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Chapter 1

Introduction

1.1 Magnetism in carbon materials

Carbon has a unique place among all elements. Its position in the middle of the
second period of the periodic table of elements allows different types of hybridization
of its 4 valence electrons during the formation of covalent bonds like sp (triple bonds),
sp2 (graphitic bond) and sp3 (diamond bond). This feature explains the variety of
its allotropes and compounds with other elements. Within all possible allotropes,
probably, graphene shown in Fig. 1.1 is the most interesting at the moment[1].

Graphene is a one atom thick two-dimensional allotrope of carbon where all atoms
are in sp2 hybridization. It has the honeycomb hexagonal lattice which can be rep-
resented as a Bravais lattice with a basis. The two atoms in the unit cell define two
interpenetrating lattices that make graphene a bipartite structure. This feature leads
to its unique structural and electronic properties and will play an important role in
our search for magnetic states.

All carbon nanostructures derived from graphene like nanoribbons, graphene with
grain boundaries and nanotubes inherit many of its properties and introduce new ones.
Beside graphene and its derivatives which have rather high order and symmetry we will
also consider the opposite situation where the order and symmetry are almost absent
i.e. amorphous carbon and carbon nanofoams.

While highly symmetric graphene is non magnetic, any feature that breaks its
symmetry may introduce magnetic properties. Disordered structures like amorphous
carbon, edges and defects where dangling bonds can be localized are the most promising
structures for the search of magnetic states, as observed experimentally [2, 3, 4, 5, 6, 7,
8, 9, 10]. The possibility of intrinsic long-range magnetic order in carbon is important
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A

Figure 1.1: 2D honeycomb hexagonal lattice of graphene made of two interpenetrating
lattices that make graphene a bipartite structure. Atoms belonging to each sublattice are
marked by black and gray balls respectively.

from both fundamental and applied scientific point of view since the properties of s−p
electron magnetic materials can be essentially different from those of conventional
d − f electron magnetic materials. Following general theoretical consideration [11],
the s − p electron magnetic materials may have much higher Curie temperature than
conventional magnetic semiconductors making them perspective candidates for new
magnetic materials.

1.2 Brief historical and experimental overview

Despite the fact that magnetic phenomena are known to humanity from the time
of Greek and Chinese civilizations and magnetism found its application in many things
like compass needles, the possibility of magnetic properties of non metallic, carbon
based, materials made of light elements was considered in 20-th century only.

The interest in graphite and in its defects under irradiation initiated during world
war II because of its importance in nuclear reactors. Since graphite was used to slow
down the high energy neutrons to thermal energies in the reactor’s active region, the
intense irradiation of graphite by neutrons and fissile products formed huge amount of
defects in the structure of graphite.

However, possibly because at that time the main priorities were related to the
development of nuclear weapons and nuclear energetics, the study of the magnetic
properties of graphite and carbon materials was not addressed for many years.

An interest in the magnetic properties of non metallic carbon based materials can
be found in works on organic magnets in the late 80’s [14, 15, 16]. However the
first results had low reproducibility. One of the first well reproducible experimental
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Figure 1.2: Two different compounds used as a starting material to produce organic
magnets in Ref. [12] (left: p-nitrophenyl nitronyl nitroxide) and in Ref. [13] (right: 1,2-
diaminopropane).

results related to manufacturing of organic magnets based on light elements only was
published in Ref. [12] in 1991 where p-nitrophenyl nitronyl nitroxide was used as a
starting material (see Fig. 1.2 Left). Also in Ref. [13] in 1992 organic magnets were
synthesed based on another compounds (see Fig. 1.2 Right). In this work, the starting
material (1,2-diaminopropane) with high ratio of hydrogen to carbon (H/C = 3.3) was
heated at 1225K and then pyrolized during 30 minutes. The obtained carbon product
was an air-stable material with amorphous-like structure that was readily attracted
to a permanent magnet at room temperature and was estimated to have an average
saturation magnetization of 0.022 µB per carbon atom.

Figure 1.3: Left panel: Magnetic moment measured at T>300 K as a function of the
magnetic field, for a HOPG graphite sample before (white point) and after (black points)
proton irradiation. Right panel: Top: Phase gradient pictures obtained at room temperature
from Magnetic Force Microscopy (MFM) at three surfaces of a sample corresponding to
increasing irradiation stages #1, #2, and #3; see sketch at the bottom left of the figure.
Bottom right: Topography and phase gradient line scans of the middle MFM picture obtained
at stage #2 showing that topography and magnetic signals are not correlated. From [3].
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A new page in the history of the magnetic properties of carbon based materials
was opened by the discovery of magnetic signals in the bulk phase of rhombohedral
C60 [17] and later in Refs. [2, 3, 4, 5, 10] in various carbon based materials that
were proven to be impurity free within the accuracy of the used techniques. For a
review, see [18]. The ferromagnetism in graphitic materials was shown to be closely
related to the lattice imperfections as demonstrated by induced magnetism in proton-
irradiated highly oriented pyrolytic graphite (HOPG) [3]. In Fig. 1.3 we report their
observations showing the appearance of magnetic moments (black points in Fig. 1.3
Left) after proton irradiation and magnetic domains with periodicity depending on the
irradiation dose (Fig. 1.3 #1, #2, #3). Beside graphite and polymerised fullerenes,
ferromagnetism has been observed in other carbon-based materials such as carbon
nanofoam [9], proton irradiated thin carbon films [6] and nitrogen and carbon ion
implanted nanodiamonds [7]. All these observations suggest an inherent ferromagnetic
behaviour of carbon-based materials. However, the question of the purity of the studied
samples from magnetic impurities remains the most critical up to this day. In the recent
work [19] it was clearly shown that materials studied in previous experiments, produced
by the same manufacturers with the same quality, have small amounts of ferromagnetic
impurities distributed as a few micron sized spots over the whole sample and buried
under the surface. The chemical decomposition of these spots corresponds to magnetic
elements like Fe, Ni, Co and other. At the same time, for impurity free samples only
diamagnetic behaviour was observed. The experimental observations are therefore not
yet conclusive.

1.3 Computational approach

Throughout this thesis we use the Density Functional Theory (DFT) [20, 21] pack-
age SIESTA [22, 23, 24] which implements a localized basis set based on Numerical
Atomic Orbitals (NAO) [25] within the Local Density Approximation with Ceperley-
Alder parametrization (LDA-CA) [26, 27] and Generalized Gradient Approximations
with Perdew-Burke-Ernzerhof exchange model (GGA-PBE) [28]. A detailed descrip-
tion of the Density Functional Theory can be found in [29, 30, 31]. In each chapter we
describe the particular implementation most suitable for the studied systems.

Here we briefly describe few aspects related to the selected computational technique.
Within LDA-DFT and GGA-DFT the original many-body problem of interacting elec-
trons in a static external potential is reduced to the problem of non-interacting elec-
trons in an effective potential which includes the external potential and the effects of
the Coulomb interactions between the electrons, namely the exchange and correlation
interactions. This is done by using the one-particle Kohn-Sham equation:
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[
−1

2
∇2 + Veff (r)

]
ψi(r) = εiψi(r) (1.1)

where the effective single-particle potential can be written as

Veff (r) = Vext(r) + VHartree[n] + Vxc[n] (1.2)

and n(r) is electronic charge density calculated as

n(r) =
N∑
i

|ψi(r)|2 (1.3)

where Vext is a static external potential and the second term VHartree denotes the so-
called Hartree term describing the electron-electron Coulomb repulsion. The exchange
correlation term Vxc, which includes all many-particle interactions, can be found by
means of Quantum Monte Carlo simulations for the homogeneous electron gas within
the LDA [26, 27]. For the GGA, effects of weak inhomogeneities are additionally taken
into account[28]. In general, GGA gives much more accurate results for cohesive energy,
equilibrium structure and related characteristics of molecules and crystals. Neither
LDA nor GGA, however, can take into account van der Waals interactions which are
crucially important to describe the interlayer binding in graphite. As a result, GGA
without van der Waals interaction cannot describe the stability of graphite [32] whereas,
by chance, due to error cancellation, LDA gives a relatively accurate interlayer distance
and binding energy in graphite. Therefore, it is now common practice to use the LDA
for calculation of multilayer graphitic systems (see e.g. [33] and references therein).

The next expansion of the eigenstates ψi(r) in terms of functions with known prop-
erties is used to solve equation (1.1):

ψi(r) =
∑
α

ciαfα(r) (1.4)

The set of functions fα(r) is also known as basis and is discussed in the next section.

1.4 Basis set techniques

There are a number of methods of expansion of the eigenvectors, that use different
basis functions. As it can be expected, each method has its own benefits and pitfalls.
There are three main families of methods depending on the basis sets: atomic sphere
methods, plane waves, localized basis sets. The basis functions can be defined either
analytically or numerically.

Moreover, there are the so-called all electrons and pseudo-potentials approaches.
The first one takes into account all electrons in the atoms while the second one re-
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places the core electrons by norm conserving pseudo-potentials and takes into account
explicitly only valence electrons.

The first family of methods, i.e. atomic spheres methods which are usually used
in all electrons metheods are the most general for precise solutions of the Kohn-Sham
equation (1.1). The atomic spheres methods are rather accurate within DFT, asymp-
totically complete and allow systematic convergence. At the same time such methods
have difficulties in the software implementation. They are very expensive from the com-
putational point of view of used resources and cpu time. Beside technical issues, atomic
spheres methods give high absolute values of the total energies, so if the differences in
relevant energies are small, the calculation must be very well converged.

The next family of methods, i.e. plane wave methods, are widely used among physi-
cists because they are conceptually simple, asymptotically complete, allow systematic
convergence and are easy to implement using Fast Fourier Transforms. However the
disadvantage of plane wave methods is the representation of localized, atomic wave
functions. Tenth of thousands of plane waves per atom or even more depending on
the system are required to achieve good accuracy, making the method computationally
expensive. Such methods are not suitable for so-called order-N methods, that have
linear dependence of computational resources, like memory and cpu time, on the size
of the system. In fact, order-N methods are based on locality while the used plane
waves are extended over the whole system.

The last family of methods is the localized basis sets that may be based on different
types of localized functions such as atomic orbitals:

ψIlmn(r) = RIln(|rI |)Ylm(
rI
|rI |

), (1.5)

where RIln is the radial part of the orbital labelled by the index n, l and m define
the angular momentum and Ylm are spherical harmonics, rI = r − QI with QI the
coordinate of the I-th atom,

The orbital index n gives the possibility of having more than one orbital with the
same l and m and therefore the same angular dependence, which is conventionally
called a multiple-ζ basis assembled from individual basis functions known as first-ζ,
second-ζ, etc.

In the SIESTA package, the radial part of equation (1.5) is represented numerically
(numerical atomic orbitals), i.e. it does not have a general analytical form. For a single
function, i.e. first-ζ, Rl is found by solving the equation of an isolated pseudoatom[

− 1

2r

d2

dr2
r +

l(l + 1)

2r2
+ V ps

l (r) + V conf
l (r)

]
Rl(r) = εlRl(r) (1.6)

where V ps
l is the same pseudopotential for orbital l that will be used for the system

of interest and V conf
l is an infinite square well potential of width Rc where Rc is a

suitable cut-off. This equation is solved numerically in a logarithmic grid using the
Numerov method [34]. The approach described above allows to generate the first-ζ
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basis function for each l. A set of single-ζ basis functions forms a so called minimal
basis set, which is abbreviated in the SIESTA package as SZ (single-ζ).

The second-ζ basis function ψ2ζ
l (r) have the same tail as the first-ζ but change to

a simple polynomial behaviour inside the ”split radius” rsl :

ψ2ζ
l (r) =

{
rl(al − blr2) if r < rsl ,

ψ1ζ
l (r) if r ≥ rsl .

(1.7)

where al and bl are determined by imposing continuity of the orbital and its first
derivative at rsl . In Fig.1.4(a),(c) we show the first and second ζ basis functions for the
2s and 2p orbitals of Oxygen [35]. In practice, instead of ψ2ζ it is more convenient to
use the function ψ1ζ − ψ2ζ , which is zero beyond rsl as shown in Fig.1.4(b),(d).

Figure 1.4: First (thin line) and second (thick line) ζ basis functions for the 2s (a) and 2p
(c) orbitals of an Oxygen pseudoatom. Here rsl is indicated as RDZ . In panels (b) and (d) the
second ζ basis function is replaced by the normalized linear combination ψ1ζ − ψ2ζ . (From
[35])

The basis set based on the first-ζ and second-ζ basis functions is called in the
SIESTA package as double-ζ and abbreviated as DZ.

To achieve well converged results, in addition to the atomic valence orbitals, it
is usually necessary to include also polarization orbitals. The polarization orbitals
ψl+1(r) are obtained from previous-ζ ψl(r) by applying a small electric field E and
using first-order perturbation theory. The basis set based on the first-ζ, second-ζ
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and polarization basis functions is called in the SIESTA package as double-ζ plus
polarization and abbreviated as DZP.

In general, methods based on localized basis sets are rather efficient in implementa-
tion, relatively cheap from a computational point of view, since their locality is suitable
for order-N methods. Moreover they have a direct physical interpretation as atomic
wave functions. However, the typical localized basis sets methods have difficulties in
systematic convergence of wave functions that require a preliminary validation of the
parameters controlling the convergence procedure. Usually the basis set have to be
prepared and tested for different systems before calculations. Such tests are available
to the community of SIESTA users. As it was said in the beginning of this section we
use an implementation of localized basis set based on atomic orbitals because, besides
the advantages listed before, the method is conceptually suitable to describe defects
and finite systems. This is a balanced solution from the point of view of computational
resources like time and memory and accuracy of calculations, that allows us to use this
technique to perform massive numerical study of magnetic properties in disordered
carbon structures based on rather expensive generate and test approaches.

1.5 Spin polarized calculations

In the case of spin polarized calculation with collinear spins, the Kohn-Sham equa-
tion (1.1) can be rewritten in terms of spin up and spin down orbitals ψ+

i (r) and ψ−
i (r)

as [
−1

2
∇2 + V ±

eff (r)

]
ψ±
i (r) = ε±i ψ

±
i (r) (1.8)

which introduces two sets of values for n(r) and Veff (r), one for spin up and another
for spin down. Thus, the calculations can be repeated twice in an almost independent
way separately for each spin component, because only the term Vxc(r) in Veff depends
simultaneously on the two spin components.

The values

n+(r) =
N∑
i

|ψ+
i (r)|2 and n−(r) =

N∑
i

|ψ−
i (r)|2 (1.9)

represent electronic charges for spin up and spin down orbitals respectively and

m(r) = n+(r)− n−(r) (1.10)

represents the 3D spin density or magnetisation.
At the same time, by means of the decomposition of the eigenstates ψi(r) over the

atomic basis functions implemented in the SIESTA package, it is possible to express
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the spin polarization si (also called atomic magnetisation) separately for each atom
with index i in terms of the atomic charges q+i ≡ qupi and q−i ≡ qdowni as

si = q+i − q−i (1.11)

We note that the use of a localized basis gives the possibility to extract the atomic
spin polarizations si based on the values q+i and q−i which can be taken directly from
the SIESTA output. While the file with n±(r) usually has a size of few megabytes, the
data related to q±i is just a table of size equal to the number of atoms in the system.
For example in Figs. 3.9, 3.10, 3.11 the visualisation of atomic magnetisation is done
by means of the q±i taken directly from the SIESTA package output.

In case of spin polarized calculations, the values n+(r), n−(r), q+i , q−i can be found
in the SIESTA output. Since n±(r) are saved as 3D arrays of values on a grid in real
space, we can convert such data to the file format directly suitable for visualisation
using the VESTA program [36]. The visualisation of 3D data is given as iso-surface
plots, where the predefined value c:

min
r
m(r) < c < max

r
m(r) (1.12)

is used to produce the surface of constant magnetisation, i.e. the solution of equa-
tion

m(r) = c (1.13)

Examples of visualisations made by means of the VESTA program according to the
above described procedure can be found in Figs. 3.9, 3.10, 4.1, 5.2, 5.6, 5.9, 5.10, 5.11,
5.12.

1.6 Burgers vector and Frank equation of large an-

gle grain boundaries

In 1926, Frenkel estimated the theoretical yield stress of a crystal as about 10% of
the Young’s modulus [37], a value which is 3 order of magnitude larger than observed
experimentally. Several years later, in 1934 Orovan [38], Tailor [39] and Polanyi [40]
realized that Frenkel estimate for ideal crystals was not representative since the real
carriers of large deformations in solids are linear topological defects, called dislocations.
As shown later by Peierls [41] and Nabarro [42] this result solved the contradiction
discovered by Frenkel.

The simplest example of dislocation in a crystalline lattice is a defect made by
insertion of a half of atomic plane. Such defect, known as edge dislocation, is shown in
Fig. 1.5a, where the glide plane is indicated by a dashed line.
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Figure 1.5: (a) Edge dislocation in a simple cubic lattice with Burgers circuits and (b) a
perfect reference crystal. The glide plane is shown by a dashed line in (a). Adapted from
[43] page 22.

To describe the dislocation as a topological defect, Burgers introduced an important
quantity now known as Burgers vector. Following Frank [44] we define the Burgers
vector as described below.

First we form a closed, clockwise Burgers circuit S-1-2-3-F, contour around the
dislocation line and far enough from it (Fig. 1.5a). Then, we draw the same circuit in
the perfect reference lattice, as shown in Fig. 1.5b. The vector required to close the
lattice circuit, drawn from finish F to start S in Fig. 1.5b, is the Burgers vector b of
the dislocation. The symbol adopted to represent a general dislocation is ⊥.

Figure 1.6: (a) Tilt grain boundary (a) between two grains A and B misoriented with tilt
angle θ, defined by rotation vector ω which belongs to the plane of the grain boundary. (b)
Twist grain boundary where the rotation vector ω is normal to the boundary plane. Adapted
from [43] page 704.

Dislocations are topological defects related to long-range translational order. There
is also another type of linear topological defects, i.e. topological defects related to long

12



1.6 Burgers vector and Frank equation of large angle grain boundaries

range orientational order known as disclinations. The angular deficit and rotation of the
defect can be represented by the Frank vector. For instance, in the honeycomb lattice,
elementary disclinations are created by pentagons or heptagons. For a pentagon, the
angle deficit is 360◦/5-60◦ = 12◦ and the direction of the Frank vector is orthogonal
to the plane of honeycomb lattice. Free disclinations never occur in bulk materials
since they have energy quickly increasing with sample size. Nevertheless, they can be
considered as building blocks for the construction of other defects. For example, a
dislocation can be represented as a disclination dipole, namely a pair of disclinations
with equal and opposite Frank vectors and distance R (dipole arm) from each other.
For example an edge dislocation in the honeycomb lattice can be constructed from a
pentagon-heptagon pair, as shown in Fig. 1.7.

Figure 1.7: 57-dislocation represented as a disclination dipole made of two 5- and 7-fold
rings, see text, where ω is the Frank vector. The vector R represents the dipole arm and the
Burgers vector b = ω ×R. Adapted from [45].

Dislocations are important not only to understand the mechanical properties of
solids but also their crystalline structure. X-ray diffraction shows that most real crys-
tals have multigrain structure. The interface where two single crystals A and B of
different orientations (see Fig. 1.6) join each other is called grain boundary.

If grain B can be brought into the same orientation as grain A by a rotation ω,
then the vector ω defines the rotation axis and the misorientaion or tilt angle θ. The
vector ω is nothing but the Frank vector for the grain boundary. If ω lies in the plane
of the grain boundary, the grain boundary is called a pure tilt grain boundary (Fig
1.6a), while if ω is perpendicular to the grain boundary plane, it is a pure twist grain
boundary (Fig 1.6b). In general, a grain boundary has a mixed character, containing
both tilt and twist components.

To get basic geometric relations for grain boundaries, let us consider a simple cubic
crystal with the grain boundary in a symmetrical positions with respect to the (100)
planes of the two grains and with rotation axis parallel to [001]. Then the simplest grain
boundary with low energy is a tilt grain boundary composed as an array of elementary
edge dislocations with Burgers vector b, tilt angle θ and separation D. (see Fig 1.8a).
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Figure 1.8: Symmetric (100) tilt grain boundary with misorientation angle θ in a simple
cubic crystal composed as an array of elementary edge dislocations. Only the extra atomic
planes are shown (a) with mean separation between dislocations D and corresponding geo-
metrical scheme (b) where h is an arbitrary large enough segment of grain boundary. Adapted
from [43] pages 704-705.

Figure 1.9: Large angle grain boundary with misorientation angle θ = 36.9◦ in simple cubic
crystal (a). For this specific tilt angle, few atoms from both grains occupy positions which
are common for both grains (b). Such atoms are shown by white balls in the right grain. As
a result, such grain boundaries are called special grain boundary which can be described by
Coincidence Site Lattice (CSL) [46] as opposed to all other grain boundaries called general
grain boundaries (Adapted from [47] section 3.3.4).

From Fig. 1.8b the number np of half planes introduced when we described the
dislocation (see Fig. 1.5a) is

np =
AB +BC

b
(1.14)

Since

AB = BC = h sin(θ/2) (1.15)
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where h is an arbitrary large enough segment of grain boundary, then

np =
2h

b
sin(θ/2) (1.16)

and the mean separation between dislocations in the grain boundary is

D =
h

np
=

b

2 sin(θ/2)
(1.17)

If the misorientation angle between neighbouring grains is rather small (5-10◦),
then such grain boundaries are called low angle grain boundaries. In this case equation
(1.17) can be simplified as

D ≈ b

θ
(1.18)

If the misorientation angle is greater than 10◦, then such grain boundaries are called
large angle grain boundaries (see Fig. 1.9).

The equation (1.17) rewritten in the form

b = 2D sin(θ/2) (1.19)

constitutes the particular case of Frank’s equation (see [43] page 707-708) which
we use in our work related to the study of grain boundaries with dangling bonds in
chapter 3.
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Chapter 2

Mechanism and free-energy barrier of the
type-57 reconstruction of the zigzag edge of

graphene

Recent ab initio calculations without spin [P. Koskinen et al., Phys. Rev. Lett. 101,
115502 (2008)] predict that the zigzag edges of graphene should be reconstructed, albeit
with an energy barrier to be overcome. After verifying that spin-polarized calculations
give qualitatively the same result, we study the mechanism and the free-energy of the
reconstruction of the zigzag edges from a periodic hexagon structure (zz) to an alternate
pentagon-heptagon structure [zz(57)] using the empirical LCBOPII-potential. The
zz(57) edges are stabilized by an almost triple bond similar to those of the armchair
edges and we propose a way to account for this quantum mechanical effect in the
empirical long-range carbon bond order potential II (LCBOPII). Aside from that, the
reconstructed edge is flat as a result of tensile edge stress. The reconstruction occurs
spontaneously in molecular dynamics simulations at high temperature, leading to the
identification of a reaction coordinate for the reconstruction that allows us to calculate
the free-energy barrier by using Monte Carlo simulations and umbrella sampling. At
room temperature we find a free-energy barrier of 0.83 eV for the first transformations
of two hexagons to a pentagon-heptagon pair that is higher than the one for a fully
reconstructed edge and increasing with temperature.

The body of this chapter has been published as
“Mechanism and free-energy barrier of the type-57 reconstruction of the zigzag edge of graphene“,
J. M. H. Kroes, M. A. Akhukov, J. H. Los, N. Pineau, A. Fasolino,
Phys. Rev. B 83, 165411 (2011)
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graphene

2.1 Introduction

The macroscopic properties of any material depend strongly upon the microscopic
structure. In graphene nanoribbons (GNRs) [48] (small stripes of graphene [1]), the
edges play an important role because of the relatively large fraction of atoms situated
at, or near, the edge. The band structure of GNRs differs substantially from that of
bulk graphene, and, depending on width [49, 50] and edge type (zigzag or armchair), it
can be either metallic or semiconducting [51, 48, 52], the latter with great potential for
applications in electronics [53, 54]. The zigzag termination is the most-studied edge
in theoretical studies of transport in GNRs because it allows a simple definition of
boundary conditions, decoupling the two sublattices of the hexagonal crystal [55]. In
these calculations, it is assumed that the atoms at the edges are saturated by hydrogen
so that the band structure can be studied only in terms of the π band, neglecting the
lower σ bands.

However, the situation might be more complicated than this. In fact, recent ab
initio calculations by Koskinen et al. [56], based on the Density Functional Theory
(DFT), have found that the reconstruction of the zigzag edge (zz) to a structure with
alternating pentagons and heptagons, hereafter called zz(57), leads to a lower edge
energy and to a self-passivating edge that would not bind hydrogen atoms and may
be identifiable trough coherent electron focusing experiments [57]. Aside from that,
the authors predict the zz(57) structure to have an edge energy also slightly lower
than that of the armchair (ac) edge (see Fig. 2.1 for an illustration of these edge
structures). While the theoretical stability of this zz(57) edge is still a topic of debate,
primarily due to the influence of hydrogen pressure in realistic systems [58, 59, 60],
several recent transmission electron microscopy experiments [61, 62, 63] have reported
the experimental observation of a partially reconstructed zz edge. Furthermore, the
semiconducting nature of this edge state may be a possible explanation as to why
experimentally fabricated GNRs are predominantly semiconducting [64]. Since it has
been shown theoretically that the zz edges are magnetic [51, 53], as a first step, we
have verified using DFT [20, 21], as implemented in the SIESTA code [22], that the
zz(57) edge is favoured over zz and ac edges also when spin polarization is taken into
account.

In this chapter, we study the path and free-energy barriers for the zz to zz(57) edge
reconstruction by means of Monte Carlo (MC) and Molecular Dynamics (MD) simu-
lations based on the empirical long-range carbon bond order potential II (LCBOPII)
[65]. The computational efficiency of this potential allows us to study not only the
T = 0 K equilibrium structure of a fully reconstructed edge, but also to follow, for
large samples and finite temperature, the path of reconstruction and to calculate the
free-energy barrier for it. We find that the free-energy barrier for the reconstruction
of a whole edge displays an unusual nonmonotonic trend, increasing up to about 700
K and slowly decreasing at higher temperatures. At room temperature, we find an
energy barrier of 0.7 eV, in good agreement with the value of 0.6 eV found with DFT
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2.2 T = 0 K structure and energetics

at T = 0 K [56]. However, we find that the first step of the reconstruction, namely, the
transformation of a single pair of hexagons into a pentagon-heptagon pair, has a higher
free-energy barrier of 0.83 eV at room temperature, increasing to ∼ 1 eV above 500 K;
therefore, it is this barrier that determines the escape rate. The reconstruction of this
edge will most likely happen in a sequence of transformations since successive trans-
formations next to already existing pentagon-heptagon pairs are significantly easier, as
we will show.

To be able to describe correctly the edge reconstruction, we have slightly modified
the bond order potential LCBOPII. According to DFT calculations [56], the zz(57)
and ac edges have a strong, almost triple, bond at the edges that stabilizes these two
structures with respect to the zz that has graphitic bonds. The strong character of this
bond is not predicted by the original version of the LCBOPII potential [65]. In fact,
the conjugation term in the potential assumes that the electrons available for π bond
formation are equally shared among the bonds with undercoordinated neighbours. As
a consequence, the edge bond (marked by a thick red line in Fig. 2.1) is assigned as
a double bond, in disagreement with the DFT result [56]. It is, however, possible to
modify the LCBOPII conjugation term in such a way that it gives the proper bond
character without loss of computational efficiency. This is explained in detail in the
Appendix.

The chapter is organized as follows. In Sec. 2.2, we show the structure and energet-
ics at T = 0 K in comparison to the DFT results of Ref. [56] and to our own ab initio
calculations done with the SIESTA package [22], the latter with and without taking
into account spin polarization. In Sec. 2.3, we derive a reaction coordinate for the
transition from zz to zz(57) based on the results of MD simulations. In Sec. 2.4, we
determine the free-energy barrier of the transformation of a full edge and of successive
transformations of single pairs of hexagons to heptagon-pentagon pairs as a function
of temperature. Sec. 2.5 contains the summary and conclusions.

2.2 T = 0 K structure and energetics

In Fig. 2.1, we show the zz, zz(57), and ac edge terminations. Ab initio DFT
calculations [56] predict that the most stable edge of graphene is the zz(57), which
can be considered as a reconstruction of the (metastable) zz edge. The zz(57) is also
slightly favoured over the ac edge.

Before addressing temperature-dependent properties, we have to verify that the
empirical potential LCBOPII gives the correct behaviour of graphene edges at T = 0
K. The crucial feature is the armrest bond of zz(57), where, according to the DFT
calculations of Ref. [56], the bond length decreases to 1.24 Å, a length slightly longer
but comparable to that of a triple bond, which is 1.20 Å. This fact makes the bond
self-passivating because there are no more dangling bonds, as is the case for the zz
edge. This feature is not reproduced by the original version of LCBOPII [65] and,
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Figure 2.1: Top and lateral view of the equilibrium structure of (from top to bottom)
ac, zz and zz(57) edges obtained with the improved LCBOPII potential used in this work
with values of interatomic distances at the edge. For comparison, the DFT values [56] are
given in round parentheses and those given by the original LCBOPII[65] are given in square
parentheses.

therefore, we have devised a simple modification described in the Appendix that allows
us to capture this feature correctly. It should be noted that the situation at the zz(57)
and ac edges, with a bond between two twofold-coordinated atoms, is not common.
The modification used here and described in the Appendix changes only this situation,
while keeping the description of all other bonding configurations equal, and, therefore,
does not affect the zz-edge.

Following Koskinen et al. [56], we define the edge energy as

εedge =
E −Nεbulk

2L
(2.1)

where N is the number of carbon atoms, E is the total energy of the sample, εbulk is
the bulk energy per particle, L is the length of the edge and the factor 2 accounts for
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2.2 T = 0 K structure and energetics

the two edges of the sample. The energy difference between the zz and zz(57) is

∆ε = (εzzedge − ε
zz(57)
edge ) (2.2)

For a detailed comparison between the results of LCBOPII with those obtained by
DFT, we have performed DFT calculations of the edge energy and equilibrium structure
by means of the package SIESTA [22], that implements DFT on a localized basis
set. We used the generalized gradient approximation with Perdew-Burke-Ernzerhof
parametrization (GGA-PBE) [28] and did the calculations with and without taking
into account spin polarization (SP), hereafter indicated as SP-SIESTA and SIESTA. A
standard built-in double-ζ polarized (DZP) [25] basis set was used for all calculations.
The cutoff radii of the atomic orbitals were obtained from an energy shift equal to 1.0
mRy. The real-space grid is equivalent to a plane-wave cutoff energy of 360 Ry. For all
nonperiodical directions, an extra space larger than 15 Å was added to avoid spurious
interactions. We used 50 k points for sampling the Brillouin zone. The geometry
was relaxed using the conjugate gradient method until all forces were smaller than
0.02 eV/Å. In agreement with Ref.[56], we find that, for samples with a periodically
repeated minimal unit cell in the x direction, the edge energy becomes constant for
ribbon widths & 50 Å.

Next, we calculate the edge energy by MC simulations with LCBOPII for a sample
50 Å wide, for which the edge energy is converged in the DFT calculations. In the x
direction, we take a periodically repeated cell of length Lx = 114 Å. We equilibrate the
samples by performing MC simulations while lowering the temperature in steps from
100 K to 0.1 K.

In Table 2.1, we compare the edge energies obtained by the different methods. Our
DFT calculations with SIESTA give a value ∆ε = 0.33 eV/Å very close to the DFT
value ∆ε = 0.35 eV/Å of Ref. [56]. Including spin polarization in SIESTA gives the
same qualitative result, favouring zz(57), although with a significantly smaller energy
gain ∆ε = 0.13 eV/Å.

In the original LCBOPII-potential [65], ∆ε = −0.02 eV/Å (favouring the zz-state).
The modified potential (see Appendix) gives ∆ε = 0.24 eV/Å in qualitative agreement
with the DFT results and in-between the values with and without SP.

In Fig. 2.1, we show the top and side views of the equilibrium edge structures and
bond lengths found by DFT [56] and by the original and modified LCBOPII. Note that
the LCBOPII calculations allow out-of-plain relaxation that is neither included in Ref.
[56] nor in our own DFT results due to the choice of a minimal cell in the periodic
x direction. The modified LCBOPII gives a bond length of the armrest of the zz(57)
and ac edges of 1.28 Å, which is close to the 1.24 Å found by DFT. Furthermore, we
note that the zz and ac edges are undulated in the out-of-plane direction, whereas the
reconstructed zz(57) is completely flat. One possible reason is that the atoms at the
edge favor a slightly different periodicity than the bulk one. Since the bulk size is fixed
for wide enough samples, this will result in an edge stress. From Fig. 2.2, we can see
that the equilibrium length of the unit cell in the periodic x direction of GNRs with
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zz(57) edges calculated by SIESTA is slightly smaller than the bulk value, whereas for
zz and ac, it is larger than the bulk value. As a consequence, zz(57) edges are subjected
to tensile stress, while zz and ac are subjected to compressive stress that leads to out-of-
plane distortion at the edges. The side views shown in Fig. 2.1 calculated by LCBOPII
display exactly this behaviour. These features match the description of the edge elastic
properties described in Ref. [66].
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Figure 2.2: Equilibrium length in the periodic x direction of the unit cell divided by the
bulk value as a function of the width of the sample for ac, zz and zz(57) edges found using
SIESTA. The zz and ac cells are larger than the bulk value (straight line) causing edge stress
that would result in (out-of-plane) buckling of the edge. The zz(57) cell is smaller than the
bulk and subjected to tensile stress favouring a flat geometry.

2.3 Transition mechanism

Next, we employed MD[67] to examine the transition of the graphene edge from
zz to zz(57). The MD simulation gives an insight into the dynamics of the transition.
The simulation was done in the microcanonical (NVE) ensemble with time steps of
0.5 fs. The sample shown in the top panel of Fig. 2.3 is finite in all directions (no
periodic boundary conditions). The temperature was equilibrated to approximately
1500 K, where the transition was found to take place within timescales of the order of
picoseconds.
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2.3 Transition mechanism

Modified
LCBOPII LCBOPII SIESTA SP-SIESTA DFT [56]

zz 1.05 1.05 1.34 1.15 1.31
ac 1.04 0.75 1.02 1.02 0.98
zz(57) 1.06 0.81 0.98 0.98 0.96

Table 2.1: Edge energy εedge in eV/Å obtained by (from left to right) the original
LCBOPII [65], LCBOPII with the modification described in the Appendix, the DFT package
SIESTA[22] without and with spin-polarization, and by DFT in Ref. [56] without spin-
polarization. Note that the modified LCBOPII stabilizes also the ac edge that becomes
slightly more favourable than the zz(57), at variance with the DFT results.

In Fig. 2.3, we show three snapshots during the transition of two hexagons at the
zz edge to one pentagon-heptagon pair at the reconstructed edge. We see that, as the
transition evolves, the distances rAB and rAC approximately interchange values, so that
the nearest neighbours A and B become next nearest neighbors and the opposite for
A and C. Based on this finding, we define a reaction coordinate d, as

d =
rAB − r57
rzz − r57

, (2.3)

where rzz = 2.42 Å and r57 = 1.47 Å are the equilibrium values at T = 0 K of rAB
for zz and zz(57), respectively. The identification of a reaction coordinate allows us to
evaluate the free-energy barrier as described in details in Sec. 2.4.

For reference, we first compared the (free-) energy barrier at T = 0 K according to
LCBOPII with that according to SIESTA and SP-SIESTA for a reaction path obtained
by linear interpolation (in 129 steps) of all atomic positions from the zz to the zz(57)
configuration for a sample 16 Å wide containing 32 atoms. The minimal energy
configurations of the used initial zz-terminated and final zz(57)-terminated states were
obtained with SIESTA. The energy barrier shown in Fig. 2.4, that does not include
any further relaxation, represents an upper bound to the actual energy barrier. As a
matter of fact, these values are about a factor 5 larger than those found with relaxation,
as shown in Section 2.4, and are only meant to compare LCBOPII to SIESTA for a
given fixed reaction path. The kink in the SP-SIESTA curve at d ' 0.285 marks the
crossing of the energy curves from the non-SP and SP calculations, the one with the
lowest energy being drawn here. The energy barrier according to LCBOPII is similar
to that of SIESTA and SP-SIESTA, but LCBOPII gives a lower edge energy for both
the zz and the zz(57). This fact can be partially explained by the too high cohesive
energies of the DFT methods. For example, SIESTA gives 7.90 eV for bulk graphene,
against the experimental value of 7.35 eV given by LCBOPII.
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Figure 2.3: Top panel: Sample with one spontaneously reconstructed zz(57) cell. Middle
panel: The first transition (at time t = t0) is displayed in detail for different time frames,
going from zz (upper left corner) to zz(57). This simulation was done at ∼ 1500 K, in the
NVE ensemble. Bottom panel: Successive transitions are shown where blue (right-oriented
oval) and red represent the mirrored symmetric transitions.

2.4 Free-energy barrier

In this section, we study the free-energy barrier for the zz to zz(57) transition, which
requires us to study unit cells with two hexagons that transform into one pentagon-
heptagon pair. Therefore, from now on, all energies are given per unit cell (4.94 Å)
rather than in eV/Å as done previously.

The energy barrier between zz and zz(57) states, ∼ 0.6 eV per edge unit cell ac-
cording to Ref. [56], is extremely difficult to overcome by thermal fluctuations at low
temperatures (below approximately 1500 K) within computationally accessible time
scales. An established technique to study this type of rare events computationally is
the so called umbrella sampling method (see, e.g., [68], p. 168). The method is illus-
trated in Fig. 2.5. We first divide the reaction coordinate interval [0, 1] into n equal
parts (called windows) labelled by i ∈ {1, 2, . . . , n}, where n is chosen such that the
maximum energy change in one window is of the order of the thermal energy. We then
perform n distinct MC simulations, where the modified LCBOPII potential ULCBOPII
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Figure 2.4: Top: Comparison between SIESTA (dotted blue line), SP-SIESTA (dashed
black line) and the modified LCBOPII (solid red line) for the energy barrier from the zz-state
(d = 0) to the zz(57) state (d = 1) of a sample 16 Å wide. The intermediate configurations
are calculated by linearly interpolating the coordinates of the initial zz and final zz(57) state
equilibrated in SP-SIESTA in 129 steps. This gives an upper bound to the energy barrier of
0.58 eV/Å (0.52 eV/Å) for SP-SIESTA (LCBOPII). Bottom: Difference ∆E between the
energy barrier calculated by SP-SIESTA and the one calculated by the modified LCBOPII.

is replaced by

U =

{
ULCBOPII if d in window i
∞ else

(2.4)

so that all MC moves outside the i-th umbrella window will be rejected. Second,
by further dividing each windows in m subintervals (bins), we calculate the binned
probability density Pi,j for bin j in window i, where j ∈ {0, 1, . . . ,m} (typically m =
10). Next, we can calculate the free-energy up to an additive constant within each
window for each bin as Fi,j = −kBT log(Pi,j), where kB is the Boltzmann constant.
By assuming that the free-energy is continuous along the reaction path, the first (n-1)
additive constants can be found by linear extrapolation of the last two binned points
to match the first point in the next window. The last additive constant is chosen to
set the free-energy of zz to zero.

In Fig. 2.6(a), we show the temperature dependence of the free-energy along the
transition path for a sample with two fully reconstructed edges. We find that the free-
energy barrier Fb = Fmax − Fzz is nonmonotonic, growing to 700K and decreasing at
higher temperature, as shown Fig. 2.6(b). The energy barrier at T = 0 K, estimated
by extrapolation, is approximately equal to 0.7 eV per edge unit cell, close to the value
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Figure 2.5: Four stages of umbrella sampling. From left to right, top to bottom: first
1000 sampling points for several windows 0.025 wide; probability Pi,j ; relative free-energy,
Fi,j = −kT log(Pi,j); free-energy shifted by assuming continuity. Different colours are used
to separate the windows.

0.6 eV obtained with the nudged elastic band method in Ref. [56]. It is interesting
to compare this behaviour with that found for the initial step of the reconstruction,
namely the transformation of a single pair of hexagons into a pentagon-heptagon pair.
The comparison to the one calculated for fully reconstructed edges in Fig. 2.6(b) shows
that the free-energy barrier for the first transformation is definitely higher than that for
a full reconstruction, it grows more rapidly with temperature, and does not decrease
up to 1000 K. This is almost the highest temperature we can study because, above the
temperature where the transition occurs spontaneously, the umbrella sampling of single
transformations can not be performed because transitions will occur spontaneously at
other places.

Next we calculate the free-energy barrier for successive transformations of hexagon
pairs. Our sample consists of 16 zz edge unit cells (8 pairs of hexagons) in the periodic
x direction. To name different single transitions, we use an 8-digit code consisting of
the numbers 0 (two hexagons), 1 (pentagon-heptagon pair) and 2 (transition from 0
to 1). The free-energy barrier of the successive transitions at T = 300 K are shown
in Fig. 2.7 (the same simulation was performed at T = 1000 K). This shows that the
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Figure 2.6: a) Free-energy per edge unit cell for different temperatures as a function of the
reaction coordinate for the reconstructions of a whole edge. b) Comparison of the temperature
dependence of the free-energy barrier for the reconstruction of a whole edge (*, blue) with
the free-energy barrier for the transformation of a single unit cell (+, red).

free-energy barrier to create the first step of the reconstruction (20000000) is the most
difficult [Fb ≈ 0.83 (0.98) eV at 300 (1000) K]. All following transitions (12000000,
11200000, . . . ) are progressively easier [Fb ≈ 0.71− 0.59 (0.79− 0.69) eV] and the last
reconstruction (11111112) is the easiest [Fb ≈ 0.47 (0.57) eV].

Based on these result we can now calculate a typical transition time for the first
reconstruction (20000000).

2.4.1 Transition time

For a single transition, we can use transition state theory [69] to find a typical
escape time τe for the system to go from one locally stable state (A) to another (B).
In our case, the states represent, respectively, a zz sample (00000000) and the same
sample with one heptagon-pentagon pair (10000000). The typical decay time from an
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Figure 2.7: Free-energy per edge unit cell for successive transitions of a single pair of
hexagons to a pentagon-heptagon pair as a function of the reaction coordinate. 0 means two
zigzag cells at the edge, 1 means a (reconstructed) zz(57) cell, and 2 means the transition
from zz to zz(57). The zero-energy point is chosen for convenience at the zz-state.

energy minimum is given by

τs ∼M1/2

[
d2U

dr2

]−1/2

r=ra

,

where ra is the equilibrium position of the system in state A and M is the mass of
the particle escaping from the potential well that we take as the mass of a carbon
atom. Fitting the free-energy near the minimum at zz gives τs ≈ 3.4 · 10−14 s. Then,
an estimate of the timescale in which the system goes from A to B, the escape time,
is given by τe ∼ τs exp(Fb/Enoise). We assume that Enoise can be approximated by the
thermal energy Enoise = kBT . At room temperature, with Fb = 0.83 eV, this gives a
typical escape time of τe ≈ 9 s decreasing to ≈ 2 ps at T = 1000 K where Fb ≈ 1 eV.
This will result in blurred images in electron microscopy because the edge can switch
between the two states very fast, while, at low temperatures, the zz can be a stable
edge. At 1500 K, it can easily be observed in computer simulations and τe qualitatively
matches the typical times between transitions as found in MD (see Fig. 2.3).

2.5 Conclusion

In summary, we have studied the edges of graphene nanoribbons using the LCBOPII
potential by MD and MC simulations. A correct description of the armchair and, of
the reconstructed zz(57) edge was achieved by a simple modification of the LCBOPII
potential described in the Appendix. We have compared the equilibrium structure at
T = 0 K with the results of ab initio calculations [56] and examined the role of out-of-
plane displacements. We have identified a reaction coordinate for the zz to zz(57) edge
reconstruction which allows us to calculate, by umbrella sampling MC, the free-energy
profile for the transformation. At room temperature, we find the energy barrier for the
reconstruction of a whole edge to be 0.7 eV per edge unit cell, in good agreement with
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the value of 0.6 eV found with DFT at T = 0 K. However, we find that the first step
of the reconstruction, namely, the transformation of a single pair of hexagons into a
pentagon-heptagon pair has a higher energy barrier of about 0.83 eV and, therefore, it
is this barrier that determines the escape rate. The escape time derived from this value
might justify the abundance of nonreconstructed zz edges experimentally observed at
room temperature.

2.6 Improved treatment of conjugation

The hereafter described modification of LCBOPII to improve the description of the
edge bonds of a graphene ribbon concerns the conjugation term F conj

ij , which represents

a contribution to the bond order. According to LCBOPII [65], F conj
ij depends linearly

on the number of valence electrons available for the bond ij supplied by the atoms
i and j. In the original version, the four valence electrons of an undercoordinated C
atom, i.e., an atom with less than four neighbours, are distributed according to the
following rule. One electron is supplied to each bond with a saturated neighbour and
the remaining electrons are equally shared among the bonds with the other neighbours.
According to this rule, the graphene ac and zz(57) edge bonds (see Fig. 2.8a), with
electron contributions of N el

ij = N el
ji = 2 from atoms i and j, will be assigned to be a

double bond with an equilibrium bond distance of 1.33 Å. In contrast, DFT calculations
predict an equilibrium bond distance of 1.24 Å, which corresponds to a bond strength
in between double and triple, about 1/3 of a double and 2/3 of a triple bond. At
the same time, according to the above LCBOPII rule, the contribution of N el

ik = 2
electrons from atom i to the bond ik is not balanced by the contribution of N el

ki = 4/3
electrons from the sp2 coordinated atom k, giving rise to a frustrated situation, which
is penalized with the so-called antibonding term Aij in LCBOPII. This unfavourable
situation can be resolved in a natural way by the alternative charge distribution shown
in Fig. 2.8b, in which the edge atom i (j) supplies a number of electrons equal to 8/3
= (1/3)×2 + (2/3)×3 to the edge bond ij, leaving 4/3 electrons of i (j) for the bond
ik (jl), in balance with the electron supply N el

ki (N el
lj ) of the other neighbour k (l)

To improve the electron partition rule of LCBOPII, one could think of minimizing
the following functional:

F ({N el
ij }) =

∑
<i,j>

(
N el
ij −N el

ji

)2
, (2.5)

the sum running over all neighbor pairs ij, under the constraints:

Vi =
∑
i

N el
ij = 4 (2.6)

for all atoms i in the systems, Vi = 4 being the (effective) number of valence electrons
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for carbon. It can be shown that, if one defines the electron charge on an atom i as:

Qel
i =

1

2

∑
i

(
N el
ij +N el

ji

)
(2.7)

the minimization of F is equivalent to minimizing the charge transfer, providing a
physical basis for our approach. However, minimizing F in Eq. (2.5) with the N
constraints (2.6) is a nonlocal problem, which amount to solving a coupled set of
γN/2−N linear equations, γ being the average coordination number. For efficient MC
or MD simulations, this is not desirable and we have to look for further approximations.
To obtain the desired electron partition for the edge of a graphene ribbon, as depicted
in Fig. 2.8(b), it appears to be sufficient to minimize only a part of the functional
F , involving just the local environment of the edge bond ij. In particular, for bonds
between two atoms with coordination 2, we minimize the functional:

F̃ =
(
N el
ij −N el

ji

)2
+Wki

(
N el
ik −N el

ki

)2
+Wlj

(
N el
jl −N el

lj

)2
(2.8)

where the weight factors Wki and Wlj, defined below, are added to account for possible
saturation of the atoms k and l and where N el

ki and N el
lj are fixed by the rule:

N el
ki = max

(
1,

Vk
Nki + 1

)
= max

(
1,

4

Nki + 1

)
(2.9)

and similarly for N el
lj . In Eq. (2.9), Nki = Nk − SdownN,ki is the so-called reduced coordi-

nation of atom k, Nk =
∑

m S
down
N,km being the total coordination of atom k [65]. Here,

SdownN is a smooth cutoff function for the short range (covalent) interactions, allowing
for noninteger or fractional coordination. According to Eq. (2.9), in the case of the
ac and zz(57) graphene edges, N el

ki = N el
lj = 4/3. Since, according to LCBOPII, the

conjugation term in the case of a fractional neighbour k (l) of atom i (j) is evaluated
as a weighted superposition of local configurations with only full neighbours (i.e., with
SdownN,ik = 1), the denominator in Eq. (2.9) is Nki + 1 instead of Nki +SdownN,ki . The weight
factor Wki = Wki(Nki) in Eq. (2.8) depends on Nki, and is defined as:

Wki =
1

1− SupM,ki

(2.10)

where SupM,ki is a switch function going from 0 to 1 for Nki+1 going from 3 to 4. Hence,

Wki diverges when k becomes a saturated neighbor, in which case minimisation of F̃
will lead to N el

ik = N el
ki = 1 as it should be. Wjl is defined likewise. In Eq. (2.8),

N el
ij and N el

ji can be eliminated by using the constraints in Eq. (2.6), leaving us to

minimize F̃ with respect to the two variables N el
ik and N el

jl , which, by straightforward
minimization, leads to:

N el
ik =

(2− SupM,lj)N
el
ki + (1− SupM,ki)N

el
lj

3− SupM,ki − S
up
M,lj

(2.11)
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N el
jl =

(1− SupM,lj)N
el
ki + (2− SupM,ki)N

el
lj

3− SupM,ki − S
up
M,lj

(2.12)

from which N el
ij and N el

ji can be determined using Eq. (2.6).
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Figure 2.8: Electron partitions according to (a) the original and (b) the modified LCBOPII.

By applying Eqs. (2.11) and (2.12) to the graphene ribbon edge bond ij in Fig.
2.8, with SupM,ki = SupM,lj = 0, we find indeed the electron distribution given in Fig.
2.8(b). We note that the rule presented here correctly describes other configurations
as well. For instance, if atom k would have an additional neighbor, so that atom k
becomes saturated, then SupM,ki = 1, N el

ki = 1, and N el
ik = 1 corresponding to a single

bond. If also atom l would have an additional neighbor, then we find N el
jl = N el

ik = 1

and N el
ij = N el

ji = 3 making ij a triple bond as it should be. On the other hand, if both
atoms k and l would have one neighbour less, then SupM,ki = SupM,lj = 0, N el

ki = N el
lj = 2,

leading to a double bond with N el
ij = N el

ji = 2.
For this work, we have only modified the conjugation term for a bond between two

twofold-coordinated atoms, i.e., atoms with reduced coordination Nij = Nji = 1, where
the effects are most significant. A more general treatment will be presented elsewhere
[70].
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Chapter 3

Dangling bonds and magnetism of grain
boundaries in graphene

Grain boundaries with dangling bonds (DBGB) in graphene are studied by atom-
istic Monte Carlo and molecular dynamics simulations in combination with density
functional (SIESTA) calculations. The most stable configurations are selected and their
structure is analyzed in terms of grain boundary dislocations. It is shown that the grain
boundary dislocation with the core consisting of pentagon, octagon and heptagon (5-8-
7 defect) is a typical structural element of DBGB with relatively low energies. Electron
energy spectrum and magnetic properties of the obtained DBGB are studied by den-
sity functional calculations. It is shown that the 5-8-7 defect is magnetic and that its
magnetic moment survives after hydrogenation. The effects of hydrogenation and of
out of plane deformations on the magnetic properties of DBGB are studied.

The body of this chapter has been published as
“Dangling bonds and magnetism of grain boundaries in graphene“,
M. A. Akhukov, A. Fasolino, Y. N. Gornostyrev and M. I. Katsnelson,
Phys. Rev. B 85, 115407 (2012)
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3.1 Introduction

Most potential applications of graphene require to construct macroscopically large
samples that are bound to be polycrystalline. Several routes are currently actively
pursued to obtain large samples in an efficient way. Examples are evaporation of surface
layers of SiC [71, 72], solution of graphite without functionalization, in combination
with sonication [73, 74, 75] to obtain graphene paper (laminate) and chemical vapor
deposition on metals [76, 77]. Studies of graphene grown by these methods confirm
the existence of grain boundaries (GB), as was observed in graphene on SiC [78],
Ir(111) [79, 80], polycrystalline Ni [81] and Cu [82]. Although the presence of GB
may be detrimental for electron mobility and mechanical strength, GB are potentially
interesting by themselves, e.g. by metallicity along the grain as shown in Ref. [83].
Several theoretical papers have considered the structure [45, 84, 85, 86] and electronic
[87] properties of tilt GB in graphene.

GB were subject of intensive experimental and theoretical study in the 70’s of
last century. At that time, the basic principles of formation of GB structures were
understood and the special class of GB characterized by high symmetry was identified
by use of the coincidence site lattice (CSL) approach [46]. These GB have optimal
matching of the grains and, being energetically the most favourable, are dominant in
well annealed polycrystalline samples. Most GB studied experimentally in graphene
can indeed be classified as low energy structures within the CSL theory [86, 77]. These
GB consist of regularly arranged dipoles of disclinations with rotation angles ±60◦

associated with 5 and 7-fold carbon rings [45]. The distance between disclination
dipoles depends on the misalignment of the grains. The high strength characteristics of
these GB in graphene [84] confirms the strong bonding in the core of the 5-7 disclination
dipoles.

In bulk materials, however, also less favourable GB with extrinsic structural defects,
extra volume excess and large elastic strain have been observed depending on the
treatment of polycrystalline samples [88]. Also for graphene, one may expect this
situation for samples obtained by coalescence of independently growing nuclei as typical
of chemical vapour deposition. The properties of more general GB have been considered
in Ref. [89] and in Ref. [85] it was shown that, besides 5-7 pairs, there are 8-fold
rings which dominate at tilt angle close to 15◦ as well as 4- and 9-fold rings with less
probability. Beside having higher energy and excess free volume, these GB may also
present dangling bonds and resemble structures found in amorphous graphene obtained
by electron bombardment [90].

The possibility of dangling bonds makes these high energy GB particularly inter-
esting since the dangling bonds can carry magnetic moments and are potential sources
of magnetic ordering [91]. The possibility that grain boundaries can be a source of
magnetism in graphitic materials was suggested in Ref.[10] based on the following ex-
perimental observations in highly oriented pyrolytic graphite (HOPG). STM studies
of GB with different periodicities found some peaks in the local density of states at-
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tributed to dangling bonds. Depending on the periodicity of the GB, these additional
peaks in the density of states were either situated at the Fermi energy or split, which
was interpreted as spin splitting. The room temperature ferromagnetism measured
by magnetic force microscopy and bulk magnetization measurements was tentatively
attributed to two-dimensional magnetic ordering at the grain boundaries. The ob-
servation of room temperature ferromagnetism was, however, not confirmed in other
studies of HOPG [92]. Recently, a systematic study of samples of HOPG of different
manufacturers [19] has convincingly attributed the macroscopic magnetic signal found
in some of them to Fe-rich inclusions buried in the bulk. Nevertheless, the local STM
data of Ref.[10] could still be related to the existence of localized magnetic moments
and the possibility to achieve ferromagnetism in sp electron materials remains very
appealing [11] and justifies further research.

In this chapter, we study systematically the structural, electronic and magnetic
properties of GB with dangling bonds (DBGB) in graphene by a hierarchical approach
based on classical atomistic simulations and ab-initio calculations. As a result of a
massive search based on simulated annealing by classical Monte Carlo simulations, we
find, that a particular structure with 5, 8 and 7 rings (5-8-7) appears to be kinetically
stable up to high temperature and can be a common structural element of generic
GB in graphene. According to our DFT calculations the 5-8-7 defect contains one
dangling bond with an associated magnetic moment of ' 0.5 − 1.0µB with µB the
Bohr magneton, that is only partially reduced by hydrogenation. This means that,
in contrast to the low energy GB, a generic GB in graphene and graphite can have
unpaired electrons and magnetic moments. Note that, according to our calculations,
the hydrogenation of DBGB turns out to be energetically favourable, thus, the most
probably realistic DBGB in graphene should be passivated by hydrogen. At the same
time, all qualitative conclusions about the structure and magnetism of GB do not
depend on this assumption.

The chapter is organized as follows. In section 3.2 we present the methods for
atomistic simulations and ab-initio calculations. In section 3.3 we describe the structure
and energetics of DBGB in graphene and in Section 3.4 we discuss their electronic
structure and spin density. Finally, in Section 3.6 we give a summary and conclusions.

3.2 Method

A systematic study of GB is computationally demanding because it requires the
examination of very large samples. Therefore we have done a first search for DBGB
by means of Monte Carlo simulations based on the classical LCBOPII interatomic po-
tential [65]. After having identified the 5-8-7 structure as a promising basic unit for
DBGB, we have studied the electronic and magnetic properties by means of spin po-
larized Density Functional Theory (DFT) calculations as implemented in the SIESTA
code. The drawing of flat pictures was done using the xyz2eps utility [93] written in
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Python Programming Language [94]. The visualization of 3D structures together with
3D charge density was done using the VESTA visualization program [36].

3.2.1 Atomistic simulations with LCBOPII

The classical bond-order potential LCBOPII [65] has been shown to describe ac-
curately the structure [95, 96] and elastic properties [97] of graphene as well as the
phonons [98], the structure of the edges [99] and bilayer graphene [100]. The accuracy
of this potential for dealing with GB has been validated against DFT calculations in
Ref. [86]. For the present study, this potential has the important feature of being
reactive, namely to allow breaking and formation of bonds as it would happen when
grains meet.

We have used Monte Carlo simulations in the NPT ensemble, namely we have kept
temperature T and number of particles N constant and allowed volume fluctuations
as to keep the pressure P=0. To find (meta)stable structures we have done a simu-
lated annealing lowering the temperatures from 3300K. The procedure to construct the
samples is described in section 3.2.3.

3.2.2 DFT ab-initio calculations with the SIESTA code

We have performed spin polarized DFT [20, 21] calculations by means of the pack-
age SIESTA which implements DFT on a localized basis set [22, 23, 24]. We used
GGA with Perdew-Burke-Ernzerhof parametrization (GGA-PBE) [28] and a standard
built-in double-ζ polarized (DZP) [25] basis set to perform geometry relaxation of
graphene samples with GB. The DZP basis set represents core electrons by norm-
conserving Troullier-Martins pseudopotentials [101] in the Kleynman-Bylander nonlo-
cal form [102]. For a carbon atom this basis set has 13 atomic orbitals: a double-ζ
for 2s and 2p valence orbitals and a single-ζ set of five d orbitals. The cutoff radii of
the atomic orbitals were obtained from an energy shift equal to 0.02 Ry which gives a
cut-off radius of 2.22 Å for s orbitals and 2.58 Å for p orbitals. The real-space grid
is equivalent to a plane-wave cutoff energy of 400 Ry, yielding ≈ 0.08 Å resolution for
the sampling of real space. For non periodical directions, an extra space larger than
15 Å was added to avoid spurious interactions. We used k-point sampling of the Bril-
louin zone based on the Monkhorst-Pack scheme [103] where the number of k-points
was defined similarly to the k-grid cutoff radii equal to 15 Å which usually gives 4-20
k-points depending on the sample size. The geometries were relaxed using the conju-
gate gradient method until all interatomic forces were smaller than 0.04 eV/Å and
the total stress less than 0.0005 eV/Å3. No geometrical constrains were applied during
relaxation.
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Figure 3.1: Definition of chirality vector Ch (a) and unit cell represented by lattice vectors
a1 and a2 with basis (RA, RB) (b). For clarity the grain defined by vectors Ch and T is
replicated twice along the direction of Ch and T

3.2.3 Grain boundary structural model

It is common practice to generate GB by means of the coincidence site lattice
(CSL) and this theory has also been used to study low-energy GB in graphene [86].
The CSL theory, however, includes only symmetric grain configurations and is not
suitable to deal with generic GB, like the DBGB we study here. Therefore we use a
more general model, inspired by the theory of nanotubes [104] and similar to that used
in Refs. [45, 86] for symmetric GB.

A nanotube is uniquely defined by a pair of integers (m,n) relating the chirality
vector Ch to the basis vectors of the hexagonal lattice (a1, a2) as

Ch = ma1 + na2 (3.1)

where
a1 = rcc(−

√
3/2, 3/2) a2 = rcc(

√
3/2, 3/2) (3.2)

and rcc = 1.42 Å is the interatomic distance in graphene giving a0 =
√

3rcc as lattice
constant (see Fig. 3.1a). For nanotubes, the vector T orthogonal to Ch gives the
nanotube axis and Ch gives the direction of rolling. In terms of (m,n) the vector T is
given by

T =
t1
k
a1 +

t2
k
a2 (3.3)

where
t1 = −m− 2n t2 = 2m+ n (3.4)
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and k is the greatest common divisor of |t1| and |t2|.
Furthermore we call RA and RB the positions of the two atoms in the unit cell of

the hexagonal lattice. The case

RA = rcc(0, 1, 0) RB = rcc(0, 2, 0) (3.5)

is illustrated in the unit cell shown in Fig. 3.1b.
While for nanotubes the vectors Ch and T are used to define a rectangle of given

chirality to be rolled, for GB the chirality vector Ch determines the direction of the
grain boundary while the rectangular area is the graphene grain, as shown in Fig. 3.1a.
In the CSL approach the second grain is symmetric with respect to the GB direction
given by Ch.

The length d(m,n) of Ch in our basis is

d(m,n) = |Ch| = |ma1 + na2| ≡ rcc
√

3Σ (3.6)

where
Σ = m2 +mn+ n2 (3.7)

There may be different pairs (m,n) that give the same value of Σ. For example
Σ = 91 may be obtained by pairs (1, 9) and (5, 6) so that, for Σ = 91, equation (3.7)
has the 4 solutions (1, 9); (9, 1); (5, 6); (6, 5).

The couples (1, 9); (9, 1) and (5, 6); (6, 5) are symmetric and are described by a
single tilt angle in the CSL theory whereas e.g. the pair (1, 9); (5, 6) is not symmetric
and requires to define the two misorientation angles of the two grains

cosφi =
2mi + ni

2
√
m2
i +mini + n2

i

i = 1, 2 (3.8)

In this way, by selecting two grains with the same Σ we can satisfy periodic bound-
ary conditions also for non symmetric grains selecting different chirality vectors Ch1

and Ch2 together with the orthogonal vectors T1 and T2. This procedure allows to
cut two rectangular grains with the same periodicity d that, after proper reorientation,
can be joined together to form the GB, labelled now by two pairs of indexes (m1, n1)
and (m2, n2). In case of symmetric grains i.e. n1 = n2 and m1 = m2 we can define
θ = φ1 + φ2.

Since the two grains are rectangular, the final structure forms a rectangular unit
cell which contains two grains with two GB. This construction gives us a starting point
for the search of metastable non symmetric GB that we describe in the next Section.

3.2.4 Search of (meta)stable DBGB

Once the procedure for building GB considers also asymmetric grains, most situa-
tions will yield structures with large strain and atoms that are too close to each other,
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from 1.5 Å till 0.1 Å or even less. We have used two parameters to help the search
for favourable structures. First, we introduce the parameter rmin which controls the
minimal distance between atoms. If two atoms are closer than rmin then this pair is
replaced by a single atom with average coordinates. The parameter rmin influences the
density of atoms along the grain boundary. We have searched with different values,
namely rmin = 0.1, 0.4, 1.2 Å. This procedure is physically justified because, in situ-
ation of crystal growth at high temperature, carbon atoms would be redistributed in
such a way as to avoid too close overlap of the atomic cores. The other free parameter
in our scheme is the shift rsh of the sublattice vectors RA and RB

RA = rsh + rcc(0, 0, 0) RB = rsh + rcc(0, 1, 0) (3.9)

We use two values

r1sh = rcc(0, 0, 0) r2sh = rcc(0, 1, 0) (3.10)

where r1sh puts the origin of the cell on one atom and r2sh gives the RA and RB shown
in Fig. 3.1.

We use the freedom given by the procedure described above to construct thousands
of initial configurations with GB. For each configuration, we optimize the structure by
annealing the sample from 3300K by Monte Carlo simulations in the NPT ensemble
with the LCBOPII interatomic potential. After a large number of Monte Carlo moves,
we find structures that do not evolve any more and can be considered as metastable.
Among all these configurations we search automatically the ones with two-fold coordi-
nated carbon atoms.

Among these possibilities, the structure with 5-8-7 rings (see Fig. 3.3) is the simplest
and most common. Therefore we have concentrated on this structure as prototype of
DBGB. For simplicity, we have then constructed samples with 5-7-8 DBGB and differ-
ent periods with symmetric grains defined by (m,n) and θ. Further relaxation of the
selected structure with SIESTA affects the structure of graphene GB only marginally,
which confirms the accuracy of our atomistic energy minimization. Lastly we calculate
electronic and magnetic properties with SIESTA.

We have checked the stability of the 5-8-7 DBGB also by performing constant-
temperature Molecular Dynamics (MD) with Nose thermostat using the DFT package
SIESTA at 3300K with a time step of 1 fs. The time dependence of temperature,
energy and pressure are shown in Fig. 3.2. After 1000 MD steps the structure of the
5-8-7 defect keeps its original geometry. During the dynamics, however, we observe an
exchange of a 6-ring with a 7-ring that causes a mirror reflection of the 5-8-7 point defect
with respect to the GB line. This transformation that keeps the original structure of
the two-fold coordinated atom is shown in Fig. 3.5d.
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Figure 3.2: Time dependence of temperature T , total energy ET and pressure (total stress)
P during 1000 steps of MD annealing for a sample with GB with two 5-8-7 defects and 150
atoms. The mean values are M(T ) = 3299.39 K, M(ET ) = −23266.89 eV, M(P ) = −0.056
GPa with standard deviation σ(T ) = 187.64 K, σ(ET ) = 4.80 eV, σ(P ) = 0.327 GPa and
correlation ρ(T,ET ) = 0.039, ρ(P,ET ) = −0.247, ρ(T, P ) = 0.177.

3.3 Structure and energetics of DBGB in graphene

A more general way of describing GB is to present them as arrays of dislocations
[43]. Low energy symmetric GB are nothing but arrays of 5-7 (glide) dislocations. The
DBGB that we select in our search for metastable structures contain more complicated
structural elements characterized by the presence of 8-, 9- and 4-fold rings. These
rings appear also in simulations of disordered graphene [85] and graphene at high
temperature [105], and were experimentally observed in electron bombarded graphene
[90].

In Ref. [106] another type of dislocation, the shuffle dislocation shown in Fig. 3.4,
with one 8-fold ring with one dangling bond, has been proposed as a potential carrier
of a magnetic moment. In our search for metastable structures with dangling bonds,
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Figure 3.3: Side and top view of (from top to bottom) 5-7, 5-8-7, H+5-8-7 GB for two

values of the period d, left: d = 6.5 Å, right: d = 10.7 Å. The unit cell is replicated twice
in the GB direction. For clarity, 7-rings are green (light gray), 5-rings are pink (gray) and
8-rings are blue (black).
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shuffle dislocation GB with 5-5-9-7 defect

Figure 3.4: Side and top view of shuffle (left) and 5-5-9-7 GB. The unit cell is replicated
twice in the GB direction. For clarity, in the shuffle GB we colour also the 6-ring.

we have found 8-fold rings only in combination with other non-hexagonal rings. If
we construct a 8-ring shuffle dislocation we find that above 2400K it transforms to a
5-8-7 configuration (these two dislocation configurations are characterized by the same
Burgers vector as will be discussed in detail below). By looking at Figs. 3.3 and 3.4 one
can see that the shuffle GB (i.e. the wall of shuffle dislocations) has the largest out-of-
plane distortion, which increases the strain in the structure [86] and might explain its
instability.

In our Monte Carlo simulations at 3300K, we find most frequently the sequence
5-8-7 which has one two-fold coordinated carbon atom. This atom has one unpaired
electron and, as a result, is the source of magnetic moment. We call this atom therefore
a magnetic atom. If we remove the magnetic atom and apply further relaxation we
find the non magnetic 5-7 defect. In Fig. 3.5 we show how the 5-8-7 is related to the
5-7 defect and how it can be constructed by either adding (Fig. 3.5b) or removing
(Fig. 3.5a) an atom from it. The similar construction of a shuffle defect is shown in
Fig. 3.5c. This procedure is technically reversible so that a 5-7 can be obtained by
removing the magnetic atom and letting the structure rebound and relax.

One could expect the 5-8-7 DBGB to have the same Burgers vector of the glide and
shuffle dislocation. In fact, if we consider the dislocation as a disclination dipole [43]
the Burgers vector b is the product of the Frank vector of the disclination times the
dipole arm. If we double the distance between the 5 and 7-fold rings that constitute
the disclination, we could expect a twice larger Burgers vector b → 2b. The 8-fold
ring between the 5- and 7-fold rings can be considered as a shuffle dislocations with
Burgers vector −b so that the resulting Burgers vector is 2b− b = b.

This analysis is supported by the data shown in Table 3.1 where we compare GB
made of arrays of the 5-7 and 5-8-7 disclination dipoles shown in Fig. 3.3. The Burgers
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Figure 3.5: The 5-7 and 5-8-7 defects are related geometrically. There are two ways to
construct a 5-8-7 defect from 5-7: remove an atom from pentagon (a), insert adatom to the
bond belonging to heptagon (b). In the same way we can construct a shuffle dislocation from
5-7 (c). In panel d) we show the mirror transformation of the 5-8-7 observed in the MD
simulations at T=3300 K described in section 3.2.4.

vector was calculated using the Frank equation [43]

b = 2d sin θ/2 (3.11)

where d is the periodicity of the array and θ is the misorientation angle. One can
indeed see that the Burgers vector of the 5-7 and 5-8-7 are almost the same. We also
compare the formation energy of defects EF calculated as

EF = (EDefect
Total − E

Graphene
Total

NDefect
atoms

NGraphene
atoms

)/NDefects (3.12)

for different types of GB. The formation energy of the 5-8-7 GB is approximately
twice the one of the 5-7 for the same periodicity, which is not surprising since the
dangling bond costs some additional energy. The larger formation energy for the larger
periodicity is consistent with the finding [86] that dislocation cores attract each other,
contrary to three-dimensional materials.

The presence of the dangling bond makes bonding to other species possible. We
have therefore studied the 5-8-7 also when the magnetic atom is bound to a hydrogen
atom, a structure we call H+5-8-7, or to an oxygen atom or OH group, that we call
O+5-8-7 and OH+5-8-7 respectively. The top and side view of H+5-8-7 shown in
Fig. 3.3 do not differ much from the 5-8-7. Only the local structure of the magnetic
atom is somewhat changed. In particular, the bonds to its two carbon neighbors go
from ∼ 1.37 Å in 5-8-7 to ∼ 1.41 Å in H+5-8-7, a value closer to the bulk value
1.42 Å. The angle between these two bonds is also changed. The rest of the structure
remains basically the same as shown in Fig. 3.6 also for the case of oxygen and OH.
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Table 3.1: Summary of the studied defects with GB period d, Burgers vector b, GB forma-
tion energy EF and hydrogen adsorption energy (with respect to the hydrogen atom) Eads.
The tilt angle together with Burgers vector were calculated for z-projected geometries i.e.
completely flat samples with z=0. The binding energy of the hydrogen molecule in the used
model is EH2 = 4.53 eV.

GB GB period Tilt angle Burgers vector EF
d (Å) θ◦ b (Å) (eV/defect)

5-7 6.52 20.8 2.360 2.31
5-8-7 6.54 21.7 2.467 6.83

H+5-8-7 6.53 21.7 2.461 Eads = 4.78
5-7 10.69 13.7 2.544 3.87

5-8-7 10.76 12.7 2.378 8.01
H+5-8-7 10.76 12.5 2.350 Eads = 4.60
shuffle 10.66 13.2 2.451 8.16
5-5-9-7 13.59 17.7 4.185 8.63

It is remarkable that the adsorption energy of the H+5-8-7 is just a bit higher than
the H2 binding energy calculated within the same method. This means that, within our
computational scheme, the hydrogenation of DBGB is energetically favourable. At the
same time, the difference is small and one should take into account that the density
functional within GGA underestimates strongly the binding energy of H2 molecule.
Fortunately, the issue of the hydrogenation does not affect qualitatively our conclusions
about the structure (as it is shown here) and magnetism (as will be shown below) of
DBGB.

Since the 5-8-7 DBGB has minimal Burgers vector and low strain in view of its
flatness it is natural to assume that it has the lowest energy among DBGB and therefore
represents the most natural candidate as source of magnetism in GB. That is why
we will focus on this structural element in the rest of this chapter. Of course more
complicated DBGB exist and, as an example, we show in Fig. 3.4 the structure of
a GB with θ = 17.7◦ formed by a periodic array of a 5-5-9-7 structural element. As
reported in Table 3.1, this GB has formation energy just slightly higher than the 5-8-7
and an almost double Burgers vector. The latter statement is justified by taking into
account the change of type of GB from zigzag to armchair [45]. In the following section
we examine in detail the 5-8-7 in comparison to the 5-7.
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Figure 3.6: Bond lengths and C-C-C angle of magnetic atom for (from left to right) OH+5-
8-7, O+5-8-7, H+5-8-7, 5-8-7 DBGB.

3.4 Electronic structure and spin density of DBGB

in graphene

We have calculated the spin polarized density of states (DOS) of selected DBGB by
means of SIESTA. We project the states onto the orbitals representing the px, py and pz.
In Appendix A we validate our approach against previous results for the H-saturated
zigzag graphene edges [107, 108] while comparing them to non saturated edges. In
Fig. 3.7 we present the spin polarized DOS for ferromagnetically oriented magnetic
moments associated to the dangling bond of a 5-8-7 and H+5-8-7 with period d = 6.5
Å. We see that the DOS is mostly related to pz and is essentially different for spin up
and spin down. For the H+5-8-7 there is even an almost half-metallic situation with
the Fermi energy lying just below the gap for majority spin electron states. Below the
Fermi energy but relatively far from it, there is also a smaller gap for minority electron
states. The tiny px, py components are related to the distortion from a planar sp2 bond.
In Table 3.2 we report the magnetic moments per magnetic atom. They are in general
not integer. Importantly, hydrogen adsorption does not destroy the magnetic moment.
This is because the magnetic atom is not like a usual dangling bond that can be fully
saturated by hydrogen. A carbon atom participates with three electrons to in-plane
bonding and with the fourth to the pz band. Therefore the two-fold coordination in
the plane provides a dangling bond that adds to and distorts the pz orbital. The OH
group reduces further the magnetic moment whereas oxygen destroys it completely.

Lastly, we have found that the out of plane corrugation affects the magnetic moment
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5-8-7, d=6.5 Å H+5-8-7, d=6.5 Å
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Figure 3.7: px, py and pz components of total DOS for 5-8-7 and H+5-8-7 DBGB with
misorientation angle θ = 21.7◦. Red solid and dashed green curves are for spin-up and
spin-down respectively.
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p
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Effect of corrugation (d=10.7 Å)

Figure 3.8: The effect of corrugation on the DOS (see the text) is seen by comparing the
minimal energy 5-8-7 DBGB with the flat one. Red solid and dashed green curves are for
spin-up and spin-down respectively.
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Figure 3.9: Right panels: isosurface plot of the spin density for the 5-8-7 DBGB with
θ = 12.7◦. Left panels: symbolic representation of the spins per atom (see text). Pink (gray)
and blue (dark gray) represent spin-up and spin-down, respectively. In the left panels the
magnetic atoms are light pink (light gray). From top to bottom: flat configuration; minimum
energy configuration without hydrogen; minimum energy configuration with hydrogen.
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Figure 3.10: Right panel: isosurface plot of the spin density for the OH+5-8-7 DBGB with
θ = 12.7◦. Left panel: symbolic representation of the spins per atom (see text). Pink (gray)
and blue (dark gray) represent spin-up and spin-down, respectively. In the left panels the
magnetic atoms are light pink (light gray).

of the 5-8-7 while it is not important for the H+5-8-7. In principle this effect can be
used to control magnetic moments through strain and therefore it deserves a more
detailed discussion. To this aim, in Fig. 3.8 we compare the DOS of the 5-8-7 with the
one obtained for the same structure without allowing out-of-plane distortions, namely
for a flat 5-8-7. Since the out of plane corrugation is larger for d = 10.7Å (see, Fig.
3.3) we have chosen this case to illustrate this effect. One can see that the DOS are
essentially different for the cases with and without out of plane deformations. The
different DOS are also reflected in the almost double value of the magnetic moments
of the flat 5-8-7 as reported in Table 3.2. Conversely, the magnetic moments of relaxed
and flat H+5-8-7 are comparable.

To understand the origin of this effect we have studied the spin density in the
system. In Fig. 3.9 and Fig. 3.10 we use two representations of the spin density.
The one to the right is the most common representation of isosurfaces of the spin
density. The representation to the left, gives the amount of spin per atom obtained
from Mulliken population analysis represented as a sphere of radius proportional to the
logarithm of the spin. This representation makes it possible to visualize also the small
spin density components. In this way one can see that the up and down components
away from the defect seem to be located on the A and B sublattices of graphene.
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3.5 Validation test for magnetism of zigzag graphene edge with and without
hydrogenation

Table 3.2: Magnetic moment contribution in µB from magnetic atom which carries dangling
bond (DB atom) for the studied samples with two GB and one magnetic defect per GB.

from number from from
System DB of DB non DB whole

atom atoms atoms system

H+5-8-7 d=6.5 (Å) 0.530 2 0.956 2.001
5-8-7 d=6.5 (Å) 0.933 2 0.843 2.708

H+5-8-7 flat d=6.5 (Å) 0.496 2 1.019 1.997
5-8-7 flat d=6.5 (Å) 0.921 2 0.850 2.692

OH+5-8-7 d=10.7 (Å) 0.291 2 0.468 1.068
H+5-8-7 d=10.7 (Å) 0.542 2 0.895 1.963

5-8-7 d=10.7 (Å) 0.455 2 -0.742 0.169
H+5-8-7 flat d=10.7 (Å) 0.455 2 1.037 1.933

5-8-7 flat d=10.7 (Å) 0.987 2 0.990 2.964

shuffle d=10.7 (Å) 0.424 2 -0.011 0.837
5-5-9-7 d=13.6 (Å) 0.889 2 -0.333 1.445

This alternation is broken by the defect in a way that depends on the out of plane
distortions. In fact, in the flat 5-8-7, the magnetic atom (light gray) with spin up
has the two nearest neighbour of spin down whereas in the relaxed 5-8-7 the nearest
neighbours have the same spin up of the magnetic atom.

The H+5-8-7 is not sensitive to the corrugation, i.e. the spin distribution for the
flat case is very similar to the one shown for the relaxed H+587 in Fig. 3.9.

Table 3.3: Magnetic moment contribution in µB from A- and B-sublattices for 4 studied
cases.

system mA mB mA +mB with H mA +mB

zz 1.464 -0.154 1.310 - 1.29 from [108]
H+zz 0.453 -0.134 0.330 0.310 0.30 from [107]
2H+zz -0.233 0.738 0.505 0.625 -
C+zz -0.080 0.390 0.310 - -

3.5 Validation test for magnetism of zigzag graphene

edge with and without hydrogenation

To check our computational scheme we have carried out electronic structure calcu-
lations for two cases where graphene is supposed to be magnetic, namely, zigzag edges
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Figure 3.11: Zigzag, single hydrogenated zigzag, double hydrogenated zigzag and model
zigzag graphene edge with carbon. For each case the magnetic moment decomposition over
atomic orbitals for carbon atoms only is shown according to Mulliken atomic orbital popu-
lation analysis. The square of each circle is proportional to the value of magnetic moment
contribution. Pink (light gray) and blue (dark gray) are positive and negative values of spin
respectively.

[107, 108] with and without passivation by single- and double hydrogen and carbon-
terminated zigzag edge (see Fig. 3.11). The results are shown in Table 3.3. One can see
that in all cases we have an excellent agreement with previous results. Furthermore,
we present in Table 3.4 a more detailed information about the orbital contributions to
the magnetic moments.

3.6 Conclusions

Grain boundaries (GB) seem to be unavoidable structural elements of large enough
graphene samples, irrespective of their preparation. By analogy with conventional
three-dimensional material science, one may expect that they will affect strongly both
the mechanical and electronic properties of graphene. From a theoretical point of
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3.6 Conclusions

Table 3.4: Detailed information about distribution of magnetic moment over orbitals for
1-fold (1nn) 2-fold (2nn) 3-fold (3nn) coordinated edge carbon atoms in the four different
systems shown in Fig. 3.11, i.e. zz for zigzag, H+zz for single hydrogenated zigzag, 2H+zz
for double hydrogenated zigzag and C+zz for model zigzag graphene edge with carbon atom
at the edge

C-atom 2s 2px 2py 2pz all-d sum
zz 2nn 0.176 0.026 0.691 0.320 -0.009 1.206
zz 3nn 0.002 -0.010 -0.012 -0.112 0.075 -0.060

H+zz 2nn 0.001 0.007 0.010 0.266 -0.002 0.290
H+zz 3nn 0.002 -0.008 -0.006 -0.071 0.025 -0.057
2H+zz 2nn -0.004 -0.013 -0.015 -0.019 0.036 -0.017
2H+zz 3nn 0.012 0.008 0.010 0.345 0.000 0.375
C+zz 1nn 0.010 0.011 0.009 0.226 0.002 0.256
C+zz 2nn 0.004 -0.004 -0.007 -0.048 0.018 -0.038
C+zz 3nn 0.002 0.002 0.000 0.074 -0.003 0.075

view, GB are very complicated objects due to the multiscale character of the problem.
Both long-range deformations extending over tens of thousands of atoms and specific
atomistic and electronic structure of the cores are essential. Therefore usually people
study only special GB, mostly, those which can be constructed by the CSL approach
[86, 45]. These GB are, indeed, usually the most energetically favorable. At the same
time, e.g. for CVD growth of graphene on metals [76, 77], one could expect that various
crystallites grow independently from many centers and more complicated GB will be
formed. To attack this problem we have combined large-scale atomistic simulations
using the LCBOBII potential [65] with ab-initio calculations. We have studied in detail
GB containing the 5-8-7 defect which is the carrier of magnetic moment. Based on the
results presented here one can conclude that a generic GB should contain magnetic
moments which are robust enough, in particular, with respect to hydrogenation. Since
GB in graphene are one-dimensional objects, they cannot lead to magnetic ordering at
any finite temperature. We have shown, however, that the very existence of magnetic
moments at the GB dangling bonds modifies the local electronic structure around the
Fermi energy that can be probed by STM.
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Chapter 4

Electronic, magnetic and transport
properties of graphene ribbons terminated

by nanotubes

We study by density functional and large scale tight-binding transport calculations
the electronic structure, magnetism and transport properties of the recently proposed
graphene ribbons with edges rolled to form nanotubes. Edges with armchair nanotubes
present magnetic moments localized either in the tube or the ribbon and have metallic
or half-metallic character, depending on the symmetry of the junction. These prop-
erties have potential for spin valve and spin filter devices with advantages over other
proposed systems. Edges with zigzag nanotubes are either metallic or semiconducting
without affecting the intrinsic mobility of the ribbon. Varying the type and size of
the nanotubes and ribbons offers the possibility to tailor the magnetic and transport
properties, making these systems very promising for applications.

The body of this chapter has been published as
“Electronic, magnetic and transport properties of graphene ribbons terminated by nanotubes“,
M. A. Akhukov, Shengjun Yuan, A. Fasolino, M. I. Katsnelson,
New J. of Phys. 14, 123012 (2012)
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Electronic, magnetic and transport properties of graphene ribbons terminated by
nanotubes

Table 4.1: Total spin magnetization S (in unit of µB per unit cell) as a function of the
index of AC nanotube (N,N) and size of nanoribbon P (in unit of ZZ rows). The results in
this table are for samples obtained by rolling the edges of the same unrolled graphene ribbon
with width of 40 ZZ rows.

N P S (symmetric) S (asymmetric)
9 4 0.000 1.499
8 8 0.995 1.499
7 12 1.371 1.499
6 16 1.481 1.499
5 20 1.500 1.500
4 24 1.500 1.500
3 28 1.494 1.500

4.1 Introduction

The atomic structure of graphene edges is important for the determination of the
electronic and magnetic properties of graphene, especially for narrow graphene nanorib-
bons [53, 49, 56, 58, 61, 109, 110, 91, 111, 112, 60, 113]. The natural termination of
graphene is given either by zigzag (ZZ) or armchair (AC) edges. Theoretical studies
[56] find that the minimal energy structure is instead given by a reconstruction of the
zigzag edges to form pentagons and heptagon (57) but this structure has been only
rarely observed [62, 63] possibly due to a large free energy barrier [99]. Recent theoret-
ical work [114] on the stability of different graphene edges structures has shown that
graphene edges can also fold back on themselves and reconstruct as nanotubes, with
low formation energy (see atomic structures in figure 4.1). Previous theoretical work
had considered such a structure among many other possible configurations made by a
combination of nanotubes and graphene nanoribbons [115, 116] suggesting that such
structure could be formed in solution.

In this chapter, we show that, besides protecting the edges from contamination and
reconstructions, nanotubes at the edges may lead to magnetism and are not detrimental
for the electronic mobility despite the row of sp3 hybridized atoms at the ribbon-tube
junction. We study the electronic and magnetic properties of these systems by a
combination of density functional theory (DFT) and large scale tight binding (TB)
simulations of transport properties. Our calculations suggest that these systems could
be used for a variety of applications that we sketch in figure 4.2.

We consider systems formed by a nanoribbon terminated on both sides by the
same AC or ZZ nanotube. We notice that a ribbon with AC edges is terminated by ZZ
nanotubes and a ribbon with ZZ edges is terminated by AC nanotubes. Nanoribbons
terminated by AC nanotubes present interesting magnetic properties. By rolling the
ZZ edges of a nanoribbon, two types of AC nanotubes can be formed, as shown in figure
4.1. If the atoms at the nanoribbon ZZ edge scroll and bind to the same sublattice sites
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Figure 4.1: (a-h) Structure and spin density for symmetric (left) and asymmetric (right)
AC nanotube terminated edges. (a,b) Atomic structure; (c,d) Side, (e,f) 3D and (g,h) top
view of schematic spin representation. The box with dashed line in (g,h) indicates half of the
unit cell in the DFT calculation. For the symmetric case, the contribution to the magnetic
moment from atoms belonging to the A- and B- sublattices are mA = 0.958 µB and mB =
-0.217 µB (per half unit cell), and for the asymmetric case mA = 1.048 µB and mB = -0.300
µB. The maximum of the magnetic moment is located on the atom indicated by the arrow
with the value mmax = 0.379 µB in both symmetric and asymmetric cases. (i,j) 3D and
top view of AC nanoribbons terminated by ZZ nanotubes. The box with dashed line in (j)
indicates half of the unit cell in the DFT calculation.
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+
_

Figure 4.2: Sketch of spintronics devices based on carbon nanoribbons terminated by AC
nanotubes. (a) A spin valve based on the symmetric case: a gate can be used to switch from
the antiferromagnetically coupled state to the ferromagnetically coupled excited state, favour-
ing spin transport from one nanotube to the other across the ribbon. (b) For both symmetric
and asymmetric case, high magnetoresistance could be achieved by applying magnetic fields
of different sign at the ends of the nanoribbons, as proposed in [117] for ZZ nanoribbons.
(c) For the asymmetric case, a gate along the ribbon could be used to switch between two
half-metallic energy regions to realize either a spin filter or a spin valve.

within the nanoribbon, the formed AC nanotube has mirror symmetry with respect
to the nanoribbon plane; if the bonding sites belong to opposite sublattice, there is
no such kind of symmetry (compare figure 4.1b to figure 4.1a). We call these two
cases symmetric and asymmetric which corresponds to armchair and armchair-like in
Ref. [114], respectively. The common point of these two cases is that the sublattice
symmetry is broken, because all the sp3 hybridized carbon atoms at the junction belong
to one sublattice as shown in figure 4.3. Due to the Lieb theorem [91, 113], this gives the
possibility of spin polarization around the junctions. Since the theorem applies to the
Hubbard model, accurate calculations for the real system are necessary to investigate
this possibility. Beside these symmetry considerations relevant for graphene, a general
condition for magnetism that derives from the Stoner criterion is the presence of peaks
in the density of states at the Fermi energy for non spin polarized calculations. As we
show in the following, both symmetric and asymmetric ZZ nanoribbons terminated by
AC nanotubes present such peaks and therefore are good candidates for magnetism
since they satisfy both the Lieb and Stoner requirements.

4.2 Edges terminated by armchair nanotubes

In order to study the magnetic properties, we performed (spin polarized) DFT
calculations by SIESTA [22, 23, 24]. We used generalized gradient approximation
with Perdew-Burke-Ernzerhof parametrization (GGA-PBE) [28] and a standard built-
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Figure 4.3: Sketch of the junction between carbon nanoribbon and AC nanotube. The
junction itself is similar for both symmetric and asymmetric AC nanotube terminated edges,
and the main difference is the different connection of the AC nanotube. The carbon-carbon
distance indicated in the figure is for the symmetric case (N=5 and P=20), and the difference
to the asymmetric case is negligible. In both symmetric and asymmetric cases, the maximum
magnetization are located at the sp2 atoms (red) which are coupled to two sp3 atoms (light
gray).

in double-ζ polarized (DZP) [25] basis set to perform geometry relaxation.

In Figure 4.4 we show the non spin-polarized band structure and density of states of
both symmetric and asymmetric ZZ nanoribbons with AC nanotubes at the edges. We
see that indeed sharp speaks at the Fermi energy in the density of states are present
as a consequence of the flat band located at this energy. This flat band resembles the
one due to dangling bonds in zz nanoribbons. In Ref. [56] it was shown that the 57
reconstruction of the ZZ edges could split this band shifting it away from the Fermi
energy. The termination with nanotubes leaves a band at the Fermi energy if no spin
polarization is allowed. For the symmetric case, it is easy to visualize the character of
this band as a pz state decaying from the junction both in the nanoribbon and in the
nanotube, as shown in Figure 4.4e. Instead of a change of bond character as for the 57
reconstruction, for our system it is the magnetic polarization that removes this state
from the Fermi energy. In Figure 4.5 we show the spin polarized band structure and
density of states, showing the splitting of the flat band at EF into spin up and spin
down levels and the consequent disappearance of the peaks at the Fermi energy in the
density of states.
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Figure 4.4: Non-spin-polarized density of states and band structure calculated by DFT for
ZZ nanorribons with (a,c) symmetric and (b,d) asymmetric AC nanotube terminated edges
(N = 5 and P = 20 for both cases). The density of wave functions at Γ point are shown in
(e) for symmetric case and (f) for asymmetric case.
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Figure 4.5: Spin-polarized Density of states and band structure (bold dashed curves) calcu-
lated by DFT for ZZ nanorribons with (a,c) symmetric and (b,d) asymmetric AC nanotube
terminated edges (N = 5 and P = 20 for both cases). The arrows in (b) indicate the
half-metalic energy regions for either spin up or spin down. For comparison, we show the
non-spin-polarized band structure by red solid curves in (c,d).

We find that, in both symmetric and asymmetric cases, there is spin polarization
near the ribbon-tube junction, i.e., near the sp3 hybridized carbon atoms. Note that
the bond distance of these four-fold coordinated atoms is 1.52 Å like in diamond.
The spin polarization is mainly located in the nanoribbon for the symmetric case and
within the tube for the asymmetric case (see the isosurface plot of the spin density
together with its symbolic representation in figure 4.1c-h). The up/down spins are
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distributed over the A/B sublattices respectively. The label mmax indicates the atom
with the highest magnetic moment. A possible explanation for the localization of the
spin polarization can be found by realizing that the largest polarization is on the sp2

atoms at the junction in between two sp3 atoms (see red atoms in Figure 4.3). The
atoms with this particular configuration are either inside the nanotube or inside the
nanoribbon and this corresponds to the location of the spin polarization. We are also
tempted to conjecture that the localization results from a frustration mechanism. In
fact in the symmetric case, where the polarization is located in the nanoribbon, the
sp3 atoms break the bipartite symmetry in the ribbon (making magnetization possible)
whereas for the asymmetric case, the sp3 atom breaks the bipartite symmetry in the
nanotube.

For the symmetric case, the value of the spin polarization increases with increasing
nanoribbon width, and saturates at 1.50 µB per unit cell, when the nanoribbon width
is wider than 16 ZZ rows; For the asymmetric case, the spin polarization is always 1.50
µB per unit cell, irrespective of the nanoribbon width and nanotube radius (see Table
4.1).

For the asymmetric case the spins are located inside the two nanotubes and therefore
the exchange interaction between opposite edges is negligible. For the symmetric case,
the spins on the two edges are coupled antiferromagnetically, similarly to hydrogen
terminated graphene edges [107, 108]: for the structure shown in figure 4.1a, the energy
of antiparallel spin configurations is 22 meV per unit cell (see figure 4.1g) lower than for
parallel configurations. This sizeable coupling across the ribbon makes the symmetric
systems promising as spin valve devices [118]. In figure 4.2a we show a configuration
similar to that proposed for dumbbell graphene structures on the basis of the Hubbard
Hamiltonian in the mean field approximation [119]. A gate could be used to bring the
system from the antiferromagnetically coupled state to the ferromagnetically coupled
excited state, favouring spin transport from one nanotube to the other across the
ribbon. Moreover, both for the symmetric and asymmetric case, the magnetic moments
along the ribbon-tube junction are qualitatively similar to the case of ZZ edges of
nanoribbons. Therefore, high magnetoresistance could be expected, as proposed in
[117] for nanoribbons with ZZ edges, by applying magnetic fields of different sign at
the ends of the nanoribbon. A sketch of this device for our systems is shown in figure
4.2b.

The spin polarized density of states (DOS) reveals other features of interest for
spintronics related to half-metallic character. In figure 4.5a and 4.5b we show the spin
polarized DOS for the symmetric and asymmetric case respectively. We see that the
symmetric case is metallic for both spins in the whole range of energy. The asymmetric
case, instead, is a half-metal near the Fermi energy EF , namely it is metallic for spin
up and insulating for spin down. The half-metallic character of our systems provides
opportunities as spin filters without the need of external electric fields [120], magnetic
fields [121], ferromagnetic strips [122], impurities [123, 124, 125] or defects [126, 127].
Furthermore, there is the opposite half-metallic character at higher energies. Around
0.4 eV, there is insulating character for spin up and metallic character for spin down.
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4.3 Edges terminated by zigzag nanotubes

As sketched in figure 4.2c, a gate along the ribbon could be used to switch between
these two half-metallic energy regions and affect selectively the spin transport.

4.3 Edges terminated by zigzag nanotubes
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Figure 4.6: Band gap size-dependence in ZZ nanotube terminated AC nanoribbons. (a)
Fixed nanoribbon with 15 AC rows for varying size of the terminating ZZ nanotube. (b)
Fixed ZZ nanotube (8, 0 and 7, 0) edges for varying width of the AC nanoribbon.

We come now to the case with ZZ nanotubes shown in figure 4.1i-j. For this case,
there is only one type of ribbon-tube junction that preserves sublattice symmetry
implying that there is no magnetization nor midgap states [91, 113]. The electronic
structure and transport properties, however, strongly depend on the AC ribbon width
and on the ZZ tube radius. In TB models, a AC nanoribbon is metallic if the number of
AC rows is equal to 3l+ 2, where l is a positive integer, and semiconducting otherwise
[53, 128]. Furthermore, ZZ nanotubes are metallic for index equal to 3l [52]. In more
general models, the properties of AC nanoribbons and ZZ nanotubes may differ from
the ones predicted by TB, due to possible self passivation of the edges for nanoribbons
and for the σ − π band mixing for small nanotubes [52]. By using DFT calculations,
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Figure 4.7: (a) Comparison of DOS of a nanoribbon with 15 AC rows terminated by (8,0)
ZZ nanotubes calculated by DFT and TB. (b) Comparison of the mobility of a nanoribbon
with 15 AC rows, terminated either by (8,0) ZZ nanotubes or by AC edges in TB. The charge

density ne is obtained from the density of state ρ in panel (a) by ne (E) =
∫ E
0 ρ (ε) dε. The

sample contains 600000× 47 carbon atoms for the case with ZZ nanotube terminated edges,
and 2000000× 15 for the case with AC edges.

we found that our joined system becomes a semiconductor with a gap of the order of
few hundreds meV if both nanoribbon and nanotube are semiconducting. The energy
gap as a function of geometry is shown in figure 4.6. The size of the nanotube has to
be large enough for the opening of a band gap (figure 4.6a). For the joined system
with semiconducting ZZ nanotubes, there is a clear periodicity (3 ZZ rows) in the
dependence of the energy gap on the nanoribbon width (figure 4.6b). For the studied
cases, the value of the gap varies between 30 and 600 meV.

Since we want to calculate the transport properties by means of a simpler model,
suitable for large samples, we have also calculated the energy structure of our system by
π-band TB calculations where we consider only the nearest-neighbour hopping t = 2.7
eV between the carbon atoms [129, 130] for all bonds. The comparison between the
gaps calculated by TB and DFT shown in figure 4.6a gives the same periodicity and
a qualitative agreement. For the case of a AC nanoribbon with 15 rows terminated
by (8,0) ZZ nanotubes we compare in figure 4.7a the TB and DFT DOS, which again
are in qualitative agreement as to support the validity of the transport calculations we
show next. The electronic transport properties of a semiconducting nanoribbon with or
without nanotube terminated edges are obtained by using large scale TB simulations
with about thirty million carbon atoms [129, 130]. In figure 4.7b we show that the
electronic mobility parallel to the edges as a function of charge density are quite similar
in these two cases. The mobility of the joined system is about 2250 cm2V −1s−1 at
charge density ne ∼ 1013cm2, which is only slightly smaller than the one of the AC
nanoribbon at the same charge concentration.
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4.4 Conclusion

4.4 Conclusion

In summary, we have studied the electronic and magnetic properties of graphene
nanoribbons with three types of nanotube terminated edges. The spin magnetization is
found to be 1.5 µB per unit cell in the ground state of both symmetric and asymmetric
AC nanotube terminated edges. For symmetric AC nanotube terminated edges, the
spin density is located in the ribbon whereas, for the asymmetric case, it is located
within the tube. In the ZZ nanotube terminated edges, there is a band gap opening of
the order of few hundreds meV, if the constituent tube and nanoribbon are both semi-
conducting. The conductivity and mobility in the presence of ZZ nanotube terminated
edges is comparable to the one of the AC nanoribbon itself.

Our calculations suggest that these systems are not only advantageous because the
edges are protected against any kind of chemically induced disorder but also because,
by tailoring the ribbon/tube structure, they offer a wealth of possible applications for
transport and spintronics.
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Chapter 5

Structure and magnetism of disordered
carbon

Carbon has many ordered allotropes but also interesting amorphous structures.
As a result of particular growth mechanisms it is found also in disordered porous
structures formed by interconnected nanometer sized clusters, often called nanofoams.
An example of this type of structures, as revealed in Transmission Electron Microscope
(TEM) experiments [131, 8], is shown in Fig. 5.1a,b. These carbon nanofoam structures
have been obtained by high-repetition-rate laser ablation of a glassy carbon target in an
ambient non-reactive Ar atmosphere. Scanning Tunneling Microscopy (STM) reveals
a mixed sp2 sp3 bonding and curved graphite-like sheets. The Fourier Transform of
STM images reveals clusters arranged with period of 5.6 Å [131, 8, 9].

A reason of interest for these structures is the presence of ferromagnetic behaviour
up to 90 K reported in Ref. [9] which raises questions about the mechanism for this
phenomenon. These disordered structures might present magnetic moments related
to undercoordinated atoms or to particular atomic arrangements. The purpose of
this chapter is to investigate, by means of a large number of realizations of nanosized
clusters, if some atomic arrangements appear recurrently and can give rise to magnetic
moments and/or to magnetic order.
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Structure and magnetism of disordered carbon

Figure 5.1: Transmission electron micrograph of the carbon foam, showing characteristic
clusters (10 nm scale bar) (a). (b) Scanning electron micrograph of the foam, showing the
web-like form at lower magnification (100 nm scale bar). (from [131])

5.1 Outline of this chapter

We first describe in section 5.2 the procedure to generate, in an automated fashion,
series of disordered samples and the criteria to analyse this large set of results (about
24300 realizations) according to total energy, coordination and magnetic moments. In
our search we consider cluster structures periodically repeated to form a bulk. In this
way we disregard the possibility of magnetism related to the surfaces.

In section 5.3 we present a first screening of the magnetic properties that are the
focus of our study.

In section 5.4 we examine the distribution of total energy, some structural properties
and try to establish a kind of phase diagram to relate the presence of sizeable magnetic
moments to the total energy of the structure. In this section we show, as a side result
that we do not pursue further at this stage, that a large number of samples have
energies in a narrow range just higher than that of diamond and graphite and might
represent interesting metastable structures.

In section 5.5 we set up a model, based on the graph theory to analyse the networks
of bonds around a magnetic atom. This model has been used to analyse the allotropes
of C60 in a famous paper by Wales [132] revealing a distribution of energy with many
deep minima separated by high barriers forming a funnel with minimum energy cor-
responding to the icosahedral C60. Furthermore the graph theory can be related to
the concept of bipartite lattices that play an important role in graphene. Also in our
search we find that carbon can form a wealth of metastable disordered structures with
not a high penalty in terms of energy. We aim at finding the reason why some of these
realizations carry magnetic moments and may even lead to ferromagnetic behaviour.

In section 5.6 we single out only the states with sizeable magnetic moments and
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analyse them in the spirit of the mean field approximation in terms of exchange energies.
Most magnetic structures have antiferromagnetic order but a few of them present
a hint of ferri- or ferromagnetic order. Unfortunately the LDA-CA and GGA-PBE
approximations often do not agree in the evaluation of total energy and give small
variations in bond lengths. Nevertheless we show that besides these disagreements
result obtained in both model are qualitatively consistent.

In the last section 5.7 we focus on the most interesting samples found in our search
and try to establish some recurrent features and minimal requirements for the presence
of magnetic order.

Our search and analysis is certainly not exhaustive and many questions remain open
but it represents a first systematic attempt to grasp the physics and bonding leading
to ferri/ferromagnetism in disordered carbon structures. To invite other contributions
to this fascinating topic we also give in the Appendix the structure and coordinates of
the selected samples presented in section 5.7.

5.2 Procedure for the generation of disordered sam-

ples

In this section we describe how we first generate nanosized disordered samples and
relax them to find (meta)stable structures and then calculate their magnetic properties.
We calculate electronic and magnetic structures within the DFT [20, 21] by means of the
SIESTA code which implements DFT on a localized basis set [22, 23, 24]. We used LDA
with Ceperly and Alder parametrization (LDA-CA) [26, 27] and a standard built-in
double-ζ polarized (DZP) [25] basis set to perform geometry relaxation. The DZP basis
set represents core electrons by norm-conserving Troullier-Martins pseudopotentials
[101] in the Kleynman-Bylander nonlocal form [102]. For a carbon atom this basis set
has 13 atomic orbitals: a double-ζ for 2s and 2p valence orbitals and a single-ζ set of
five d orbitals. The cutoff radii of the atomic orbitals were obtained from an energy
shift equal to 0.02 Ry which gives a cut-off radius of 2.22 Å for s orbitals and 2.58
Å for p orbitals. The real-space grid is equivalent to a plane-wave cutoff energy of
400 Ry, yielding ≈ 0.08 Å resolution for the sampling of real space. We used k-point
sampling of the Brillouin zone based on the Monkhorst-Pack scheme [103] with total
32 k-points. An iterative conjugate gradient (CG) procedure is then applied to reach
stable or metastable structures. The geometries were relaxed until all interatomic
forces were smaller than 0.04 eV/Å and the total stress less than 0.0005 eV/Å3. No
geometrical constrains were applied during relaxation. It is important to notice that,
due to the random nature of the samples, many of them have to be metastable also
after the CG minimization and, for example, after MD relaxation could reconstruct to
energetically more favourable structure and change their magnetic property.

To construct structures similar to those observed experimentally [131, 8] (see Fig.
5.1a,b), we generated samples with unit cells with size 5-10 Å. To simulate the exper-
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Structure and magnetism of disordered carbon

imental conditions of high pressure we used geometries compressed up to 45% of their
equilibrium size. According to our calculations by DFT with the SIESTA code the
initial structures have an internal pressure of 2000-6000 kBar.

To compensate the high internal stress, the CG relaxation leads to drastic changes
of the initial structure. In this way, the minimization procedure gives a chance to reach
different high energy metastable configurations with the possible presence of magnetic
states, similar to the situation observed experimentally for carbon nanofoams (Fig.
5.1a,b).

Table 5.1: Number of magnetic samples with total (absolute) spin polarization m (mabs)
calculated using equations (5.4) corresponding to a set of magnetization intervals in µB.

Natoms Nsamples m(mabs) > 0.01 > 0.05 > 0.10 > 0.25 > 0.5 > 1.0
5 1000 22(23) 22(23) 21(22) 2(2) 2(2) 0(0)
6 1000 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
7 1000 26(26) 26(26) 26(26) 14(14) 14(14) 0(0)
8 10000 7(7) 3(7) 3(4) 1(2) 0(1) 0(1)
9 1000 7(9) 7(7) 6(6) 3(3) 3(3) 0(0)
10 4000 27(27) 27(27) 26(26) 22(23) 16(18) 0(0)
11 1000 6(6) 6(6) 6(6) 5(5) 3(3) 0(0)
12 1000 14(15) 13(14) 12(13) 9(11) 3(7) 0(2)
13 1000 11(13) 10(11) 10(11) 8(9) 6(7) 1(3)
14 1000 15(15) 13(14) 12(14) 11(13) 7(12) 0(2)
15 1000 16(16) 15(16) 14(16) 12(15) 10(15) 1(2)
16 1100 28(28) 24(28) 22(27) 18(25) 13(21) 0(5)
24 100 4(4) 4(4) 4(4) 4(4) 3(4) 0(0)
64 100 5(13) 3(9) 3(8) 3(8) 3(8) 3(8)

To generate the initial geometries we used the following approach. First of all, we
calculate the volume per atom in the graphite unit cell:

vgraphiteatom =
3
√

3

4
r2ccrll (5.1)

where rcc = 1.42 Å is the carbon-carbon interatomic distance in the layer and
rll = 3.35 Å is the interlayer distance in graphite. Since we will construct compressed
unit cells by scaling of the coordinates, it is convenient to express rll in terms of rcc. For
graphite rll = 2.36 rcc. In this way, the volume vgraphiteatom can be written as proportional

to r3cc and
3

√
vgraphiteatom becomes proportional to rcc. Rescaling the unit cell size by rcustomcc

we can construct the initial cubic unit cell for a given number of atoms Natoms = n
with lattice constant a as

a =

3

√
nvgraphiteatom

rcc
rcustomcc (5.2)
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5.2 Procedure for the generation of disordered samples

To allocate the required number of atoms within the prepared cubic unit cell we
randomly generated atomic coordinates. If the newly generated position is closer than
rcustomcc to any atom we replaced such a pair by one atom with average position. At the
end, the geometry has such a property that any two atoms are not closer than rcustomcc .
For the case rcustomcc = 1.42 Å the density of the generated system is equal to the one
of graphite. We used rcustomcc = 1.1 Å that gives a density ≈2.15 higher than graphite.

To calculate the density of graphite using (5.1) we use the equation:

ρ =
µcarbon

NAvogadrov
graphite
atom

(5.3)

where µcarbon=12.01 g/cm3 is a molar mass of carbon.

Table 5.2: An overview of the obtained information about coordination in all studied con-
figurations. The percentage of samples with specific coordination is shown for each series of
atoms. Since the case of 6-sp2 is not applicable to the series with 5 atoms and it duplicates
the value of all-sp2 configurations for the series with 6 atoms we keep these two cells empty.

Natoms Nsamples all-sp2 2-sp2 4-sp2 6-sp2 all-sp3 1-sp 2-sp 3-sp
5 1000 0.0 15.4 38.1 - 46.4 17.8 0.0 1.3
6 1000 33.2 32.4 25.0 - 9.3 7.3 4.9 0.0
7 1000 0.0 30.8 19.1 32.2 17.3 8.1 0.2 0.0
8 10000 22.7 22.0 23.6 9.0 22.4 1.5 0.4 0.0
9 1000 0.0 25.6 31.3 14.3 17.2 1.8 0.1 0.0
10 4000 10.2 22.5 22.5 24.1 11.3 2.5 0.6 0.05
11 1000 0.0 23.0 29.6 19.9 12.8 3.2 0.5 0.2
12 1000 4.6 21.1 24.7 16.7 12.8 1.8 0.3 0.0
13 1000 0.0 24.1 24.1 19.5 7.1 3.0 0.5 0.0
14 1000 2.0 17.3 21.8 23.9 6.5 2.6 0.4 0.0
15 1000 0.0 18.0 21.6 22.8 6.5 4.5 1.3 0.0
16 1100 1.2 16.3 21.5 20.7 7.5 4.5 0.3 0.2
24 100 0.0 4.0 11.0 21.0 0.0 6.0 3.0 0.0
64 100 0.0 0.0 0.0 0.0 0.0 11.0 4.0 1.0

Such a randomly generated geometry with high internal pressure and constrains
on the number of atoms per unit cell is then minimized by CG letting the atomic
positions within the cell and the cell lattice parameters vary. We then study each
sample to search for magnetic states in pure carbon materials. We have studied in this
way 24300 samples. A first screening gives ≈1% (see Table 5.1) of the samples with
magnetic states and different type of coordination (see Table 5.2). In Table 5.2 we
analyse the coordination in samples with 5 to 64 atoms in the unit cell.

In the following we use the following notation to refer to a specific sample, namely
ACxx-yyyy where AC stays for amorphous carbon, xx is the number of atoms in the
unit cell and yyyy denotes a specific sample. As an example, the sample AC07-0010
shown in Fig. 5.9 is the tenth of a series with 7 atoms in the unit cell.
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We see that also samples with only sp2 or sp3 bonding are found. Their number
decreases for the larger unit cells as expected because there are many more possible
configurations. We find, as expected from considerations that will be discussed in
section 5.5, no samples with all-sp2 atoms for odd Natoms. Unexpected is that for
Natoms = 8 there is a maximum number of all-sp3 samples. For the samples with mixed
bonding we report the percentage of samples with 2, 4 or 6 sp2 bonded atoms. Within
the many possible configurations, we distinguish those with all-sp2 atoms (graphite-
like structure), all-sp3 atoms (diamond-like structure), configurations with two-fold
coordinated atoms and mixed configurations with different percentage of sp2/sp3 atoms.
The two first groups (all-sp2 and all-sp3) are non magnetic and the last two groups are
possible candidates for magnetic states as it will be discussed in more details in section
5.5.

To distinguish between ferromagnetic and antiferromagnetic samples we use the
total spin polarization m calculated as a sum of magnetic moments over all atoms
and the total absolute spin polarization mabs calculated for absolute values of atomic
magnetic moments in the following way:

m =

NAtoms∑
i=1

si, mabs =

NAtoms∑
i=1

|si|, si = qupi − qdowni (5.4)

where qupi - charge corresponding to spin ”up” at the i-th atoms, qdowni - charge
corresponding to spin ”down” at the i-th atoms. (see section 1.5 in the introduction
for more details).

Such equations allow to detect both antiferromagnetic samples, where the value
m = 0 and mabs 6= 0, and ferromagnetic ones for which m = mabs. Moreover we found
a set of samples where m > 0 and m 6= mabs. This is a sign of ferrimagnetic properties.

5.3 Search of magnetic states

To identify the geometrical structures responsible for the magnetic states, we per-
form a numerical experiment based on a generate and test approach [133] with elements
of genetic algorithms [134]. Such a method is convenient in view of the available large
amount of computational facilities which allows to calculate automatically thousands
of independent configurations. We varied the number of atoms together with the unit
cell size and number of configurations in the computational series iteratively to identify
the most typical geometrical structures carrying magnetic states.

We started with 64 atoms per sample and 100 samples in the series. We found 5
configurations with total spin polarization m > 0.010µB and only 3 with m > 0.500µB,
(see Table 5.1 last row) where m is expressed in (5.4). At the same time, from Table 5.1
we see that within the series with 64 atoms besides the samples with sizeable total spin
polarization m there are a number of samples (i.e. 8-3=5 samples) where m is small
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5.3 Search of magnetic states

while mabs is of the order of µB. This facts is a clear evidence of antiferromagnetic
arrangement of magnetic moments in the ground state as discussed at the end of section
5.2.

Figure 5.2: Examples of spin polarized structures for disordered carbon (64 atoms per
unit cell) after relaxation, showing atoms with magnetic states (pink clouds) surrounded by
nonmagnetic ones. The atoms in sp3 hybridization are small balls marked by light gray,
the atoms in sp2 hybridization are balls marked by brown. The atoms in sp3 hybridization
having sp2 neighbours are balls marked by gray. The 1D chains of sp2 atoms separated by
single sp3 atoms are marked by bonds. Here we see well distinguishable networks made of
1D sp2 chains. We see that not all the magnetic atoms belong to sp2 chains. The geometry
is visualized by the VESTA program [36].

A first analysis shows that magnetic moments are carried by individual atoms in
specific atomic configurations. We used an automated procedure to detect different
types of hybridization based on the number of neighbours within a radius of 1.8 Å.
Typical configurations with magnetic atoms are shown in Fig. 5.2a,b,c. We have
highlighted the presence of networks of sp2 atoms. We will come back to the relation
between these networks and the magnetic atoms in section 5.5.

One might have expected the source of uncompensated spin to be dangling bonds
originating from 2-fold carbon atoms as it was shown for grain boundaries in [135].
We find instead that also 3-fold carbon atoms may have uncompensated spin and that
this latter case occurs at least one order of magnitude more frequently than 2-fold
atoms. While for 2-fold coordinated atoms the magnetic moment is clearly related to a
dangling bond, the situation of 3-fold coordinated atoms is more complex. Depending
on the bond angles, it may correspond to a planar sp2 configuration like in graphite
or to a sp3 configuration with a dangling bond as found for instance at the ideal (111)
diamond surfaces.

At the same time, within the first series of samples with 64 atoms we have shown
that only 3 configurations have more than one magnetic atom. This suggests that
probably the geometrical conditions which make atoms magnetic can be detected based
on smaller and simpler geometries with fewer atoms per unit cell. To do so we iteratively
reduced the number of atoms together with the unit cell size.
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In the second series with 100 configuration and 24 atoms per sample we found 4
configurations with total spin polarization m > 0.005µB and only 3 with m > 0.500µB.
Typically, we had 1-2 magnetic atoms per unit cell.

In view of the small number of magnetic atoms in each sample, to make our search
for structures with magnetic states more efficient we have increased the total number
of configurations in the series up to few hundreds and varied the number of atoms in
the unit cell. We generated and optimized series of thousands of configurations with
16 to 5 atoms per unit cell. Let us notice first a few interesting facts. First of all,
we did not find any magnetic configurations within 1000 samples in the series with 6
atoms per unit cell and only 3 magnetic configurations with S > 0.100µB within 10000
samples in the series with 8 atoms per unit cell. The series with 5 and 7 atoms per unit
cell instead present magnetic configurations. This could be a sign of the importance of
the parity of the number of atoms in the unit cell.

By reducing the number of atoms per unit cell we also reduce the number of pos-
sible relaxed configurations. This reduction is reflected in the presence of duplicate
geometries up to variations in the directions of the unit cell vectors. The presence of
duplicate geometries also suggests that, within the constraints imposed by the sample
construction, such geometries are more preferable than the others.

5.4 Energy and magnetism

Within thousands of calculated configurations with formation energy lying between
0.0 and 2.0 eV/atom above diamond, as shown in Fig. 5.3 a few hundreds magnetic
ones were found with different energies and spin polarizations. We note in passing
that, besides diamond and graphite there is another sharp peak at low energy. Since
these configurations are not magnetic we do not discuss them here and they will be
the subject of the future studies. In Fig 5.4 we analyse the relation between formation
energy and magnetic moments. The total energy per atom for magnetic configurations
lies in a relatively restricted range of 0.6-1.5 eV/atom above diamond and graphite,
most of them being in 0.8-1.2 eV/atom energy range. Also we see that in general
we cannot identify any specific energy-spin region for particular series of calculations
excluding the series with 7 atoms per sample (see top polygon in Fig. 5.4) and partly
the series with 10 atoms per sample (see middle polygon in Fig. 5.4). The presence of
duplicates, especially for the series with 5-11 atoms that we have already discussed in
5.3, is indicated by ellipses. Low energy configuration are indicated by rectangles and
we see that they cluster in the two regions indicated by shaded polygons for energy ≤
0.8 eV/atom.

As mentioned in the introduction, we see that there are many metastable configura-
tions at energies relatively low (only 10-15 % higher than diamond and graphite). The
special character of the energy landscape of carbon systems, related to the fact that
carbon can form a wealth of structures, often with very high energy barriers among
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Table 5.3: Comparison of the 6 computational models used to calculate the formation energy
of 5 carbon allotropes, i.e. 3 sets of parameters within GGA-PBE and 3 sets of parameters
within the LDA-CA approximation. Here Emesh gives the resolution for the sampling of real
space based on the plane-wave cutoff energy. Ecutoff is the cutoff radius of the atomic orbitals.
(see section 5.2) Two types of basis sets were chosen: the standard DZP and the custom one
constructed for graphitic materials using the approach described in [25, 136]. Notice that the
minimal energy structure is graphite for GGA-PBE and diamond for LDA-CA.

GGA-PBE, 32 k-points DZP DZP custom
Emesh = 400 Ry Ecutoff = 1 mRy Ecutoff = 20 mRy basis

diamond 0.021 0.008 0.112
graphene 0.007 0.066 0.003

graphite-A 0.002 0.015 0.001
graphite-AB 0.000 0.001 0.000

graphite-ABC 0.001 0.000 0.001

LDA-CA, 32 k-points DZP DZP graphite
Emesh = 400 Ry Ecutoff = 1 mRy Ecutoff = 20 mRy basis

diamond 0.000 0.000 0.000
graphene 0.195 0.257 0.079

graphite-A 0.173 0.166 0.059
graphite-AB 0.156 0.131 0.044

graphite-ABC 0.157 0.132 0.044

them, has been pointed out in the seminal work of [132] where all the 1812 possible
structures of C60 are shown to form a funnel of well separated, deep minima not too
far in energy from the absolute minimum corresponding to icosahedral C60.

5.5 Structure and magnetism

As we have seen in the previous section, magnetic structures are rare and the
relation between structure and magnetism is certainly not trivial. We try and use the
graph theory [137] to relate structure and magnetism. To take advantage from this
theory we need to have only one odd numbered coordination. This is realized in our
carbon system where no atoms with one bond or five bonds are present because such
a configuration is especially unstable and was never observed in our calculations.

We start by a lemma that we have derived ourselves although it might be reported
already in the literature.

Lemma. Any connected graph with nodes having 2, 3 or 4 neighbours always has
an even number of nodes with 3 neighbours.

Proof. Suppose we have N2 nodes with 2 neighbours, N3 nodes with 3 neighbours
and N4 nodes with 4 neighbours. Each edge connects two nodes. Due to this fact,

73



Structure and magnetism of disordered carbon

0 0.5 1 1.5 2

N
um

b
er

 o
f 

sa
m

pl
es

E, eV/atom

Diamond

Graphite The region of 
magnetic samples

Distribution of the energy

Figure 5.3: Distribution for the energy referred to diamond of all the calculated samples.
The energy intervals marked as ”diamond” and ”graphite” corresponds to the specified sys-
tems, the third shaded energy interval contains magnetic samples and is further analysed in
Fig. 5.4.

the total number of edges in the graph is (2N2 + 3N3 + 4N4)/2 = M , where M is an
integer positive number, whence 3N3 = (2M − 4N4 − 2N2) = 2(M − 2N4 −N2). This
means that 3N3 is an even number. In fact, since 3 is odd, the multiplication 3N3 can
be even only if N3 is even.

The structure of the graph described in the lemma corresponds to the structure of
disordered carbon where we have atoms with either 2, 3 or 4 neighbours. This case
corresponds either to atoms in sp, sp2 and sp3 hybridization or atoms in sp2 and sp3

hybridization with dangling bonds (2 and 3 neighbours respectively).
The importance of this lemma lies, as it will be shown later, in the relation between

magnetic states and the presence of atoms in sp2 hybridization. Based on our calcula-
tions, we usually observe a non compensated spin located at atoms in sp2-hybridization
with 3 neighbours and an unpaired π-orbital. Another important observation is that
sp2 atoms usually group in network structures made of 1D chains of sp2 atoms as shown
in Fig. 5.2. Such a structure may be represented as a bipartite graph. Graphene has a
2D bipartite unit cell [1]. An example of a graph representation for graphene is shown
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Figure 5.4: Total spin per atom as a function of total energy per atom (referred to diamond)
for magnetic structures. Each point has a name combining the number of atoms and index
in the series. Few regions of spin and energy are marked by light gray polygons. Within
them, ellipses indicate the existence of many duplicates as described in the text. The two left
shaded regions contain low energy structures marked by rectangles. The structures indicated
as A, B, C, D are shown in Fig. 5.10, 5.9, 5.11 right and 5.11 left respectivelly.
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Figure 5.5: An example of the division procedure that maps the bipartite lattice of graphene
into two disjointed subgraphs called as Left and Right. From left to right: a 2X2 supercell
of graphene indicated by the light gray polygons. Atoms belonging to the A-sublattice (B-
sublattice) are represented by white (gray) balls with labels 1A(B), 2A(B), 3A(B), 4A(B).
Since we consider 2D periodical structure we also show the periodical images outside the
unit cell. Through an intermediate step we can construct the Left and Right subgraphs as
indicated.

Figure 5.6: sp2-sp3 1D chain (left) and 2D-network (right) examples. As previously (see Fig.
5.2) for better representations we use different colours for atoms in sp2 and sp3 hybridization
having different neighbouring atoms.

76



5.5 Structure and magnetism

in Fig. 5.5. According to the Lieb theorem [138, 91, 113] we can expect the presence
of nonzero spin if the number of atoms in the Left and Right subgraphs is different.
But according to the above lemma, we always have an even number of atoms with
3 neighbours so that most structures will have the same amount of atoms in the left
and right subgraphs. As a result, to have magnetic states, we need specific geometric
structures. For example, in the simplest case, the source of uncompensated spin could
be a single sp2 atom surrounded by sp3 atoms. But, according to the lemma, we will
always have at least one more sp2 atom located somewhere in the unit cell. If these
two atoms are either in different subgraphs or form a bond, no magnetic states may be
expected.

One straightforward consequence of the above considerations is that the absence of
sp2 atoms in the unit cell, i.e. a fully sp3 structure, means the absence of any magnetic
states. Within 24300 optimized configurations we have 4132 fully sp3 structures and
all of them are non magnetic.

Since sp2 atoms are the crucial ingredient to have magnetic states, we analyse our
samples by evidencing the connections between sp2 atoms. In this way we identify
networks of bonds between them, as shown in Fig 5.2a,b,c and more in detail in Fig
5.6. To make the network of sp2 atoms more evident we have marked the sp3 atoms
with tiny balls so that the remaining geometry looks like a 3D network of 1D chains
of sp2 atoms. Such a 3D network may consist of a set of isolated clusters or may form
an infinite structure due to the periodic boundary conditions in any or all directions
of the unit cell.

Let us now consider one of the simplest cases where we can expect magnetic states
on the basis of the lemma: two sp2 atoms not bonded to each other within the unit
cell. We can automatically detect all such configurations. Within 24300 we found 990
samples with only two 3-fold atoms not bonded to each other where 34 of them have
appreciable magnetic moments in ferro- or ferri- or antiferromagnetic configurations
(m > 0.020 µB or mabs > 0.020 µB). For completeness, we give the distribution
of magnetic samples within each series: 8:1, 9:1, 10:6, 12:6, 13:3, 14:5, 15:4, 16:8
(Natoms:Nsamples) where 3 of them are with m <0.020 µB and mabs > 0.020 µB, 20 of
them are with m ≈ mabs and other 11 with mabs > m.

In all 34 structures the distance between the 2 sp2 atoms > 2.19 Å. Since we use
a localized basis set with cut-off radius and the standard set of parameters which give
the cut-off radius of s orbital 2.22 Å (see description in section 5.4) we did one check
with longer cut-off radius for one similar sample. For smaller cut-off energy which
gives r2scut−off = 3.07 Å and r2pcut−off = 3.84 Å we get practically the same value of m
for the fully relaxed geometry, ruling out the possibility of a numerical artefact. The
requirement of a minimal distance of 2.19 Å between 3-fold coordinated atoms gives
613 samples instead of 990, increasing the percentage of magnetic samples to ≈ 5.5%.

Within all 613 samples, we found that the 2 sp2 atoms have either 0, 1 or 2 common
neighbours but we could not find any correlation between the number of common
neighbours and the presence of magnetic states. We notice, however, that the presence
of 2 common neighbours means that two 3-fold coordinated atoms form a tetragon.
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Figure 5.7: Comparison of the radial distribution functions calculated for all atoms of all
24300 optimized samples with that calculated by considering only the atoms which carry
maximal magnetic moment.

Interestingly, such a situation was found 4 times for the 34 samples with a magnetic
state, a relatively high percentage.

The above analysis was performed to identify some general geometrical configura-
tions leading to magnetism starting from the simplest possible situation. Our analysis
accounts then for only 34 of the total 202 structures with magnetic moments. Never-
theless we have seen that the local environment, namely the interatomic distances and
coordination of the atoms carrying a magnetic moment, plays a role. A way to further
investigate this point is to compare the radial distribution function (rdf) of magnetic
atoms with all others as we do in Fig. 5.7. If we average over all atoms of all 24300
studied configurations, the rdf presents two sharp peaks at the interatomic distance of
graphite (1.42 Å) and diamond (1.54 Å) and a broad distribution around them from ∼
1.32 Å to ∼ 1.7 Å. If we consider only the atom with maximum (non-zero) magnetic
moment within each sample, we find that the two sharp peaks disappear, in agreement
with our discussion that rules out the possibility of magnetism for atoms with only
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graphitic (fully sp2) or only diamond(fully sp3) bonds. We see instead a number of
peaks in between these two distances that have to be related to a mixed bonding. We
notice that a few peaks are rather pronounced but we did not manage to assign each
of them to a specific bonding configuration.

In this chapter we have tried to find out the most promising configurations giving
rise to magnetism. As we have discussed the minimal conditions to have magnetic
moments are very stringent and lead to a very small percentage of magnetic structure
among the thousands studied. Nevertheless some exist and, as we show in the next
section 5.6, could lead to magnetic order if suitably repeated. Moreover, since our
analysis only gives a first insight in this phenomenon, we examine in detail in Section
5.7 the structure of the most interesting realizations found in our quest.

5.6 Exchange energy

In this section we focus on the samples with atoms carrying a magnetic moment
and examine the possibility of magnetic order in the spirit of mean field theories.

The samples we studied have mostly orthorhombic unit cells with lattice vectors a,
b and c where all three periodic directions are different (i.e. anisotropic crystal). If the
unit cell has only one atom with magnetic moment much larger than the others, we
calculate the exchange energy J for each periodic direction separately. To do so, we
double the original unit cell in the chosen direction and initialize the spins on the two
magnetic atoms as ”up” and ”down” in the first and second periodic images respectively
and calculate the total energy which we call here EAFM . By initializing the spins on
the two magnetic atoms as ”up” and ”up” we calculate the total energy EFM . From
these two values we calculate the mean field parameters (exchange energy) as

J =
EAFM − EFM

2
(5.5)

Since we have three independent values of J calculated for unit cells doubled in the
direction of the a, b and c lattice vectors, we call them here as Ja, Jb and Jc. In order
to automatize the evaluation and ordering of J even though we do not have a priori
any knowledge of the studied geometry we use the following procedure. We start by
taking only the samples which have at least one positive value among Ja, Jb, Jc. Then,
for the chosen sample, we sort the values of Ja, Jb, Jc in descending order. The sorting
breaks the relation with the a, b and c vectors so that we rename the sorted values
as J1, J2, J3 where J1 is always positive and J1 ≥ J2 ≥ J3. Finally we group all the
chosen samples, sorting them by J1 in descending order and make the plot shown in
Fig. 5.8.

We have to note that, particularly for the large samples, and in any case in view of
the large number of studied samples, we could not study the stability of the magnetic
samples with respect to temperature. We could only perform the conjugated gradient
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Figure 5.8: Mean field parameters J1, J2, J3 calculated using equation (5.5) in 3 periodical
directions sorted by the automatic procedure described in the text. Two approximations
were used, i.e. LDA-CA (top panel) and GGA-PBE (bottom panel). Notice the cut in the
Y axis of the top panel.
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optimization for the doubled cells. Both configurations with parallel and antiparallel
orientation of magnetic moments were checked in this way.

The first 10 points in Fig. 5.8 with the highest values of J in LDA-CA approx-
imation, correspond to the following samples: AC07-0657, AC07-0680, AC07-0003,
AC16-0070, AC07-0907, AC14-0388, AC14-0742, AC12-0367, AC15-0776, AC16-1024.
The first 10 points in GGA-PBE approximation correspond to the samples AC14-0831,
AC07-0907, AC15-0656, AC13-0119, AC15-0267, AC10-1116, AC07-0003, AC09-0394,
AC07-0657, AC09-0027. Only the two samples AC07-0657 and AC07-0907 are among
the first 10 in both approximations. Beside two these samples, the sample AC14-0831
has, in both approximations, a positive value of all three J ’s. Unfortunately, as ex-
pected, the LDA-CA and GGA-PBE approximations often do not agree, especially for
such a complicated case as disordered carbon where changes in the bond length up
to 2-3% can dramatically change the geometry and electronic properties. In contrast
to plane geometries, like the graphene grain boundaries examined in [135], these 3D,
disordered geometries usually do not have any symmetry that can compensate small
variations in the bond length. Despite these shortcomings, two samples with the high-
est values of J are present in both approximations. This fact serves as evidence of a
qualitative agreement between the two used approximations.

After these considerations on the qualitative applicability of the used approxima-
tions, we can draw some conclusions based on the important physical observations
found in these calculations. First of all, the only few samples that have all three values
of J positive, making it possible to expect 3D ferromagnetism, have very small values
of J only up to few meV. This finding agrees with the fact that 3D ferromagnetism
has been experimentally observed in carbon nanofoams only up to 90 K.

Most samples have two positive values of J (see Fig. 5.8) making it possible to
have 2D lattices of magnetic moments with ferromagnetic arrangement. In some cases
the values of J are rather large and might lead to high Curie temperature. Since,
in 2D ferromagnetic order can exist, we pay special attention to this important case.
When the third value of J is negative, the system has antiparallel coupling of 2D
ferromagnetic networks. To exclude this effect and have only ferromagnetic couplings,
we have to separate the 2D networks by imposing additional geometrical constrains.
In Fig. 5.11 we show how this could be realized by creating 2D grain boundaries which
naturally appear during growth of 3D crystals. Such a geometrical isolation of 2D
structures could lead to ferromagnetic order in a bulk 3D system. In the next section
5.7 we discuss the geometry of the most promising structures, namely those with high
values of the J parameters.
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5.7 Examples of magnetic structures

Figure 5.9: Spin density isosurface plot and unit cell of the sample AC07-0010 shown (from
left to right) in the plane orthogonal to the 100, 010, 001 and 111 directions. This structure
occurs 11 times in a set of 1000 samples.

Here we show a few geometrical examples discovered in our search which could be
important from different points of view. Out of many and many different geometries
within the series with small number of atoms, we will pay attention to the samples
AC07-0003 and AC07-0010 (marked as A and B in Fig. 5.4). Sample AC07-0003 has
high values of two J parameters (see top-10 list in the text related to Fig. 5.8) and
was found several times with small variations in geometry and sample AC07-0010 has
a highly symmetric geometry with 4 sp2 atoms with magnetic moments and appeared
11 times.

Also we will pay attention to two samples, AC09-0405 and AC14-0831 (marked as
C and D in Fig. 5.4), due to their low formation energy (left filled region in Fig. 5.4,
relatively simple structure, similarity to the geometry of graphite and ferromagnetic
arrangement of magnetic moments.

Finally we briefly discuss two more complicated structures, AC09-0708 and AC15-
0267, which have 3D ferromagnetic properties according to the GGA-PBE approxima-
tion.

An example of a 3D bipartite unit cell is presented by the sample AC07-0010 shown
in Fig. 5.9. Its structure can be described by considering a sequence of steps starting
from a face-centered cubic cell. Taking into account all 6 atoms sitting at the center
of each face of the unit cell, we can construct an octahedron with 6 vertexes and 8
faces. Within the 8 faces, we can choose 4 ones in such a way that any two of them
have no common edge. Putting 4 atoms at the center of the 4 chosen faces of the
octahedron together with the original 3 atoms sitting at the faces of the cubic unit
cell would finally produce our geometry. The final structure has 7 atoms where 3 of
them are 4-fold coordinated in sp3 hybridization and 4 atoms are 3-fold coordinated
in sp2 hybridization. Each of the 4 sp2 hybridized atoms carries a magnetic moment
shown as a pink cloud in Fig. 5.9 and contributes the value mC = 0.061 µB to the
total spin polarization. The geometry has 3+4=7 atoms and (3x4+4x3)/2=12 bonds
each of them of 1.51 Å, corresponding to a peak in the rdf of magnetic atoms in Fig.
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A
B
C

Figure 5.10: Spin density isosurface plot of the sample AC07-0003. Top, side and front
views.

5.7. This structure presents a frequently occurring pattern where a 3-fold coordinated
carbon atom in the sp2 hybridization is surrounded by 3 sp3 atoms. In Fig. 5.5) we
have seen that graphene has a 2D bipartite unit cell with one atom in the Left and one
in the Right subgraphs. The sample AC07-0010 has a 3D bipartite unit cell with 4 sp2

atoms in the Left and 3 sp3 atoms in the Right subgraph. This situation is similar to
the structure of half hydrogenated graphene [139] where only the carbon atoms on one
sublattice are sp3 bonded to a hydrogen. Exactly this feature allows us to apply the
Lieb theorem [138, 91, 113] and expect non zero total spin polarization in agreement
with the result of our DFT calculations.

The magnetic states in the sample AC07-0003 shown in Fig. 5.10 are related to the
presence of dangling bonds on two-fold coordinated carbon atoms labelled as C in the
left panel of Fig. 5.10. Beside the rather high values of two mean field parameters J ’s
(see Fig. 5.8 and text), such a structure has another interesting geometrical property.
In Ref. [56], the energy of several types of edges was considered and the reconstructed
5-7 zigzag edges with pentagons and heptagons were found to have the lowest energy.
Also other types of reconstructed edges were studied and the armchair 5-6 (pentagon-
hexagon) structure was found to have not much higher energy than the lowest. The
reconstructed 5-6 armchair edge is a structure which can be used to construct the
geometry of the sample AC07-0003. To do so we have to take two armchair 5-6 edges
and connect them together using two two-fold coordinated atoms from the pentagons
on each edge (atoms A and B in Fig. 5.10 left) with the addition of an intermediate
carbon atom labeled as C. Such a junction saturates all dangling bonds of atoms A and
B while keeping an unpaired electron on atom C. The sample AC07-0003 is made of
a stacking of such 2D planes with magnetic atoms. One could describe this structure
as a graphite lattice where the planes contain grain boundaries with two-fold atoms
carrying magnetic moments.

Another family of structures which can be seen as modifications of the graphite
structure is represented by the two samples AC09-0405 and AC14-0831 both shown in
Fig. 5.11. The first one, AC09-0405, has a graphite-like structure made of two graphene
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Figure 5.11: Spin density isosurface plot of AC09-0405 and AC14-0831 samples. For better
representativity the unit cell of AC14-0831 was rotated in such a way to put two of the lattice
vectors along the graphene plane.

planes separated by an interplane distance dll = 3.17 Å (to be compared to 3.35 Å in
graphite). The key feature of this geometry is the presence of a 3-fold coordinated
interstitial atom between the graphene planes with magnetic moment mC = 0.155 µB.
Although this sample has been found in our random search, one can identify a set of
simple geometrical steps to construct it. Let us consider 4 in-plane unit cells of an
AA-stacked graphite, namely a unit cell with 8 atoms and vertical periodicity equal
to the interplane distance. In the top right panel of Fig. 5.11 4 such unit cells are
shown. Now select an arbitrary carbon atom in the unit cell and apply the following
procedure. We replace this atom with two atoms, one above and one below the original
plane. In getting out of plane, these two atoms become close enough to form a bond
between planes. This geometry has to be further relaxed to obtain the final structure
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shown in the right panels of Fig. 5.11. Once we calculate the spin polarized electronic
density, we find that a large magnetic moment appears on one of the two interstitial
atoms. As shown in the right bottom panel of Fig. 5.11 the magnetic atom is part of
a tetragon, a feature that we have discussed in Section 5.5 and that appears in 4 of
the 34 magnetic samples with two sp2 atoms. Possibly, the almost square form of the
tetragon, with angles close to 90 degrees, is of importance.

The second example of graphite-like structure is AC14-0831 shown in Fig. 5.11.
We can describe its structure as a graphite made of planes of graphene connected
through an interplane dimer C2 (atoms M1 and M2 in Fig. 5.11 left-middle). Moreover,
each graphene plane has a grain boundary [140, 141, 80] made of a continuous line of
Stone-Wales 5-7-7-5 defects [142]. Another way to imagine the structure of this grain
boundary is to join together two grains with zigzag edges reconstructed as zigzag-57 [56]
(Fig. 5.11 top-left). The interplane dimer C2 forms one pentagon and one tetragon
with bottom and top planes respectively (Fig. 5.11 left-middle). The tetragon is
formed by bonds between the C2 dimer and two heptagons in the grain boundary in
the graphene plane (atoms A and B in Fig. 5.11 left-top) while the pentagon is formed
by bonds between the C2 dimer and 3 atoms belonging to the hexagons in the graphene
plane (atoms C, D, E in Fig. 5.11 left-top). The parallel alignment of the A-B bond
to the vector connecting the atoms C and D gives the possibility of connecting the
planes through the interplanar dimer M1-M2 by forming a pentagon and a tetragon
with planar arrangement.

The origin of the magnetic states in this configuration is again explained by the Lieb
theorem [138, 91, 113] since the sp3 atoms C and D, belonging to the same sublattice,
break the bipartite lattice symmetry. This situation is similar to the one encountered
in Chapter 4 for the junction of a nanotube with a graphene ribbon [143]. Also there,
the sp3 atoms were breaking the bipartite symmetry, leading to magnetic moments.

The last set of samples discovered in our search has a 3D ferro/ferri-magnetic struc-
ture with large values of J . The samples AC16-0070 and AC15-0776 studied by LDA-
CA (point N4 and N9 in Fig. 5.8 top) have a complicated geometry that we do not
show here because it cannot be described in a simplified way as done previously. Within
the samples studied by GGA-PBE we select AC15-0267, AC10-1116 and AC09-0708
(points N4, N5, N12 in Fig. 5.8 bottom) and show two of them in Fig. 5.12. The
sample AC15-0267 can be classified as a graphite-like geometry with modifications in
the graphene plane (i.e. grain boundaries and/or point defects) and interplane atoms
(see Fig. 5.12 left-middle) similar to the geometry of AC14-0831. One more example
of magnetic states due to the presence of dangling bonds is given by the sample AC09-
0708 shown in the right panels of Fig. 5.12. This sample also has a layered structure
where the two fold coordinated atoms always connect two layers. Each layer itself is
made of two pentagons and two octagons arranged along a line between two zigzag
rows. A top view of the sample gives an image very similar to the high angle grain
boundary found for graphene on Ni in ref. [83].

All structures presented in this section are reported in the Appendix in the xsf file
format suitable for use in the VESTA program [36].
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Figure 5.12: Spin density isosurface plot of the samples with 3D ferrimagnetic properties
studied within GGA-PBE approximation.
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5.8 Conclusions

In this chapter we have presented the results of a massive, automated search of dis-
ordered carbon structures with magnetic states. We have tried to identify the common
structural features present in the samples where magnetic moments appear. In our
analysis we have used elements of graph theory and the analogy to structural motifs
in graphene grain boundaries. We believe that our computational approach can lead
to progress in the understanding of s − p electron magnetism. This task is however
still far from complete and the ways to create magnetic order are still elusive and will
require further investigations.
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Appendix A

Geometry of magnetic carbon structures

To invite other contributions to this fascinating topic we give here the structures and
coordinates of the selected samples presented in section 5.7 of chapter 5. Coordinates
of the samples indicated in bold face are in the xsf file format suitable for use in the
VESTA program [36]. It is also possible to download the same files from here [144]
where, after the structural data presented in this appendix, also the magnetisation
density on a 3D grid is given.
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= AC07-0003.xsf (LDA-CA) =
CRYSTAL

PRIMVEC

3.612119 -0.753491 -0.012559

-0.753491 5.597208 -0.256742

-0.012559 -0.256742 3.212877

PRIMCOORD

7 1

6 0.366702 3.228975 2.998248

6 0.644662 1.159799 1.867044

6 2.698047 1.964710 2.547218

6 0.618532 4.630033 0.475717

6 0.858486 5.774530 1.165454

6 2.892894 0.688410 1.860012

6 1.346896 2.503804 -0.659426

= AC07-0010.xsf (LDA-CA) =
CRYSTAL

PRIMVEC

3.549133 -0.000652 -0.001402

-0.000652 3.549255 -0.001631

-0.001402 -0.001631 3.548629

PRIMCOORD

7 1

6 2.487469 0.751410 0.405783

6 -0.122821 1.583149 3.121223

6 1.650974 3.358448 3.119529

6 0.819916 2.419018 0.405182

6 0.817212 0.749293 2.285469

6 2.484001 2.415802 2.288480

6 1.652205 1.584366 1.345821

= AC09-0405.xsf (LDA-CA) =
CRYSTAL

PRIMVEC

4.772368 0.041943 -1.339252

0.041943 3.169901 -0.035346

-1.339252 -0.035346 4.773555

PRIMCOORD

9 1

6 1.379449 1.211283 2.375900

6 0.983459 -0.110845 2.765921

6 1.731633 2.488277 0.311727

6 -1.661513 2.375219 1.983419

6 3.442896 2.491156 2.023574

6 4.100400 2.240449 -0.345172

6 2.356199 2.181241 3.011144

6 -0.013667 2.686176 3.768721

6 0.745157 2.181604 1.399339

= AC14-0831.xsf (LDA-CA) =
CRYSTAL

PRIMVEC

4.849237 0.317760 -0.383480

0.317760 5.080545 -0.058149

-0.383480 -0.058149 4.645736

PRIMCOORD

14 1

6 2.868509 0.045732 1.162088

6 -0.239195 0.059033 3.929375

6 2.454660 1.172871 1.974821

6 4.936299 3.227961 3.941798

6 4.686594 5.385780 0.868419

6 4.025327 2.635564 -0.920744

6 -0.487281 0.957895 0.129901

6 0.829000 4.216112 0.368784

6 0.269912 5.772545 2.512603

6 1.226732 2.472597 3.621706

6 2.362227 4.210486 0.434003

6 3.590372 1.933145 2.353593

6 2.742908 3.215408 -0.508364

6 1.219785 1.478675 2.601759

= AC15-0776.xsf (LDA-CA) =
CRYSTAL

PRIMVEC

4.616000 -0.406854 -0.172872

-0.406854 4.847671 -0.140578

-0.172872 -0.140578 4.188634

PRIMCOORD

15 1

6 1.174550 4.103143 0.623598

6 1.861997 1.968623 0.582340

6 2.742942 4.269498 0.624322
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6 2.947446 1.780887 1.819937

6 3.008134 4.325478 2.102337

6 3.606176 0.447493 4.098199

6 0.082808 0.246539 3.294148

6 0.769103 2.766932 1.235723

6 2.688973 0.693498 2.844454

6 2.609411 2.977773 2.692222

6 1.258166 1.248708 3.352590

6 3.039953 2.914214 0.005657

6 1.063619 2.766570 2.693872

6 3.991898 1.903641 0.712595

6 0.446436 3.869272 3.498050

= AC16-0070.xsf (LDA-CA) =
CRYSTAL

PRIMVEC

4.822003 0.383144 -0.150519

0.383144 5.035109 -0.246954

-0.150519 -0.246954 4.188021

PRIMCOORD

16 1

6 0.809957 1.102835 0.422542

6 3.909180 0.951293 2.201017

6 0.567831 3.909486 0.634355

6 2.451197 1.309575 2.848269

6 5.031227 0.578290 3.141339

6 0.652162 3.680934 3.267093

6 1.535275 0.114944 2.561616

6 4.898265 3.509038 1.753393

6 2.235466 3.823814 3.055961

6 4.118321 4.717481 1.064850

6 2.890935 4.171439 0.341996

6 2.457371 2.654478 2.223465

6 4.411768 2.149276 1.243780

6 2.925331 2.687290 0.844562

6 1.281699 -0.175381 1.165825

6 1.988089 1.524544 4.249918

= AC09-0708.xsf (GGA-PBE) =
CRYSTAL

PRIMVEC

4.866303 0.206339 -0.236017

0.206687 4.865862 0.237583

-0.209562 0.208351 3.234590

PRIMCOORD

9 1

6 1.692902 3.991494 3.191736

6 2.966742 4.432779 2.816513

6 0.014111 2.312788 3.191486

6 2.332370 1.675497 1.267455

6 1.599288 2.407639 0.392077

6 0.409607 4.621718 3.121964

6 4.439134 1.245480 2.579592

6 3.063608 0.942698 2.143922

6 4.249940 3.802345 2.885633

= AC10-1116.xsf (GGA-PBE) =
CRYSTAL

PRIMVEC

3.398919 -0.533787 0.051873

-0.534963 4.344658 0.276706

0.048649 0.276078 4.854477

PRIMCOORD

10 1

6 -0.180366 1.048847 0.995151

6 1.171111 0.757593 0.371141

6 3.140779 0.760248 2.568651

6 1.939896 3.967189 3.548277

6 2.394987 1.586068 0.390720

6 0.918025 4.102250 4.682954

6 1.469178 3.876000 1.195374

6 0.167765 2.509957 3.019837

6 1.193294 3.293902 2.460597

6 3.082504 2.768839 4.267774
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Geometry

= AC13-0119.xsf (GGA-PBE) =
CRYSTAL

PRIMVEC

4.799652 0.587515 0.008143

0.585366 4.668862 0.367251

0.006508 0.368912 4.067691

PRIMCOORD

13 1

6 2.711552 1.253031 3.799337

6 3.408505 3.809068 1.825770

6 2.218403 3.792774 2.748473

6 1.402673 2.426417 1.046304

6 3.917130 -0.022107 1.946160

6 1.670094 1.322784 1.799694

6 1.458049 0.583712 3.091918

6 5.695524 5.145338 0.305913

6 2.761236 0.629607 1.171062

6 1.040714 3.769794 1.642575

6 4.421377 4.951445 3.773921

6 2.501746 2.842511 3.939301

6 3.708563 3.254647 0.500249

= AC15-0267.xsf (GGA-PBE) =
CRYSTAL

PRIMVEC

4.387947 0.245011 0.004477

0.254262 4.501578 -0.377553

-0.019412 -0.379486 5.783572

PRIMCOORD

15 1

6 0.996838 0.286437 0.113559

6 4.013682 0.534122 5.278529

6 2.938242 0.356469 2.968787

6 4.157717 4.527538 3.604890

6 1.634750 3.361754 4.547122

6 1.536083 3.983841 0.989995

6 2.182375 2.027602 4.687208

6 1.654130 1.681312 0.151850

6 3.773794 2.986816 0.908528

6 0.783315 3.288531 3.472803

6 0.904677 2.606292 1.133115

6 2.700176 -0.530954 1.844100

6 2.094739 1.438490 3.297868

6 3.172593 1.979415 -0.006875

6 1.172729 2.251077 2.586400

= AC15-0656.xsf (GGA-PBE) =
CRYSTAL

PRIMVEC

4.314439 0.344511 0.377673

0.278738 4.539489 -0.218486

0.363610 -0.315954 4.920256

PRIMCOORD

15 1

6 2.383225 1.298619 3.517846

6 0.670337 4.267562 3.171072

6 3.289150 0.662153 4.596275

6 3.196476 4.055108 -0.181615

6 1.082958 2.042807 3.640344

6 2.531218 1.753573 0.990425

6 2.379167 3.322134 0.754728

6 2.966738 3.612069 2.176384

6 0.377598 1.957753 2.250284

6 0.714909 3.278845 4.309695

6 1.742908 0.185062 2.800066

6 1.014680 4.018577 0.718130

6 4.487511 3.829772 2.274225

6 3.171762 2.094118 2.464346

6 1.262017 0.928980 1.514513
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Summary

In this thesis we have studied the structural and magnetic properties of different
carbon systems like graphene edges, grain boundaries in graphene and disordered car-
bon with a focus on their magnetic properties. For each type of system we have found
situations that might give rise to magnetic order if one would have enough control on
the structure. The manuscript is organized as follows.

After the introductory chapter 1, in chapter 2 we have studied the 5-7 reconstruction
of the zigzag graphene edges by a combination of first principles and semi-empirical
calculations. We have shown that this structure has the lowest energy also when spin-
polarized calculations are performed. We have identified a reaction coordinate for the
reconstruction that we have used to evaluate the free energy barrier by the technique
of umbrella sampling in Monte Carlo simulations.

In chapter 3 we have examined the possibility to have grain boundaries in graphene
with low formation energy and dangling bonds which can give rise to magnetic states.
To construct grain boundaries we have adopted ideas of the theory of nanotubes. Our
approach allows to model not only symmetric grain boundaries described in the stan-
dard ’coincidence site lattice’ theory of grain boundaries in solids but also non sym-
metric ones which have higher energy and internal stress. For many possible structures
we have studied the electronic properties and the influence of curvature on the mag-
netic properties as well as the influence of saturation of dangling bonds by hydrogen,
hydroxyl group and oxygen. We have found a promising configuration with 5-8-7 rings
where the dangling bonds give rise to magnetic states.

In chapter 4 we have studied the electronic and magnetic properties of nanoribbons
terminated by nanotubes, a recently proposed low energy structure. We have found
that, depending on the type of junction between the ribbon and nanotubes, many
different properties can be realized, including magnetic states. Based on the found
properties, we have proposed several possible applications of this type of systems for
spintronics.

In chapter 5 we studied the magnetic properties of disordered carbon based on
a ’generate and test’ approach which samples the coordinate space to find magnetic
configurations in pure carbon systems. We have discovered a wealth of structures with
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Summary

magnetic moments that could give ferromagnetic order. By comparing geometries with
and without magnetic states we have identified a few criteria which have to be satisfied
to expect magnetism in disordered carbon.
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Samenvatting

In dit proefschrift hebben we de structurele en magnetische eigenschappen van ver-
schillende koolstofsystemen bestudeerd, zoals de randen van grafeen, korrelgrenzen in
grafeen en ongeordende koolstof, waarbij de focus ligt op hun magnetische eigenschap-
pen. Voor ieder type systeem hebben we gevallen gevonden die aanleiding zouden
kunnen geven tot magnetische orde, als men voldoende controle over de structuur zou
hebben. De opzet van het manuscript is als volgt.

Na het inleidende hoofdstuk 1, hebben we in hoofdstuk 2 de 5-7 reconstructie
van zigzagranden van grafeen bestudeerd met een combinatie van ab initio en semi-
empirische methoden. We hebben laten zien dat deze structuur de laagste energie
heeft, ook in berekeningen waarin de spinpolarisatie wordt meegenomen. We hebben
een reactiecoördinaat voor het proces van de reconstructie aangewezen, die we hebben
gebruikt om de vrije-energiebarrière te bepalen in Monte-Carlosimulaties met de tech-
niek van ‘umbrella sampling’.

In hoofdstuk 3 hebben we de mogelijkheid onderzocht van korrelgrenzen in grafeen
met een lage formatie-energie en vrije bindingen, die aanleiding kunnen geven tot mag-
netische toestanden. Om korrelgrenzen te construeren hebben we ideeën gebruikt uit
de theorie van nanobuizen. Onze aanpak stelt ons niet alleen in staat om symmetrische
korrelgrenzen te modelleren, die worden beschreven in de standaardtheorie van ‘coinci-
dence site lattices’ in vaste stoffen, maar ook niet-symmetrische korrelgrenzen die een
hogere energie hebben en een interne spanning. Voor veel mogelijke structuren hebben
we de elektronische eigenschappen en de invloed van kromming op de magnetische
eigenschappen bestudeerd, evenals de invloed van verzadiging van de vrije bindingen
met waterstof, hydroxylgroepen en zuurstof. We hebben een veelbelovende configuratie
met 5-8-7 ringen gevonden, waarin de vrije bindingen aanleiding geven tot magnetische
toestanden.

In hoofdstuk 4 hebben we de elektronische en magnetische eigenschappen bestudeerd
van grafeenstroken met nanobuizen aan de zijkanten, een onlangs voorgestelde struc-
tuur met een lage energie. We hebben gevonden dat, afhankelijk van het type overgang
tussen de strook en de nanobuizen, veel verschillende eigenschappen gerealiseerd kun-
nen worden, waaronder magnetische toestanden. Op basis van de eigenschappen die we
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hebben gevonden, hebben we een aantal mogelijke toepassingen van dit type systemen
voor spintronica voorgesteld.

In hoofdstuk 5 hebben we de magnetische eigenschappen van ongeordend koolstof
bestudeerd met behulp van een ‘generate en test’ methode, die de coördinaatruimte
doorloopt om magnetische configuraties in systemen van zuiver koolstof te vinden. We
hebben veel verschillende structuren met magnetische momenten ontdekt die aanlei-
ding zouden kunnen geven tot ferromagnetische orde. Door structuren met en zonder
magnetische toestanden te vergelijken hebben we een aantal criteria opgesteld waaraan
moet worden voldaan wil men magnetisme in ongeordend koolstof verwachten.
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