
2016 IEEE International Conference on Big Data (Big Data)

978-1-4673-9005-7/16/$31.00 ©2016 IEEE 3230

Mining and Analysing One Billion Requests to Linguistic Services

Marco Büchler, Greta Franzini, Emily Franzini

eTRAP Research Group
Georg-August-Universität Göttingen

Göttingen, Germany
[mbuechler|gfranzini|efranzini]@etrap.eu

Thomas Eckart

Natural Language Processing Group
Universität Leipzig
Leipzig, Germany

teckart@informatik.uni-leipzig.de

Abstract—From 2004 to 2016 the Leipzig Linguistic Services
(LLS) existed as a SOAP-based cyberinfrastructure of atomic
micro-services for the Wortschatz project, which covered
different-sized textual corpora in more than 230 languages. The
LLS were developed in 2004 and went live in 2005 in order
to provide a webservice-based API to these corpus databases.
In 2006, the LLS infrastructure began to systematically log
and store requests made to the text collection, and in August
2016 the LLS were shut down. This article summarises the
experience of the past ten years of running such a cyberinfras-
tructure with a total of nearly one billion requests. It includes
an explanation of the technical decisions and limitations but
also provides an overview of how the services were used.

Keywords-natural language, web services, internet, collective
intelligence, knowledge discovery, data processing, data analy-
sis, software as a service

I. INTRODUCTION

“What are the implications of Digital Transformation1?”

This is the question we must ask since over the past two

decades the huge amount of data gathered in Galleries,

Libraries, Archives and Museums (GLAM institutions) is

increasingly being turned into digital ecosystems. One im-

mediate benefit of the transformation is that the interested

public can now have access to an unprecedented amount of

data. The drawback is that the extraordinarily high number

of data-sets overwhelm users, creating a need for additional

analysis tools for texts, objects, audio and video data.
This growing amount of digitally available data has raised

user interest. The many ways in which users now wish to

explore it have risen questions about the ways in which

access to the data and the analysis tools is provided.
Granting everybody indiscriminate access to, for example,

an Application Programming Interface (API) on a server

hosting a few hundred gigabytes of data can mean that users

with little knowledge may cause a user-initiated denial-of-

service attack that could crash the entire cyberinfrastructure.
In the mid 1990s, the Natural Language Processing Group

at the University of Leipzig began work on the Wortschatz

project (details in section III), which aimed to provide

corpora in hundreds of languages and in different size-

normalisations, be that 100K, 300K or 1M sentences. As

1For a short description of Digital Transformation, see: https://goo.gl/
8cRzVa (Accessed: 7 October 2016).

the resources grew in size, so did the number of requests for

the data. In the early stages of the project a specific dump

was created, parts of which even came with a small user-

interface. The database dump was shared with interested

researchers and partners in the business sector.

However, the personnel costs required for this workflow

became unsustainable. For this reason, a new plan was put

into motion in 2004, consisting of the development of a

SOAP-based API - the Leipzig Linguistic Services (LLS) -

that enabled any interested person to access the data of the

Wortschatz databases in any provided language. Overall, 20
services were provided, delivering specific information such

as baseform, category classifications and thesaurus data.

The aim of the LLS was to establish a Service Oriented

Architecture (SOA) for linguistic resources based on small

and atomic micro-services that could be combined by users

for their particular needs. Users were then not only able to

browse through the Wortschatz website, but also to integrate

those services with their own existing digital ecosystems.

In 2005 these services went live and by September 2006

all requests were systematically logged. In July 2014 the

number of logged requests reached one billion. While at the

beginning the use was limited to academia, over time the

services were increasingly used by the private and business

sectors as well.

This article is structured as follows: we first contextualise

by describing infrastructure projects. This will be followed

by two sections on the Wortschatz project and the LLS,

as well as a section on the description of the log-file

data. Next, we will present our experiences and results

from the analysis of nearly one billion requests, stored in

189GB of uncompressed log-files. We will then describe

which services were chained together by users on the client-

side in order to identify potential aggregated server-side

webservices. Furthermore, we will analyse the log-files for

their usage in terms of a smart vs. pragmatic usage in order

to identify the potential for load-balancing. The intent of this

article is to report on our experience for the improvement

of load-balancing strategies in future projects.

3231

II. RELATED WORK

For the past ten-fifteen years, large (cross-)disciplinary

Research Infrastructures (RIs), including Bamboo2,

CLARIN3, DARIAH4, CLARIAH5 and Europeana6, have

been providing a variety of applications, materials and

services to support the (Digital) Humanities, Social Sciences

and related research communities [4]. A number of these

RIs allow user access and participation via typically web-

based interfaces, such as metadata search engines and data

editors7. However, most of these infrastructure initiatives

are primarily driven by the resource providers, and, among

other shortcomings [4][5], occasionally lack the direct

influence of their intended user groups.8 As a consequence,

the shared services that RIs provide can only be evaluated

against the requirements and rare innovative contributions

of their users. Yet, it is these requirements and contributions

that ground and add value to these initiatives, acting as

natural drivers for a constant adaptation and extension of

infrastructure ecosystems.

In this context, the management of user feedback is

largely based on static and time-consuming procedures (e.g.

ticketing systems) and can only give a rough understanding

of problems encountered. A more direct and representative

feedback system is desirable to address the particularly

problematic issues of data absence or misleading interfaces.

Such a system would be especially important for strongly

integrated infrastructures like CLARIN, which are designed

as service-oriented architectures based on web services.

For those, the real interaction of end-users with provided

services and their combination with complex service chains

also affect load-balancing efficiency or the usefulness of

infrastructure under heavy load.

III. THE WORTSCHATZ PROJECT

The Deutscher Wortschatz project or Leipzig Corpora
Collection project (hereafter LCC)9 began more than twenty

years ago with the aim of creating corpus-based monolingual

dictionaries for the German language [6]. Since then, it has

expanded its scope to the collection and enrichment of digital

texts in as many languages as possible. The enrichment pro-

cess encompasses a variety of linguistic, and especially sta-

tistical, information. Amongst this type of information, there

is a dictionary containing data about word frequency, sample

sentences and statistically-significant word co-occurrences

based on different window sizes [7].

2Link: https://goo.gl/Ldkicc (Accessed: 2 October 2016).
3Link: https://goo.gl/2iU4B4 (Accessed: 2 October 2016).
4Link: https://goo.gl/cilqED (Accessed: 2 October 2016).
5Link: https://goo.gl/x76TrW (Accessed: 2 October 2016).
6Link: https://goo.gl/JDpWTw (Accessed: 2 October 2016). While not

strictly an RI, Europeana is integral to European research [4].
7For example, the CLARIN metadata infrastructure at: https://goo.gl/

k5sCS7 (Accessed: 5 October 2016).
8Research libraries for example have yet to strongly engage with RIs [4].
9Link: https://goo.gl/Mb6kT (Accessed: 2 October 2016).

The texts are acquired with different crawling strategies.

Through a self-developed distributed crawling environment,

such as Heritrix10, these processes are continuously revised

and perform downloads of complete top-level domains as

well as daily news in more than 80 languages via RSS feeds.

Based on the materials collected, a variety of user-interfaces

were developed to provide user-friendly access to the data

and its associated applications.

To this day, the LCC provides textual materials in more

than 230 languages, and the collection keeps growing. Table

I shows the available amount of text material for a small

selection of languages (measured in number of available

sentences).

Language Number of sen-
tences (in M)

Language Number of sen-
tences (in M)

English 1,110 Georgian 30
German 1,023 Bokmål 27
Russian 456 Modern Greek 25
Spanish 244 Lithuanian 20
French 178 Catalan 16
...

Table I
TEXT MATERIAL OF THE LEIPZIG CORPORA COLLECTION (EXCERPT)

IV. THE LEIPZIG LINGUISTIC SERVICES (LLS)

The intention of the overall LLS architecture was to be

as simple and generic as possible. A generic architecture

can be reused in different scenarios but tends to have too

many parameters and options, while a simple architecture

claims usability and guarantees a faster learning curve. In

the following, we describe the architecture, the editing work-

flow for adding a new webservice, the technical decisions

and the usage of the LLS.

The LLS were entirely developed in Java. In 2004, when

development began, Java 1.4 was the most commonly used

programming language to run under different operating sys-

tems, such as Linux, MacOS and Windows. Even though the

plan was to run the services on a Linux-based server, their

design made it possible to adapt to different and project-

specific operating systems.

The LLS ran in an Apache Tomcat 5.0.1911 with the

Apache Axis 1.312 implementations. Later experiments

with Apache Axis 2 showed that, at least for the LLS,

interoperability with clients from different programming

languages worsened. This is the reason why the productive

system retained the older version. In order to achieve a

simple architecture, we used Apache Ant 1.6.513. Ant
was used as the central tool for generating the back-end

services and deploying them in a Tomcat server (see red

10Link: https://goo.gl/RLGXAr (Accessed: 6 October 2016)
11Link: https://goo.gl/FiSm (Accessed: 7 October 2016).
12Link: https://goo.gl/t5EZo (Accessed: 7 October 2016).
13Link: https://goo.gl/U7ANa (Accessed: 7 October 2016).

3232

Figure 1. Four workflow modes with separation of concern: editing (yellow); managing, compiling and deploying (red); hosting and operating (blue);
using the LLS infrastructure (green).

zone in figure 1). For this, different Ant tasks were written

in order to create Java code out of a data-set description.

In order to create the server-side Java code for a specific

webservice, a data-set needed to be added to the webservice

management. This required the following information: Id,

WebServiceType, Algorithmus, InputFields,

Name, Magnitude, StdLimit, Description,

Status and AuthorizationLevel (see yellow zone

in figure 1). Id describes a running and unique number that

is provided by the system. WebServiceType expects

a Java class that implements the WSType Java interface

containing the two methods, ping and execute; while the

latter contains the execution code for a service, the ping
method serves to integrate the client-side with monitoring

tools in order to check if the system is alive (i.e. by

sending a ping and waiting for the corresponding pong). A

WSType-implementing class can be any task to which it is

possible to respond within an HTTP timeout of 60 seconds.

Table II shows the selected types in the “Webservice

Types” column. In the LLS production system only two

Webservice types, MySQLSelect and MARS14, were

chosen. The first type implements a selection to a MySQL
database, while the MARS type implements a collection

of database requests as an aggregated service, which was

originally built for a Max Planck Institute and later made

available for others. Algorithmus expects values and

parameters specific to a webservice type. InputFields
describes the parameters that a webservice expects (see

also “Input Fields” column in table II). The Name field

14The values of WebServiceType expect a Java class including the
package. To optimise space, table II does not display packages.

represents the name under which the service is deployed

and made available. Magnitude is a cost measure for

each request to facilitate the creation of a business model

for commercial users. StdLimit sets a default value for

limiting results in case a user does not submit a limit

with a request. A value of 20 was chosen by default

as lower limits significantly decrease the response time.

Description contains a short description of what the

webservice does in terms of displaying the information on

the website. Status expects one of two values, ACTIVE
or INACTIVE. Switching a service from active to inactive

mode restricted its availability to users (i.e. no longer or

temporarily available). This feature was especially useful

when maintenance work had to be done on the databases.

Upon reactivation, the service would be immediately

restored for public use. AuthorizationLevel indicates

if access to the webservice is public or restricted to user

accounts with special rights (see the “Access level” column

in table II). This control measure was necessary as some

services are time-consuming and thus not fit for public use.

Once an editor (see yellow zone in figure 1) had edited

a webservice description, a dedicated person such as the

system administrator would start the Ant-based compilation

of the webservice. This included the server-side code gener-

ation and the deployment of the service in Apache Tomcat.

Once the service was deployed, the Webservice Description

Language file (WSDL) was automatically downloaded by

the Ant-script and transformed into Java code. As SOAP-

based webservices do not provide a user interface, the Ant-

script generated a Swing-based user interface for each

deployed webservice, which was automatically uploaded to

Tomcat as well. Furthermore, the generated Java code was

3233

used to execute the ping-method in order to check if the

service was ready. Once all installed services had success-

fully sent a pong back, the compilation and installation step

was complete (see red zone in figure 1). The server operation

(see blue zone in figure 1) of the Wortschatz databases was

distributed across dedicated DB servers (see also section III).

With the webservices deployed, users were able to either

download the pre-compiled Java client and integrate it

into their own digital ecosystems or use the Swing-based

graphical user interface of the clients. Additionally, the idea

of SOAP is to provide a generic description of a webservice

in the WSDL-file in order to generate the client source code

in further programming languages, such as in C# as part

of .NET15 (see also [2]), Perl16, Python17, Delphi,

PHP 18, Ruby19 and JavaScript20 (see green zone in

figure 1). Independently from the underlying programming

languages, over the past ten years we have observed different

uses in research, business and in the private sector. In

research, the LLS were used in the areas of text profiles

and author classification [1]. The services were also used

as data resources for sentiment analysis in research groups

in Germany, Austria and South Africa. Users from industry

were mainly interested in using Baseform or Synonym
services for improving internal search indexes. The LLS data

was also used for information retrieval tasks in portals for

weighting words in a word cloud or to display enriching

information. Private users accessed the LLS to complete

crossword puzzles. A dedicated service was installed upon

request for this purpose alone (see also table II), since it

was possible to query a pattern of an incomplete word with

a given word-length limit.

Another application for private and business users was

the Thesaurus service, which could be used to request

similar words given a specific context. OpenOffice, for

example, does not perform equally well in this task [2].

The LLS infrastructure worked well for users because it

avoided dealing directly with an unmanageable amount of

data, while also enabling the integration of millions of data-

sets accessible in their environments.

From 2008 the SOA-based cyberinfrastructure LLS were

used in Digital Humanities projects including eAQUA21

and eTRACES22. Their services were also integrated into

environments such as OpenOffice in order to deliver services

right within draft publications and let users interact with

huge data collections. In this way, users could, for example,

mark a word and look for specific occurrences of this word

15Link: https://goo.gl/CpIdui (Accessed: 7 October 2016).
16Link: https://goo.gl/ecaavc (Accessed: 7 October 2016).
17Link: https://goo.gl/nxxqAw (Accessed: 7 October 2016).
18Link: https://goo.gl/1Lsh56 (Accessed: 7 October 2016).
19Link: https://goo.gl/jbvxWP (Accessed: 7 October 2016).
20Link: https://goo.gl/WCw8wN (Accessed: 7 October 2016).
21Link: https://goo.gl/Nwnsia (Accessed: 5 October 2016).
22Link: https://goo.gl/3MKcjs (Accessed: 5 October 2016).

in Ancient Greek or Latin texts, and also add references to

specific text-passages to their publication [3].

V. DESCRIPTION OF THE LOG-FILE DATA

The LLS were designed to write one entry in the log-files

for both the request and the response. As table II shows, LLS

registered 965 million requests and responses forming 1.93
billion lines in the log-files and occupying 189GB of disc

space. The decision to split the requests and responses into

two lines per entry was based on the desire to display how

many active requests were in the LLS infrastructure. Unlike

requests made to a website, whose answers are typically

delivered within a second, LLS responses could take up to

40 seconds if there was still some computation necessary, as

was the case for the Common Co-occurrence service.

The detection of the number of active requests can be

easily achieved by computing the difference between logged

requests and responses.

The LLS log-files provide daily snapshots of the 965
million requests made between 19th September 2006 and

29th July 2014, when the project stopped recording this

information. A typical request looks like this23:

2006-09-19T08:43:32+01:00 - anonymous -
Baseform - 81.169.187.22 - IN - 0 - execute -
Wort=privilegium majus

where the hyphens separate data columns. The first column

is the time-stamp in precise seconds; the second column

contains the user account information; the third column

represents the requested service (Baseform); the fourth

column contains the client IP address; the fifth column

indicates an incoming request; the sixth column indicates

the status of the service, which can be either 0 (=ACTIVE)

or 1 (=INACTIVE) (see also section IV); the seventh col-

umn indicates that the execute-method has been called.

Alternatively, this field can contain ping. The last column

contains the key-value-pair of the query (in this example the

Latin multi-word unit privilegium majus) submitted to the

service, be that Word, Word length, Significance
threshold, Pattern or Limit (see also table II).

The response to the above request is:

2006-09-19T08:43:32+01:00 - anonymous - Baseform -
81.169.187.22 - OUT - 0 - execute - (0, 0) - 0.03s

where the fifth column marks the response with - OUT -.

The eighth column contains the resulting String[][]-

match for the query (in this case 0,0, i.e. none). A result

of, for example, (2,10) would indicate that a data matrix

is returned with two columns and ten rows. The second value

is typically bound to the Limit parameter (see also table

II). The ninth column displays the response time.

23All requests have been anonymised for privacy protection and publica-
tion. We plan to publicly release this data-set for the benefit of interested
researchers and service providers.

3234

Service Requests Requests
(%)

Non-empty
responses

Coverage
(%)

Input
Fields

Webservice
Type

Access level Installation
date

Baseform 624,275,884 64.636% 315,724,185 50.57% W MySQLSelect FREE 04/2005
Category 120,476,452 12.473% 43,276,840 35.92% W MySQLSelect FREE 04/2005
Thesaurus 69,573,648 7.203% 37,151,565 53.39% W, L MySQLSelect FREE 04/2005
Synonyms 60,745,973 6.289% 2,719,544 4.47% W, L MySQLSelect FREE 04/2005
Sentences 60,087,714 6.221% 11,536,172 19.19% W, L MySQLSelect FREE 04/2005
Wordforms 12,671,302 1.311% 4,309,791 34.01% W, L MySQLSelect FREE 04/2005
Frequencies 11,932,213 1.235% 8,095,420 67.84% W MySQLSelect FREE 04/2005
LeftCollocationFinder 1,416,001 0.146% 295,714 20.88% W, PoS, L MySQLSelect FREE 10/2005
RightCollocationFinder 1,379,356 0.142% 235,323 17.06% W, PoS, L MySQLSelect FREE 10/2005
Cooccurrences 1,057,722 0.109% 629,795 59.54% W, ST, L MySQLSelect FREE 04/2005
RightNeighbours 959,560 0.099% 567,870 59.18% W, L MySQLSelect FREE 04/2005
LeftNeighbours 731,449 0.075% 473,600 64.74% W, L MySQLSelect FREE 04/2005
Similarity 467,809 0.048% 308,877 66.02% W, L MySQLSelect FREE 10/2005
CooccurrencesAll 20,852 0.002% 20,848 99.98% W, ST, L MySQLSelect INTERN 05/2009
ExperimentalSynonyms 20,779 0.002% 14,860 71.51% W, L MySQLSelect FREE 12/2009
Crossword puzzling 2,902 < 0.001% 1,306 45.00% W, WL, L MySQLSelect FREE 10/2005
MARSService 616 < 0.001% 616 100.00% W, L MARS INTERN 10/2006
NGrams 564 < 0.001% 149 26.41% P, L MySQLSelect FREE 08/2011
NGramReferences 409 < 0.001% 87 21.27% P, L MySQLSelect FREE 08/2011
Common co-occurrence 55 < 0.001% 43 78.18% W1, W2, L MySQLSelect INTERN 10/2005
TOTAL 965,821,260 425,362,605

Table II
OVERVIEW OF REQUESTS MADE TO LLS BETWEEN 2006-2014, IN DESCENDING ORDER. THE Responses COLUMNS ONLY LIST RESPONSES WHOSE

VALUE WAS NOT EMPTY. FOR SPACE REASONS, THE VALUES IN THE Input Fields COLUMN ARE ABBREVIATED: Word (W.), Limit (L.), Part of Speech
pattern (POS), Significance Threshold (ST), Word length (WL) AND Pattern (P)

VI. RESULTS

Table II provides an overview of the 20 services of-

fered with a breakdown of the requests and the responses.

Over half of the requests (64.6%) were made to the

Baseform service. Similarly, services with high-quality

and often manually-curated data, such as the Thesaurus
and Synonyms services, were requested more often than

the quantitatively-computed Similarity service, which

provided similarly used words by assuming the distributional

hypothesis [8] and thus compared the co-occurrence vectors

of two words. Even if the coverage (see table II) for this ser-

vice, 66.02%, is significantly higher than, for example, the

Category (35.92%) or the Synonyms (4.47%) services,

users appeared to prefer precision over recall for their end-

user applications. Low coverage is also caused by requests to

German language databases, especially by compound nouns

that cannot all be included in a Baseform or Category
service. Many multi-word units (MWU) were also requested.

Out of all the requests, 84,760,875 (8.78%) were MWUs.

With regard to the distribution of the webservice usage, only

the two most frequently requested services, Baseform and

Category, were queried more often than the total count

of the MWU requests. This speaks to the impact of MWUs.

The less-used webservices in table II were primarily

limited to internal uses, to newly installed services or, as

was the case for the Crossword Puzzling service, to

manual usage instead of automatic bulk-requests.

In the following subsections we investigate the data by

attribution of requests, we detect user service chains and

perform some load-balancing analyses.

A. Attribution of requests

As explained in section IV, a webservice in the LLS

infrastructure could be requested for the execute and

ping methods. Only 2,078,275 (0.22%) out of the total 965
million requests are pings. These will not be considered in

this article beyond this point.

For every response there existed two different types of

output: - OUT - or - EXC - . While the former rep-

resents a regular response, the latter expresses an exception

that is caused by server communication issues. Out of all the

log-files, we counted 74,830 exceptions, which cover about

0.07% of all responses thus guaranteeing an availability of

> 99.9%. Of these exceptions, 42.27% were caused by

either an HTTP- or MySQL-timeout of 60 seconds each.

An 8.29% were caused by errors in the Axis webservice

framework, which received invalid requests from clients. A

further 5.39% and 4.52% were caused by service provider

errors and service errors. In addition, 0.05% were out-of-

memory errors that went so far as to cause a restart of the

LLS framework. Finally, 7.65% of the exceptions were due

to users submitting the wrong number of parameters (see

also the “Input Fields” column in table II), and 0.24% of

the requests did not specify any parameter, contrary to the

expectation that users would specify at least one.

Overall, the LLS infrastructure shared data with 85 unique

accounts. Additionally, and for practical reasons, an anony-

mous account was provided so that users could easily access

all freely-available services (see also the “Access level”

column in table II). The anonymous account sent a total

745,005,911 requests (77.14%) to the LLS infrastructure.

3235

1) By geographical regions: The open approach of the

LLS, which allows anonymous access to the services, makes

it difficult to get a thorough overview of the actual user-base

and the users’ geographical location. With the exception of

specific logins by heavy users, the only traceable information

is the IP address from which the request was sent. Thanks

to this data we were able to extract the WHOIS protocol

[15] information about the geographical provenance of the

user. Table III contains the distribution of most frequent

countries of origin for the 2006-2014 time-span. Requests

from which WHOIS geographical information could not be

unambiguously extracted were excluded (around 3.9%).

Country Requests Percentage
Germany (DE) 921,184,562 99.29%
Ireland (IE) 2,003,348 0.22%
Swiss (CH) 1,957,431 0.21%
Austria (AT) 1,347,703 0.13%
Hungary (HU) 302,966 0.03%
Poland (PL) 212,357 0.02%
Japan (JP) 184,408 0.02%
Romania (RO) 90,140 0.01%
China (CN) 90,125 0.01%
France (FR) 82,969 < 0.01%

Table III
TOP-TEN LIST OF REQUESTS BY COUNTRY FOR THE YEARS 2006 - 2014

Table III shows that the vast majority of requests were

sent from the same geographical region as the LCC, i.e.

Germany or Central Europe, and specifically from countries

where the most requested languages (German and English)

are spoken natively. Moreover, it is not surprising that

Ireland placed second. A deeper evaluation of associated IP

addresses revealed that those specific requests were largely

related to the popular cloud-computing platform Amazon

Web Services, whose European servers are located in Ireland

and Germany. But if we ignore this special case, the general

pattern created over the nine-year period is clearly visible.
2) By language: As already described in section IV, the

services provided text material based on various corpora for

publicly shared languages. An analysis of requests can give

an indication of the languages users were most interested in

(see also table IV for the top-six requested language). As

it could not be expected that all requests be issued to the

correct database (i.e. with a matching language), which was

the case for automatic text analyses without any client-side

preprocessing, all queries were uniformly classified.

Language Requests (in %) Language Requests (in %)
German 41.80% Dutch 5.71%
English 36.65% Italian 5.48%
French 5.82% Spanish 4.53%

Table IV
PERCENTAGE OF REQUESTS IN PROVIDED LANGUAGES

Given that the request types only require words or MWUs

as input, it is hard to identify the correct languages in every

case. In order to provide a well-founded estimate, an existing

language identification tool developed for the LCC for the

classification of complete sentences [9] was adapted. It was

based on word lists containing the 100,000 most frequent

words for all languages in question.
A large number of the queries could not be classified

(around 92%) as most of the requests were one-word queries

and were therefore difficult to automatically filter by lan-

guage. But the remainder can be seen as a rough estimation

for the complete data-set. Table IV shows this distribution of

queried language material between 2006 and 2014. Despite

the strong focus on German language material in the first

years of the project, the LLS were later heavily queried for

both German and English words. These languages combined

accounted for the vast majority (around 78%) of all requests.

This skewed distribution can be seen both as motivation to

promote the existing services in other language communities

and, in contrast, also as motivation to set future priorities on

the more popular languages that seemingly cover an existing

demand.
3) By cleanliness: An evaluation showed a significant

amount of “broken” queries. This manifested itself in many

encoding problems, including invalid lengths of queried

terms, such as empty strings or verbose texts instead of

single words or word groups. To get an insight into the

extent of this problem, an existing tool was used to remove

invalid input material based on blacklist patterns and simple

language statistics [10]. These rules were adapted and ex-

tended to match the changed input type (i.e. short strings).

Table V describes some of these rules and contains for each

the number of queries that were regarded as “invalid”.

Rule Matched requests (in
% of all)

Broken encoding 66,869,667 (6.920%)
Query too short 2,978,216 (0.310%)
URLs, HTML code, email addresses, etc. 189,895 (0.019%)
Query too long (more than 200 characters) 69,799 (0.007%)

Table V
APPLIED RULES FOR “CLEANLINESS” OF QUERIES (EXCERPT)

Overall, more than 71 million queries were regarded as

“invalid” based on the applied rules (around 7.4% of all

incoming queries). It is hard to determine why so many

queries contained encoding errors, which in almost every

case led to empty result-sets. One possible reason is, again,

the automatic processing of large text collections without

any preprocessing or encoding detection on the client-side.
4) By year: Figure 2 plots the yearly distribution of

requests between 2006 and 2014, peaking in 2011 with

459,852,254 requests. The usage growth until 2011 was

justified by strong dissemination and an efficient handling

of the services. Between 2008 and 2011, the use of the LLS

increased by three orders of magnitude, one order per year.

3236

Figure 2. Number of requests per year between 09/2006 and 07/2014.

The decline from 2011 can also be explained. In 2011

two new services, NGrams and NGramReferences, were

installed (see also table II) and Java was updated from

Java 1.4 to Java 6. Following these upgrades, the

system encountered new memory leaks with loads as high

as 60 requests per second. As a consequence, the incoming

requests gradually filled the memory of the Tomcat server,

producing OutOfMemoryErrors. Debugging became a

complex task as it took roughly two months to discover

an incompatibility between Java 6 and the older MySQL
Connector 3.0.1124 driver.

Once the issue was finally fixed, a number of automatic

scripts that used the LLS infrastructure were switched off.

In the summer of 2011, based on the traffic and before

the installation of the new services, we predicted that LLS

would reach one billion requests in Q1/2012. However, due

to the new installations and the consequent user-loss, LLS

was only able to reach one billion requests in July 2014.

This outcome serves to confirm the mantra “Never change

a running system”. At this time, the hot-deploy option had

not been developed in the webservice framework Axis yet,

but it was added later in version 2 (see also section VII).

B. Identification of service chains

The LLS infrastructure was designed to provide atomic

and loosely-coupled micro-services via the SOAP proto-

col. Each delivered service only provided a minimal core-

function, which used alone often did not satisfy a sophis-

ticated linguistic application or need. For this reason, we

analysed the log-files to determine which chains of micro-

services were observed on the client-side. The motivation for

this analysis is twofold. First, to gain a deeper understanding

of the sophisticated and aggregated applications that users

built. Secondly, and from a service provider point of view,

to reduce the number of requests: if a user sends requests

24Link: https://goo.gl/oW2LgT (Accessed: 7 October 2016).

from a self-built service chain (see table VI) of, for example,

three involved services, then an aggregated service reduces

the number of requests to one, concurrently reducing the

total network latency.

For this reason, the top-seven requested services

Baseform, Category, Thesaurus, Synonyms,

Sentences, Wordforms and Frequencies were

selected for the analysis of service chains because they

covered more than 99% of all requests (see table II). With

the exception of the Wordforms service, which is not

among the ten most frequently discovered chains, all other

services occurred in at least two of the chains.

Unsurprisingly, the most popular service was the

Baseform, which covered eight out of the ten most fre-

quently discovered service chains, and seven out of those

eight scenarios were the “openers” of a chain.

Rank Service chain Percentage
1 Baseform Frequencies 67.11%
2 Baseform Synonyms Sentences 26.32%
3 Synonym Sentences 3.00%
4 Baseform Synonyms 1.01%
5 Baseform Frequencies Synonyms 0.97%
6 Baseform Thesaurus 0.68%
7 Baseform Frequencies Category 0.24%
8 Baseform Category 0.24%
9 Frequencies Baseform Frequencies 0.23%

10 Thesaurus Similarity 0.20%

Table VI
LIST OF TOP-TEN MOST FREQUENTLY DISCOVERED SERVICE CHAINS

As table II shows, there were many re-appearing chain

patterns, such as Baseform Frequencies, which oc-

curred in the discovered chains with the ranks 1, 5, 7 and

9. It thus seemed reasonable to reuse the aggregated service

(rank 1) in the service chains with ranks 5, 7, 9.

From an NLP angle, table VI displays six chains,

represented by the ranks 2, 4, 5, 6, 7 and 8, following the

Baseform * [Synonym|Thesaurus|Category]*
pattern. This pattern implemented the traditional information

retrieval task of query expansion, the most predictable type

of service chain generation. Furthermore, the chain

pattern Frequencies Baseform Frequencies
implemented a linguistic frequency analysis for the

comparison of the number of occurrences between any

inflected word and its corresponding baseform.

To conclude the service chain discovery, an automatic

analysis for such a detection seems possible and useful. By

adding the Similarity service to the top-seven requested

services (see rank 10 in table II), the analysis also revealed

service chains for research purposes only. For instance,

while the Thesaurus service returned synonyms, the

Similarity service delivered automatically-computed

words that tend to occur in the same context and

therefore have similar vectors of co-occurrences. The

3237

user(s) researched the difference between qualitative

services with a high precision but a low recall and

quantitative services with a lower precision but a high

recall (see also the introduction to section VI). However,

chains such as Baseform Synonyms Sentences
Baseform Synonyms Sentences were more critical

as they doubled one of the core chains from table VI.

This discovery can be explained with the following example:

If I had had enough flour, I would have made more
brownies.

On the client-side, some users implemented a very prag-

matic approach of requesting every occurring word in a

sentence. In the example above, had occurs twice con-

secutively, causing the doubling of a chain with originally

three services only. Although absent in table VI, requests

of this kind were discovered in 24 more variants. For

this reason, it is not recommended to automatically detect

and install aggregated services, as this will contaminate

the service registry with unwanted noise. However, chain

discovery helps to provide candidates to be evaluated by

human judgment.

C. Load balancing

One result of section VI-B is the observation that users

tended to be pragmatic, which sometimes led to unwanted

noise during the knowledge discovery process. An analysis

of user behaviour is therefore justified. The goal is to

investigate if users were using such an infrastructure more in

the role of a “pragmatic user”, who requests everything and

often redundantly, or if they acted more as “smart users”,

who build a word list of unique words (word types) and

request those instead of querying every running wordform

(token). The reason for such an analysis is to provide an

understanding of load-balancing for an infrastructure of

linguistic resources based on our LLS experience.

Figure 3 plots the power law distribution of the requested

words with the rank r against their frequency f . As the figure

shows, the query distribution does not follow the traditional

Zipf law because both the range of the most frequent words

and the characteristics of the long tail are not recognisable.

Statistically, Zipf’s law implies that a few hundred of the

most frequently used words in any language roughly 500
in German already cover 50% of all tokens. Analysing the

distribution of queries in figure 3 reveals that the 500 most

frequently queried words cover just about 15.14% of the

overall number of requests. Even the top-1000 most frequent

words cover only 19.40%, implying that at least some users

systematically removed function words from their analysis

before using such a cyberinfrastructure. This observation is

supported by a word class analysis for the four different

part-of speech tags N (noun), A (adjective), V (verb) and

S (function word). This analysis shows that the number of

requests for all four word classes ranges between 23.84%

and 25.19%, while the expectation is that roughly (and

sometimes even more than) 50% of all tokens are function

words. Furthermore, Zipf’s law also implies that about 50%
of all types (i.e. unique words) occur only once following the

equation pf = 1
f×(f+1) with f as the word frequency. The

data behind figure 3 shows that only 443,031 word types

out of a complete list of 42,188,115 unique words occur

only once, amounting to only 1.05% and thus producing

significantly different results than the expected 50%.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

lo
g 1

0
fr

eq
ue

nc
y

f

log10 rank r

Figure 3. Log-log-scaled rank frequency plot for the LLS queries

To bring this query analysis for load-balancing to a con-

clusion, it was discovered that a global caching of function

words reduced the expensive database queries by less than

20% only, since users partly removed function words for

their analysis. This client-side preprocessing was appropriate

seeing as a token-type-ratio (ttr) of ttr ≈ 5 for small texts

and of ttr ≥ 20 for bigger texts or text collections is

computed. This implies that requesting an infrastructure such

as LLS not for every token but for unique types reduces

the number of requests for short documents to about 20%,

and for bigger documents or text collections to less than

5%. Nevertheless, “pragmatic users” can be identified. For

this reason, based on our experience and log-file analyses,

as a load-balancing strategy we recommend to track new

users (e.g. by uniquely identifiable accounts) and to add an

artificial delay to the natural response time so that those

users are “trained” to request not every token but unique

word types. This “punishment rule” does not only train

users to use an infrastructure efficiently but also leads to

the gradual disappearance of unwanted noise during the

discovery of service chains. Besides, it helps to reduce

temporal peaks when pragmatic users take over lots of server

resources. This means that potential resource bottlenecks can

be avoided without restricting content.

3238

VII. LESSONS LEARNT

From a Natural Language Processing standpoint, the poor

coverage of requests for some webservices (see table II)

would need special attention beyond the above discussion

on MWUs and users’ incorrect language selection. The data

shows that some requests resulted in an empty result-set

(0,0) as the requested topic was either not covered or

just barely covered in the relevant text corpus [11]. It also

shows, for example, that pornographic queries were more

popular at night (CEST). For instance, the query “penis

length” was made to the Synonym service. Similarly, we

detected 14,587 requests for the pattern Penis* with 775
unique queries. As the LLS were created by a publicly-

funded university, topics like pornography were deleted as

soon as identified by the web-crawlers, and are therefore

unavailable even if requested. We can also observe that the

text corpora are not representative of fashion, gymnastics,

linguistics and business language. While an analysis of such

under-representation is beyond the scope of this article, these

log-files can provide valuable support for corpus-building

and corpus representativeness (see also [12], [13]).

From a technical viewpoint, the relation between the

parameters and the results needs deeper discussion. The

idea behind SOAP- and REST-based webservices is to

enable one computer to work with another regardless of

the their operating systems and location. The underlying

exchange format of both SOAP and REST is mostly based

on XML, which is, per se, interchangeable. Given that the

services have different parameters (see the “Input Fields”

column in table II), a static signature such as

public String[][] execute(String word)

is not possible. Even with the same underlying source

code, the different signatures of the generated methods

would need different implementations. For the submission

of all key-value pairs needed to parameterise the webservice,

we chose a JavaBean to encapsulate the data-structure

of a Map. In the other implementations, the description

in the Webservice Description Language file (WSDL) was

interpreted differently. In some instances, the generated

client-side data-structure was a sorted map, a tree map or

a hash-based map. As the order of the key-value-pair did

not matter, a change of order was not taken into account.

The more critical interoperability issue was the serialisation

and deserialisation of complex results. We found that the

best data-structure is that of the String[][] data-type,

because it is generic enough to deliver back any result

independently from what is sent to the clients - whether it

is just one value, one column or multi-columns in a matrix.

The problem with String[][], however, is that it is not

appropriately supported by webservice frameworks because

these depend on the data-types defined in the XML Schema

Definition (XSD)25, which in turn only allow primitive data-

types such as xsd:string, xsd:time, xsd:double,

xsd:decimal, or xsd:boolean.

Arrays of primitive and complex data-types are also

allowed in the definition of XSD. In order to better represent

the semantics of a String[][] it was necessary to form

an array of String[], where the String[] represents

a row and the encapsulating array stores the sum of the

rows. Even if the representation of the semantics of the

desired data-structure was not technically challenging, it led

to different data-types in the client-side source code.

While Java retained the semantics of an array of

String[], other implementations interpreted the WSDL-

file with a String[][]. Alternatively, as was the case

with C#, a so-called JaggedArray of the XML-based

webservice description was created. Even if the generated

source code eventually worked with different interpretations

in different programming languages, it complicated the

support of the LLS infrastructure as it was not possible to

write up one document for the deserialisation of, and access

to, the responded data.

In 2010, when webservice frameworks other than Apache

Axis 1.3, namely Apache 2 and Metro, appeared on

the market, we supervised a diploma thesis about bench-

marking the performance of these frameworks [14]. There,

an immediate result of a stress-test revealed that the Apache

Axis 2 and Metro frameworks can process 382% and

441% more requests and responses than Apache Axis
1.3. For this reason, it was possible to measure a maximum

throughput capacity of up to 280 requests per second as

opposed to the maximum 60 requests per second in the

LLS infrastructure. Furthermore, [14] reports that REST-

based webservices are around 228% faster at serialising and

deserialising data than SOAP-based webservices when the

result-set contains 100 data-sets. For result-sets of ca. 2500
entries, SOAP- and REST-based webservices have similar

speeds. And when the result-set contains more than 2500
entries, again REST performs better than SOAP.

Comparing REST-based webservices for inline- versus

standoff-markup revealed that for a result-set between 100
and 10,000 entries standoff-markup performed 192% to

216% better than inline markup, and supported stream-

based webservices even better. With a responding result-set

of more than 10,000 data-sets, standoff-markup performed

gradually worse than inline markup. With a result-size of ca.

130,000 data-sets, standoff- and inline-markup performed

equally well. Beyond this size, inline markup performed

much better than standoff-markup26.

25Link: https://goo.gl/xkUBDZ (Accessed: 7 October 2016).
26A response at a scale of 130,000 data-sets is somewhat unrealistic and

ought to be avoided seeing as it is like dumping a database. Nevertheless,
we wish to report this result because it was performed as an artificial test
scenario in the lab under optimised circumstances (e.g. near-zero network
latency and exclusion of other users).

3239

VIII. CONCLUSION

Language-oriented resources have matured as a tech-

nology over the past few decades and are now gaining

momentum in a wide range of areas within information- and

knowledge-intensive applications. This trend is becoming

more important with the increasing demand for automatic

analysis of growing digital content. This article describes

how the Leipzig Linguistic Services (LLS) addressed this

demand and analyses the one billion log-files recorded by

the project between 2006 and 2014. The LLS provided users

with a means of querying the data contained in the Leipzig

Corpus Collection (LCC). The log-files yield statistics for

languages, texts and words accessed, and in this article we

supply details about the users’ country of provenance, we

elaborate on the web services offered by Leipzig and on

their usage.

In LLS’ case, our opening question “What are the impli-

cations of Digital Transformation?” can be answered with

the infrastructure mantra, “If you build it, they will come”

(see also [5]). However, with regard to easy-to-integrate and

atomic micro-services we found that users were generally

very pragmatic and requested everything they had found in

texts or on web-pages, such as RGB colour-sets, URLs and

other meta-information. Based on the log-files, our inference

is that it is easier to request a token and look for a match in

LLC’s database of millions of words than to invest time in

conventional preprocessing and preselection on the client-

side. Similarly, users repeatedly requested function words,

sometimes only a few minutes apart. This user behaviour

entailed a significant load and user control over the requests,

as that type of recurring request on unchanged data could

only be flagged as spam.

Moreover, we found that providing such an infrastructure

over one decade challenges the compatibility of used soft-

ware components. This article summarises experiences with

interoperability issues in different programming languages.

From a Natural Language Processing standpoint, this pa-

per contributes to existing conversations about the difficulty

of building balanced and representative corpora. In fact, user

interests detected in the LLS log-files can help to enrich cor-

pora by adding further topics. This article also touches upon

discussions about qualitative and manually-curated data

versus automatically-computed and quantitatively-available

results of language technology algorithms. Notwithstanding

the improvement of Natural Language Processing algo-

rithms, our results show that users prefer qualitative data

and that they often request these services even if the domain

and concept coverage is relatively low. The conclusion we

draw from the user behaviour observed in almost one billion

requests is that research fields, including the Digital Human-

ities, should share their data no matter how small through

large infrastructure initiatives like DARIAH and CLARIN in

order to increase the textual coverage of linguistic resources.

ACKNOWLEDGMENTS

This work has been made available by the projects

eAQUA (No. 01UA0803B), eTRACES (No. 01UA1101A)

and CLARIN-D (No. 01UG1120c), and by the early career

research group eTRAP (No. 01UG1409, 01UG1509) of the

German Ministry of Education and Research.

REFERENCES

[1] S. Borchardt, Generierbarkeit einer XML Topic Map aus
E-Mails unter Verwendung von Text-Mining-Methoden und
Nutzung von Web Services Bachelor thesis, 2005.

[2] O. Lau, Wortschatz - Besserer OpenOffice-Thesaurus dank
Web-Services, c’t 15/2005, vol. 15, pp. 214-219, 2005.

[3] M. Büchler, G. Heyer, S. Gründer, Bringing Modern Text
Mining Approaches to Two Thousand Years Old Ancient Texts
e-Humanities —an emerging discipline: Workshop in the 4th
IEEE International Conference on e-Science, 2008.

[4] N. Lossau, An Overview of Research Infrastructures in Europe
- and Recommendations to LIBER, LIBER Quarterly, vol.
21, no. 3-4, pp. 313-29, 2012.

[5] J. Van Zundert, If You Build It, Will We Come? Large Scale
Digital Infrastructures as a Dead End for Digital Humanities,
Historical Social Research / Historische Sozialforschung, vol.
37, no. 3, pp. 165-86, 2012.

[6] U. Quasthoff, M. Richter and C. Biemann, Corpus Portal
for Search in Monolingual Corpora Proceedings of the
Fifth International Conference on Language Resources and
Evaluation (LREC), 2006.

[7] D. Goldhahn, T. Eckart and U. Quasthoff, Building Large
Monolingual Dictionaries at the Leipzig Corpora Collection:
From 100 to 200 Languages Proceedings of the Eighth In-
ternational Conference on Language Resources and Evaluation
(LREC), 2012.

[8] Z. Harris, Distributional structure, Word, 10, 2-3, pp. 146162,
1954.

[9] S. Teresniak, Statistikbasierte Sprachenidentifikation auf
Satzbasis Bachelor thesis, 2005.

[10] T. Eckart, U. Quasthoff and D. Goldhahn, Language
Statistics-Based Quality Assurance for Large Corpora, Pro-
ceedings of Asia Pacific Corpus Linguistics Conference, 2012.

[11] M. Büchler, G. Heyer, Leipzig Linguistic Services - A 4 Years
Summary of Linguistic Web Services, TMS - Text Mining
Services in conjuction with SABRE multi-conference, 2009.

[12] D. Biber, Representativeness in Corpus Design Literary and
Linguistic Computing, 8, 4, pp. 243-257, 1993.

[13] S. Atkins, J. Clear, N. Ostler, Corpus Design Criteria, Lit-
erary and Linguistic Computing, 7, 1, pp. 1-16, 1992.

[14] S. Sander, Performanceanalyse von SOAP- und REST-
basierten Services in einer Linguistic Resources Umgebung,
Diploma thesis, University of Leipzig, 2010.

[15] IETF, WHOIS Protocol Specification Request for Comments
3912, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

