See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/286092040

Utilization of Power Analysis in Horticulture

Article • January 2006

Citations
2

1 author:

Ecevit Eyduran
Igdir Üniversitesi
170 PUBLICATIONS 690 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Utilization of Power Analysis in Horticulture

${ }^{1}$ Ecevit Eyduran, ${ }^{2}$ S. Peral Eyduran, ${ }^{1}$ Taner Özdemir and Y. Sabit Agaoglu
${ }^{1}$ Biometry Genetics Unit, Department of Animal Science, Agricultural Faculty, University of Yüzüncü Yıl, 65080, Van-Turkey
${ }^{2}$ Department of Horticulture, Agricultural Faculty, University of Ankara, 06110, Ankara-Turkey

Abstract

The aim of this study was to determine associations and the values of power analysis as their reliability degrees between Year or Cultivars and traits such as fruit weight (FW), total acid (TA) and, the soluble substance that can be dissolved in water (SSDW) from various ten raspberry cultivars in an adaptation study regarding horticulture field by using Chi-Square and Likelihood Ratio Chi-Square statistics after FW, TA and SSDW were categorized as binary (low and high). Association between FW and CULTIVAR, association between SSDW and YEAR, association between SSDW and CULTIVAR, association between TA and CULTIVAR were much more significant $(\mathrm{P}<0.001)$. Besides, corresponding power values for Chi-Square and Likelihood Ratio Chi-Square statistics were very close on each other and had a reliability of approximately 100% and enough sample size. Contrary to these four contingency tables, associations between both FW-YEAR and TA-YEAR were non-significant and non-reliable because corresponding power values for Chi-Square and Likelihood Ratio Chi-Square statistic were 50-51\% (a power of moderate-level) and 22-23\% (power of low level), respectively and sufficient sample sizes for both FW-YEAR and TA-YEAR should be 240 and 560, respectively in order to provide a power of 80%. As a result, in order to be obtained reliable results and determined enough sample size in Chi-Square and Likelihood Ratio Chi-Square Statistics, power analysis should be performed.

Key words: Chi-Square, Likelihood Ratio Chi-Square Statistics, Power Analysis, Raspberry, Horticulture, Fruit weight, Total acid, SSDW.

INTRODUCTION

Chi-Square and Likelihood Ratio Chi-Square statistics have been commonly used as criteria of independence and goodness of fit in contingency table ${ }^{[4,9,3,5]}$. However, it is well-known that Likelihood Ratio Chi-Square statistics were generally preferred to other when observed frequencies of the cells of a contingency table were less than five and sample sizes were very small ${ }^{[1,5]}$. Besides, in the event that total sample size was enough, both statistics might give similar results ${ }^{[1,5]}$. To select the better of these two statistics, researchers should perform power analysis as regards them, which give an idea to one about whether sample sizes will be enough. The most important question for a researcher is "How many observations should we survey to ensure statistics having a power of $\% 80-90$ "? Moreover, it should be forgotten that non-significant results for both statistics does not guarantee independence. On the other hands, if power values for both are too-low (for example, a power of $\% 20-40$), the experiment that one carried out is not sensitive enough to determine dependent.

As a result, one of important things for a researcher is to get a reliable result as statistical analysis. For this reason, ones might utilize of Power Analysis for every trial regarding all scientific areas. After traits such as fruit weight (FW), total acid (TA) and, the soluble substance that can be dissolved in water (SSDW) from various ten raspberry cultivars in an adaptation study (regarding horticulture field which was carried out by Atila et al. ${ }^{[2]}$) were categorized as binary (low and high), categorized traits with both year and cultivars were one by one formed contingency tables. Hereafter, by using special SAS macro regarding Chi-Square and Likelihood Ratio Chi-Square statistics ${ }^{[8]}$, the present paper aimed:

First, what was examined was an association between any trait and year or cultivars? Second, power analysis of statistics such as Chi-Square and Likelihood ratio Chi-square (which is called as G test) on all contingency tables were performed using a Special SAS macro (http://ftp.sas.com/techsup/download/stat/powerrxc.html).

Third, in point of determination of power values and ideal sample size, this paper gave to place to whether the values of power analysis in contingency table as regards samples from various ten raspberry cultivars in horticulture area were suitable and reliable.

[^0]
MATERIALS AND METHODS

Materials: The materials that were used for this research were Rubin, Summit, Holland Short, Heritage I, Heritage II, Tulameen, Aksu Red, Nuburg, Canby and Willamette. The pomological characteristics (Fruit weight, Total acid and SSDW) of raspberry species were investigated and compared with each other. What's more, it was searched whether the single or double product of Heritage is more economical. This research was conducted between the years of 2002 and $2005^{[2]}$.

Rubin: A variety which is thorny and has pink flowers.
Summit: A variety which has bigger thorns than Rubin and has white flowers. It is fruitful in both spring and autumn.

Holland Short: A variety which has thorny and has pinkwhite flowers. It is fruitful in both spring and autumn.

Heritage: A variety which has thorny and has pink-white flowers. It is divided into two varieties Heritage I and Heritage II. While Heritage I is fruitful in spring, Heritage II is in both spring and autumn.

Tulameen: A variety which has thorny and has white flowers.

Aksu Red: A variety has got big fruit and has small thorny.

Nuburg: A variety has got big fruit and has small-yellow thorny.

Canby: A variety which has thorny and strong of winter.
Willamette: A variety has got big fruit and small thorny. It is strong of winter and fruitful.
A total of 120 sample sizes were used for each trait.
Methods: Traits such as fruit weight (FW), total acid (TA) and, the soluble substance that can be dissolved in water (SSDW) obtained from various ten raspberry

Table 1: The cut-off values for each trait		
	Low amount (1) (equal and less than)	High amount (2) (equal and more than)
Trait	19.17	19.18
FW	20.31	20.32
TA	27.71	27.72
SSDW		

FW: Fruit weight; TA: Total acid; SSDW: the soluble substance that can be dissolved in water

	Researcher's Decision	
Case	Reject H_{0}	Do not Reject H_{0}
H_{0} true	Type I error probability (α) (Significance level)	Correct decision probability (1- \propto) (Confidence level)
H_{0} false	Correct decision probability (1- β) (POWER)	Type I error probability (β)

cultivars divided into two categorizes, namely, low (1) and high (2) weight as binary. Mean of each trait was calculated then each value was assigned as 1 (low) when values were less than mean value; otherwise as 2 (high). The cut-off values of assigned values for each trait are presented in Table 1. For example: if one value for FW in data set is 20.88, new value for it can be assigned as 2 .

The notation of Chi-Square (1) and Likelihood Ratio Chi-Square statistics (2) are given below ${ }^{[3,1,6]}$:

$$
\begin{align*}
& \mathrm{x}^{2}=\sum \frac{\left(\mathrm{f}-\mathrm{f}_{\mathrm{i}}\right)^{2}}{\mathrm{f}_{\mathrm{i}}} \tag{1}\\
& \mathrm{G}=2 \sum \mathrm{f} \cdot \ln \left(\frac{\mathrm{f}}{\mathrm{f}_{\mathrm{i}}}\right) \tag{2}
\end{align*}
$$

Where, f, observed frequency and f_{i}, expected frequency.
According to Table 2, the statistical significance of a test is the probability that the null hypothesis $\left(\mathrm{H}_{0}\right)$ will be rejected when it is true. Besides, Power of a test is the probability (1-f) that researchers will reject it when null hypothesis $\left(\mathrm{H}_{0}\right)$ in reality is false. Power value desired should be at least 80% as to statistics criteria ${ }^{[1]}$.

Power Theory for Chi-Square and G Statistics: Assume that H_{0} is the same to model M for a contingency table. Let π_{i} indicate the true probability in $\mathrm{i}^{\text {th }}$ cell and Let $\pi_{\mathrm{i}}(\mathrm{M})$ represent the value to which the Maximum likelihood (ML) estimate π_{i} for model M converges, where $\Sigma \pi_{\mathrm{i}}=\Sigma \pi_{\mathrm{i}}(\mathrm{M})$. For multinomial sample of size n , the non-centrality parameter for Chi-Square (3) can be expressed as follows:

$$
\begin{equation*}
\lambda=\mathrm{n} \sum_{\mathrm{i}} \frac{\left[\pi_{\mathrm{i}}-\pi_{\mathrm{i}}(\mathrm{M})\right]^{2}}{\pi_{\mathrm{i}}(\mathrm{M})} \tag{3}
\end{equation*}
$$

Expression 3 is the similar form as Chi-Square statistics, with for the sample proportion p_{i} and π_{i} in place of π_{i}. The non-centrality parameter for Likelihood Ratio Chi-Square Statistics (4) can be written in this manner:

$$
\begin{equation*}
\lambda=2 \mathrm{n} \sum_{\mathrm{i}} \pi_{\mathrm{i}} \log \frac{\pi_{\mathrm{i}}}{\pi_{\mathrm{i}}(\mathrm{M})} \tag{4}
\end{equation*}
$$

RESULTS AND DISCUSSIONS

The values, probability and power values of Likelihood Ratio Chi-Square and Chi-Square Statistics in all contingency tables which were calculated for alpha $=0.05$. Examining Table 3, the values, probability and power values of Likelihood Ratio Chi-Square and Chi-Square Statistics regarding other contingency tables except for contingency tables of FW-YEAR and TA-YEAR were much more significant $(\mathrm{P}<0.001)$.

Table 3: The values, probability and power values of Likelihood Ratio Chi-Square and Chi-Square Statistics in each contingency tables for

Pairs of traits	L.R.Chi Square Statistic Value	L.R.Chi Statistic Probability	Chi-Square Statistic Value	Chi-Square Statistic Probability	Power of L.R.Chi Statistic	Power of Chi-Square
FW- YEAR	5.8511	0.1191	5.8312	0.1201	0.50688	0.50537
FW-CULT	116.8780	$<.0001$	86.2404	$<.0001$	1.00000	1.00000
SSDW-YEAR	32.0050	<. 0001	29.9077	<. 0001	0.99907	0.99829
SSDW-CULT	46.2319	<. 0001	36.4196	<. 0001	0.99971	0.99680
TA-YEAR	2.4163	0.4906	2.4000	0.4936	0.22610	0.22476
TA-CULT	102.5316	<. 0001	74.6667	<. 0001	1.00000	1.00000

Table 4: The power values of Chi-Square and Likelihood Ratio Chi-Square Statistics obtained by artifically increasing sample size from backward to forward in contingency table of FW-YEAR (alpha=0.05).

Sample Size	Power of Chi-Square Statistic	Power of Likelihood Ratio Chi-Square Statistic	Sample Size	Chi-Square Statistic Power Value	Power of Likelihood Ratio Chi-Square -Statistic
40	0.18773	0.18826	300	0.90870	0.90972
60	0.26757	0.26841	320	0.92684	0.92773
80	0.34913	0.35025	340	0.94168	0.94245
100	0.42920	0.43054	360	0.95374	0.95440
120	0.50537	0.50688	380	0.96347	0.96404
140	0.57604	0.57766	400	0.97129	0.97176
160	0.64023	0.64189	460	0.97752	0.97792
180	0.69749	0.69914	480	0.98248	0.98280
200	0.74778	0.74938	500	0.98639	0.98666
220	0.79135	0.79286	520	0.98947	0.98969
240	0.82864	0.83005	540	0.99187	0.99205
260	0.86022	0.86150	560	0.99375	0.99390
280	0.88670	0.88785	580	0.99521	0.99533

It could be concluded that

- There was close association or dependent between FW and CULTIVAR ($\mathrm{P}<0.001$).
- There was close association or dependent between SSDW and YEAR ($\mathrm{P}<0.001$).
- There was close association or dependent between SSDW and CULTIVAR ($\mathrm{P}<0.001$).
- There was close association or dependent between TA and CULTIVAR $(\mathrm{P}<0.001)$.

According to results of four contingency mentioned above, power values of Likelihood Ratio Chi-Square and Chi-Square Statistics calculated for these four contingency tables were much higher and desired (almost 100%). In other words, both statistics for them had a reliability of more than 99% and total sample sizes were quite sufficient (120).

However, the values, probability and power values calculated for contingency tables on FW-YEAR and

TA-YEAR were non-significant. It should be forgotten that non-significant results for both statistics does not guarantee independence. Consequently, examining in Table 3, the experiments (contingency tables on FW-YEAR and TA-YEAR) that one carried out is not sensitive enough to determine dependent. Because power values calculated for contingency tables on FW-YEAR and TA-YEAR were 50.537% for Chi-Square and 50.688% for other, as well as 22.476 for Chi-Square and 22.610 \% for other, respectively. This case means non-reliable.

When we artificially and arbitrary increased 40 to 580 by 20 by using special SAS macro mentioned above in order to estimate sufficient sample size or to obtain at least a power of 80% for contingency table of FW-YEAR, sufficient sample size for the contingency table should be 240 (Table 4).

However, if sample size were 580, the power values of Chi-square and G statistics would be achieved to nearly 100% for both statistics.
J. Appl. Sci. Res., 2(11): 931-935, 2006

Table 5: The power values of Chi-Square and Likelihood Ratio Chi-Square Statistics obtained by artifically increasing sample size from backward to forward in contingency table of TA-YEAR (alpha=0.05).

Sample Size	Power of Chi-Square Statistic	Power of Likelihood Ratio Chi-Square Statistic	Sample Size	Chi-Square Statistic Power Value	Power of Likelihood Ratio Chi-Square -Statistic
40	0.10148	0.10186	520	0.77900	0.78205
60	0.13027	0.13088	540	0.79585	0.79882
80	0.16064	0.16148	560	0.81165	0.81453
100	0.19224	0.19333	580	0.82642	0.82921
120	0.22476	0.22610	600	0.84023	0.84292
140	0.25791	0.25950	620	0.85310	0.85569
160	0.29142	0.29324	640	0.86508	0.86756
180	0.32504	0.32708	660	0.87621	0.87859
200	0.35853	0.36079	680	0.88654	0.88881
220	0.39171	0.39417	700	0.89612	0.89828
240	0.42440	0.42703	720	0.90498	0.90703
260	0.45644	0.45923	740	0.91316	0.91511
280	0.48770	0.49062	760	0.92072	0.92256
300	0.51808	0.52111	780	0.92768	0.92943
320	0.54748	0.55060	800	0.93409	0.93574
340	0.57583	0.57902	820	0.93998	0.94153
360	0.60308	0.60632	840	0.94539	0.94685
380	0.62918	0.63245	860	0.95036	0.95173
400	0.65411	0.65740	880	0.95491	0.95619
420	0.67786	0.68114	900	0.95907	0.96027
440	0.70042	0.70368	920	0.96288	0.96400
460	0.72179	0.72502	940	0.96636	0.96740
480	0.74200	0.74518	960	0.96954	0.97051
500	0.76106	0.76418	980	0.97243	0.97334

When we artificially and arbitrary increased 40 to 980 by 20 by means of special SAS macro mentioned above in order to obtain at least a power of 80% for contingency table of TA-YEAR, sufficient sample size for the contingency table should be 560 .

However, if sample size were 980, the power values of Chi-square and G statistics would be achieved to approximately 98% for both statistics.

CONCLUSION

In order to be obtained reliable results and determined enough sample size in Chi-Square
and Likelihood Ratio Chi-Square Statistics, power analysis should be performed. It could be concluded that:

- Performances of power analysis for both statistics were close on each other in all contingency tables
- Except contingency tables regarding FW-YEAR and TA-YEAR, both power values and total sample size of others were much more reliable.

Researchers should not forget that power analysis in Chi-Square and Litelihood ratio Chi-Square statistics technique means reliability.

REFERENCES

1. Agresti, A., 2002. Categorical Data Analysis. $2^{\text {nd }}$ Edn, Wiley, New York.
2. Atila, S.P., Y.S. Ağaoğlu and M. Çelik, 2006. A Research on the Adaptation of Some Raspberry Cultivars in Ayaş (Ankara) Conditions. Pakistan J. of Biological Sciences, 9: 1504-1508.
3. Everitt, B.S., 1992. The Analysis of Contingency Tables. $2^{\text {nd }}$ Edn, Chapman\&Hall.London
4. Düzgüneş, O., T. Kesici and F. Gürbüz, 1983. Statistics Methods I. University of Ankara, Publishings of Agriculture Faculty. Ankara.
5. Eyduran, E., T. Özdemir, M.K. Kara, S. Keskin and B. Çak, 2006. A Study on Power of Chi-square and G Statistics in Biology Sciences. Pakistan J. of Biological Sciences, 9: 1324-1327.
6. Eyduran, E. and T. Özdemir, 2005. Examining ChiSquare, Likelihood Ratio Chi-Square and Independent Ratios in 2 x 2 Tables: Power of Test. International Congress on Information Technology in Agriculture, Food and Environment-itafe'05. Proceedings. Adana-Turkey
7. Eyduran, E., T. Özdemir and M. Küçük, 2005. Chi-Square and G Test in Animal Science. The Journal of Faculty of Vet.Med. University of Yüzüncü Yıl, pp:1-3.Van-Turkey.
8. SAS, 1998. SAS Institute, Inc. Cary, NC, USA.
9. Sokal, R.R. and F.J. Rohlf, 1981. Biometry. The Principles and Practice of Statistics in Biological Research. W.H. Freeman and Company. New York.

[^0]: Corresponding Author: Ecevit Eyduran, Biometry Genetics Unit, Department of Animal Science, Agricultural Faculty, University of Yüzüncü Yıl, 65080, Van-Turkey

