µK3 for all µ). Up to
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isomorphism, the uniform decompositions of K5, 2K4 and 3K5 into Hamilton cycles are unique.
There are exactly two decompositions of K7 into Hamilton cycles, and they are both uniform.

In Case (B), we know from Theorems 2.6 and 2.12 that uniform decompositions of 2Kn into
(n − 1)-cycles exist for 3 ≤ n ≤ 9 but not for n = 10, and that such decompositions exist
whenever n is a prime power. Indeed, if n is a prime power, say n = pα where p is prime, then
we have constructed φ(n− 1)/2α non-isomorphic uniform decompositions of 2Kn into (n− 1)-
cycles when n ≡ 0 or 1 (mod 4), and (n+1)φ(n−1)/8α non-isomorphic uniform decompositions
of 2Kn into (n − 1)-cycles when n ≡ 3 (mod 4), see Theorem 2.18. The existence of uniform
decompositions of 2Kn into (n − 1)-cycles remains an open question for all n ≥ 12 such that
n is not a prime power. Exhaustive computer searches have shown that up to isomorphism
the uniform decomposition of 2K6 into 5-cycles given in Lemma 2.8 is unique, and that for
n ∈ {3, 4, 5, 7, 8, 9, 11} every uniform decomposition of 2Kn into (n− 1)-cycles is isomorphic to
Xn,ω,r for some primitive ω ∈ Fn and some r ∈ {0, 1, . . . , (q − 3)/4}.

If X is any uniform decomposition of 2Kn into (n − 1)-cycles, then |X | = n and the union
of any two distinct cycles of X contains exactly one 2-cycle (because there are

(
n
2

)
pairs of

cycles in X , and also
(
n
2

)
2-cycles in 2Kn) and exactly four triangles (by Lemma 2.1). Thus,

any uniform decomposition of 2Kn into (n − 1)-cycles is an orthogonal double cover of Kn

with (n− 1)-cycles. An orthogonal double cover of Kn with a graph G is a set of subgraphs of
Kn, each isomorphic to G, such that every edge of Kn occurs in exactly two of the subgraphs,
and any two of the subgraphs have exactly one edge in common. See [28] for a survey on
orthogonal double covers of graphs. Not all orthogonal double covers of Kn with (n− 1)-cycles
are uniform. For example, there is an orthogonal double cover of K10 with 9-cycles, but no
uniform decomposition of 2K10 into 9-cycles. It is conjectured that there exists an orthogonal
double cover of Kn with (n − 1)-cycles for all n ≥ 4 (see [29]), and it is known that such an
orthogonal double cover exists for 4 ≤ n ≤ 102 (see [42]), but the conjecture is unresolved in
general.

We now discuss Case (C), uniform decompositions of Kn into ((n− 1)/2)-cycles, the existence
of which requires n ≡ 3 (mod 4). We know that such decompositions exist when n is a prime
power, and (by exhaustive computer search) that there is no uniform decomposition of K15 into
7-cycles, but the existence of uniform decompositions of Kn into ((n−1)/2)-cycles is unresolved
for all other n ≡ 3 (mod 4), with the smallest unresolved case being the existence of a uniform
decomposition of K35 into 17-cycles. Up to isomorphism, the uniform decomposition of K7 into
3-cycles is unique, and a computer search has shown that there are no uniform decompositions
of K11 into 5-cycles other than Y11,2 and Y11,7. If n ≡ 3 (mod 4) is a prime power, say n = pα

where p is prime, then we have constructed φ(n−1)/2α non-isomorphic uniform decompositions
of Kn into ((n− 1)/2)-cycles, see Theorem 2.14.

As noted in the introduction (also see Lemma 2.3 and Theorem 2.6), the associated design of
a uniform decomposition of Kn into ((n− 1)/2)-cycles is a Hadamard design on n points, and
the well-known Hadamard Conjecture asserts the existence of these for all n ≡ 3 (mod 4) (see
[22] page 274). However, the existence of a Hadamard design on n points does not guarantee
the existence of a uniform decomposition of Kn into ((n − 1)/2)-cycles. There is no uniform
decomposition of K15 into 7-cycles, despite the existence of Hadamard designs on 15 points.

The final case to discuss is uniform decompositions of Kn into m-cycles where 2m(m + 1) =
n(n− 1), Case (D). The first four integer values of n and m that satisfy 2m(m+ 1) = n(n− 1),
with n > 1 odd, are (n,m) = (21, 14), (697, 492), (23 661, 16 730), (803 761, 568 344). We saw in
Lemma 2.5 that the non-existence of a (15, 21, 7, 5, 2)-BIBD rules out a uniform decomposition
of K21 into 14-cycles. Whether or not there exists a uniform decomposition of Kn into m-cycles
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for the larger values of n and m in this case remains open, with the existence of the associated
quasiresidual designs that are not residual also unresolved. We think that constructing uniform
decompositions in Case (D) will be a very difficult problem, especially if they don’t exist!

We saw in the proof of Lemma 2.5 that the odd values of n for which there is an integer solution
to 2m(m+1) = n(n−1) are given by n ∈ {n1, n2, . . . } where n1, n2, . . . is the sequence given by
n1 = 1, n2 = 21 and the recurrence relation ni = 34ni−1 − ni−2 − 16 for i ≥ 3. We remark that
the integer values of n and m satisfying 2m(m+ 1) = n(n− 1) with n odd can alternatively be
parameterized by n = 2s+ 2k − 1 and m = s+ 2k − 2 where

k ∈ {x ≥ 1 : x− 1 and 2x− 1 are both perfect squares} = {1, 5, 145, 4901, 166465, . . .}

and s = (2k − 1)
1
2 (k − 1)

1
2 ; with the associated quasiresidual designs being (s + 2k − 1, 2s +

2k − 1, s+ 1, k, s− k + 1)-BIBDs.

We observe below that all of the examples of uniform decompositions of complete graphs into
cycles presented in this paper have an automorphism group that acts 2-homogeneously on the
cycles. This raises the question of whether or not there exist any uniform decompositions of
complete graphs into cycles for which the automorphism group does not have a 2-homogeneous
action on the cycles. We know of no such decompositions of complete graphs, but there does ex-
ist a uniform decomposition into Hamilton cycles of K12−I, the graph obtained from K12 by re-
moving the edges of a 1-factor, such that the automorphism group does not act 2-homogeneously
on the cycles.

It is easily verified that the orbit of the cycle X = (0, 2, 1, 6, 3, 9, 7, 4, 8,∞1, 5,∞2) under the
permutation ρ = (0 2 4 6 8)(1 3 5 7 9)(∞1)(∞2) is a uniform decomposition of K12 − I into
Hamilton cycles (one only needs to check that X ∪ ρ(X) is isomorphic to X ∪ ρ2(X)). To
see that the automorphism group of this decomposition does not act 2-homogeneously on the
cycles, observe that X∪ρ(X) and X∪ρ2(X) each contain exactly one copy of K4−e, the graph
obtained from K4 by removing an edge. Denote the copy of K4− e in X ∪ ρ(X) by Z1 and the
copy of K4 − e in X ∪ ρ2(X) by Z2. Now, X contains three edges of Z1 and ρ2(X) contains
three edges of Z2, but ρ(X) contains two adjacent edges of Z1 and X contains two non-adjacent
edges of Z2. Thus, there can be no automorphism of the decomposition that maps {X, ρ(X)}
to {X, ρ2(X)}.

For our decompositions Xq,ω,r of 2Kn into (n − 1)-cycles and our decompositions Yq,ω of Kn

into ((n − 1)/2)-cycles, the existence of this 2-homogeneous action on the cycles is shown in
the proofs of Lemmas 2.10 and 2.11. Indeed, in the proof of Lemma 2.10 it is noted that the
automorphism group of Xq,ω,r acts 2-transitively on the cycles when r = 0. The automorphism
groups of the uniform decompositions of 3K5 into Hamilton cycles (see Lemma 2.7) and 2K6

into 5-cycles (see Lemma 2.8) are each isomorphic to the alternating group A5, and in each case
the group acts 2-transitively on the six cycles of the decomposition. The automorphism groups
of the uniform decompositions of 2K4 and K5 into Hamilton cycles also have a 2-transitive
action on the cycles.

Up to isomorphism, there are exactly two non-isomorphic decompositions of K7 into Hamilton
cycles [21, 27],

W = {(1, 2, 3, 4, 5, 6, 7), (1, 3, 5, 7, 2, 4, 6), (1, 4, 7, 3, 6, 2, 5)}

and
W ′ = {(1, 2, 3, 4, 5, 6, 7), (1, 3, 5, 7, 4, 2, 6), (1, 4, 6, 3, 7, 2, 5)}.

It can be seen that (1 2 4)(3 6 5)(7) is an automorphism of W and that (1 7 4)(2 5 6)(3) is an
automorphism ofW ′, and that in each case the automorphism permutes the three cycles of the
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decomposition in a single cycle. It follows that the automorphism groups act 2-homogeneously
on the cycles of the decompositions. It is also easy to verify that for each of the two decompo-
sitions of K7 into Hamilton cycles, the automorphism group does not act 2-transitively on the
cycles.

As a final comment, we observe that in both cases (B) and (C) the number of cycles in a
uniform decomposition is equal to the number of vertices in the graph being decomposed, and
that in both cases (B) and (D) the number of cycles is one more than the cycle length.
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Chapter 3

Computational analysis and programs

Computation was a significant part of this project. In this section, we discuss the algorithms
we used to search for uniform graph decompositions. These algorithms allowed us to construct
small uniform graph decompositions, and to prove that certain graph decompositions do not
exist.

We define a partial decomposition of a graph G to be a decomposition of a subgraph of G. Thus
any subset of a decomposition of G is a partial decomposition of G. Since a partial decomposi-
tion of G is still a graph decomposition, the definitions of a uniform partial decomposition and
a partial cycle decomposition are clear.

3.1 Graph isomorphism

In order to determine whether a graph decomposition is uniform, we need to be able to check
whether two graphs are isomorphic. This is the well-known graph isomorphism problem. There
is no known worst-case polynomial-time graph isomorphism algorithm, although the problem is
also not known to be NP-complete [47]. In particular, the lowest worst-case time complexity yet
proved is eO(

√
n logn) [8]. However, Babai [9] recently published a graph-isomorphism algorithm

claimed to have time complexity e(logn)
O(1)

. Babai then retracted the claim, but has revised the
algorithm and now claims that the revision restores that time complexity [10].

Since there is no deterministic polynomial-time algorithm for graph isomorphism, a number of
non-deterministic algorithms have been developed. One of these is nauty, written by McKay and
Piperno [47]. We refer to nauty in several of the algorithms in this chapter. nauty is a canonical
labelling algorithm. A canonical labelling algorithm is one which relabels graph vertices in such
a way that any two isomorphic graphs will be identical after relabelling; we call the relabelled
graph the canonical labelling or canonical form of the original graph. McKay and Piperno’s
paper also provides a summary of some other competitive graph isomorphism algorithms, not
all of which involve canonical labelling. As McKay and Piperno write, “Although none of
the programs tested have the best performance on all graph classes, it is clear that Traces is
currently the leader on the majority of difficult graph classes tested, while nauty is still preferred
for mass testing of small graphs.” [47]

Since we could only search for uniform decompositions of small graphs, and each search in-
volved a potentially large number of graph isomorphism tests, this made nauty a suitable
graph isomorphism algorithm for our problem.
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3.2 Algorithms for constructing decompositions of small

graphs

In this project, we often needed to construct decompositions of small graphs computationally.
Finding uniform decompositions of small graphs provided a starting point for identifying more
general constructions. By making the construction algorithms exhaustive, we were also able to
prove the nonexistence of certain decompositions (such as uniform Hamilton decompositions of
K9 and K15). The algorithm we used most often is given below as Algorithm 4. Algorithm 4 is
a nested depth-first search for uniform cycle decompositions (i.e. a depth-first search for cycles
in such a decomposition, where each cycle is generated by a depth-first search). However, in
order to understand this algorithm, it is simpler to start with a nested depth-first search for
cycle decompositions in general, which we describe in Algorithm 2.

Let G be a graph with vertices {0, 1, 2, ..., n − 1}, and let H be a subgraph of G. We wish
to construct all H-decompositions of G. We start with an empty partial decomposition of
G. For any given partial H-decomposition {D0, D1, ..., Dx} of G, we first check if the partial
decomposition is a decomposition of G. If so, we print that decomposition and then backtrack
to the partial decomposition {D0, D1, ..., Dx−2} (as there exists no other H-decomposition of G
containing {D0, D1, ..., Dx−1}). If not, we use a depth-first search to find the lexicographically
least subgraph E ∼= H of G \ (D0 ∪ D1 ∪ ... ∪ Dx), and recurse to the partial decomposi-
tion {D0, D1, ..., Dx, E}, continuing on that branch until all possible H-decompositions of G
containing the partial decomposition {D0, D1, ..., Dx, E} have been found. We then backtrack
and try the lexicographically next least subgraph E ∼= H of G \ (D0 ∪ D1 ∪ ... ∪ Dx). Once
all such subgraphs have been considered, we backtrack to the previous partial decomposition,
{D0, D1, ..., Dx−1}. Once all branches of the search have concluded, every H-decomposition of
G will have been printed.

This search will construct every H-decomposition of G. However, we only need at least one
representative from each isomorphism class of such decompositions. As such, we can optimize
the search in two ways; firstly, in searching for each candidate subgraph E we can assume that
E contains the lexicographically least edge in G \ (D0 ∪D1 ∪ ...∪Dx), as any decomposition of
G contains some subgraph with that edge and the ordering of subgraphs is arbitrary. Thus we
need not backtrack to before the first edge of E. Secondly, if G = Kn then the vertex labelling
of G is arbitrary and so we need only consider the lexicographically least choice of D0 (and so
need not backtrack to other candidates for D0).

Algorithm 2 is an example of this, and is a depth-first search on possible cycles for a decom-
position of a graph G into m-cycles. Given a partial decomposition {D0, D1, ..., Dx} of G,
Algorithm 2 uses Algorithm 1 to identify the possible cycles E, and then calls itself to examine
each partial decomposition {D0, D1, ..., Dx, E}. Algorithm 1 is a depth-first search through
G \ {D0, D1, ..., Dx} to identify each possible cycle E.
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Algorithm 1: Build cycle (G, m, P )
Input: a graph G
Input: an integer m, the length of the cycle to build.
Input: a path P = [p1, p2, ..., pi] of length no greater than m.
1: if i = m
2: if p1 is adjacent to pi in G
3: Store the cycle C = (p1, p2, ..., pi).
4: else
5: for each vertex v of G which is not in P and is adjacent to pi in G
6: Build cycle (G, m, P ∪ [pi, v])

Algorithm 2: Build cycle decomposition (G, m, r, D)
Input: a graph G
Input: an integer m, the length of the cycles in the decomposition of G
Input: an integer r, the number of cycles in the decomposition of G (r = |E(G)|/m)
Input: a partial decomposition D of G into cycles of length m.
1: if |D| = r
2: Store the decomposition D.
3: else
4: Set x1, x2 to be the lexicographically least edge in G which is not in any cycle of D
5: Set G′ = G
6: For each cycle D of D:
7: Remove the edges of D from G′

8: For each cycle C produced by Build cycle (G′, m, [x1, x2])
9: Build cycle decomposition (G, m, r, D ∪ {C})

Given the graph G, cycle length m, number of cycles r and an empty partial decomposition D =
∅, Algorithm 2 will produce at least one member of each isomorphism class of decompositions
of G into cycles of length m. In order to find only uniform decompositions, we can modify
Algorithm 2 by only accepting those cycles C such that C ∪ D is isomorphic to D0 ∪ D1 for
all D ∈ D, where D0 and D1 are the first two cycles of D. We apply those modifications in
Algorithm 4.

If G is a complete multigraph µKn, we can further restrict the search for uniform m-cycle
decompositions of G by considering the number of triangles and 2-cycles in C ∪D. By Lemma
2.1, the number of triangles in C ∪ D is equal to 4µm2

µn(n−1)−2m . By the proof of Corollary 2.2,

the number of 2-cycles in C ∪ D is
(n2)(

µ
2)

((µ(n−1))/2
2 )

= n(µ−1)
µ(n−1)−2 . Algorithm 3 is used to filter out

partial decompositions which do not meet this restriction; it returns failure if G is a complete
multigraph and C and D do not form the appropriate number of triangles and double edges,
or success otherwise.

30



Algorithm 3: Check union graph (G, C, D)
Input: A graph G
Input: An m-cycle C in G
Input: An m-cycle D in G
1: if G is not a complete multigraph µKn

2: Return success.
3: else
4: if the number of triangles in C ∪D is 4µm2

µn(n−1)−2m and the number of 2-cycles in C ∪D
is n(µ−1)

µ(n−1)−2
5: Return success.
6: else
7: Return failure.

Algorithm 4: Build uniform cycle decomposition (G, m, r, D)
Input: a graph G
Input: an integer m, the length of the cycles in the decomposition of G
Input: an integer r, the number of cycles in the decomposition of G (r = |E(G)|/m)
Input: a partial decomposition D of G into cycles of length m.
1: if |D| = r
2: Store the decomposition D.
3: else
4: Set x1, x2 to be the lexicographically least edge in G which is not in any cycle of D
5: Set G′ = G
6: For each cycle D in D:
7: Remove the edges of D from G′

8: For each cycle C produced by Build cycle (G′, m, [x1, x2])
9: if D is not empty
10: Set D0 to be the first cycle of D
11: For each cycle D in D \ {D0}
12: if D ∪ D0 6∼= C ∪ D or Check union graph (G, C, D) returns
failure
13: Discard C.
14: if C was not discarded
15: Build uniform cycle decomposition (G, m, r, D ∪ {C})
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3.2.1 Nonexistence of uniform Hamilton decompositions of K9 and
K15

We showed in Chapter 2, Corollary 2.2 that there exists a uniform Hamilton decomposition
of Kn only if n = 3, 5, 7, 9, 15. In addition, we claimed that there does not exist a uniform
Hamilton decomposition of K9 or K15, based on the use of computer searches. In this section
we describe those exhaustive computer searches.

We used Algorithm 4 to search for uniform Hamilton decompositions of K9. No such decom-
positions were found. Since Algorithm 4 is exhaustive, this is sufficient to show that K9 does
not have any uniform Hamilton decompositions. To independently verify this result, we wrote
a program based on a different algorithm which we now describe.

Up to isomorphism, there are 122 distinct Hamilton decompositions of K9 [21, 27]. Thus in
order to disprove the existence of a uniform Hamilton decomposition of K9, it suffices to prove
that none of these 122 decompositions are uniform. By Lemma 2.1, any uniform Hamilton
decomposition of K9 has 6 triangles in the union of any two cycles. Thus we can use Algorithm
5, below, to examine the Hamilton decompositions of K9 for this restriction.

Algorithm 5: Check triangle count (D)
Input: a Hamilton decomposition D = {D0, D1, D2, D3} of K9

1:For each cycle Di in D
2: For each cycle Dj 6= Di in D
3: if Di ∪Dj does not contain exactly 6 triangles
4: Return failure.
5:Return success.

Applying Algorithm 5 to each of the Hamilton decompositions of K9 shows that only four such
decompositions contain exactly 6 triangles in the union of each pair of cycles. It is easily verified
by hand that those four decompositions are not uniform.

The existence or nonexistence of uniform Hamilton decompositions of K15 cannot be determined
in either of these ways; no list of the Hamilton decompositions of K15 exists, and Algorithm 4
is too slow. We had to apply other optimisations in order to perform an exhaustive search in
a reasonable amount of time. In particular, we constructed categories of 15-cycles such that if
there exists a uniform Hamilton decomposition of K15, there exists one which contains cycles
from only one of those categories. Then we searched through each individual category instead
of searching through all possible cycles.

Assume there is a uniform Hamilton decomposition of K15. Then (as relabelling the vertices is
an automorphism of K15) there is a uniform Hamilton decomposition D of K15 with the cycle
D0 = (0, 1, 2, 3, ..., 14). In addition, the union of any two distinct cycles Di, Dj in D must be
isomorphic to D0∪Dk for all Dk ∈ D, k 6= 0, and must contain exactly five triangles by Lemma
2.1. Consequently, we can construct all possible cycles Di in Kn\D0 and categorise them by the
graph D0 ∪Di. Any uniform decomposition will consist only of D0 and cycles within one such
category. All the cycles can be constructed using Algorithm 1: Build cycle (K15 \D0, 15, [0]).

There are 805491 connected 4-regular graphs on 15 vertices [51][52], and of these, 162645 con-
tain exactly five triangles [52]. For each of these graphs, we wish to construct the category
of all cycles Di such that D0 ∪ Di is isomorphic to that graph. Thus for each graph D0 ∪ Di

with five triangles, we must determine to which of the 162645 graphs it is isomorphic. A linear
search would require an average of 81323 comparisons. Fortunately, as we test isomorphisms
using canonical labelling, the canonical forms of the listed graphs can be sorted into a lexi-
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cographical ordering. Thus the canonical form of D0 ∪ Di can be found in that list using a
binary search in only log2(162645) ≈ 18 graph-equality comparisons. Di is then placed in the
category corresponding to the 4-regular graph isomorphic to D0 ∪ Di. Algorithm 6 describes
the categorisation process.

Algorithm 6: Categorise cycles for decomposition (G, S)
Input: The set G of 4-regular graphs on 15 vertices with five triangles.
Input: A set S of Hamilton cycles in K15 which are disjoint from D0 and form exactly five
triangles in union with D0.
1:For each 4-regular graph Gi in G
2: Use nauty to get the canonical form of Gi

3: Store the canonical form of Gi in a list L
4:Sort L in ascending order.
5:For each canonical graph in L
6: Create a file with number equal to the position of the canonical graph in L.
5:For each cycle Si in S
6: Use nauty to get the canonical form Ti of Si ∪D0.
7: Use a binary search to find Ti in L.
8: Print Si to the file corresponding to the position of Ti in L.

With this optimisation in place, we were able to categorise all possible 15-cycles in K15 \ D0

whose unions with D0 contain exactly five triangles. The categorisation took approximately
1 week of running time, without parallelisation. The largest two categories held 9360 cycles
each. Five categories held no cycles, from which we can conclude those 4-regular graphs have
no Hamilton decomposition. We estimate the total number of cycles categorised to be approx-
imately 109.

We then searched the cycles of each category for a Hamilton decomposition of K15 such that
the union of any two cycles contains exactly five triangles (a necessary condition for the de-
composition to be uniform). We used a depth-first search as described by Algorithm 7, below.

Algorithm 7: Find decompositions in category (D, S)
Input: A partial Hamilton decomposition D of K15

Input: A set of cycles S such that Si ∪D0
∼= Sj ∪D0 for all Si, Sj ∈ S

1:if |D| = 7
2: Print D
3: Terminate
4:Set {v1, v2} to be the lexicographically least edge not in any cycle of S
5:For each cycle S in S containing {v1, v2} and edge-disjoint from D
6: For each cycle Di in D
7: if S ∪Di does not contain exactly five triangles
8: Continue to the next iteration of the loop at line 5
9: Create D′ = D ∪ {S}
10: Find decompositions in category (D′,S)

The use of Algorithm 7 is easily parallelised, since the result from each category depends only
on the cycles in that category. Running on a single computer with a 4-core processor, we were
able to search all categories in approximately 1 week.

Only one category contained cycles which formed a Hamilton decomposition in which every
union of two distinct cycles contained exactly five triangles. Ten such decompositions were
found, but none of them are uniform.
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3.2.2 Uniform (n−12 )-cycle decompositions of Kn

Suppose there exists a uniform decomposition of Kn into (n−1
2

)-cycles. Then we proved in
Theorem 2.6 that there exists a Hadamard design of order n. Thus n ≡ 3 (mod 4). In addition,
we proved that the union of any two cycles in the decomposition contains precisely one triangle
when n > 7.

We proved in Lemma 2.11 that there exists a uniform (n−1
2

)-cycle decomposition of Kn whenever
n ≡ 3 (mod 4) and n is a prime power, using the construction Yq,ω. We claimed every uniform
5-cycle decomposition of K11 is isomorphic to Y11,2 or Y11,7 and there is no uniform 7-cycle
decomposition of K15. Both of these claims relied on computer searches which we now describe.

We used Algorithm 4 to search for uniform 5-cycle decompositions of K11. We found 2880
distinct decompositions, of which 1440 were isomorphic to Y11,2 and 1440 were isomorphic to
Y11,7. Thus there exists no other uniform 5-cycle decomposition of K11.

We found that, in practice, Algorithm 4 was too slow to search for a uniform 7-cycle decom-
position of K15. Consequently, we applied a modified version of Algorithm 6 and Algorithm 7
to this problem. Unlike the problem of searching for uniform Hamilton decompositions of K15,
there was no pre-existing list of possible union graphs. Thus we needed to construct such a list.

Assume there is a uniform decomposition of K15 into 7-cycles. Then there is a uniform 7-
cycle decomposition D of K15 with the cycle D0 = (0, 1, 2, 3, 4, 5, 6). In addition, we proved in
Lemma 2.1 that D0 ∪D1 contains precisely one triangle and in Lemma 2.3 that D0 intersects
D1 in precisely 3 vertices, where D1 is in D \ D0. In addition, we can assume without loss
of generality that D1 contains the lexicographically least edge in D \ D0. It follows that
Algorithm 1 can be used to construct all possible candidates for D1. Since we are interested in
the graph D0 ∪D1, we removed any candidate cycles D∗1 where D0 ∪D∗1 ∼= D0 ∪D′1 and D′1 is
a candidate cycle lexicographically less than D∗1. The resultant set of candidate cycles for D1

is {(0, 2, 5, 7, 8, 9, 10), (0, 2, 7, 4, 8, 9, 10), (0, 2, 7, 5, 8, 9, 10), (0, 2, 7, 6, 8, 9, 10), (0, 2, 7, 8, 1, 9, 10),
(0, 2, 7, 8, 3, 9, 10), (0, 2, 7, 8, 4, 9, 10)}. Let this set be T , and let G = {D0∪D1 : D1 ∈ T}. Then
if there exists a uniform 7-cycle decomposition of K15, then the union of any two cycles in that
decomposition must be isomorphic to some graph G in G.

Since |G| = 7, it was not necessary to sort the set of canonical forms of graphs in G or to use a
binary search to find them. Thus we used a simplified version of Algorithm 6 to categorise all
possible cycles in a uniform decomposition (as generated by Algorithm 1) by their union with
D1 in G. Then we used a modified version of Algorithm 7 to search for uniform decompositions
in each category. No uniform decompositions were found. Since this search is exhaustive, it
follows that there exist no uniform 7-cycle decompositions of K15.

When n is not a prime power, n > 15 and n ≡ 3 (mod 4), it is not known whether there exists
a uniform (n−1

2
)-cycle decomposition of Kn. When n is a prime power, n > 11 and n ≡ 3 (mod

4), it is not known whether every uniform (n−1
2

)-cycle decomposition of Kn is isomorphic to
some Yn,ω.

3.3 Specific graph decompositions

In Chapter 2 we have already enumerated all the uniform Hamilton decompositions of µKn,
and proved that they are unique up to isomorphism, except for the case of K7, which has two
uniform Hamilton decompositions (both enumerated in Chapter 2). Here we will enumerate
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some other uniform decompositions found using computational methods.

3.3.1 Uniform (n− 1)-cycle decompositions of 2Kn

Suppose there exists a uniform decomposition D = {D0, D1, ..., Dn−1} of 2Kn into (n − 1)-
cycles, where V (Kn) = {0, 1, 2, ..., n − 1}. We can assume without loss of generality that Di

does not contain the vertex i, since each cycle misses precisely one vertex and the ordering of
the cycles is arbitrary. Furthermore, we can assume that D0 = (1, 2, 3, ..., n − 1) since vertex
labelling is arbitrary. Finally, for each cycle Di = (v0, v1, ..., vn−2), we can assume without loss of
generality that v0 is the lexicographically least vertex of Di and v1 is the lexicographically least
neighbour of v0 in Di. Using these assumptions, we wrote a program implementing Algorithm
4 to construct uniform decompositions of 2Kn into (n − 1)-cycles when 5 ≤ n ≤ 11, which
was exhaustive in that its output contained at least one representative from each isomorphism
class of such decompositions. The program did not check whether any two decompositions
produced were isomorphic; thus, the output included multiple isomorphic uniform (n−1)-cycle
decompositions of 2Kn in some cases. The output was subsequently checked for isomorphism
and the tables below include only one representative from each isomorphism class.

All of the decompositions found are isomorphic to those generated by the construction Xq,ω,r
given in Chapter 2, except for the decomposition of 2K6 which is also given in Chapter 2.
Since Algorithm 4 is exhaustive, it follows that the construction Xq,ω,r generates all uniform
(n− 1)-cycle decompositions of 2Kn when n ≤ 11 and n is a prime power.

2K5, 2K6, 2K7:

Uniform decomposition of Uniform decomposition of Uniform decompositions of
2K5 into 4-cycles 2K6 into 5-cycles 2K7 into 6-cycles

(1 2 3 4) (1 2 3 4 5) (1 2 3 4 5 6) (1 2 3 4 5 6)
(0 2 4 3) (0 2 4 3 5) (0 2 4 5 3 6) (0 2 5 4 6 3)
(0 3 1 4) (0 1 4 5 3) (0 1 4 6 5 3) (0 1 3 5 6 4)
(0 1 2 4) (0 2 5 1 4) (0 2 5 1 6 4) (0 4 1 6 2 5)
(0 1 3 2) (0 3 1 2 5) (0 3 6 2 1 5) (0 3 5 1 2 6)

(0 1 3 2 4) (0 4 1 3 2 6) (0 1 4 2 3 6)
(0 1 3 4 2 5) (0 2 4 3 1 5)

Isomorphic to Cannot be constructed as Isomorphic to Isomorphic to
X5,2,0 X6,ω,0 X7,3,0 X7,3,1
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2K8 and 2K9:

Uniform decompositions of Uniform decompositions of
2K8 into 7-cycles 2K9 into 8-cycles

(1 2 3 4 5 6 7) (1 2 3 4 5 6 7 8)
(0 3 5 6 2 7 4) (0 3 2 7 5 8 4 6)
(0 4 6 7 3 1 5) (0 4 3 8 6 1 5 7)
(0 5 7 1 4 2 6) (0 5 4 1 7 2 6 8)
(0 6 1 2 5 3 7) (0 1 7 3 8 2 5 6)
(0 1 4 6 3 2 7) (0 2 8 4 1 3 6 7)
(0 1 3 4 7 5 2) (0 3 1 5 2 4 7 8)
(0 2 4 5 1 6 3) (0 1 8 5 3 6 2 4)

(0 2 1 6 4 7 3 5)
Isomorphic to Isomorphic to
X8,ω,0 X9,ω,0

for primitive ω in F8 for primitive ω in F9

2K10:

By exhaustive computer search, there exist no uniform decompositions of 2K10 into 9-cycles.

2K11:

Uniform decompositions of 2K11 into 10-cycles
(1 2 3 4 5 6 7 8 9 10) (1 2 3 4 5 6 7 8 9 10)
(0 2 5 7 3 10 4 9 8 6) (0 3 2 6 9 4 10 8 5 7)
(0 3 6 8 4 1 5 10 9 7) (0 4 3 7 10 5 1 9 6 8)
(0 4 7 9 5 2 6 1 10 8) (0 5 4 8 1 6 2 10 7 9)
(0 5 8 10 6 3 7 2 1 9) (0 6 5 9 2 7 3 1 8 10)
(0 6 9 1 7 4 8 3 2 10) (0 1 9 2 4 8 3 10 6 7)
(0 1 3 4 9 5 8 2 10 7) (0 2 10 3 5 9 4 1 7 8)
(0 2 4 5 10 6 9 3 1 8) (0 3 1 4 6 10 5 2 8 9)
(0 3 5 6 1 7 10 4 2 9) (0 4 2 5 7 1 6 3 9 10)
(0 4 6 7 2 8 1 5 3 10) (0 1 10 4 7 2 8 6 3 5)
(0 1 4 6 2 9 3 8 7 5) (0 2 1 5 8 3 9 7 4 6)

Isomorphic to:
X11,2,0 X11,7,0
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Uniform decompositions of 2K11 into 10-cycles
(1 2 3 4 5 6 7 8 9 10) (1 2 3 4 5 6 7 8 9 10) (1 2 3 4 5 6 7 8 9 10) (1 2 3 4 5 6 7 8 9 10)
(0 3 6 4 10 5 9 2 7 8) (0 3 7 10 9 4 2 5 8 6) (0 3 5 7 2 10 9 6 4 8) (0 2 7 9 8 5 3 10 6 4)
(0 6 8 1 10 4 7 5 3 9) (0 6 1 7 5 3 10 4 8 9) (0 7 6 3 9 5 10 4 1 8) (0 3 8 1 7 10 4 6 5 9)
(0 5 8 6 2 7 1 4 9 10) (0 5 9 2 1 6 4 7 10 8) (0 5 7 9 4 2 1 8 6 10) (0 4 9 1 10 7 5 2 8 6)
(0 1 5 7 9 6 2 3 10 8) (0 1 10 6 2 5 7 9 3 8) (0 9 8 5 1 7 2 6 3 10) (0 1 7 8 6 2 9 3 10 5)
(0 2 1 6 3 9 4 8 10 7) (0 7 1 4 3 8 6 9 2 10) (0 2 8 10 3 4 6 1 9 7) (0 6 1 3 2 9 7 4 10 8)
(0 3 7 9 1 8 4 5 2 10) (0 3 2 8 4 7 9 1 5 10) (0 1 10 7 3 9 4 8 5 2) (0 3 9 10 8 4 1 5 2 7)
(0 4 3 8 5 1 6 10 2 9) (0 2 4 1 8 10 5 6 3 9) (0 4 10 2 5 6 8 3 1 9) (0 8 3 5 4 1 9 6 2 10)
(0 2 4 7 6 10 3 1 9 5) (0 2 7 3 1 9 6 10 4 5) (0 3 2 9 5 1 6 10 7 4) (0 5 1 2 10 6 3 7 4 9)
(0 1 4 2 8 3 7 10 5 6) (0 1 5 8 7 2 10 3 6 4) (0 1 3 5 10 8 7 4 2 6) (0 2 4 8 1 3 6 7 5 10)
(0 4 6 9 8 2 5 3 1 7) (0 4 9 5 3 1 8 2 6 7) (0 5 4 1 7 3 8 2 9 6) (0 1 6 9 5 8 2 4 3 7)

Isomorphic to:
X11,2,1 X11,2,2 X11,7,1 X11,7,2

2K12 is too large for our computational approach.

3.3.2 Uniform Hamilton decompositions of Kn \ I

When n is even, Kn has odd degree. It follows that there is no cycle decomposition of Kn.
However, as noted in Subsection 1.1.4, Walecki [43] proved that there exists a Hamilton decom-
position of Kn \ I when n is even. Thus it is natural to ask: When n is even, does there exist
a uniform Hamilton decomposition of Kn \ I?

We used Algorithm 4 to search for uniform Hamilton decompositions of Kn \ I. We chose
to search for a partial uniform decomposition of Kn consisting of n−2

2
Hamilton cycles; such

a partial decomposition is a uniform Hamilton decomposition of Kn \ I. This allowed us to
choose the first cycle D0 = (0, 1, 2, ..., n− 1), instead of choosing a particular 1-factor I. Since
Kn \ I is not a complete graph, Algorithm 3 does not apply.

There is only one Hamilton decomposition (up to isomorphism) of K6 \ I, and it is uniform,
as is the only Hamilton decomposition (up to isomorphism) of K4 \ I. Thus we consider
only Kn \ I where n = 8, 10, 12. When n ≥ 14, Algorithm 4 is too slow and so we do not
know of any uniform Hamilton decompositions of Kn \ I. We found that there are exactly 6
uniform Hamilton decompositions of K8\I (up to isomorphism), there are no uniform Hamilton
decompositions of K10 \ I and there is exactly one uniform Hamilton decomposition of K12 \ I
(up to isomorphism). The uniform Hamilton decompositions of K8 \ I and K12 \ I are given in
the tables below.

Uniform Hamilton decompositions of K8 \ I
(0 1 2 3 4 5 6 7) (0 1 2 3 4 5 6 7) (0 1 2 3 4 5 6 7)
(0 2 4 6 1 3 7 5) (0 2 4 6 3 7 1 5) (0 2 4 7 3 6 1 5)
(0 3 6 2 5 1 7 4) (0 3 1 4 7 5 2 6) (0 3 5 2 7 1 4 6)

(0 1 2 3 4 5 6 7) (0 1 2 3 4 5 6 7) (0 1 2 3 4 5 6 7)
(0 2 4 7 5 1 6 3) (0 2 5 7 3 1 6 4) (0 2 6 4 7 5 1 3)
(0 4 1 7 3 5 2 6) (0 3 6 2 7 4 1 5) (0 4 2 5 3 7 1 6)
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Uniform Hamilton decomposition of K12 \ I
(0 1 2 3 4 5 6 7 8 9 10 11)
(0 2 8 6 11 3 7 1 5 9 4 10)
(0 3 9 7 2 5 8 11 1 10 6 4)
(0 5 11 9 6 2 10 3 1 8 4 7)
(0 6 1 9 2 4 11 7 10 5 3 8)
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Chapter 4

Conclusions and other directions

As discussed in Section 2.5, we have proved that when n ≥ 4 any uniform decomposition of
µKn into m-cycles falls into one of the following four cases:

(A) m = n and (n, µ) ∈ {(5, 1), (7, 1), (4, 2), (5, 3)}.

(B) µ = 2 and m = n− 1.

(C) µ = 1, n ≡ 3 (mod 4) and m = (n− 1)/2.

(D) µ = 1 and 2m(m+ 1) = n(n− 1).

However, there remain some open questions in the problem of uniform cycle decompositions
of complete multigraphs. In Case (B) we have constructed uniform decompositions of 2Kn

into (n − 1)-cycles when n is a prime power or n = 6. However, the existence of uniform
decompositions of 2Kn into (n − 1)-cycles when n is not a prime power remains unsolved
except when n = 4, n = 6 or n = 10. In addition, when n is a prime power it is not known
whether every such uniform decomposition is isomorphic to those produced by our construction
Xq,ω,r as defined in Definition 2.9.

Similarly, in Case (C) the existence of uniform decompositions of Kn into (n−1
2

)-cycles has
not been established or disproved when n > 15 and n is not a prime power. When n is a
prime power it is not known whether every such uniform decomposition is isomorphic to those
produced by our construction Yq,ω as defined in Definition 2.9.

In Case (D) the existence of uniform decompositions of Kn into m-cycles where 2m(m + 1) =
n(n − 1) has not been established or disproven when n ≥ 697 and n is odd. This problem is
of interest mostly because the existence of any such uniform decomposition would imply the
existence of a large quasi-residual BIBD which is not residual, as proved in Lemma 2.5.

Consider a complete multigraph µKn of odd degree. We raise the question: When does µKn \I
have a uniform m-cycle decomposition (where I is a 1-factor in Kn)? In Subsection 3.3.2 we
proved that Kn \ I has a uniform Hamilton decomposition when n = 4, 6, 8, 12, but not when
n = 10. The general problem remains unresolved.

In the course of this project we also investigated uniform decompositions of complete multi-
graphs into complete subgraphs, stars and paths. It is well-known that a Km-decomposition
of µKn is equivalent to an (n,m, µ)-BIBD, in which each block is the vertex set of a com-
plete subgraph. Such a decomposition is uniform if and only if the number of points in the

39



intersection of two blocks is constant, independent of the choice of blocks; by Theorem 1.3 it
follows that a uniform Km-decomposition of µKn is equivalent to a symmetric (n,m, µ)-BIBD.
Uniform decompositions into stars and paths are discussed in the rest of this chapter.

4.1 Uniform decompositions of complete multigraphs into

stars

A k-star is a graph consisting of k + 1 vertices and k edges, such that k of the vertices have
degree 1 and one vertex has degree k. We call the vertex of degree k the centre of the star, and
the vertices of degree 1 its leaves.

It is possible to have a uniform star decomposition of a graph with two different-order stars
only if there are exactly two stars in the decomposition (as the number of edges per union
of two stars must be constant). Since at least one end of each edge must be the centre of a
star, the only complete multigraph µKn with a uniform star decomposition into different-order
stars is K3, with the two stars being a 1-star and a 2-star. Thus we only need to consider
the cases where each star in the decomposition has the same number of edges, i.e. uniform
decompositions of µKn into k-stars where k is constant.

In 1974, Cain [19] proved that Kn can be decomposed into k-stars if and only if n = km where
k is odd or m is even, or n = km+1 where k is odd or m is even. In 1979, Tarsi [59] proved that
if µ > 1, then µKn can be decomposed into k-stars if and only if k|µ

(
n
2

)
and either n ≥ k + 1

(if µ is even) or n ≥ k + 1 + k
µ

(if µ is odd). In this section we will prove that uniform k-star
decompositions of Kn are equivalent to skew Hadamard designs. Hadamard designs have been
discussed earlier in this thesis. A skew Hadamard design has an associated Hadamard matrix
H such that H− I is skew-symmetric (where I is the identity matrix). Ó Catháin [50] proved
that a Hadamard design is skew if and only if it is possible to add one point to each block of
the design and form another BIBD.

Skew Hadamard designs are known to exist for all orders (2nq1q2...qt) − 1 where n is a non-
negative integer and qi ∼= 3 (mod 4) is a prime power for each i in {1, 2, ..., t} [65]. In addition,
for any odd u > 1 and any skew Hadamard design of order h, there exists a skew Hadamard
design of order hu [60].

It is trivial to show that µK1 has a uniform k-star decomposition for any k, and µK2 has a
uniform decomposition into 1-stars but not into k-stars for any k 6= 1. In this section we will
prove the following theorem:

Theorem 4.1. Let n ≥ 3. Then there exists a uniform decomposition of µKn into k-stars if
and only if one of the following is true:
(A) µ = 2 and k = (n− 1),
(B) µ = 1, k = n−1

2
and there exists a skew Hadamard design of order n, or

(C) µ = 1, k = n
2

and there exists a skew Hadamard design of order n− 1.

When n ≥ 3, any star decomposition of µKn must contain two stars with distinct centres, since
for each vertex there is at least one edge in µKn disjoint from that vertex. It follows that any
uniform k-star decomposition of µKn where k > 1 may not contain any two stars with the same
centre, as the union of two k-stars with the same centre has a vertex of degree 2k and the union
of two k-stars with distinct centres does not. If k = 1 then a uniform k-star decomposition
of µKn is equivalent to a uniform edge decomposition, and it is trivial to show that such a
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decomposition exists only when µKn = K3 or n < 3. It is also easy to see that K3 has a unique
uniform decomposition into edges.

We first consider the case µ > 2, and prove that there is no uniform star decomposition of µKn

in this case.

Lemma 4.2. For n > 2, µ > 2, there exists no uniform star decomposition of µKn.

Proof. Suppose there exists a uniform k-star decomposition D = {D1, D2, ..., Dr} of µKn

where µ > 2, n > 2 and k ≤ n − 1. As we showed in the comments above, no two stars have
the same centre; thus r ≤ n. The total number of edges in stars of D is then rk ≤ n(n − 1).

Since µKn has µn(n−1)
2

edges and µ > 2, this is a contradiction.

Lemma 4.2 shows that when n > 2 and there exists a uniform star decomposition of µKn, we
have µ ≤ 2. We now consider the case where µ = 2.

Lemma 4.3. For n > 2, there exists a unique uniform star decomposition of 2Kn. Furthermore,
this is a decomposition into k-stars where k = n− 1.

Proof. Suppose there exists a uniform star decomposition D = {D1, D2, ..., Dr} of 2Kn. As
we showed in the previous lemma, the number of edges in stars of D is rk where r ≤ n and
k ≤ (n − 1). In addition, 2Kn has n(n − 1) edges. It follows that r = n and k = n − 1,
and so each vertex is the centre of a star with vertex set V (2Kn). This uniquely defines the
decomposition D, and it is easy to see that D is uniform.

We are now left only with the case where µ = 1. In this case we find that uniform star
decompositions of Kn are equivalent to skew Hadamard designs of order n or n− 1.

Lemma 4.4. If n ≥ 3 and there exists a uniform k-star decomposition of Kn, then n ≡
3 (mod 4), k = n−1

2
, and there exists a uniform (k + 1)-star decomposition of Kn+1, or n ≡

0 (mod 4), k = n
2
, and there exists a uniform (k − 1)-star decomposition of Kn−1.

Proof. Suppose n ≥ 3 and there exists a uniform k-star decomposition D = {D1, D2, ..., Dr}
of Kn. First consider the case where r < n. Then there exists a vertex v which is not the centre
of any star in D. Since v is adjacent to all other vertices of Kn, it follows that every other
vertex is the centre of some star in D, and v is a leaf of every star in D. Thus r = (n− 1) and

k = n
2

(as Kn has n(n−1)
2

edges). For each star Di, we define a (k − 1)-star D′i which has the
same centre as Di, where V (D′i) = V (Di) \ {v}. It is clear that the set D′ = {D′1, D′2, ..., D′r} is
a (k − 1)-star decomposition of Kn−1 where V (Kn−1) = V (Kn) \ {v}. We will show that D′ is
uniform.

For each a, b, c, d ∈ {1, 2, ..., r} such that a < b, c < d, there exists a permutation f of V (Kn)
such that f(Da ∪ Db) = Dc ∪ Dd (as D is uniform). Furthermore, all the degree 2 vertices
in Dc ∪ Dd are adjacent only to the centres of Dc and Dd, and f(v) has degree 2 (as v has
degree 2 in both Da ∪Db and Dc ∪Dd). Thus the transposition which swaps v and f(v) is an
automorphism of Dc ∪ Dd. Let g be the transposition (f(v), v). Then gf is an isomorphism
from Da ∪Db to Dc ∪Dd which fixes v. Thus gf is an isomorphism from D′a ∪D′b to D′c ∪D′d.
It follows that D′ is a uniform (k − 1)-star decomposition of Kn−1.

Now consider the case where r = n. If n = 3 then we can arbitrarily assign the centre of each
star to be a distinct vertex (as the centre of a 1-star is indistinguishable from its leaf). If n > 3
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then we have already proved that no two stars have the same centre. Then every vertex is the
centre of a star, and since |E(Kn)| = n(n−1)

2
, we have k = (n−1)

2
. Now consider a new vertex v

where v /∈ V (Kn). For each star Di we define a (k + 1)-star D∗i which has the same centre as
Di, where V (D∗i ) = V (Di) ∪ {v}. Furthermore, we define the set D∗ = {D∗1, D∗2, ..., D∗r}. Since
every vertex of Kn is the centre of some Di, it is clear that D∗ is a (k+1)-star decomposition of
Kn+1. In addition, for any Da, Db, Dc, Dd ∈ D with a < b and c < d, there exists a permutation
f of V (Kn) such that f(Da ∪Db) = Dc ∪Dd. Then let f ∗ : V (Kn) ∪ {v} → V (Kn) ∪ {v} be
the function where f ∗(x) = f(x) when x ∈ V (Kn) and f ∗(v) = v. Since v is adjacent to only
the centres of D∗a, D

∗
b , D

∗
c , D

∗
d in those stars, it follows that f ∗ is an isomorphism from D∗a ∪D∗b

to D∗c ∪D∗d. Thus D∗ is a uniform (k + 1)-star decomposition of Kn+1.

We now need only show that r = n implies that n ≡ 3 (mod 4). We will do this by counting
the number of degree 2 vertices (or equivalently, triangles) in the union of two stars.

Suppose r = n, n > 3 and there exists a uniform k-star decomposition D = {D1, D2, ..., Dr}
of Kn. Then the union of each pair of distinct stars contains the same number of degree 2
vertices. Each vertex occurs as a degree 2 vertex in the union of two stars precisely when it is a
leaf of both stars. Since each vertex is the centre of a k-star, each vertex is a leaf of (n− 1)− k
stars. Since k = n−1

2
, it follows that each vertex is a leaf of n−1

2
stars and so has degree 2 in(n−1

2
2

)
= (n−1)(n−3)

8
unions of pairs of stars. Thus there are n(n−1)(n−3)

8
degree 2 vertices in pairs

of stars. However, there are n(n−1)
2

pairs of stars; thus the union of each pair has n−3
4

degree
2 vertices. Since this must be an integer, it follows that n ≡ 3 (mod 4). In this paragraph we
assumed that n > 3, but it is also clear that n ≡ 3 (mod 4) when n = 3.

Now suppose there exists a uniform k-star decomposition of Kn with r = n − 1. Then there
exists a uniform (k − 1)-star decomposition of Kn−1 with r stars, and so (n− 1) ≡ 3 (mod 4).
This proves the result.

In Lemma 4.4 we observed that if there is a uniform k-star decomposition of Kn with the number
of stars equal to the number of points, then each pair of stars have n−3

4
leaves in common. Since

each star has k = n−1
2

leaves and each vertex is a leaf of n−1
2

stars, it makes sense to ask the
question: Considering the stars as points and letting each vertex define a block, do we obtain
an (n, n−1

2
, n−3

4
)-BIBD, i.e. a Hadamard design? In answering this question, we will show that

uniform star decompositions of this type are equivalent to skew Hadamard designs.

Lemma 4.5. For n > 3 and n ≡ 3 (mod 4), there exists a uniform star decomposition of Kn

if and only if there exists a skew Hadamard design of order n.

Proof. Let D = {D1, D2, ..., Dn} be a uniform star decomposition of Kn where n ≡ 3 (mod 4),
n > 3, and V (Kn) = {v1, v2, ..., vn}. For each vertex vi in Kn, we define a block Bi = {Da : vi
is a leaf of Da, a ∈ {1, 2, ..., n}}. Each vertex is a leaf of n−1

2
stars, so |Bi| = n−1

2
for each

i ∈ {1, 2, ..., n}. Similarly, every star has n−1
2

leaves, so each star Da occurs in n−1
2

blocks. Each
pair of distinct stars Da, Db occurs in precisely those blocks whose vertices are leaves of both
stars; there are n−3

4
vertices which are leaves of both Da and Db, so each pair of distinct stars

occurs in n−3
4

blocks. Since the number of stars is equal to the number of blocks, this is sufficient
to prove that B = {B1, B2, ..., Bn} is a Hadamard design with parameters (n, n−1

2
, n−3

4
).

Now let B∗ = {B∗1 , B∗2 , ..., B∗n} where each B∗i = Bi ∪ {Da : the centre of Da is vi}. It is clear
that B∗ is an (n, n+1

2
, n+1

4
)-BIBD, as each block of B∗i contains the n−1

2
stars in Bi and the star

centred at vi, and the stars Da and Db occur together in the n−3
4

blocks in B∗ corresponding
to their blocks in B, and the block B∗i such that vi is the centre of one of Da, Db and a leaf of
the other (which must be unique since the edge between the centres of Da and Db occurs in
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precisely one of Da, Db). Ó Catháin [50] proved that this is sufficient to show that B is a skew
design.

Conversely, suppose there exists a skew Hadamard design (D,B) with parameters (n, n−1
2
, n−3

4
),

where D = {D1, D2, ..., Dn}, and B = {B1, B2, ..., Bn}. Then by Ó Catháin [50], there exists a
design (D,B∗) where B∗ = {B∗1 , B∗2 , ..., B∗n} and B∗i = Bi∪Da where Da is a point not in Bi, and
each B∗i has a distinct new point (i.e. {B∗1 \B1, B

∗
2 \B2, ..., B

∗
n \Bn} = {{D1}, {D2}, ..., {Dn}}).

Note that (D,B∗) is a symmetric (n, n+1
2
, n+1

4
)-BIBD. Then let each Da be a star with vertices

corresponding to the blocks Da occurs in, i.e. V (Da) = {vi : Da ∈ B∗i }, and the centre of Da

is the vertex vi such that Da ∈ B∗i \ Bi. It is clear (since a symmetric BIBD has block size
equal to its replication number) that each Da has n−1

2
leaf vertices and so is an (n−1

2
)-star.

In addition, every pair of stars Da, Db intersects in n−3
4

leaf vertices, since Da, Db share a leaf
vertex vj if and only if Bj contains Da and Db (and Bj is a block in a Hadamard design of order
n). Furthermore, Da and Db intersect in exactly n+1

4
vertices, since (D,B∗) is a symmetric

(n, n+1
2
, n+1

4
)-design. This is sufficient to show that Da ∪Db is unique up to isomorphism and

so D is uniform.

4.2 Uniform decompositions of complete multigraphs into

paths

We now discuss uniform decompositions of the complete multigraph into paths. It is trivial to
show that µK2 has a uniform 1-path decomposition for any µ ≥ 1, and that µK1 has a uniform
m-path decomposition for any m. Thus we consider only cases when n ≥ 3.

Lemma 4.6. Let n ≥ 3. Then there exists a uniform decomposition of µKn into m-paths if
and only if one of the following is true:
(A) n = 3, µ ∈ {1, 2} and m = µ
(B) n = 4, µ = 1, and m = n

2

(C) n = 4 or n = 6, µ = 1, and m = n− 1.

Proof. There are only three distinct 1-paths and three distinct 2-paths in K3. In addition,
any uniform path decomposition of µK3 must contain all three 1-paths or all three 2-paths (as
otherwise such a decomposition would not contain the same number of edges between each pair
of points). Since the set of 1-paths forms a uniform decomposition of K3 and the set of 2-paths
forms a uniform decomposition of 2K3, it follows that µK3 has a uniform m-path decomposition
if and only if µ ∈ {1, 2} and m = µ.

We now break the remaining problem into three distinct cases:

(i) µKn has even degree.

(ii) µKn has odd degree and we look for a decomposition where two paths share an endpoint.

(iii) µKn has odd degree and we look for a decomposition where no two paths share an
endpoint.

We will prove the lemma for each case in turn.

(i)
Suppose n ≥ 4, µKn has even degree and there exists a uniform m-path decomposition D =
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{D1, D2, ..., Dr} of µKn. Let a, b be the endpoints of D1. Since the endpoints of a path have
degree 1 and all other vertices of the path have degree 2, and since µKn has even degree, it
follows that some other path (without loss of generality D2) has endpoints a, c. Then D1 ∪D2

has exactly two vertices of odd degree, or zero vertices of odd degree if b = c. It follows that
D1 ∪Dx has at most two vertices of odd degree for all Dx ∈ D. Thus every path Dx has one
endpoint in common with D1 (and similarly with D2, D3, etc.)

Now suppose b 6= c and some path (without loss of generality D3) does not have the endpoint
a. Then D3 must have endpoints b, c (since D3 shares an endpoint with each of D1 and D2).
It follows that any other path Dx /∈ {D1, D2, D3} must have exactly one endpoint in {a, b},
exactly one endpoint in {b, c}, and exactly one endpoint in {a, c}. No pair of endpoints satisfies

these three conditions. Thus, D = {D1, D2, D3}. Since µKn has µn(n−1)
2

edges and D1∪D2∪D3

has 3m ≤ 3(n−1) edges, it follows that µn(n−1)
2

= 3m ≤ 3(n−1) and so µn
2
≤ 3. Since we have

assumed that n ≥ 4, it follows that µ = 1, n ∈ {4, 6}. However, K4 and K6 have odd degree -
a contradiction.

Conversely, assume every path has the endpoint a. Then the degree of a must be the number
of paths in the decomposition. The degree of a is µ(n − 1), while the number of paths is

r = µn(n−1)
2m

(that is, the number of edges in µKn divided by the number of edges per path).
Thus n

2m
= 1 and so n = 2m. This implies that µ is even, since µKn has degree µ(n− 1) and

n is even. If the paths in D do not all have the same two endpoints, then no two paths in D
share both endpoints; it follows that there are vertices which are the endpoint of only one path,
and so have odd degree - a contradiction. Thus every path has the endpoints a, b. However, if
m > 1 (and correspondingly n > 2), there exists no m-path with the edge {a, b} and endpoints
a, b, and so D is not a decomposition of µKn.

(ii)
Suppose n ≥ 4, µKn has odd degree and there exists a uniform m-path decomposition D =
{D1, D2, ..., Dr} of µKn in which two paths share an endpoint. It is immediately clear, since
µKn has odd degree, that every vertex is an endpoint of an odd number of paths. Let a, b be
the endpoints of D1. Without loss of generality we can say that a, c are the endpoints of D2.
Then D1 ∪ D2 has exactly two vertices of odd degree, or zero vertices of odd degree if b = c.
It follows that every path has endpoint a, or r = 3 and D3 has endpoints b, c. However in
the latter case every vertex has even degree - a contradiction. Thus every path has a as an
endpoint, and every other vertex is an endpoint of exactly one path (as no two paths share
both endpoints). Then r = (n − 1), since each path has exactly one endpoint other than a.

Since no path may have more than (n − 1) edges, and µKn has µn(n−1)
2

edges, it follows that
µ = 1, r = n− 1 and m = n

2
.

The union of two paths contains precisely two odd-degree vertices. We will show that these
odd-degree vertices are adjacent in some, but not all, of the unions of two paths when n > 4.
Suppose the path Di has the endpoint vi 6= a and the edge {vj, vi}. Then there is precisely one
other path Dj with the endpoint vj. Thus there is precisely one union of two paths in which
Di has an edge between the two odd-degree vertices. Since Di is arbitrary, it follows that there
are precisely (n− 1) pairs of paths whose unions have two adjacent odd-degree vertices. There

are
(
(n−1)

2

)
pairs of paths in the decomposition; thus (n− 1) = (n−1)(n−2)

2
and so n = 4. The set

{[0, 1, 2], [0, 2, 3], [0, 3, 1]} is a uniform 2-path decomposition of K4, thus in case (ii) there exists
a uniform n

2
-path decomposition of Kn if and only if n = 4.

(iii)
Suppose n ≥ 4, µKn has odd degree and there exists a uniform m-path decomposition D =
{D1, D2, ..., Dr} of µKn in which no two paths share an endpoint. It is immediately clear that
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every vertex is an endpoint of precisely one path, and so r = n
2
. Since |E(µKn)| = µn(n−1)

2
and

m ≤ n− 1, it follows that µ = 1 and m = n− 1.

We will show that the existence of such a decomposition implies the existence of a uniform
Hamilton decomposition of Kn+1. In particular, let V (Kn) ∩ {vn+1} = ∅. Then for each
path Di with endpoints d, e, let D∗i be the cycle with V (D∗i ) = V (Di) ∪ {vn+1} and E(D∗i ) =
E(Di) ∪ {{d, vn+1}, {e, vn+1}}. Since each vertex of Kn is an endpoint of precisely one path in
D, it follows that D∗ = {D∗i : Di ∈ D} is an (m+ 2)-cycle decomposition of Kn+1 - a Hamilton
decomposition. In addition, D∗ is uniform; in any union of two distinct cycles D∗i , D

∗
j , the graph

D∗i ∪D∗j consists of Di∪Dj, the vertex vn+1, and the edges from the odd degree vertices of Di∪Dj

to vn+1. Since there exists no uniform Hamilton decomposition of Kn+1 with n > 6 by Corollary
2.2, it follows that n = 4 or n = 6. It is trivial to construct a uniform 3-path decomposition of
K4, and the set {[0, 2, 5, 4, 3, 1], [2, 4, 1, 0, 5, 3], [4, 0, 3, 2, 1, 5]} is a uniform 5-path decomposition
of K6 (with vertex set Z6). It follows that there exists a uniform decomposition of Kn into
(n− 1)-paths where n > 3 and Kn has odd degree if and only if n = 4 or n = 6.

4.3 Conclusion

We have proved that there exist uniform decompositions of µKn into m-cycles, m-stars or m-
paths only under restricted conditions. These results have interesting connections with design
theory, as the high level of symmetry required for uniformity is often sufficient to produce
well-known designs. A natural extension of our work would be to investigate the uniform graph
decompositions of µKn \ I and of complete bipartite multigraphs µKn,m. It would also be
worthwhile to examine uniform decompositions of µKn, µKn \ I and µKn,m into Cayley graphs.
Finally, in cases where there exists an H-decomposition of G but not necessarily a uniform one,
the number of isomorphic unions of pairs of subgraphs may be counted - similar to Wagner’s
[61] approach to perfect 1-factorisations.
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[10] L. Babai, László Babai’s Home Page, Departments of Computer Science and Mathematics,
University of Chicago http : //people.cs.uchicago.edu/∼laci/update.html (2017).

[11] D. Bryant, P. Danziger, W. Pettersson, Bipartite 2-factorizations of complete multipartite
graphs, J. Graph Theory 78 no. 4 (2015), 287–294.

[12] D. Bryant, D. Horsley, B. Maenhaut and B. R. Smith, Cycle decompositions of complete
multigraphs, J. Combin. Des., 19 (2011), 42–69.

[13] D. Bryant, D. Horsley, B. Maenhaut and B. R. Smith, Decompositions of complete multi-
graphs into cycles of varying lengths, J. Combin. Theory Ser. B, in press, available online
29th September 2017, 〈https : //doi.org/10.1016/j.jctb.2017.09.005〉.

46



[14] D. Bryant, D. Horsley and W. Pettersson, Cycle decompositions V: Complete graphs into
cycles of arbitrary lengths, Proc. London Math. Soc., 108 (2014), 1153–1192.

[15] D. Bryant, B. Maenhaut, I. M. Wanless, A family of perfect 1-factorisations of complete
bipartite graphs. J. Combin. Theory Series A, 98 no. 2 (2002), 328–342.

[16] D. Bryant, B. M. Maenhaut and I. M. Wanless, New families of atomic Latin squares and
perfect one-factorisations, J. Combin. Theory A, 113 (2006), 608–624.

[17] M. Buratti, A. Del Fra, Cyclic Hamiltonian cycle systems of the complete graph. In honour
of Zhu Lie, Discrete Math. 279 no. 1–3 (2004), 107–119.

[18] M. Buratti, S. Capparelli, A. Del Fra, Cyclic Hamiltonian cycle systems of the λ-fold
complete and cocktail party graphs, European Journal of Combinatorics 31 (2010), 1484–
1496.

[19] P. Cain, Decomposition of complete graphs into stars, Bull. Austral. Math. Soc. 10 (1974),
23–30.

[20] H. Cohn, A second course in number theory. Wiley, New York, 1962.

[21] C. J. Colbourn, Hamiltonian decompositions of complete graphs, Ars Combin., 14 (1982),
261–269.

[22] C. J. Colbourn, J. H. Dinitz (Eds.) The Handbook of Combinatorial Designs, second ed.,
CRC Press, Boca Raton, 2007.

[23] K. Conrad, Pell’s Equation, II Online lecture notes available at
http://www.math.uconn.edu/∼kconrad/blurbs/ugradnumthy/pelleqn2.pdf

[24] J. H. Dinitz and P. Dukes, On the structure of uniform one-factorizations from starters in
finite fields, Finite Fields App., 12 (2006), 283–300.

[25] J. H. Dinitz, D. K. Garnick, B. D. McKay, There are 526, 915, 620 nonisomorphic one-
factorizations of K12, J. Combin. Des. 2 no. 4 (1994), 273–285.

[26] J. H. Dinitz, D. R. Stinson, Some new perfect one-factorizations from starters in finite
fields, J. Graph Theory 13 no. 4 (1989), 405–415.

[27] F. Franek and A. Rosa, Two-Factorizations of Small Complete Graphs, J. Statist. Plann.
Inference, 86 (2000), 435–442.
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