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Abstract In spite of the wide disparities in wealth and in objective health measures
like mortality, observed inequality by wealth in self-reported health appears to be nearly
nonexistent in low- to middle-income settings. To determine the extent to which this is
driven by reporting tendencies, we use anchoring vignettes to test and correct for
reporting heterogeneity in health among elderly South Africans. Significant reporting
differences across wealth groups are detected. Poorer individuals rate the same health
state description more positively than richer individuals. Only after we correct for these
differences does a significant and substantial health disadvantage of the poor emerge.
We also find that health inequality and reporting heterogeneity are confounded by race.
Within race groups—especially among black Africans and to a lesser degree among
whites—heterogeneous reporting leads to an underestimation of health inequalities
between richest and poorest. More surprisingly, we also show that the correction may
go in the opposite direction: the apparent black African (vs. white) health disadvantage
within the top wealth quintile almost disappears after we correct for reporting tenden-
cies. Such large shifts and even reversals of health gradients have not been documented
in previous studies on reporting bias in health inequalities. The evidence for South
Africa, with its history of racial segregation and socioeconomic inequality, highlights
that correction for reporting matters greatly when using self-reported health measures in
countries with such wide disparities.
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Introduction

Around the globe, those with higher incomes can expect to live longer lives and enjoy
better health (Bloom and Canning 2000; Deaton 2003), and South Africa is no exception
(Case 2004). Studies using household data tomeasure health outcomes usually have had to
rely on self-reported information.1 Consistently, significant associations have been found
between such health measures and subsequent survival in both the industrialized and
developing world (see, e.g., Idler and Benyamini 1997; Jylhä et al. 2006; van Doorslaer
and Gerdtham 2003), including in South Africa (Ardington and Gasealahwe 2014).

Although it has been established that self-assessed measures contain important
health information, they have also been found to be prone to systematic differences
in reporting behavior across different socioeconomic groups (Bago d’Uva et al. 2008a,
b; Etilé & Milcent 2006; Molina 2016), perhaps due to the use of different comparison
or reference groups (Boyce and Harris 2011). Individuals from poorer health commu-
nities may report themselves to be relatively better off compared with their reference
group, even if their health compares poorly with the overall population (Bago d’Uva
et al. 2008b; Etilé and Milcent 2006).

Such differences in the evaluation of self-reported measures of health are usually
referred to as reporting heterogeneity and imply that for the same health state, certain
population subgroups systematically rate their health differently. Clearly, in the pres-
ence of reporting heterogeneity by socioeconomic status (SES), the measurement of the
socioeconomic gradient in health will be biased (Lindeboom and van Doorslaer 2004).

South Africa is also known to have one of the highest levels of income inequality as
measured by the Gini index (World Bank 2011). Therefore, one might expect a more
substantial gap in the health reporting behavior of the most and least affluent. The first two
objectives of our study are to provide estimates of (1) the extent of reporting heterogeneity
and (2) the resulting bias in measured health inequalities by wealth in this particular setting.

We achieve those objectives using ratings of so-called health-anchoring vignettes com-
bined with individuals’ ratings of their own health (Bago d’Uva et al. 2008a, b; King et al.
2004). An anchoring vignette is a description of the level of health of a hypothetical person,
which respondents are asked to evaluate using the same scale as for their own health. This
acts as a benchmarking tool that makes it possible to identify reporting heterogeneity with
respect to individual characteristics.2 We use data taken from the WHO Study on Global
AGEing and Health (SAGE), a nationally representative sample of persons aged 50 and
older in South Africa, collected in 2008 (World Health Organization 2008).

South Africa has a history of economic and political segregation by racial lines that
was institutionalized during the apartheid era. Apartheid came to an end only in 1994,
when the first democratically elected government came to power (Coovadia et al.

1 More objectively measured health indicators, such as body mass index (BMI) or biomarkers, do not capture
overall health.
2 An example of a vignette is as follows: “[Luvo] has a lot of swelling in his legs due to his health condition.
He has to make an effort to walk around his home as his legs feel heavy.”
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2009). During the apartheid period, the mobility of race groups other than the minority
white population was severely restricted. The black African population group was
particularly disadvantaged, with a large part of this population’s movement restricted to
the homelands. These were areas demarcated by the South African government,
situated along the country’s peripheries with their own health departments, which were
severely underfunded (Coovadia et al. 2009; McIntyre et al. 1995; Neocosmos 2010).
Their access to urban areas where better health care and economic opportunities were
available was restricted and regulated.

The racial segregation led to deeply entrenched income/wealth, racial, and health
disparities among South Africans. A number of studies have reported racial health
disparities favoring the white population in South Africa (Ardington and Gasealahwe
2014; Charasse-Pouélé and Fournier 2006; Lau and Ataguba 2015), even after con-
trolling for wealth. Income disparities by race are also well-known and documented; for
instance, Leibbrandt et al. (2011) showed that the bottom income quintiles mostly
consist of black Africans, and white, colored, and Asian/Indian respondents3 are much
more concentrated in the top quintiles.4

The intertwined relationship among race, wealth, and health in South Africa there-
fore means that wealth-related reporting heterogeneity in self-assessed health (SAH)
may also be confounded by race. Our third and fourth objectives are to quantify the
extent to which such tendencies bias estimates of health inequalities, respectively,
within and across race groups in this country. A few studies using anchoring vignettes
have focused on reporting heterogeneity by wealth or income (Bago d’Uva et al.
2008b; Grol-Prokopczyk et al. 2011; Guindon and Boyle 2012), and more rarely on
race (Bzostek et al. 2016; Dowd and Todd 2011), but never on their interlinkage nor on
South Africa. Furthermore, studies looking at race have focused primarily on the
United States.

Reporting Tendencies and the Health Gradient

Several studies have tested for reporting heterogeneity in self-reported health measures.
The majority of these studies have used data from high-income countries (e.g., Etilé
and Milcent 2006; Hernández-Quevedo et al. 2004; Humphries and van Doorslaer
2000; Lindeboom and Kerkhofs 2009; Lindeboom and van Doorslaer 2004), but far
fewer have covered developing countries (e.g., Bago d’Uva et al. 2008b; Molina 2016;
Zhang et al. 2015). Vulnerable subgroups are often found to systematically rate a given
level of health as better than do less-vulnerable subgroups (Bago d’Uva et al. 2008a,b;
Etilé & Milcent 2006; Molina 2016). This was found, for example, in comparisons of
poor and rich individuals in France (Etilé and Milcent 2006) and in Indonesia, India,
and China (Bago d’Uva et al. 2008b). Individuals with lower levels of education have

3 These are self-reported racial categories as identified by Statistics South Africa. Given the country’s past, the
use and choice of racial categories is contentious and complicated but are considered necessary to address and
eradicate social injustices that remain after apartheid (Posel 2001). “Colored” as a racial category consists of
numerous individual and distinct groups but was used collectively to describe a mixed ancestry population from
indigenous South African, Asian, African, and European descent (Coovadia et al. 2009; de Wit et al. 2010).
4 The same can be seen in the description of our data in Table 1.
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also been found more likely to give a higher rating to a certain health level than the
higher-educated (Bago d’Uva et al. 2008a; Molina 2016).

Various possible reasons have been suggested for the observed reporting tendencies.
One reason is a comparison with different reference groups, as explained in the
Introduction. A second possibility is the asymmetry of health information to which
various subgroups have access. If, say, wealthier individuals have better access to
health care, which then allows them to be diagnosed with chronic conditions, such
access could lead to greater awareness of their ill health. Better health knowledge may
in turn affect health expectations (Bonfrer et al. 2014). Sen (2002) offered an extreme
example of a person growing up in a poor community where disease incidence is high
and health facility access low. Such a person might view symptoms as part of a normal,
healthy condition, while they could perhaps be easily prevented or remedied with
appropriate treatment.

If poorer individuals systematically underestimate their ill health relative to more-
affluent individuals, this will be reflected in their health reporting. Health inequality
measures will then underestimate the health-by-wealth gap. Various studies have noted
this phenomenon. Some have relied on health-anchoring vignettes to directly correct
for reporting behavior, whereas others have provided more indirect evidence by
comparing with socioeconomic gradients obtained using more objective, observed
measures. Bago d’Uva et al. (2008b), for instance, used anchoring vignettes to correct
for systematic reporting differences across various socioeconomic groups in India,
Indonesia, and China. In all three countries, systematic differences in the reporting
behavior of the poor and the nonpoor are found to lead to underestimation of income-
related inequality in self-reported health.5

In what follows, we formally test for wealth- and race-related reporting heterogene-
ity in SAH measures in South Africa and examine the implications of their occurrence
for measuring health inequalities, using the anchoring vignettes approach.

Methodology: Anchoring Vignettes and HOPIT Model

In the presence of reporting heterogeneity, analyses of inequalities in SAH face an
identification problem: any measured inequalities in SAH represent a mix between
actual associations with health status and reporting heterogeneity (Bago d’Uva et al.
2008a, b; King et al. 2004). This identification problem can be solved with additional
data on reporting behavior using anchoring vignettes.6

An anchoring vignette is a description of the level of health of a hypothetical person.
Because this description is fixed across individuals, all systematic variation in vignette
ratings with respect to individual characteristics is attributed to reporting heterogeneity.

5 Bonfrer et al. (2014) provided more indirect evidence of systematic reporting tendencies by comparing the
inequalities calculated using objective and self-reported health measures. They found much higher degrees of
health inequality by wealth when using objective health measures.
6 Another approach to identifying reporting heterogeneity is to use more objective measures of health, if
available, as proxy indicators for true health status (see, e.g., Etilé and Milcent 2006; Lindeboom and van
Doorslaer 2004). This can, however, be problematic if the available proxy indicators are themselves self-
reported (Baker et al. 2004). Importantly, in our data, a higher proportion of wealthier individuals report
having at least one chronic condition (compared with the poor), suggesting lower awareness for the latter.

1938 L. Rossouw et al.



Measures of self-assessed health (inequalities) can then be corrected for this reporting
heterogeneity (King et al. 2004).

Data

We use data representative of the South African elderly (aged 50 +) population, taken
from the WHO’s SAGE study, a multicountry study recorded in 2008 and containing
3,840 observations for South Africa. Observations with missing values in any of the
variables used in the analysis and individuals older than age 90 are dropped, leaving a
remaining analytic sample of 2,968.7 Data were collected on health status, chronic
conditions, disability, health behavior, and health care utilization (He et al. 2012).

Self-assessed Health Domains and Anchoring Vignettes

SAGE asks respondents to rate the difficulty, on a 5-point scale, that they have in (each
of) eight health domains: 1 = no difficulty, 2 = mild difficulty, 3 = moderate difficulty, 4
= severe difficulty, or 5 = extreme difficulty. The domains are mobility, self-care, pain,
cognition, interpersonal activities, sleep and energy, affect, and vision.8 In the case of
mobility, for instance, the respondent is asked how much difficulty she/he had with
moving around in the last 30 days. A similar question structure is applied to the other
domains. SAGE collects information on two aspects within each of the eight domains:
for instance, in the domain of vision, on far-sightedness and near-sightedness. A
detailed description of the 16 health aspects considered in this study, as well as their
specific questions, can be found in the online appendix (Table S1). For ease of
reference, we refer to these as 16 health domains from here onward.

Subsets of randomly chosen respondents are presented with a selected set of
vignettes.9 For each health domain, the respondent is asked to rate five vignettes, each
representing a different level of health and functionality. One example in the domain of
mobility is, “Alan is able to walk distances of up to 200 meters without any problems
but feels tired after walking one kilometer or climbing up more than one flight of
stairs.”10 Respondents are then asked to rate the health of each of the vignettes in the
respective domain, using the same 5-point ordinal scale as used in the self-assessment
questions.

7 After listwise deletion, we retain 80 % of the observations within wealth Quantile 1, 79 % within wealth
Quantiles 2–4, and 74 % within Quintile 5. The response rate of the race variable is 86 % overall, 88 % for
wealth Quintile 1, 86 % within Quintiles 2–4, and 82 % for Quintile 5. Finally, we retain 91 % and 89 % of the
black and white groups, respectively.
8 The selection of domains was based on the World Health Survey (WHS) and was guided by validity in terms
of intuitive, clinical, and epidemiological concepts of health; correspondence to the conceptual framework of
the International Classification of Functioning, Disability and Health; and comprehensiveness (Salomon et al.
2003).
9 The total sample is randomly divided into four subsamples, each of which is asked to rate vignettes in four
domains: (1) mobility, vigorous activity, depression, and anxiety; (2) relationships, conflict, body pain, and
body discomfort; (3) energy, sleep, far-sighted, and near-sighted; and (4) self-care, appearance, memory, and
learning.
10 The full description of all vignettes can be found on the WHO website (http://www.who
.int/healthinfo/sage/en/).
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Sociodemographic Variables

We measure wealth using quintiles of an index created from information on the
household’s durable assets; characteristics of their dwelling; and whether they had
access to basic services, such as sanitation and water (He et al. 2012). This measure-
ment is considered to capture a person’s living standards better than income, when the
sample consists of both retired and nonretired individuals (Grol-Prokopczyk et al. 2011;
Zhang et al. 2015).

Other covariates include gender, age, level of educational attainment of the house-
hold head, marital status, race, and urban residence. We account for four racial
categories as defined by Statistics South Africa: black African, white, colored, and
Indian/Asian.11

Table 1 shows distributions of covariates by wealth quintile. Females are more likely
to be in the lower quintiles, and age is fairly equally distributed across wealth quintiles.
Individuals in higher quintiles are significantly more likely to be married, urban, and
higher-educated. Predictably, race is very unequally distributed across wealth quintiles.
In the poorest wealth quintile, the great majority (94 %) of respondents are black
Africans, but this population group represents only 42 % of the richest wealth quintile.
Conversely, Asian, Indian, and white are more concentrated in the top wealth quintiles.

Hierarchical Ordered Probit Model (HOPIT)

We use the hierarchical ordered probit model (HOPIT) proposed by King et al. (2004)
to identify and correct for reporting heterogeneity. This model is an extension of the
ordered probit model, a standard model for ordinal dependent variables, and the most
common approach in analyses of Likert scale self-assessed health questions (Etilé and
Milcent 2006; Jürges 2007). Standard ordered probit models assume that individuals
use a common scale when rating their own health and thus do not distinguish between
health and reporting differences, which is the aim of our study.

The HOPIT model consists of two components: the reporting behavior component
and the own health component. Each is modeled as a generalized ordered probit model,
with allowance for heterogeneous cut points (rather than assuming that they are
constant, as in the standard ordered probit). The reporting behavior component uses
anchoring vignette ratings to identify cut points as functions of individual characteris-
tics. Formally, suppose thatHv

ij represents the true latent level of health for hypothetical

vignette j (j = 1, . . . , 5), for respondent i. Hv
ij is assumed to be the same for all

individuals, apart from random error:

Hv
ij ¼ α j þ εvij with εvij ∼ N 0;σ2

v

� �
: ð1Þ

This reflects the first identifying assumption of the anchoring vignette methodology:
the vignette equivalence assumption, which requires that no systematic differences exist
across individuals in their perceptions of the level of functioning described in the

11 See footnote 3 for a description of racial categories in South Africa.
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vignettes. We denote the observed categorical rating of the health of vignette j by
respondent i as AHv

ij. This relates to the latent true health level, Hv
ij;in the following

way:

AHv
ij ¼ m if sm − 1

i ≤ Hv
ij < smi ; ð2Þ

where m ¼ 1; : : : ; 5; s0i < s1i < s2i < s3i < s4i < s5i ; and s0i ¼ −∞; s5i ¼ ∞:
Finally, reporting heterogeneity is accommodated in this model by defining the cut

points smi as functions of the vector of individual characteristics Xi (which includes
wealth, race, and other sociodemographic variables, besides a constant term). Identifi-
cation of reporting heterogeneity in this component derives from the vignette equiva-
lence assumption, which enables the exclusion of individual characteristics from Eq.
(1) and, consequently, inclusion of them in the following:12,13

smi ¼ X
0
iγ

m: ð3Þ

A special case of this model is one with constant cut points—that is, no reporting
heterogeneity. Testing reporting homogeneity according to one or a subset of variables
included in X can therefore be done by testing significance of the respective (sets of)
coefficients in the vectors γm, m = 1, . . . , 4.

The second component of the HOPIT model—own health—is specified as a gener-
alized ordered probit with variable cut points identified by the vignettes in the reporting
behavior component. The true own latent health level is typically modeled as a function
of the same individual characteristics included in the cut points:14

HS
i ¼ X

0
iβþ εsi ; εsi ∼ N 0;σ2

� �
: ð4Þ

The error terms in Eqs. (1) and (4) are assumed uncorrelated with the observed
characteristics in Xi. Finally, similar to the vignette ratings, the own health ratings
relate to own latent true level as

SAHi ¼ m if sm − 1
i ≤ Hs

i < smi ; ð5Þ

12 Some authors have used the same linear specification of the first cut point but the following alternative
specification for the subsequent ones: smi ¼ sm − 1

i þ exp X
0
iγ

m
� �

, m = 2, . . . , 4. Such a HOPIT model fits the
data slightly worse/better than one with linear cut points in more/less than one-half of the cases covered here.
Although the linear specification does not ensure monotonous cut points, this always holds in our analyses.
Finally, the two specifications produce very similar results of tests of reporting heterogeneity and HOPIT–
corrected health disparities (results available from the authors upon request).
13 Following Kapteyn et al. (2007), some authors have also included an unobserved heterogeneity term that
explicitly accounts for within-individual correlation of vignette ratings. Our inferences allow for such
correlation in an alternative way: namely, by using standard errors clustered at the individual level (see Eq.
(4)). Compared with the model used here, the one of Kapteyn et al. (2007) permits an efficiency gain but does
not introduce additional flexibility in the identification and correction of reporting heterogeneity: it assumes
that the added unobserved heterogeneity term is also uncorrelated with observed characteristics. Kapteyn et al.
(2007) reported estimates of their effect of interest resulting from models with and without unobserved
heterogeneity. Their two estimates are almost identical.
14 Put another way, applications of the HOPIT model typically allow for, and thus correct, any potential
reporting heterogeneity according to all variables included in the own health Eq. (4).
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where the cut points are as defined in Eq. (3). This equality reflects the response
consistency assumption: individuals are assumed to use the same response scales when
rating the vignettes and their own health. Under the two assumptions, the HOPIT model
uses vignette ratings to identify and correct for reporting heterogeneity and estimates
associations between Xi and health that have been corrected for reporting heterogene-
ity—that is, represented by the coefficients in the vector β in Eq. (4). Because each
individual rates multiple vignettes, we use standard errors clustered at the individual
level in all inferences based on the HOPIT model.15

Evidence on the identifying assumptions of the anchoring vignette methodology is
limited and shows mixed results. On vignette equivalence, see Bago d’Uva et al.
(2011a), Grol-Prokopczyk et al. (2011, 2015), Kristensen and Johansson (2008),
Murray et al. (2003), and Rice et al. (2012); on response consistency, see Bago d’Uva
et al. (2011a), Datta Gupta et al. (2010), Grol-Prokopczyk et al. (2011, 2015), and van
Soest et al. (2011). In the concluding section of this article, we discuss possible

15 See footnote 13 for a discussion about an alternative way of accounting for within-individual correlation in
vignette ratings.

Table 1 Descriptive statistics of covariates by wealth quintile (N = 2.968)

Wealth Quintile

1 2 3 4 5

Female Education 0.60 0.58 0.70 0.58 0.53

No formal schooling 0.41 0.33 0.21 0.16 0.06

Less than primary school 0.25 0.28 0.28 0.20 0.13

Primary school completed 0.25 0.21 0.24 0.26 0.22

Secondary school completed 0.07 0.12 0.20 0.21 0.17

High school completed 0.02 0.04 0.04 0.07 0.25

College or university completed 0.00 0.02 0.03 0.10 0.17

Age (in years) 61.48 60.38 60.66 61.86 62.39

Marital Status

Never married 0.24 0.16 0.15 0.14 0.08

Married 0.31 0.41 0.39 0.53 0.69

Cohabitating 0.11 0.10 0.04 0.02 0.02

Separated/divorced 0.08 0.08 0.09 0.04 0.03

Widowed 0.26 0.25 0.32 0.27 0.19

Urban 0.44 0.59 0.61 0.76 0.87

Race

Black African 0.94 0.88 0.82 0.65 0.42

White 0.00 0.01 0.02 0.12 0.30

Colored 0.05 0.10 0.13 0.18 0.20

Asian/Indian 0.01 0.01 0.03 0.04 0.09

Note: The table presents sample averages of continuous and binary variables and relative frequencies of
categorical variables, weighted with poststratified individual weights.
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implications for our results of departures from these assumptions. Identification of the
HOPIT model specified by Eqs. (1)–(5) further requires scale and location normaliza-
tions. We normalize σ2

v to 1 and α1 to 0, with no loss of generalization. The two
components of the model are estimated jointly. The own health component makes use
of ratings of own health for the whole sample, and the reporting behavior component
uses data from the random subsamples of individuals who rate vignettes in the
respective domain.

Results

We analyze inequalities in 16 self-reported health domains among elderly South
Africans and the extent to which they might be affected by different reporting tenden-
cies across subpopulations. We first focus on wealth-related health inequalities, which
are expected to be substantial given the large economic inequalities that resulted from
the apartheid regime (Özler 2007). We address the question of whether reporting
heterogeneity causes an underestimation of health inequalities by wealth in South
Africa. Because wealth inequality emanated from a regime that enforced the separation
of race groups to the advantage of the white population, we subsequently aim to gain a
deeper understanding of wealth-related health inequalities by exploring the role of race.
To that end, we use a more complete specification to analyze in greater detail (1) health-
wealth associations within race groups as well as (2) health-race associations among
equally wealthy individuals.

We apply both specifications of the HOPIT model to anchoring vignettes and own
health ratings in all 16 domains. The estimated models by domain are used to (1) test
for reporting heterogeneity, and (2) estimate health inequalities (un)corrected for
reporting heterogeneity (find more detail about all these procedures in upcoming
sections). By comparing corrected with uncorrected health inequalities, we can assess
the importance and the direction of any reporting bias.

Inequalities in Self-assessed Health Domains by Wealth, Uncorrected

We start with an analysis of inequalities in health by wealth that ignores any reporting
heterogeneity using a standard ordered probit model with constant cut points, with the
covariates wealth, race, age, gender, marital status, urbanization, and educational
achievement as defined earlier.16 We use this model to predict the probability that an
individual reports any difficulty in the respective health domain: that is, categories 2
(mild difficulty) to 5 (extreme difficulty). Figure 1 shows average probabilities for
Quintile 1 (Q1) and Quintile 5 (Q5), keeping other variables constant, for all health
domains. We observe very small differences between the levels of self-reported diffi-
culties by wealth. For certain domains, such as vigorous activity, depression, and
anxiety, the wealthier report even more difficulties than the poor. Taking these self-
reports at face value would lead to the overall conclusion that there is little or no health
disadvantage for poor South Africans compared with their richer counterparts. In the

16 Full estimation results of the ordered probit model for the mobility domain can be found in Table S2 of the
online appendix.
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following section, we examine whether these patterns may be related to reporting
tendencies.

Inequalities in Health by Wealth, Corrected for Reporting Heterogeneity

We now relax the assumption of reporting homogeneity by making use of the vignette
ratings and the HOPIT model for each of the 16 domains and the same covariates as in
the previous section. The focus is on health inequalities and reporting heterogeneity by
wealth, but our specification allows for heterogeneity according to all covariates (Eq.
(3) of the earlier defined HOPIT model).17 We present the results for the poorest (Q1)
relative to the richest (Q5) wealth quintile to illustrate and highlight the differences
between the two extremes in the wealth distribution in South Africa.

The reporting (or vignette) component of the HOPIT model provides a direct test of
the presence of reporting heterogeneity. We test the null hypothesis that cut points of
individuals in Q5 are the same as those in Q1, conditional on the remaining covariates.
This amounts to testing for equality of all coefficients in the vectors γm (m = 1, . . . , 4)
in Eq. (3).18 Table 2 presents p values of this test by health domain. At a 5 %
significance level, we can reject the null hypothesis that the wealthiest and the poorest
use the same cut points in 8 of the 16 health domains.19
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Fig. 1 Estimated probability of reporting any difficulty (mild to extreme) before correcting for reporting bias.
Average probabilities estimated from ordered probit models, varying wealth quintile keeping fixed the other
covariates (described in Table 1)

17 For illustration, estimation results of the HOPIT model for the mobility domain are shown in Table S2 of the
online appendix.
18 In practice, because Q5 is the wealth reference category in our model, this corresponds to testing for
significance of the coefficients of Q1, jointly across the four cut points.
19 The estimated cut points coefficients are reported in the online appendix (Table S3). The table shows the
position of the cut points between the categorical options of the vignettes for individuals in Q1 relative to
individuals in Q5. For instance, the positive and significant coefficient for cut point 1 in the domain mobility
can be interpreted as individuals in Q1 having a significantly higher cut point between the categories none and
mild health difficulties than those in Q5. Thus, given the true level of health of the vignette,Hv

ij, individuals in

Q1 are systematically more likely to assess the vignette as having no health problems than individuals in Q5,
indicating a relative optimism in their health evaluation.
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Given the presence of reporting heterogeneity, the self-reported data are likely
to be biased and therefore the estimated health inequalities by wealth are also
likely to be biased. The own health component of the HOPIT model uses the cut
points identified in the reporting component (in Eq. (3)) to estimate partial
associations between wealth (and other covariates) and true latent health status
that are corrected for reporting heterogeneity (in Eq. (4)). The HOPIT model–
based estimates are used to compare health inequalities with and without reporting
heterogeneity correction.

To measure wealth-related health inequality, we use the average marginal effect of
belonging to Q1 versus Q5 on the probability of having any difficulty (i.e., all categories
frommild to extreme), keeping other covariates fixed.20 For each domain, we compute the
average marginal effect on that probability twice: (1) using ordered probit models: that is,
uncorrected for reporting heterogeneity; and (2) using the estimated HOPIT models and
imputing the same fixed cut points across individuals, and thus correcting for reporting
heterogeneity. The fixed cut points are those of a reference individual (an unmarried black
African male; in wealth quintile 1; aged 62, the average age in the sample; who did not
complete primary school; and who lives in a rural area).

To summarize the large number of estimates generated by this procedure graphically,
Fig. 2 presents results for all health domains in a radar chart (with estimates detailed in
the online appendix, Table S4). For instance, for the domains of depression and anxiety,
according to the ordered probit model, individuals in Q1 are 8 and 6 percentage points
less likely (respectively) to report any difficulty than individuals in Q5, keeping other
variables fixed. After correcting for reporting heterogeneity, we do not find a significant
gap between the richest and the poorest wealth quintiles in those health domains. The
graph shows that across all health domains, the measured health gap by wealth (i.e., the
health advantage in favor of the rich) grows after reporting correction. Before correc-
tion, the poorest are significantly more likely to report health problems only in the

20 We follow the usual terminology by referring to the magnitudes of the associations of health with covariates
as marginal effects, even if these should not be interpreted as causal effects.

Table 2 Significance tests (p values) of reporting homogeneity between wealth Q1 and wealth Q5, by health
domain (N = 2,968)

Health Domain Health Domain

Mobility .031 Energy .771

Vigorous Activity .380 Sleep .834

Depression .019 Far-sighted .001

Anxiety .209 Near-sighted <.001

Relationships .017 Self-care .002

Conflict .108 Appearance <.001

Body Pain .011 Memory .091

Body Discomfort .104 Learning .730

Notes: Values in bold indicate p < .05 (based on standard errors clustered at the individual level). Tests of joint
equality of respective coefficients in the cut points of HOPIT models are shown by health domain. HOPIT
models include the covariates described in Table 1.
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appearance domain. However, a very different picture emerges after correction: in 8
of the 16 domains (mobility, relationship, conflict, far-sightedness, near-
sightedness, self-care, appearance, and learning), the health by wealth gap be-
comes significant (at a 10 % level). Moreover, instances in which the poorest
reported better health than the wealthiest disappear. These results clearly demon-
strate that wealth-related health inequalities are substantially underestimated when
uncorrected health measures are used.

Reporting Bias in Health Inequalities by Wealth Among Black Africans

To further unravel the relationships among race, wealth, health, and health reporting,
we use a more complete specification. In this section, we examine the race-specific
health-wealth associations, focusing on the black African and white population groups,
the two most disadvantaged and advantaged groups during apartheid. We categorize
wealth of the white population as Q5 versus Q2–Q4.21 For comparability across racial

21 As shown in Table 1, we have no white individuals in Q1 in our sample; it is also not possible to further
disaggregate wealth quintiles for this population given the small size of the respective subsample (238). The
subsample of white individuals in Q5 contains 174 observations.
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groups, and also crucial for analyses in subsequent sections, we categorize wealth of the
black African population as Q1, Q2–Q4, and Q5; these categories correspond to 512,
1,151, and 194 observations, respectively. Small samples sizes do not allow us to
distinguish between the wealth effect of Asian/Indian versus colored, but we do include
an additional dummy variable for colored to allow for a differential health (reporting)
effect for this group. In sum, we consider the following race/wealth variables: colored/
Asian/Indian in Q1; colored/Asian/Indian in Q2–Q4; colored/Asian/Indian in Q5;
colored; black African in Q1; black African in Q2–Q4; black African in Q5; white in
Q2–Q4; and white in Q5. The remaining covariates are defined as earlier, and again we
estimate the following for each health domain: (1) a standard ordered probit model (no
reporting heterogeneity), and (2) a HOPIT model including all covariates in both the
own health equation and in the cut points.

Average estimated probabilities of reporting any difficulty (mild to extreme) by
wealth category for black Africans obtained from ordered probit models show that the
wealthiest (Q5) often report worse health than the poorest (Q1). Differences between
the wealthiest (Q5) and middle category (Q2–Q4) are much smaller and not always in
the same direction (see the online appendix, Fig. S1).

Using the reporting behavior equation of the HOPIT model, we formally test for
reporting heterogeneity and reject (at a 5 % significance level) the null hypothesis that
black African Q1 respondents use the same cut points as black African Q5 respondents
for most (10 of 16) domains (detailed results available in the online appendix, Table S5,
column 1). The same is true when comparing black African Q2–Q4 respondents with
Q1 respondents for 7 the 16 domains (Table S5, column 2).

As in the previous section, but now for the black African population only, we use the
HOPIT model to estimate health by wealth gaps corrected for reporting heterogeneity
and compare these with the uncorrected gaps. Again, we measure these gaps using the
average marginal effects of wealth on the probability of having any difficulty in a given
health domain. Vignette-corrected probabilities are calculated using the cut points of a
reference individual (an unmarried black African male; aged 62; in wealth Q2–Q4; who
did not complete primary school; and who lives in a rural area) for all respondents. The
direction and size of the biases is illustrated in the left panel of Fig. 3 (comparing Q1
with Q5) as well as the right panel (comparing Q2–Q4 with Q5), and detailed results
can be found in the online appendix (Table S6, columns 1–8). Figure 3 shows that
across all health domains, the health by wealth gap becomes (much) larger—or even
reverses from negative to positive—after we correct for reporting differences. For
instance, the left panel of Fig. 3 shows that poor black Africans were 0.3 percentage
points less likely than rich black Africans to report difficulty with memory before
correction. After correction, they are 10 percentage points more likely to do so—a
rather spectacular difference. In certain domains, such as depression, heterogeneity
correction leads to the removal of the health disadvantage of rich versus poor. A similar
pattern is observed in the right panel of Fig. 3 for the middle wealth category (Q2–Q4),
albeit with smaller shifts.

Reporting Bias in Health Inequalities by Wealth Among Whites

Prior to the vignette correction, a comparison of the estimated probabilities of reporting
any difficulty in each of the 16 health domains between the two wealth categories
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defined for the white population reveals a stark contrast to the black African group
(results available in the online appendix, Fig. S2). Across most domains, the less-
wealthy white report worse health (and in some cases considerably so) than the
wealthier whites. This is a first indication of a smaller role for reporting heterogeneity
(and so a smaller bias) in wealth-related health gaps among whites compared with black
Africans.

Results of the formal test using the HOPIT model indeed show little evidence of
reporting heterogeneity in the self-evaluation of health by whites in Q2–Q4 compared
with those in Q5 (results in the online appendix, Table S5, column 3). In only 4 of the
16 domains can reporting homogeneity be rejected at 5 %.

Thus, for the white population group, the marginal effects of being in Q2–Q4,
compared with Q5, on the probability that someone has any difficulty in any of these
health domains, are not as affected by heterogeneity correction as they are for black
Africans (Fig. 4, and detailed results in Table S6, columns 9–12). Both before and after
correction, the less-wealthy whites report to be less healthy than their wealthier
counterparts.

One might be concerned that specifying wealth in quintiles impairs the comparison
between the results obtained here for the black African and white population groups
given that the wealth distribution within quintiles is very different by race.22 We
therefore also estimate HOPIT and ordered probit models with alternative wealth-race

22 Average wealth in Q5 (Q2–Q4) is approximately 13 % (48 %) larger for whites than for black Africans.
And average wealth of black Africans (whites) in Q5 is 136 % (80 %) larger than that of black Africans
(whites) in Q2–Q4.
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specifications—polynomials of wealth interacted with race, which enables wealthy
versus poor comparisons using the exact same wealth levels for both races. This does
not affect our conclusions, and thus we prefer that based on quintiles, which enables the
more direct interpretations made earlier.

Inequalities in Health by Race, Within Top Wealth Quintile

From our previous results, reporting bias in the measurement of wealth-related health
inequalities is evident and appears to be more problematic among the black African
than the white population. Within both populations, the poor have worse actual health
outcomes. One question that remains is how the health of the historically disadvantaged
black African population compares with that of the white population. We address this
question by comparing health (reporting) of equally wealthy (Q5) black Africans and
whites, using the same models as in the previous section.23

As in previous sections, we compare average predicted probabilities of
reporting some difficulty, estimated by using a standard—homogenous
reporting—ordered probit model. As shown in Fig. 5, across all domains, black
African wealthy individuals report, on average, worse levels of health than the
white wealthy individuals.

23 The conclusions obtained with this specification are also robust to the alternative specifications based on
polynomials of wealth interacted with race described earlier. In other words, they are not driven by the fact that
white population group in wealth Q1 is, on average, richer than the black African group in the same wealth
quintile.
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The following results, however, suggest that this relationship between race and
health amongst the rich is severely biased. We detect clear evidence of reporting
differences, with reporting homogeneity significantly rejected at a 5 % level in 8
of the 16 health domains (results available in the online appendix, Table S5,
column 4). Figure 6 shows the marginal effects of being black African and rich
versus white and rich on the probability of reporting (being in) poor health
(detailed results in Table S6, columns 13–16), keeping other variables fixed. Prior
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Fig. 5 Estimated probability of reporting any difficulty (mild to extreme) before correcting for reporting bias
for black Africans and whites, wealth Q5. Average probabilities estimated from ordered probit models, varying
race within wealth Q5, keeping other variables constant. Ordered probit models specified as in Fig. 3
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to controlling for reporting heterogeneity, black Africans are significantly more
likely to report poor health than whites. After fixed cut points are applied, those
health gaps are substantially reduced. Although the white population still shows
better levels of health across most domains, the differences become much smaller
and statistically insignificant.

Conclusion and Discussion

Examination of health differences relies to a considerable extent on asking respondents
to rate their health perception and experience. Measurement error in these answers can
lead to substantial bias in observed disparities if reporting tendencies are systematically
associated with individual characteristics, such as wealth and race. This is particularly
worrisome in a country like South Africa, given its history of racial segregation and
with income inequalities among the highest in the world. To the extent that factors such
as differential health knowledge and reference groups influence health perceptions,
reporting bias is likely to be more substantial in such a setting. Furthermore, there is
probably no other country where the relationship between wealth and health is so
intertwined with race as in South Africa. To our knowledge, our study is the first to
examine and correct for health reporting heterogeneity by both wealth and race in South
Africa and for the interlinkage between the two.

Using anchoring vignettes and HOPIT modeling, we test and correct for systematic
reporting biases by wealth and race in a representative sample of elderly South
Africans. Our findings are as follows.

First, we find that for one-half of the health domains (8 of 16), the hypothesis of
reporting homogeneity by wealth is rejected. Rich (Q1) South African elderly rate the
same health state descriptions as worse than their poor (Q5) counterparts, leading to a
severe underestimation of health gaps by wealth. Observed poor-rich health disparities
are small and largely insignificant for all but two domains (depression and anxiety), for
which they are even significantly in favor of the poor.

Second, after we correct for these tendencies, substantial disparities between rich
(Q5) and poor (Q1) emerge, mostly favoring the rich and significant for one-half the
health domains rated (8 of 16). Race is, however, very unequally distributed across
wealth quintiles and may play some role in this.

Third, given the interrelatedness of race and wealth, we examine health disparities
by wealth within race groups. A similar picture emerges: also within race groups,
reporting is heterogeneous, and health gaps by wealth are severely underestimated
when using observed uncorrected reports. In the black African race group, health
disadvantages among the poorest (Q1) and the less poor (Q2–Q4) compared with the
richest (Q5) always become larger and are often significant after correction.

Correction of reporting heterogeneity by wealth among white population goes in the
same direction but has a much smaller effect in the measurement of wealth-related
inequalities. First, the extent of the bias is usually less substantial. Second, unlike for
the black African population, significant health advantages of white rich versus the
white poor are already observed before the correction.

Finally, we investigate health disparities by race within wealth groups, which can be
done only for the top wealth quintile. Interestingly, a very different finding emerges:
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before reporting correction, whites report less difficulties than black Africans in every
health domain (and significantly so in most of them). However, reporting homogeneity
is also significantly rejected for one-half the health domains: rich whites are much more
likely to rate the same vignettes as better health than rich black Africans.When correcting
for these biases, health disparities become smaller and lose significance. In other words,
at similarly high wealth levels, the health differences by race are almost removed.

The anchoring vignette methodology relies on the assumptions of response consis-
tency: individuals use the same standards for rating both own health and that of the
vignettes—and vignette equivalence—with no systematic differences across the sub-
groups of interest in how the vignette descriptions are understood. Evidence on these
assumptions is limited and shows mixed results (Bago d’Uva et al. 2011a; Grol-
Prokopczyk et al. 2011, 2015; Kristensen and Johansson 2008; Murray et al. 2003;
Rice et al. 2012; van Soest et al. 2011). Our results may be driven by a departure from
one or the other assumption or by true reporting heterogeneity, or a mix of the three.
However, we believe it plausible that they are mainly driven by the latter and that
vignette corrections enable a more accurate measurement of health disparities. For
instance, for a departure from response consistency to be responsible for our results
with respect to wealth, it would have to be the case that the poor are much more lenient
than the rich when rating the health problems of vignettes but not their own, which
seems implausible. The poor may understand the vignette descriptions differently from
the rich. However, for such departure of vignette equivalence alone to explain our
results, this bias would have to be predominantly in the same direction across very
different health domains as well as across very different vignette descriptions within
domains. Although it is not clear whether anchoring vignettes are sufficient to remove
all bias, the correction is in the expected direction given observed socioeconomic
inequalities in “harder” health outcomes, such as survival and disability. These dispar-
ities are evident from the longevity disparities that we observe: although 22 % of South
Africans in wealth Q5 are aged 50 and older, only 9 % of South Africans in wealth Q1
reach this age category.24 The evidence of underreporting of health problems by the
poor relative to the more-affluent using vignettes is also in line with the apparent lower
awareness of chronic conditions mentioned earlier.

Our findings have some important implications. First, they demonstrate that inequal-
ities in health by wealth or race can be severely under- or overestimated if reporting
tendencies are not taken into account. Given the dramatic inequalities in wealth in
South Africa, it would indeed be very surprising if health were not similarly unequally
distributed. Nonetheless, clear health inequality favoring the wealthier emerges only
after the differential health reporting between richer and poorer is accounted for. Such
consistently large shifts and even reversals of health gradients have not been docu-
mented in previous studies. The evidence for South Africa demonstrates that correction
for reporting matters greatly when using self-reported health measures in countries with
such wide socioeconomic disparities.

Second, other health disparities may be overestimated. After correction for reporting
tendencies, the wealthiest black Africans are no longer found to be in worse health than
their white counterparts. Our results, therefore, shed light not only on the role of wealth

24 These statistics were created using the NIDS Wave 1 of 2008, collected by the Southern Africa Labour and
Development Research Unit.
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and race in reporting heterogeneity separately but also on the interlinkage between race
and wealth. Such evidence is also of relevance for other countries that have experienced
racial segregation in the past, which has led to a persistent unequal distribution of
wealth.

The implications of our findings go beyond the demonstration of socioeconomic
health inequalities in the South African setting. Measures of inequity in health care
utilization that rely on self-reports of need have also been shown to be underestimated
in European countries (Bago d’Uva et al. 2011b). Correction of this bias reveals that
even some of these European countries have not achieved the goal of equal use for
equal need. The results of our study suggest that such biases might be much more
serious in South Africa. Reporting heterogeneity is potentially relevant for many other
research questions in the field of demography, such as neighborhood effects on health.
For example, Entwisle (2007) reviewed numerous articles on neighborhoods and
health, many of which relied on self-reports. Reporting differences may also contribute
to the so-called immigrant health advantage (Riosmena et al. 2017). Cultural differ-
ences in the interpretation of self-assessed health questions (Viruell-Fuentes et al. 2011)
and lower awareness of chronic conditions due to poor access to health care (e.g.,
Derose et al. 2009; Jurkowski and Johnson 2005) likely bias the immigrant advantage
with respect to native-born populations (Riosmena et al. 2017). To our knowledge,
there has not yet been a formal assessment of reporting heterogeneity and its conse-
quences for that type of study.

Last but not the least, our findings also have important implications for health policy.
One possible reason why the poor in South Africa underestimate their health needs,
compared with the wealthiest, is their underperception of poor health and illness. Such
perceptions likely drive the demand for health care (Bago d’Uva et al. 2011b). This
poses an additional challenge to the goals of universal health care systems and may,
ultimately, contribute to the persistence of real health inequalities. South Africa is
committed to obtaining universal health coverage of its population by 2025 (National
Department of Health South Africa 2018), but it is currently still far from achieving the
goal of providing equal treatment to those in equal needs (Ataguba and McIntyre
2012). One first step in realizing this goal could be to make the poorer more aware of
their health needs by providing better access to higher-quality services at lower cost.
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