
Analyzing a Family of Formulations for Cyclic Crew

Rostering

Thomas Breugem1, Twan Dollevoet1, Dennis Huisman1,2

1Econometric Institute and Erasmus Center for Optimization in Public Transport

Erasmus University Rotterdam, The Netherlands

2Process quality and Innovation, Netherlands Railways

Utrecht, The Netherlands

breugem@ese.eur.nl, dollevoet@ese.eur.nl, huisman@ese.eur.nl

Econometric Institute Report Series - EI2018-35

Abstract

In this paper, we analyze a family of formulations for the Cyclic Crew Rostering

Problem (CCRP), in which a cyclic roster has to be constructed for a group of em-

ployees. We derive analytical results regarding the relative strength of the different

formulations, which can serve as a guideline for formulating a given problem instance.

Furthermore, we propose a column generation approach, which we use to develop an

exact Branch-and-Price method, and a heuristic which aims at exploiting the infor-

mation obtained from the linear relaxation. We conclude by applying our proposed

solution method to practical instances from Netherlands Railways. In particular, we

show that the computation time depends heavily on the selected formulation, and

that the column generation approach outperforms a commercial solver on hard in-

stances.

Keywords: Crew Planning, Roster Sequence, Branch-and-Price, Railway Optimiza-

tion

1 Introduction

The construction of rosters (often referred to as crew rostering) is an important part of

the planning process at a public transport operator. As opposed to many other planning

problems at a railway operator (e.g., rolling stock scheduling), the main goal in crew

rostering is not to minimize costs. Instead the goal is to maximize the attractiveness

of the roster from an employees’ point of view. This implies that, for example, the rest

time between consecutive working days and the variation of work over a week have to

be taken into account when constructing the rosters. Altogether, this leads to a complex

optimization problem.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/161860885?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The inclusion of attractiveness in crew planning has shown to be important in practice.

In the Netherlands, for example, the incorporation of attractiveness in crew planning

was vital in resolving conflicts between the labor unions and Netherlands Railways (NS),

the largest railway operator in the Netherlands. An import development in this respect

was the introduction of the ‘Sharing-Sweet-and-Sour’ rules, which aim to increase the

quality of work (see Abbink et al. [2005] for a detailed discussion). These rules, for

example, assure that ‘nice work’ (e.g., long distance trips) are equally distributed among

all depots. Borndörfer et al. [2017] discuss the importance of attractive work in Germany.

They note, for example, that the bus drivers at BVG (Berlin’s public transport company)

have an average age of around 50 years. The focus on attractiveness, in this case, can be

a key instrument for recruiting new (younger) drivers, as the possibility for higher salaries

is generally limited.

The focus on the distribution of work is apparent in the use of roster groups, which are

groups of employees with similar characteristics (e.g., age, preferences), that operate in

cyclic rosters. This implies that, after a certain time period, each employee in a group

has done the exact same work, assuring a fair distribution of work within each group. In

the Cyclic Crew Rostering Problem (CCRP) the goal is to maximize the attractiveness

of a roster constructed for such a group.

In this paper we introduce a family of formulations for the CCRP. This family of for-

mulations includes the assignment formulation proposed in Hartog et al. [2009], and a

formulation similar to the one proposed in Breugem et al. [2017] for the Fairness-oriented

Crew Rostering Problem (FCRP). The family of formulations is motivated by the poor

performance of typical assignment models on difficult instances. Each formulation cor-

responds to a different partition of the rosters, hence, depending on the constraints, a

strong formulation can be obtained by picking a suitable formulation from the family.

The partition based on the weeks of the roster is a good example of a possible partition-

ing.

The contribution of this paper is fourfold. Firstly, we propose a family of formulations

for the CCRP, based on the formulation originally proposed in Breugem et al. [2017].

Secondly, we derive analytical results regarding the strength of the proposed formulations.

In particular, the derived results give intuition on how to pick a suitable formulation for

a given CCRP instance. Thirdly, we develop a column generation approach to solve this

model, on which we base an exact Branch-and-Price approach and a heuristic method.

Finally, we show the benefit of our approach using practical instances from NS.

The remainder of the paper is organized as follows. In Section 2, we formalize the CCRP.

In Section 3, we give an overview of related work, and in Section 4, we introduce our

mathematical formulation. In Section 5, we derive analytical results regarding the tight-

ness of the formulation. In Sections 6 and 7, we discuss the Branch-and-Price approach

and the heuristic, respectively. Finally, in Section 8, we apply our solution approaches to

2



practical instances of NS, and the paper is concluded in Section 9.

2 Problem Description

At many public transport operators, the rosters for the employees are constructed for a

period of one year, and the timetable for this period is assumed to be the same for every

week. This implies, for example, that there are generic Monday tasks, which need to be

executed each week. In other words, the tasks that need to be executed on the 3rd of

March are identical to the tasks that need to be executed on the 10th of March. This

property leads to the use of cyclic rosters. In such a roster each employee cycles through

the rows (i.e., generic weeks) of the roster, and hence each row in the roster is executed

multiple times by different employees.

The goal of the CCRP is to construct a cyclic roster for a group of employees. The input

to the CCRP is a basic schedule, and a set of duties. The basic schedule specifies the key

elements of the roster. The schedule could, for example, specify for each day whether a

duty or a rest day needs to be scheduled. Figure 1 gives an example of a basic schedule for

three employees. Each row in the basic schedule (indicated on the left) represents a week

of work, which is consecutively executed by one of the employees. The duties represent

the work that needs to be scheduled. Each duty specifies a sequence of tasks, where a

task specifies, for example, that the employee has to drive a train from Amsterdam to

Rotterdam at 11:15. The duties can also be divided in categories, based on, e.g., their

start time.

Mon Tue Wed Thur Fri Sat Sun

N N R L E L R

R R N N L R R

N N N R N R N

r1

r2

r3

Figure 1: Example of a basic schedule for three employees. Each day specifies either one
of three duty types: Early (E), Late (L) or Night (N), or a rest day (R).

Figure 2 shows an example of a cyclic roster for three employees, which fits the basic

schedule depicted in Figure 1. Each of the scheduled duties is indicated by its index,

and the rows are indicated on the left. The cyclicity of the roster implies that the first

employee starts with row r1, the second employee with r2, and the third employee with

r3. In the next week, the employees ‘cycle’: The first employee executes r2, the second

employee executes r3, and the third employee executes r1. After three weeks, the cycle is

completed, and the process repeats itself. Note that the cyclicity implies that there can

3



be overlap between different rows: Duty 106 starts on Sunday in the third row, and ends

on Monday in the first row.

Mon Tue Wed Thur Fri Sat Sun

126 124 R 54 13 40 R

R R 105 111 123 R R

118 107 115 R 108 R 106

r1

r2

r3

Figure 2: Example of a cyclic roster for three employees.

Two important aspects have to be taken into account when constructing the rosters.

Firstly, the roster should be feasible with respect to the labor regulations. For example,

there should be sufficient rest time between consecutive duties, and the total amount of

work in a row (i.e., in a week of work) cannot be too large. Secondly, the roster should

be perceived attractive by the employees. Short, although legal, rest times, for example,

make the roster unattractive, as employees prefer a proper rest period between two duties.

Both the feasibility and perceived attractiveness are expressed using roster constraints.

Feasibility is modeled using hard constraints, whereas attractiveness is modeled using soft

constraints, thereby penalizing unattractive assignments of duties.

The CCRP can now be formulated as follows: Given a set of duties, and a basic schedule,

create a cyclic roster, adhering to the basic schedule, such that all duties are scheduled,

and the perceived attractiveness of the roster is maximized. The objective in the CCRP

is to maximize the attractiveness of the roster from an employees’ point of view.

3 Related Work

Crew planning is well-studied in the literature (see e.g., Van den Bergh et al. [2013] for

an extensive overview). In mass transit and railway optimization the focus is mainly on

cyclic rosters (see Huisman et al. [2005], Caprara et al. [2007]) whereas in, for example,

the airline industry the focus is mainly on acyclic rosters (see e.g., Kohl and Karisch

[2004]). Generally, crew planning is decomposed into crew scheduling and crew rostering.

In the former, the duties (i.e., days of work) have to be constructed (see, for example,

Abbink et al. [2005]), whereas in the latter, the rosters are constructed, given the duties.

The crew rostering problem occurs in two variants: either the basic schedules are con-

sidered input, or the construction of the basic schedules is part of the planning problem

(either in a sequential fashion, or simultaneously). In the former case the focus lies on

finding an attractive allocation of the duties, whereas in the latter case also the feasibility

4



of the basic schedule has to be taken into account (e.g., each number of sequential rows

should have a proper weekend) . In this paper, we consider the first variant.

Different models have been proposed to solve the cyclic crew rostering problem. Caprara

et al. [1997] develop both a multi-commodity flow model and a set partitioning model

for crew rostering. Furthermore, they argue which formulation is more suitable, given

the constraint set. They apply these models to the Italian railway case. Freling et al.

[2004] develop a Branch-Price-and-Cut algorithm based on a set covering formulation.

Hartog et al. [2009] propose an assignment model with side constraints, in which they

first optimize the basic schedule, and then the assignment of the duties to these schedules.

The latter problem is similar to the crew rostering problem considered in this paper. We

note that this type of decomposition was first considered in Sodhi and Norris [2004].

In recent work, Borndörfer et al. [2015] propose both a network flow model and a set

partitioning model, for which they propose a heuristic solution approach based on the

Lin-Kernighan heuristic. In Borndörfer et al. [2017] an integration of duty scheduling

and rostering is proposed. The authors propose a solution method based on Benders

decomposition, and show that, by altering the duties (slightly), the attractiveness of the

roster can be improved at almost zero cost. Finally, Breugem et al. [2017] consider a

variant of the problem in which also the fairness (i.e., the equity of the duty allocation) is

taken into account. The authors propose a formulation based on the rows of the roster,

which is solved using a Branch-Price-and-Cut approach. The underlying crew rostering

problem (i.e., obtained by omitting fairness) relates closely to the one considered in this

research.

4 Mathematical Model

In this section we propose a family of mathematical formulations for the CCRP. In Section

4.1, we define the concept of clusters and roster sequences. In Section 4.2, we discuss how

the roster constraints are modeled, and we introduce the necessary notation in Section

4.3. We conclude with a family of mathematical formulations for the CCRP in Section

4.4. The modeling techniques presented in this section relate closely to those of Breugem

et al. [2017], and, to a lesser extent, Hartog et al. [2009].

4.1 Clusters and Roster Sequences

The family of formulations is based on different partitions of the basic schedule. That is,

we develop a mathematical formulation under the assumption that each basic schedule is

partitioned into disjoint subsets, which we call clusters. This partition will be referred to

as a clustering for the respective basic schedule, and should be picked a priori solving the

model.

5



The formulation will have a different structure for each possible clustering, giving rise to

the family of formulations. Figure 3 gives an example of two possible clusterings for a

basic schedule of four rows. In the clustering in Figure 3a, each cluster contains exactly

one of the days in the basic schedule. The clustering in Figure 3b, on the other hand,

assigns all days in the same row (i.e., Monday to Sunday) to the same cluster. Note that

many more clusterings are possible. One could, for example, also consider a ‘weekend’

clustering, in which each cluster relates to either Friday to Monday (the ‘weekend’ days),

or Tuesday to Thursday (the ‘week’ days). Such a clustering can be a good choice when,

e.g., the rest time over the weekend is of utmost importance. Generally, days in a cluster

do not need to be consecutive.

Mon Tue Wed Thur Fri Sat Sun

N N R N L L R

R N N N L R R

N N N R N R N

N R E L L R R

(a) Day clustering.

Mon Tue Wed Thur Fri Sat Sun

N N R N L L R

R N N N L R R

N N N R N R N

N R E L L R R

(b) Row clustering.

Figure 3: Example of different clusterings. Each highlighted area represents a cluster.

Each cluster is assigned a number of duties simultaneously. Each possible assignment of

duties to a cluster is called a roster sequence. Formally, a roster sequence specifies a duty

or rest day for each day in the cluster, such that the assignment is compatible with the

basic schedule, and such that no duty is assigned twice (within the same cluster).

Tue Wed Thur Fri

L R R E

Figure 4: Cluster from Tuesday to Friday.

To illustrate the use of roster sequences, consider the cluster depicted in Figure 4. Two

6



possible roster sequences for this cluster are depicted in Figure 5. Both roster sequences

contain different duties (indicated by the numbers). Note that in this case the second

roster sequence has a shorter rest period than the first roster sequence (as duty 124 ends

later than duty 126, and duty 58 starts earlier than duty 54), which might be considered

undesirable.

Tue Wed Thur Fri

126 R R 54

(a)

Tue Wed Thur Fri

124 R R 58

(b)

Figure 5: Two possible roster sequences for the cluster of Figure 4.

The goal of a clustering is to model constraints implicitly using the roster sequences.

That is, ideally each constraint considers the days in solely one of the clusters, and can

therefore be taken care of when generating the roster sequences. As an example, consider

a constraint in which an employee can have only a maximum amount of work per row. In

this case, the clustering of Figure 3b allows to model these constraints implicitly using the

roster sequences (i.e., a roster sequence is feasible only if it does not exceed the maximum

working time). On the other hand, for the clustering of Figure 3a these constraints have

to be modeled explicitly in the mathematical formulation. Another example considers

proper rest periods. That is, whenever one or more consecutive rest days are scheduled,

there should be a minimum amount of time before the start time of the first duty after the

rest period and the end time of the last duty before the rest period. This rest period could

be modeled implicitly in the case of the cluster of Figure 4. It could, for example, be the

case that the first roster sequence depicted in Figure 5 has a proper rest period, whereas

the second roster sequence has not. In this case, the second roster sequence would not be

generated.

4.2 Roster Constraints

We now rigorously show how to model roster constraints, i.e., constraints regarding the

assignment of duties to the basic schedule. As illustrated in previous examples, the roster

constraints define the quality of the roster, and assure feasibility. The former is done using

soft constraints (i.e., violation results in a penalty), whereas the latter is enforced by hard

constraints (i.e., violation is never allowed). The roster constraints are modeled similarly

7



as in Hartog et al. [2009] and Breugem et al. [2017]: Each roster constraint is specified by

(i) a coefficient for each assignment of a duty to a day in the basic schedule, (ii) a scalar

called the threshold value, and (iii) a closed interval called the violation interval. Without

loss of generality, the interval is assumed to be of the form [0, u], for some u ≥ 0. The

roster constraints enforce that if the sum of coefficients of assigned duties exceeds the

threshold value, then the difference between the sum and the threshold value lies within

the violation interval.

Many different constraints can be modeled within the above framework. Consider, for

example, a roster constraint which concerns the total workload (i.e., the cumulative length

of all duties) in a given row of the roster. In particular, the constraint expresses that the

total workload is at most 45 hours. This constraint can be modeled as follows: Let w

denote the set of days in the considered row. Furthermore, let D denote the set of duties,

and let `d denote the length of duty d. Let the variable xtd indicate whether duty d is

scheduled on day t, and let δ model a possible violation. The above constraint can be

expressed as ∑
t∈w

∑
d∈D

`dxtd ≤ 45 + δ.

If no violation is allowed, we have δ ∈ {0}. If, for example, a violation of at most two

hours is allowed (i.e., a workload of at most 47 hours), albeit against a penalty, we have

δ ∈ [0, 2]. Note that for this particular constraint, the coefficient for assignment (t, d) is

given by `d if t ∈ w, and 0 otherwise, the threshold value is 45, and the violation interval

is the domain of δ.

Roster constraints that only consider assignments to days in a single cluster are modeled

implicitly using the set of roster sequences (i.e., infeasible roster sequences are omitted).

The above constraint, for example, can be modeled implicitly if there is a cluster contain-

ing all days in w (e.g., the row clustering of Figure 3). Otherwise, the constraint has to

be modeled explicitly (i.e., the constraint has to be added to the formulation).

4.3 Notation

We are now ready to introduce the notation for the mathematical formulation. Let D

denote the set of duties. The basic schedule is represented by a set of days T , where for

each day t ∈ T it is known which duties can be scheduled. An assignment of a duty d ∈ D
to a day t ∈ T in the basic schedule will be denoted by the pair (t, d).

The set K denotes the set of all clusters (note that these are determined a priori formu-

lating the mathematical model). We define the set Sk as the set of all roster sequences

for cluster k ∈ K. Each roster sequence can be seen as a sequence of assignments (t, d).

The parameter hkds indicates whether roster sequence s ∈ Sk contains duty d (i.e., duty d

appears in one of the assignments describing the roster sequence s). Finally, we define cks

8



as the penalty associated with roster sequence s ∈ Sk for cluster k ∈ K.

The set of roster constraints is denoted by P . The coefficient for the assignment (t, d) for

roster constraint p is denoted by fptd. The threshold value for p is denoted by bp, and the

violation interval for p is denoted by ∆p = [0, up]. The penalty corresponding to roster

constraint p is denoted by cp.

Let Pk ⊆ P denote the set of roster constraints fully contained in cluster k ∈ K, and define

PK =
⋃

k∈K Pk. The constraints in PK are exactly those that are modeled implicitly using

the roster sequences. The penalty cks associated with roster sequence s ∈ Sk is the sum of

all violations in the roster sequence s, restricted to the roster constraints Pk. Note that

the roster constraints in P \ PK need to be modeled explicitly.

4.4 Family of Mathematical Formulations

The CCRP, given a clustering K, can now be formulated as follows. We introduce the

binary variable xks , which indicates whether roster sequence s ∈ Sk is assigned to cluster

k ∈ K. Furthermore, we introduce the variable δp, for each p ∈ P \ PK , which expresses

the violation of the roster constraint p ∈ P \ PK . The variable δp is restricted to the

violation domain ∆p. The formulation now reads as follows.

min
∑
k∈K

∑
s∈Sk

cksx
k
s +

∑
p∈P\PK

cpδp (1)

s.t.
∑
s∈Sk

xks = 1 ∀k ∈ K (2)

∑
k∈K

∑
s∈Sk

hkdsx
k
s = 1 ∀d ∈ D (3)

∑
k∈K

∑
s∈Sk

∑
(t,d)∈s

fptdx
k
s ≤ bp + δp ∀p ∈ P \ PK (4)

xks ∈ B ∀k ∈ K, s ∈ Sk (5)

δp ∈ ∆p ∀p ∈ P \ PK . (6)

The Objective (1) expresses that we minimize the sum of the roster sequence costs, to-

gether with the cost of all explicitly modeled roster constraints. Constraints (2) and (3)

assure that the duties are assigned correctly to the basic schedules. That is, each cluster

is assigned exactly one roster sequence, and each duty is assigned exactly once to a day

in the basic schedule. Constraints (4) represent the roster constraints that are modeled

explicitly. Finally, Constraints (5) and (6) specify the domains of the decision variables.

The family of formulations for the CCRP is now obtained by taking (1)–(6) for all possible

clusterings K.

9



5 Theoretical Analysis

Intuitively, the implicit modeling of the roster constraint violations leads to a tighter lin-

ear relaxation. In this section, we prove this rigorously. From hereon, we consider two

clusterings K and L such that PK ⊇ PL (note that this does not necessarily imply that

every ` ∈ L is contained in some k ∈ K). An example of such clusterings is given in

Figure 3, where K and L are the row and day clustering, respectively. Let Sk, for all

k ∈ K, and Q`, for all ` ∈ L, denote the respective sets of roster sequences for both

clusters. For notational convenience, define Ω as the set of all feasible assignments (t, d),

with t ∈ T and d ∈ D, of duties to the days in the basic schedule. Furthermore, we

define the operator [·]+ as [a]+ = max{0, a}. Throughout this section, a solution refers to

a solution to the linear relaxation. We first prove the following lemma. Intuitively, this

lemma states that, given a solution for K, we can construct a solution for L such that

each duty is assigned to the same day in both solutions.

Lemma 5.1. Let x̄ be a solution for clustering K. There exists a feasible solution z̄ for

clustering L, such that ∑
k∈K

∑
s∈Sk:
s3(t,d)

x̄ks =
∑
`∈L

∑
q∈Q`:
q3(t,d)

z̄`q (7)

for each (t, d) ∈ Ω.

Proof. We consider an auxiliary clustering O, defined as the largest clustering which is

fully contained in both K and L (see Figure 6). Formally, O is uniquely defined by taking

all non-empty subsets k ∩ `, for all k ∈ K and ` ∈ L. Let R denote the set of feasible

roster sequences for this clustering, and let Ro denote the feasible roster sequences for

o ∈ O.

K :

L :

O :

Figure 6: Example of the clustering O, which is the largest clustering contained in both
K and L.

Since each cluster o ∈ O is fully contained in some k ∈ K, we can readily obtain a solution

10



ȳ for O satisfying ∑
k∈K

∑
s∈Sk:
s3(t,d)

x̄ks =
∑
o∈O

∑
r∈Ro:
r3(t,d)

ȳor (8)

by splitting up each roster sequence for K into smaller roster sequences for O. Further-

more, since each o ∈ O is also fully contained in some ` ∈ L, we can obtain a solution z̄

satisfying ∑
`∈L

∑
q∈Q`:
q3(t,d)

z̄`q =
∑
o∈O

∑
r∈Ro:
r3(t,d)

ȳor (9)

by greedily constructing roster sequences for L given those for O. To be more precise, let

O` ⊆ O denote the clusters contained in ` ∈ L. For each ` ∈ L, we pick the roster sequence

r with smallest non-zero value ȳor , say v, over all clusters O`. This roster sequence is then

combined with a roster sequence for each of the other clusters in O`, to obtain a roster

sequence q for cluster `. We set z̄`q = v, reduce ȳor for all involved roster sequences by v,

and repeat the procedure until all roster sequences are assigned.

It follows that we can construct a solution z̄ that satisfies (7). It remains to show that a

solution constructed in this fashion is feasible with respect to the roster constraints. By

combining (4) and (7), and doing some algebraic manipulations, it can be shown that z̄

is feasible with respect to P \ PL (see Appendix A).

To show that z̄ is feasible with respect to the roster constraints in PL we make the

following crucial observation: Since PK ⊇ PL it must hold that PO ⊇ PL. Suppose that

this is not true, then there must be a constraint p ∈ PL with non-zero coefficient fptd for

multiple clusters in O. By definition of O, however, this would imply that PL \PK 6= ∅, as

O is the largest clustering contained in both K and L. This contradicts the assumption

that PK ⊇ PL. Hence, if the constructed solution ȳ is feasible with respect to PO, then a

solution z̄ created by combining these roster sequences must be feasible with respect to

PL. The feasibility of ȳ with respect to PO, however, follows directly from the feasibility

of x̄, since PO ⊆ PK . This concludes the proof.

It is important to note that Lemma 5.1 does not hold in the other direction. That is,

given a solution z̄ it is not always possible to construct a solution x̄ satisfying (7). We

are now able to prove the following theorem.

Theorem 5.1. Let K and L be two clusterings such that PK ⊇ PL. Furthermore, let vK

denote the optimal value of the LP relaxation using clustering K, and define vL similarly.

11



Let x̄ be an optimal solution corresponding to vK . It holds that

vK ≥ vL +
∑

p∈PK\PL

cpπp(x̄),

where the non-negative coefficients πp(x̄) are given by

πp(x̄) =
∑
k∈K

∑
s∈Sk

x̄ks

 ∑
(t,d)∈s

fptd − bp

+

−

∑
k∈K

∑
s∈Sk

x̄ks

 ∑
(t,d)∈s

fptd

− bp
+

.

Proof. Let z̄ be a feasible solution for clustering L satisfying (7), obtained using the

construction heuristic described in the proof of Lemma 5.1. Note that z̄ is feasible for

L and hence the objective value of z̄ is an upper bound for vL. Furthermore, note that,

by the construction of z̄, the cost incurred for the roster constraints PL is identical for

x̄ and z̄. As a consequence, the difference in objective value between x̄ and z̄ is exactly

the penalty incurred by the roster constraints in PK \ PL. Hence, the difference in the

penalty incurred by these constraints is a lower bound on vK − vL.

First, consider the solution x̄. Recall that the constraint violations for each pattern

p ∈ PK \ PL are modeled implicitly in the roster sequence cost for clustering K. The

penalty incurred from roster constraint p ∈ PK \ PL is therefore given by

cp
∑
k∈K

∑
s∈Sk

x̄ks

 ∑
(t,d)∈s

fptd − bp

+

.

Next, consider the solution z̄. Note that for L the constraint violations for all p ∈ PK \PL

are modeled explicitly using (4). Hence, the penalty incurred from roster constraint

p ∈ PK \ PL is given by

cp

∑
`∈L

∑
q∈Q`

z̄`q

 ∑
(t,d)∈q

fptd

− bp
+

.

Using that ∑
`∈L

∑
q∈Q`

∑
(t,d)∈q

fptdz̄
`
q =

∑
k∈K

∑
s∈Sk

∑
(t,d)∈s

fptdx̄
k
s ,

(see (10) in Appendix A), it follows that the difference in incurred penalty is given by

cp
∑
k∈K

∑
s∈Sk

x̄ks

 ∑
(t,d)∈s

fptd − bp

+

− cp

∑
k∈K

∑
s∈Sk

x̄ks

 ∑
(t,d)∈s

fptd

− bp
+

.

The result now follows from summing over all p ∈ PK \ PL.

12



The value πp(x̄) represents the error incurred from modeling pattern p explicitly (note that

πp(x̄) is zero if x̄ is integer), opposed to modeling it implicitly (i.e., correctly). Theorem

5.1 can be used as a guideline to pick the ‘ideal’ set of clusters. Note that Theorem 5.1

does not necessarily state that large clusters are beneficial, but rather that clusters with

a (relative) large value of
∑

p∈PK
cp are beneficial.

6 Branch-and-Price

We develop an exact solution approach for the CCRP using Branch-and-Price. We assume

the reader is familiar with the general idea behind Branch-and-Price (for detailed surveys

on column generation and Branch-and-Price, see e.g., Desaulniers et al. [2006], Desrosiers

and Lübbecke [2011]). In a Branch-and-Price approach the solution space is searched

using Branch-and-Bound. In each node of the Branch-and-Bound tree the resulting LP-

relaxation is solved using column generation. The problem is split into a restricted master

problem, using only a subset of the columns, and a pricing problem, aimed at generating

profitable columns. The master and pricing problem are solved iteratively, until the found

solution to the master problem is provably optimal (i.e., no columns with negative reduced

cost can be found).

The master problem is obtained from (1)–(6) by relaxing the integrality constraints on

the xks variables. We branch based on the assignments of the duties to the days. That

is, we branch if some duty is assigned to multiple days in the basic schedule. Whenever

multiple branching decisions exist, we branch on the assignment with the most fractional

value. Note that whenever no branching decisions of this kind are present, each duty

is assigned to exactly one day, and hence an integer solution is found. The aim of the

Branch-and-Price algorithm is to find provably optimal solutions. The node selection

strategy in the Branch-and-Bound method is therefore based on the lowest bound, to

improve the best-known (i.e., highest) lower bound as quickly as possible.

The reduced cost γks of a roster sequence s ∈ Sk, for a given cluster k ∈ K can be expressed

as follows. Let µk denote the dual variables corresponding to (2), φd those corresponding

to (3), and θp those corresponding to (4). The reduced cost γks can now be expressed as

γks = cks − µk −
∑
d∈D

hkdsφd −
∑

p∈P\PK

∑
(t,d)∈s

fptdθp.

Note that by defining the aggregated dual variable λtd = φd+
∑

p∈P\PK
fptdθp, the reduced

cost γks can be equivalently written as

γks = cks − µk −
∑

(t,d)∈s

λtd.

13



The pricing problem for each k ∈ K can be modeled as resource constrained shortest

path problem (RCSPP) with surplus variables on a dedicated graph (see e.g., Irnich and

Desaulniers [2005]). For each cluster k ∈ K, we construct a directed layered graph in

which each layer corresponds to a day in k, and each vertex corresponds to an assignment

(t, d) of a duty to a day in k. Initially, there is an arc between each two assignments

in consecutive layers (an arc can be removed when incorporating the roster constraints).

Whenever the assignment of a duty to a day is predetermined due to the basic schedule

(e.g., a day must be a day off), the vertex corresponding to this layer can be directly

incorporated in the arc set. Figure 7 shows an example of a pricing graph for the cluster

depicted in Figure 4. In this particular instance, the basic schedule specifies that both

Wednesday and Thursday should be a day off, hence the arcs directly connect the possible

assignments for Tuesday and Friday.

Tue Wed Thur Fri

s t

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

Figure 7: Example Pricing Graph.

The dual costs λtd of the roster sequence are readily incorporated in the arc costs. For

the primal cost the violation of each of the constraints in Pk has to be modeled. We

distinguish three different cases.

• The first case considers constraints which have non-zero coefficient for only one

layer in the graph (e.g., certain assignments are not allowed). These constraints are

readily incorporated in the vertex set (if an assignment is not allowed), or in the

arc costs (if an assignment is allowed, but penalized). A possible example of such a

constraint would be a relatively late duty scheduled just before a rest day: although

possibly allowed, such an assignment is not desirable.

• The second case considers constraints that have non-zero coefficients only for two

consecutive layers in the graph. These constraints are readily incorporated in the

14



arc set, either by removing an arc, or by adding a penalty to the arc cost. An

example of this is shown in Figure 7, where it is not possible to schedule duty d6

before d8 (hence the arc is removed), and, furthermore, scheduling duty d6 before

d9 is allowed, albeit against a penalty (indicated by the dashed arc). Rest time

constraints are a typical example of constraints belonging to this category.

• The third and final case considers all other constraints. These constraints can be

modeled by defining a resource with consumption fptd at each vertex, and threshold

value bp. If the constraint is soft, a surplus variable is added to model the violation

δp. Workload constraints are a typical example of this category.

We solve the RCSPP using an enumerative depth first search approach, where the cost

of each path is estimated using Lagrangian distance labels. These labels give a lower

bound on the path cost, and have been used for similar problems (see. e.g., Beasley and

Christofides [1989], Dumitrescu and Boland [2003], Grötschel et al. [2003], Breugem et al.

[2017]). The lower bounds are used to prune the search tree (i.e., part of the tree is pruned

whenever the lower bound of a path exceeds the best-known upper bound).

7 Assignment Fixing Heuristic

Initial experiments showed that, even if the linear relaxation is strong, the Branch-and-

Price approach fails to solve certain instances in a reasonable amount of time (due to e.g.,

their size or structure). We therefore propose a heuristic solution method to cope with

these more difficult instances, which we will refer to as the Assignment Fixing Heuristic

(AFH). In this heuristic we aim at exploiting the information obtained from the linear

relaxation. That is, we assume that the optimal solution of the linear relaxation gives

information regarding the structure of the optimal integer solution. Note that this heavily

depends on the strength of the relaxed formulation. We then restrict the number of

possible roster sequences per cluster based on the optimal solution of the relaxation.

The restricted version of the problem is obtained as follows. Let x̄ be an optimal solution

to the relaxed problem. The set of possible roster sequences for k ∈ K is initialized with

all roster sequences s ∈ Sk with non-zero coefficient x̄ks . We then determine, for each

cluster k ∈ K and each day t ∈ k in the cluster, the η duties that are assigned the largest

non-zero coefficients in x̄ks . That is, we determine the η duties with the largest score αtd,

defined as

αtd =
∑
s∈Sk:
s3(t,d)

x̄ks .

Denote the resulting set of duties by Dt. If less than η duties have a positive score,

only the duties with positive score are selected. We consider a restricted version of the

problem, where we only consider the roster sequences for k consisting of duties in Dt.

15



Tue Wed Thur Fri

126 R R 54

(a)

Tue Wed Thur Fri

124 R R 58

(b)

Tue Wed Thur Fri

128 R R 56

(c)

Tue Wed Thur Fri

129 R R 56

(d)

Figure 8: Example heuristic.

To illustrate the selection of duties, consider the four roster sequences depicted in Figure

8. Suppose the four roster sequences are assigned the values 0.25, 0.35, 0.2 and 0.2,

respectively, and that η = 2. For Tuesday, we have αTue,126 = 0.25, αTue,124 = 0.35,

and αTue,128 = αTue,129 = 0.2. For Wednesday, we have αWed,54 = 0.25, αWed,58 = 0.35,

and αWed,56 = 0.4 (note that duty 56 appears in both the third and the fourth roster

sequence). Hence, in this case, all possible roster sequences are generated using duties

126 and 124 for Tuesday and duties 58 and 56 for Friday. For reasonably sized η the

resulting problem can be readily solved using a commercial solver. In our experiments we

observed that often much less than η duties are selected for each day in the cluster. That

is, when the root node solution is close to integer, only a small number of duties per day

will have a non-zero coefficient.

8 Computational Experiments

In this section we discuss the computational results. We first discuss the experimental set-

up in Section 8.1. That is, we discuss the roster constraints that are taken into account,

and the different instances considered. We then turn to the computational results in

Section 8.2.

16



8.1 Experimental Set-Up

We apply our solution approach to different instances based on data from NS. For each

instance, the basic schedule specifies the days off. Furthermore, for each duty that is to

be scheduled a type is given. The considered types are Early, Late, and Night. The type

of each duty is based on the start time of the duty. The following roster constraints are

taking into account.

• Rest Time. After completing a duty it is required that an employee has a certain

minimum time to rest. After a night duty this rest time should be at least 14 hours,

otherwise it should be at least 12 hours. Furthermore, we penalize rest times shorter

than 16 hours with a penalty of 30.

• Rest Day. When rest days are scheduled in the roster, the length of the rest period

has to be sufficient. This implies that there is a minimal time enforced between

duties scheduled before and after the rest days. The enforced rest time is 6 hours

plus 24 hours for each rest day.

• Red Weekend. At least once every three rows of the roster there should be a weekend

which has a consecutive period of 60 hours off. These so-called red weekends can be

determined given the basic schedule. The 60 hour rest period can then be enforced

using the roster constraints.

• Workload. The total workload in a row is not allowed to exceed 45 hours. Here, the

workload of a duty is the difference between the start and end time (i.e., including

the meal break).

• Variation. The variation constraints assure that the different attributes of work

(e.g., duty length, percentage double decker work) are divided equally over the

rows. These constraints penalize a positive deviation from the average (measured

over all duties) for each row in the roster. In total we consider 10 different variation

constraints.

We consider a total of 10 different instances: four ‘small’ instances of 12 employees and

roughly 50 duties, four ‘medium’ instances of 24 employees and roughly 100 duties, and

two ’large’ instances of about 50 employees and 200 duties. Each of the instances is

obtained by combining multiple roster groups as operated at NS. The properties of the

instances are summarized in Table 1.

17



Size E L N Total

1 12 23 11 15 49
2 12 21 12 16 49
3 12 49 0 1 50
4 12 49 0 1 50

5 24 21 36 35 92
6 24 23 35 37 95
7 26 101 0 2 103
8 24 97 0 2 99

9 54 118 47 52 217
10 50 198 0 4 202

Table 1: Characteristics of the instances. For each instance the size (i.e., the number of
employees) is specified, along with the number of Early, Late, and Night duties, and the
total number of duties.

The instances can be categorized into one of two categories. The instances 1, 2, 5, 6,

and 9 represent instances in which all three duty types have to be scheduled. For the

other instances the duties consist almost exclusively of early duties. The former category

of instances provide more structure compared to the latter ones, since (i) less roster

sequences are possible (as the duties are divided over different types), and (ii) the rest

time and rest day constraints are expected to be more important for these instances (i.e.,

if all duties start early, the chance of having a rest time violation is small). The second

category is therefore expected to be more difficult to solve if the formulation is not chosen

carefully.

8.2 Computational Results

In this section the computational results are discussed in detail. We compare the perfor-

mance of different clusterings. We then evaluate the performance of the AFH, and we

conclude by comparing both the Branch-and-Price approach and the AFH with a state-of-

the-art commercial solver. All experiments are done on a computer with a 1.6 GHz Intel

Core i5 processor. We use the LP solver embedded in CPLEX 12.7.1 (simply referred to

as CPLEX from hereon) to solve the master problems.

8.2.1 Comparison of Formulations

To illustrate the importance of a correct clustering (for the given constraints), we solve

the smaller instances for different clusterings using the Branch-and-Price approach. We

consider clusterings were each cluster contains a single day, three days, six days, and

seven days (i.e., a cluster per row). We denote these clusterings by C1, C3, C6, and

18



C7, respectively. Each clustering leads to a different formulation. In particular, the

clustering C1 results in the assignment formulation proposed in Hartog et al. [2009], and

the clustering C7 leads to a formulation similar to Breugem et al. [2017]. We compare

the different clusterings on the first four instances (i.e., the smaller instances), as these

instances already clearly highlight the relative performance differences of the clusterings.

The results for each of the four smaller instances are shown in Table 2. For each instance,

and each clustering, Table 2 shows the bound obtained from the root node relaxation,

the best lower bound achieved, the total computation time, and the percentage of roster

constraints that could be modeled implicitly. Each run is limited to at most one hour

of computation time. For clustering C1 we generate all roster sequences a priori (as

each roster sequence contains only one day). Recall that the Branch-and-Price approach

focuses on optimality, i.e., improving the lower bound. This implies that generally either

the problem is solved to optimality within the time limit, or no feasible solution is found.

Underlined entries in Table 2 denote optimal solutions.

Clustering Root Bound Lower Bound Time (min) Imp. Con. (%)

1

C1 558.0 609.7 1.8 0
C3 569.2 609.7 2.4 29
C6 581.2 609.7 0.9 49
C7 609.7 609.7 0.0 98

2

C1 654.5 713.8 0.5 0
C3 661.0 713.8 0.2 20
C6 705.5 713.8 0.1 59
C7 713.8 713.8 0.0 95

3

C1 192.4 210.6 >60 0
C3 192.5 208.0 >60 32
C6 206.4 224.3 >60 49
C7 280.0 283.5 0.1 94

4

C1 274.0 289.8 >60 0
C3 289.5 305.4 >60 38
C6 313.5 330.1 >60 59
C7 370.2 373.9 0.2 97

Table 2: Results for the small instances using the Branch-and-Price approach for four
different clusterings. Underlined entries denote optimal solutions.

The results in Table 2 are in line with Theorem 5.1. That is, there is a clear relation

between the percentage of implicit constraints and the bound obtained from the linear

relaxation. The benefit of a suitable clustering is most apparent for instances 3 and 4

(i.e., two instances considering only early duties). For these instances the main challenge

is to capture the cost incurred from the variation constraints, which only clustering C7

is able to do. As a result, these instances are solved quickly using C7, whereas with the

19



other clusterings the instances cannot be solved within an hour. We conclude by noting

that the integrality gaps for C7 are small, which is a good motivation for the AFH.

8.2.2 Assignment Fixing Heuristic

Next, we consider the performance of the AFH using clustering C7. Table 3 shows the

results for each of the ten instances. The heuristic is run for different values of η (i.e., the

maximum number of duties we select per day). For none of the instances more than 10

duties per day had a non-zero coefficient. For each run, Table 3 shows the objective value

of the best found solution, the gap with respect to the root bound, the total computation

time (including the time for solving the linear relaxation), and the number of columns

generated using the heuristic. Recall that the heuristic depends on the solution obtained

when solving the linear relaxation. The experiments showed that for some instances the

linear relaxation had multiple optimal solutions. In this case we average the results over

a total of 10 runs. For these instances, Table 3 shows the standard deviation of each value

within brackets.

20



η Best Solution Gap (%) Time (min) Nr. Columns

1
3 609.7 - 0.0 - 0.0 - 12.0 -
5 609.7 - 0.0 - 0.0 - 12.0 -

10 609.7 - 0.0 - 0.0 - 12.0 -

2
3 713.8 - 0.0 - 0.0 - 12.0 -
5 713.8 - 0.0 - 0.0 - 12.0 -

10 713.8 - 0.0 - 0.0 - 12.0 -

3
3 287.3 - 2.6 - 0.0 - 585.0 -
5 287.3 - 2.6 - 0.0 - 691.0 -

10 287.3 - 2.6 - 0.0 - 691.0 -

4
3 380.0 - 2.6 - 0.0 - 1125.0 -
5 377.0 - 1.8 - 0.0 - 2554.0 -

10 374.2 - 1.1 - 0.0 - 3188.0 -

5
3 959.2 - 3.5 - 0.0 - 378.0 -
5 959.2 - 3.5 - 0.0 - 378.0 -

10 959.2 - 3.5 - 0.0 - 378.0 -

6
3 1034.4 - 3.3 - 0.0 - 266.0 -
5 1034.4 - 3.3 - 0.0 - 266.0 -

10 1034.4 - 3.3 - 0.0 - 266.0 -

7
3 505.7 (9.9) 11.4 (1.7) 0.3 (0.0) 1904.4 (35.5)
5 479.6 (4.1) 6.6 (0.8) 0.4 (0.0) 8382.3 (250.3)

10 478.0 (4.9) 6.3 (1.0) 0.5 (0.1) 12782.4 (352.0)

8
3 574.7 (5.1) 8.9 (0.8) 0.3 (0.0) 2837.5 (53.3)
5 549.6 (3.8) 4.8 (0.7) 0.5 (0.1) 15254.7 901.6

10 546.7 (2.9) 4.3 (0.5) 0.6 (0.1) 26302.6 (2073.7)

9
3 1494.6 (3.9) 4.5 (0.3) 1.1 (0.3) 4186.9 (143.5)
5 1474.9 (2.0) 3.3 (0.1) 1.7 (0.5) 15471.9 (899.5)

10 1474.0 (1.7) 3.2 (0.1) 1.9 (0.4) 21460.5 (2537.1)

10
3 720.1 (7.9) 16.9 (0.9) 12.2 (1.4) 5204.2 (55.0)
5 672.7 (5.3) 11.1 (0.7) 23.4 (9.5) 31811.4 (994.3)

10 665.1 (4.7) 10.1 (0.7) 26.5 (5.1) 62212.0 (4362.5)

Table 3: Performance of the AFH for the different instances. For certain instances,
multiple solutions to the linear relaxation exist. In this case the results are averaged over
10 runs, and the standard deviation is shown between brackets.

Table 3 shows that the heuristic performs well for all instances. The found gap is reason-

ably small (from a practical point of view), even for instance 10, which can be regarded as

extremely difficult to solve using current state-of-the-art solution methods. As expected,

Table 3 shows that the performance of the heuristic improves as η increases. The largest

gain is generally observed when increasing η from 3 to 5. For η = 3, duties with a rela-

tively high coefficient are not added. Note also that in this case the number of columns

increases drastically. When increasing η from 5 to 10, the improvement is less. We note,

21



however, that for these instances all variants could be solved quickly, hence picking the

largest value for η is the best choice.

8.2.3 Comparison Commercial Solver

Finally, we compare the performance of the Branch-and-Price approach and the AFH

with CPLEX. Here the Branch-and-Price approach and the heuristic are applied to the

model resulting from clustering C7, and CPLEX is used for the model obtained from

clustering C1. Furthermore, the formulation resulting from C7 is tightened by adding the

valid inequalities proposed in Breugem et al. [2017].

The results for the different instances are shown in Table 4. For each run Table 4 shows

the root bound resulting from the used clustering, the best obtained lower bound for

each method, the objective value of the best found solution, the gap with respect to the

best-known lower bound, and the overall computation time (again limited to at most one

hour). Note that the AFH does not improve the root bound, hence the lower bound for

the AFH is omitted in Table 4. For the sake of clarity, we only display the average value

for the AFH (as shown in Table 3).

Table 4 shows that the Branch-and-Price approach outperforms CPLEX for the smaller

instances. Both approaches quickly solve instances 1 and 2, but the Branch-and-Price

approach is much more efficient for the difficult instances 3 and 4. This can be attributed

to the strong linear relaxation obtained using clustering C7. Both instance 5 and 6 could

be solved to optimality within the set time limit using the Branch-and-Price approach

and CPLEX. We see that CPLEX outperforms the Branch-and-Price approach on the

fifth instance, and both methods perform roughly equally on the sixth instance.

The benefit of the AFH is clearly visible when we consider the final four instances, which

are considered the most difficult to solve. For these instances the Branch-and-Price ap-

proach stagnates, and CPLEX is not able to obtain a proper gap within the time limit.

The heuristic, on the other hand, quickly obtains a good solution for each of the instances.

Note that the poor performance of CPLEX is not only due to the weak lower bound: For

each of the instances the heuristic finds a solution with a significantly lower objective

value. Again, we note that the good performance of the heuristic on these instances is

due to the strong linear relaxation obtained using clustering C7.

Summarizing, the column generation approach allows to efficiently obtain good solutions

to each of the ten instances. The smaller instances can be solved to optimality using the

Branch-and-Price approach, and for the larger instances a good feasible solution can be

obtained using the AFH.

22



Root Bound Lower Bound Best Solution Gap (%) Time (min)

1
CPLEX 558.0 609.7 609.7 0.0 0.0

B&P 609.7 609.7 609.7 0.0 0.0
AFH 609.7 - 609.7 0.0 0.0

2
CPLEX 654.5 713.8 713.8 0.0 0.0

B&P 713.8 713.8 713.8 0.0 0.0
AFH 713.8 - 713.8 0.0 0.0

3
CPLEX 192.4 283.5 283.5 0.0 31.7

B&P 280.0 283.5 283.5 0.0 0.1
AFH 280.0 - 287.3 1.3 0.0

4
CPLEX 274.0 373.9 373.9 0.0 10.9

B&P 370.2 373.9 373.9 0.0 0.2
AFH 370.2 - 374.2 0.1 0.0

5
CPLEX 671.4 950.3 950.3 0.0 1.4

B&P 925.8 950.3 950.3 0.0 13.5
AFH 925.8 - 959.2 0.9 0.0

6
CPLEX 618.4 1008.5 1008.5 0.0 3.7

B&P 1000.7 1008.5 1008.5 0.0 3.0
AFH 1000.7 - 1034.4 2.5 0.0

7
CPLEX 181.0 321.1 518.7 13.2 >60

B&P 447.8 450.3 - - >60
AFH 447.8 - 478.0 5.8 0.5

8
CPLEX 250.3 399.7 572.2 8.2 >60

B&P 523.4 525.3 - - >60
AFH 523.4 - 546.7 3.9 0.6

9
CPLEX 917.2 1331.2 1569.2 8.9 >60

B&P 1426.8 1429.2 - - >60
AFH 1426.8 - 1474.0 3.0 1.9

10
CPLEX 221.4 331.6 1051.3 43.1 >60

B&P 598.2 598.2 - - >60
AFH 598.2 - 665.1 10.1 26.5

Table 4: Comparison of the Branch-and-Price approach (B&P), the assignment fixing
heuristic (AFH), and CPLEX for the different instances.

9 Conclusion

In this paper, we analyzed a family of formulations for the Cyclic Crew Rostering problem

(CCRP). This family of formulations is motivated by the poor performance of traditional

assignment models for difficult instances. Each formulation has a different structure,

which implies that a suitable variant can be picked for a given problem instance. We

derived analytical results regarding the relative strength of the different formulations,

23



which can be used as a guideline to pick a suitable formulation for a given problem

instance.

We developed a column generation approach, where columns are generated using a re-

source constrained shortest path problem (RCSPP) with surplus variables. Based on this

approach, we developed an exact Branch-and-Price method. Furthermore, we proposed

a heuristic method, which reduces the number of possible duties per day based on the

solution of the linear relaxation. By limiting the number of possible duties per day, the

number of columns reduces greatly, leading to a tractable problem which can be solved

using a commercial solver.

We applied both the Branch-and-Price approach and the heuristic to practical instances

from NS. Our experiments showed the importance of picking a suitable formulation for

a given problem instance. In particular, we show that a suitable formulation is better

able to capture the penalty incurred from the roster constraints. As a result, the column

generation approach outperforms a commercial solver using the traditional assignment

model. The experiments also showed that the performance of the different methods

depends on the structure of the problem instances, which is in line with the derived

analytical results.

To further improve the proposed solution methods it would be interesting to embed the

heuristic method in, e.g., variable neighborhood search. This would make the heuristic

less dependent on the root node solution, as was showed to be the case in our experiments.

24



Appendix A

To complete the proof of Lemma 5.1 it remains to show that z̄ is feasible for the roster

constraints in P \ PL. Recall that up is the upper bound of the violation interval ∆p.

Using (7) we have ∑
`∈L

∑
q∈Q`

∑
(t,d)∈q

fptdz̄
`
q =

∑
(t,d)∈Ω

∑
`∈L

∑
q∈Q`:
q3(t,d)

fptdz̄
`
q (10a)

=
∑

(t,d)∈Ω

∑
k∈K

∑
s∈Sk:
s3(t,d)

fptdx̄
k
s (10b)

=
∑
k∈K

∑
s∈Sk

∑
(t,d)∈s

fptdx̄
k
s . (10c)

Hence, for p ∈ P \ PK , it follows that∑
`∈L

∑
q∈Q`

∑
(t,d)∈q

fptdz̄
`
q − bp =

∑
k∈K

∑
s∈Sk

∑
(t,d)∈s

fptdx̄
k
s − bp (11a)

≤ up, (11b)

where (11b) follows from the feasibility of x̄. Next, consider some p ∈ PK \ PL. Since

p ∈ PK , there is a cluster k′ ∈ K such that the coefficients fptd are non-zero only for this

cluster. It follows that∑
`∈L

∑
q∈Q`

∑
(t,d)∈q

fptdz̄
`
q − bp =

∑
k∈K

∑
s∈Sk

∑
(t,d)∈s

fptdx̄
k
s − bp (12a)

=
∑
s∈Sk′

∑
(t,d)∈s

fptdx̄
k′
s − bp (12b)

=
∑
s∈Sk′

x̄k
′

s

∑
(t,d)∈s

fptd − bp (12c)

=
∑
s∈Sk′

x̄k
′

s

 ∑
(t,d)∈s

fptd − bp

 (12d)

≤
∑
s∈Sk′

x̄k
′

s up (12e)

= up, (12f)

where (12d) and (12f) follow from (2), and (12e) follows from the feasibility of the roster

sequence s. It follows that z̄ is feasible for all p ∈ PK \ PL, and thus for all p ∈ P \ PL.

25



References

E. Abbink, M. Fischetti, L. Kroon, G. Timmer, and M. Vromans. Reinventing crew

scheduling at Netherlands Railways. Interfaces, 35(5):393–401, 2005.

J. E. Beasley and N. Christofides. An algorithm for the resource constrained shortest

path problem. Networks, 19(4):379–394, 1989.

R. Borndörfer, M. Reuther, T. Schlechte, C. Schulz, E. Swarat, and S. Weider. Duty

rostering in public transport-facing preferences, fairness, and fatigue. In CASPT, 2015.

R. Borndörfer, C. Schulz, S. Seidl, and S. Weider. Integration of duty scheduling and

rostering to increase driver satisfaction. Public Transport, 9(1):177–191, 2017.

T. Breugem, T. Dollevoet, and D. Huisman. Is equality always desirable? Analyzing the

trade-off between fairness and attractiveness in crew rostering. Econometric Institute

Research Papers, (EI2017-30), 2017. Under first revision at Management Science.

A. Caprara, M. Fischetti, P. Toth, D. Vigo, and P. L. Guida. Algorithms for railway crew

management. Mathematical Programming, 79(1-3):125–141, 1997.

A. Caprara, L. Kroon, M. Monaci, M. Peeters, and P. Toth. Passenger railway opti-

mization. Handbooks in Operations Research and Management Science, 14:129–187,

2007.

G. Desaulniers, J. Desrosiers, and M. M. Solomon. Column Generation, volume 5.

Springer Science & Business Media, 2006.

J. Desrosiers and M. E. Lübbecke. Branch-price-and-cut algorithms. Wiley Encyclopedia

of Operations Research and Management Science, 2011.

I. Dumitrescu and N. Boland. Improved preprocessing, labeling and scaling algorithms

for the weight-constrained shortest path problem. Networks, 42(3):135–153, 2003.

R. Freling, R. M. Lentink, and A. P. M. Wagelmans. A decision support system for

crew planning in passenger transportation using a flexible branch-and-price algorithm.

Annals of Operations Research, 127(1-4):203–222, 2004.

M. Grötschel, R. Borndörfer, and A. Löbel. Duty scheduling in public transit. In

Mathematics-Key Technology for the Future, pages 653–674. Springer, 2003.

A. Hartog, D. Huisman, E. Abbink, and L. Kroon. Decision support for crew rostering

at NS. Public Transport, 1(2):121–133, 2009.

D. Huisman, L. G. Kroon, R. M. Lentink, and M. J. C. M. Vromans. Operations research

in passenger railway transportation. Statistica Neerlandica, 59(4):467–497, 2005.

S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In Column

Generation, pages 33–65. Springer, 2005.

26



N. Kohl and S. E. Karisch. Airline crew rostering: Problem types, modeling, and opti-

mization. Annals of Operations Research, 127(1-4):223–257, 2004.

M. Sodhi and S. Norris. A flexible, fast, and optimal modeling approach applied to crew

rostering at London Underground. Annals of Operations Research, 127(1-4):259–281,

2004.

J. Van den Bergh, J. Beliën, P. De Bruecker, E. Demeulemeester, and L. De Boeck.

Personnel scheduling: A literature review. European Journal of Operational Research,

226(3):367–385, 2013.

27


