Mining and Analysing One Billion Requests to Linguistic Services

Marco Büchler, Greta Franzini, Emily Franzini
eTRAP Research Group
Georg-August-Universität Göttingen
Göttingen, Germany
[mbuechler|gfranzini|efranzini]@etrap.eu

Thomas Eckart
Natural Language Processing Group
Universität Leipzig
Leipzig, Germany
teckart@informatik.uni-leipzig.de

Abstract

From 2004 to 2016 the Leipzig Linguistic Services (LLS) existed as a SOAP-based cyberinfrastructure of atomic micro-services for the Wortschatz project, which covered different-sized textual corpora in more than 230 languages. The LLS were developed in 2004 and went live in 2005 in order to provide a webservice-based API to these corpus databases. In 2006, the LLS infrastructure began to systematically log and store requests made to the text collection, and in August 2016 the LLS were shut down. This article summarises the experience of the past ten years of running such a cyberinfrastructure with a total of nearly one billion requests. It includes an explanation of the technical decisions and limitations but also provides an overview of how the services were used.

Keywords-natural language, web services, internet, collective intelligence, knowledge discovery, data processing, data analysis, software as a service

I. Introduction

"What are the implications of Digital Transformation ${ }^{1}$?" This is the question we must ask since over the past two decades the huge amount of data gathered in Galleries, Libraries, Archives and Museums (GLAM institutions) is increasingly being turned into digital ecosystems. One immediate benefit of the transformation is that the interested public can now have access to an unprecedented amount of data. The drawback is that the extraordinarily high number of data-sets overwhelm users, creating a need for additional analysis tools for texts, objects, audio and video data.

This growing amount of digitally available data has raised user interest. The many ways in which users now wish to explore it have risen questions about the ways in which access to the data and the analysis tools is provided.

Granting everybody indiscriminate access to, for example, an Application Programming Interface (API) on a server hosting a few hundred gigabytes of data can mean that users with little knowledge may cause a user-initiated denial-ofservice attack that could crash the entire cyberinfrastructure.

In the mid 1990s, the Natural Language Processing Group at the University of Leipzig began work on the Wortschatz project (details in section III), which aimed to provide corpora in hundreds of languages and in different sizenormalisations, be that $100 \mathrm{~K}, 300 \mathrm{~K}$ or 1 M sentences. As

[^0]the resources grew in size, so did the number of requests for the data. In the early stages of the project a specific dump was created, parts of which even came with a small userinterface. The database dump was shared with interested researchers and partners in the business sector.

However, the personnel costs required for this workflow became unsustainable. For this reason, a new plan was put into motion in 2004, consisting of the development of a SOAP-based API - the Leipzig Linguistic Services (LLS) that enabled any interested person to access the data of the Wortschatz databases in any provided language. Overall, 20 services were provided, delivering specific information such as baseform, category classifications and thesaurus data. The aim of the LLS was to establish a Service Oriented Architecture (SOA) for linguistic resources based on small and atomic micro-services that could be combined by users for their particular needs. Users were then not only able to browse through the Wortschatz website, but also to integrate those services with their own existing digital ecosystems.

In 2005 these services went live and by September 2006 all requests were systematically logged. In July 2014 the number of logged requests reached one billion. While at the beginning the use was limited to academia, over time the services were increasingly used by the private and business sectors as well.

This article is structured as follows: we first contextualise by describing infrastructure projects. This will be followed by two sections on the Wortschatz project and the LLS, as well as a section on the description of the log-file data. Next, we will present our experiences and results from the analysis of nearly one billion requests, stored in 189 GB of uncompressed log-files. We will then describe which services were chained together by users on the clientside in order to identify potential aggregated server-side webservices. Furthermore, we will analyse the log-files for their usage in terms of a smart vs. pragmatic usage in order to identify the potential for load-balancing. The intent of this article is to report on our experience for the improvement of load-balancing strategies in future projects.

II. RELATED WORK

For the past ten-fifteen years, large (cross-)disciplinary Research Infrastructures (RIs), including Bamboo ${ }^{2}$, CLARIN 3, DARIAH ${ }^{4}$, CLARIAH ${ }^{5}$ and Europeana ${ }^{6}$, have been providing a variety of applications, materials and services to support the (Digital) Humanities, Social Sciences and related research communities [4]. A number of these RIs allow user access and participation via typically webbased interfaces, such as metadata search engines and data editors ${ }^{7}$. However, most of these infrastructure initiatives are primarily driven by the resource providers, and, among other shortcomings [4][5], occasionally lack the direct influence of their intended user groups. ${ }^{8}$ As a consequence, the shared services that RIs provide can only be evaluated against the requirements and rare innovative contributions of their users. Yet, it is these requirements and contributions that ground and add value to these initiatives, acting as natural drivers for a constant adaptation and extension of infrastructure ecosystems.

In this context, the management of user feedback is largely based on static and time-consuming procedures (e.g. ticketing systems) and can only give a rough understanding of problems encountered. A more direct and representative feedback system is desirable to address the particularly problematic issues of data absence or misleading interfaces. Such a system would be especially important for strongly integrated infrastructures like CLARIN, which are designed as service-oriented architectures based on web services. For those, the real interaction of end-users with provided services and their combination with complex service chains also affect load-balancing efficiency or the usefulness of infrastructure under heavy load.

III. The Wortschatz project

The Deutscher Wortschatz project or Leipzig Corpora Collection project (hereafter LCC) ${ }^{9}$ began more than twenty years ago with the aim of creating corpus-based monolingual dictionaries for the German language [6]. Since then, it has expanded its scope to the collection and enrichment of digital texts in as many languages as possible. The enrichment process encompasses a variety of linguistic, and especially statistical, information. Amongst this type of information, there is a dictionary containing data about word frequency, sample sentences and statistically-significant word co-occurrences based on different window sizes [7].

[^1]The texts are acquired with different crawling strategies. Through a self-developed distributed crawling environment, such as Heritrix ${ }^{10}$, these processes are continuously revised and perform downloads of complete top-level domains as well as daily news in more than 80 languages via RSS feeds. Based on the materials collected, a variety of user-interfaces were developed to provide user-friendly access to the data and its associated applications.

To this day, the LCC provides textual materials in more than 230 languages, and the collection keeps growing. Table I shows the available amount of text material for a small selection of languages (measured in number of available sentences).

Language	Number of sen- tences (in M)	Language	Number of sen- tences (in M)
English	1,110	Georgian	30
German	1,023	Bokmål	27
Russian	456	Modern Greek	25
Spanish	244	Lithuanian	20
French	178	Catalan	16
\ldots	\ldots	\ldots	\ldots

Table I
TEXT MATERIAL OF THE LEIPZIG CORPORA COLLECTION (EXCERPT)

IV. The Leipzig Linguistic Services (LLS)

The intention of the overall LLS architecture was to be as simple and generic as possible. A generic architecture can be reused in different scenarios but tends to have too many parameters and options, while a simple architecture claims usability and guarantees a faster learning curve. In the following, we describe the architecture, the editing workflow for adding a new webservice, the technical decisions and the usage of the LLS.

The LLS were entirely developed in Java. In 2004, when development began, Java 1.4 was the most commonly used programming language to run under different operating systems, such as Linux, MacOS and Windows. Even though the plan was to run the services on a Linux-based server, their design made it possible to adapt to different and projectspecific operating systems.

The LLS ran in an Apache Tomcat 5.0.19 ${ }^{11}$ with the Apache Axis 1.3 ${ }^{12}$ implementations. Later experiments with Apache Axis 2 showed that, at least for the LLS, interoperability with clients from different programming languages worsened. This is the reason why the productive system retained the older version. In order to achieve a simple architecture, we used Apache Ant 1.6.5 ${ }^{13}$. Ant was used as the central tool for generating the back-end services and deploying them in a Tomcat server (see red

[^2]

Figure 1. Four workflow modes with separation of concern: editing (yellow); managing, compiling and deploying (red); hosting and operating (blue); using the LLS infrastructure (green).
zone in figure 1). For this, different Ant tasks were written in order to create Java code out of a data-set description.

In order to create the server-side Java code for a specific webservice, a data-set needed to be added to the webservice management. This required the following information: Id, WebServiceType, Algorithmus, InputFields, Name, Magnitude, StdLimit, Description, Status and AuthorizationLevel (see yellow zone in figure 1). Id describes a running and unique number that is provided by the system. WebServiceType expects a Java class that implements the wSType Java interface containing the two methods, ping and execute; while the latter contains the execution code for a service, the ping method serves to integrate the client-side with monitoring tools in order to check if the system is alive (i.e. by sending a ping and waiting for the corresponding pong). A WSType-implementing class can be any task to which it is possible to respond within an HTTP timeout of 60 seconds. Table II shows the selected types in the "Webservice Types" column. In the LLS production system only two Webservice types, MySQLSelect and MARS ${ }^{14}$, were chosen. The first type implements a selection to a MySQL database, while the MARS type implements a collection of database requests as an aggregated service, which was originally built for a Max Planck Institute and later made available for others. Algorithmus expects values and parameters specific to a webservice type. InputFields describes the parameters that a webservice expects (see also "Input Fields" column in table II). The Name field

[^3]represents the name under which the service is deployed and made available. Magnitude is a cost measure for each request to facilitate the creation of a business model for commercial users. StdLimit sets a default value for limiting results in case a user does not submit a limit with a request. A value of 20 was chosen by default as lower limits significantly decrease the response time. Description contains a short description of what the webservice does in terms of displaying the information on the website. Status expects one of two values, ACTIVE or INACTIVE. Switching a service from active to inactive mode restricted its availability to users (i.e. no longer or temporarily available). This feature was especially useful when maintenance work had to be done on the databases. Upon reactivation, the service would be immediately restored for public use. AuthorizationLevel indicates if access to the webservice is public or restricted to user accounts with special rights (see the "Access level" column in table II). This control measure was necessary as some services are time-consuming and thus not fit for public use.

Once an editor (see yellow zone in figure 1) had edited a webservice description, a dedicated person such as the system administrator would start the Ant-based compilation of the webservice. This included the server-side code generation and the deployment of the service in Apache Tomcat. Once the service was deployed, the Webservice Description Language file (WSDL) was automatically downloaded by the Ant-script and transformed into Java code. As SOAPbased webservices do not provide a user interface, the Antscript generated a Swing-based user interface for each deployed webservice, which was automatically uploaded to Tomcat as well. Furthermore, the generated Java code was
used to execute the ping-method in order to check if the service was ready. Once all installed services had successfully sent a pong back, the compilation and installation step was complete (see red zone in figure 1). The server operation (see blue zone in figure 1) of the Wortschatz databases was distributed across dedicated DB servers (see also section III).

With the webservices deployed, users were able to either download the pre-compiled Java client and integrate it into their own digital ecosystems or use the Swing-based graphical user interface of the clients. Additionally, the idea of SOAP is to provide a generic description of a webservice in the WSDL-file in order to generate the client source code in further programming languages, such as in CH as part of .NET ${ }^{15}$ (see also [2]), Perl ${ }^{16}$, Python ${ }^{17}$, Delphi, PHP ${ }^{18}$, Ruby ${ }^{19}$ and JavaScript ${ }^{20}$ (see green zone in figure 1). Independently from the underlying programming languages, over the past ten years we have observed different uses in research, business and in the private sector. In research, the LLS were used in the areas of text profiles and author classification [1]. The services were also used as data resources for sentiment analysis in research groups in Germany, Austria and South Africa. Users from industry were mainly interested in using Baseform or Synonym services for improving internal search indexes. The LLS data was also used for information retrieval tasks in portals for weighting words in a word cloud or to display enriching information. Private users accessed the LLS to complete crossword puzzles. A dedicated service was installed upon request for this purpose alone (see also table II), since it was possible to query a pattern of an incomplete word with a given word-length limit.

Another application for private and business users was the Thesaurus service, which could be used to request similar words given a specific context. OpenOffice, for example, does not perform equally well in this task [2]. The LLS infrastructure worked well for users because it avoided dealing directly with an unmanageable amount of data, while also enabling the integration of millions of datasets accessible in their environments.

From 2008 the SOA-based cyberinfrastructure LLS were used in Digital Humanities projects including eAQUA ${ }^{21}$ and eTRACES ${ }^{22}$. Their services were also integrated into environments such as OpenOffice in order to deliver services right within draft publications and let users interact with huge data collections. In this way, users could, for example, mark a word and look for specific occurrences of this word

[^4]in Ancient Greek or Latin texts, and also add references to specific text-passages to their publication [3].

V. DESCRIPTION OF THE LOG-FILE DATA

The LLS were designed to write one entry in the log-files for both the request and the response. As table II shows, LLS registered 965 million requests and responses forming 1.93 billion lines in the log-files and occupying 189 GB of disc space. The decision to split the requests and responses into two lines per entry was based on the desire to display how many active requests were in the LLS infrastructure. Unlike requests made to a website, whose answers are typically delivered within a second, LLS responses could take up to 40 seconds if there was still some computation necessary, as was the case for the Common Co-occurrence service. The detection of the number of active requests can be easily achieved by computing the difference between logged requests and responses.

The LLS log-files provide daily snapshots of the 965 million requests made between $19^{\text {th }}$ September 2006 and $29^{\text {th }}$ July 2014, when the project stopped recording this information. A typical request looks like this ${ }^{23}$:

```
2006-09-19T08:43:32+01:00 - anonymous -
Baseform - 81.169.187.22 - IN - 0 - execute -
Wort=privilegium majus
```

where the hyphens separate data columns. The first column is the time-stamp in precise seconds; the second column contains the user account information; the third column represents the requested service (Baseform); the fourth column contains the client IP address; the fifth column indicates an incoming request; the sixth column indicates the status of the service, which can be either 0 (=ACTIVE) or 1 (=INACTIVE) (see also section IV); the seventh column indicates that the execute-method has been called. Alternatively, this field can contain ping. The last column contains the key-value-pair of the query (in this example the Latin multi-word unit privilegium majus) submitted to the service, be that Word, Word length, Significance threshold, Pattern or Limit (see also table II).

The response to the above request is:

```
2006-09-19T08:43:32+01:00 - anonymous - Baseform -
81.169.187.22 - OUT - 0 - execute - (0, 0) - 0.03s
```

where the fifth column marks the response with - OUT -. The eighth column contains the resulting String[][]match for the query (in this case 0,0 , i.e. none). A result of, for example, $(2,10)$ would indicate that a data matrix is returned with two columns and ten rows. The second value is typically bound to the Limit parameter (see also table II). The ninth column displays the response time.

[^5]| Service | Requests | Requests (\%) | Non-empty responses | Coverage (\%) | Input Fields | Webservice Type | Access level | Installation date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Baseform | 624,275,884 | 64.636\% | 315,724,185 | 50.57\% | W | MySQLSelect | FREE | 04/2005 |
| Category | 120,476,452 | 12.473\% | 43,276,840 | 35.92\% | W | MySQLSelect | FREE | 04/2005 |
| Thesaurus | 69,573,648 | 7.203\% | 37,151,565 | 53.39\% | W, L | MySQLSelect | FREE | 04/2005 |
| Synonyms | 60,745,973 | 6.289\% | 2,719,544 | 4.47\% | W, L | MySQLSelect | FREE | 04/2005 |
| Sentences | 60,087,714 | 6.221\% | 11,536,172 | 19.19\% | W, L | MySQLSelect | FREE | 04/2005 |
| Wordforms | 12,671,302 | 1.311\% | 4,309,791 | 34.01\% | W, L | MySQLSelect | FREE | 04/2005 |
| Frequencies | 11,932,213 | 1.235\% | 8,095,420 | 67.84\% | W | MySQLSelect | FREE | 04/2005 |
| LeftCollocationFinder | 1,416,001 | 0.146\% | 295,714 | 20.88\% | W, PoS, L | MySQLSelect | FREE | 10/2005 |
| RightCollocationFinder | 1,379,356 | 0.142\% | 235,323 | 17.06\% | W, PoS, L | MySQLSelect | FREE | 10/2005 |
| Cooccurrences | 1,057,722 | 0.109\% | 629,795 | 59.54\% | W, ST, L | MySQLSelect | FREE | 04/2005 |
| RightNeighbours | 959,560 | 0.099\% | 567,870 | 59.18\% | W, L | MySQLSelect | FREE | 04/2005 |
| LeftNeighbours | 731,449 | 0.075\% | 473,600 | 64.74\% | W, L | MySQLSelect | FREE | 04/2005 |
| Similarity | 467,809 | 0.048\% | 308,877 | 66.02\% | W, L | MySQLSelect | FREE | 10/2005 |
| CooccurrencesAll | 20,852 | 0.002\% | 20,848 | 99.98\% | W, ST, L | MySQLSelect | INTERN | 05/2009 |
| ExperimentalSynonyms | 20,779 | 0.002\% | 14,860 | 71.51\% | W, L | MySQLSelect | FREE | 12/2009 |
| Crossword puzzling | 2,902 | $<0.001 \%$ | 1,306 | 45.00\% | W, WL, L | MySQLSelect | FREE | 10/2005 |
| MARSService | 616 | < 0.001\% | 616 | 100.00\% | W, L | MARS | INTERN | 10/2006 |
| NGrams | 564 | < 0.001\% | 149 | 26.41\% | P, L | MySQLSelect | FREE | 08/2011 |
| NGramReferences | 409 | < 0.001\% | 87 | 21.27\% | P, L | MySQLSelect | FREE | 08/2011 |
| Common co-occurrence | 55 | < 0.001\% | 43 | 78.18\% | W1, W2, L | MySQLSelect | INTERN | 10/2005 |
| TOTAL | 965,821,260 | | 425,362,605 | | | | | |

Table II
Overview of requests made to LLS between 2006-2014, in descending order. The Responses columns only list responses whose value was not empty. For space reasons, the values in the Input Fields column are abbreviated: Word (W.), Limit (L.), Part of Speech pattern (PoS), Significance Threshold (ST), Word length (WL) AND Pattern (P)

VI. Results

Table II provides an overview of the 20 services offered with a breakdown of the requests and the responses. Over half of the requests (64.6%) were made to the Baseform service. Similarly, services with high-quality and often manually-curated data, such as the Thesaurus and Synonyms services, were requested more often than the quantitatively-computed Similarity service, which provided similarly used words by assuming the distributional hypothesis [8] and thus compared the co-occurrence vectors of two words. Even if the coverage (see table II) for this service, 66.02%, is significantly higher than, for example, the Category (35.92%) or the Synonyms (4.47%) services, users appeared to prefer precision over recall for their enduser applications. Low coverage is also caused by requests to German language databases, especially by compound nouns that cannot all be included in a Baseform or Category service. Many multi-word units (MWU) were also requested. Out of all the requests, $84,760,875(8.78 \%)$ were MWUs. With regard to the distribution of the webservice usage, only the two most frequently requested services, Baseform and Category, were queried more often than the total count of the MWU requests. This speaks to the impact of MWUs.

The less-used webservices in table II were primarily limited to internal uses, to newly installed services or, as was the case for the Crossword Puzzling service, to manual usage instead of automatic bulk-requests.

In the following subsections we investigate the data by attribution of requests, we detect user service chains and perform some load-balancing analyses.

A. Attribution of requests

As explained in section IV, a webservice in the LLS infrastructure could be requested for the execute and ping methods. Only $2,078,275(0.22 \%)$ out of the total 965 million requests are pings. These will not be considered in this article beyond this point.

For every response there existed two different types of output: - OUT - or - EXC - . While the former represents a regular response, the latter expresses an exception that is caused by server communication issues. Out of all the log-files, we counted 74,830 exceptions, which cover about 0.07% of all responses thus guaranteeing an availability of $>99.9 \%$. Of these exceptions, 42.27% were caused by either an HTTP- or MySQL-timeout of 60 seconds each. An 8.29% were caused by errors in the Axis webservice framework, which received invalid requests from clients. A further 5.39% and 4.52% were caused by service provider errors and service errors. In addition, 0.05% were out-ofmemory errors that went so far as to cause a restart of the LLS framework. Finally, 7.65% of the exceptions were due to users submitting the wrong number of parameters (see also the "Input Fields" column in table II), and 0.24% of the requests did not specify any parameter, contrary to the expectation that users would specify at least one.

Overall, the LLS infrastructure shared data with 85 unique accounts. Additionally, and for practical reasons, an anonymous account was provided so that users could easily access all freely-available services (see also the "Access level" column in table II). The anonymous account sent a total $745,005,911$ requests (77.14%) to the LLS infrastructure.

1) By geographical regions: The open approach of the LLS, which allows anonymous access to the services, makes it difficult to get a thorough overview of the actual user-base and the users' geographical location. With the exception of specific logins by heavy users, the only traceable information is the IP address from which the request was sent. Thanks to this data we were able to extract the WHOIS protocol [15] information about the geographical provenance of the user. Table III contains the distribution of most frequent countries of origin for the 2006-2014 time-span. Requests from which WHOIS geographical information could not be unambiguously extracted were excluded (around 3.9%).

Country	Requests	Percentage
Germany (DE)	$921,184,562$	99.29%
Ireland (IE)	$2,003,348$	0.22%
Swiss (CH)	$1,957,431$	0.21%
Austria (AT)	$1,347,703$	0.13%
Hungary (HU)	302,966	0.03%
Poland (PL)	212,357	0.02%
Japan (JP)	184,408	0.02%
Romania (RO)	90,140	0.01%
China (CN)	90,125	0.01%
France (FR)	82,969	$<0.01 \%$

Table III
TOP-TEN LIST OF REQUESTS BY COUNTRY FOR THE YEARS 2006-2014

Table III shows that the vast majority of requests were sent from the same geographical region as the LCC, i.e. Germany or Central Europe, and specifically from countries where the most requested languages (German and English) are spoken natively. Moreover, it is not surprising that Ireland placed second. A deeper evaluation of associated IP addresses revealed that those specific requests were largely related to the popular cloud-computing platform Amazon Web Services, whose European servers are located in Ireland and Germany. But if we ignore this special case, the general pattern created over the nine-year period is clearly visible.
2) By language: As already described in section IV, the services provided text material based on various corpora for publicly shared languages. An analysis of requests can give an indication of the languages users were most interested in (see also table IV for the top-six requested language). As it could not be expected that all requests be issued to the correct database (i.e. with a matching language), which was the case for automatic text analyses without any client-side preprocessing, all queries were uniformly classified.

Language	Requests (in \%)	Language	Requests (in \%)
German	41.80%	Dutch	5.71%
English	36.65%	Italian	5.48%
French	5.82%	Spanish	4.53%

Table IV
PERCENTAGE OF REQUESTS IN PROVIDED LANGUAGES

Given that the request types only require words or MWUs
as input, it is hard to identify the correct languages in every case. In order to provide a well-founded estimate, an existing language identification tool developed for the LCC for the classification of complete sentences [9] was adapted. It was based on word lists containing the 100,000 most frequent words for all languages in question.

A large number of the queries could not be classified (around 92%) as most of the requests were one-word queries and were therefore difficult to automatically filter by language. But the remainder can be seen as a rough estimation for the complete data-set. Table IV shows this distribution of queried language material between 2006 and 2014. Despite the strong focus on German language material in the first years of the project, the LLS were later heavily queried for both German and English words. These languages combined accounted for the vast majority (around 78%) of all requests. This skewed distribution can be seen both as motivation to promote the existing services in other language communities and, in contrast, also as motivation to set future priorities on the more popular languages that seemingly cover an existing demand.
3) By cleanliness: An evaluation showed a significant amount of "broken" queries. This manifested itself in many encoding problems, including invalid lengths of queried terms, such as empty strings or verbose texts instead of single words or word groups. To get an insight into the extent of this problem, an existing tool was used to remove invalid input material based on blacklist patterns and simple language statistics [10]. These rules were adapted and extended to match the changed input type (i.e. short strings). Table V describes some of these rules and contains for each the number of queries that were regarded as "invalid".

Rule	Matched requests (in \% of all)
Broken encoding	$66,869,667(6.920 \%)$
Query too short	$2,978,216(0.310 \%)$
URLs, HTML code, email addresses, etc.	$189,895(0.019 \%)$
Query too long (more than 200 characters)	$69,799(0.007 \%)$
Table V	
APPLIED RULES FOR "CLEANLINESS" OF QUERIES (EXCERPT)	

Overall, more than 71 million queries were regarded as "invalid" based on the applied rules (around 7.4% of all incoming queries). It is hard to determine why so many queries contained encoding errors, which in almost every case led to empty result-sets. One possible reason is, again, the automatic processing of large text collections without any preprocessing or encoding detection on the client-side.
4) By year: Figure 2 plots the yearly distribution of requests between 2006 and 2014, peaking in 2011 with $459,852,254$ requests. The usage growth until 2011 was justified by strong dissemination and an efficient handling of the services. Between 2008 and 2011, the use of the LLS increased by three orders of magnitude, one order per year.

Figure 2. Number of requests per year between 09/2006 and 07/2014.

The decline from 2011 can also be explained. In 2011 two new services, NGrams and NGramReferences, were installed (see also table II) and Java was updated from Java 1.4 to Java 6. Following these upgrades, the system encountered new memory leaks with loads as high as 60 requests per second. As a consequence, the incoming requests gradually filled the memory of the Tomcat server, producing OutOfMemoryErrors. Debugging became a complex task as it took roughly two months to discover an incompatibility between Java 6 and the older MySQL Connector 3.0.11 ${ }^{24}$ driver.

Once the issue was finally fixed, a number of automatic scripts that used the LLS infrastructure were switched off. In the summer of 2011, based on the traffic and before the installation of the new services, we predicted that LLS would reach one billion requests in Q1/2012. However, due to the new installations and the consequent user-loss, LLS was only able to reach one billion requests in July 2014. This outcome serves to confirm the mantra "Never change a running system". At this time, the hot-deploy option had not been developed in the webservice framework Axis yet, but it was added later in version 2 (see also section VII).

B. Identification of service chains

The LLS infrastructure was designed to provide atomic and loosely-coupled micro-services via the SOAP protocol. Each delivered service only provided a minimal corefunction, which used alone often did not satisfy a sophisticated linguistic application or need. For this reason, we analysed the log-files to determine which chains of microservices were observed on the client-side. The motivation for this analysis is twofold. First, to gain a deeper understanding of the sophisticated and aggregated applications that users built. Secondly, and from a service provider point of view, to reduce the number of requests: if a user sends requests

[^6]from a self-built service chain (see table VI) of, for example, three involved services, then an aggregated service reduces the number of requests to one, concurrently reducing the total network latency.

For this reason, the top-seven requested services Baseform, Category, Thesaurus, Synonyms, Sentences, Wordforms and Frequencies were selected for the analysis of service chains because they covered more than 99% of all requests (see table II). With the exception of the Wordforms service, which is not among the ten most frequently discovered chains, all other services occurred in at least two of the chains.

Unsurprisingly, the most popular service was the Baseform, which covered eight out of the ten most frequently discovered service chains, and seven out of those eight scenarios were the "openers" of a chain.

Rank	Service chain	Percentage
1	Baseform Frequencies	67.11%
2	Baseform Synonyms Sentences	26.32%
3	Synonym Sentences	3.00%
4	Baseform Synonyms	1.01%
5	Baseform Frequencies Synonyms	0.97%
6	Baseform Thesaurus	0.68%
7	Baseform Frequencies Category	0.24%
8	Baseform Category	0.24%
9	Frequencies Baseform Frequencies	0.23%
10	Thesaurus Similarity	0.20%

Table VI
LIST OF TOP-TEN MOST FREQUENTLY DISCOVERED SERVICE CHAINS

As table II shows, there were many re-appearing chain patterns, such as Baseform Frequencies, which occurred in the discovered chains with the ranks $1,5,7$ and 9. It thus seemed reasonable to reuse the aggregated service (rank 1) in the service chains with ranks 5, 7, 9.

From an NLP angle, table VI displays six chains, represented by the ranks $2,4,5,6,7$ and 8 , following the Baseform * [Synonym|Thesaurus|Category]* pattern. This pattern implemented the traditional information retrieval task of query expansion, the most predictable type of service chain generation. Furthermore, the chain pattern Frequencies Baseform Frequencies implemented a linguistic frequency analysis for the comparison of the number of occurrences between any inflected word and its corresponding baseform.

To conclude the service chain discovery, an automatic analysis for such a detection seems possible and useful. By adding the Similarity service to the top-seven requested services (see rank 10 in table II), the analysis also revealed service chains for research purposes only. For instance, while the Thesaurus service returned synonyms, the Similarity service delivered automatically-computed words that tend to occur in the same context and therefore have similar vectors of co-occurrences. The
user(s) researched the difference between qualitative services with a high precision but a low recall and quantitative services with a lower precision but a high recall (see also the introduction to section VI). However, chains such as Baseform Synonyms Sentences Baseform Synonyms Sentences were more critical as they doubled one of the core chains from table VI. This discovery can be explained with the following example:

```
If I had had enough flour, I would have made more
brownies.
```

On the client-side, some users implemented a very pragmatic approach of requesting every occurring word in a sentence. In the example above, had occurs twice consecutively, causing the doubling of a chain with originally three services only. Although absent in table VI, requests of this kind were discovered in 24 more variants. For this reason, it is not recommended to automatically detect and install aggregated services, as this will contaminate the service registry with unwanted noise. However, chain discovery helps to provide candidates to be evaluated by human judgment.

C. Load balancing

One result of section VI-B is the observation that users tended to be pragmatic, which sometimes led to unwanted noise during the knowledge discovery process. An analysis of user behaviour is therefore justified. The goal is to investigate if users were using such an infrastructure more in the role of a "pragmatic user", who requests everything and often redundantly, or if they acted more as "smart users", who build a word list of unique words (word types) and request those instead of querying every running wordform (token). The reason for such an analysis is to provide an understanding of load-balancing for an infrastructure of linguistic resources based on our LLS experience.

Figure 3 plots the power law distribution of the requested words with the rank r against their frequency f. As the figure shows, the query distribution does not follow the traditional Zipf law because both the range of the most frequent words and the characteristics of the long tail are not recognisable. Statistically, Zipf's law implies that a few hundred of the most frequently used words in any language roughly 500 in German already cover 50% of all tokens. Analysing the distribution of queries in figure 3 reveals that the 500 most frequently queried words cover just about 15.14% of the overall number of requests. Even the top-1000 most frequent words cover only 19.40%, implying that at least some users systematically removed function words from their analysis before using such a cyberinfrastructure. This observation is supported by a word class analysis for the four different part-of speech tags N (noun), A (adjective), V (verb) and S (function word). This analysis shows that the number of requests for all four word classes ranges between 23.84%
and 25.19%, while the expectation is that roughly (and sometimes even more than) 50% of all tokens are function words. Furthermore, Zipf's law also implies that about 50% of all types (i.e. unique words) occur only once following the equation $p_{f}=\frac{1}{f \times(f+1)}$ with f as the word frequency. The data behind figure 3 shows that only 443,031 word types out of a complete list of $42,188,115$ unique words occur only once, amounting to only 1.05% and thus producing significantly different results than the expected 50%.

Figure 3. Log-log-scaled rank frequency plot for the LLS queries
To bring this query analysis for load-balancing to a conclusion, it was discovered that a global caching of function words reduced the expensive database queries by less than 20% only, since users partly removed function words for their analysis. This client-side preprocessing was appropriate seeing as a token-type-ratio (ttr) of $t t r \approx 5$ for small texts and of ttr ≥ 20 for bigger texts or text collections is computed. This implies that requesting an infrastructure such as LLS not for every token but for unique types reduces the number of requests for short documents to about 20%, and for bigger documents or text collections to less than 5%. Nevertheless, "pragmatic users" can be identified. For this reason, based on our experience and log-file analyses, as a load-balancing strategy we recommend to track new users (e.g. by uniquely identifiable accounts) and to add an artificial delay to the natural response time so that those users are "trained" to request not every token but unique word types. This "punishment rule" does not only train users to use an infrastructure efficiently but also leads to the gradual disappearance of unwanted noise during the discovery of service chains. Besides, it helps to reduce temporal peaks when pragmatic users take over lots of server resources. This means that potential resource bottlenecks can be avoided without restricting content.

VII. Lessons Learnt

From a Natural Language Processing standpoint, the poor coverage of requests for some webservices (see table II) would need special attention beyond the above discussion on MWUs and users' incorrect language selection. The data shows that some requests resulted in an empty result-set $(0,0)$ as the requested topic was either not covered or just barely covered in the relevant text corpus [11]. It also shows, for example, that pornographic queries were more popular at night (CEST). For instance, the query "penis length" was made to the Synonym service. Similarly, we detected 14,587 requests for the pattern Penis* with 775 unique queries. As the LLS were created by a publiclyfunded university, topics like pornography were deleted as soon as identified by the web-crawlers, and are therefore unavailable even if requested. We can also observe that the text corpora are not representative of fashion, gymnastics, linguistics and business language. While an analysis of such under-representation is beyond the scope of this article, these log-files can provide valuable support for corpus-building and corpus representativeness (see also [12], [13]).

From a technical viewpoint, the relation between the parameters and the results needs deeper discussion. The idea behind SOAP- and REST-based webservices is to enable one computer to work with another regardless of the their operating systems and location. The underlying exchange format of both SOAP and REST is mostly based on XML, which is, per se, interchangeable. Given that the services have different parameters (see the "Input Fields" column in table II), a static signature such as
public String[][] execute(String word)
is not possible. Even with the same underlying source code, the different signatures of the generated methods would need different implementations. For the submission of all key-value pairs needed to parameterise the webservice, we chose a JavaBean to encapsulate the data-structure of a Map. In the other implementations, the description in the Webservice Description Language file (WSDL) was interpreted differently. In some instances, the generated client-side data-structure was a sorted map, a tree map or a hash-based map. As the order of the key-value-pair did not matter, a change of order was not taken into account. The more critical interoperability issue was the serialisation and deserialisation of complex results. We found that the best data-structure is that of the String[][] data-type, because it is generic enough to deliver back any result independently from what is sent to the clients - whether it is just one value, one column or multi-columns in a matrix.

The problem with String [] [], however, is that it is not appropriately supported by webservice frameworks because these depend on the data-types defined in the XML Schema

Definition (XSD) $)^{25}$, which in turn only allow primitive datatypes such as xsd:string, xsd:time, xsd:double, xsd: decimal, or xsd:boolean.

Arrays of primitive and complex data-types are also allowed in the definition of XSD. In order to better represent the semantics of a String[][] it was necessary to form an array of String[], where the String[] represents a row and the encapsulating array stores the sum of the rows. Even if the representation of the semantics of the desired data-structure was not technically challenging, it led to different data-types in the client-side source code.

While Java retained the semantics of an array of String[], other implementations interpreted the WSDLfile with a String[][]. Alternatively, as was the case with C\#, a so-called JaggedArray of the XML-based webservice description was created. Even if the generated source code eventually worked with different interpretations in different programming languages, it complicated the support of the LLS infrastructure as it was not possible to write up one document for the deserialisation of, and access to, the responded data.

In 2010, when webservice frameworks other than Apache Axis 1.3, namely Apache 2 and Metro, appeared on the market, we supervised a diploma thesis about benchmarking the performance of these frameworks [14]. There, an immediate result of a stress-test revealed that the Apache Axis 2 and Metro frameworks can process 382% and 441% more requests and responses than Apache Axis 1.3. For this reason, it was possible to measure a maximum throughput capacity of up to 280 requests per second as opposed to the maximum 60 requests per second in the LLS infrastructure. Furthermore, [14] reports that RESTbased webservices are around 228% faster at serialising and deserialising data than SOAP-based webservices when the result-set contains 100 data-sets. For result-sets of ca. 2500 entries, SOAP- and REST-based webservices have similar speeds. And when the result-set contains more than 2500 entries, again REST performs better than SOAP.

Comparing REST-based webservices for inline- versus standoff-markup revealed that for a result-set between 100 and 10,000 entries standoff-markup performed 192% to 216% better than inline markup, and supported streambased webservices even better. With a responding result-set of more than 10,000 data-sets, standoff-markup performed gradually worse than inline markup. With a result-size of ca. 130,000 data-sets, standoff- and inline-markup performed equally well. Beyond this size, inline markup performed much better than standoff-markup ${ }^{26}$.

[^7]
VIII. Conclusion

Language-oriented resources have matured as a technology over the past few decades and are now gaining momentum in a wide range of areas within information- and knowledge-intensive applications. This trend is becoming more important with the increasing demand for automatic analysis of growing digital content. This article describes how the Leipzig Linguistic Services (LLS) addressed this demand and analyses the one billion log-files recorded by the project between 2006 and 2014. The LLS provided users with a means of querying the data contained in the Leipzig Corpus Collection (LCC). The log-files yield statistics for languages, texts and words accessed, and in this article we supply details about the users' country of provenance, we elaborate on the web services offered by Leipzig and on their usage.

In LLS' case, our opening question "What are the implications of Digital Transformation?" can be answered with the infrastructure mantra, "If you build it, they will come" (see also [5]). However, with regard to easy-to-integrate and atomic micro-services we found that users were generally very pragmatic and requested everything they had found in texts or on web-pages, such as RGB colour-sets, URLs and other meta-information. Based on the log-files, our inference is that it is easier to request a token and look for a match in LLC's database of millions of words than to invest time in conventional preprocessing and preselection on the clientside. Similarly, users repeatedly requested function words, sometimes only a few minutes apart. This user behaviour entailed a significant load and user control over the requests, as that type of recurring request on unchanged data could only be flagged as spam.

Moreover, we found that providing such an infrastructure over one decade challenges the compatibility of used software components. This article summarises experiences with interoperability issues in different programming languages.

From a Natural Language Processing standpoint, this paper contributes to existing conversations about the difficulty of building balanced and representative corpora. In fact, user interests detected in the LLS log-files can help to enrich corpora by adding further topics. This article also touches upon discussions about qualitative and manually-curated data versus automatically-computed and quantitatively-available results of language technology algorithms. Notwithstanding the improvement of Natural Language Processing algorithms, our results show that users prefer qualitative data and that they often request these services even if the domain and concept coverage is relatively low. The conclusion we draw from the user behaviour observed in almost one billion requests is that research fields, including the Digital Humanities, should share their data no matter how small through large infrastructure initiatives like DARIAH and CLARIN in order to increase the textual coverage of linguistic resources.

ACKNOWLEDGMENTS

This work has been made available by the projects eAQUA (No. 01UA0803B), eTRACES (No. 01UA1101A) and CLARIN-D (No. 01UG1120c), and by the early career research group eTRAP (No. 01UG1409, 01UG1509) of the German Ministry of Education and Research.

REFERENCES

[1] S. Borchardt, Generierbarkeit einer XML Topic Map aus E-Mails unter Verwendung von Text-Mining-Methoden und Nutzung von Web Services Bachelor thesis, 2005.
[2] O. Lau, Wortschatz - Besserer OpenOffice-Thesaurus dank Web-Services, c't 15/2005, vol. 15, pp. 214-219, 2005.
[3] M. Büchler, G. Heyer, S. Gründer, Bringing Modern Text Mining Approaches to Two Thousand Years Old Ancient Texts e-Humanities -an emerging discipline: Workshop in the 4th IEEE International Conference on e-Science, 2008.
[4] N. Lossau, An Overview of Research Infrastructures in Europe - and Recommendations to LIBER, LIBER Quarterly, vol. 21, no. 3-4, pp. 313-29, 2012.
[5] J. Van Zundert, If You Build It, Will We Come? Large Scale Digital Infrastructures as a Dead End for Digital Humanities, Historical Social Research / Historische Sozialforschung, vol. 37, no. 3, pp. 165-86, 2012.
[6] U. Quasthoff, M. Richter and C. Biemann, Corpus Portal for Search in Monolingual Corpora Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC), 2006.
[7] D. Goldhahn, T. Eckart and U. Quasthoff, Building Large Monolingual Dictionaries at the Leipzig Corpora Collection: From 100 to 200 Languages Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC), 2012.
[8] Z. Harris, Distributional structure, Word, 10, 2-3, pp. 146162, 1954.
[9] S. Teresniak, Statistikbasierte Sprachenidentifikation auf Satzbasis Bachelor thesis, 2005.
[10] T. Eckart, U. Quasthoff and D. Goldhahn, Language Statistics-Based Quality Assurance for Large Corpora, Proceedings of Asia Pacific Corpus Linguistics Conference, 2012.
[11] M. Büchler, G. Heyer, Leipzig Linguistic Services - A 4 Years Summary of Linguistic Web Services, TMS - Text Mining Services in conjuction with SABRE multi-conference, 2009.
[12] D. Biber, Representativeness in Corpus Design Literary and Linguistic Computing, 8, 4, pp. 243-257, 1993.
[13] S. Atkins, J. Clear, N. Ostler, Corpus Design Criteria, Literary and Linguistic Computing, 7, 1, pp. 1-16, 1992.
[14] S. Sander, Performanceanalyse von SOAP- und RESTbasierten Services in einer Linguistic Resources Umgebung, Diploma thesis, University of Leipzig, 2010.
[15] IETF, WHOIS Protocol Specification Request for Comments 3912, 2004.

[^0]: ${ }^{1}$ For a short description of Digital Transformation, see: https://goo.gl/ 8cRzVa (Accessed: 7 October 2016).

[^1]: ${ }^{2}$ Link: https://goo.gl/Ldkicc (Accessed: 2 October 2016).
 ${ }^{3}$ Link: https://goo.g1/2iU4B4 (Accessed: 2 October 2016).
 ${ }^{4}$ Link: https://goo.gl/cilqED (Accessed: 2 October 2016).
 ${ }^{5}$ Link: https://goo.gl/x76TrW (Accessed: 2 October 2016).
 ${ }^{6}$ Link: https://goo.gl/JDpWTw (Accessed: 2 October 2016). While not strictly an RI, Europeana is integral to European research [4].
 ${ }^{7}$ For example, the CLARIN metadata infrastructure at: https://goo.gl/ k5sCS7 (Accessed: 5 October 2016).
 ${ }^{8}$ Research libraries for example have yet to strongly engage with RIs [4].
 ${ }^{9}$ Link: https://goo.gl/Mb6kT (Accessed: 2 October 2016).

[^2]: ${ }^{10}$ Link: https://goo.gl/RLGXAr (Accessed: 6 October 2016)
 ${ }^{11}$ Link: https://goo.gl/FiSm (Accessed: 7 October 2016).
 ${ }^{12}$ Link: https://goo.gl/t5EZo (Accessed: 7 October 2016).
 ${ }^{13}$ Link: https://goo.gl/U7ANa (Accessed: 7 October 2016).

[^3]: ${ }^{14}$ The values of WebServiceType expect a Java class including the package. To optimise space, table II does not display packages.

[^4]: ${ }^{15}$ Link: https://goo.gl/CpIdui (Accessed: 7 October 2016).
 ${ }^{16}$ Link: https://goo.gl/ecaavc (Accessed: 7 October 2016).
 ${ }^{17}$ Link: https://goo.gl/nxxqAw (Accessed: 7 October 2016).
 ${ }^{18}$ Link: https://goo.gl/1Lsh56 (Accessed: 7 October 2016).
 ${ }^{19}$ Link: https://goo.gl/jbvxWP (Accessed: 7 October 2016).
 ${ }^{20}$ Link: https://goo.gl/WCw8wN (Accessed: 7 October 2016).
 ${ }^{21}$ Link: https://goo.gl/Nwnsia (Accessed: 5 October 2016).
 ${ }^{22}$ Link: https://goo.gl/3MKcjs (Accessed: 5 October 2016).

[^5]: ${ }^{23}$ All requests have been anonymised for privacy protection and publication. We plan to publicly release this data-set for the benefit of interested researchers and service providers.

[^6]: ${ }^{24}$ Link: https://goo.gl/oW2LgT (Accessed: 7 October 2016).

[^7]: ${ }^{25}$ Link: https://goo.gl/xkUBDZ (Accessed: 7 October 2016).
 ${ }^{26} \mathrm{~A}$ response at a scale of 130,000 data-sets is somewhat unrealistic and ought to be avoided seeing as it is like dumping a database. Nevertheless, we wish to report this result because it was performed as an artificial test scenario in the lab under optimised circumstances (e.g. near-zero network latency and exclusion of other users).

