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CHARACTERIZING ALTERNATIVE SPLICING  

AND LONG NON-CODING RNA  

WITH HIGH-THROUGHPUT SEQUENCING TECHNOLOGY 

Several experimental methods has been developed for the study of the central 

dogma since late 20th century. Protein mass spectrometry and next generation sequencing 

(including DNA-Seq and RNA-Seq) forms a triangle of experimental methods, 

corresponding to the three vertices of the central dogma, i.e., DNA, RNA and protein. 

Numerous RNA sequencing and protein mass spectrometry experiments has been carried 

out in attempt to understand how the expression change of known genes affect biological 

functions in various of organisms, however, it has been once overlooked that the result 

data of these experiments are in fact holograms which also reveals other delicate 

biological mechanisms, such as RNA splicing and the expression of long non-coding 

RNAs. In this dissertation, we carried out five studies based on high-throughput 

sequencing data, in an attempt to understand how RNA splicing and differential 

expression of long non-coding RNAs is associated biological functions. 

In the first two studies, we identified and characterized 197 stimulant induced and 

477 developmentally regulated alternative splicing events from RNA sequencing data. In 

the third study, we introduced a method for identifying novel alternative splicing events 

that were never documented. In the fourth study, we introduced a method for identifying 

known and novel RNA splicing junctions from protein mass spectrometry data. In the 

fifth study, we introduced a method for identifying long non-coding RNAs from poly-A 

selected RNA sequencing data. Taking advantage of these methods, we turned RNA 

sequencing and protein mass spectrometry data into an information gold mine of splicing 

and long non-coding RNA activities. 

Huanmei Wu, Ph.D., Chair 
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Chapter 1. Introduction to Sequencing and Data Analysis Methods 

The central dogma consists of three major levels, genome, transcriptome and 

proteome. The advance of high-throughput sequencing technologies for nucleic acid and 

proteins has provided affordable measures for investigating biological processes, 

mechanisms and functions at all three major levels of the central dogma. In Chapter 1, we 

review the current nucleic acid and protein sequencing technologies, as well as the 

biological background and current data analysis methods of the two major topics we 

investigated in this dissertation, alternative splicing and long non-coding RNA. 

1.1 Next Generation Nucleic Acid Sequencing Technology 

1.1.1 Brief History of Nucleic Acid Discovery 

Chromosome was the first observed before human realize DNA was its main 

component. The word chromosome originates from the Greek roots chroma, meaning color, 

and soma, meaning body. In the 19th century, Schleiden [1], Virchow [2] and Bütschli [3] 

recognized the structures now known as chromosome. Walther Flemming named this 

structure “chromatin” [4]. In 1878, he published his discovery on how “chromatin” 

separate during cell division, also known as mitosis. In 1888, von Waldeyer-Hartz coined 

the name “chromosome”, describing their strong staining by particular dyes [5]. Aided by 

Mendel’s earlier work rediscovered in the early 1900s, Boveri pointed out the association 

between heredity and behavior of chromosomes [6]. The number of human chromosomes, 

46, was determined by Joe Hin Tjio in 1956 [7]. 

In 1869, almost the same time when chromosome was recognized, Friedrich 

Miescher discovered a microscopic substance he named “nuclein”, which is now known as 

DNA [8]. In 1878, Albrecht Kossel isolated the pure form of “nuclein”, nucleic acid, and 

later isolated its five primary nucleobases [9]. In 1919, Phobus Levene identified the base, 

sugar and phosphate nucleotide units [10]. In 1927, Nikolai Koltssov proposed that the 

inheritance of traits could be carried via a “giant hereditary molecule” made up with “two 
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mirror strands that replicate in a semi-conservative fashion using each strand as a template” 

[11]. In 1953, Watson and Crick suggested the now accepted double-helix model of DNA 

structure based on X-ray diffraction images [12]. 

When first studied in the early 1900s, the biological differences between RNA and 

DNA were not well understood. The role of RNA in protein synthesis was suspected as late 

as 1939 [13]. The concept of messenger RNA emerged during the late 1950s, and was 

associated with Crick’s description of his “Central Dogma of Molecular Biology”, which 

asserted that genetic information flows from DNA to RNA, and thus led to the synthesis of 

proteins [14]. During the 1970s, retroviruses and reverse transcriptase were discovered, 

which later enables RNAs to be sequenced by DNA sequencing technology [15, 16]. In 

1977, introns and RNA splicing were discovered by Philip Sharp and Richard Roberts.[17, 

18] 

1.1.1 Basic DNA Sequencing Methods 

Two DNA sequencing technologies were developed around 1977, one is 

Maxam-Gilbert sequencing, developed by Allan Maxam and Walter Gilbert [19], the other 

is Sanger sequencing, developed by Frederick Sanger [20, 21]. 

Maxam-Gilbert sequencing requires radioactive 32P labelling of the 5’ end of the 

purified DNA sequence. Four different chemical treatments are applied to DNA to create 

breakages on DNA molecules at one or two specific bases (G, A+G, C, C+T). The 

concentration of chemicals are controlled to induce on average one breakage per DNA 

molecule. The DNA fragments are then electrophoresed and the resulting gel is exposed to 

X-ray film for autoradiography. Then the DNA sequence is inferred from presence and 

absence of certain DNA fragments. 

Maxam-Gilbert sequencing was once widely used right after its invention because 

of certain advantages: 1) PCR amplification on DNA is not required, 2) high accuracy in 

inferring homopolimetric DNA sequences, and 3) can be used to analyze DNA-protein 
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interactions and epigenetic modifications. However, it is no longer commonly used today 

because of certain disadvantages: 1) extensive usage of hazardous chemicals, 2) the 

complexity in the experiment set-up, and 3) not being capable to analyze sequences with 

more than 500 base pairs. 

Sanger sequencing, or the chain-termination method, involves DNA 

polymerization with for standard deoxynucleotides (dATP, dGTP, dCTP and dTTP) and 

four radioactively or fluorescently labelled dideoxynucleotides (ddATP, ddGTP, ddCTP 

and ddTTP). The existence of dideoxynucleotides stops the polymerization of the DNA 

templates at a random loci, thus creating a library of DNA sequences of different lengths. If 

the experiment is designed properly, the library should cover each base on the DNA 

template to be sequenced. The concentration of dideoxynucleotides is low enough to make 

sure some polymerized DNA fragments covers the whole length of the DNA template to be 

sequenced. Then the DNA library is electrophoresed and the nucleotide on each loci can be 

inferred from the bands of the electrophoresis. 

Sanger sequencing and Maxam-Gilbert sequencing share similar ideas in their 

design. Both methods process the DNA molecule and derive shortened fragments of all 

possible lengths at chosen nucleic acids, then infer the original DNA sequence with 

electrophoresis. Sanger sequencing was first automated and commercialized by Applied 

Biosystems. It was widely accepted and prevailed from the 1980s to mid-2000s for its 

advantages, including its relative ease and reliability, and longer read length (800bp). The 

Sanger sequencing technology led to the first human genome in 2001. From the late 2000s, 

high-throughput DNA sequencing methods reached the market and brought the cost per 

genome from $100 million in 2001 to $100 in 2017. 

1.1.2 High-throughput DNA Sequencing Methods 

Several high-throughput DNA sequencing methods has been developed in the 21st 

century. Among these methods, 454 pyrosequencing, Illumina (Solexa) sequencing, ion 
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torrent semiconductor sequencing and SOLiD sequencing have been widely used in 

academic and industrial scenarios. The sequencing data analyzed in this dissertation is 

derived with either the Illumina or the SOLiD technology, which are the most popular 

sequencing technologies in the late 2000’s and early 2010’s. 

Owned by 454 Life Sciences and later by Roche, the 454 technology is the first 

widely used high-throughput sequencing technology and was once popular in the 2000s. It 

was known for its long read length (400-500 bases), but its sequencing depth is lower 

(400-600M reads per run) than SOLiD and Illumina technologies. The production of 454 

sequencers has been shut down by Roche in 2013. The 454 technology separates DNA 

templates to be sequenced in detached droplets, and adds solutions of A, T, C and G 

sequentially for synthesis. When the nucleic acid matches the template and the synthesis 

happens, a pyrophosphate (PPi) will be released. Then the PPi molecules go through a 

series reaction and finally reacts with the luciferin in the solution and generates visible 

light in amounts that are proportional to the amount of PPi. After the light signal is 

captured, the nucleotides and other byproducts are washed away and the reaction restarts 

with another nucleotide. The DNA sequences can be interpreted from a stack of images 

captured in each reaction. Similar to Sanger sequencing, the 454 technology also involved 

DNA synthesis, however, the 454 design allows it to sequence many sequences at once, 

and the avoidance of electrophoresis potentiates a much faster sequencing speed. 

By the year of 2017, the Illumina sequencing technology is the most popular large 

scale sequencing method among the academia and industry. Currently the Illumina 

sequencing technology can achieve up to 8-10B reads per run (NovaSeq 6000) with 2x150 

bases paired-end reads. Illumina also provides a lightweight benchtop sequencing solution 

MiSeq, which is capable of achieving 25M reads per run with 2x300 bases each read. In 

this method, the DNA molecules are first attached to a glass slide (flowcell) and amplified 

to form clusters. To identify the DNA sequence, four types of reversible terminator bases 
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(RT-bases) are added once a time. An RT-base is an engineered nucleic acid molecule that 

can be synthesized to a DNA molecule, but inhibits subsequent synthesis. The RT-base also 

carries a fluorescent unit that allows detection of synthesis activity by camera. After the 

camera has recorded the location of clusters with the synthesis activity, the fluorescent unit 

is chemically removed and a new base is added to the flowcell. After all four bases are 

added to the flowcell, the synthesis inhibition unit is removed to allow a new cycle of 

synthesis. The design of RT-base granted two advantages to the Illumina sequencing 

technology comparing to the 454 technology, 1) the DNA chain is extended one base at a 

time, which achieves higher accuracy on repetitive DNA sequences; 2) the light signal unit 

is attached to the DNA instead of released in the solution, which eliminated the need of 

droplets and simplified the experiment design. 

Owned by the Thermo Fisher Scientific, Ion Torrent is another popular lightweight 

sequencing solution that is comparable to MiSeq in throughput in 2017. It is capable to 

sequence 9-12M reads with 600 bases per run. Ion Torrent is also a sequencing by synthesis 

method. The DNA sequence and DNA polymerase are flooded by A, T, C and G dNTP 

sequentially. When the dNTP matches the DNA sequence, DNA synthesis takes place and a 

hydrogen ion is released. The hydrogen ion is then detected by a semiconductor sensor and 

the DNA sequence can be interpreted from the synthesis signals. The Ion Torrent 

technology suffers from a limitation. If the DNA sequence contains a long repetition of a 

certain base, then multiple hydrogen ions would be released in the corresponding cycle. 

Theoretically this would result in a proportionally higher electronic signal, however, the 

strength difference between two repetitions with different lengths are not easy to determine 

in practice. Similar to the 454 pyrosequencing technology, this characteristic has limited 

the accuracy of Ion Torrent technology on repetitive sequences. 

Owned by Life Technologies, SOLiD was a popular sequencing technology in the 

late 2000’s. It used to be the only sequencing method on the market that was comparable 
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against the Illumina technology. However, due to concerns in its cost and accuracy, SOLiD 

was discontinued from January 2013. Life Technologies was then acquired by Thermo 

Fisher in January 2014. Different from 454, Illumina and Ion Torrent technologies, SOLiD 

sequencing is based on DNA ligation instead of synthesis. SOLiD sequencing first ligates 

adapters with known sequences to the DNA molecules to be sequenced. Then it attaches 

these DNA molecules to magnetic beads and a PCR process makes clones of only one DNA 

sequence occupy the surface of each bead. The beads are then covalently bound to a glass 

slide. The SOLiD method involves 16 di-base probes, which consists of two bases for 

mapping the DNA molecule to be sequenced, three universal bases for enhanced affinity, 

and three universal bases with fluorescent dye. The 16 di-base probes are divided in four 

groups, each group includes 4 probes labeled with a distinct color. Four groups of di-base 

probes are added to the flowcell in sequence for ligation reactions. Due to the design of the 

three universal bases in the di-base probes, a series of continuous ligation reactions can 

only cover two in every five bases. To cover all bases in the DNA molecule, five series of 

ligation reactions with 1 base offset in each series are implemented. The first base of each 

series of reactions is known because the reaction initiates on the primer. The whole DNA 

sequence can be interpreted from the first base and the colored light signals captured 

during the ligation reactions. 

Other nucleic acid sequencing technologies also present in the same era, such as the 

SMRT sequencing by Pacific Biosciences [22], the Nanoball sequencing by Complete 

Genomics [23], the HeliScope single molecule sequencing by Helicos [24] and the 

Nanopore DNA sequencing by Oxford Nanopore [25]. However these technologies are not 

as widely applied as previous four because of disadvantages in cost, accuracy or 

technology maturity. The RNA sequencing (RNA-seq) data analyzed in this dissertation 

are derived from either the SOLiD or the Illumina sequencing technology, which are two of 

the most accurate and cost efficient technologies around 2010. 
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1.1.3 Sequencing Reads Alignment 

The sequences of the cDNA fragments detected in the sequencing experiment are 

called reads. The sequencer only produces read sequences in its output files, however the 

genomic locations of these reads need to be find out through a computational process 

called alignment. In the alignment step, the reads are usually compared against the 

corresponding UCSC genome [26]. 

Suppose the length of the genome is n, then we actually face such a problem in 

short read alignment: to implement a substring search and tolerate mismatches to a certain 

level in approximately O(1) time and O(n) memory space. Several short read aligners have 

been developed to address this problem, including BFAST [27], Bowtie [28] and BWA [29]. 

All these tools employed the Smith-Waterman algorithm for final alignment and scoring. 

Bowtie and BWA employed a suffix tree based on the Burrows-Wheeler transform (or 

FM-index) to speed up the substring match. BFAST also employed a suffix array for 

genome indexing but as genome positions sorted by suffix sequence. 

Short read aligners are only able to implement non-spliced alignment, which means 

the RNA-seq reads crossing splicing junctions between exons will get a low mapping score 

because of the huge gap in the intron and will not be considered as a match if aligned 

directly by BFAST, Bowtie or BWA. To take RNA splicing in consideration, RNA aligner 

tools need to be used for RNA-seq alignment. Such tools includes Tophat [30] and STAR 

[31]. 

1.1.4 Gene Expression Analysis Methods 

After the RNA-seq reads are mapped to the genome, the expression intensity of 

each gene can be inferred from the number of reads mapped. There are two primary factors 

affecting this number, the length of the gene and the overall sequencing depth of this 

sample. To normalize these factors, the unit reads per kilo-base per million mapped reads 

(RPKM) is used to evaluate gene expression intensity. The “per kilo-base” factor 
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normalizes the length of the gene, it could be either the total length of the gene or the 

exonic length. The “per million mapped reads” factor normalizes the overall sequencing 

depth of the sample. 

To test whether a gene is differentially expressed across two biological conditions, 

analysis of variance (ANOVA) or Friedman-test can be used to test RPKM. For these tests, 

one factor is the grouping based on the biological conditions. Another factor, if applicable, 

can be batch effect. Batch effect is the random effects during a sequencing experiment, 

such as time, light, or temperature that may affect the RPKM values. If the same sample is 

processed twice in two experiments, its RPKM may differ because of batch effects. Batch 

effects can be removed by adding a batch factor when implementing ANOVA or 

Friedman-test. ANOVA uses the actual RPKM values for testing, while Friedman-test uses 

the rank of the RPKM values for testing. 

Another model for gene expression analysis is edgeR [32]. Different from ANOVA 

and Friedman-test, which assumes the gene expression level follows normal distribution or 

chi-square distribution, edgeR models it with negative binomial distribution. In ideal 

condition, the natural distribution of the counts of reads falling on a gene should follow a 

Poisson distribution. However, more variation is observed in practice, which is known as 

overdispersion, which is induced by measurement errors. Therefore edgeR utilized the 

negative binomial distribution to model overdispersion. When the overdispersion is 0, the 

negative binomial distribution will become Poisson distribution. Instead of calculating the 

RPKM first, edgeR implements gene expression tests with counts of reads directly. 

1.2 Protein Mass Spectrometry Technology 

1.2.1 Brief History of Protein Science 

In 1838, the Dutch chemist Gerardus Johannes Mulder carried out elemental 

analysis on common proteins and erroneously concluded that proteins might be composed 

by a single type of large molecule [33]. Mulder’s collaborator, the Swedish chemist Jöns 
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Jacob Berzelius coined the term “protein”, which is derived from the Greek proteios, which 

means “primary”, and the suffix -in [34]. Mulder identified the first known amino acid 

leucine. For a long time, the exact composition of protein is not well known, until the 20th 

amino acid, threonine, was discovered in 1936. In 1949, the first protein sequencing was 

successfully implemented on insulin by Frederik Sanger, thus demonstrating that proteins 

are linear polymers of amino acids [35]. Linus Pauling suggested two main types of protein 

secondary structure, the α-helix and the β-strand (or β-sheet) in 1951 [36]. In the 1980s, 

mass spectrometry (MS) was widely applied in high-throughput sequencing and 

identification of proteins. In November 2017, the UniProt database has collected 556,196 

protein entries. At the same time, the protein data bank (PDB) [37] has collected 135,359 

protein tertiary structures, including 121,176 derived from X-ray crystallography, 12,032 

derived from NMR, and 1,817 derived from electron microscopy. 

1.2.2 Protein Mass Spectrometry 

A typical mass spectrometry experiment for protein identification involves the 

following stages: protein sorting, digestion, ionization, and tandem mass spectrometry 

(MS/MS). Protein sorting can be done by 2 dimensional electrophoresis, in which the first 

dimension separates proteins by their isoelectric points, and the second dimension 

separates proteins by their molecular weights. The protein molecules in each band have 

similar isoelectric points and molecular weights. Then these protein molecules are 

extracted and digested by a protease such as trypsin. The digested peptides are then ionized 

by either matrix-assisted laser desorption/ionization (MALDI) or electrospray ionization 

(ESI). The first stage of MS/MS sorts the peptide ions by their mass-to-charge ratio, and 

these peptide ions are further fragmented by collision-induced dissociation, 

photo-dissociation or other processes. The fragment ions then enter the second stage and 

the final mass spectrum was derived. The mass spectrum was then compared against 

known protein databases to identify the protein molecules in the sample. Before 2011, the 
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international protein index (IPI) database was widely used for such purpose, and later the 

UniProtKB database took its place after IPI’s retirement. The mass spectrometry analyses 

in this dissertation were finished in 2009 and were based on MS/MS and IPI. 

1.3 Alternative Splicing 

1.3.1 Discovery of Alternative Splicing 

During messenger RNA transcription, the RNA polymerase II travels through the 

gene region of the antisense strand of DNA and produces pre-mRNA, which is an identical 

copy of the sense strand of DNA. Then the spliceosome cuts out the intron regions on the 

pre-RNA and splices exons together, this process is called RNA splicing. In 1977, Phillip 

Sharp, Richard Roberts and Louise T. Chow demonstrated the existence of RNA splicing 

by visualizing the loops of introns under electron microscope when hybriding a cDNA 

sequence to its mRNA. The GT-AG sequence pattern on intron boundaries was discovered 

in 1978 by Breathnach [38]. When investigating the biological mechanism that enables 

RNA splicing, researchers soon realized that splicing can take place with “alternative 

splicing pathways” [39]. 

There are four basic modes of alternative splicing (AS). 1) Skipped exon (SE), or 

exon skipping, or cassette exon, where an exon may be left out during splicing. This is the 

most common type of AS in mammals. 2) Alternative 5’ splice site (A5SS), where an 

alternative 3’ end of the upstream exon (also the 5’ donor site) was used. 3) Alternative 3’ 

splice site (A3SS), where an alternative 5’ end of the downstream exon (also the 3’ acceptor 

site) was used. 4) Retained intron (RI) or intron retention, where the whole intron is 

retained in the final mRNA transcript. (Figure 1.1). 

1.3.2 Alternative Splicing Identification Methods 

Once the FASTQ or color spaced data are derived from sequencers, sequencing 

alignment will be implemented with RNA aligners, including Tophat and STAR. The 

intron regions appear as long deletions on the RNA-seq reads crossing two exons (or splice 
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junction reads), and such reads will get discarded by DNA aligners because of low scoring. 

RNA aligners are able to process these splice junction reads and achieve correct alignment. 

The alignments and scores of the RNA-seq reads are saved in BAM files. 

Based on BAM files, two approaches may be used to investigate AS. The first 

approach is whole mRNA transcript reconstruction. Software tools following this approach 

include Cufflinks [40] and Scripture [41]. Both of these tools construct transcripts with 

graph-based methods. Cufflinks builds a connectivity graph with each paired-end read as a 

node, and then attempts to search a minimal set of paths that covers all reads. Then these 

paths are scored and prioritized based on the abundance of reads they cover. On the other 

hand, Scripture first ignores the paired-end information and constructs the exons just based 

on overlapping sequence, then builds the connectivity graph based on exons and junction 

reads. These graphs are scored and filtered by read coverage, and then joined with 

paired-end data. In practice, Cufflinks has better specificity and Scripture has better 

sensitivity. 

 

Figure 1.1 Four types of alternative splicing events 
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Both Cufflinks and Scripture refines their connectivity paths based on 

mathematical assumptions, which may not be real in biology. Therefore the mRNA 

transcripts reconstructed from the RNA-seq data may not reveal the real composition of the 

transcriptome. This is a limitation of the short read RNA-seq and the best solution would 

be shifting to a long read RNA-seq method, such as the SMRT technology by Pacific 

Biosciences [22]. However, those sequencing methods were either expensive or not 

available in the first decade of 21th century. As a workaround, the approach for AS 

investigation was developed. Instead of attempting to reconstruct the transcriptome, this 

approach focuses on quantifying the ratio of mRNA transcripts supporting the inclusive 

and exclusive isoform of a single AS event. Such tools include MISO [42] and rMATS [43]. 

In this approach, an AS event is modeled as a pair of isoform transcripts, the one with 

flanking exons and the alternative region is defined as the inclusive isoform, and the one 

with flanking exons only is defined as the exclusive isoform. Figure 1.1 shows four types 

of AS events, including SE, A5SS, A3SS and RI. The boxes denotes regions that may be 

transcribed in the mRNA. White boxes denote constitutive regions that will present in all 

transcripts. Gray boxes denote alternative regions that only present in some transcripts. 

The straight line in the middle denotes introns, the curve on the top denotes exon junctions 

in the exclusive isoform, and the curves at the bottom denote junctions in the inclusive 

isoform. Both MISO and MATS calculates a percentage spliced-in (PSI or Ψ) value to 

quantify AS events. The Ψ denotes the percentage of the transcripts including the 

alternative region (cassette exon, retained intron, etc). Both MISO and MATS are capable 

to implement sample-wise or group-wise comparison for AS changes. 

1.3.3 Algorithms of MISO 

MISO [42] is one of the most frequently used AS quantification software tools in 

this dissertation. Here we introduce MISO’s algorithm in Ψ calculation and sample-wise 
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comparison. The following equation describes the most straightforward way of estimating 

Ψ: 

 �̂� =
𝐷𝐼

𝐷𝐼 + 𝐷𝐸
 [1.1] 

 

DI is the density of inclusive reads, DE is the density of exclusive reads. DI and DE can be 

derived by the following equations: 

 𝐷𝐼 =
𝑁𝐼𝑛𝑐

𝑎 − 𝑟 + 1 + 2(𝑟 + 1 − 2𝑜)
 [1.2] 

 𝐷𝐸 =
𝑁𝐸𝑥𝑐

𝑟 + 1 − 2𝑜
 [1.3] 

NInc and NExc are the number of reads supporting inclusion and exclusion isoforms, 

respectively. Let a be the length of the alternative region, r be the length of the RNA-seq 

reads, and o the overhang constraint placed on splice junctions. These two equations 

normalizes the number of reads mapped to RNA isoforms (the numerator) with the 

number of the possible positions on each isoform (the denominator). 

However this is not the real approach that MISO used to deduce the Ψ value. 

Beside the inclusive and exclusive reads (or informative reads), MISO also utilized the 

constitutive reads to improve and stabilize Ψ estimates. The idea is to formulate the 

probability distribution of Ψ (a posteriori) values given the reads detected from 

mRNA-seq (a priori). It can be described by the following equation: 

 𝑃(𝑅1:𝑁|𝛹) =∏[𝑃(𝑅𝑛|𝐼𝑛𝑐)𝛹 + P(𝑅𝑛|𝐸𝑥𝑐)(1 − 𝛹)]

𝑁

𝑛=1

 [1.4] 

In this equation, 𝑃(𝑅𝑛|𝐼𝑛𝑐) and 𝑃(𝑅𝑛|𝐸𝑥𝑐) denote the probability of read n supporting 

the inclusive and exclusive transcript, respectively. Their values are determined by two 

factors, the possible positions of a read can be mapped to a transcript, which is denoted 

by p here, and whether a read is mapped to a transcript, which is denoted by R. Therefore 

we have the following equations: 
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𝑃(𝑅𝑛|𝐼𝑛𝑐) = 𝑝𝐼𝑛𝑐𝑅𝑛
𝐼𝑛𝑐 

=
𝑅𝑛
𝐼𝑛𝑐

𝑎 − 𝑟 + 1 + 2(𝑟 + 1 − 2𝑜)
 

 

[1.5] 

 

𝑃(𝑅𝑛|𝐸𝑥𝑐) = 𝑝𝐸𝑥𝑐𝑅𝑛
𝐸𝑥𝑐 

=
𝑅𝑛
𝐸𝑥𝑐

𝑟 + 1 − 2𝑜
 

[1.6] 

For one AS event, both pInc and pExc are constants, we may simply use this notation for 

readability. 𝑅𝑛
𝐼𝑛𝑐 and 𝑅𝑛

𝐸𝑥𝑐 denote whether the read n is mapped to the corresponding 

transcript isoform. If the read is uniquely mapped then the value is 1, if not then 0. If the 

read is mapped to the constitutive region then both 𝑅𝑛
𝐼𝑛𝑐 and 𝑅𝑛

𝐸𝑥𝑐 equal to 0.5. Thus 

we have the updated expression of the probability of the given set of reads and Ψ: 

 𝑃(𝑅1:𝑁|𝛹) =∏[𝑝𝐼𝑛𝑐𝑅𝑛
𝐼𝑛𝑐𝛹 + 𝑝𝐸𝑥𝑐𝑅𝑛

𝐸𝑥𝑐(1 − 𝛹)]

𝑁

𝑛=1

 [1.7] 

This equation describes the probability distribution of Ψ with a given set of reads. The 

mapping probability (p) and the mapping result (R) are both fixed, the Ψ value that 

achieves the maximum 𝑃(𝑅1:𝑁|Ψ)  will become the most likely Ψ. Here is the 

expression after taking the log: 

 �̂� = argmax
Ψ

∑log[𝑝𝐼𝑛𝑐𝑅𝑛
𝐼𝑛𝑐𝛹 + 𝑝𝐸𝑥𝑐𝑅𝑛

𝐸𝑥𝑐(1 − 𝛹)]

𝑁

𝑛=1

 [1.8] 

After taking the derivative, we have the final equation for getting most likely Ψ: 

 

𝑑

𝑑𝛹
∑ log[𝑝𝐼𝑛𝑐𝑅𝑛

𝐼𝑛𝑐𝛹 + 𝑝𝐸𝑥𝑐𝑅𝑛
𝐸𝑥𝑐(1 − 𝛹)]

𝑁

𝑛=1

= 0 

∑
𝑝𝐼𝑛𝑐𝑅𝑛

𝐼𝑛𝑐 − 𝑝𝐸𝑥𝑐𝑅𝑛
𝐸𝑥𝑐

𝑝𝐼𝑛𝑐𝑅𝑛
𝐼𝑛𝑐𝛹 + 𝑝𝐸𝑥𝑐𝑅𝑛

𝐸𝑥𝑐(1 − 𝛹)

𝑁

𝑛=1

= 0 

[1.9] 

Assuming the estimated Ψ value has been evaluated for biological condition A 

and B, now it is important to compare whether ΨA is significantly different from ΨB. 

MISO calculates a Bayes factor (BF) to evaluate the likelihood of differential splicing. 
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Let δ be the difference between ΨA and ΨB, then the null hypothesis (H0) is δ=0, and the 

alternative hypothesis is δ≠0. The BF is defined as the weight of the evidence in the data 

D in support of H1 over H0: 

 𝐵𝐹 =
𝑃(𝐷,𝐻1)

𝑃(𝐷,𝐻0)
=
𝑃(𝐷|𝐻1)𝑃(𝐻1)

𝑃(𝐷|𝐻0)𝑃(𝐻0)
 [1.10] 

The authors of MISO uses Savage-Dickey density ratio [44] to approximately estimate 

BF: 

 𝐵𝐹 ≈
𝑃(δ = 0|𝐻1)

𝑃(δ = 0|𝐷,𝐻1)
 [1.11] 

When H1 stands, the probability of δ=0 is 1, so the equation can be simplified as: 

 𝐵𝐹 ≈
1

𝑃(δ = 0|𝐷,𝐻1)
 [1.12] 

Associating to the equation of Ψ before, the denominator of the equation above can be 

stated as: 

 𝑃(δ = 0|𝐷,𝐻1) = ∫ 𝑃𝐴(𝑅1:𝑀|𝛹)𝑃𝐵(𝑅1:𝑁|𝛹)
1

0

 [1.13] 

MISO’s BF approach for differential AS testing requires merging the BAM files 

of each group. This procedure has ignored the within-group variation and the result may 

be skewed by outliers. 

1.3.4 Algorithms of rMATS 

To put the within-group variation in consideration, the rMATS [43] package has 

been developed in 2014. Its algorithm for Ψ value estimation uses only reads that can be 

uniquely mapped to inclusive or exclusive isoforms. The equation for calculating Ψ in 

rMATS is the same as equation [1.1]. 

In the rMATS model, the observed Ψ of a given AS event is affected by two types 

of variations, including 1) the biological variation of the replicate Ψ within the sample 

group, which is modeled by a normal distribution, and 2) the variation of observed reads 

given a Ψ value, which is modeled by a binomial distribution. The first variation is 

represented in the following model: 
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log𝛹𝑔𝑘 ~Normal(𝜇 = log𝛹𝑔 , 𝜎
2 = 𝜎𝑔

2) [1.14] 

In model [1.14], g represents group number, and k represents the sample number within 

the corresponding group. The second variation is represented in model [1.15]: 

𝐼𝑔𝑘|𝛹𝑔𝑘~Binomial(𝑛𝑔𝑘 = 𝑁𝐼𝑛𝑐,𝑘 + 𝑁𝐸𝑥𝑐,𝑘, 𝑝𝑔𝑘 =
𝑙𝐼𝑛𝑐𝛹𝑔

𝑙𝐼𝑛𝑐𝛹𝑔 + 𝑙𝐸𝑥𝑐(1 − 𝛹𝑔)
) [1.15]  

In this model, NInc,k and NExc,k represent the numbers of reads mapped to the inclusive 

and exclusive isoform, respectively. The effective lengths of the inclusive and exclusive 

isoform are represented with lInc and lExc. 

Based on the variation models above, it is possible to estimate the likelihood of 

getting the observed read counts from sample group A and B bases on a given ΨA and ΨB: 

𝐿 = 𝐿1𝐿2 

𝐿1 =∏𝑃(𝐼𝐴𝑘|𝛹𝐴𝑘 , 𝑛𝐴𝑘)

𝑀𝐴

𝑘=1

∏𝑃(𝐼𝐵𝑘|𝛹𝐵𝑘 , 𝑛𝐵𝑘)

𝑀𝐵

𝑘=1

 

𝐿2 =∏𝑃(𝛹𝐴𝑘|𝛹𝐴, 𝜎𝐴)

𝑀𝐴

𝑘=1

∏𝑃(𝛹𝐵𝑘|𝛹𝐵, 𝜎𝐵)

𝑀𝐵

𝑘=1

 

[1.16] 

𝑃(𝐼𝑔𝑘|𝛹𝑔𝑘, 𝑛𝑔𝑘) can be derived from the binomial distribution: 

∏𝑃(𝐼𝑔𝑘|𝛹𝑔𝑘, 𝑛𝑔𝑘)

𝑀𝑔

𝑘=1

=∏(
𝑁𝐼𝑛𝑐 + 𝑁𝐸𝑥𝑐

𝑁𝐼𝑛𝑐
)

𝑀𝑔

𝑘=1

 

× exp(∑𝑁𝑔𝑘,𝐼𝑛𝑐 log
𝑙𝐼𝑛𝑐𝛹𝑔𝑘

𝑙𝐼𝑛𝑐𝛹𝑔𝑘 + 𝑙𝐸𝑥𝑐(1 − 𝛹𝑔𝑘)

𝑀𝑔

𝑘=1

+ 𝑁𝑔𝑘,𝐸𝑥𝑐 log
𝑙𝐸𝑥𝑐(1 − 𝛹𝑔𝑘)

𝑙𝐼𝑛𝑐𝛹𝑔𝑘 + 𝑙𝐸𝑥𝑐(1 − 𝛹𝑔𝑘)
) 

[1.17] 

𝑃(𝛹𝑔𝑘|𝛹𝑔, 𝜎𝑔) can be derived from the normal distribution: 

∏𝑃(𝛹𝑔𝑘|𝛹𝑔, 𝜎𝑔)

𝑀𝑔

𝑘=1

= [1.18] 
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exp(∑
− log 2𝜋

2
− log 𝜎𝑔 −

(log𝛹𝑔𝑘 − log𝛹𝑔)
2

2𝜎𝑔2
+ log(𝛹𝑔𝑘(1 − 𝛹𝑔𝑘))

𝑀𝑔

𝑘=1

) 

Since the goal is to test the difference of mean inclusion level between two sample groups 

(i.e., Ψ1-Ψ2), the Ψ value of each sample Ψ1k and Ψ2k can be treated as latent variables, 

and the marginal distribution can be transformed with integral of Ψ1k and Ψ2k: 

𝑓(𝛹1, 𝜎1, 𝛹2, 𝜎2)

= 𝑐 (∏∫𝑓(𝛹1, 𝜎1, 𝛹1𝑘)𝑑𝛹1𝑘

𝑀1

𝑘=1

∏∫𝑓(𝛹2, 𝜎2, 𝛹2𝑘)𝑑𝛹2𝑘

𝑀2

𝑘=1

) 
[1.19] 

In equation [1.19], c is a constant, and f(Ψ1, σ1, Ψ1k) can be defined by the following 

equation: 

𝑓(𝛹𝑔, 𝜎𝑔, 𝛹𝑔𝑘) = exp(− log 𝜎𝑔 −
(log𝛹𝑔𝑘 − log𝛹𝑔)

2

2𝜎𝑔2
 

+ log (𝛹𝑔𝑘(1 − 𝛹𝑔𝑘)) 

+𝑁𝑔𝑘,𝐼𝑛𝑐 log
𝑙𝐼𝑛𝑐𝛹𝑔𝑘

𝑙𝐼𝑛𝑐𝛹𝑔𝑘 + 𝑙𝐸𝑥𝑐(1 − 𝛹𝑔𝑘)
 

+𝑁𝑔𝑘,𝐸𝑥𝑐 log
𝑙𝐸𝑥𝑐(1 − 𝛹𝑔𝑘)

𝑙𝐼𝑛𝑐𝛹𝑔𝑘 + 𝑙𝐸𝑥𝑐(1 − 𝛹𝑔𝑘)
) 

[1.20] 

After Laplace approximation, we can derive the following equation: 

∫𝑓(𝛹𝑔, 𝜎𝑔, 𝛹𝑔𝑘)𝑑𝛹𝑔𝑘 ≈ √2𝜋 (|
𝜕2𝑓1(𝛹𝑔, 𝜎𝑔, �̂�𝑔𝑘)

𝜕𝛹𝑔𝑘
2 |)

−0.5

 

× exp(𝑓1(𝛹𝑔, 𝜎𝑔, �̂�𝑔𝑘) 

𝜕2𝑓1(𝛹𝑔, 𝜎𝑔, �̂�𝑔𝑘)

𝜕𝛹𝑔𝑘
2  

=
2�̂�𝑔𝑘 − 1

�̂�𝑔𝑘
2 (1 − �̂�𝑔𝑘)

2 (
log𝛹𝑔 − log �̂�𝑔𝑘 − (2�̂�𝑔𝑘 − 1)

−1

𝜎𝑔2
+ 1) 

[1.21] 
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−𝑁𝑔𝑘,𝐼𝑛𝑐𝑙𝐸𝑥𝑐
(2𝑙𝐼𝑛𝑐 + 𝑙𝐸𝑥𝑐)�̂�𝑔𝑘 + 𝑙𝐸𝑥𝑐(1 − �̂�𝑔𝑘)

�̂�𝑔𝑘
2 (𝑙𝐼𝑛𝑐�̂�𝑔𝑘 + 𝑙𝐸𝑥𝑐(1 − �̂�𝑔𝑘))

2  

−𝑁𝑔𝑘,𝐸𝑥𝑐𝑙𝐼𝑛𝑐
(𝑙𝐼𝑛𝑐 + 2𝑙𝐸𝑥𝑐)(1 − �̂�𝑔𝑘) + 𝑙𝐼𝑛𝑐�̂�𝑔𝑘

(1 − �̂�𝑔𝑘)
2
(𝑙𝐼𝑛𝑐�̂�𝑔𝑘 + 𝑙𝐸𝑥𝑐(1 − �̂�𝑔𝑘))2

 

The Laplace’s method approximates the distribution of Ψgk by normal distribution. The 

estimated values of Ψgk can be derived in optimization procedure for 

maximum-likelihood estimation (MLE): 

�̂�𝑔𝑘 = argmax
𝛹𝑔𝑘

(
−0.5(log𝛹𝑔𝑘 − log �̂�𝑔)

2

𝜎𝑔2
+ log𝛹𝑔𝑘 

+ log(1 − 𝛹𝑔𝑘) + 𝑁𝑔𝑘,𝐼𝑛𝑐 log (
𝑙𝐼𝑛𝑐𝛹𝑔𝑘

𝑙𝐼𝑛𝑐𝛹𝑔𝑘 + 𝑙𝐸𝑥𝑐(1 − 𝛹𝑔𝑘)
) 

+𝑁𝑔𝑘,𝐸𝑥𝑐 log (
𝑙𝐸𝑥𝑐(1 − 𝛹𝑔𝑘)

𝑙𝐼𝑛𝑐𝛹𝑔𝑘 + 𝑙𝐸𝑥𝑐(1 − 𝛹𝑔𝑘)
)) 

[1.22] 

Based on the marginal distribution described above, P value of the splicing difference 

across two groups of samples can be calculated. For each AS event, the null hypothesis is 

the difference of Ψ across two groups is smaller than or equal to a user defined cutoff, 

and the alternative hypothesis is the difference of Ψ is larger than the cutoff. 

1.4 Long Non-coding RNA 

A major portion of eukaryotic genome is covered by DNA sequences that do not 

code for proteins, however, it is observed that many of these regions are transcribed and 

produces a huge species of non-coding RNAs (ncRNAs) [45, 46]. Some of ncRNAs are 

constructively expressed in all cells, such as ribosomal RNA, transfer RNA, and small 

nuclear and nucleolar RNA, and are known as housekeeping ncRNAs. Besides 

housekeeping ncRNAs, other ncRNAs can be categorized into small non-coding RNAs, 

which are 100 nucleotides and shorter, and long non-coding RNAs, which are longer than 

200 nucleotides. 
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Small non-coding RNAs can be subdivided into subgroups (miRNA, siRNA, 

piRNA, etc.) based on their size, biogenesis and mode of action. It is known that small 

ncRNAs regulate gene expression by guiding repressive chromatin complexes and 

RNA-dependent RNA polymerase complexes, which regulates transcription silencing and 

starting respectively at the transcriptional level, and by guiding RNA-induced silencing 

complexes (RISCs) to cleave the target mRNA at the post-transcriptional level [47-51]. 

Comparing with small ncRNAs, long non-coding RNAs (lncRNAs) are less 

characterized, and their biological functions are poorly investigated. Most of lncRNAs are 

transcribed by RNA Polymerase II (RNA pol II), and possess a 5’ methyl cap and polyA tail, 

which is the same as messenger RNAs (mRNA). LncRNAs may be transcribed from four 

possible locations: 1) introns of another gene, 2) intergenic regions, 3) sense strand of a 

gene or 4) antisense strand of a gene. LncRNAs are less conservative in sequence than 

protein-coding mRNAs, but still shows positive selection over neutral sequences [52]. 

LncRNAs may act as transcription silencers via transcriptional interference. A very 

well-known example is the X inactivation specific transcript (Xist), which deactivates 

whole X chromosome in female mammals by spreading across the X chromosome and 

recruiting polycomb repressive complex 2 (PRC2), which hence transfers repressive 

histone markers (H3K27me3 and H3K9me3) to the chromosome [53]. Besides whole 

chromosome repression, lncRNA also participates in individual gene repressions. In yeast 

S.cerevisiae, the transcription of a non-coding gene SRG1, which is located upstream of 

the promoter of another gene, SER3, suppresses the transcription of SER3 [54, 55]. There 

are two models that may explain lncRNA’s repressive effect on gene expression. The first 

model is the transcription activity causes the occlusion of the transcription machinery. The 

second model is the lncRNA itself may bind to the transcriptional complex and act as an 

inhibitor. In some cases, lncRNA may act as transcription activators, if its transcription 

occludes transcription inhibitors of another gene. For example, the transcription of lncRNA 
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LINoCR occludes the chromatin insulator protein CTCF, a gene expression repressor, and 

activates the chicken Lysozyme gene [56]. LncRNA may also regulate mRNA splicing. 

During epithelial to mesenchymal transition (EMT), the translation of Zeb2 mRNA is 

prevented in epithelial cells by a splicing event which removes the internal ribosome entry 

site (IRES) containing the 5’ UTR. On the other hand, in mesenchymal cells, an antisense 

lncRNA binds to the mRNA and prevents this splicing event, and hence allowing the 

translation of Zeb2 mRNA [57]. 

Currently lncRNAs can be identified at a genome-wide scale by active chromatin 

signatures associated with RNA pol II transcription. Such chromatin signatures include 

histone H3 lysine 4 trimethylation and histone H3 lysine 36 trimethylation domains 

(K4-K36 domain) [58, 59]. 

1.5 Organization of the Dissertation 

This dissertation identified and quantified AS events and novel lncRNA in several 

organisms and cell lines with help of high-throughput sequencing technologies. In Chapter 

2, we investigated stimulant induced AS with lipopolysaccharide stimulated bone 

marrow-derived mesenchymal stem cells (BMSC) [60]. In Chapter 3, we investigated 

developmentally regulated AS within human liver across three developmental stages (fetal, 

pediatric and adult). In Chapter 4, we discussed a method for identifying novel AS events 

from any mRNA-seq experiment [61]. In Chapter 5, we built a peptidomic database for 

identifying novel AS events from MS/MS data [62]. In Chapter 6, we identified and 

characterized lncRNAs associated with alcohol dependence from mRNA-seq data [63]. 
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Chapter 2. Stimulant Induced Alternative Splicing 

2.1 Background 

Alternative splicing (AS) is important for gene regulation and is a major source of 

proteome diversity in mammals [64] through altering the composition of mRNA transcripts 

by including or excluding specific exons [65]. AS can further modulate organism 

complexity not only by effectively increasing regulatory and signaling network complexity, 

but also by doing so in a temporal- and spatial-specific manner, supporting cell 

differentiation, developmental pathways, and other processes associated with multicellular 

organisms. Indeed, AS shows a strong relationship with organism complexity, as estimated 

by the organism’s number of different cell types [66]. The recent ENCODE Project 

concluded that at least 90% of human genes express multiple mRNAs through alternative 

splicing of exons or exon segments [67]. As might be expected, deregulation of this 

process is associated with numerous diseases [68-73]. 

Bone marrow-derived mesenchymal stem cells (BMSCs) are adult stem cells 

capable of self-renewal and differentiation into numerous cell lineages, including 

osteocytes, adipocytes, and chondrocytes [74]. One promising use of BMSCs is repair of 

ischemia-damaged cardiac tissue. BMSCs are easy to expand in vitro, can be genetically 

modified and exhibit significant immunotolerance properties [75-77], making BMSCs an 

attractive candidate for tissue repair/regeneration therapy. Intramyocardial injection of 

BMSCs reduces inflammation, fibrosis, infarct size, ventricular remodeling, and therefore, 

improves cardiac function following tissue insult [78-81]. 

Because the majority of BMSCs are soon lost during after injection, the observed 

therapeutic effects likely derive from paracrine effects of bioactive molecules released 

from these cells [78, 79]. Indeed, BMSC-mediated release of cytoprotective protein factors 

or transfer of intracellular components (e.g.,mRNAs, microRNAs, and proteins) via cell 

membrane exosomes, represents a novel mechanism of cell-to-cell communication [82]. 
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To date, however, clinical trials have demonstrated that while effective, delivery of BMSCs 

to ischemic myocardium results in only modest and short-lived benefits [83, 84]. Therefore, 

there is a critical need to elucidate the mechanisms by which BMSCs mediate their 

therapeutic benefits, including identification of their specific paracrine factor(s), and 

conditions under which their functions can be optimized. 

Upon injection into damaged heart tissue, BMSCs face a hypoxic, ischemic 

environment that severely limits their therapeutic efficacy. Thus, preconditioning BMSCs 

with various growth factors and endogenous or exogenous molecules has been used to 

improve BMSC therapeutic efficacy [85-87]. Indeed, it has been reported previously that 

bacterial endotoxin (lipopolysaccharide, LPS) could stimulate BMSCs to release paracrine 

factors, including angiogenic growth factors, cytokines, and chemokines that facilitate 

tissue repair [76, 77]. In addition, our previous study suggested that BMSC expression of 

the LPS receptor, toll-like receptor 4 (TLR4), regulates BMSC paracrine properties and 

intracellular STAT3 signaling cascades [88]. Moreover, preconditioning of BMSCs with 

LPS improves their therapeutic efficacy in rodent models of ischemia/reperfusion injury 

[86]. However, BMSC transcriptomic changes (in particular, alterations in mRNA 

transcript processing and splicing) that occur following LPS stimulation have been little 

studied. 

Besides use as an attractive therapeutic tool for repairing ischemic heart, BMSCs 

have been used for numerous other diseases, including graft-versus-host disease, Crohn’s 

disease, stroke, cartilage defects, diabetes and many others [89-94]. With the growing 

incidence of bacterial endotoxin LPS detected in older or immunocompromised patients 

with multiple-drug resistant bacteria, diabetes, cancer, indwelling IV catheters, and on 

complex chemotherapy regimens [95, 96], it is of great importance to study whether the 

stimulation of these implanted BMSCs by endogenous LPS would alter their therapeutic 

efficacy. Moreover, because MSCs are present in bone marrow and many other tissues, it 
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merits extensive investigation whether LPS stimulation of these endogenous MSCs would 

influence the clinical outcomes of complex therapeutic regimens. 

Despite BMSC’s strong clinical potential, the role(s) of alternative splicing in LPS 

response has not been fully explored. The recent development of high-throughput 

sequencing technology has now made transcriptome-wide profiling of splicing isoforms 

possible. In this study, we used RNA-seq analysis of BMSCs to identify and characterize 

gene transcripts whose splicing patterns were altered by LPS treatment. 

2.2 Results 

To investigate LPS-induced transcriptomic changes in BMSCs due to alternative 

splicing, RNA-seq analysis was conducted on BMSCs before and after LPS treatment, in 

triplicate. A strand-directed single-end RNA-seq protocol (75 bp reads) was used with the 

SOLiD 5500xl instrument. 

The total analysis resulted in 326 million reads, with each of the six samples 

ranging from 43 to 59 million reads. After removing the reads with low sequencing quality 

(see Methods) and filtering reads mapped to ribosomal RNAs and repeats, the remaining 

reads were mapped to the standard mouse reference genome (mm9). The total number of 

mappable reads in each sample ranged from 29 to 36 million, with an average mapping 

percentage of 59%. Among the mappable reads in each sample, 3.8 to 5.0 million are 

mapped to protein coding exons, and 2.8 to 4.0 million are mapped to splice junctions. 

Detailed mapping statistics for the six samples are listed in Table 2.1 Statistics of the RNA 

sequencing experiment 

. 

2.2.1 LPS-Induced Alternative Splicing 

We applied a MISO (Mixture of Isoform) algorithm [97] to identify alternative 

splicing events elicited by LPS treatment. Based on a Bayesian inference framework, 

MISO is a probabilistic framework that quantitates the expression levels of alternatively 
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spliced genes from RNA-Seq data, and identifies differentially regulated exons across 

samples. MISO computes Percent Spliced In (PSI, or Ψ) values for each alternative 

splicing event, representing the fraction of a gene’s mRNA that includes the exon. For each 

event, MISO also calculates a Bayesian Factor (BF) that quantifies the likelihood of the 

changes. For instance, [BF]=5 indicates it is five times more likely that a specific 

alternative splicing event occurred than did not occur.  
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Table 2.1 Statistics of the RNA sequencing experiment 
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Overall, we identified 197 exons whose splicing patterns differed between control 

and LPS-treated BMSCs (Bayesian factor [BF]>5 and |ΔΨ|>0.05). This number represents 

2.32% of all 8,475 events whose inclusion percentages could be reliably measured from the 

RNA-seq data; these genes generally had higher expression levels to generate enough read 

depth for splicing analysis. For genes with lower expression levels, our RNA-seq 

experiment did not have enough read depth for such analysis. The 197 LPS-induced 

alternatively spliced events included 82 cassette exons, 28 alternative donor site events 

(5’-ss), 45 alternative acceptor site events (3’-ss), and 42 intron retention events. Figure 2.1 

demonstrates the magnitude (X-axis) and significance (Y-axis) of LPS-induced splicing 

pattern changes on all the alternatively exons that could be reliably identified by MISO 

under both untreated and LPS-treated conditions (Figure 2.1). Among these 197 events 

(red dots in Figure 2.1), 117 showed positive ∆Ψ values, indicating that the percentage of 

transcripts containing the specific exon increased in the LPS-treated samples compared to 

control samples. Similarly, 80 events showed negative ∆Ψ values, indicating a decrease in 

the percentage of transcripts containing specific exons. For each of the four types of 

splicing events (cassette exons, alternative 5’-donor sites, alternative 3’-acceptor sites, and 

intron retention), we show one Sashimi plot for the exons with the largest LPS-induced 

changes (either increases or decreases) in percentage of inclusion in the gene product 

(Figure 2.2). The Sashimi plot demonstrates the RNA-seq read densities along exons and 

junctions, in the context of the structure of the gene’s isoforms. In addition, the distribution 

and the confidence intervals of the estimated Ψ under both conditions (LPS vs. untreated) 

are also included. 
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Figure 2.1 LPS-induced alternative splicing events. 

Scatter plot of all the AS events identified in MISO. The X-axis represents ∆Ψ, and the 

Y-axis represents log(BF). The shape of the dots indicates the type of the events. 

Specifically, circle indicates cassette exon events; star indicates intron retention events; 

triangle indicates alternative 5’ splice site events; and diamond indicates alternative 3’ 

splice site events. Alternatively spliced events with BF≥5 are colored in red. 
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Figure 2.2 Sashimi plots of four types of AS events.  

Sashimi plots of four types of AS events were shown, including cassette exon, intron 

retention, alternative 5’ and 3’ splice site. The red plots represent the LPS treated condition, 

and the blue ones represent controls. The X-axes indicate genomic locations, and the 

Y-axes indicate transcription intensity. In each plot, a “sashimi-like” region indicates a 

heavily transcribed region, in this case, exonic region. The blank regions between exonic 

regions indicate intronic regions. The “bridges” crossing exons indicate junction reads. 

The numbers of junction reads are shown on the “bridges”. The exonic structure of each 

AS event is shown below each Sashimi plot. On the right it displays the estimated Ψ (red 

line) value and the full posterior distribution (black bars). 
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To validate whether the alternative splicing events were induced by LPS treatment, 

we performed RNA-seq on BMSCs derived from MyD88-/- animals before and after LPS 

treatment. MyD88 is a key signaling molecule responsible for LPS response [98]. Among 

the 197 LPS-induced alternative splicing events in wild-type BMSCs, 189 did not occur 

following LPS treatment of MyD88-/- BMSCs (Figure 2.3). This observation indicates that 

a large majority of BMSC splicing changes were a direct consequence of LPS induction, 

and such effects were negated in cells whose LPS response is compromised. It should be 

noted that in addition to MyD88 pathways, LPS also functions through TRIF pathways 

[99]; the functions of TRIF pathway is intact in the MyD88-/- cells. This partially explains 

why some LPS-induced splicing effects remained in MyD88-deficient animals. 

 

Figure 2.3 LPS-induced splicing changes in wild-type BMSC were repressed in MyD88-/- 

cells.  
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The X-axis and Y-axis represents ∆PSI in wild type and MyD88 knock out animals 

respectively. Blue diamond represents LPS induced AS events in wild type only, and red 

square represents LPS induced AS events in both wild type and MyD88 knock-out cells. 

Among the 197 LPS-induced alternative splicing events, 103 were located in the 

coding regions of transcripts, and 94 were either in the 5’- or 3’- untranslated regions 

(UTRs). Among the 103 alternatively spliced coding events, 65 were composed of 

multiples of three nucleotides, leading to the inclusion or exclusion of specific amino-acid 

residues in the final protein products. These events could potentially generate multiple 

viable protein products having the same translation frame. Thirty-eight of the 103 coding 

exons contained either a premature stop codon, and/or a shift in their translation frames. 

Such events trigger either nonsense-mediated decay (NMD) mechanisms [100], or a 

translated protein having a complete different amino acid sequence downstream of the 

alternatively spliced exon. 

 

 

Figure 2.4 Distribution of AS genes in different cellular locations. 
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Transmembrane 
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  3   3 
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Ligand-dependent  

Nuclear Receptor 
1     1 

Peptidase 1 3   2 6 

Phosphatase   1  1 2 

Transcription Regulator 17 2   1 20 

Transporter  6 1   7 

Other 30 35 12 6 34 117 

Total 64 67 18 6 42 197 

Table 2.2 Functions and cellular locations of AS genes 

 

We then systematically examined the localization and functions of the gene 

products possessing alternatively spliced exons (Figure 2.4 and Table 2.2). Among them, 

64 were nuclear proteins, including 17 transcription regulators, 13 enzymes, 2 kinases, 1 

peptidase, and 1 ligand-dependent nuclear receptor. The 67 cytoplasmic alternatively 

spliced gene products included 12 enzymes, 9 kinases, 6 transporters, 3 peptidases, and 2 
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translation regulators. In addition, we also observed six potentially secreted proteins and 

18 plasma membrane-spanning proteins. A detailed list of the genes in each category is 

provided in Table S-1. These results strongly suggest that LPS induces splicing changes in 

highly diverse proteins having a variety of cellular functions. 

To understand the biological functions of genes whose splicing patterns were 

altered by LPS treatment, we conducted functional annotation analysis using the Database 

for Annotation, Visualization and Integrated Discovery (DAVID) v6.7 [101]. Three 

functional terms in the SP_PIR (Swiss-Prot and Protein Information Resources) category 

showed significant enrichment in our gene list. Among the 161 genes that could be mapped 

to DAVID gene annotations, 97 categorized as phosphoproteins (p-value=7.2x10-12, 

FDR=6.6x10-10). In addition, 26 genes contained zinc finger domain proteins (p-value= 

3.6x10-5, FDR=2.2x10-3) whose functions range from DNA or RNA binding to 

protein-protein interactions and membrane association [102]. Furthermore, 35 genes were 

involved in protein acetylation (p-value=1.3 x10-3, FDR=3.2x10-2). Together, these 

results suggest that LPS treatment has major effects on the splicing patterns of signaling 

proteins. 

Both gene expression levels and splicing patterns may be altered by BMSC 

responses to LPS treatment. While differential gene expression may lead to changes in the 

abundance of the entire gene product, alternative spicing modifies the structural 

composition of a specific protein. To evaluate to what extent the two mechanisms interact, 

we examined the number of genes present in both differentially expressed and alternatively 

spliced gene sets. We utilized edgeR [32] to identify genes differentially expressed 

between LPS-treated and control samples. In total, 416 differentially expressed genes were 

identified using a false discovery rate  0.05. Surprisingly, only one gene, Plscr2 

(Phospholipid Scramblase 2) was both differentially expressed and alternatively spliced. 

The expression level of Plscr2 increased 1.77-fold in LPS-induced samples with 



32 

FDR=0.01, while the percentage of inclusion of one cassette exon in the 3’-untranslated 

region (3’-UTR) increased by 0.16. 

2.2.2 Protein Domains are Differentially Spliced 

Alternatively spliced exons residing in known protein domains are more likely to 

disrupt protein function. Therefore, we systematically searched the overlap between 

LPS-induced AS events for known protein family domains documented in the pfam 

database [103]. Among 65 alternatively spliced exons that did not disrupt codon frame, 

seven overlapped with known protein domains (Table 2.3). In addition, seven other known 

domains that overlapped flanking exons had functions ranging from RNA and protein 

binding, enzymatic activities, methyltransferase activity, phosphopantetheinyl transferase 

activity, RNA editing, and microRNA processing. 

 

Gene Symbol AS Type Pfam Domain Domain Description 

Ttc13 cassete exon TPR_11 TPR repeat 

Rabep1 cassete exon Rabaptin Rabaptin 

Camk1d cassete exon Pkinase Protein kinase domain 

Nr1h2 
alternative 5' 

splice site 
Hormone_recep 

Ligand-binding domain of 

nuclear hormone receptor 

Adarb1 
alternative 5' 

splice site 
A_deamin 

Adenosine-deaminase 

(editase) domain 

Scoc 
alternative 3' 

splice site 
DUF2205 

Predicted coiled-coil 

protein 

Ppip5k2 
alternative 3' 

splice site 
His_Phos_2 

Histidine phosphatase 

superfamily (branch 2) 

Table 2.3 Alternatively spliced genes containing known protein domains 
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2.2.3 AS in Protein Domains may Affect Protein Interactions 

To examine whether alternatively spliced protein domains modulate 

protein-protein interactions, we searched for their binding partners based on two criteria: (1) 

at least one experimental study supporting direct interaction between the partner protein 

and the alternatively spliced protein in a known protein-protein interaction network [104, 

105]; and (2) at least one structural study in the Protein Data Bank (PDB) supporting direct 

interaction between a domain in the binding partner and the domain modified by 

alternative splicing. For the first criterion, we merged two datasets of experimentally 

validated direct interactions [104, 105] and compiled a library of 9,795 protein-coding 

genes with 80,518 experimentally validated interactions. For the second criterion, we 

derived the domain interactions in PDB from iPfam [103] and then searched for proteins 

containing these domains in Pfam [103]. In total, 3,573 interactions with structural 

evidence were found between 13 alternatively spliced coding transcripts and 3103 binding 

partners. By joining two interaction tables, we identified eight interactions having both 

experimental and structural evidence. As shown in Figure 2.5, these eight interactions 

involved three genes with altered splicing domains, Rabep1 (Rab GTPase-binding effector 

protein 1), Camk1d (Calcium/Calmodulin-Dependent Protein Kinase 1D), and Nr1h2 

(nuclear receptor subfamily 1, group H, member 2). The alternatively spliced exons in 

these genes overlapped with known protein domains, including rabaptin, pkinase, and 

ligand-binding domain of nuclear hormone receptor. 

 

The differences in the percentage of inclusion for these three events ranged from 14% 

to 31%. The potential protein partners included Rabep1, Gga1 (Golgi-associated, gamma 

adaptin ear containing, ARF-binding protein 1), Gga2 (Golgi-associated, gamma adaptin 

ear containing, ARF binding protein 2), Gga3 (Golgi-associated, gamma adaptin ear 
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containing, ARF binding protein 3), Camkk1 (calcium/calmodulin-dependent protein 

kinase kinase 1, alpha), Nr0b2 (nuclear receptor subfamily 0, group B, member 2), Rxra 

(retinoid X receptor, alpha), and Rxrb (retinoid X receptor, beta). LPS-induced splicing 

changes could significantly impact these proteins’ interactions with their partners. Among 

these putative protein interaction partners, only one protein, Nr0b2 (nuclear receptor 

subfamily 0, group B, member 2), was not expressed. 

 

 

Figure 2.5 PPI with both structural and experimental evidences.  

Ten AS gene products involved in protein-protein interactions. Gene symbols are displayed 

in white regions, and corresponding protein domains are displayed with gray background. 

Blue line indicates a gene/protein contains a domain, and a red line indicates an interaction 

between protein domains. 
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2.2.4 Intrinsic Disorder and MoRF in AS Regions 

It was previously reported that alternatively spliced regions are enriched with 

unfolded protein regions (intrinsic disorder) [106]. To examine these features within 

LPS-induced alternatively spliced regions (cassette exons, alternative 5’/3’ exons and 

retained introns), we performed disorder prediction on the protein sequences of these 

regions using VSL2B [107], a bioinformatics algorithm for predicting intrinsically 

disordered regions based on the biophysical properties of amino acids. Among the 

alternative regions of 65 protein sequences translated from LPS-induced alternative 

splicing events, 34 (52.3%) were predicted to be totally disordered, 21 (32.3%) partially 

disordered, and only 10 (15.3%) totally structured (Figure 2.6). These percentages are 

consistent with previous reports that alternatively spliced exons tend to locate in 

intrinsically disordered regions [108]. 

 

Figure 2.6 Predicted disorder of AS gene products. 

(A) The distribution of 65 non-frameshifting protein coding AS genes in three categories, 

including totally disordered, partially disordered and structured. (B) The MoRF containing 

and non-containing events among partially disordered AS genes. The list of MoRF 

containing genes is shown on the right. C) The same distribution and gene list as panel B 

but it is for totally disordered AS genes. 
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gene_symbol gene_description 

Arl13b ADP-ribosylation factor-like 13B 

Senp7 SUMO1/sentrin specific peptidase 7 

Tbc1d31 TBC1 domain family, member 31 

Depdc1a DEP domain containing 1 

Arhgef11 Rho guanine nucleotide exchange factor (GEF) 11 

Aif1l allograft inflammatory factor 1-like 

Abi1 abl-interactor 1 

Usp45 ubiquitin specific peptidase 45 

Ybx3 Y box binding protein 3 

Cpeb4 cytoplasmic polyadenylation element binding protein 

4 

Rabep1 rabaptin, RAB GTPase binding effector protein 1 

Ncor1 nuclear receptor corepressor 1 

Ube2q2 ubiquitin-conjugating enzyme E2Q family member 2 

Ctnnd1 catenin (cadherin-associated protein), delta 1 

Plec plectin 

Cdc42bpa CDC42 binding protein kinase alpha (DMPK-like) 

Ambra1 autophagy/beclin-1 regulator 1 

Ehbp1l1 EH domain binding protein 1-like 1 

Zfp346 zinc finger protein 346 

Nolc1 nucleolar and coiled-body phosphoprotein 1 

Rrbp1 ribosome binding protein 1 

Miip migration and invasion inhibitory protein 

Table 2.4 Alternatively spliced genes containing Molecular Recognition Features (MoRF) 
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A molecular recognition feature (MoRF) is a region in an RNA that undergoes a 

disorder-order transformation while bound by another protein. We predicted MoRF regions 

within the alternative regions using the software tool MoRF2 [106]. As a result, among the 

55 alternatively spliced exons in the partial or totally disordered regions, 22 contained 

regions predicted to be MoRFs (Figure 2.6, Table 2.4); these regions could thus be 

regarded as potential protein-protein interaction sites. 

2.2.5 PTM within Differentially Spliced Regions 

We next annotated post-translational modification (PTM) sites in regions affected 

by LPS-induced alternative splicing. We searched known PTM sites deposited in UniProt, 

and we also predicted novel ones using ModPred [109]. Three alternatively spliced exons 

containing known PTM (phorphorylation) sites localized to three genes, Abi1 

(abl-interactor 1), Depdc1a (DEP Domain-Containing 1), and Ybx3 (Y box-binding 

protein 3). In addition, 13 PTMs were predicted to occur in 29 alternatively spliced regions, 

including proteolytic cleavage, phosphorylation, amidation, hydroxylation, carboxylation, 

ADP-ribosylation, O-linked glycosylation, acetylation, GPI anchor amidation, 

palmitoylation, pyrrolidone carboxylic acid, methylation and ubiquitination (Figure 2.7). 

Proteolytic cleavage sites were the most common PTM sites, appearing in 14 alternative 

regions. It is possible that LPS affects the signaling activities of these proteins by inclusion 

or exclusion of the PTM sites in the final protein product (i.e., whether or not it is cleaved). 



38 

 

Figure 2.7 Predicted PTM sites in AS regions. 

Column displays different types of PTM sites, and row displays the event types and 

LPS-induced AS genes. The numbers in the shadowed grids on the crossing of gene A and 

PTM type B shows how many type B PTM sites fall in the AS region of gene A. The total 

number of PTM sites in each gene is displayed on the right, and the total number of PTM 

sites in each type is displayed on the top. 
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2.2.6 Characterization of Potential Splicing Regulators 

We defined 7 regulatory regions for each cassette exon event (Figure 2.8), among 

which Region 1 and 7 are 150nt constitute exon segments, Region 2, 3, 5 and 4 are 300nt 

intronic segments, and Region 4 is the whole cassette exon. We used FIMO [110] to search 

for CISBP-RNA [111] motifs within the regulatory regions of both up-regulated and 

down-regulated cassette exon events. With p-value cutoff of 1E-4 and FDR cutoff of 0.1, 

we identified 29 RBP motifs in the up-regulated events, and 23 in the down-regulated 

events. BRUNOL5, BRUNOL4 and RBM38 are the most frequently observed RBPs. Their 

motifs concentrate in Region 2 and 3 for up-regulated events, and in Region 5 for 

down-regulated events. These three proteins are all known as RNA-splicing related. Motifs 

of several other RNA-splicing related proteins, including SRSF2, HNRNPL, HNRNPLL, 

HNRNPH2 and PCBP2, are observed in both up-regulated and down-regulated cassette 

exon regulatory regions. Some RBPs (SRSF9, RBM5, PCBP3, PCBP1, ZCRB1, NCL, 

FUSIP1, PABPN1, TARDBP and NOVA2) are found exclusively in up-regulated cassette 

exon events, and some (KHDRBS3, BRUNOL6, G3BP2, FXR1, SRSF4, SNRNPA, 

SNRPB2) are found exclusively in down-regulated events. 

2.3 Discussion 

Lipopolysaccharide (LPS, endotoxin) is a complex associated with the outer 

membrane of Gram-negative bacteria, capable of triggering a series of cellular responses in 

many cell types. One promising advance is to use LPS as a pre-conditioning agent to 

improve BMSC therapeutic efficacy for repairing ischemic, injured tissues [86, 112]. For 

such application, because LPS is a potent stimulant for the host immune system, BMSCs 

should be washed using PBS to completely remove any residual endotoxin before 

administration. We reported previously that BMSCs treated with LPS produced more 

angiogenic factors VEGF, IGF-1 and HGF [113, 114] which can spur the formation of new 

blood vessels in ischemic tissue and survival and differentiation of implanted BMSCs. By 
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contrast, with the growing incidence of sepsis, in which free LPS can bind to and activate 

Toll-like receptor 4 on many cell types, the roles of LPS on endogenous BMSCs and other 

cell types are worth detailed investigation. 

 

 

Figure 2.8 RNA binding protein (RBP) motifs in regulatory regions of differentially 

spliced events. 

RBP names and their occurrences are listed adjacent to corresponding regulatory regions. 

 

Microarray studies have reported that expression levels of hundreds of genes can be 

altered after LPS treatment in different tissues. In recent years, high-throughput RNA 

sequencing technology has provided a more accurate and comprehensive measurement of 

RNA transcript levels and their isoforms than historic array-based methods. This 

technological advance has enabled measuring not only gene expression level alterations 

amongst different conditions, but also complicated splicing pattern changes in response to 

specific cellular perturbations. In this study, we systematically identified alternative 

splicing changes in mouse bone marrow-derived mesenchymal stem cells (BMSCs) in 
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response to LPS treatment, using RNA-seq technology. We further implemented a series of 

bioinformatics tools to evaluate the biological functions of alternatively spliced exons and 

their host genes. 

We observed strong enrichment in three functional categories amongst the gene 

products whose splicing patterns were altered by LPS treatment, phosphoproteins, zinc 

finger proteins, and proteins subject to acetylation. Most of these proteins were signaling 

proteins, and the subtle differences in their splicing isoforms could affect their function. 

Among 161 gene products containing AS exons, 97 belonged to phosphoprotein 

families, five of which contained documented phosphorylation sites in their AS regions 

found in the UniProt database. These proteins included Kansl2 (KAT8 regulatory NSL 

complex subunit 2), Depdc1a (DEP domain-containing 1), Abi1 (abl-interactor 1), Ybx3 

(Y box-binding protein 3), and UBl4a (Slc10a3-Ubl4 readthrough). The functions of these 

proteins strongly associate with the functions of BMSCs. For instance, Abi1 contains one 

cassette of exons whose percentage of inclusion increased by 14% after LPS induction 

(ΔΨ=0.14), with one phosphorylation site in the AS region documented in the UniProt 

database. Widely expressed with highest levels in bone marrow, spleen, brain, testes, and 

embryonic brain, Abi1 may negatively regulate cell growth and transformation by 

interacting with the nonreceptor tyrosine kinases ABL1 and/or ABL2, thus regulating 

EGF-induced Erk pathway activation and EGFR signaling. In addition to these five 

proteins, eight other AS regions were predicted to have phosphorylation sites, based on 

their amino acid contents. These proteins included Usp45 (ubiquitin-specific peptidase 45), 

Mark3 (MAP/microtubule affinity-regulating kinase 3), Ncor1 (nuclear receptor 

corepressor 1), Ctnnd1 (cadherin-associated protein, beta 1), Ambra1 (autophagy/beclin-1 

regulator 1), Ddx6 (DEAD (Asp-Glu-Ala-Asp) box helicase 6), Ehbp1l1 (EH domain 

binding protein 1-like 1), and Akt1s1 (AKT1 substrate 1). Overall, LPS may affect the 
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functions of these proteins by including/excluding specific domains amenable to 

phosphorylation. 

Among the proteins containing LPS-induced alternative splicing events, 25 

contained multiple types of zinc finger domains, including PHD (Plant Homeo Domain), 

RING (Really Interesting New Gene), and C2H2-type zinc-finger domains. Four proteins, 

Phf7 (PHD finger protein 7), Phf20 (PHD finger protein 20), Phf20l1 (PHD finger protein 

20-like 1), and Phrf1 (PHD and ring finger domains 1), contained PHD-type zinc finger 

domains known to recognize trimethylated histone lysines (thus possibly influencing 

chromatin structure). Four other proteins, Rnf14 (ring finger protein 14), Rad18 (RAD18 

homolog), Trim28 (tripartite motif-containing 28), and Trim2 (tripartite motif-containing 

2), all contain RING-type zinc fingers, known ligases for ubiquitination enzymes and their 

substrates. It is well documented that both PHD and RING-type domains are usually 

involved in protein-protein binding [115, 116], and such binding could possibly be 

disrupted by splicing variations. 

Overall, the LPS-induced AS genes could be classified into several categories 

(Figure 2.9), including kinases, zinc-finger proteins, transcription, RNA-binding, 

cytoskeleton, and protein acetylation. Many of these proteins were also phosphoproteins, 

which play significant roles in cell signaling. Analysis of the relationship between splicing 

and protein structure has suggested that AS exons play major roles in controlling 

protein-protein interactions (PPIs) through disrupting either known protein interaction 

domains or molecular recognition sites, which typically locate in intrinsically disordered 

regions. Our analysis suggests that LPS-induced alternative splicing could affect PPIs 

through both mechanisms. In particular, protein interaction domains of three proteins with 

known PPI partners were disrupted by LPS-induced splicing alterations (Figure 2.5). 

Interestingly, all three interactive domains could self-interact (forming domain-domain 

interactions with themselves), and one of these domains facilitates homodimerization of 
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Rabep1 (RAB GTPase binding effector protein 1). Expressed in embryonic tissues and 

most types of stem cells, Rabep1 showed abundant expression in BMSCs (about 30 

RPKM). Homo-dimerization of this protein is involved in early endosome fusion [117], an 

event directly related to the paracrine effects of BMSCs, where small vesicles are released 

when multivesicular endosomes fuse with the plasma membrane [118, 119]. In addition, 

Rabep1 also moderates intracellular transportation between lysosomes and the Golgi 

apparatus [120], and between the Golgi apparatus and endoplasmic reticulum [121]. LPS 

treatment also increased the inclusion of the interaction domain by 14%, which could 

increase either homodimerization or heterodimerization with other interaction partners. 

 

Figure 2.9 Predicted interaction network among LPS-induced AS genes. 

Red nodes indicate genes producing phosphoproteins, and gray nodes indicate genes not 

involved in protein phosphorylation. Genes associated with terms other than 

phosphoproteins are clustered in corresponding shadowed areas. These terms include 

acetylation, cytoskeleton, transcription, zinc-finger, RNA-binding and kinase. 
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We further evaluated how differences in splicing patterns in transcriptional 

regulators affected their regulatory activity by assessing gene expression changes of their 

downstream target genes. NFYA (nuclear transcriptional factor Y) contains an alternative 

acceptor site whose splicing pattern in BMSCs is altered by LPS treatment; the overall 

percentage of inclusion of the alternative acceptor site decreased by 31% (Sashimi plot for 

NFYA shown in Figure 2.10). Moreover, the expression of five downstream target genes of 

NFYA were enriched for genes found differentially expressed (p-value≤0.01) by LPS 

treatment (FDR≤0.05), including COL11A1 (collagen, type XI, alpha 1), COL5A3 

(collagen, type V, alpha 3), FGFR2 (Fibroblast Growth Factor Receptor 2), PGK1 

(phosphoglycerate kinase 1) and RGS4 (regulator of G-protein signaling 4). It was 

previously reported that NFYA activates transcription levels of COL11A1 and FGFR2 

[122]; these two genes were both downregulated by LPS, suggesting inhibition of NFYA 

function by the removal of 18nt (or 6 amino acids) after LPS treatment, thus impacting 

NFYA downstream effectors. 

 

 

Figure 2.10 Sashimi plot of NFYA. 
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2.4 Methods 

2.4.1 Preparation of Mouse BMSCs 

A single-step stem cell purification method was employed as previously described 

[123]. Briefly, BMSCs were collected from the bilateral femurs and tibias of sacrificed 

mice by removing the epiphyses and flushing the shaft with complete media, Iscove's 

Modified Dulbecco's Medium (IMDM; Life Technologies) and 10% fetal bovine serum 

(Life Technologies), using a syringe with a 26G needle. Cells were disaggregated by 

vigorous pipetting and passed through a 30-µm nylon mesh to remove any remaining 

clumps of tissue. Cells were then centrifuged for 5 min at 500 g at 24°C. The cell pellet was 

then resuspended and cultured in 75 cm2 culture flasks in complete media at 37°C with 5% 

CO2. Since BMSCs preferentially attach to polystyrene [124], after 48 h, floating 

non-adherent cells were discarded. Fresh complete media was added and replaced every 

three or four days thereafter. When the cells reached 90% confluence, MSC cultures were 

recovered by the addition of a solution of 0.25% trypsin-EDTA (Invitrogen) and passaged. 

Cell passage was restricted to passages 6–10 for the experiments. To purify BMSCs, the 

cells were subject to fluorescence-activated cell sorting (FACS) analysis, with collection of 

cells positive for Sca-1 and CD44 [124], but negative for the hematopoietic stem cell and 

macrophage marker CD45 [88]. 

2.4.2 RNA Sample Preparation and RNA-seq Assay 

BMSCs were plated at 1×105 cells/well/ml for 24 h and further treated with LPS 

(200ng/ml) for another 24 h, and total RNA was extracted before and after LPS treatment, 

following a standard protocol [88]. Experiments were conducted in triplicate. 

Standard methods were used for RNA-seq library construction, EZBead 

preparation, and Next-Gen sequencing, based on the Life Technologies SOLiD 5500xl 

system. Briefly, 2 μg of total RNA per sample was used for library preparation. The rRNA 

was first depleted using the standard protocol of RiboMinus Eukaryote Kit for RNA-Seq 
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(Ambion), and rRNA-depleted RNA was concentrated using a PureLink RNA Micro Kit 

(Invitrogen) with 1 volume of lysis buffer and 2.5 volumes of 100% ethanol. After rRNA 

depletion, a whole transcriptome library was prepared and barcoded per sample using the 

standard protocol of SOLiD Total RNA-seq Kit (Life Technologies). Each barcoded library 

was quantified by quantitative polymerase chain reaction (qPCR) using SOLiD Library 

Taqman qPCR Module (Life Technologies) and pooled in equal molarity. EZBead 

preparation, bead library amplification, and bead enrichment were then conducted using 

the Life Technologies EZ Bead E80 System. Finally sequencing by ligation was performed 

using a standard single-read, 5′-3′ strand-specific sequencing procedure (75nt-read) on 

SOLiD 5500xl. 

2.4.3 Bioinformatics Analysis for RNA-seq Data 

RNA-seq data analysis included the following steps: quality assessment, sequence 

alignment, and alternative splicing analysis. The RNA-seq data can be accessed through 

the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) with accession number 

GSE64568). 

2.4.4 Data Processing and Quality Assessment 

We used SOLiD Instrument Control Software and SOLiD Experiment Tracking 

System software for read quality recalibration. Each sequence read was scanned for 

low-quality regions, and if a 5-base sliding window had an average quality score less than 

20, the read was truncated at that position. Any read < 35 bases was discarded. Our 

experience suggests that this strategy effectively eliminates low-quality reads, while 

retaining high-quality regions [125-127]. 

2.4.5 Sequence Alignment 

We used BFAST (http://bfast.sourceforge.net) [27] as our primary alignment 

algorithm due to its high sensitivity for aligning reads on loci containing small insertions 

and deletions, as compared to the reference genome (mm9). We then used a TopHat-like 

http://www.ncbi.nlm.nih.gov/geo/
http://bfast.sourceforge.net/
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strategy [30] to align the sequencing reads containing cross-splicing junctions using 

NGSUtils (http://ngsutils.org/) [125]. After aligning the reads to a filtering index including 

repeats, ribosome RNA, and other sequences that were not of interest, we conducted a 

sequence alignment at three levels: genome, known junctions (University of California 

Santa Cruz Genome Browser), and novel junctions (based on the enriched regions 

identified in the genomic alignment). We restricted our analysis to uniquely aligned 

sequences with no more than two mismatches. 

2.4.6 Alternative Splicing Analysis 

We used MISO (mixture of isoforms) [97] to identify alternatively spliced exons 

whose splicing patterns were altered after LPS treatment. We first used Samtools (v0.1.19) 

to merge six RNA-seq samples into two BAM files according to their biological conditions, 

i.e., control vs. LPS-treated samples. We then estimated Percent Spliced In (PSI or Ψ), 

which indicates the proportion of RNA isoforms containing the alternatively spliced exon 

(inclusive isoforms) among all isoforms (inclusive plus exclusive isoforms). We also 

computed a Bayes factor (BF) to describe the likelihood of an AS event between the 

LPS-treated and control conditions. A BF of 5 means that an AS event is 5 times more 

likely to be differentially spliced than not. Both Ψ and BF values were computed by the 

software package MISO [97]. The difference between Ψ s across the two conditions was 

defined as ΔΨ. We required each AS event to have a BF>5 and |ΔΨ|>0.05 to be considered 

differentially spliced. 

2.4.7 Ontological Annotations 

The functions and cellular locations of AS genes were annotated by the pathway 

analysis tool Ingenuity Pathway Analysis (IPA), and the functional and biochemical 

properties of these genes were further annotated based on SwissProt and PIR keywords 

with DAVID v6.7 [101]. 

http://ngsutils.org/
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2.4.8 Protein Domains Overlapping AS regions 

Protein domain information was predicted based on the RNA nucleotide sequences 

of the alternatively spliced exon, and 30-base flanking sequencings of both upstream and 

downstream exons. These RNA sequences were then translated into peptides, based on 

open reading frames (ORFs) documented by Ensembl and Refseq, which were then input 

into Pfam [103] for identification of protein domains overlapping AS regions. 

2.4.9 Identification of Protein Interactions 

We also examined whether alternatively spliced exons overlapped with potential 

protein-protein interaction domains. Based on the protein domains identified in or 

overlapping AS regions, we retrieved their binding partner domains with iPfam [103], 

which documents domain-domain interactions in the Protein Data Bank (PDB). We further 

used Pfam to search for genes encoding partner domains (i.e., potential protein interaction 

partners). The identified protein interaction partners were verified by two protein-protein 

interaction databases derived from high-throughput experiments. 

2.4.10 Other Characterizations 

Protein disorder was predicted with VSL2B [107], a highly regarded protein 

disorder prediction tool, especially for long regions of disorder [128]. We required the 

peptides flanking the AS regions to be at least 9 amino acids long for accurate prediction. 

Potential binding sites were predicted with MoRF2, a software tool that predicts 

protein-binding sites that undergo a disorder-order transformation while binding another 

protein molecule [129]. Known post-translational modification (PTM) sites were derived 

from UniProt, and novel PTM sites were predicted by ModPred [109]. The upstream gene 

regulator NFYA (Nuclear transcription Factor Y subunit Alpha) [130] was predicted by 

Ingenuity Pathway Analysis (IPA), based on gene expression data and known regulatory 

gene interactions. 
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Chapter 3. Developmentally Regulated Alternative Splicing 

3.1 Background 

Liver is a vital organ only found in vertebrates [131], and it is involved in many 

crucial physiological functions, including protein synthesis, detoxification and production 

of many chemicals necessary for digestion. Liver constitutes 5% of the bodyweight at birth 

but 2% in adult [132]. During organogenesis, liver originates from both the foregut 

endoderm and septum transversum mesenchyme, and many morphological and 

physiological changes take place in liver from embryo to fetus. Liver is the organ where 

most of drug metabolism processes take place. Drugs are transformed into more 

water-soluble forms for the ease of excretion after exerting their desired functions. Such 

processes include phase I and phase II metabolic reactions. Phase I involves structural 

alteration on drug molecules, including oxidation, reduction and hydrolysis. Phase II 

involves addition of functional groups, including acetylation, methylation, glucuronidation, 

sulfation, conjugation with amino acids and glutathione. It is known that many of these 

drug metabolism processes change over the lifespan of human because of the expression 

change of certain genes [133-135]. These genes include cytochrome P450s (CYPs), 

flavin-containing monooxygenases (FMO), monoamine oxidases (MAO), alcohol 

dehydrogenases (ADH), molybdenum hydroxylases, NADPH-cytochrome P450 

reductases (FAD), aldo-ketoreductases, esterases, N-acetyltransferases (NAT), 

methyltransferases, UDP glucuronosyltransferases (UGT), sulfotransferases (SULT) and 

cytosolic glutathione S-transferases (GST) [135]. Although a lot of studies profiled the 

developmental expression change of the genes that are associated with drug metabolism in 

liver, the role of alternative splicing during the development and drug metabolism in liver 

is still poorly understood. 

Alternative splicing (AS) is a regulated process during RNA transcription that 

alters the composition of exons within the mRNAs, and thus enables the production of a 
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variety of protein isoforms from one gene. AS is a common phenomenon in eukaryotes, 

and virtually 95% of multi-exonic genes go through AS [136]. Besides contributing to the 

diversity of RNA and proteins, AS also participate in the modulation of cell differentiation 

[40], developmental pathways [137], drug response [138] and other physiological 

processes [139-142] by activating in a temporal- and spatial-specific manner. Studies have 

shown that abnormalities of AS is associated with various diseases [143-145]. As the next 

generation RNA sequencing (RNA-seq) technology gets more economic and accurate, it 

has become a primary tool for studying AS. Several software tools are developed for 

studying AS. These software tools falls in two major categories, 1) whole transcript 

builders, including Cufflinks [40] and Scripture [41], which rebuild and quantifies whole 

mRNA transcripts, and 2) splicing event quantifiers, including MISO [97] and MATS 

[146], which quantifies only the alternative region and adjacent exons. In splicing event 

quantifiers, four major types of AS events are defined, i.e. cassette exon or skipped exon 

(SE), intron retention or retained intron (RI), alternative 5’ splice site (A5SS) and 

alternative 3’ splice site (A3SS). The count of RNA-seq reads within alternative region and 

spanning across splicing junctions are used to estimate a percentage-spliced in (PSI or Ψ) 

value. What’s more, MISO utilizes the count of reads within adjacent exons (constitutive 

reads) to improve the accuracy of estimated Ψ. The Ψ value of an AS event represents the 

percentage of mRNAs containing the alternative regions among all mRNAs. Both MISO 

and MATS provided solutions for identifying significant Ψ changes of an AS event across 

two time points during liver development, MATS uses a multivariate uniform distribution 

and put within-group variance into consideration. 

In this study, we introduced a Bootstrap based method that utilizes the information 

of both constitutive reads and within-group variance. We applied this method on RNA-seq 

data of human liver in three developmental stages to identify developmentally regulated 

AS events. 
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3.2 Results 

To investigate the AS changes during liver development, RNA-seq analysis was 

conducted on fresh frozen liver samples across fetal, pediatric and adult stages, with 10 

samples in each stage. A strand-directed single-end RNA-seq protocol (75 nt reads) was 

implemented with SOLiD instrument. The sequencing reads were mapped to the standard 

human genome (hg19), and the analysis resulted in 300 million mappable reads, with each 

of the 30 samples ranging from 3.3M to 17.9M reads. Among the mappable reads in each 

sample, about 0.5 to 2.8 million are mapped to protein coding exons, and about 0.2 to 1.6 

million are mapped to splice junctions. 

3.2.1 Developmentally Regulated Alternative Splicing Events in Liver 

We utilized MISO (Mixture of Isoform) algorithm [97] to estimate the probability 

distribution of Percentage Spliced In (PSI or Ψ) value for each AS event in each liver 

sample. Ψ is defined as the fraction of the mRNA isoforms that include the alternative 

region. In total 72,922 AS events were analyzed, including 42,485 SE events, 7,197 RI 

events, 9,035 A5SS events and 14,205 A3SS events. A Bootstrap approach (see Methods) 

was then applied to compare the mean of Ψ values across two groups, i.e., Pediatric group 

(Ped) vs Fetal group (Fet), or Adult group (Adu) vs Pediatric group. In each comparison, 

the Bootstrap approach calculates a P-value and a False Discovery Rate (FDR) for each 

event. 

Overall, we identified 477 exons that are differentially spliced during the 

development from fetuses to childhood, which represents 3.52% of all 13,550 measureable 

AS events, which are covered by no less than 20 reads by MISO’s default. On the other 

hand, we identified only 49 differentially spliced exons during the childhood to adult 

development, which represents 0.99% of 4,915 measurable AS events by MISO’s default. 

The obvious difference between the percentages of differentially spliced exons reasonably 
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reveals the drastic changes in transcriptome during early years of a human’s life (Table 

3.1). 

Figure 3.1 demonstrates the magnitude (X-axis) and significance (Y-axis) of liver 

developmental splicing pattern changes on all AS events that could be reliably identified 

by MISO during two developmental periods, i.e. fetus to childhood and childhood to adult. 

Among the 477 AS events differentially spliced during the fetus to childhood development, 

194 showed positive ∆Ψ values, indicating that the percentage of transcripts containing the 

specific exon increased in this process. Similarly, 283 showed negative ∆Ψ values, 

indicating decreases in the percentage of transcripts containing specific exons. On the other 

hand, 49 AS events were differentially spliced during the development from childhood to 

adult, 23 of which showed positive ∆Ψ, and 26 showed negative ∆Ψ. Twenty-one AS 

events changed their splicing patterns from fetus to childhood, and continued changing 

from childhood to adult. The contrast between the numbers of splicing changes in earlier 

and later developmental periods indicates the physiology of liver changes prominently 

during the development from fetus to childhood, while it generally reaches its mature state 

after the beginning of childhood. 

 

 SE RI A5SS A3SS 

Pediatric vs Fetal 303 76 36 62 

Adult vs Pediatric 14 20 11 4 

Table 3.1 Number of differentially spliced events 
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Figure 3.1 Volcano plot of AS events 

(A) Comparison between pediatric stage (Ped) and fetal (Fet) stage. (B) Comparison 

between adult (Adu) stage and pediatric stage. The x-axes denote mean ∆Ψ, the y-axes 

denote –log10(FDR). Each dot represents an AS event, and the red dots represent AS 

events with |∆Ψ|≥0.1and FDR≤0.05. 

 

Figure 3.2 displays a classic SE event that is differentially spliced during one 

development period but is not during the other. The alternative region in this event covers 

the total length of the fn3 domain in fibronectin 1 (FN1), a gene involved in cell adhesion 

and migration processes in embryogenesis [147-151]. The splicing of this gene is known 

as developmentally regulated [152, 153]. Its Ψ values consistently dropped (∆Ψ=-0.12, 

FDR≈0) during the fetus to childhood development, and the Ψ values remain low in the 

adult stage (Figure 3.2A). To create a straightforward visualization of the RNA-seq data, 

we merged all samples in each developmental stage and generated the Sashimi plots 

(Figure 3.2B) [97] for each stage. In the fetal stage, 131 and 94 reads are mapped to the 

junctions supporting the inclusive transcript, and 183 reads are mapped to the junction 



54 

supporting the exclusive transcript. But in the pediatric stage, the number of inclusive 

junction reads drops to 29 and 22, while the number of exclusive junction reads raised to 

298. This leads to a conclusion that the relative dosage of the fn3 domain declined during 

the fetus to childhood development, which is consistent with the observation of reduced 

Ψ in Figure 3.1A. In the adult stage, both inclusive and exclusive junction reads reduced 

due to lower sequencing depth, but the change is not as dramatic as the previous 

developmental period and is insignificant statistically. 

To understand the biological functions of genes whose splicing patterns are 

developmentally regulated in liver, we implemented functional annotation analysis using 

the IPA [154] (Figure 3.3A). In the fetus to childhood development, 477 AS events were 

mapped to 474 genes. Among these genes, 36 are transcription regulators, 22 are kinases, 

19 are transporters, 18 are peptidases, 10 are translation regulators, 7 are transmembrane 

receptors and 121 are other enzymes. Among the 49 AS genes that are differentially 

spliced during the childhood to adult development, 4 are transcription regulators, 4 are 

transporters, 1 is peptidase, 1 is translation regulator and 18 are other enzymes. We also 

implemented an analysis on the cellular locations where these genes exert their 

biophysical functions (Figure 3.3B). Comparing with the earlier development period 

(fetus to childhood), the percentages of differentially expressed genes in the later period 

(childhood to adult) are higher in cytoplasm (55% vs 44%) and nucleus (31% vs 25%), 

but lower in extracellular space (8% vs 10%) and plasma membrane (2% vs 10%). 
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Figure 3.2 An alternative splicing event in fibronectin 1 

(A) Ψ distributions of an AS event. The x-axis displays the names of samples. The y-axis 

denotes the probability distribution of Ψ. The mean of each probability distribution is 

marked as a red dot. (B) Sashimi plot of the same AS event. The sashimi-like color blocks 

denote expression intensity distributions of RNA-seq reads on genomic coordinates. The 

curves connecting color blocks show the numbers of exon-exon junction reads. The 

genomic structure of the AS event is displayed at the bottom, with black boxes as exons 

and straight lines as introns. The upper structure shows the transcript including the 

alternative region, and the lower one shows the transcript without the alternative region. 
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Figure 3.3 Functions and locations of AS events 

(A) Cellular locations of differentially spliced events. (B) Function of differentially 

spliced events. 

 

3.2.2 Transporters Associated with Diseases and Drug Metabolism 

Transporter genes play an important role in liver physiology and drug metabolism 

[155-157]. During the fetus to childhood development, 19 splicing pattern changes took 

place in 16 transporter genes, among which 8 locate in cytoplasm, 5 locate on plasma 

membrane, 1 in extracellular space and 1 in nucleus (Table 3.2). ABCB6 is a porphyrin 

transporter, and it belongs to a protein family (ATP-binding cassette) known to be 

associated with drug resistances [158]. AP2M1 is a transporting vesicle coat component, 

which is involved in cargo selection and vesicle formation, but can also be hijacked by 

HPV for viral assembly [159]. Similarly, ARFGAP1, a protein required in vesicle and 

target compartment fusion, can also be hijacked by HPV to create a phosphatidylinositol 

4-phosphate enriched microenvironment [160]. SEC14L2 is a lipid transporter and is 

reported to enhance vitamin E mediated inhibition of lipid peroxidation and thus promote 

HCV replication [161]. SLC37A4 transports glucose-6-phosphate into the lumen of 
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endoplasmic reticulum and inorganic phosphate to the opposite direction. It is reported to 

be associated with glycogen storage disease type Ib [162, 163]. SLC13A5 is a 

sodium-dependent citrate transporter that locates on plasma membrane. The intake of 

citrate facilitates synthesis of fatty acids and cholesterol. Its transcription can be 

stimulated by the drug rifampicin and induce lipid accumulation in hepatocytes [164]. 

SLC38A4 is a sodium-dependent amino acid transporter, and a recent genome-wide 

association study identifies it as risk loci for alcoholic hepatitis [165].  

One gene AP1G1 is differentially spliced during the development from childhood 

to adult. This gene is an important component of clathrin-coated vesicles that transport 

ligand-receptor complexes from plasma membrane or trans-Golgi network to lysosomes. 

Mutations in this gene may induce multiple abnormalities during early development 

[166]. 
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Comparison 
Cellular 

Location 

Gene 

Symbol 
Gene Name 

Ped vs Fet 

Cytoplasm 

ABCB6 ATP binding cassette subfamily B 

member 6 (Langereis blood group) 

AP2M1 Adaptor related protein complex 2 

mu 1 subunit 

ARFGAP1 ADP ribosylation factor GTPase 

activating protein 1 

SEC14L2 SEC14-like lipid binding 2 

SLC25A16 
Solute carrier family 25 

(mitochondrial carrier), member 16 

SLC37A4 Solute carrier family 37 

(glucose-6-phosphate transporter), 

member 4 

STAU1 Staufen double-stranded RNA 

binding protein 1 

USO1 USO1 vesicle transport factor 

Plasma 

Membrane 

ATP11C ATPase, class VI, type 11C 

SLC13A5 Solute carrier family 13 

(sodium-dependent citrate 

transporter),  member 5 

SLC38A4 Solute carrier family 38 member 4 

SLC39A7 Solute carrier family 39 (zinc 

transporter), member 7 

TFRC Transferrin receptor 

Extracellular 

Space 
APOC4 Apolipoprotein C-IV 

Nucleus XPO7 Exportin 7 

Adu vs Ped Cytoplasm AP1G1 
Adaptor related protein complex 1 

gamma 1 subunit 

Table 3.2 Cellular location of transporter proteins 
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3.2.3 Cytochrome P450s 

Cytochromes P450 proteins are a group of monooxygenases that catalyze a 

variety of reactions and play important roles in drug metabolism [167-169], and can be 

potential targets for personal drug treatments [170, 171]. We have found CYP2E1 and 

CYP3A5 differentially spliced during the fetus to childhood development, and CYP3A5 

differentially spliced during the childhood to adult development. CYP3A5 is involved in 

the metabolism of several drugs, including irinotecan (CPT-11) [172], paclitaxel [173], 

cyclosporine [174, 175], tacrolimus [174, 176] and statins [177]. Two AS events 

containing premature stop codons change their splicing patterns in CYP3A5, and the 

dosage of the alternative region increases during the fetus to childhood development 

(∆Ψ1=0.32, ∆Ψ2=0.25) and decreases during the childhood to adult development 

(∆Ψ1=-0.17, ∆Ψ2=-0.19). The premature stop codons in these transcripts will result in 

truncated P450 domain in translated proteins, and thus change the percentage of 

functional P450 domains, which may affect drug response. CYP2E1 is known for its 

association with oxidative stress and drug toxicity [178, 179]. It significantly contributes 

to the formation of a toxin N-acetyl-p-benzoquinone imine (NAPQI), and is the major 

cause of liver necrosis during acetaminophen overdose [180]. Two SE events changed 

their splicing pattern during the fetus to childhood development (∆Ψ1=0.11, ∆Ψ2=0.17). 

Both of the alternative exons are components of the P450 domain, but the length of 

neither exon can be evenly divided by 3, which means exclusion of these exons will 

induce frame shift and result in non-functional protein isoforms. 

3.2.4 Potential Disease-causing Genes 

Insertion and deletion of highly conservative and structured regions in proteins 

may change its function and behavior [181-183], and may cause diseases [184]. To 

further identify AS events with higher biological importance, ExonImpact [185] to 

calculate functional impact scores (FIS) for each AS region based on its PhyloP scores, 
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secondary structure, accessible surface area (ASA), disorderness, protein domain 

coverage and post translational modification (PTM) sites. With FIS cutoff 0.82 [185], an 

A3SS event and an SE event in PGS1 and MYL6 are identified as events with higher 

functional impact in fetus to childhood development and childhood to adult development, 

respectively. Both AS events are highly structured in the alternative regions with average 

structured probability scores 0.82 and 0.85, and average disorder probability both as 0. 

PGS1 is a gene that functions in the cardioipin and glycerrophospholipid biosynthesis 

pathways. The A3SS region locates in the protein coding region, and down regulated 25.0% 

from fetus to childhood. MYL6 is a gene in the myosin family and functions as molecular 

motors. The alternative exon in MYL6 encodes a part of the EF-hand 6, a protein domain 

that interacts with Ca2+ ions [186]. The SE region in this gene down regulated 14.8% 

from childhood to adult. 

3.2.5 PPIs are Developmentally Regulated through Alternative Splicing 

To examine whether developmentally regulated alternative splicing events 

modulate protein-protein interactions (PPI), we searched for interactions between the 

differentially spliced protein domains and their binding partners based on two criteria: (1) 

at least one yeast two-hybrid study [104, 187, 188] supports the direct interaction 

between the pair of interacting proteins and (2) at least one structural study in the Protein 

Data Bank (PDB) supporting direct interaction between the same pair of proteins (See 

Methods). 
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Figure 3.4 Protein-protein interactions that may be disrupted by splicing change 

The orange nodes indicate differentially spliced genes during development, and the blue 

nodes indicate binding partners that interacts with the alternatively spliced protein domains 

of the genes in the previous category. The numbers and the width of the edges indicate the 

number of interacting domains in the partner protein. 
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For the developmental stages from fetus to childhood, we identified 32 PPIs, 

including 15 genes of which the splicing is developmentally regulated and 26 other 

binding partner proteins, as well as 6 self-interactions. For the childhood to adult 

development, we identified 11 PPIs, involving 3 genes that contains developmentally 

regulated AS events and 9 binding partner proteins, and 2 self-interactions (Figure 3.4). 

The interaction between HLA-A (major histocompatibility complex, class I, A) and 

KIR3DL2 (killer cell immunoglobulin like receptor, three Ig domains and long 

cytoplasmic tail 2) is a part of the natural killer cell mediated cytotoxity pathway (KEGG 

ID: map04650). This indicates this pathway may be affected by the developmental 

regulation of HLA-A’s splicing. 

3.3 Discussion 

Liver is an important organ where most drug metabolism take place. Each step in 

drug metabolism could potentially be affected by differences in gene variation, 

expression and RNA splicing. While gene variations in somatic cells mostly stay 

unchanged during the lifespan of human, gene expression and RNA splicing changes over 

time. In this study we analyzed the RNA-seq result of fetus, pediatric and adult stages, 

and identified 477 and 49 AS events during the fetus to childhood development and 

childhood to adult development respectively. The overt discrepancy in the number of 

differentially spliced AS events in these two developmental periods implies much fewer 

tramscriptome activity changes in the development after childhood comparing to that 

before childhood. We found the splicing of drug metabolism genes, including 

transcriptors, cytochrome P450s, and two potential disease causing genes (PGS1 and 

MYL6) are developmentally regulated in liver. This implies that AS is one of the 

mechanisms that cells employ to regulate drug metabolism and other biophysical 

functions during development. We also found 32 and 11 protein binding domains 

disrupted by developmentally regulated AS during the fetus to childhood and childhood 



63 

to adult development, respectively. One among these PPIs can be mapped to a known 

natural killer cell mediated cytotoxity pathway in KEGG, this demonstrates that 

developmentally regulated AS events can exert their biophysical functions through 

regulating PPIs in cellular pathways. 

 

 

Figure 3.5 Differentially spliced genes that are essential to liver functions during fetus to 

childhood development 

Each data points represents an AS event, and the gene name is labeled next to data points. 

The x-axis is the logarithm of gene fold change, while the y-axis is ∆Ψ, the change of AS. 

 

While AS is an important factor that regulates liver functions, gene expression 

could also be a regulator from another dimension. To investigate the co-occurrence of 

developmentally regulated AS and gene expression, we visualized the ∆Ψ and fold 

change scatter plot for functionally important AS genes that are differentially spliced 
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during the fetus to child development (Figure 3.5). For transporter genes, the ∆Ψ range 

from -0.25 to 0.35, and the log2-fold-change of gene expression range from -3.5 to 6.4, 

which demonstrate evenly scattered pattern on both AS and gene expression dimensions. 

The ∆Ψ of cytochrome P450s range from 0.11 to 0.25, which indicates an increase of the 

alternative region in childhood comparing to fetus. The log2-fold-change of gene 

expression in the same developmental period range from 3.90 to 8.13, showing that 

CYP3A5 and CYP2E1 are both up regulated in childhood comparing with fetal stage. 

The disease associated gene PGS1 has a ∆Ψ of -0.24, indicating the percentage of the 

mRNA transcripts containing the alternative region down regulated 24% during the fetus 

to childhood development. Its log2-fold-change of gene expression is -0.3, which is not 

as a dramatic change as the cytochrome P450 genes and some of the transporters. 

Interestingly, the three main categories of genes, transporters, cytochrome P450s and 

predicted disease associated genes, can be clearly separated according to their ∆Ψ and 

log2-fold-change values, except APOC4, an outlier of the transporter category. This 

distinct difference among gene categories may be induced by shared regulatory 

mechanisms within categories, or shared evolutionary pressure among genes with similar 

functions. 

To investigate which RNA binding proteins (RBP) may have contributed to 

developmentally regulate AS, we implemented an RBP motif analysis on 303 SE events 

that are differentially spliced during fetus to childhood development. Seven regulatory 

regions were defined for each SE event (Figure 3.6). Region 1 and 7 were defined as the 

150 nucleotides long sequence in the exon starting from the splicing site, region 2, 3, 5 

and 6 were defined as 300 nucleotides long sequence in the intron starting from the 

splicing site, and region 4 was the full length of the alternative exon. We retrieved the 

genomic sequence of these 7 region from each SE event, and searched for RBP motifs 

against the RBP motifs from the CISBP-RNA database [189] with FIMO [110]. We found 
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6 RBPs contributing to the upregulation of SE events. Among these RBPs, HNRNPC, 

PABPC1 and SART3 are known as AS regulators. The motif “ATTTTTG” is a potential 

intronic splicing enhancer (ISE), “AGAAAAA” and “AAAAAAA” are potential exonic 

splicing enhancers (ESE) (Figure 3.6A). On the other hand, all 6 RBPs contributing to the 

downregulation of SE events are known as AS regulators. Motifs “TTTTTTC”, 

“GGGAGGC”, “GGGAGGA”, “TGTGTGT”, “GTGTGTG” and “GGGTGTG” are 

potential intronic splicing silencers (ISS), and “GAAGGAA” is a potential exonic 

splicing silencer (ESS) (Figure 3.6A). 

To identify whether an RBP is associated with the up-regulation or 

down-regulation of a cassette exon during development, we implemented a principal 

component analysis on the percentage of regulated cassette exons among four categories 

of cassette exon events, including the up-regulated or down-regulated during the fetus to 

childhood development and the fetus to adulthood development (Ped vs Fet Up, Ped vs 

Fet Down, Adu vs Fet Up and Adu vs Fet Down). Figure 3.6B demonstrates these RBPs 

clearly separated into two groups. In the figure, each dot represents an RBP. The group on 

the left (colored orange) represents the RBPs associated with down regulated cassette 

exons during development, while the group on the right (colored cyan) represents the 

RBPs associated with up regulated cassette exons. It is important to clarify that an RBP’s 

association of up or down regulation does not lead to the interpretation of an enhancing 

or repressing function, because it may also be achieved by the inhibition or activation of a 

repressing RBP. 
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Figure 3.6 RBP and RBP binding motifs 

(A) Regulatory motifs of SE events. For each RBP row, the values are RBP name, number 

of motif matches, p-value and motif sequence. The green tables in the upper half of the 

figure show potential splicing enhancer motifs, and the orange tables in the lower half 

show potential splicing silencers motifs. (B) RBPs associated with up-regulated and 

down-regulated cassette exons are separated in principle component analysis. 
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3.4 Methods 

3.4.1 Bootstrap Approach for Differential Alternative Splicing Detection 

The MISO Analysis (MISO Run) component calculates sample-wise Ψ 

probability distributions for each AS event, and these distributions are distinct from one 

sample to another. This renders it impractical to apply classical statistical tests (e.g. 

Student T-test or Friedman test), which assumes a uniformed type of distribution across 

all samples, to detect differentially spliced events.  

The MISO [97] algorithm has a built-in component - MISO Comparison that 

compares the Ψ distribution of a pair of samples and calculates a Bayes Factor (BF) to 

describe the likelihood of splicing change. To implement group-wise comparisons on 

multiple samples with MISO, users have to merge all samples in each group and then 

apply MISO Comparison on the merged Binary Sequence Alignment/Map (BAM) files. 

This method overlooks within group variance and the difference of the Ψ probability 

distribution across samples. On the other hand, MATS [146] is capable to implement 

group-wise comparison without sample merging, however it uses only junction reads to 

evaluate Ψ, which misses valuable information in reads mapped to alternative regions and 

constitutive exons. To combine the advantages of MISO and MATS, we developed a 

Bootstrap approach to estimate the significance of AS change. 

The Bootstrap approach consists of two steps. The first step is to calculate the 

weighted mean on Ψ values randomly sampled from the probability distributions from 

each group (Fetal, Pediatric or Adult), then calculate the difference between mean Ψ 

values (∆Ψ) across two groups. Let the number of samples in two comparing groups be m 

and n, and let i be the current round of iteration and e be the number of the current AS 

event, then we can derive ∆Ψ for event e in iteration i with the following equation: 

∆𝛹𝑒𝑖 =∑𝑊𝑒𝑗𝛹𝑒𝑗𝑖

𝑚

𝑗=1

−∑𝑊𝑒𝑘𝛹𝑒𝑘𝑖

𝑛

𝑘=1
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W denotes the weight of each Ψ value, and it is calculated with the following 

equation: 

𝑊𝑒𝑠 = 1 − 𝐶𝑒𝑠 

Ces is the width of the 95% confidence interval of the Ψ probability distribution of 

event e in sample s. 

The second step is to iterate the first step for a certain amount of times (10,000 

times in this work) and calculate the p-value based on the alternative hypothesis that the 

mean of ∆Ψ is not 0: 

𝑝 =
𝑁𝑇𝑎𝑖𝑙

𝑁𝐴𝑙𝑙
 

Assuming most of the iterations generated ∆Ψ larger than 0, then NTail is the 

number of iterations that generated ∆Ψ less than 0, and vice versa. NAll is the total 

number of iterations. False discovery rates (FDR) are then calculated based on p-values 

with the Benjamini-Hochberg approach [190]. AS events with |∆Ψ|≥0.1 and FDR≤0.05 

are considered as differentially spliced. 

3.4.2 Identification of PPI Affected by Differential Splicing 

We examined protein-protein interactions (PPI) potentially affected by differential 

splicing with both structural and experimental evidences. We firstly identified Pfam [191] 

domains within or overlapped with alternative regions, then mapped them to binding 

partner domains with iPfam [103], which documents domain-domain interactions found 

in Protein Data Bank (PDB) [37]. These PPIs are then verified with a non-redundant PPI 

dataset (172,911 protein pairs) derived from three yeast two-hybrid screening datasets 

[104, 187, 188]. 
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Chapter 4. Novel Alternative Splicing Events in Transcriptome 

4.1 Background 

Alternative splicing is an important level of gene regulation that greatly 

contributes to proteome diversity [192]. It enables one gene to produce multiple isoforms 

that can have different biological functions. In humans, more than 90% of genes encode 

multiple protein isoforms [183], and many diseases are caused by the dysregulation of 

splicing patterns [193]. Traditionally, EST (Expressed Sequence Tags) databases and 

microarray technologies have been utilized to study splicing regulation [194-197]. In 

recent years, high-throughput RNA sequencing (RNA-seq) technology has revolutionized 

functional genomics by offering the most comprehensive and accurate measurements of 

RNAs. In addition to previously known splicing events, RNA-seq technology can be used 

to identify novel splicing events.  

Many bioinformatics tools have been developed to derive splicing patterns from 

RNA-seq data. For instance, dozens of strategies have been designed for aligning 

RNA-seq reads. Using various strategies, such tools, including TopHat [30], MMES 

[198], SpliceMap [199], SplitSeek [200], G-Mo-R-Se [201], GSNAP [202] and SAW 

[203], enable alignment of short sequencing reads over splice junction sites even across 

large intronic regions. Based on such splicing-sensitive alignments, follow-up algorithms, 

such as Cufflinks [204] and Scripture [205] have been developed to reconstruct transcript 

isoforms using a genome-guided approach. Although the idea of reconstructing the whole 

transcriptome is intriguing, a quantitative estimate of the expression levels of each 

isoform is difficult, particularly for transcripts expressed at low levels and/or when more 

than a few isoforms exist. In addition, isoform-based approaches increase the complexity 

of studying splicing regulation when many isoforms are present in the sample. 

Event-based approaches, however, only focus on the inclusion and exclusion of 

individual splicing events, regardless of membership in different isoforms. This greatly 
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reduces the computational complexity, and offers a direct path for studying splicing 

regulation. Based on the sequencing reads supporting inclusion and exclusion events, 

MISO (mixture of isoforms) [42] is designed to estimate the percentage of inclusion for 

every previously documented alternative-splicing event in a sample. It further offers a 

probabilistic framework for detecting differentially regulated exons, and provides 

functional insights into pre-mRNA processing.  

One requirement for implementing MISO is to provide a pre-defined alternative 

event annotation. Such an annotation heavily relies on previous knowledge, and is not 

complete or even available for many species. For instance, in the official MISO release, 

alternative splicing annotation library [42] is only available for human, mouse, and 

Drosophila genomes, and does not allow event-based analysis on datasets from other 

species. In addition, even for the species whose alternative splicing has been heavily 

investigated, identifying novel splicing events can be important. Therefore, having a tool 

for detecting novel splicing events directly from RNA-seq data is desirable.  

In this study, we developed a tool, Alt Event Finder, for generating de novo 

annotation for alternative splicing events from a map of transcripts and isoforms 

reconstructed from RNA-seq experiments. In conjunction with upstream alignment and 

isoform reconstruction tools, we demonstrated that Alt Event Finder has the ability to 

identify novel cassette exon events that are not documented in the established databases. 

We evaluated the performance of this strategy with different combinations of alignment 

and transcript reconstruction algorithms, using a human dataset where alternative splicing 

events have been extensively investigated. We further implemented this tool on an 

RNA-seq dataset from rat genome, for which alternative-splicing annotation is not 

available. 
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4.2 Results 

4.2.1 Workflow 

As shown in Figure 4.1A, the input to Alt Event Finder is a mixture of RNA 

isoforms identified from transcriptome reconstruction tools, such as Cufflinks [204] or 

Scripture [205]. The output is a list of alternative splicing events directly derived from 

isoform annotation. Alt Event Finder includes two major steps. First, based on a GTF or 

BED file for isoform annotation, the unions of the exon regions are split into the smallest 

units that do not overlap with each other in the genome space, or minimum 

non-overlapping exon units. This design is similar to the PSR (probe selection regions) 

definition for Affymetrix exon arrays [206], and can reflect the complexity of the exon 

structures where alternatively spliced exons from the same gene may overlap (i.e. 

alternative donor or acceptor sites). Second, individual transcript isoforms (identified 

from transcriptome reconstruction tools such as Cufflinks and Scripture) will be projected 

to the non-overlapping exon units (Figure 4.1B). The number of isoforms containing each 

unit is recorded. Special strings of such numeric patterns will be used for deriving 

different types of splicing events. For instance, for a gene with two isoforms, a string of 

[2-0-1-0-2] indicates the presence of a cassette exon. Although this report focuses on 

cassette exons, such simple design allows extension to other types of events easily. 
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Figure 4.1 Workflow of the alternative splicing event identification pipeline 

(A) RNA-seq-derived transcriptome data was aligned using a customized RNA-seq 

pipeline based on known splicing junctions or Tophat. Cufflinks or Scripture was used for 

isoform annotation. Based on the data-derived transcript annotation, Alt Event Finder was 

applied to identify the novel alternative events. (B) Strategies of Alt Event Finder for de 

novo event detection. 

 

4.2.2 Alternative Splicing Event Annotations from Human Liver Data 

To test the performance of our strategy, we implemented Alt Event Finder on a 

RNA-seq dataset derived from human primary hepatocytes; the RNA-seq experiment was 

conducted using the SOLiD 5500xl system (Life Technologies). The dataset consists of 7 

pairs of samples derived from 7 individuals. Each pair includes a drug exposed sample 

and a control sample. To test the performance of Alt Event Finder on data with various 

sequencing depths, in addition to the 14 RNA-seq samples, we created 7 patient-specific 
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datasets by merging the exposed and control samples from the same individual; and 1 

hepatocyte-specific dataset by merging all the 14 samples together.  

We used BFAST [207] as the primary aligner of short reads, due to its higher 

sensitivity on color-space data [208]. The alignment was conducted on both genomic 

DNA sequences and a junction library including all the combinations of known junction 

boundaries (within a 100 kb span) annotated in the UCSC Gene database. The total 

number of mappable reads in each sample ranged from 6.6 million to 19.5 million. We 

then used Cufflinks [204] to reconstruct transcript isoforms. From that, we applied Alt 

Event Finder. The number of identified alternative splicing events increased as a function 

of depth of coverage (Figure 4.2A); events ranged from 433 to 1,049 in individual 

samples, from 761 to 1,298 for patient-specific datasets (combining control and treated 

data), and was 1,771 for all the samples combined.  
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Figure 4.2 Performance assessment for the Alt Event Finder 

(A) The total number of identified events increases with sequencing depth. Each dot 

corresponds to a sample; the color and the shape of the sample denote its biological 

condition; the regression line is displayed in dashed line with an R-squared value of 0.9383; 

(B) Performance for the Alt Event Finder pairing with a customized alignment pipeline and 

Cufflinks. The X-axis (rate of known events) is defined by the number of overlapping 

events divided by the number of data-driven events, and Y-axis (recall) is defined as the 

number of overlapping events divided by the number of events in the official MISO 

annotation library; (C) The rate of known events does not change with sequencing depth; 

(D) The recall rate of the Alt Event Finder increase linearly with the logarithmic 

transformation of the total mappable reads. The regression line is displayed in dashed line 

with an R-squared value of 0.9684. 
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To evaluate the performance of the proposed strategy, we compared our 

data-derived events with known alternative splicing events documented in the MISO 

release (based on UCSC hg19 assembly) [42]. For each sample, we calculated a rate of 

known events (RKE), which measures the percentage of identified events that were in the 

known splicing events annotation, and a recall value, which was calculated as the 

percentage of known splicing events that were recovered by our strategy. As shown in 

Figure 4.2B, the rate of known events varies from 0.4 to 0.57. This indicates that a 

significant portion of splicing events we detected was not documented in the current 

database, although junction reads were found in support of their existence. The recall 

values, however, are low, ranging from 0.004 to 0.025. This is not surprising since the 

known event annotation aims at completeness, and therefore documents events from 

many tissues with a variety of biological conditions; most of these events should not be 

present in one tissue under one or two biological conditions. We further evaluated the 

relationship between sequence depth and rate of known events (Figure 4.2C) and recall 

values (Figure 4.2D). Rate of known events do not show apparent changes, suggesting 

that the genes expressed at lower levels contain a similar percentage of novel events as 

the more abundant transcripts, but they require greater sequencing depth to identify. The 

recall, however, increases almost linearly with logarithmic transformation of the total 

number of mappable reads. These results (Figure 4.2C and D) indicate that many more 

events will be identified with deeper sequenced samples, while the percentage of novel 

events doesn’t change. Therefore, more novel events will be identified from deeper 

sequenced data.  
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Figure 4.3 Screenshot of one of the novel cassette exon events 

The diagram demonstrates reads supporting a cassette exon event that was not previously 

documented. This gene locates on the reverse strand. The genomic loci of the cassette exon, 

the 5’ and 3’ constitutive exon are chr1: 93073138-93073284, chr1: 93089733-93089891, 

and chr1: 93070864-93070959, respectively. (A) Sequencing reads supporting the junction 

of the 5' and 3' constitutive exons, which indicates exon exclusion; (B) Sequencing reads 

supporting the junction of the cassette exon and the 3' constitutive exon; (C) Sequencing 

reads supporting the transcription of the cassette exon; (D) Sequencing reads supporting 

the junction of the 5' constitutive exon and the cassette exon; (E) UCSC gene annotation 

track; (F) Alternative splicing annotation track; (G) Human EST track; H) The cassette 

exon in UCSC gene annotations. No previous evidence of this cassette exon event was 

shown in the gene annotations, alternative splicing event annotations or the EST records. 
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Figure 4.3 is the screen shot of one of the novel cassette exons (chr1: 

93073138-93073284) not documented in either the official MISO annotation library 

(based on UCSC hg19 assembly) [42] or the Alt Event track (Figure 4.3F) in the UCSC 

Genome Browser (GRCh37/hg19, Feb. 2009) [209]. As shown in the figure, 40 reads are 

identified around this exon (Figure 4.3ABCD), of which 37 (Figure 4.3BCD) support 

inclusion events (exonic reads on the alternative exon, and junction reads connecting the 

upstream or downstream exon with the alternative exon), and 3 (Figure 4.3A) support 

exclusion events (reads connecting upstream and downstream exons directly), 

respectively. Importantly, the presence of 28 exclusive junction reads provides a strong 

evidence for the presence of this novel event. 

 

Figure 4.4 Performance with adjusted known event annotation 

The rate of known events and recall values were calculated only based on the events that 

have at least 10 junction reads supporting the inclusive event and 1 junction read 

supporting the exclusive event. 
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Due to the tissue specific nature of gene expression and alternative splicing, using 

all the known events in the human genome cannot fairly evaluate the sensitivity of the 

proposed approach. This is either due to the absence of certain isoforms in a specific 

tissue, hepatocytes in this case, or because the overall gene expression levels are too low 

to be detected given a specific sequencing coverage. We therefore removed the events 

either with low expression levels, or with extremely unbalanced inclusion/exclusion ratio, 

from the overall alt event library. For the latter, it is possible that the RNA-seq data can 

only detect the isoforms with inclusion or exclusion events, but not both. To fairly 

evaluate the performance, we derived exon inclusion and exclusion ratios using MISO, 

based on all the annotated splicing events. We further filtered the annotated events 

containing no less than 10 reads supporting inclusion and 1 read supporting exclusion. 

After applying this filtering, for the hepatocyte-specific sample (merging reads from all 

the 14 samples), 83.4% of the 39,232 total annotated cassette exon events were removed. 

The adjusted recall rate is shown in Figure 4.4. Clearly, for individual samples, the recall 

remains low, ranging from 0.9% to 3.6%. This number increased for patient-specific 

samples (merging control and drug treatment for one individual), ranges from 2.6% to 

5.0%, and 12.4% for all the 14 samples combined. This low recall rate may be due to the 

stringent threshold of Cufflinks, which aims at maximizing specificity.  
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Figure 4.5 The number of identified events differs with different combinations of 

alignment and transcript reconstruction algorithms 

Each dot describes a sample. X and Y axes denotes sequencing depth and the total number 

of identified events. Samples were color-coded based on their combinations of upstream 

algorithms. 

 

4.2.3 Selection of Alignment and Transcriptome Reconstruction Tools 

We further evaluated how the performance of the Alt Event Finder is influenced 

by the alignment and transcriptome reconstruction tools. For the alignment tool, in 

addition to our customized RNA-seq pipeline which focus on known splicing junctions, 

we also tested TopHat [30], one of the most widely used RNA-seq alignment software. 

For the transcriptome reconstruction tool, in addition to Cufflinks [204], which aims at 

maximizing specificity, we have also tested Scripture [205], a computational algorithm 

aiming at higher sensitivity.  
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The total number of events identified based on 4 different strategies (Customized 

RNA-seq pipeline and Cufflinks, Customized RNA-seq pipeline and Scripture, Tophat 

and Cufflinks, and Tophat and Scripture) varies significantly (Figure 4.5). At low 

sequencing coverage, the customized RNA-seq pipeline (using BFAST and annotated 

exon boundaries) consistently identified more events. When the sequencing depth is 

higher than 100 million reads, however, our AS identification pipeline offers significantly 

more events when Tophat is partnering with Scripture (Figure 4.5). When comparing two 

transcriptome reconstruction tools, Scripture offers higher number of events regardless of 

the sequencing depth and sequencing alignment algorithm (Figure 4.5). Among all the 

four strategies, the combination of Tophat and Scripture at high sequencing coverage 

identified highest number of events. 

4.2.4 Identify Alternative Splicing Events in the Rat Genome 

We applied Alt Event Finder to study the alcohol-induced alternative splicing 

changes in liver tissue, using alcohol-preferring rats as a model system. Seven female rats 

were heavily exposed to alcohol for 10 weeks followed by 2 weeks without alcohol, and 

another 7 were not subjected to alcohol exposure (controls). An RNA-seq experiment was 

conducted on the liver tissues. After sequence alignment using TopHat, 123,017,701 and 

92,389,972 total reads were mapped in the 7 control and 7 alcohol-exposed animals, 

respectively. Scripture was used for transcript reconstruction. Alt Event Finder identified 

505 candidate events with a mixture of multiple isoforms in the combined sample of all 

14 rats. With a MISO isoform differential expression test, we found 75 were alternatively 

spliced at Bayesian Factor (BF) [42] larger than 2; this number implies that it is twice as 

likely for the events to be alternatively spliced than not. A more stringent cutoff derived 

55 events with BF>5.  

Figure 4.6 shows the Sashimi plots [42] for three events with apparent 

alcohol-induced splicing changes in genes highly expressed in liver tissues, LOC691397 
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(similar to PI-3-kinase-related kinase SMG-1), Glycerol kinase, and CD47 (Figure 4.6A). 

For LOC691397, 40 junction-reads support exon inclusion in the control samples, and 17 

support exclusion. In the alcohol exposed samples, however, these numbers changed to 8 

and 15, respectively. This pattern indicates that chronic alcohol exposure induces higher 

relative expression levels of the isoforms without the cassette exon, with a BF value 

15.37. Similarly, CD47 showed lower inclusion ratio after alcohol exposure (Figure 4.6C), 

while alcohol drinking induces exon inclusion for the glycerol kinase (Figure 4.6B). 
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Figure 4.6 Sashimi plot for three novel events that are alternatively spliced in rat liver with 

chronic alcohol exposure. 

The RNA-seq read densities supporting inclusion and exclusion events are shown in the 

figure. The estimated percentage of inclusion for the alternative events and their estimated 

confidence intervals are also demonstrated. The Sashimi plot is produced by the MISO 

package. 
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4.3 Discussion 

In this study, we developed a tool, Alt Event Finder, which generates splicing 

event annotations from RNA-seq data. Most event-based analysis, such as MISO [42], 

cannot work without a library of known event annotations. Therefore they cannot be 

implemented on a genome for which annotation is unavailable, such as the rat genome. 

Even for a genome for which alternative splicing has been extensively studied, such as 

human or mouse, lack of a de novo event finding tool limits the power of studying events 

that are not previously documented. Alt Event Finder bridges the gap between 

event-based analysis and isoform-based transcriptome reconstruction algorithms, such as 

Cufflinks and Scripture. It’s an important addition to the current AS analysis toolset. 

Our algorithm extracts “minimum non-overlapping exon units” (Figure 4.1B) 

from RNA-seq-derived transcript isoform annotation based on Cufflinks or Scripture, and 

further identifies potential alternative events. This strategy greatly increases the flexibility 

of our methods. Although the current study focuses on cassette exon, it can be easily 

extended for other types splicing events, such as intron retention, alternative 5’ donor, 

alternative 3’ acceptor, and so on. This is important because certain types of events can be 

more prevalent in specific tissue types. For instance, cassette exons are dominant in brain 

tissues, while alternative 5’ donor and 3’ acceptor events are more abundant in liver 

tissues [210]. 

Alt Event Finder relies on upstream alignment and isoform reconstruction tools. 

We have evaluated how different tool combinations affect the ability to discover novel 

splicing events. We found that a customized alignment pipeline based on known exon 

boundaries perform better in low sequencing coverage (<100 Million reads), while 

TopHat did better for high sequencing coverage. This is because TopHat derives exon 

structures mainly based on the accumulation of RNA sequencing reads. Since it does not 

rely on existing exon annotations, at lower coverage, the data may not have adequate 
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power to properly identify low expressed exons. For higher coverage, however, TopHat 

will not only have enough power to precisely map the boundaries of known exons, but 

also be more suitable for identifying novel exons. We have also found that we can 

generally identify more AS events using Scripture as isoform reconstruction tool, 

compared to using Cufflinks, because Scripture aims at maximizing sensitivity, while 

Cufflinks aims at specificity. Overall, we recommend using the mapping algorithm based 

on known exon annotation and Scripture combination at a low sequencing depth, and the 

TopHat and Scripture strategy with high sequencing coverage. 

To find out the cause of the low recall rate, we investigated the AS events that 

were identified with the official MISO library but not found in our annotations. One of 

the major causes of such events is lack of junction reads between the cassette exon and 

constitutive exons, which makes the inclusive isoform not detectable by Cufflinks and 

Scripture, but still quantifiable by MISO since reads are covering the cassette exon. 

Another cause is additional alternative spliced 3’ and 5’ sites on a cassette exon event, 

which make an event in our annotation different from the official MISO annotation. 

Since Alt Event Finder is a data-driven approach, its power highly depends on the 

sequencing depth. When the sequencing depth is low, a lot of junction read will be missed, 

and a lot of low expressed exons could be “disconnected”; this will significantly decrease 

the power of the transcriptome reconstruction algorithm for rebuilding the isoforms from 

RNA-seq data, therefore affect the performance of Alt Event Finder. Therefore, when 

possible, increasing the sequencing depth can significantly elevate the power of novel 

event identification. 

When deep sequencing data is not available, at the de novo event identification 

step, we recommend pooling sequencing reads from all the samples. This will enable 

identification of the events that lowly expressed in individual samples. It will also enable 

us to identify the events that have complete inclusion in one condition, but exclusion in 
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another. These events cannot be identified within individual samples, but the 

inclusion/exclusion switches are enormously interesting. 

4.4 Methods 

4.4.1 Dataset 

RNA-seq dataset. We used two RNA-seq datasets for de novo alternative splicing 

event identification, human hepatocytes and rat liver cells. In the human study, primary 

hepatocytes were isolated from seven individual subjects, and treated with Rifampin. 

Total RNA from both control and treated samples were extracted. RNA-seq experiments 

were conducted using the SOLiD 5500xl system with the standard protocol. In the rat 

study, RNA-seq experiments were conducted on liver tissues from 7 non-drinking 

alcohol-preferring rats, and 7 alcohol-preferring rats that were heavily exposed to alcohol 

for 10 weeks followed by 2 weeks without alcohol. The experiment was conducted on the 

SOLiD 4 system with the standard protocol. 

Known splicing event annotation. The known alternative splicing event 

annotation for human genome was retrieved from the official MISO library (based on 

UCSC hg19 assembly). The annotation file was generated based on transcript annotation 

using an EST database; a splicing event was considered alternative if it was supported by 

multiple ESTs. 

4.4.2 RNA-seq Alignment 

We used two RNA-seq alignment pipelines, TopHat [30] and a customized 

strategy using BFAST [207] as primary aligner and known splicing sites documented in 

UCSC Known Gene database [211]. TopHat v1.4.0 was used with standard parameter 

settings on color space data. The customized pipeline uses BFAST [207] as a primary 

aligner due to its computability with small insertions/deletions, and reported higher 

sensitivity on color space data [208]. The overall alignment of our customized RNA-seq 

pipeline includes two levels, alignment on genomic DNA sequences, and alignment on a 
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junction library based on all possible exon combinations within a 100,000-bp span, based 

on documented exon boundaries. This is different from TopHat strategy, which uses 

sequencing reads enrichment and splicing sequence features (GU…AG) for exon 

boundary detection. 

4.4.3 Other Algorithms for Splicing Analysis 

Based on the alignment output from TopHat or the customized pipeline, Cufflinks 

v1.2.1 [204] and Scripture [205] were used for isoform reconstruction. fastMISO 

(Mixture of Isoforms) [42] was used to calculate the percentage of inclusion for 

annotated and novel alternative splicing events. Standard parameter settings were used 

for all the three programs.  

4.4.4 De novo Alternative Splicing Event Identification 

As shown in Figure 4.1A, Alt Event Finder uses transcript isoform annotation 

from Cufflinks (GTF format) or Scripture (BED format) as input. The output is the 

data-derived alternative event annotation in GFF3 format, which can be used as MISO 

input. From the isoform annotation, the Alt Event Finder extracts “minimum 

non-overlapping exon regions” as expression units (Figure 4.1B), counts the number of 

isoforms that include each expression unit, and further derives appropriate AS events 

based on the string of counts (Figure 4.1B). In this study, we focus on cassette exons. 

4.4.5 Performance Assessment 

The ability of Alt Event Finder was evaluated by comparing with the splicing 

event annotation in the MISO library. Events from two annotations are considered 

consistent only if the genomic loci of the alternative exon (cassette exon) and their 5’ 

upstream and 3’ downstream exons are identical. This ensures the most conservative 

evaluation. The performance of Alt Event Finder is assessed by using three measurements, 

the total number of identified events, and the rate of known events and the recall of the 

overall finding. The rate of known events is defined by the percentage of known events 



87 

within data-driven ones, and recall is defined as the percentage of data-driven events 

within known ones. 
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Chapter 5. Novel Alternative Splicing Events in Proteome 

5.1 Background 

Human cells benefit from elaborate mechanisms to modify proteins, creating 

many protein variants (isoforms), both to increase the diversity of functions and to 

regulate the activities of proteins. A protein isoform is any of several different forms of 

the same protein. Different forms of a protein may be produced from related genes such 

as single-nucleotide polymorphisms (SNPs) or may arise from the same gene by 

alternative splicing or post-translational modifications (PTM). Alternative splicing and 

SNPs expands the number of messenger RNAs to about 88,000 mRNA variants during 

transcription of these genes. About 8% of these protein isoforms are generated from 

mRNA transcripts affected by alternative splicing or SNPs, whereas over 90% of protein 

isoforms are created through post-translational modifications (PTMs) after the mRNA is 

translated into a protein [212]. Recent studies have shown that the identification, analysis 

and characterization of these individual protein isoforms (Alternative Splicing, SNPs and 

PTMs) could improve understanding of diseases improve disease diagnosis or 

interventions [213-222]. 

Recent advances in clinical proteomics technology, particularly liquid 

chromatography-coupled tandem mass spectrometry (LC-MS/MS), have enabled 

biomedical researchers to characterize thousands of proteins in parallel in biological 

samples[223]. Identifying disease-related protein isoforms using tandem mass 

spectrometry, therefore, can provide hope for improving both the sensitivity and the 

specificity of candidate disease biomarkers, because proteomics identification, instead of 

quantification, of the same set of protein isoforms is often sufficient to distinguish 

between disease samples and controls. 

However, identifying protein isoforms using current MS proteomics search 

databases and software tools has been challenging, primarily because of the smaller size 

http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Genes
http://en.wikipedia.org/wiki/Single-nucleotide_polymorphisms
http://en.wikipedia.org/wiki/Alternative_splicing
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of known or common alternatively spliced protein isoforms relative to several orders of 

magnitude larger size of MS search databases, which makes exhaustive novel peptide 

identification computationally inefficient for routine proteomics studies. Up to 80% of all 

MS spectra peaks in a typical proteomics experiment may remain uncharacterized when 

searched against a standard MS database with little protein isoform information. Such 

standard MS search databases include: the IPI database [224], the NCBI-nr database, and 

the UniProt knowledge base [225]. These databases integrate more than a dozen public 

protein and DNA sequence databases into a non-redundant list of both known and 

predicted protein sequences, with only publicly known splice variant transcripts 

represented. MS search software such as SEQUEST [226], Mascot [227], X!Tandem 

[228], and OMSSA [229]. may further allow customized identification of limited types of 

PTM-derived peptides and proteins. However, these protein sequence databases do not 

contain information about alternatively spliced transcripts or theoretically possible 

“mis-spliced” protein isoforms; nor do they contain peptide variants arising from SNPs 

that result in amino acid changes. Therefore, they are ill-suited for comprehensive protein 

isoform identification purposes. 

Although there are several publicly available alternative splicing mRNA transcript 

databases and SNP databases including ASTD [230], EID [231, 232], ASPicDB [233], 

ECgene [234], MutDB [235, 236], and dbSNP [237], none of these databases can be 

readily used for identification of novel peptides derived from uncharacterized protein 

isoforms. Since predictions of gene splicing patterns in all the methods are based on 

alignments of transcript data (mostly expressed sequence tags, ESTs) to a genomic 

sequence, some limitations exist in all these methods mostly due to the sequence errors 

frequently occurring in ESTs and to the repetitive structure of the genome sequence. 

Moreover, all the databases mentioned contain a rather small set of alternatively spliced 

peptides because they are either manually curated or literature-based data sets, as well as 
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poor annotation of splice events, which are inadequate for the identification of 

alternatively spliced protein isoforms. To explore the huge solution space of all possible 

alternatively spliced combination of exons and potentially coding introns, one must 

generate virtual peptides exhaustively so that uncharacterized MS spectra can be searched 

against them. In addition, the database of virtual peptides should be expanded to 

accommodate the amino acid alterations introduced by each SNP. 

In this paper, we describe the development of a Peptideomics Database of Protein 

Isoforms (PEPPI), which consists of systematically generated virtual peptides that cover 

alternative splicing events and known SNP variations, for identifying protein isoforms in 

large-scale proteomics results. In the PEPPI database, we introduce a peptidomics 

approach to integrating genome, transcriptome, proteome and SNP information for 

human proteomics studies. The database contains a comprehensive set of peptides 

derived from all known annotated human genes in the Genome Reference Consortium 

Human genome build 37 by generating alternative splicing events and incorporating 

non-synonymous SNPs. It is the first comprehensive database that can be used to 

characterize novel protein isoforms derived from alternative splicing and SNP variations 

in MS spectra. The database has a web user interface that allows its users to query a 

gene/protein and compare all its above-mentioned types of protein isoforms and 

associated virtual peptides online.  

5.2 Results 

5.2.1 Database Content 

Drawn from Ensembl’s genomic data [238], the PEPPI database contains a 

comprehensive set of peptides derived from all known human protein-coding genes and 

was constructed by generating both annotated and hypothetical alternative splicing events 

and incorporating non-synonymous SNPs. In addition to representing an in-frame peptide 

for each exonic region (EXON_KB) of human proteins, four types of PEPPI splice 
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junctions are also captured for all possible combinations of each coding sequence of gene: 

annotated exon-exon junctions (E_E_KB type), hypothetical exon-exon junctions 

(E_E_TH type), hypothetical exon-intron junctions (E_I_TH type), and hypothetical 

intron-exon junctions (I_E_TH type). An exonic region or a splice junction is defined as a 

peptide region. For each peptide region, we also include hypothetical peptides translated 

with each known non-synonymous SNP. By cataloguing each peptide configurations in 

the PEPPI database, users can study alternative splicing events such as exon skipping, 

alternative donor site, alternative accepter site, and intron retention at the proteome level. 

They can also batch-download the peptide annotation and sequences in FASTA format for 

MS data searching. The current PEPPI database includes human data only. As of April 

2010, it is comprised of 7,848,236 PEPPI peptide entries derived from 23,491 

protein-coding genes and 66,384 proteins, incorporating 150,054 non-synonymous SNPs 

(Table 1). 

A peptide-protein mapping is also captured for comparing the MS search results 

derived with the PEPPI and conventional protein sequence databases. In total 613,591 

peptides are mapped to 66,384 IPI [224] proteins (Table 1). 

5.2.2 General Online Features 

In Figure 5.1, we show the user interfaces of the web-based online version of the 

PEPPI database. It allows searching by Ensembl Gene ID, gene symbol, UniProt ID, IPI 

AC, peptide sequence, PEPPI Peptide Region ID and PEPPI Peptide ID.  With the 

cross-links users can easily link to Ensembl [238], IPI [224], UniProt [239], HAPPI [240] 

and HPD [241] and get access to much more detailed information about genes, proteins, 

protein-protein interactions and human pathways. The peptide annotations and sequences 

are freely available for batch-download in FASTA format on the download page. 

 

 



92 

 

 

Figure 5.1 Web Interface Structure 

(A) Search Home: main search page allowing five types of query string: Ensembl gene ID, 

IPI protein accession number, peptide sequence, PEPPI region ID and peptide ID. (B) Gene 

View: search result page visualizing peptide regions within a gene. (C) Region View: 

search result page displaying peptides within a peptide region. (D) Peptide View: PEPPI 

peptide information page. (E) Protein View: search result page of PEPPI peptides mapped 

to an IPI protein. (F) Sequence Search: search result page of PEPPI peptides mapped to a 

query peptide sequence. 

 

 

 

 

 



93 

 

 

 

 

Figure 5.2 Gene View 

(A) Gene scale. It shows the user the chromosome coordinates and strand of the gene. With 

the gene scale, users can read the approximate position of the peptide regions. (B) Peptide 

regions. It shows the user which five types of peptide regions within current given gene 

that the peptide belong to. The coloring of the peptide regions indicates the ORF (Red: 0, 

Green: 1, Blue: 2). The solid bars indicate exons, and the blank bars indicate introns. The 

curve between two exons means the exons are spliced with each other. 
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Figure 5.3 Region View 

(A) The different colors of the cDNA and peptide sequences indicate two different exons, 

or an exon and an intron. The amino acid letter colored in red overlaps with the splice site. 

(B) Green and light cyan backgrounds are used to indicate SNP in cDNA and peptide 

sequences. (C) By clicking on a SNP in sequence, users can see the details of the SNP. A 

link to the dbSNP database is provided. 
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Figure 5.4 Peptide View 

(A) The cDNA and peptide sequences that the current PEPPI peptide is mapped to. Same 

color theme is used in the region view. By clicking on SNP in sequence, users can access 

detailed information of the SNP. (B) In the protein mapping list, the view displays all the 

proteins mapped to the current PEPPI peptide. The peptide sequence is highlighted from 

within the protein sequence. 

 

5.2.3 Case Study 1: Browsing PEPPI Peptides and Relating Information 

For users who would like to overview all the peptide regions and peptides within 

a gene of interest, we provide the standard gene search procedure. In this case study we 

show how to browse the PEPPI peptide regions, PEPPI peptides and related information 

within gene PRH1. Users will start from the Search Home (Figure 5.1A), go through the 

Gene View (Figure 5.1B), Region View (Figure 5.1C), and finally navigate to the Peptide 

View (Figure 5.1D). 

By searching with gene PRH1 in the standard query box provided at the PEPPI 

database home page, users can retrieve all peptide regions corresponding to this gene 

(Figure 5.2). In the Gene View, the PEPPI database visualizes all the peptide regions that 



96 

can be mapped to this gene. The “Location” section shows this gene is located on 

chromosome 12, from 11,033,560 bp to 11,036,883 bp. Links to Ensembl are provided on 

the gene ID and location. A scale of chromosome coordinate is provided on the top and 

bottom of the visualization. The arrow on the chromosome coordinate scale shows this 

gene is located on the reverse strand, so the 5’ end of the gene should be the right end. 

Peptide regions are displayed in five categories, including EXON_KB, E_E_KB, E_I_TH, 

I_E_TH and E_E_TH. The color of the region indicates the protein translation open 

reading frame (ORF) of the corresponding cDNA. By clicking on the peptide region 

REG005324254, the browser will be re-directed to the Region View. 

The Region View (Figure 5.3) displays detailed information of the peptide region 

and the peptide sequences within this region. In the “Peptide Region Overview” section, 

the exon coordinate is the chromosome coordinate of the source exon, and the segment 

coordinate is the coordinate of the flanking sequence beside the splice site. The peptide 

without SNP is displayed on the top of the “cDNA/Peptide Sequence” section, and the 

peptides with SNPs are displayed below. In the sequences, black and blue are used to 

color different exons/introns. An amino acid residue overlapping a splice site is colored in 

red. SNPs are highlighted by green and light cyan. By clicking on the highlighted SNPs, 

the SNP ID will be shown along with the nucleotide change and amino acid change. A 

link to the corresponding page in dbSNP is also provided. By clicking on a PEPPI peptide 

ID, e.g., “PEP007847820”, the browser will be navigated to the Peptide View. 

In the Peptide View (Figure 5.4), detailed information of the peptide region and a 

peptide-protein mapping is shown in the “Peptide Region Overview” section. The cDNA 

and peptide sequence is displayed in the same pattern as the Region View. The “Protein 

Mapping” section lists the proteins mapped to the current peptide. The result shows that 

IPI00847261 is the only protein mapped to the peptide PEP007847820. The annotation 

on IPI states that IPI00847261 is one of the protein products of PRH1. Since the peptide 
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PEP007847820 contains a mutant non-synonymous SNP allele, we can infer that the 

mapped protein IPI00847261 is not the wild-type. 

5.2.4 Case Study 2: Identifying Genomic Origins of AS Events 

For users, especially MS proteomics scientists, who want to start the query from a 

peptide sequence or a protein, we provided a peptide sequence search function (Figure 

5.1F) and the Protein View (Figure 5.1E). In this case study we demonstrate that the 

PEPPI database can help identify the genomic origins of peptides detected from MS data, 

and can help characterize the alternative splicing events related to these peptides. 

The MS peptides can be derived from Healthy Human Individual's Integrated 

Plasma Proteome Database (HIP-2) [242] by inputting its protein ID. For this example, 

by entering “IPI00023636” as the query, a mapping table with several MS peptides 

identified by the MS data analysis program will be returned (Figure 5.5A). To identify the 

genomic region that encodes a specific peptide sequence, we can search the peptide 

sequence on the PEPPI database’s search home. 

As shown in Figure 5.5B and C, peptide 1 is mapped to “PEP000841715”, which 

is an E_E_KB peptide, and peptide 2 is mapped to “PEP000841692” which is an 

EXON_KB peptide. This indicates peptide 1 is coded by an exon-exon junction, and 

peptide 2 is coded by a single exon.  

To study the related alternative splicing events, we then compared the number of 

proteins which can be mapped to these peptides. By clicking on the peptide ID, we can 

get access to the proteins mapped to each peptide. We found 4 proteins mapped to peptide 

1, and 5 proteins mapped to peptide 2. Interestingly, only one protein (IPI00745806) was 

differentially mapped. By looking up the protein information in IPI, we found that the 

proteins involved are five different alternatively spliced isoforms of MP2K7_HUMAN, 

and IPI00745806 is the third isoform. Therefore, it is likely that only a specific 
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alternative splicing event that takes place is annotated and can be mapped onto the 

protein sequence IPI00745806. 

 

 

Figure 5.5 Identifying The Genomic Origin of MS Detected Peptides and The Relating 

Alternative Splicing Event 

(A) The HIP-2 search result page of protein IPI00023636, displaying the evidence peptides 

detected in MS experiments. (B) The PEPPI sequence search result page of peptide 1, 

indicating the query peptide is produced from an exon-exon combination region. The 

corresponding PEPPI peptide can be mapped to 4 proteins. (C) The sequence search result 

page of peptide 2, indicating the peptide comes from an exon, and can be mapped to 5 

proteins. (D) The search result of the wild-type MP2K7_HUMAN, showing the regions 

mapped by the peptides. Peptide 1 crosses the splice site of two exons (PEP000841690 and 

PEP000841692). Peptide 2 is produced from a single exon, PEP000841692. (E) The search 

result of the 3rd isoform of MP2K7_HUMAN, the protein that is mapped to the peptide 2 

but not mapped to peptide 1. That is because the insertion of a cassette exon 

(PEP000841691) changed the sequence of the protein. 
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To verify our suspicion on the existence of the alternative splicing event, we 

compared the protein-peptide mapping of the wild-type and the third isoform of 

MP2K7_HUMAN. In the wild-type MP2K7_HUMAN (Figure 5.5D), “PEP000841715” 

contains the splice junction of two exons (PEP000841690 and PEP000841692), and 

peptide 1 just crosses the splice site. Nevertheless, in the MP2K7_HUMAN isoform 3 

(Figure 5.5E), we found a unique cassette exon (PEP000841691) spliced between the two 

exons, which hampered the coding of sub-sequence mappable to peptide 1. Meanwhile, 

peptide 2 is only mapped to a single exon (PEP000841692), which exists in all five 

proteins and unaffected by any splice events. Thus we have confirmed the suspicion that 

a cassette exon event caused the protein mapping difference between two MS peptides, 

and have shown the PEPPI database’s ability to help infer alternative splicing events from 

peptides detected from MS experiments. 

5.2.5 Case Study 3: Identifying New Peptide Isoforms for Human 

Human fetal liver can evolve into a major site of embryonic hematopoiesis; 

therefore, protein profiling may help researchers understand how the interaction between 

hepatic and hematopoietic systems and the migration of the hematopoietic system during 

mammalian development take place. We collected four human fetal liver cytoplasm 

proteome data sets from the human fetal liver project (http://hlpic.hupo.org.cn /dblep). 

SDS-PAGE with different cross-linking percentages 15%, 10%, and 7.5% was used for 

protein separation to obtain a full representation of proteins ranging from 5 kDa to more 

than 300 kDa. After these gels were stained with Colloidal Coomassie Blue R250 and the 

gel lanes were manually excised from loading position to the bottom of the gel, the 

extracted peptide mixtures were loaded onto nanoscale LC-ESI-Q-TOF MS or 

micro-LC-ion trap MS systems for protein identification [243]. 

In order to show that the PEPPI database can be used to identify additional novel 

peptide isoforms than the traditional protein database, we downloaded the protein 
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database IPI and created three datasets using the PEPPI database: 1) annotated exonic 

peptides and exon-exon combinations without SNP (PEPPI_KB), 2) all PEPPI peptides 

without SNP (PEPPI_without_SNP), and 3) all PEPPI peptides including peptides with 

SNP (PEPPI_with_SNP). PEPPI_KB consists of peptides of both the EXON_KB and 

E_E_KB region types without additional SNP permutations; PEPPI_without_SNP 

consists of peptides of the EXON_KB, E_E_KB, E_I_TH, I_E_TH, and E_E_TH region 

types without additional SNP permutations; PEPPI_with_SNP consists of peptides of all 

types, with or without SNPs, in the PEPPI database. We also created four corresponding 

inverse sequence datasets to evaluate the false discovery rate with a target-decoy search 

strategy [244]. The four peak list files of human fetal liver from LC-ESI-Q-TOF MS or 

micro-LC-ion trap MS raw files were searched by OMSSA[229] against the four 

databases and their four inverse databases in order to compare the results among them.  

OMSSA reports hits ranked by E-value. An E-value for a hit is a score that is the 

expected number of random hits from a search library to a given spectrum, such that the 

random hits have an equal or better score than the hit. For example, a hit with an E-value 

of 1.0 implies that one hit with a score equal to or better than the hit being scored would 

be expected at random from a sequence library search [229]. The search results with 

OMSSA can vary substantially with differing search parameters, sequence libraries, and 

samples [244]. Therefore, we adopted the MS/MS false discovery rate (FDR) instead of 

E-value as scoring criterion for evaluating the four databases, and this method is based on 

commonly used scoring methodologies and the target-decoy search strategy [244]. All 

other OMSSA search parameters [229] for the four databases are the same. To increase 

identification accuracy, only peptides/proteins with at least two hits of different samples 

was recognized as true peptides/proteins.  

A comparison of search results against four MS databases, i.e., IPI, PEPPI_KB, 

PEPPI_without_SNP, and PEPPI_with_SNP, is shown in Table 2. Results are shown only 
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at a commonly used 1% MS/MS FDR for each database. Compared to the traditional IPI 

database, the elapsed time for PEPPI_KB decreased although the dataset size increased 

by two and a half times. And with the increase of sizes, the elapsed time increases 

significantly linearly from PEPPI_KB to PEPPI_without_SNP to PEPPI_with_SNP 

(Intercept=8.17021, slope=0.04738 , and adjusted R2=0.9975). 

 

 

Figure 5.6 Overlap of Peptides/Genes Identified by Four Search Databases. 

(A) Peptides identified from two or more samples. (B) Proteins identified from two or more 

samples. 

 

Under the criteria of MS/MS FDR 0.01, the target MS/MS hits markedly 

increases with the increase of database size, and target peptide hits, target protein hits, 

and target PEPPI hits all increase while the corresponding FDRs remained approximate. 

The overlap of genes identified by each database is shown graphically by Venn diagram 

in Figure 5.6. The results show that the PEPPI database can be used to identify more 

peptides/proteins under the same false positive rate than the traditional IPI database. 

From the four human fetal liver MS data sets, we identified 63 peptides which 

mapped to 74 PEPPI peptides and 9 SNP events using PEPPI_with_SNP (See Table S-2). 

Among the 74 PEPPI peptides, 55 EXON_KB type peptides were also annotated 

previously in IPI, and 19 peptides were novel peptides uniquely identified with the PEPPI 
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database (13 E_E_KB type peptides, 2 E_E_TH type peptides, 1 I_E_TH type peptide, 

and 3 E_I_TH type peptides) 

The peptide hit matrix shows the number of PEPPI peptides mapped to the 

peptides detected from the samples, and the number of samples (N) in which the peptide 

is detected (See Table S-3). 

5.3 Discussion 

We created a comprehensive PEPPI database of both annotated and hypothetical 

peptides representing human protein isoforms for MS analysis. The PEPPI database made 

it possible for high-throughput identification of gene variations, exon expression, and 

alternative splicing events at the proteome level. We also constructed a web-server for 

searching and visualizing the peptides. With the user-friendly interface and powerful 

search functions, users can easily study the alternative splicing events and gene variations 

related to any gene, protein, or peptide sequence of interest. 

A comparison between the PEPPI database and conventional MS methods is 

shown in Table 3. An MS approach with the PEPPI database uses the same samples, 

equipments and analysis software as a conventional MS approach. To use the PEPPI 

database, users just need to set the PEPPI database or a subset of the PEPPI database as 

the user defined sequence database in the MS search software. With the PEPPI database, 

users can gain information on the expression of exons, alternative splicing events, SNPs, 

and protein existence from the proteome, while the conventional MS approach can only 

derive the protein existence information. Users can opt to use different subsets of the 

PEPPI database for different study purposes. The computational cost of adopting the 

PEPPI database approach over a conventional approach is kept low, due to the use of 

computing cycles without human intervention. 

Since the database incorporated a large number of hypothetical peptides, it is 

possible that the search result contains false positives due to the noise. To solve this 
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problem, we will design an optimized routine for MS data analysis. For example, users 

may analyze several samples at one time, and only keep the peptides detected in more 

than one sample. On the other hand, a recently published article [245] reported tissue 

dependent splicing patterns, which make it possible to generate tissue specific PEPPI 

peptides and reduce the chance of incorporating false positives. 

5.4 Methods 

5.4.1 Genome Data Source 

The PEPPI peptides were generated from the human genome. The source genome 

data was downloaded from Ensembl Version 55 [238] with BioMart. As shown in Figure 

5.7A, four tables, including Un-Translated Region (UTR), Gene Sequence, Gene-Protein 

Mapping and Gene Structure, were pulled from the Ensembl Homo sapiens Genes 

Dataset. The UTR table describes the coordinates of all the transcript UTRs. The Gene 

Sequence table contains chromosome coordinates and sequences in FASTA format. The 

Gene Structure table contains the exon annotation information, including Exon ID, Gene 

ID, Transcript ID, as well as the genome coordinate and translation phase of the exons. 

The SNP table was derived from the Ensembl Homo sapiens Variation Dataset, and 

contains the SNP’s chromosome coordinate and nucleotide shift. The PEPPI database 

incorporated 44,285 genes and 16,489,577 SNPs. 

5.4.2 Data Pre-Processing 

A data pre-processing procedure (Figure 5.7B) was implemented to remove 

non-coding genes and SNPs which are not in exonic regions.  

Firstly we imported all the source tables into a SQLite3 database with the 

SQLite3 command-line interface, and then we used SQL statements to remove 

non-coding genes. The Gene-Protein Mapping was utilized as a filter, and genes not 

mapped to proteins were considered as non-coding genes. The Coding Gene Sequence 
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and Coding Gene Structure table was derived after filtering, and 21,351 protein-coding 

genes were captured.  

 

Figure 5.7 Data Generation Process. 

The whole data generation process was divided into three steps: (A) deriving the genome 

data from Ensembl; (B) pre-processing of the data to select protein-coding genes and SNPs 

within coding exons; and (C) generation of peptide regions and PEPPI peptides. The result 

datasets are colored in red. 
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Then we compiled a C program with the SQLite3 library to extract the annotated 

transcription information from the Coding Gene Structure table, and produced two tables. 

The Exon Knowledgebase table describes all the protein-coding exons, and the Exon 

Comb Knowledgebase table describes all the exon-exon combinations found in the 

annotated transcripts. Then the SNP table was searched against the Exon Knowledgebase 

table, and 390,539 SNPs within the annotated coding exons were retrieved for peptide 

generation. 

5.4.3 Peptide Region Generation 

We compiled a pipeline program with C and the SQLite3 library to generate 

peptide regions (Figure 5.7C). The program first generated the wild-type cDNA 

sequences of the peptide region, and then translated the cDNA sequences into peptides. 

The derived peptides were estimated by the program according to a set of protocols, and 

un-qualified peptides and the corresponding region were discarded. Different cDNA 

generation procedures and peptide estimation protocols were implemented on different 

types of peptide regions. 

For the EXON_KB type, the chromosome coordinate of the exons were derived 

directly from the Exon Knowledgebase table, and the whole length of the exon cDNA 

sequence was captured from the gene sequence. Then the exon’s cDNA sequences were 

translated into peptides according to the annotated ORF. In the peptide estimation process, 

if a stop codon existed anywhere except the end of the peptide, the corresponding region 

was considered invalid and was discarded. 

Similar to the EXON_KB type, the chromosome coordinates of the two exons in 

the E_E_KB type were derived directly from the Exon Comb Knowledgebase table. Then 

the derived cDNA sequences were translated into peptides according to the annotated 

ORF of the exon on the 5’ end. The same peptide estimation protocol used with the 

EXON_KB type was applied to the E_E_KB type. 
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For the E_I_TH and I_E_TH type, the program derived the chromosome 

coordinates of exons from the Exon Knowledgebase table and spliced them with the 

adjacent introns. The cDNA flanking sequence on both side of the splice site was limited 

to 120 nucleotides. If the exon/intron is shorter than 120 nucleotides, the program will 

pull out the actual sequence. This limit was set according to the longest peptide in the 

HIP-2 database [242], which had a length of 80 amino acids and corresponded to 240 

nucleotides in the cDNA sequence. This represents the length of the longest peptide that 

can be identified from an MS experiment. In this way we made sure that any MS 

identified peptide that crosses the splice site can be captured by the PEPPI database. In 

the peptide estimation process, a stop codon is tolerated in the intron of E_I_TH, but not 

tolerated anywhere expect the 3’ end in I_E_TH. 

When producing the E_E_TH type of peptide regions, all possible exon-exon 

combinations were generated and searched against the Exon Comb table. Any 

combinations that cannot be found in the Exon Comb table were captured as an E_E_TH 

type candidate. Then each E_E_TH type cDNA was translated in all 3 ORFs, and if a stop 

codon was found in the 5’ end exon, the peptide was discarded. Note if more than one 

E_E_TH peptide derived from the 3 ORFs were considered valid, then a peptide region 

was created for each ORF. 

5.4.4 PEPPI Peptide Generation 

After the generation of peptide region, PEPPI peptides were produced by inserting 

non-synonymous SNPs into the wild-type peptide of the corresponding region (Figure 

5.7C). All the non-synonymous SNPs within a peptide region were first captured in a list, 

and then inserted into the wild-type cDNA according to their chromosome coordinates. 

Each cDNA sequence with SNP was then translated into peptides. The peptides were then 

estimated according to the peptide estimation protocol of its own region type, and invalid 
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ones were discarded. During peptide generation, a table of Peptide-SNP Mappings was 

also generated. The wild type peptides were also deposited in the PEPPI Peptide table.  
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5.4.5 Online PEPPI Server Design 

The online version of PEPPI database is a typical 3-tier web application, with a 

MySQL database at the backend database service layer, Apache/PHP server scripts to the 

middleware application web server layer, and CSS driven web pages presented on the 

browser. The Javascript library uuCanvas is used to render the real-time data 

visualizations in the gene view and the protein view.  

The result tables derived from the data generation step were imported into the 

MySQL database (Figure 5.8). The chromosome coordinate information was deposited in 

the Peptide Region table, and the sequence information was deposited in the PEPPI 

Peptide table. The ID mapping tables for genes and proteins enable users to query the 

database with different IDs.  
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Chapter 6. Long Non-coding RNAs in Transcriptome 

6.1 Background 

Alcohol is the third leading cause of preventable death in the United States  

[246]. Alcohol misuse negatively affects the quality of life for millions of Americans, and 

has profound sociological and economic impacts. The neurobiological basis underlying 

alcohol dependence is not fully understood, but extensive evidence indicates that genetic 

factors play key roles in influencing the risk of alcohol dependence [247-254]. Over the 

past decades, several specific genes have been implicated in the risk of alcoholism [249, 

255-265]. In addition, recent studies suggest that epigenetic processes play a critical role 

in affecting the risks of alcohol dependence [266-268]. 

Deep sequencing data from the Encyclopedia of DNA Elements Consortium 

(ENCODE) suggests that over 90% of the human genome can be transcribed, and 

non-protein-coding RNAs (ncRNA) exceed the number of protein-coding genes [67]. The 

recent discovery of over 200 ncRNAs significantly enriches the portfolio of potential 

genetic factors [269]. Rather than being transcriptional noise, many ncRNAs serve as 

master regulators that affect expression levels of dozens or even hundreds of target genes 

[270, 271]. These regulatory RNAs integrate signals from both genetic and environmental 

factors, and therefore can play major roles in controlling alcohol preference. Most notably, 

a strong association of epigenetic marks with long non-coding RNAs (lncRNAs, >200 

nucleotides) in humans and mice was recently described [272]. Many lncRNAs contain 

conserved elements and show spatiotemporally restricted expression patterns, implying 

that they are functional and regulated [273]. These lncRNAs are reported to regulate 

dosage compensation, imprinting, and development by establishing chromatin domains in 

an allele- and cell-type specific manner [274-276]. It is also reported that lncRNAs are 

involved in post-transcriptional regulations [277]. 
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It is now possible to identify novel lncRNAs from the high-throughput 

sequencing data. Guttman et al [34] found that genes being transcribed by RNA 

polymerase II (Pol II) are marked by trimethylation of lysine 4 of histone 3 (H3K4me3) 

in the promoters and trimethylation of lysine 36 of histone 3 (H3K36me3) along the 

transcribed regions. They defined such structure as “K4-K36 domains” and identified 

more than 1600 previously unknown K4-K36 domains from mouse by CHIP-sequencing; 

these transcription active regions represent either protein coding genes or lncRNAs. 

In the current study, we designed an RNA-sequencing experiment and a computer 

approach to identify and characterize novel lncRNAs that are actively transcribed and 

correlated with alcohol preference in rat. We conducted a scan on the transcriptional 

intensities within the rat orthologous regions of the mouse K4-K36 domains published by 

Guttman et al [58], and focused on “intergenic” lncRNAs, i.e., lncRNAs residing outside 

all known protein-coding genes. We identified 420 novel lncRNAs, among which 37 

were differentially expressed between P (alcohol preferring) and NP (alcohol 

non-preferring) rats. Our pathway analysis on the differentially expressed lncRNAs 

demonstrated that many of them had shown significant association with neural functions. 

Our method is also applicable to other diseases and species. 

6.2 Results 

In order to understand the role of lncRNA in alcohol preference, we conducted 

RNA sequencing and bioinformatics analysis on P (alcohol preferring) and NP (alcohol 

non-preferring) rat strains. Our analysis includes four major steps: (i) deriving the rat 

orthologous regions of the K4-K36 domains in mouse; (ii) acquiring the transcriptome 

from the hippocampus of P and NP rats by means of next-generation sequencing; (iii) 

identifying potential regulatory lncRNAs associated with alcohol consumption, based on 

the RNA sequencing and epigenetic marker information; and (iv) inferring the functions 

of lncRNAs differentially expressed in P and NP rat strains (Figure 6.1). 
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Figure 6.1 The Workflow of LncRNA Annotation. 

The dashed boxes indicate extern data source, and solid boxes indicate results generated in 

our analysis. The numbers at the right of the boxes are the number of putative lncRNAs 

after each step of filtering. The filtering begins from 1673 K4-K36 domain in mouse and 

ends up with 420 putative lncRNA regions in rat. 
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6.2.1 Rat Genomic Regions Orthologous to Mouse K4-K36 Domains 

Guttman et al [58] reported 1673 K4-K36 domains in the mouse genome that may 

include lncRNAs. To identify rat lncRNAs, we mapped these K4-K36 domains to the rat 

genome with UCSC LiftOver [278]; 1542 putative lncRNA regions were identified. 

We discarded or truncated the rat orthologous domains to eliminate overlaps with 

(i) known protein-coding genes in rat, or (ii) orthologous regions of known 

protein-coding genes in mouse and human. We focused on the remaining 1319 putative 

lncRNA regions, in which all the known protein coding sequences were excluded. 

6.2.2 Hippocampus Rranscriptomes of P and NP Rats 

To examine the transcription activity of these regions in alcohol-preference, we 

implemented an RNA sequencing experiment on P and NP rats. P and NP rats  [279] are 

a pair of model animals developed for alcohol dependence research, traits other than 

alcohol preference were strictly controlled. Total RNA was extracted from the 

hippocampus of 8 non-inbred P and 8 NP rats, poly-adenylated RNA was selected and 

reverse transcribed. The resulting cDNA was sequenced using the Illumina Genome 

Analyzer IIe, with the strand of the RNA transcripts restrained. RNA from each 

individual rat was sequenced in one Illumina lane that produced 2.8 to 12.8 million 

mappable reads. 

6.2.3 Potential Regulatory lncRNA Regions in P and NP Rats 

Among the regions that were transcribed, we assumed that the strand preference 

for each transcript should be consistent across all the samples, and discarded those that 

were not. With this filtering, 516 and 426 transcripts were derived from the putative rat 

lncRNA regions from P and NP rats, respectively (Figure 6.2A). By uniting these two sets 

of transcripts and removing duplicates, we derived 532 putative lncRNA transcripts with 

strand specificity. 
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Figure 6.2 Features of identified lncRNAs. 

(A) Strand preference. The horizontal and vertical axes denote transcription activity on 

forward and reverse strand, respectively. The circles denotes the lncRNA candidates not 

showing significant strand preference, while the blue and red dots denotes the lncRNA 

candidates that are transcribed on the forward and reverse strand, respectively. (B) 

Distribution of the ratio between lncRNA gene length and exonic region length. 

 

We used a computational algorithm to annotate exons in the putative lncRNA 

regions based on the transcriptional intensity. Within each exon, we required at least 8 

reads, with a maximum distance between two reads of 25 nucleotides. By discarding the 

putative lncRNA regions of which the total exonic lengths were less than 200 nucleotides, 

the candidate pool was reduced to 452 putative lncRNA regions. 

We aligned the exonic sequences of putative lncRNAs and known proteins with 

BlastX [280, 281], and then eliminated a small portion (≈7%) of putative lncRNAs that 

included exons showing protein-coding capacity (Methods). Eventually, we derived 420 

novel lncRNAs with significant transcriptional activity and no significant potential to 

code for proteins. 

 



115 

 
Novel 

lncRNA 

Known 

lncRNA 

Protein-coding 

genes 

Number of regions 420 99 13892 

Length of longest transcript (nt) 72075 83437 17599 

Length of shortest transcript (nt) 200 374 105 

Mean of all transcript lengths (nt) 4053 4947 2131 

Median of all transcript lengths (nt) 1939 3240 1767 

Maximum exon number 244 48 106 

Minimum exon number 1 1 1 

Mean of exon number 14 5 9 

Median of exon number 8 4 7 

Length of longest exon (bp) 10454 83437 11972 

Length of shortest exon (bp) 32 20 3 

Mean exon length (bp) 283 913 244 

Median of exon length (bp) 208 150 132 

Maximum expression intensity (rpkm) 1104.17 N/A 2905.00 

Minimum expression intensity (rpkm) 0 N/A 0 

Mean expression intensity (rpkm) 3.73 N/A 15.44 

Median of expression intensity (rpkm) 0.94 N/A 2.26 

Table 6.1 Statistics of Predicted LncRNA, Known LncRNA and Protein-coding Genes 

Novel lncRNA indicates the lncRNAs identified by our pipeline; known lncRNAs 

include known lncRNAs in both mouse and rat; protein-coding genes refers to rat 

protein-coding genes only. 
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Figure 6.3 Volcano plot of differential expression in P and NP samples. 

The black dots denote the lncRNAs that are not differentially expressed. Red and blue 

dots denote lncRNAs that are significantly higher expressed in P and NP rats, 

respectively. 

  

These novel lncRNAs are equally distributed along different chromosomes, with 

43 and 9 on chr1 and chr12, respectively, which are the longest and shortest 

chromosomes of rat. The transcript lengths of novel lncRNAs fell between 200 and 

72,075 nucleotides, and the ratio of lncRNA transcripts and lncRNA genes ranges from 1 

to 165 (Figure 6.2B), which are similar to known lncRNAs (Table 6.1). The mean 
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transcriptional intensity of novel lncRNAs is 3.7 RPKM, while the average RPKM of 

protein-coding genes is 15.44. 

 

6.2.4 lncRNA Functions and Associations with Alcohol Preference 

Among 420 lncRNAs identified in P or NP rat hippocampus, 37 were 

differentially expressed at a false discovery rate of 0.1 in our Friedman test (Figure 6.3). 

Among the differentially expressed lncRNAs, expression levels of 26 are higher in P rats, 

while 11 are higher in NP rats. This trend is significantly different from protein-coding 

genes (p≤0.001), where expression levels of 1401 and 2009 genes were high in P and NP 

rats respectively (Table 6.2). This is consistent with the observations that most known 

lncRNAs exert their functions by repressing the expression of protein-coding genes. 

 

 Up-regulated Down-regulated 

lncRNA 26 11 

Protein coding gene 1401 2009 

P-value=0.0006 (Chi-square) 

Table 6.2 Chi-square Test of LncRNA Negative Regulation on Protein-coding Genes 

Up-regulated indicates the lncRNA or gene is up-regulated in P rats vs NP rats; 

conversely, down-regulated indicates the lncRNA or gene is down-regulated in P rats vs 

NP rats. 

 

We used a generalized linear model to characterize the correlations between the 

transcription levels of lncRNAs and genes. Among the 2873 genes significantly 

correlating (FDR<0.2, p-value<0.005) with the differentially expressed lncRNAs, 120 are 

correlated with more than 3 lncRNAs. Several of lncRNA correlating genes are known as 

associated with alcohol dependence, including ALDH1A1, ALDH9A1, GABRA2, 



118 

CHRM2, PDYN and CNR1. We conducted a pathway analysis on these 120 genes with 

Ingenuity Pathway Analysis (IPA) and found that physiological function most frequently 

associated to lncRNAs is nervous system development and functions.  

Among all the differentially expressed lncRNAs, 22 correlate with more than 30 genes 

each. 15 of these lncRNAs correlate with genes enriched in nervous system development 

and function, 8 with neurological diseases, and 6 with behaviors. Moreover, 10 of the 22 

lncRNAs are associated to genetic disorder, which may reveal the hereditary nature of 

alcoholism.  

 

 

Figure 6.4 Potential cis-regulation of lncRNA. 

The pie-chart demonstrates the percentage of transcription factors, miRNA and other 

genes in lncRNA neighbors and in all genes. The proportion of transcription factors and 

miRNAs in lncRNA neighbors is significantly higher (p=2.2×10-16) than that in all 

genes. 

 

Among genes proximal to lncRNAs differentially expressed between P and NP, 

9.2% are annotated as transcription factors, and 6.6% as miRNA; for genes not proximal 
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to differentially expressed lncRNAs, however, this proportion dropped to 6.2% and 1.5% 

for transcription factors and miRNAs. This difference is significant with χ2 p-value 

2.2×10-16, suggesting that many of the novel lncRNAs may be associated with 

neighboring transcription factors and miRNAs, and work in a cis-acting manner. 

6.3 Discussion 

We report an RNA-seq experiment on the hippocampus of P and NP rats, and a 

bioinformatics strategy to identify lncRNAs from the RNA-seq information and 

characterize their roles in alcohol preference. Our strategy includes four components, 

orthologous lncRNA region mapping from mouse to rat, RNA-seq on P and NP rats, 

lncRNA annotation and pathway characterization. We identified 420 lncRNAs, 37 of 

which are differentially expressed across P and NP rats. By applying a generalized linear 

model to differentially expressed lncRNAs and protein-coding genes, we derived 3699 

significantly correlated lncRNA-gene pairs involving 2873 genes. We created a set of 

significantly correlated genes for each lncRNA, and inferred their functional roles by 

pathway analysis. The result revealed that 15 are significantly correlated with nervous 

system development and function. Our statistical analysis also revealed that the 

proportion of TF and miRNA are significantly higher among the lncRNA neighboring 

genes than other genes, implying a cis-acting mechanism (Figure 6.4). 

Evidence was found supporting the existence and potential regulation functions of 

the differentially expressed lncRNAs. Region1384_rev is significantly correlated with 

824 genes, of which 61 are significantly associated with nervous system development and 

function; it is located in the promoter (179 nt upstream of transcription start site) of a 

protein-coding gene CHD2, whose product alters gene expression by modification of 

chromatin structures [282]. Given the observations that many lncRNAs locating in the 

promoter of protein-coding genes possess regulation functions on the corresponding 

genes, the location of region1384_rev suggests a tremendous possibility of a regulatory 
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role upon CHD2, and thus regulating a large group of genes by chromatin modification. 

Moreover, we observed several rat ESTs and orthologous non-coding genes of mouse and 

human within this region, verifying the existence of this lncRNA. (Figure 6.5) 

 

 

Figure 6.5 Observations supporting the existence of lncRNA. 

A dark grid indicates that evidence was found for the corresponding lncRNA, while a 

white grid indicates no such evidence was found. Rat ncGene stands for rat non-coding 

genes; Ortho-ncGene stands for orthologous non-coding genes; N-scan and SGP stands 

for N-scan and SGP gene prediction, respectively; EST stands for expressed sequence 

tags. The lncRNAs are sorted by the number of evidences found. 
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Evidence was also found in support of the existence of other differentially 

expressed lncRNAs and their potential functions on gene regulation and signal 

transduction. Four lncRNAs (region0877_for, region1066_for, region0112_for, and 

region0138_for) were identified sequentially adjacent to zinc-finger proteins, which were 

generally found as a component of transcription factors; besides, region0867_for was 

identified neighboring a gene coding transcription factor, and region0283_rev was found 

near a gene coding a DNA binding protein; these observations indicates that lncRNA may 

regulate the expression of transcription factor genes. Moreover, two lncRNAs 

(region0314_for and region0007_for) were identified adjacent to genes coding G-protein 

regulation proteins (Rho GTPase activating protein 5 and Rho guanine nucleotide 

exchange factor), which implies that lncRNAs may also play roles in cell signaling. 

Region1374_rev was found next to a small-nuclear RNA that is involved in snRNA 

modifications, and region0430.1_for was next to an RNA motif binding protein; this 

indicates that lncRNAs may also be involved in RNA regulations. 

The “K4-K36” domain only represents a transcription active region that may be a 

gene, it is unable to differentiate an intronic lncRNA from a novel exon. Therefore our 

strategy focused on intergenic ncRNAs only, we may have missed the lncRNAs located 

in intronic regions and untranslated regions. In addition, we required the expression of all 

candidate lncRNAs be higher on one of the two strands to eliminate noises and error in 

sequencing data. Because of this criterion, we may also have missed the lncRNAs that are 

transcribed on an antisense strand of a non-coding gene. Nevertheless, once we have new 

transcriptome data with deeper sequencing and longer reads, we will be able to identify 

more lncRNAs from intragenic regions. 

In the future, we plan to conduct RT-PCR experiments to validate the 

transcriptional activity of the lncRNAs which are likely to be associated to gene 

regulations in alcohol preference. We also plan to sequence more brain regions of rats at 
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different drinking levels, thus to characterize the tissue related functions of lncRNA and 

their association with different drinking scores. 

6.4 Methods 

6.4.1 Eliminating Protein-coding Regions 

The annotation library of rat genes and orthologous regions in human and mouse 

were downloaded from UCSC table browser. To remove non-coding genes from the 

library, the genes that cannot be mapped to UniProt accessions were eliminated. Then the 

putative lncRNA regions were superimposed to the protein-coding genes and classified 

into three categories according to the overlap length, 1) non-overlapping, 2) complete 

overlapping and 3) partial overlapping. The putative lncRNA regions not overlapping 

with protein-coding regions were retained for next step, while the complete overlapping 

regions were discarded. For partially overlapped regions, we truncated the overlap and 

shortened the lncRNA regions, if transcriptional activity were detected outside the 

overlap. 

6.4.2 Determining Transcriptional Strand Preference 

To determine the transcriptional strand preference within the putative lncRNA 

regions, we firstly calculated two transcription intensities in RPKM for each lncRNA 

region in each sample, one is for forward strand and the other is for reverse strand. Then 

we conducted a Friedman test to compare the transcriptional intensities on different 

strands. A putative lncRNA region with p-value<0.01 was defined as significantly strand 

biased and the higher expressed strand were defined as the sense strand, while the 

insignificant regions were eliminated. Both the RPKM calculation and Friedman test 

were implemented with Partek® Genomics Suite® software, version 6.6 Copyright ©; 

2016 Partek Inc., St. Louis, MO, USA. 
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6.4.3 Refining Exon Structures 

To reduce computational time, we eliminated all the RNA-seq reads outside the 

putative lncRNA regions and on the antisense strand. Then SAMtools was used to pileup 

all the reads. A list of expressed chunks was generated based on the pileup file. If the 

distance between two chunks was less than 25 basepairs, they were merged into one 

chunk. If the number of reads covered by a chunk was less than 8, this chunk was 

discarded. The derived chunks were defined as putative exons and mapped to the lncRNA 

regions. A refflat file was generated for each lncRNA regions, annotating their 

coordinates and putative exon structures. 

6.4.4 Detecting Protein-coding Potential 

The sequences of the putative exons were extracted and aligned against SwissProt 

with BlastX. In the cases that several alignments were generated for one exon sequence, 

we only retained the one with the highest alignment score. Then we calculated the 

average log10(E-value) of all exons for each lncRNA to evaluate their protein-coding 

potential. LncRNA regions with an average log10(E-value) < -3 were discarded; the rest 

regions were defined as non-coding potential regions. 

6.4.5 Deriving Significantly Correlated LncRNA-gene Pairs 

It is reasonable to assume that number of sequence tags identified in each lncRNA 

region follows a Poisson distribution; we therefore used a generalized linear model to 

infer the relationship between the expression intensity of lncRNAs and protein-coding 

genes. 

𝑌𝑖𝑘~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖𝑗𝑘) 

log 𝜇𝑖𝑗𝑘 = 𝑁𝑖𝑘 + 𝛼 + 𝛽1𝑠𝑘 + 𝛽2𝑔𝑗𝑘 + 𝛽3𝑏𝑘 

In this model, i, j, and k are the indices of lncRNA, gene and animal. Yik is the 

number of RNA-seq read counts in the region of lncRNA i in animal k; μijk is the 

expected value of Yik; Nik is a constant value that serves as a normalization factor to 
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balance sample and lncRNA specific variation. Here, Nij=log(Ki)+log(Mk), where Ki is 

the length of exon model of lncRNA i and Mk is the total number of mappable reads for 

sample k. sk is the strain of animal k (P or NP); gik is the transcription intensity (RPKM) 

of gene i in animal k; bk is the batch effect of the experiment (Run1 or Run2). The 

significance of β2 was used to evaluate the correlation between lncRNA i and gene j.  

To simplify the model and derive the most trustworthy results, we assumed that 

there is no interaction between strain and gene transcription intensity. To rule out the 

cases that the interaction may exist, we used another generalized linear model to identify 

these cases. 

𝑌𝑖𝑘~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖𝑗𝑘) 

log 𝜇𝑖𝑗𝑘 = 𝑁𝑖𝑘 + 𝛼 + 𝛽1𝑠𝑘 + 𝛽2𝑔𝑗𝑘 + 𝛽3𝑏𝑘 + 𝛽4𝑠𝑘𝑔𝑗𝑘 

If the coefficient of strain-gene interaction term β4 was significant (p≤0.05), then 

the corresponding lncRNA-gene pair was discarded.  

To increase the reproducibility of the results, we required that all lncRNAs and 

genes should have transcriptional intensities more than 0.5 RPKM in at least 8 samples.  

All lncRNA-gene pairs involving ineligible lncRNA or genes were discarded. 
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Chapter 7. Conclusions and Discussions 

7.1 Research Summary and Contributions 

About 150 years after the first observation of nucleic acids, the advance of 

high-throughput sequencing technologies has unleashed numerous possibilities in genetic 

and genomic research. This dissertation demonstrated 5 use cases in transcriptome 

research facilitated by mRNA sequencing and protein mass spectrometry.  

Chapter 2, 3 and 4 covered identification methods for both known and novel 

alternative splicing (AS) events, and made functional insights on these AS events that can 

be utilized in hypothesis generation for wet-lab research. In Chapter 2, we identified and 

characterized stimulant induced AS events. In Chapter 3, we improved the AS event 

identification technique and applied it for identifying AS events that are regulated across 

three human development stages (fetal, pediatric and adult). In the two chapters above, 

we implemented functional analysis on AS events from several aspects, including gene 

function, disruption on protein structure and interaction, as well as RNA-binding proteins 

(RBP) and genomic regions that may be involved in AS regulation. In Chapter 4, we 

developed a method for identifying novel AS events from RNA-seq results. We validated 

the novel AS events by visualizing their Sashimi plots [97]. 

In Chapter 5, we extended our investigation on AS to the proteome level. We 

established a peptide sequence database PEPPI [62] for exons and exon junctions. This 

database enables researchers to identify splicing junctions from MS/MS results. 

In Chapter 6, we developed a set of methodologies to identify long non-coding 

RNAs (lncRNAs) from RNA-seq data. Most lncRNAs share the same transcription 

mechanism with mRNAs and has poly-A tails, which enables them to present in mRNA 

sequencing data derived with poly-A selection. However, many analyses only focused on 

mRNAs and overlooked lncRNAs, rendering this precious information into a forgotten 



126 

treasure. Therefore we developed these methods and turned mRNA sequencing data into 

a gold mine of lncRNA information. 

7.2 Future Research Directions 

7.2.1 Biochemical Validation on Discovered Splicing Events and lncRNA 

In this dissertation, we discovered and characterized differentially regulated 

alternative splicing events and lncRNAs that are associated to biological functions, and 

validated them with prior knowledge published in publications and databases. However, 

we haven’t got the time and resource to implement biochemical validations on these 

discoveries. The presence of these alternative splicing events and lncRNA can be 

validated by PCR and Sanger sequencing experiments. The protein-protein interactions 

may be validated with yeast two-hybrid approach or chip-based analysis. The RBP-RNA 

interactions may be validated with CLIP sequencing. Novel lncRNAs may be knocked 

off or knocked down to examine their biological functions. 

7.2.2 Better Sequencing Technology Enables Better Results 

All RNA-seq data utilized in this dissertation are single-ended, with the longest 

read length of 75nt. By the year of 2017, Illumina provides paired-end sequencing 

solutions with 100~150nt on each end at affordable prices. Most of exons are less than 

200bp in length [283]. Therefore most of the paired-end reads will be covering at least 

one splice junction. Employing the latest sequencing technology will enormously 

improve the number and accuracy of identifiable AS events. It will allow researchers to 

accurately deduct the genomic structure of lncRNAs. 

On the other hand, emerging long read length sequencing technologies may 

become rather helpful for alternative splicing and lncRNA research. The Oxford 

Nanopore sequencing technology is capable of achieving the median read length around 

1200bp [284, 285]. Pacific Biosciences sequencing technology can achieve an even 

longer median read length of 30,000bp [22, 286]. These sequencing technologies will 
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provide informative long length reads covering multiple splicing junctions and even the 

whole length transcript. With such information, alternative splicing research will not be 

limited to individual splicing events. Instead, the sequence and the expression intensity of 

different RNA isoforms can both be derived accurately. 

7.2.3 DNA Variations Affect AS 

The regulation of AS depends on the facilitation of AS related RNA-binding 

proteins (RBP). Change of the sequence in binding regions (ESE, ESS, ISE, ISS) on RNA 

may affect the binding affinity between the RNA molecule and RBP. While the exon 

sequence is generally available from RNA-seq data, the intron sequences are mostly 

unavailable. DNA sequencing allows users to identify variations in introns, and thus 

systematically associate variations in AS regulatory regions and change of AS. 

7.2.4 Prioritization of AS Events 

In this dissertation we characterized AS from several aspects, including gene 

function, PTM sites, effect on protein structure and interactions. Such information can 

also be collected for disease causing insertion/deletion variations. The effect of 

insertion/deletion variations (indels) is similar to AS at the protein level. Therefore we 

may use the genomic and protein structural information of disease causing indels as a 

training set for prioritizing AS events that may be associated with disease. 

7.2.5 Algorithm for AS Event Validation 

MISO [42] and rMATS [43] provided solutions for quantifying the percentage of 

splicing isoforms (PSI or Ψ) as well as the significance of AS change across two biological 

conditions. However, we observed many “significantly changed AS events” showing 

unrealistic base coverages in Sashimi-plots [42]. Such unrealistic base coverages are 

generally induced by the variability and limitations of the RNA-seq technology. In this 

dissertation, we manually reviewed the Sashimi-plot for each AS event to make sure it is 

biologically valid. This will become a bottleneck if we need to automate AS identification 
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and characterization. In the future, we may utilize machine learning methods in image 

analysis to automate this scanning process on the base coverages of AS events. 
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Supplementary Materials 

Table S-1 The function and localization of alternatively spliced genes 

AS Type 
Gene 

Symbol 
Gene Description 

Gene 

Location 

Gene 

Type 
∆Ψ 

cassete 

exon 
Mgrn1 

mahogunin ring finger 1, E3 

ubiquitin protein ligase 
Cytoplasm 

enzym

e 
-0.25 

cassete 

exon 
Smox spermine oxidase Cytoplasm 

enzym

e 
0.37 

cassete 

exon 
Rhot1 

ras homolog family member 

T1 
Cytoplasm 

enzym

e 
-0.15 

cassete 

exon 
Magi3 

membrane associated 

guanylate kinase, WW and 

PDZ domain containing 3 

Cytoplasm kinase -0.42 

cassete 

exon 
Pank2 pantothenate kinase 2 Cytoplasm kinase -0.21 

cassete 

exon 
Mark3 

MAP/microtubule 

affinity-regulating kinase 3 
Cytoplasm kinase -0.22 

cassete 

exon 
Camk1d 

calcium/calmodulin-depende

nt protein kinase ID 
Cytoplasm kinase -0.31 

cassete 

exon 

Cdc42bp

a 

CDC42 binding protein 

kinase alpha (DMPK-like) 
Cytoplasm kinase -0.12 

cassete 

exon 
Plscr2 phospholipid scramblase 2 Cytoplasm other 0.16 

cassete 

exon 
Fopnl FGFR1OP N-terminal like Cytoplasm other 0.11 

cassete Cyb561a cytochrome b561 family, Cytoplasm other 0.37 
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exon 3 member A3 

cassete 

exon 
Mpv17 

MpV17 mitochondrial inner 

membrane protein 
Cytoplasm other 0.23 

cassete 

exon 
Tbc1d31 

TBC1 domain family, 

member 31 
Cytoplasm other 0.22 

cassete 

exon 
Picalm 

phosphatidylinositol binding 

clathrin assembly protein 
Cytoplasm other -0.06 

cassete 

exon 
Numbl 

numb homolog 

(Drosophila)-like 
Cytoplasm other -0.39 

cassete 

exon 
Arhgef11 

Rho guanine nucleotide 

exchange factor (GEF) 11 
Cytoplasm other 0.29 

cassete 

exon 
Abi1 abl-interactor 1 Cytoplasm other 0.14 

cassete 

exon 
Spc25 

SPC25, NDC80 kinetochore 

complex component 
Cytoplasm other 0.15 

cassete 

exon 
Fhl1 

four and a half LIM domains 

1 
Cytoplasm other -0.05 

cassete 

exon 
Mob4 

MOB family member 4, 

phocein 
Cytoplasm other 0.25 

cassete 

exon 
Spag9 sperm associated antigen 9 Cytoplasm other 0.2 

cassete 

exon 

Mphosph

9 
M-phase phosphoprotein 9 Cytoplasm other -0.36 

cassete 

exon 
Plec plectin Cytoplasm other 0.05 

cassete Xpnpep3 X-prolyl aminopeptidase Cytoplasm peptid 0.27 
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exon (aminopeptidase P) 3, 

putative 

ase 

cassete 

exon 
Blmh bleomycin hydrolase Cytoplasm 

peptid

ase 
0.25 

cassete 

exon 
Fabp5 

fatty acid binding protein 5 

(psoriasis-associated) 
Cytoplasm 

transp

orter 
0.1 

cassete 

exon 
Copg2 

coatomer protein complex, 

subunit gamma 2 
Cytoplasm 

transp

orter 
0.2 

cassete 

exon 
Rabep1 

rabaptin, RAB GTPase 

binding effector protein 1 
Cytoplasm 

transp

orter 
0.14 

cassete 

exon 
Pctp 

phosphatidylcholine transfer 

protein 
Cytoplasm 

transp

orter 
0.39 

cassete 

exon 
Arl13b 

ADP-ribosylation factor-like 

13B 

Extracellu

lar Space 
other -0.29 

cassete 

exon 
Slit2 slit homolog 2 (Drosophila) 

Extracellu

lar Space 
other 0.53 

cassete 

exon 
Baz2b 

bromodomain adjacent to 

zinc finger domain, 2B 

Extracellu

lar Space 
other -0.39 

cassete 

exon 

Suv420h

1 

suppressor of variegation 

4-20 homolog 1 (Drosophila) 
Nucleus 

enzym

e 
0.12 

cassete 

exon 
Clk4 CDC-like kinase 4 Nucleus kinase 0.18 

cassete 

exon 
Uty 

ubiquitously transcribed 

tetratricopeptide repeat gene, 

Y chromosome 

Nucleus other 0.25 

cassete Sun1 Sad1 and UNC84 domain Nucleus other -0.21 
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exon containing 1 

cassete 

exon 
Maf1 

MAF1 homolog (S. 

cerevisiae) 
Nucleus other -0.2 

cassete 

exon 
Morf4l2 mortality factor 4 like 2 Nucleus other 0.17 

cassete 

exon 
Hmgxb4 

HMG box domain containing 

4 
Nucleus other -0.22 

cassete 

exon 
Phf20 PHD finger protein 20 Nucleus other -0.13 

cassete 

exon 
Zfp120 zinc finger protein 932 Nucleus other -0.33 

cassete 

exon 
Ift122 

intraflagellar transport 122 

homolog (Chlamydomonas) 
Nucleus other 0.38 

cassete 

exon 
Phf7 PHD finger protein 7 Nucleus other -0.46 

cassete 

exon 
Ctnnd1 

catenin (cadherin-associated 

protein), delta 1 
Nucleus other -0.22 

cassete 

exon 
Rad18 

RAD18 homolog (S. 

cerevisiae) 
Nucleus other 0.23 

cassete 

exon 
Senp7 

SUMO1/sentrin specific 

peptidase 7 
Nucleus 

peptid

ase 
-0.52 

cassete 

exon 
Depdc1a DEP domain containing 1 Nucleus TR 0.16 

cassete 

exon 
Ybx3 Y box binding protein 3 Nucleus TR -0.12 

cassete Ncor1 nuclear receptor corepressor Nucleus TR -0.33 
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exon 1 

cassete 

exon 
Kansl2 

KAT8 regulatory NSL 

complex subunit 2 
Other 

enzym

e 
0.22 

cassete 

exon 
Ube2q2 

ubiquitin-conjugating 

enzyme E2Q family member 

2 

Other 
enzym

e 
0.31 

cassete 

exon 
Kansl2 

KAT8 regulatory NSL 

complex subunit 2 
Other 

enzym

e 
0.22 

cassete 

exon 
Rnf214 ring finger protein 214 Other other 0.37 

cassete 

exon 

Tmem16

1b 
transmembrane protein 161B Other other 0.19 

cassete 

exon 
Zfp740 zinc finger protein 740 Other other -0.3 

cassete 

exon 
Ubl4a Slc10a3-Ubl4 readthrough Other other -0.12 

cassete 

exon 
Asb7 

ankyrin repeat and SOCS box 

containing 7 
Other other 0.36 

cassete 

exon 
Lins lines homolog (Drosophila) Other other 0.24 

cassete 

exon 
Ttc13 

tetratricopeptide repeat 

domain 13 
Other other -0.21 

cassete 

exon 
Slx4ip SLX4 interacting protein Other other -0.3 

cassete 

exon 

Ppp4r1l-

ps 

protein phosphatase 4, 

regulatory subunit 1-like, 
Other other -0.41 
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pseudogene 

cassete 

exon 
Smim8 

small integral membrane 

protein 8 
Other other 0.27 

cassete 

exon 
Zmym4 zinc finger, MYM-type 4 Other other 0.47 

cassete 

exon 
Smim8 

small integral membrane 

protein 8 
Other other 0.27 

cassete 

exon 
Svil supervillin Other other 0.22 

cassete 

exon 
Adprm 

ADP-ribose/CDP-alcohol 

diphosphatase, 

manganese-dependent 

Other other 0.34 

cassete 

exon 
Tbc1d9b 

TBC1 domain family, 

member 9B (with GRAM 

domain) 

Other other -0.4 

cassete 

exon 
Pwwp2a 

PWWP domain containing 

2A 
Other other 0.53 

cassete 

exon 
Adprm 

ADP-ribose/CDP-alcohol 

diphosphatase, 

manganese-dependent 

Other other 0.34 

cassete 

exon 
Smim8 

small integral membrane 

protein 8 
Other other 0.27 

cassete 

exon 

2810474

O19Rik 
KIAA1551 Other other 0.28 

cassete 

exon 
Usp45 

ubiquitin specific peptidase 

45 
Other 

peptid

ase 
-0.41 
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cassete 

exon 
Prepl prolyl endopeptidase-like Other 

peptid

ase 
0.14 

cassete 

exon 
Rnf14 ring finger protein 14 Other TR -0.19 

cassete 

exon 
Tmem11 transmembrane protein 11 PM GPCR 0.16 

cassete 

exon 
Ttll7 

tubulin tyrosine ligase-like 

family, member 7 
PM other 0.38 

cassete 

exon 
Aif1l 

allograft inflammatory factor 

1-like 
PM other 0.32 

cassete 

exon 
Aif1l 

allograft inflammatory factor 

1-like 
PM other 0.32 

cassete 

exon 
Dnajc5 

DnaJ (Hsp40) homolog, 

subfamily C, member 5 
PM other -0.18 

cassete 

exon 
Cpeb4 

cytoplasmic polyadenylation 

element binding protein 4 
PM other 0.52 

cassete 

exon 
Tpm1 tropomyosin 1, alpha PM other -0.05 

cassete 

exon 
Jmjd6 jumonji domain containing 6 PM TMR 0.14 

A3SS Eci2 enoyl-CoA delta isomerase 2 Cytoplasm 
enzym

e 
0.16 

A3SS Cyp4f16 
cytochrome P450, family 4, 

subfamily f, polypeptide 16 
Cytoplasm 

enzym

e 
-0.49 

A3SS Rabggtb 
Rab 

geranylgeranyltransferase, 
Cytoplasm 

enzym

e 
0.09 
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beta subunit 

A3SS Akt1 
v-akt murine thymoma viral 

oncogene homolog 1 
Cytoplasm kinase 0.29 

A3SS Ppip5k2 
diphosphoinositol 

pentakisphosphate kinase 2 
Cytoplasm kinase 0.26 

A3SS Cdv3 CDV3 homolog (mouse) Cytoplasm other 0.05 

A3SS Dock9 dedicator of cytokinesis 9 Cytoplasm other 0.48 

A3SS Akt1s1 
AKT1 substrate 1 

(proline-rich) 
Cytoplasm other 0.08 

A3SS Scoc short coiled-coil protein Cytoplasm other -0.23 

A3SS Becn1 beclin 1, autophagy related Cytoplasm other -0.1 

A3SS Blmh bleomycin hydrolase Cytoplasm 
peptid

ase 
0.25 

A3SS Rrbp1 ribosome binding protein 1 Cytoplasm 
transp

orter 
-0.26 

A3SS Arfgap1 
ADP-ribosylation factor 

GTPase activating protein 1 
Cytoplasm 

transp

orter 
-0.4 

A3SS Sparc 
secreted protein, acidic, 

cysteine-rich (osteonectin) 

Extracellu

lar Space 
other 0.1 

A3SS Bod1l 

biorientation of 

chromosomes in cell division 

1-like 1 

Extracellu

lar Space 
other 0.34 

A3SS Mettl3 methyltransferase like 3 Nucleus 
enzym

e 
0.45 

A3SS Tyms thymidylate synthetase Nucleus 
enzym

e 
0.09 
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A3SS Mcm9 

minichromosome 

maintenance complex 

component 9 

Nucleus 
enzym

e 
-0.46 

A3SS Rev1 
REV1, polymerase (DNA 

directed) 
Nucleus 

enzym

e 
-0.22 

A3SS Zfp346 zinc finger protein 346 Nucleus other 0.39 

A3SS Chchd1 
coiled-coil-helix-coiled-coil-

helix domain containing 1 
Nucleus other -0.12 

A3SS Fra10ac1 

fragile site, folic acid type, 

rare, fra(10)(q23.3) or 

fra(10)(q24.2) candidate 1 

Nucleus other 0.43 

A3SS Srrt 

serrate RNA effector 

molecule homolog 

(Arabidopsis) 

Nucleus other 0.22 

A3SS Ivns1abp 
influenza virus NS1A binding 

protein 
Nucleus other 0.07 

A3SS Hnrnpr 
heterogeneous nuclear 

ribonucleoprotein R 
Nucleus other 0.18 

A3SS Cdc27 cell division cycle 27 Nucleus other -0.2 

A3SS Phrf1 
PHD and ring finger domains 

1 
Nucleus other -0.33 

A3SS Nolc1 
nucleolar and coiled-body 

phosphoprotein 1 
Nucleus TR 0.14 

A3SS Htatip2 
HIV-1 Tat interactive protein 

2, 30kDa 
Nucleus TR 0.4 

A3SS Rbm39 RNA binding motif protein Nucleus TR -0.21 
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39 

A3SS Hdac10 histone deacetylase 10 Nucleus TR -0.44 

A3SS Nfya 
nuclear transcription factor Y, 

alpha 
Nucleus TR -0.32 

A3SS Ankzf1 
ankyrin repeat and zinc finger 

domain containing 1 
Nucleus TR -0.42 

A3SS Fus fused in sarcoma Nucleus TR 0.21 

A3SS Sbno1 
strawberry notch homolog 1 

(Drosophila) 
Other 

enzym

e 
0.3 

A3SS 
4833420

G17Rik 

chromosome 5 open reading 

frame 34 
Other other -0.38 

A3SS Eml3 
echinoderm microtubule 

associated protein like 3 
Other other -0.42 

A3SS Phf20l1 PHD finger protein 20-like 1 Other other -0.27 

A3SS Ubl4a Slc10a3-Ubl4 readthrough Other other -0.12 

A3SS Dda1 
DET1 and DDB1 associated 

1 
Other other 0.07 

A3SS Ttpal 
tocopherol (alpha) transfer 

protein-like 
Other other 0.41 

A3SS Miip 
migration and invasion 

inhibitory protein 
Other other 0.18 

A3SS Ppp4r1 
protein phosphatase 4, 

regulatory subunit 1 
Other 

phosp

hatase 
0.23 

A3SS Ly6a 
lymphocyte antigen 6 

complex, locus A 
PM other 0.44 

A3SS Prnd prion protein 2 (dublet) PM other -0.45 
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A5SS Ndufs1 

NADH dehydrogenase 

(ubiquinone) Fe-S protein 1, 

75kDa (NADH-coenzyme Q 

reductase) 

Cytoplasm 
enzym

e 
-0.24 

A5SS Birc6 
baculoviral IAP repeat 

containing 6 
Cytoplasm 

enzym

e 
0.28 

A5SS Nit1 nitrilase 1 Cytoplasm 
enzym

e 
-0.33 

A5SS Map3k7 
mitogen-activated protein 

kinase kinase kinase 7 
Cytoplasm kinase -0.4 

A5SS Ehbp1l1 
EH domain binding protein 

1-like 1 
Cytoplasm other -0.05 

A5SS Cmc2 

COX assembly mitochondrial 

protein 2 homolog (S. 

cerevisiae) 

Cytoplasm other 0.1 

A5SS Spc25 
SPC25, NDC80 kinetochore 

complex component 
Cytoplasm other 0.15 

A5SS Dnajb12 
DnaJ (Hsp40) homolog, 

subfamily B, member 12 
Cytoplasm other -0.52 

A5SS Mrps33 
mitochondrial ribosomal 

protein S33 
Cytoplasm other -0.22 

A5SS Mkks 
McKusick-Kaufman 

syndrome 
Cytoplasm other -0.17 

A5SS Ddx6 
DEAD (Asp-Glu-Ala-Asp) 

box helicase 6 
Nucleus 

enzym

e 
0.14 

A5SS Fen1 flap structure-specific Nucleus enzym 0.1 
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endonuclease 1 e 

A5SS Ddx6 
DEAD (Asp-Glu-Ala-Asp) 

box helicase 6 
Nucleus 

enzym

e 
0.14 

A5SS Naa10 
N(alpha)-acetyltransferase 

10, NatA catalytic subunit 
Nucleus 

enzym

e 
0.28 

A5SS Adarb1 
adenosine deaminase, 

RNA-specific, B1 
Nucleus 

enzym

e 
0.23 

A5SS Nr1h2 
nuclear receptor subfamily 1, 

group H, member 2 
Nucleus 

ligand 

-depen

dent 

nuclea

r 

recept

or 

0.29 

A5SS Srsf7 
serine/arginine-rich splicing 

factor 7 
Nucleus other 0.19 

A5SS Srsf7 
serine/arginine-rich splicing 

factor 7 
Nucleus other 0.19 

A5SS Zfp60 zinc finger protein 60 Nucleus other -0.29 

A5SS Hira histone cell cycle regulator Nucleus TR 0.15 

A5SS Yeats2 YEATS domain containing 2 Nucleus TR -0.47 

A5SS 
Tmem23

4 
transmembrane protein 234 Other other 0.31 

A5SS Arl16 
ADP-ribosylation factor-like 

16 
Other other -0.3 

A5SS Zfp740 zinc finger protein 740 Other other -0.3 
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A5SS Efr3a 
EFR3 homolog A (S. 

cerevisiae) 
PM other -0.1 

A5SS Smek1 

SMEK homolog 1, 

suppressor of mek1 

(Dictyostelium) 

PM other 0.22 

A5SS Inpp5a 

inositol 

polyphosphate-5-phosphatas

e, 40kDa 

PM 
phosp

hatase 
0.2 

A5SS Jmjd6 jumonji domain containing 6 PM TMR 0.14 

retained 

intron 
Hspa8 heat shock 70kDa protein 8 Cytoplasm 

enzym

e 
0.12 

retained 

intron 
Trim2 tripartite motif containing 2 Cytoplasm 

enzym

e 
0.17 

retained 

intron 
Coq6 

coenzyme Q6 

monooxygenase 
Cytoplasm 

enzym

e 
0.38 

retained 

intron 
Dgkq 

diacylglycerol kinase, theta 

110kDa 
Cytoplasm kinase 0.29 

retained 

intron 
Yipf2 

Yip1 domain family, member 

2 
Cytoplasm other 0.32 

retained 

intron 
Rasa2 RAS p21 protein activator 2 Cytoplasm other 0.24 

retained 

intron 
Wipi2 

WD repeat domain, 

phosphoinositide interacting 

2 

Cytoplasm other 0.19 

retained 

intron 
Rps18 ribosomal protein S18 Cytoplasm other 0.09 
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retained 

intron 
Wdr11 WD repeat domain 11 Cytoplasm other -0.21 

retained 

intron 
Golga1 golgin A1 Cytoplasm other 0.15 

retained 

intron 
Becn1 beclin 1, autophagy related Cytoplasm other -0.1 

retained 

intron 
Lrrc45 

leucine rich repeat containing 

45 
Cytoplasm other -0.28 

retained 

intron 
Ambra1 

autophagy/beclin-1 regulator 

1 
Cytoplasm other -0.37 

retained 

intron 
Eif4a2 

eukaryotic translation 

initiation factor 4A2 
Cytoplasm TLR 0.09 

retained 

intron 
Eif4a2 

eukaryotic translation 

initiation factor 4A2 
Cytoplasm TLR 0.09 

retained 

intron 

Tmem21

4 
transmembrane protein 214 

Extracellu

lar Space 
other -0.4 

retained 

intron 
Msh3 mutS homolog 3 Nucleus 

enzym

e 
0.31 

retained 

intron 
Nle1 

notchless homolog 1 

(Drosophila) 
Nucleus 

enzym

e 
0.39 

retained 

intron 
Sirt7 sirtuin 7 Nucleus 

enzym

e 
0.27 

retained 

intron 
Nek8 NIMA-related kinase 8 Nucleus kinase -0.38 

retained 

intron 
Mis18a 

MIS18 kinetochore protein 

homolog A (S. pombe) 
Nucleus other 0.16 
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retained 

intron 

9930012

K11Rik 

chromosome 8 open reading 

frame 58 
Nucleus other 0.25 

retained 

intron 
Ncaph2 

non-SMC condensin II 

complex, subunit H2 
Nucleus other -0.08 

retained 

intron 
Lrif1 

ligand dependent nuclear 

receptor interacting factor 1 
Nucleus other 0.28 

retained 

intron 
Xab2 XPA binding protein 2 Nucleus other 0.23 

retained 

intron 
Sapcd2 

suppressor APC domain 

containing 2 
Nucleus other 0.39 

retained 

intron 
Cdan1 codanin 1 Nucleus other 0.34 

retained 

intron 
Hnrnph1 

heterogeneous nuclear 

ribonucleoprotein H1 (H) 
Nucleus other -0.06 

retained 

intron 
Gtf2a2 

general transcription factor 

IIA, 2, 12kDa 
Nucleus TR 0.28 

retained 

intron 
Hsf1 

heat shock transcription 

factor 1 
Nucleus TR -0.34 

retained 

intron 
Tfe3 

transcription factor binding to 

IGHM enhancer 3 
Nucleus TR 0.16 

retained 

intron 
Trim28 tripartite motif containing 28 Nucleus TR 0.25 

retained 

intron 
Snapc4 

small nuclear RNA activating 

complex, polypeptide 4, 

190kDa 

Nucleus TR -0.31 

retained Mroh1 maestro heat-like repeat Other other 0.2 
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intron family member 1 

retained 

intron 
Morc4 

MORC family CW-type zinc 

finger 4 
Other other -0.3 

retained 

intron 
Dus1l 

dihydrouridine synthase 

1-like (S. cerevisiae) 
Other other 0.15 

retained 

intron 
Slc7a6os 

solute carrier family 7, 

member 6 opposite strand 
Other other -0.14 

retained 

intron 
Psmd5 

proteasome (prosome, 

macropain) 26S subunit, 

non-ATPase, 5 

Other other -0.06 

retained 

intron 
Sharpin 

SHANK-associated RH 

domain interactor 
PM other 0.22 

retained 

intron 
Lmbr1l 

limb development membrane 

protein 1-like 
PM other -0.4 

retained 

intron 
Jmjd6 jumonji domain containing 6 PM TMR 0.14 

retained 

intron 
Slc39a7 

solute carrier family 39 (zinc 

transporter), member 7 
PM 

transp

orter 
-0.1 

 

TR: transcription regulator 

TMR: transmembrane receptor 

TLR: translation regulator 

GPCR: G-protein coupled receptor 

PM: plasma membrane 
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Table S-2 Peptides identified by PEPPI database 

Peptide peppi SNP Gene 
Splici

ng 
FDR Mass 

Theo 

Mass 

AGEYG

AEALER 

PEP006

194756 

rs3394

3087(A

/G) 

ENSG00

0001885

36 

E_E_

KB 
0.0032 1165.19 1164.54 

APVPTG

EVYFA

DSFDR 

PEP003

042584  

ENSG00

0001270

22 

EXO

N_K

B 

0.0073 1769.79 1769.83 

ASSVVV

SGTPIR 

PEP001

086304  

ENSG00

0001038

76 

EXO

N_K

B 

0.0100 1173.11 1171.66 

ATSFLL

ALEPEL

EAR 

PEP004

603386  

ENSG00

0001639

02 

EXO

N_K

B 

0.0031 1660.01 1658.89 

AVFPSI

VGR 

PEP006

209453 

rs1154

9244(C

/T) 

ENSG00

0001840

09 

EXO

N_K

B 

0.0031 945.881 944.543 

AVFVD

LEPTVL

DEVR 

PEP006

626718 

rs3621

5077(G

/C) 

ENSG00

0001980

33 

E_E_

KB 
0.0067 1701.74 1700.9 

AVFVN

LEPTVI

DEVR 

PEP002

507811 

rs1154

6624(G

/A) 

ENSG00

0001234

16 

E_E_

KB 
0.0066 1700.66 1699.91 

AVNTL

NEALEF

PEP000

166109  

ENSG00

0000218

E_E_

KB 
0.0088 1418.72 1418.74 
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AK 26 

DLLDDL

KSELTG

K 

PEP004

712877  

ENSG00

0001641

11 

EXO

N_K

B 

0.0062 1445.69 1445.76 

DPQLVP

ILIEAAR 

PEP003

888536  

ENSG00

0001473

83 

EXO

N_K

B 

0.0036 1435.05 1433.83 

EGDVLT

LLESER 

PEP007

510716  

ENSG00

0002270

97 

EXO

N_K

B 

0.0090 1359.8 1359.69 

EGDVLT

LLESER 

PEP007

749514  

ENSG00

0002339

27 

EXO

N_K

B 

0.0090 1359.8 1359.69 

ELFSNL

QEFAGP

SGK 

PEP006

264479  

ENSG00

0001854

32 

EXO

N_K

B 

0.0035 1622.75 1622.79 

ETTIQG

LDGLSE

R 

PEP003

467192  

ENSG00

0001368

72 

E_E_

KB 
0.0066 1417.67 1417.71 

FGGLLL

TEKPIV

LK 

PEP004

835823  

ENSG00

0001608

70 

EXO

N_K

B 

0.0032 1526.87 1526.94 

FLEQQD

QVLQT

K 

PEP005

639485 

rs6172

6455(A

/G) 

ENSG00

0001728

67 

EXO

N_K

B 

0.0089 1477.5 1475.76 

FPGQLN PEP001
 

ENSG00 EXO 0.0085 1131.11 1129.59 
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ADLR 260206 0001011

62 

N_K

B 

FPGQLN

ADLR 

PEP001

635184  

ENSG00

0001048

33 

EXO

N_K

B 

0.0085 1131.11 1129.59 

FPGQLN

ADLR 

PEP003

177389  

ENSG00

0001372

67 

EXO

N_K

B 

0.0085 1131.11 1129.59 

FPGQLN

ADLR 

PEP003

198554 

rs1054

331(G/

C) 

ENSG00

0001372

85 

EXO

N_K

B 

0.0085 1131.11 1129.59 

FVTVQT

ISGTGA

LR 

PEP002

709222  

ENSG00

0001251

66 

EXO

N_K

B 

0.0100 1448.73 1448.8 

GALQNI

IPASTG

AAK 

PEP001

993065 

rs1154

9348(G

/C) 

ENSG00

0001116

40 

E_E_

TH 
0.0066 1411.99 1410.78 

GLGTDE

DTIIDIIT

HR 

PEP006

091881  

ENSG00

0001970

43 

E_E_

KB 
0.0033 1767.84 1767.9 

GLSEDT

TEETLK 

PEP002

153670  

ENSG00

0001150

53 

EXO

N_K

B 

0.0025 1322.28 1321.63 

GTEDFI

VESLDA

SFR 

PEP002

703216  

ENSG00

0001247

83 

EXO

N_K

B 

0.0071 1684.73 1684.79 
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GTLYII

KLSADI

R 

PEP002

266542  

ENSG00

0001155

93 

I_E_

TH 
0.0046 1463.68 1461.86 

GTVTDF

PGFDER 

PEP004

712880  

ENSG00

0001641

11 

EXO

N_K

B 

0.0031 1341.46 1339.6 

IFTSIGE

DYDER 

PEP005

147259  

ENSG00

0001670

85 

EXO

N_K

B 

0.0000 1444.87 1443.65 

IITLTGP

TNAIFK 

PEP005

100585  

ENSG00

0001695

64 

EXO

N_K

B 

0.0039 1389.78 1387.81 

ILGVGP

DDPDL

VR 

PEP004

526503  

ENSG00

0001602

85 

EXO

N_K

B 

0.0014 1366.67 1364.73 

IPNPDFF

EDLEPF

R 

PEP003

042599  

ENSG00

0001270

22 

EXO

N_K

B 

0.0066 1734.8 1734.83 

IWHHTF

YNELR 

PEP000

663301  

ENSG00

0000756

24 

EXO

N_K

B 

0.0062 1514.73 1514.74 

KIPNPD

FFEDLE

PFR 

PEP003

042599  

ENSG00

0001270

22 

EXO

N_K

B 

0.0098 1862.9 1862.92 

KPEEVD

DEVFYS

PEP000

367628  

ENSG00

0000364

EXO

N_K
0.0072 1708.73 1708.8 
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PR 73 B 

LASDLL

EWIR 

PEP000

700443  

ENSG00

0000721

10 

E_E_

KB 
0.0062 1214.65 1214.67 

LASDLL

EWIR 

PEP002

700953  

ENSG00

0001304

02 

E_E_

KB 
0.0062 1214.65 1214.67 

LATQSN

EITIPVT

FESR 

PEP001

796472  

ENSG00

0001062

11 

EXO

N_K

B 

0.0055 1904.91 1904.99 

LAVDEE

ENADN

NTK 

PEP000

643567  

ENSG00

0000722

74 

EXO

N_K

B 

0.0050 1560.65 1560.69 

LDETDD

PDDYG

DR 

PEP000

150404  

ENSG00

0000142

16 

EXO

N_K

B 

0.0081 1524.78 1524.59 

LGANSL

LDLVVF

GR 

PEP007

587517 

rs6898

538(A/

G) 

ENSG00

0002329

61 

E_I_

TH 
0.0081 1473.02 1472.83 

LGGPEA

GLGEYL

FER 

PEP000

526191  

ENSG00

0000870

86 

EXO

N_K

B 

0.0072 1606.99 1606.8 

LLDNW

DSVTST

FSK 

PEP002

177464  

ENSG00

0001181

37 

EXO

N_K

B 

0.0100 1611.71 1611.78 

LLSGED PEP000
 

ENSG00 EXO 0.0094 1545.73 1545.73 
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VGQDE

GATR 

839802 0000701

82 

N_K

B 

LPLQDV

YK 

PEP001

557134  

ENSG00

0001012

10 

E_I_

TH 
0.0028 974.937 974.544 

LPLQDV

YK 

PEP001

557050  

ENSG00

0001012

10 

EXO

N_K

B 

0.0028 974.937 974.544 

LPLQDV

YK 

PEP004

163143  

ENSG00

0001565

08 

EXO

N_K

B 

0.0028 974.937 974.544 

LQEAAE

LEAVEL

PVPIR 

PEP000

044823  

ENSG00

0000049

39 

EXO

N_K

B 

0.0081 1876.24 1876.03 

LRVDPV

NFK 

PEP006

194445 

rs4151

5552(G

/A) 

ENSG00

0001885

36 

EXO

N_K

B 

0.0098 1086.58 1086.62 

LSESHP

DATEDL

QR 

PEP004

546571  

ENSG00

0001635

54 

EXO

N_K

B 

0.0081 1597.72 1596.74 

LVNVV

LGAHN

VR 

PEP006

276907  

ENSG00

0001964

15 

EXO

N_K

B 

0.0032 1291.44 1289.76 

NIEDVI

AQGIGK 

PEP006

028640  

ENSG00

0001776

00 

E_E_

KB 
0.0057 1255.63 1255.68 
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NILGGT

VFR 

PEP003

130712  

ENSG00

0001384

13 

EXO

N_K

B 

0.0062 977.345 975.549 

QEYDES

GPSIVH

R 

PEP000

663267  

ENSG00

0000756

24 

EXO

N_K

B 

0.0072 1515.61 1515.7 

QEYDES

GPSIVH

R 

PEP006

209424  

ENSG00

0001840

09 

EXO

N_K

B 

0.0072 1515.61 1515.7 

QEYDES

GPSIVH

R 

PEP006

500247  

ENSG00

0001882

19 

EXO

N_K

B 

0.0072 1515.61 1515.7 

QITLND

LPVGR 

PEP002

213772  

ENSG00

0001231

31 

EXO

N_K

B 

0.0046 1225.31 1224.68 

QNQIAV

DEIR 

PEP000

031946  

ENSG00

0000053

81 

EXO

N_K

B 

0.0088 1186.55 1184.62 

RLFEGN

ALLR 

PEP005

143967  

ENSG00

0001708

89 

E_E_

KB 
0.0090 1187.7 1187.68 

RLSEDY

GVLK 

PEP005

474171  

ENSG00

0001678

15 

EXO

N_K

B 

0.0072 1178.61 1178.63 

SFAAVI

QALDG

PEP000

671849  

ENSG00

0000794

E_E_

KB 
0.0025 1506.71 1506.75 
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EMR 59 

SLLEGE

GSSGGG

GR 

PEP006

172793  

ENSG00

0001863

95 

E_E_

KB 
0.0031 1262.46 1261.59 

SNPEDQ

ILYQTE

R 

PEP001

630051  

ENSG00

0001109

17 

EXO

N_K

B 

0.0062 1591.97 1591.75 

SNPEDQ

ILYQTE

R 

PEP001

630055  

ENSG00

0001109

17 

E_E_

KB 
0.0062 1591.97 1591.75 

SQIHDI

VLVGG

STR 

PEP001

592926  

ENSG00

0001099

71 

EXO

N_K

B 

0.0067 1480.77 1480.8 

SYELPD

GQVITI

GNER 

PEP000

664177  

ENSG00

0000756

24 

E_I_

TH 
0.0049 1789.73 1789.89 

SYELPD

GQVITI

GNER 

PEP001

946883  

ENSG00

0001077

96 

EXO

N_K

B 

0.0049 1789.73 1789.89 

TGAIVD

VPVGEE

LLGR 

PEP004

285208  

ENSG00

0001522

34 

EXO

N_K

B 

0.0072 1624.07 1623.88 

THLAPY

SDELR 

PEP002

177456  

ENSG00

0001181

37 

EXO

N_K

B 

0.0097 1300.62 1300.64 

TPAQY PEP005
 

ENSG00 EXO 0.0025 1221.54 1221.59 
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DASELK 624473 0001827

18 

N_K

B 

VEYHFL

SPYVSP

K 

PEP000

643542  

ENSG00

0000722

74 

EXO

N_K

B 

0.0082 1564.75 1564.79 

VGGVQ

SLGGTG

ALR 

PEP002

477459  

ENSG00

0001200

53 

EXO

N_K

B 

0.0023 1271.8 1270.7 

VLSGDL

GQLPTG

IR 

PEP001

210793  

ENSG00

0001008

89 

EXO

N_K

B 

0.0090 1424.95 1424.8 

VTQWA

EER 

PEP003

255754  

ENSG00

0001371

77 

E_E_

TH 
0.0067 1019.25 1017.49 

YLSYTL

NPDLIR 

PEP005

271414  

ENSG00

0001668

25 

EXO

N_K

B 

0.0000 1467.65 1466.78 
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Table S-3 Peptide hit matrix 

 

P
R

ID
E

1
7
8
0

 

P
R

ID
E

1
7
8
1

 

P
R

ID
E

1
7
8
3

 

P
R

ID
E

1
7
8
4

 

P
R

ID
E

1
7
8
5

 

P
R

ID
E

1
7
8
6

 

P
R

ID
E

1
8
4
8

 

P
R

ID
E

1
8
4
9

 

N 

AGEYGAEALER 1 0 0 0 0 0 0 7 2 

APVPTGEVYFADSFDR 0 0 5 2 0 2 0 0 3 

ASSVVVSGTPIR 0 2 0 0 0 0 2 0 2 

ATSFLLALEPELEAR 1 0 0 0 1 0 0 0 2 

AVFPSIVGR 0 1 0 0 0 0 2 2 3 

AVFVDLEPTVLDEVR 1 1 1 0 1 0 1 0 5 

AVFVNLEPTVIDEVR 3 4 0 0 5 0 3 0 4 

AVNTLNEALEFAK 0 0 0 4 0 0 25 0 2 

DLLDDLKSELTGK 0 0 0 2 0 0 0 4 2 

DPQLVPILIEAAR 0 1 1 0 1 0 0 0 3 

EGDVLTLLESER 0 0 0 0 1 0 0 1 2 

ELFSNLQEFAGPSGK 0 0 1 1 0 0 0 0 2 

ETTIQGLDGLSER 0 0 0 2 0 0 3 0 2 

FGGLLLTEKPIVLK 0 0 5 0 0 1 0 0 2 

FLEQQDQVLQTK 7 4 0 0 0 2 1 0 4 

FPGQLNADLR 0 1 2 1 2 0 0 0 4 

FVTVQTISGTGALR 0 0 0 0 0 1 4 0 2 

GALQNIIPASTGAAK 0 0 4 3 0 1 3 0 4 

GLGTDEDTIIDIITHR 0 0 3 3 0 0 0 0 2 

GLSEDTTEETLK 0 0 0 0 0 0 6 1 2 

GTEDFIVESLDASFR 0 0 1 1 0 0 0 0 2 
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GTLYIIKLSADIR 0 1 0 0 0 0 0 1 2 

GTVTDFPGFDER 1 3 0 0 0 0 0 0 2 

IFTSIGEDYDER 1 1 0 0 1 4 0 0 4 

IITLTGPTNAIFK 0 0 0 0 0 0 1 1 2 

ILGVGPDDPDLVR 0 3 0 0 1 3 0 0 3 

IPNPDFFEDLEPFR 0 0 5 2 0 0 0 0 2 

IWHHTFYNELR 0 0 0 2 0 0 3 0 2 

KIPNPDFFEDLEPFR 0 0 5 0 0 2 0 0 2 

KPEEVDDEVFYSPR 0 0 1 0 0 0 2 0 2 

LASDLLEWIR 0 0 0 1 0 0 17 0 2 

LATQSNEITIPVTFESR 0 0 0 2 0 1 0 0 2 

LAVDEEENADNNTK 0 0 4 5 0 1 0 0 3 

LDETDDPDDYGDR 0 1 0 0 0 0 1 0 2 

LGANSLLDLVVFGR 0 0 0 1 1 0 0 0 2 

LGGPEAGLGEYLFER 0 0 4 2 2 0 0 0 3 

LLDNWDSVTSTFSK 0 0 0 2 0 0 0 5 2 

LLSGEDVGQDEGATR 0 0 0 8 0 0 1 0 2 

LPLQDVYK 0 0 0 0 0 0 4 3 2 

LQEAAELEAVELPVPIR 0 0 0 4 2 0 0 0 2 

LRVDPVNFK 0 0 3 0 0 0 0 7 2 

LSESHPDATEDLQR 0 2 0 0 0 0 3 0 2 

LVNVVLGAHNVR 1 1 0 0 0 0 0 0 2 

NIEDVIAQGIGK 0 0 2 0 0 0 0 1 2 

NILGGTVFR 0 1 0 0 0 0 6 0 2 

QEYDESGPSIVHR 0 0 0 0 0 2 4 3 3 
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QITLNDLPVGR 0 1 0 0 1 0 0 0 2 

QNQIAVDEIR 2 2 0 0 0 0 0 0 2 

RLFEGNALLR 0 2 1 0 1 0 0 0 3 

RLSEDYGVLK 0 0 0 2 0 0 0 3 2 

SFAAVIQALDGEMR 0 0 1 1 0 0 0 0 2 

SLLEGEGSSGGGGR 9 0 0 0 0 3 0 0 2 

SNPEDQILYQTER 0 0 0 0 1 1 0 0 2 

SQIHDIVLVGGSTR 0 0 1 0 0 0 11 0 2 

SYELPDGQVITIGNER 0 0 0 2 0 2 0 0 2 

TGAIVDVPVGEELLGR 0 0 0 3 4 0 0 0 2 

THLAPYSDELR 0 0 0 2 0 0 0 5 2 

TPAQYDASELK 0 0 2 4 0 0 0 0 2 

VEYHFLSPYVSPK 0 0 4 5 0 0 0 0 2 

VGGVQSLGGTGALR 0 1 0 0 0 0 7 0 2 

VLSGDLGQLPTGIR 0 0 0 0 1 0 3 0 2 

VTQWAEER 1 1 0 0 0 0 0 0 2 

YLSYTLNPDLIR 0 4 1 0 0 2 0 0 3 
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