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Intrauterine hypoxia resulting from decreased maternal oxygen uptake, 

insufficient oxygen carrying capacity, or compromised oxygen delivery to the fetus 

jeopardizes fetal oxygen delivery, detrimentally affecting growth and development of the 

immature vasculature. Hypoxia transiently increases Hypoxia Inducible Factor-1α (HIF-

1α), which complexes with HIF-1β to form the active HIF-1 dimer that can affect 

transcription. This temporary rise in HIF-1 can promote gene transcription of ligands 

such as Vascular Endothelial Growth Factor (VEGF) and Endothelin-1 (ET-1), which 

rises and falls with HIF levels. The absence of chronic elevation of these ligands 

prompted the question of how long-term effects of hypoxia is sustained. Results suggest 

that in addition to stimulating transient rises in ligand levels, hypoxia alters receptor 

expression and coupling of these ligands to the intracellular kinases. Endothelin-1 (ET-1) 

is an established vasoconstrictor that can activate ETA or ETB receptors, respectively 

stimulating vasoconstriction and vasodilation. ET-1 activates pathways such as Protein 

Kinase C (PKC), Ca2+/Calmodulin-Dependent Protein Kinase (CaMK), p38, and 

MEK/ERK, which are involved in cellular growth, proliferation, and differentiation.  

 Our results demonstrate that chronic hypoxia altered ovine fetal cerebrovascular 

reactivity to ET-1 but not plasma ET-1 levels or ETA receptor cerebrovascular 
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expression. However, chronic hypoxia enhances ET-1-induced contractility in an ETA-

dependent manner in Middle Cerebral Arteries (MCAs). ET-1 also exerts trophic effects 

on ovine fetal cerebrovasculature in organ culture in a PKC-dependent manner by 

inducing hypertrophy and increasing medial thicknesses, more in normoxic than hypoxic 

MCAs. ET-1-induced increase in arterial wall thickness is mediated by CaMKII and p38 

dependent pathways in normoxic but not hypoxic arteries. Additionally, Myosin Light 

Chain Kinase (MLCK) and Smooth Muscle Alpha Actin (SMαA) colocalization data 

shows that ET-1 promotes contractile dedifferentiation in normoxic but not hypoxic 

MCAs in a PKC, CaMKII, and p38 dependent manner. These results support the notion 

that chronic hypoxia has long term effects mediated by altered receptor expression levels 

and intracellular coupling. A better understanding of how chronic hypoxia affects ET-1-

induced intracellular coupling will help identify potential targets for future therapies to 

prevent and potentially treat remodeling of cerebral arteries in infants exposed to 

intrauterine hypoxia. 
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CHAPTER ONE 

INTRODUCTION TO CHRONIC HYPOXIA AND ENDOTHELIN-1 

	

Hypoxia 

Intrauterine hypoxia is detrimental to development, which can manifest as growth 

restriction or in extreme cases, may result in fetal morbidity and mortality. In 2009, 

intrauterine hypoxia and birth asphyxia ranked 9th as cause of neonatal deaths in the US 

(19). Due to the large number of cases in which hypoxia may present as a symptom or 

complication from another condition, the actual occurrence rate of hypoxia is likely 

underestimated. Furthermore, hypoxia during the perinatal period can lead to other 

complications and disease development. Hypoxia directly contributes to low birth rates 

seen in intrauterine growth restriction (53, 71, 93, 108) and increased the risk for sudden 

infant death syndrome (17), another leading cause of death among neonates (19). 

Hypoxia is present in a broad spectrum of diseases and can be secondary to 

various conditions, such as diseases that affect respiratory muscles, smoking, or living at 

high altitudes. Decreased oxygen uptake resulting from compromised pulmonary function 

in obstructive and restrictive lung disorders, such as chronic obstructive pulmonary 

disease, pulmonary fibrosis, and other respiratory diseases can contribute to maternal and 

consequently fetal hypoxia. Insufficient oxygen carrying capacity resulting from 

hemoglobinopathies, thalassemias, sickle cell disease, and anemia in either the maternal 

or fetal circulation can also result in fetal hypoxia.  In addition to those conditions that 

cause maternal hypoxia, improper placental flow, maternal drug abuse, and maternal 

diabetes may also contribute to intrauterine hypoxia by compromising oxygen delivery to 

the fetus. Hypoxic stresses promote fetal vascular remodeling, which alters vascular 
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structure and disrupt aortic formation during development (110). Subsequently, the 

effects of intrauterine hypoxia may also have lifelong consequences, such as increased 

risk of cardiovascular diseases in adulthood (79, 91, 93, 129). 

 

ET-1 Background 

Endothelin (ET) is a potent vasoconstrictor mostly synthesized and released from 

the endothelium (126). To date, three isoforms have been identified, ET-1, ET-2, and ET-

3, that activate either ETA or ETB membrane receptors with varying affinities (76, 126). 

Of those, ET-1 is the best-characterized and most abundant isoform (32). ET-1 

production begins with ET-1’s foremost precursor, preproendothelin-1, which undergoes 

multiple stages of processing before becoming the mature ET-1 peptide. Furin-like 

proteases cleave pre-proendothelin-1 to become pro-endothelin, which gets cleaved by 

endothelin converting enzymes (ECEs) and yields ET-1. Consequently, ET-1 production 

can be regulated at multiple checkpoints, such as by altering ECE levels (28). Since its 

discovery, it has been established that other cell types, such as vascular smooth muscle 

cells (VSMC), can also produce endothelins, although at a lower rate than endothelial 

cells (58). 

ET-1 binds and activates two main G-protein coupled receptors containing 7 

transmembrane regions (34, 97), ETA and ETB, respectively responsible for 

vasoconstriction and vasodilation (32, 33, 118). ETA activates Gq/11 and G12/G13 to exert 

its contractile and proliferative effects, whereas ETB receptors activate Gq/11 and Gi (22). 

Calcium stimulates myosin light chain kinase (MLCK) phosphorylation of 20 kDa 

myosin light chain (MLC20) and Rho/Rho-kinase inhibition of myosin phosphatase via a 
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G12/G13 mediated pathway. ET-1 strongly phosphorylates MLC20 via a PLC-dependent 

pathway and induces VSMC contractions via coupling to G12/G13 (42). ETA receptors 

located on smooth muscle cells are responsible for the vasoconstrictive effects of ET-1 

(13, 29). Conversely, ETB receptors on endothelial cells induce vasodilation by 

stimulating the release of prostacyclin and nitric oxide (13, 73). However, in pathological 

states, ETB receptors are upregulated in the smooth muscle cells of arteries and 

participate in ET-1-induced contractility (56). ET-1 also participates in the feedback 

mechanisms of ET-1, ETA, and ETB receptor expression levels (38, 50, 130). As ET-1 

stimulates both vasoconstriction and vasodilation, it follows that ET-1 plays a large role 

in maintaining vascular tone (45). 

 

ET-1 and Hypoxia 

Hypoxia alters vascular resistance and increases adrenergic responses (48). The 

main transcription factor associated with hypoxia, Hypoxia Inducible Factor (HIF), is 

responsible for activating a myriad of cellular pathways (91). Under normoxic conditions, 

HIF-1α is ubiquitinated and degraded via a proteasome-dependent pathway. Prolyl 

hydroxylase, the oxygen-dependent enzyme responsible for HIF-1α degradation, is 

inhibited under hypoxic conditions. This inhibition leads to increased levels of HIF-1α, 

permitting HIF-1α to complex with HIF-1β to form the active HIF-1 dimer, which in turn 

can bind to Hypoxia Responsive Elements (HREs) in the promoter regions of numerous 

genes and promote transcription (52). 

The promoter region of the ET-1 gene contains an HRE binding site and responds 

to elevated levels of HIF-1 by increasing ET-1 transcription (51, 81). Overexpression of 
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HIF-1α, even under normoxic conditions, increases ET-1 mRNA levels (107). 

Furthermore, ET-1 inhibits HIF-1α degradation under normoxic conditions (103), by 

increasing HIF-1α mRNA and decreasing prolyl hydroxylase expression through ETA 

activation (88). 

It’s important to note that HIF-1α initially rises but falls within a few weeks, 

despite chronic hypoxic exposure (20). This pattern of rise and fall in HIF-1α levels 

corresponds with VEGF production in the adult mouse brain, which also returns to basal 

normoxic levels even in the presence of chronic hypoxia (63). Likewise, our lab also 

demonstrated that chronic hypoxia increases arterial medial wall thickness and VEGF 

receptors in fetal lambs, without chronically elevating VEGF levels (1). These results 

suggest that the transient increase in HIF promotes an acute increase of growth factors 

while stimulating longstanding changes in growth factor receptor levels, vascular 

function, and ultimately result in vascular remodeling. This chronic elevation in growth 

factor receptors, not the growth factors themselves, is what maintains the remodeled 

vasculature. It also suggests that chronic hypoxia alters the interactions between growth 

factor receptors, contractile apparatus, and gene expression.  

Hypoxia increases preproET-1 mRNA, ET-1 mRNA and protein levels in the 

circulating plasma and pulmonary system (2, 14, 37, 66, 86). In addition to increasing 

ET-1 expression, hypoxia also increases ECE-1, ETA, and ETB receptor expression in 

pulmonary arterial endothelial cells (57). In the cerebrovasculature, acute hypoxic 

ischemic injury dramatically increases preproET-1 expression (114) and upregulates ETA 

and ETB receptors at the transcriptional level, in which ETB receptors on SMCs, not 

endothelial cells, are shown to be involved in the contractile response (104).  
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Chronic hypoxia induced an increase in ET-1, ETA, ETB levels and 

immunoreactivity in various tissue types (21, 60, 92, 119) and increased the sensitivity to 

ET-1 (49). On the other hand, plasma ET-1 and ETB receptor levels have also been 

shown to be unaffected by hypoxia (3, 9) and hypoxic animals can exhibit a reduced ET-

1 response, possibly due to ETA receptor downregulation and binding (9, 109). 

Alterations in ET-1 signaling may have implications for post-ischemic recovery, 

especially due to the potent vasoconstrictor effects of ET-1 decreasing cerebral perfusion 

(7). Furthermore, ET-1 overexpression post-ischemia can result in compromised integrity 

of the blood-brain-barrier and subsequently induce cerebral edema (69).  

 In addition to eliciting contractions, ET-1 is also implicated in pulmonary 

vascular remodeling and increasing wall thickness (2, 6, 86, 95), in which elevated ET-1 

levels promote medial thickening of bronchiolar and pulmonary arteries (2, 14). ETA 

receptor activation also promotes pulmonary vascular remodeling and right ventricular 

hypertrophy in neonates (5, 6). At the cellular level, prolonged exposure to ET-1 appears 

to shift smooth muscle cells from a phasic, fast contractile phenotype to a more tonic, 

slow contractile phenotype during embryonic development (40). However, not much is 

known about the effects of chronic hypoxia on ET-1 signaling, especially within the fetal 

cerebrovasculature, and whether it is involved in vascular remodeling or shifting of 

smooth muscle cell phenotypes. As such, we are interested in how ET-1 exerts its effects 

within SMCs and result in vascular remodeling. 

 

Excitation Contraction Coupling Pathways 

ET-1 activates a myriad of cytosolic kinases and various pathways, including 
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PKC, CaMK, PI3K, p38, and MEK/ERK (22, 23, 39, 70, 77, 102, 127) and is implicated 

in cellular growth, proliferation, migration, and inhibition of apoptosis (54, 87) in 

multiple tissues. In addition, ET-1 contributes to increased vascular density in tumors 

involving endothelial cell proliferation, migration, invasion, and tubule formation (80). 

Intracellular pathways shown to participate in those cellular functions and cellular 

differentiation include MAPK (mitogen-activated protein kinase) pathways such as ERK, 

JNK, and p38.  

The p38 MAPK pathway, stimulated by stress stimuli and growth factors, is 

involved in cell cycle functions such as cellular differentiation and cell death. In rat aortic 

SMCs, the proliferative effects of ET-1 stimulation are complementarily dependent on 

p38 and ERK dependent pathways (23). ET-1 increases ERK1/2 and p38 MAPK 

phosphorylation in VSMCs in murine mesenteric arteries (127) and activates PKC, p38, 

and ERK to phosphorylate CREB, a transcription factor, altering gene expression in rat 

astrocytes (96). In addition to its mitogenic effects, the p38 pathway also plays a role in 

the acute response to ET-1-induced increases in intracellular Ca2+ levels (77), required 

for force generation and contractions, indicating that ET-1-induced vasoconstriction can 

be mediated in part by the p38 MAPK pathway (64).  

Another MAP kinase involved in ET-1-induced contractions and signaling is the 

MEK/ERK pathway. ETA receptor stimulation activates ERK1/2, which lead to both 

Ca2+-dependent and independent VSMC contractions (22), increased transcription of L-

type Ca2+ channels (128), VSMC proliferation (67), and migration (22, 39). Additionally, 

ERK1/2 plays a major role in ET-1-induced force generation within VSMCs by 

modulating MLCK activity and consequently MLC20 phosphorylation (27). ERK1/2 
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activation can be independent of Ca2+ channels and CaMKII (Ca2+/calmodulin-dependent 

protein kinase II), but appears to be downstream of PKC, PKA, and PI3K (22). In one 

study, ET-1 transactivates epidermal growth factor receptor (EGFR), leading to ERK1/2 

activation, increased Gi protein expression, and cellular proliferation (43). In a similar 

manner to p38, ERK activation also induces CREB phosphorylation, thereby affecting 

the transcription of multiple genes downstream (36, 96). 

ERK is also involved in the cellular growth and proliferation of various cell types 

and is activated by multiple factors, including hypoxia (30, 74, 75, 112, 116). ET-1 

activates ERK (70, 96, 127) and induces HIF-1α upregulation via an ERK-dependent 

pathway (88). The ERK pathway is implicated in ETB receptor upregulation in SMCs 

and MCAs following a hypoxic insult or organ culture (35, 47, 65, 94, 101, 117).  

 Activation of the p38 pathway and ERK have been associated with caldesmon 

phosphorylation, which participates in maintaining the actin cytoskeleton. Together, these 

pathways play a role in cytoskeletal remodeling and contribute to endothelial cell 

migration (62, 82, 124, 125). Caldesmon activation by pERK and p38 induces the its 

dissociation from actin, permitting other interactions necessary for smooth muscle 

contractility (62). In cerebral arteries, ET-1-induced contractions are mediated by ETA 

receptor activation and p38 phosphorylation (111). 

CaMKII signaling is another pathway involved in growth, hypertrophy, 

proliferation, and migration of VSMCs (16, 25, 98). CaMK activation can exert its effects 

on transcription factors such as CREB and ATF-1 in a Ca2+-dependent manner (26). 

Additionally, CaMKII is required in MAPK/PI3K PKB signaling (24) and can exert 

effects on gene expression by inducing transcription of hypertrophic genes in the heart 
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(106). CaMKII modulates cellular responses to ET-1. For example, ET-1 activation of 

CaMKII leads to ERK phosphorylation and results in cardiomyocyte hypertrophy (70). 

ET-1 also induces hypertrophy by activating intracellular pathways that translocate 

calmodulin and CaMKII from the cytoplasm to the nucleus, which then signals various 

transcription factors to stimulate cellular hypertrophy (41) and induce VSMCs to shift to 

a more proliferative phenotype (99).  

On the other hand, CaMKII activation can also affect ET-1 signaling and alter 

ETB receptor expression, due to ischemia or organ culture via interaction with the 

ERK1/2 pathway (77, 117). CaMKII may play a role in Raf/MEK/ERK complex 

association, though it does not directly phosphorylate ERK. Instead, ERK enhances 

CaMKII phosphorylation and nuclear localization (25). Both cerebral ischemia and organ 

culture increases ETB receptor expression and CaMKII activation in cerebral arterial 

VSMCs via increased transcription but did not affect MLC levels or ETA expression 

(117). 

As a potent vasoconstrictor, ET-1 increases intracellular Ca2+ to facilitate 

contractions. ET-1 stimulation of smooth muscle cells leads to PLC activation, 

responsible for cleaving PIP2 into DAG and IP3. IP3 is responsible for an increase in 

intracellular Ca2+ level, while DAG activates PKC (115). ET-1 increases intracellular 

Ca2+, mostly from influx through voltage-dependent Ca2+ channels that is dependent on 

both ETA and ETB receptor stimulation (72). ETA activation increases intracellular Ca2+ 

levels, which activate PLC-β and PKC to induce vasoconstriction (15, 44, 68, 120) and 

contribute to contractions in VSMCs (77). ET-1 also enhances L-type Ca2+ current via 
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ETA receptor stimulation and increases intracellular Ca2+ levels, which can activate PKC, 

CaMKII, and calcineurin to induce cardiomyocyte hypertrophy (61, 132). 

An increase in intracellular Ca2+ activates the Ca2+/calmodulin complex, initiating 

MLC phosphorylation and inducing contractions (122). ET-1 increases phosphorylated 

MLC, especially under hypoxia (102). Additionally, ET-1 increases RhoA expression in 

arteries, in which RhoA/Rho-kinase inhibits dephosphorylation of MLCP and helps 

maintain force during the decline after the initial transient Ca2+ increase (10). PKC also 

induces vasoconstriction by activation of L-VOCC (L-type voltage-operated calcium 

channel)/ROCK (90). Furthermore, the translocation of PKC α, δ, and ε from the cytosol 

to the membrane potentiates induced contractions (84, 100). On the other hand, ET-1-

induced, Ca2+ independent contractions, is associated with PI3K, Rho kinase, MAPK, and 

PKC α and ε translocation (22, 78). These Ca2+ independent, PKC-mediated pathways 

rely on MAPK activation and tyrosine phosphorylation to stimulate SMC contractions 

(18). In addition to the role of PKC during vasoconstriction, PKC also induces 

vasodilation in the presence of endothelium and Ca2+ blockers (89). ET-1 activation of 

PKC stimulates arachidonic acid release via cytosolic phospholipase A2, most likely 

mediated by ETA receptor activation (113). The mitogenic and proliferative effects of 

ET-1 is also attributed to the activation of PKC α, β, γ, δ, and ε in neonatal pulmonary 

VSMC (11).  

Chronic hypoxia increases ET-1 mediated Ca2+ sensitization via ETA receptors 

and a ROK- and MLCK-dependent pathway in rat pulmonary arteries. (55). PASMCs 

from chronic hypoxic rats demonstrates altered ET-1 signaling via voltage-dependent 

Ca2+ channels, mediated by PKC, tyrosine kinase, and Rho kinase (72). Chronic high 
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levels of ET-1 enhances the expression of PKC α and ε, with the increased PKC α 

localized to the cytoplasm that was then translocated to the nucleus with AT-II 

stimulation (121). Eucapnic intermittent hypoxia (E-IH) induces ET-1 dependent 

hypertension and increases sensitivity to ET-1, an effect of increased PKC δ 

phosphorylation (4). ET-1 enhances vasoconstrictor reactivity following E-IH in 

pulmonary arteries via a PKC β-dependent pathway by increasing PKC activity without 

altering expression levels. This ET-1-induced augmented vasoconstriction is independent 

of ROCK and PKC δ but is dependent on PKC β following E-IH. E-IH appears to be 

mediated by the PKC pathway, whereas chronic hypoxia acts via a Rho/ROCK pathway 

(102). Overall PKC activity is a combination of both PKC translocation and expression 

level. PKC expression levels may be altered without translocation (4), but more 

importantly, its activity could potentially increase without changes in expression levels 

(102).  

Hypoxia alters Ca2+ sensitivity and increases sensitivity to ET-1-induced 

contractions and response (72). ET-1 increases PKC δ phosphorylation in small 

mesenteric arteries of hypoxic rats (4), and ET-1-induced contractions were potentiated 

along with increased PKC ε, PKC α, and ETB receptor expression in rat cerebral arteries 

after SAH (12). Following SAH, ET-1-induced contractions is enhanced, ETA receptors 

upregulated, and Ca2+ sensitivity increased (possibly due to increased ETA, PKC a, 

ROCK2, CPI-17, and MYPT1) in rabbit basilar artery (59). It has also been suggested 

that ETB activation may inhibit MLC phosphatase, an enzyme responsible for 

dephosphorylating MLC20, in a PKC-dependent manner (77). Additionally, PKC may 

also be involved with receptor desensitization, receptor upregulation, and play a role in 
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activating transcription factors such as CREB (35, 46, 85, 96). PKC activation by low-

density lipoproteins (LDL) and angiotensin II lead to ERK1/2 activation and Elk-1 

transcription to induce proliferation (116, 131). In a similar manner, hypoxia stimulates 

PKC autophosphorylation, induces ERK phosphorylation, and increases proliferation (31, 

105). Furthermore, PKC may be involved with increased ET-1 production induced by 

other agents in cerebral microvascular endothelial cells (123) 

Activation of G-protein receptors activates PI3Ks, enzymes known to be involved 

in cellular growth, differentiation, and proliferation (83). Hypoxia-induced cellular 

proliferation is also dependent on PI3K (105), which activate Akt/PKB and is involved in 

cellular survival. PKC activation reduces Akt phosphorylation and increases ERK1/2 

phosphorylation in skeletal muscle resistance arteries upon insulin stimulation (8). 

As the literature demonstrates, the effects of ET-1, ETA, and ETB activation are 

highly heterogeneous among different tissues and animal models. ET-1, ETA, and ETB 

expression levels in addition to the coupled intracellular pathways can be altered by 

chronic hypoxia, subsequently influencing acute responses such as contractions and 

chronic responses such as gene expression.  

Although many studies have focused on how the pulmonary system adapts to 

chronic hypoxia by remodeling, few have explored how chronic hypoxia leads to 

cerebrovascular remodeling, much less in a chronic hypoxic fetal model. Most cerebral 

studies have focused on the effects of stroke or acute hypoxia-ischemia on the endothelin 

system (104). As one of the most potent vasoconstrictors, ET-1 is usually used in 

contractility experiments and its trophic role is poorly defined, especially within fetal 

arteries. This study seeks to determine the effects of ET-1 stimulation in fetal cerebral 
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arteries at a lower, more physiological level. ET-1, a non-classical growth factor (G-

protein coupled receptor) can have post-receptor coupling, similar to classical growth 

factors (tyrosine kinase receptors) that alter VSMC phenotypes by changing organization 

and function of contractile proteins. Thus, this project seeks to elucidate how chronic 

hypoxia alters the expression of the endothelin system and the mechanism by which ET-1 

couples to intracellular kinases to induce remodeling of the fetal cerebral vasculature. 

Because hypoxia alters the expression levels of ET-1, ETA, and ETB receptors, it follows 

that chronic hypoxia would also change intracellular coupling. As such, we are interested 

in how chronic hypoxia may alter ET-1 coupling within the fetal ovine 

cerebrovasculature. Investigation into the mechanisms of how chronic hypoxia exerts its 

effects on ET-1-induced intracellular coupling may reveal potential targets for future 

therapies to prevent detrimental remodeling of cerebral arteries in infants exposed to 

intrauterine hypoxia. 

 We hypothesize that chronic hypoxia will not alter circulating ET-1 levels, 

but increases ET receptor expression levels and alters intracellular coupling 

mechanisms, thereby changing SMC phenotype and promoting remodeling of fetal 

ovine middle cerebral arteries. The following aims are set forth to elucidate whether 

hypoxia alters the ET-1 system and its coupling mechanism(s) within the vasculature. 

Specific Aim 1: To assess how CH affects circulating endothelin-1 levels and 

endothelin receptor expression within the ovine fetal cerebral vasculature. Circulating 

plasma ET-1 levels from normoxic (FN) and hypoxic (FH) fetal sheep are quantified 

using a commercially available R&D ELISA kit. Western blotting is used to quantify 
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changes in ETA and ETB receptor expressions in FN and FH middle cerebral arteries 

(MCAs). 

Specific Aim 2: To determine whether chronic hypoxia changes the coupling 

mechanism(s) by which ET-1 mediates its effects on SMC structure and composition 

through activation of PKC, CaMKII, and p38 to alter smooth muscle phenotype. An 

organ culture model is used to determine how chronic hypoxia alters ET-1 coupling to 

intracellular kinases as measured by arterial medial thickness and colocalization of 

contractile proteins within the arterial wall. We propose that chronic hypoxia alters ET-1-

induced changes in the cellular organization of MLCK on SM α-actin and MLC20 on 

MLCK, which are mediated by PKC, CaMKII, and p38. To this end, MCAs mechanically 

denuded of endothelium are cultured in DMEM FBS-starved media for 24h prior to 

incubation with ET-1 and specific kinase inhibitors for another 24h. 

Immunohistochemistry and confocal microscopy are used to verify changes in 

colocalization between MLCK on SM α-actin and MLC20 on MLCK. 

Clinically, this proposed study addresses a very important and prevalent 

pathology—hypoxic vascular remodeling. Fetuses exposed to chronic hypoxia in utero 

often experience distress that can lead to even greater hypoxia. Fetal hypoxia can lead to 

a myriad of diseases and pathologies, including but not limited to premature birth, low 

birth weight, respiratory distress syndrome, persistent pulmonary hypertension, hypoxia-

ischemic encephalopathy, and death (53). Fetuses adapt by remodeling their vasculature, 

possibly irreversibly, leading to increased risk of cardiovascular diseases in adulthood 

(93, 110). By better understanding the mechanism by which ET-1 acts, we can develop 

better therapies and possibly reverse detrimental vascular remodeling.  
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Abstract 

Hypoxia can induce functional and structural vascular remodeling by changing 

the expression of trophic factors to promote homeostasis. While most experimental 

approaches have been focused on functional remodeling, structural remodeling can 

reflect changes in the abundance and organization of vascular proteins that determine 

functional remodeling. Better understanding of age-dependent hypoxic macrovascular 

remodeling processes of the cerebral vasculature and its clinical implications require 

knowledge of the vasotrophic factors that influence arterial structure and function. 

Hypoxia can affect the expression of transcription factors, classical receptor tyrosine 

kinase factors, non-classical G-protein coupled factors, catecholamines, and purines. 

Hypoxia’s remodeling effects can be mediated by Hypoxia Inducible Factor (HIF) 

upregulation in most vascular beds, but alterations in the expression of growth factors can 

also be independent of HIF. PPARγ is another transcription factor involved in hypoxic 

remodeling. Expression of classical receptor tyrosine kinase ligands, including vascular 

endothelial growth factor, platelet derived growth factor, fibroblast growth factor and 

angiopoietins, can be altered by hypoxia which can act simultaneously to affect 

remodeling. Tyrosine kinase-independent factors, such as transforming growth factor, 

nitric oxide, endothelin, angiotensin II, catecholamines, and purines also participate in the 

remodeling process. This adaptation to hypoxic stress can fundamentally change with 

age, resulting in different responses between fetuses and adults. Overall, these 

mechanisms integrate to assure that blood flow and metabolic demand are closely 

matched in all vascular beds and emphasize the view that the vascular wall is a highly 
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dynamic and heterogeneous tissue with multiple cell types undergoing regular phenotypic 

transformation. 
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Introduction 

Vascular remodeling is crucial in maintaining homeostasis during development, 

exercise, and pregnancy. Blood vessels respond to their constantly changing environment 

by remodeling to match blood flow to local metabolic demand (150, 182). Without 

proper regulation of perfusion, tissues can become ischemic and deprived of oxygen, 

resulting in cellular apoptosis, organ dysfunction, and eventually necrosis. Over the long 

term, the vasculature matches supply to demand by inducing capillary angiogenesis and 

by remodeling larger vessels upstream. A classic example of physiological remodeling is 

exercise conditioning, in which multiple factors induce long-term increases in maximum 

blood flow. To match the increased demand for oxygen and enable greater blood flow, 

existing large vessels undergo macrovascular remodeling while microvascular 

remodeling increases capillary density at the capillary level (6, 28, 290, 318). Capillary 

angiogenesis and collateral formation are examples of microvascular remodeling, a 

process distinctly different from macrovascular remodeling, in which structural changes 

occur within the walls of arteries and arterioles upstream from the capillaries. The 

ultimate example of macrovascular adaptation is pregnancy-induced remodeling of the 

uterine artery, a large conduit vessel that undergoes dramatic functional and structural 

changes throughout pregnancy (205). Multiple types of microvascular and macrovascular 

remodeling are important not only in the mother but also in the developing fetus, 

especially during the transition from fetal to newborn life (58, 127, 282). Given that the 

processes governing both microvascular and macrovascular remodeling remain poorly 

understood, particularly in the fetus and newborn, these processes warrant further 

research in fetal, newborn and adult arteries. 
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The principles governing homeostatic vascular remodeling also participate in 

pathophysiological remodeling in numerous diseases. For example, chronic hypertension 

can promote hypertrophic arterial remodeling through dynamic mechanisms (17). 

Increased intraluminal pressures characteristic of chronic hypertension can alter vascular 

permeability, wall thickness, composition, and protein abundance (193). Some of these 

changes are attributable to genetic factors that enhance inward arteriolar remodeling 

responses to increased luminal pressure (50) (Fig. 1). This type of remodeling of cerebral 

arteries can increase distensibility with reduced internal and external diameters (16) and 

thereby reduce the risk of aneurysms (117). Other pathologies, such as subarachnoid 

hemorrhages, also induce cerebrovascular remodeling (126, 312) that is not 

compensatory but instead compromises flow-metabolism coupling and can even 

culminate in vasospasm. Clearly, both physiological and pathophysiological patterns of 

cerebrovascular remodeling are dynamic and regionally heterogeneous multifactorial 

processes influenced by the expression of numerous genes, receptors, and growth factors 

(60, 278, 303). 
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Figure 1. Categories of Vascular Remodeling. Remodeling can be hypertrophic, eutrophic, 
or hypotrophic. In hypertrophic remodeling, the medial cross-sectional area increases. In 
eutrophic remodeling, total medial cross-sectional area remains unchanged. In hypotrophic 
remodeling, cross-sectional area decreases. Remodeling that results in a reduction in 
luminal diameter with constant outside diameter is classified as inward remodeling (left 
panel). Remodeling that involves an increase in outside arterial diameter with a constant 
inside diameter is classified as outward remodeling (right panel). In eutrophic remodeling, 
both inside and outside diameters change. In the above panels, eutrophic remodeling is 
represented as a change in horizontal position with no vertical change. These combined 
structural changes profoundly influence the contractile characteristics of the individual 
smooth muscle cells within the medial layer. 
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To better understand the mechanisms governing vascular remodeling, it is 

important to differentiate functional from structural effects. Functional remodeling 

includes changes in vascular reactivity and contractility, which are fundamentally 

important for coupling of blood flow to local tissue metabolism. Such changes in 

function, however, are typically the consequence of changes in artery composition and 

structure. These structural changes can alter the abundance and organization of 

adventitial matrix proteins as well as the numbers and composition of individual cell 

types within the arterial wall (208, 230, 299). Correspondingly, these alterations can 

increase outer arterial diameter (outward remodeling) or decrease luminal diameter 

(inward remodeling). In addition, total smooth muscle cell mass per unit length of artery 

can increase (hypertrophic remodeling) or remain unchanged (eutrophic remodeling) (16, 

17, 79). The extent to which these combined structural effects influence the contractile 

characteristics of the individual smooth muscle cells in the medial layer defines their 

functional consequences. 

Smooth muscle cells are an integral component of the arterial wall and exhibit a 

phenotypic heterogeneity that is governed by local mechanical and chemical signals (194, 

201, 208). These cells can be classified as migratory, proliferative, synthetic, or 

contractile, and any single cell can exhibit mixtures of these and other characteristics 

(208). Transitions among these phenotypes can be induced by either receptor tyrosine 

kinase (RTK) dependent growth factors (65, 121) or by non-classical G-protein coupled 

receptor (GPCR) ligands (83, 89). In addition, smooth muscle cells can also undergo 

apoptosis, which is an important process in vascular remodeling (260). Ultimately, the 

integrated effects of changes in the numbers, organization, and individual characteristics 
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of the cellular components that make up the arterial wall determine the net result of 

remodeling. 

Tissue hypoxia is a common feature shared among many types of both 

physiological and pathophysiological remodeling. This hypoxia drives remodeling to 

balance oxygen supply and demand at the cellular level through parallel microvascular 

and macrovascular effects. Most early studies of hypoxic remodeling focused on the 

pulmonary circulation, due largely to the clinical prevalence of persistent pulmonary 

hypertension of the newborn (106, 264). These studies have established that mild chronic 

hypoxia directly increases pulmonary arterial pressure and promotes changes in vascular 

structure and function through coordinated actions of multiple vasotrophic factors (161). 

Investigations of hypoxic vascular remodeling in other vascular beds are more rare and 

have focused predominantly on the functional consequences of varying durations of 

hypoxia, with emphasis on changes in vascular contractility and cardiac output 

distribution (217). These effects are particularly prominent in the cerebral circulation, 

where a wide variety of studies have established that chronic hypoxia stimulate 

angiogenesis, increase capillary density, and reduce inter-capillary distances within the 

brain parenchyma (30, 154, 156, 162, 188, 215, 301). The cerebral circulation is also 

subject to both functional and structural macrovascular remodeling, particularly in 

response to ischemic insults (59). Virtually all of these remodeling responses are age-

dependent and reflect the integrated action of a broad variety of both classical and non-

classical vasotrophic factors (41). 

As in the adult, fetal and newborn hypoxia can stimulate an increase in cerebral 

capillary angiogenesis and permeability (133, 187). Chronic hypoxia can also 
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compromise autoregulation and the dynamics of blood velocity in fetal and neonatal 

brains (77, 238, 274). In addition, reactivity to nitric oxide (NO), a primary endogenous 

vasodilator released from the vascular endothelium, can be depressed by chronic hypoxia 

through reduced vascular soluble guanylate cyclase (sGC) activity (220). These 

functional changes reflect underlying structural remodeling, including increased protein 

abundance and vascular smooth muscle proliferation in fetal arteries (171, 172, 217, 299). 

Not surprisingly, the effects of hypoxia on both functional and structural remodeling vary 

considerably in fetal and adult arteries (37, 195). The age-related differences are a 

consequence of the combined actions of multiple vasotrophic factors whose release and 

activity vary with age, vascular bed, and intensity of hypoxia. 

The roles in vascular remodeling of known vascular growth factors and other non-

classical vasotrophic factors remain uncertain, but have the potential to further 

understanding of vascular pathologies in both the fetal and adult cerebral circulations. To 

that end, it will be valuable to better appreciate how these factors function not just 

individually, but in combination in response to common pathophysiological stresses such 

as hypoxia. The present review therefore explores the main factors known to play a role 

in vascular remodeling, with emphasis on responses involving the fetal cerebral 

circulation where possible. Given the relative paucity of results directly related to the 

fetal cerebral circulation, the review is organized around the three main families of 

factors that govern overall vascular remodeling. The first of these are the transcription 

factors that have a global influence on vascular growth and differentiation. 
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Transcription Factors in Hypoxic Vascular Remodeling 

An essential first step in the initiation of hypoxic vascular remodeling is the 

activation of pathways that can sense and respond to reduced oxygen availability. Low 

oxygen can function as a trigger, inducing downstream transcriptional and translational 

events that mechanistically regulate both microvascular and macrovascular remodeling. 

How hypoxia is detected and translated into changes in gene and protein expression was 

uncertain for many years prior to the discovery of Hypoxia Inducible Factor (HIF) by 

Semenza in 1992 (249). The transcription factor HIF is now recognized as the main 

signal that activates cellular responses to hypoxia (248) (Fig. 2). It is a heterodimeric 

protein composed of α and β subunits, both of which are basic-helix-loop-helix (bHLH) 

proteins classified under the PAS family of transcriptional regulators (283). Under 

normoxic conditions, HIF-1β is constitutively expressed whereas HIF-1α is continuously 

degraded via the ubiquitin-proteosome pathway (125). Hypoxia inhibits prolyl 

hydroxylase, which is the oxygen-dependent enzyme governing HIF-1α ubiquitination 

and degradation (154). Elevated levels of HIF-1α facilitate the formation of the HIF-1 

complex, which then can bind to Hypoxia Responsive Elements (HRE) in the promoter 

regions of numerous genes and initiate transcription (248). 
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Figure 2. Hypoxia and Transcription Factors. Prolyl hydroxylase, the oxygen sensor, is 
responsible for HIF-1α ubiquitination and degradation under normoxic conditions. 
Hypoxia inhibits prolyl hydroxylase, leading to elevated levels of HIF-1. Accumulated 
HIF-1α can then facilitate the formation of the HIF-1 complex with constitutively 
expressed HIF-1β, which can then translocate to the nucleus where it binds to Hypoxia 
Responsive Elements (HRE) in the promoter regions of multiple genes and initiates 
transcription. Hypoxia-induced increases in TGF-β lead to Smad phosphorylation, which 
can also serve as coactivators for HIF-1α, and decrease PPARγ expression. 
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The effects of elevated HIF are highly heterogeneous among different tissues. 

This variability is due, at least in part, to tissue specific factors that influence HIF half-

life and degradation. For example, products of HIF-sensitive genes can feedback through 

tyrosine kinase receptors or G-protein coupled receptors and regulate HIF levels (157, 

244). HIF-1α also can be upregulated by thrombin-α, PDGF-AB, and TGF-β1 in cultured 

and renal vascular smooth muscle cells (104). Prostaglandin I2 (PGI2), a vasodilator with 

vasoprotective and antioxidant properties, can stabilize HIF-1α protein in hypoxic human 

umbilical vascular endothelial cells (HUVECs). PGI2 appear to protect HIF-1α via 

inhibition of NADPH oxidase activity and reduction in levels of reactive oxygen species, 

which retard HIF-1α degradation (47). HIF can also be regulated by Chloride 

Intracellular Channel 4 (CLIC4), which affects the upstream regulation and promotion of 

HIF and its downstream effectors, therefore influencing active transcription of HIF 

sensitive genes (45). Studies of HIF turnover and half-life are a logical area for future 

research, particularly in situations where revascularization of transplanted tissues is 

essential for successful surgical outcomes (241, 280). 

Another determinant of heterogeneity of local responses to HIF is the compliment 

of different active genes with HRE in their promoters, and the levels of transcription 

factors for the other cis-regulatory elements in each promoter region. For example, 

endothelial cells from various vascular beds differentially respond to hypoxia-induced 

HIF-1 by variably expressing endothelin-1, inducible nitric oxide synthase (iNOS), 

Fibulin-5, vascular endothelial growth factor-A (VEGF-A), VEGF receptors, and 

angiopoietin receptors (42, 108, 197). In arterial smooth muscle, HIF can upregulate 

expression of low-density lipoprotein receptor-related protein (43). Elevated levels of 
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HIF-1α can also induce vascular remodeling under normoxic conditions in cultured 

vascular smooth muscle (232). This range of effects emphasizes the versatility of 

diversity of HIF as a mediator of vascular responses to hypoxia. 

In the brain, HIF can be used as a marker to identify hypoxia (271, 272). 

Although upregulation of HIF-1α and its downstream effectors appear to be involved in 

vascular remodeling and hypoxic conditioning in both adult and neonatal brains (13, 21, 

48, 251), there have been no comparisons between adult and fetal HIF levels. Due to the 

fact that oxygen tensions are dramatically different between fetal and adult tissues, a 

logical speculation for future studies would be that HIF levels are adapted to the lower 

tissue oxygen tensions typical of the fetus. In the developing brain, HIF can directly 

influence proliferation of neuronal precursor cells (84). HIF can also indirectly promote 

neuroprotection by stimulating expression of erythropoietin and VEGF (84, 181, 258). 

Regionally, the effects of HIF are influenced by local conditions that determine whether 

HIF exerts either neuroprotective effects or neurotoxic effects through stimulation of 

apoptosis and necrosis (84). Together, these results reflect the potential of HIF as a 

mediator of hypoxic vascular remodeling in the brains of both fetuses and adults. 

The basic Helix-Loop-Helix structure of HIF-1α is also characteristic of 

Endothelial PAS protein 1 (EPAS1), a transcription factor closely related to HIF that 

might also contribute to the hypoxic remodeling response (170). This transcription factor 

has had an interesting history owing to its independent discovery by at least three 

different research groups. Correspondingly, this factor has been named EPAS1 (153), 

HIF-1α-like factor (HLF) (82), and finally HIF-2α (93). HIF-2α shares a 48% sequence 

identity with HIF-1α (266) and can be expressed during embryogenesis (206). HIF-2α 
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can induce cellular hypertrophy, reduce proliferation, and promote angiogenesis in 

neuroblastoma cells (87). HIF-2α might also serve as a biomarker in advanced bladder 

cancer (129). Interestingly, both HIF-2α and HIF-1α mRNA are distributed 

heterogeneously among all tissue and cell types (293) and can be expressed in the heart 

and lungs of neonates (153). Both factors are stabilized by hypoxia and bind to HRE in 

multiple gene promoters (170). As for HIF-1α, HIF-2α influences angiogenesis through 

upregulation of VEGF, and stimulates transcription of genes for EPO and the Tie-2 

receptor (49, 76, 286). During development, HIF-2α transcripts can be colocalized with 

HIF-1α transcripts, suggesting redundant roles that extend beyond embryogenesis that 

could include vascular stabilization and remodeling (86). In relation to hypoxic 

remodeling, mutations of the EPAS-1 gene that codes for HIF-2α may have more 

beneficial effects for high altitude living than mutations of the EPO gene (277). In 

addition, HIF-2α can inhibit ROS production by stimulation of antioxidant enzyme 

production (177). Unlike HIF-1α, very little research has examined HIF-2α or its role in 

vascular development, maintenance or remodeling. 

Another transcription factor involved in hypoxic remodeling is peroxisome 

proliferator-activated receptor gamma (PPARγ). Although traditionally associated with 

lipid metabolism and antioxidant protection during inflammation (138), it also plays a 

role in hypoxic vascular remodeling. Hypoxia stimulates an increase in TGF-β/Smad 

signaling that then downregulates PPARγ expression, functionally releasing a “brake” on 

remodeling (103, 196). Hypoxic reductions in PPARγ thus promote remodeling and 

enable functional and structural changes to proceed. In the nucleus, PPARγ 

heterodimerizes with Retinoid X Receptor α (RXRα) and can then bind to peroxisome 
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proliferator response elements (PPREs) on the promoter region of PPARγ target genes to 

induce transcription (101, 225). In contrast to HIF, activation of PPARγ helps maintain 

vascular myogenic tone and attenuates remodeling (53, 111) by decreasing endothelial-

derived ET-1 expression and inhibiting VEGF-induced angiogenesis (112). PPARγ can 

also decrease VSMC proliferation and stimulate apoptosis (112). 

In the cerebral vasculature, studies of PPARγ are rare but are attracting growing 

scientific interest. Cerebral arteries from mice with negative mutations in PPARγ 

exhibited reduced PPARγ levels and underwent both functional and structural remodeling 

(25). Functionally, the arteries demonstrated impaired responses to agonist-induced 

vasodilation, which was attributed to elevated superoxide levels secondary to reduced 

antioxidant protection by PPARγ. Structural changes included increased distensibility, 

wall thickness, and cross-sectional area with decreased external diameter, as is typical of 

hypertrophic inward remodeling. Aside from the well-studied effects of PPARγ on lipid 

metabolism and inflammation, virtually nothing is known of the influence of hypoxia on 

PPARγ expression within the fetal cerebrovasculature, making this a promising topic for 

future investigation. 

 

Receptor Tyrosine Kinase-Dependent Vasotrophic Factors 

Whereas transcription factors exert effects only within the cells where they are 

synthesized, most growth factors are released into the extracellular space where they act 

as intercellular messengers. These messenger molecules, of which there are dozens, then 

activate cell surface receptors in either an autocrine or paracrine manner. One convenient 

method to classify these factors is according to the receptor type they bind and activate. 
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For vasotrophic factors, the largest single class of receptors is the Receptor Tyrosine 

Kinase (RTK) family. In turn, the most widely studied vasotrophic factor that acts 

through RTK receptors is Vascular Endothelial Growth Factor (121).  

 

Vascular Endothelial Growth Factor 

VEGF was discovered more than six decades ago as the factor responsible for 

increased vascular permeability and was originally named Vascular Permeability Factor 

(294). Subsequent studies identified VEGF as the main factor responsible for increased 

vascular permeability in tumors (250) and is now also recognized as the main vascular 

growth factor mediating angiogenesis (57, 92). VEGF can also promote angiogenic 

effects, including tube formation, in cell cultures and can increase vascular endothelial 

cell proliferation in rat brains (52, 149). On the other hand, under some conditions 

endothelial cells do not respond robustly to VEGF stimulation (100), suggesting that the 

role of the endothelium in remodeling is both heterogeneous and finely regulated. The 

VEGF family includes seven members (VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-

E, VEGF-F, and PIGF), which can act through three known receptor tyrosine kinases, 

VEGFR-1 (FLT-1), VEGFR-2 (KDR), and VEGFR-3 (207, 304). Activation of these 

receptors can initiate highly variable and tissue type-dependent responses. For example, 

activation of VEGFR-2 can induce cell proliferation in endothelial cells (139), but can 

modulate contractile protein abundance in vascular smooth muscle (41). In contrast, 

VEGFR-3 is expressed predominantly in lymphatic and venous vessels where it regulates 

lymphangiogenesis and sprouting (236). Regulation of VEGF reactivity can function in 

an autocrine loop in which activation of either VEGF-R1 or VEGF-R2 can enhance 
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mRNA and protein expression for VEGF-R1 in either its particulate or soluble form (14). 

In turn, expression of VEGF-A, currently the most potent angiogenic protein known 

(207), can also be induced by TGF-β1 during tumor-induced angiogenesis (34). 

A primary physiological stimulus for VEGF synthesis is hypoxia, which acts 

through HIF-1α to upregulate VEGF and other growth factors to promote homeostatic 

increases in capillary angiogenesis and vascular remodeling (74). Hypoxia-induced HIF-

1α can increase both VEGF-A and VEGFR-1 expression in endothelial cells derived from 

multiple different vascular beds (197) (Fig. 3). Hypoxic increases in VEGF within 

adjacent endothelial cells and pericytes can yield synergistic paracrine effects that 

enhance cellular growth and proliferation (198). In some cell types, notably gliomas, 

hypoxia can also enhance VEGF levels through stabilization of VEGF mRNA (91, 128). 

Not surprisingly, the effects of hypoxia on VEGF are highly tissue specific; VEGF levels 

can be unresponsive to hypoxia in the kidneys (147, 245). 
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Figure 3. Effects of Hypoxia on Expression of Receptor Tyrosine Kinase-Dependent 
Vasotrophic Factors. Hypoxia-induced increases in HIF-1 levels can stimulate the 
transcription and translation of multiple Receptor Tyrosine Kinase-dependent vasotrophic 
factors. HIF-induced increases in FGF have been shown to stabilize HIF-1α, effectively 
enhancing its own synthesis. Increases in VEGF and VEGF receptors can induce 
endothelial cell proliferation. In addition to having angiogenic effects, VEGF can also be 
neuroprotective, can induce endothelial cell proliferation and vascular remodeling. VEGF 
can also activate PDGF receptors. Hypoxia causes an increase in VEGF, Angiopoietin 1 
(Ang1), and PDGF-B levels, which activate Akt and inhibit apoptosis, particularly in 
neurons. 
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In the brain, the effects of hypoxia on VEGF have been widely studied owing to 

the potential of VEGF to facilitate recovery from ischemic cerebral insults (174). These 

benefits are due not only to the ability of VEGF to stimulate cerebral angiogenesis (154, 

156, 200), but are due also to VEGF’s neuroprotective properties in both mature (131, 

258) and immature brain (88). An important component of this overall effect is that 

hypoxia upregulates expression of VEGF mRNA and protein in the brain (92, 155, 214). 

VEGF also can enhance its efficacy in the brain through upregulation of VEGFR-2 

mRNA (148). All cerebral cell types appear to participate in this pattern of responses, 

including astrocytes, which exhibit increased expression of VEGF following hypoxic 

exposure (221). Interestingly, the cellular sources of VEGF are highly age dependent 

such that VEGF is expressed primarily in neurons of the immature brain, but in both 

neurons and glial cells of the mature brain (200). Aside from these differences, sustained 

hypoxia increases VEGF expression in both neurons and glia, regardless of postnatal age. 

Based on studies in large arteries (41), these hypoxic increases in VEGF could potentially 

contribute to hypoxic cerebrovascular remodeling in an age-dependent manner. This 

hypothesis awaits future experimental confirmation. 

 

Platelet Derived Growth Factor 

Platelet-Derived Growth Factor (PDGF) has long been recognized as a major 

influence on vascular growth and development, particularly in developing tissues (22, 

44). It is a dimeric polypeptide with extensive homology to the peptide sequences of 

VEGF (122). One major consequence of this homology is that receptors for PDGF can be 

activated not only by PDGF, but by VEGF as well (11, 12). Active PDGF ligands can be 
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composed of any pair of four different isoforms, designated as A, B, C, and D. The most 

common pairs, biologically, are PDGF-AA, PDGF-AB, and PDGF-BB (229) and thus the 

A and B forms have been most widely studied. Polypeptides, A and B, are transcribed 

from different genes but can be dimerized by a disulfide bond (118, 145). The receptors 

that bind active PDGF dimers are composed of two different subunits, an α-subunit 

(PDGFR-α), which can bind both A and B chains, and a β-subunit (PDGFR-β), which 

can bind B-chain only. These subunits can associate reversibly to bind specific PDGF 

ligands (247). Most importantly, different PDGF ligands produce different cellular 

responses even when acting on a common receptor (123). PDGF can stimulate 

mitogenesis in smooth muscle, NO-dependent vasorelaxation in endothelium-intact aortic 

rings (61), and microvascular angiogenesis in invasive breast cancer (33). PDGF-BB can 

transform smooth muscle to a less contractile phenotype, and is crucial for proper lung 

development of neonatal rats (36, 65). 

As for most vasotrophic factors, the levels of PDGF and its receptors in any tissue 

are subject to regulation by many different influences. PDGFR-α levels can be 

upregulated by basic fibroblast growth factor (FGF-2), which can facilitate smooth 

muscle proliferation upon subsequent stimulation with PDGF-AA (243). Alpha-thrombin 

can also increase mRNA levels for PDGF-A and simultaneously decrease mRNA for 

PDGFR-β in smooth muscle (202). Hypoxia is also an important modulator of PDGF 

signaling in many different tissues. Although hypoxia has little effect on renal expression 

of PDGF-A and PDGF-B (147, 245), hypoxia can markedly increase transcription of the 

PDGF-B gene in HUVEC cultures (145). In rat lung parenchyma, hypoxia can transiently 

increase PDGF-B mRNA levels (20). In neonatal rat lung, hypoxia increased mRNA for 
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PDGF-B, PDGFR-α and PDGFR-β but decreased the apparent protein abundance of 

PDGF-A, PDGF-B and PDGFR-α (36), suggesting important hypoxic effects on the 

stability and translation efficiency of these mRNAs. In pulmonary arterial smooth muscle 

of neonatal rats, chronic hypoxia increased proliferation and expression of both PDGF-

BB and PDGFR-β (317) Hypoxia also appears to mediate PDGF-dependent 

hyperphosphorylation of PDGFR-β, and thereby enhance pulmonary artery endothelial 

and smooth muscle proliferation (151, 262). 

Within the central nervous system, PDGF is crucial for recruitment of pericytes 

involved in brain capillary angiogenesis during embryonic development (119, 229). 

Recruited pericytes can produce other vasotrophic factors such as TGF-β and VEGF, and 

are crucial in initiation, guidance, extension, and maturation of vessels (74). In areas of 

focal ischemic cerebral infarct, injured tissue expresses increased levels of mRNA and 

protein for both PDGF-B and PDGFR-β (229). More directly, hypoxia can increase 

mRNA and protein levels for PDGF-B in human glioblastoma cells (306). In neurons, 

hypoxia can also increase mRNA and protein for PDGF-B and subsequent 

phosphorylation of PDGFR-β, leading to Akt activation and attenuation of apoptosis 

(311). Effects of hypoxia in the central nervous system also appear to be regionally 

heterogeneous; chronic hypoxia can depress the abundance of PDGFR-β receptors in the 

dorsocaudal brainstem and simultaneously increase mRNA levels for PDGF-B and 

PDGFR-β in the solitary tract nucleus (4, 105, 279). Together, these results demonstrate 

that, as for VEGF, the effects of hypoxia on PDGF signaling are highly dependent on age 

and cell type. Similarly, the roles of PDGF in hypoxic cerebrovascular remodeling 

remain largely unexplored, particularly in the immature brain. 
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Angiopoietins 

Many of the vascular effects of hypoxia are attributable to the factors whose 

expression is upregulated by the actions of HIF-1α. In addition to VEGF, HIF-1α also 

drives the expression of angiopoietins, growth factors crucial for vascular maintenance 

and induction of vessel sprouting (228). HIF increases angiopoietin-2 (Ang2) levels via a 

COX-2 dependent increase of prostaglandin E2 (223). Four types of angiopoietin have 

been identified, including Ang1, Ang2, Ang3, and Ang4, all of which play a role in 

vascular and lymphatic remodeling in the adult mice (141, 265). In endothelial cells, 

however, Ang1 and Ang3 exhibit few mitogenic effects (66, 140). Expression of 

angiopoietins in vascular cell types is also heterogeneous; vascular smooth muscle 

expresses both Ang1 and Ang2 but endothelial cells primarily express just Ang2 (179). 

As for VEGF, angiopoietins can also be anti-apoptotic, particularly in endothelia and 

mesenchymal stem cells (152, 168). The receptors for angiopoietins are members of the 

RTK family and include Tie1 and Tie2 (179, 259). In combination with these receptors, 

Ang1 and Ang2 operate in a push-pull manner in which Ang2 destabilizes, and Ang1 

stabilizes, vessels undergoing angiogenesis (9, 90, 226). To achieve this effect, Ang2 

inhibits binding of Ang1 to Tie2 and thereby destabilizes capillaries and helps initiate 

microvascular angiogenesis. In addition, Tie1 also reciprocally regulates the binding of 

Ang1 and Ang2 to the Tie2 receptor to control responses to angiopoietin stimulation 

(114). 

In relation to vascular remodeling, angiopoietins act in concert with VEGF (236). 

Together with VEGF, Ang1 promotes increased arterial lumen diameter and Ang2 acts to 

extend vessel length and increase propagation of sprouting cells (9, 74). Both VEGF and 
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FGF-2 can increase Ang2 in microvascular endothelial cells, which can antagonize the 

effects of Ang1 and promote disassembly of the vascular wall and formation of new 

vessel sprouts (73). Conversely, TGF-β1 can decrease Ang2 production. Ang1 and Ang2 

can also decrease Ang2 production through negative feedback at the mRNA level. 

Correspondingly, the expression of angiopoietin receptors is also subject to physiological 

regulation through which FGF-2 and VEGF, either alone or in combination, can increase 

Tie1 expression. Similarly, Tie2 expression can be increased by FGF-2, Ang1, or Ang2 

(179). Clearly, the angiopoietins are another category of important vasotrophic factors 

whose complex influences are governed by the simultaneous actions of multiple 

physiological influences. 

One key determinant of angiopoietin actions is hypoxia. Hypoxia can upregulate 

Ang2 mRNA and protein levels in all major categories of cells (254, 307, 309). In 

endothelial cells, hypoxia-induced increases in HIF-1 produce reciprocal increases in 

Ang2 and Tie2 expression but decreases in Ang1 expression (197, 296, 309). Hypoxia 

also can increase both the transcription and stability of Ang2 mRNA in HUVECs (223). 

Hypoxia can regulate Ang2 expression indirectly, at least in HUVEC cultures, through 

HIF-induced increases in COX-2 and subsequent increases in prostacyclin and 

prostaglandin E2, which in turn can increase Ang2 levels under either normoxic or 

hypoxic conditions (223). 

Within the central nervous system, angiopoietins and their receptors can be 

expressed by neurons as well as by cerebrovascular cell types. Ang1 promotes Akt 

phosphorylation in neurons, and thereby inhibits caspase-3 activation and attenuates 

apoptosis (276). In cerebrovascular endothelial cells, hypoxia and ischemia can increase 
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Ang2 mRNA and protein without effects on Ang1 or Tie2 (19, 224). Cerebral ischemia 

also can promote transient and region specific changes in Tie1 and Tie2 expression that 

correspond with regional changes in cerebral blood flow (166). Most interestingly, 

regions exhibiting increased angiogenic activity also demonstrated colocalization among 

Tie2, Ang2, FGF-2 and VEGF, emphasizing the critical role of interactions among 

factors involved in vascular remodeling (166). To date, most studies of the roles of 

angiopoietins in cerebrovascular remodeling have focused on their contribution to 

responses of the cerebral microcirculation to ischemia (158); systematic assessments of 

the effects of hypoxia alone on participation of angiopoietins in cerebrovascular 

remodeling have yet to be performed. Such studies could be particularly illuminating in 

regard to control of physiological cerebral angiogenesis and remodeling, particularly in 

the immature cerebral circulation where low oxygen tension and high prostaglandin 

concentrations are typical. 

 

Fibroblast Growth Factor 

The fibroblast growth factor (FGF) family includes 22 members that can act on 

any of the four FGF tyrosine kinase receptors (204). As established mitogens for 

endothelial cells, basic fibroblast growth factors (FGF-2) can initiate angiogenesis by 

inducing endothelial cell proliferation and cord formation (190). As for other angiogenic 

growth factors, FGFs are synergistic with VEGF and other vasotrophic factors in their 

ability to promote capillary formation (226). The production of FGF-2 by capillary 

endothelial cells can act in an autocrine manner to stimulate further endothelial cell 

proliferation (246). In addition to these autocrine effects, FGF-2 can regulate expression 
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of other factors. For example, FGF-2 can upregulate PDGFR-α levels, allowing smooth 

muscle cells to become more responsive to PDGF-AA stimulation (243). FGF-2 itself is 

subject to upregulation by PDGF-BB and TGF-β in VSMCs (35). In relation to vascular 

remodeling, a particularly important effect of FGF-2 is its ability to induce 

morphological, and possibly phenotypic, transformation in aortic smooth muscle (239). 

Such effects may be particularly important during hypoxia, in which FGF-2 can increase 

ROS production, stabilize HIF-1α and other ROS-sensitive transcription factors, and 

increase its own transcription and translation in an autocrine manner (27, 151, 237). 

During episodes of postnatal chronic hypoxia, FGF-2 levels can be increased 

heterogeneously among different brain regions and are particularly prominent in 

immature glial cells (99). In hypoxic neurons, FGF-2 may also improve neuronal 

survival, contribute to hypoxic conditioning and serve a neuroprotective role (192, 237, 

256). These neuroprotective effects can be observed also in hypoxic-ischemic neonatal 

rat brain (199). Interestingly, FGF-2 appears to increase proliferation, retard maturation, 

and hinder differentiation of neural progenitor cells (67). How FGF-2 affects vascular 

smooth muscle progenitor cells is unknown. This raises the untested possibility that a 

portion of the neuroprotective effects of FGF-2 following an interval of hypoxia may be 

attributable to potential protective effects on the multiple cell types that make up the 

arterial wall. 

 

Receptor Tyrosine Kinase-Independent Vasotrophic Factors 

The ability of hypoxia to promote vascular remodeling is clearly a consequence of 

a highly dynamic interplay among multiple vasotrophic factors and physiological 
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influences. As indicated above, growth factors dependent upon tyrosine kinase receptors 

constitute a major component of this regulation. However, the vasotrophic factors 

involved in hypoxic remodeling also include many other growth factors that act 

independently of RTKs. One of the best studied of these RTK-independent vasotrophic 

factors in Transforming Growth Factor β. 

 

Transforming Growth Factor β 

The transforming growth factor beta (TGF-β) superfamily consists of three main 

isoforms, TGF-β1, TGF-β2, and TGF-β3 (54, 143), all of which can promote 

angiogenesis or vessel regression in tumors (94, 113). TGF-β1 can decrease endothelial 

tube formation and cause capillary-like structures to regress (226). The receptors for 

TGF-β molecules are serine-threonine kinases that phosphorylate Smad proteins, leading 

to their translocation to the nucleus where they alter transcription of numerous genes 

(189). In smooth muscle cells, TGF-β1 can promote differentiation but is only one of 

many factors governing this process (142). Of particular importance for vascular 

remodeling are the antagonistic interactions between TGF-β1 and FGF-2. In this context, 

either decreased FGF-2 or increased TGF-β1 can induce pericyte differentiation and 

expression of α-smooth muscle actin, leading to differentiation of the contractile smooth 

muscle phenotype (212). 

Hypoxia can increase TGF-β2 mRNA and protein levels and enhance Smad2 and 

Smad3 phosphorylation in endothelial cells (310) (Fig. 4). Hypoxia-induced HIF-1 also 

binds Smad proteins, which serve as coactivators and thereby contribute to hypoxic 

vascular remodeling (3, 240). Increases in TGF-β expression can induce G protein–
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coupled receptor kinase 2 (GRK2), a downstream effector of TGF-β, to desensitize G-

protein coupled receptors via negative feedback, terminate TGF-β/Smad signaling, and 

inhibit Ang2-induced proliferation (110). In the brain, TGF-β1 secreted by microglia and 

macrophages contribute to cerebrovascular remodeling following a focal ischemic insult 

(159). These effects, together with the ability of TGF-β1 to inhibit microglial activation, 

help explain why TGF-β1 can be neuroprotective following hypoxic-ischemic insults (72, 

109, 165, 186, 297). Despite these many effects of TGF-β on vascular development and 

differentiation, systematic studies of the roles of this growth factor in normal growth and 

development of the cerebral vasculature have yet to be undertaken, particularly in relation 

to the vascular effects of hypoxia. 
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Figure 4. Hypoxia has heterogeneous effects on Receptor Tyrosine Kinase-Independent 
vasotrophic factor signaling across various cell types in perivascular nerves, hypoxia 
inhibits the synthesis and decreases the content of NE while enhancing serotonin (5-HT) 
synthesis. Elevated 5-HT levels can then induce proliferation of smooth muscle cells and 
increase prostacyclin levels, which inhibits ROS production and increase Ang2 production. 
Adenosine can activate A2 receptors and inhibit proliferation while ATP enhances 
mitogenesis in SMCs but can also increase endothelial cell proliferation. Hypoxia enhances 
the expression of TGF-β, preproET-1 and ET-1 while inhibiting NO synthesis in 
endothelial cells. Hypoxia also enhances expression of both ET receptors in smooth muscle, 
thereby enhancing the effects of ET-1. Increased TGF-β2 levels enhance Smad2/Smad3 
phosphorylation, which can then act as a coactivator for HIF-1. Angiotensin II activates 
AT1, which leads to an increase in FGF-2, PDGF, TGF-β, and NADPH oxidase. Increased 
NADPH oxidase leads to enhanced ROS production, which can inhibit NO bioavailability 
and induce hypertrophy and hyperplasia of smooth muscle cells. ROS can also increase the 
gene expression of HIF-1α and stabilize the HIF-1α protein. The HIF-1 complex then 
enters the nucleus, binds HREs, and results in increased transcription of VEGF, VEGF 
receptors, and Ang II. The diagram includes separate depictions of mechanisms in neurons, 
smooth muscle cells, and endothelial cells. For reference, a generic (parenchymal) cell is 
depicted in the lower left corner. 
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Nitric Oxide 

The vascular endothelium plays a critical role in regulating active vascular tone 

under both normoxic and hypoxic conditions through the release of two main vasoactive 

factors, nitric oxide (NO) and endothelin (ET), with generally opposing effects on 

contractility (97, 102). In addition to their well-documented vasomotor roles, however, 

both of these factors also exert continuous and opposing trophic influences on adjacent 

smooth muscle. Given that hypoxia increases endothelin synthesis but decreases NO 

synthesis and release, both of these factors are important contributors to hypoxic vascular 

remodeling (197, 219). 

The vasorelaxant characteristics of nitric oxide arise largely from its ability to 

activate soluble guanylate cyclase and increase cGMP synthesis, which activates the 

serine-threonine kinase Protein Kinase G (PKG) (97, 242, 267). PKG, in turn, can 

phosphorylate a broad variety of substrates within smooth muscle, including transcription 

factors such as CREB that govern smooth muscle phenotype (144, 167). Aside from 

smooth muscle, PKG can also play a role in endothelial cell differentiation and tube 

formation (10). Apart from PKG, NO can also downregulate expression of other 

vasotrophic factors, including preproET-1 and PDGF-B (146). 

Physiological release of endothelial nitric oxide is governed primarily by fluid 

shear stress. Not only does shear stress promote the immediate release of NO, it also can 

upregulate eNOS mRNA and the long-term capacity for NO release (178). Levels of 

eNOS are also increased by FGF-2 (10). Similarly, stimulation of the insulin receptor can 

activate PI3K and Akt pathways to induce NO production, suggesting that changes in 

insulin receptor density influence NO release (308). Through activation of the ETA 
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receptor, endothelin can also upregulate expression of eNOS in pulmonary vascular 

endothelium (29). Because oxygen radicals can rapidly inactivate NO (92), any long-term 

change in anti-oxidant activity also changes NO action on adjacent smooth muscle. Statin 

treatment can also increase NO bioavailability in fetal sheep, most probably through an 

increased capacity for NO synthesis (134). Equally important, the capacity for NO 

synthesis and release in most vascular beds increases with developmental age (289, 298), 

which helps explain certain age-related differences in reactivity to endothelium-

dependent vasodilators (115) but also predicts that the role of NO in vascular remodeling 

strengthens with advancing postnatal age. 

Under conditions of hypoxia, changes in NO production are highly heterogeneous 

and depend on the duration and intensity of hypoxia in an organ specific manner. In the 

hypoxic lung, NO can promote angiogenesis and ameliorate hypoxic pulmonary 

hypertension (124). Hypoxia also increases eNOS mRNA in the pulmonary vasculature, 

which helps attenuate pulmonary remodeling and hypertrophy (29, 209). In contrast, in 

the cerebral and femoral vasculatures, NO production is depressed, which compromises 

NO-dependent stabilization of contractility and promotes remodeling (222, 233). 

Attenuation of the capacity for NO release by chronic hypoxia is further enhanced by 

simultaneous reductions in sGC activity in both fetal and adult arteries (220). In parallel, 

chronic hypoxia enhanced neuronal NOS expression in fetal brain homogenates (1) but 

depressed nNOS expression in the perivascular nerves innervating middle cerebral 

arteries (185), suggesting that hypoxia exerts opposite and tissue specific effects on NO 

production within the brain. Most interestingly, cerebral expression of eNOS, nNOS and 

iNOS were all increased following recovery from hypoxia, demonstrating that overall 
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regulation of NO production is very tightly controlled. Altogether, these findings 

emphasize that NO stabilizes the contractile phenotype but is only one of many factors 

that contribute to the highly integrated, multifactorial processes determining vascular 

differentiation and remodeling, particularly during sustained hypoxia. 

 

Endothelins 

The discovery that vascular endothelium mediates acetylcholine-induced 

vasodilatation (98) through the release of NO (211) motivated numerous follow-up 

studies of other possible endothelium-derived vasoactive factors. In 1988, Yanagisawa 

reported that in addition to NO, the endothelium also releases endothelin (ET), one of the 

most potent endogenous vasoconstrictors ever discovered (305). Three isoforms of 

endothelin have been identified (ET-1, ET-2, and ET-3) and these activate two separate 

endothelin receptors (ETA and ETB) (64). The two ET receptors display distinct 

affinities for each ET subtype and often exhibit opposing actions; ETA can induce 

vasoconstriction whereas ETB can stimulate vasodilation, depending on the location and 

distribution of each receptor type (26, 183). In some situations, ET can also induce 

release of vasodilators (70, 287). 

Endothelin is implicated in many diseases, especially in hypertension-induced 

remodeling (63). ET appears involved in hypertension-induced hypertrophy of cerebral 

arteries without changing their distensibility (51). Diabetic mice can also display 

increased ET receptor levels and ET-1 dependent matrix metalloproteinase activation, 

which can facilitate cerebrovascular remodeling, especially after hypoxic exposure (137, 

164). Through binding to ETA receptor, increased ET levels can activate the transcription 
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factor Nuclear Factor of Activated T cells, isoform 3 (NFAT3), resulting in hypertension 

and vascular remodeling. In smooth muscle, NFAT3 can increase smooth muscle α-actin 

mRNA and contribute to increased cross-sectional wall thickness in mesenteric arteries 

(68). 

Expression and release of ETs are regulated by a broad variety of influences. 

Importantly, ETs can be produced by non-endothelial cell types, including vascular 

smooth muscle, although at a much lower rate than by endothelial cells (136). Levels of 

ET mRNA in cultured human vascular smooth muscle can be enhanced by numerous 

vasotrophic factors including Ang2, TGF-β, and PDGF-AA (231). In pulmonary artery 

smooth muscle, TGF-β can directly enhance expression of mRNA for preproET-1 (ET-1 

precursor) and thereby increase ET-1 expression (180, 203). In feedback fashion, 

hypoxia-induced increases in RTK-dependent growth factors (FGF-1, FGF-2, and PDGF-

BB), but not G-protein coupled vasotrophic factors (Angiotensin-II and ET-1) can 

upregulate ETA expression in cultured pulmonary artery smooth muscle (163). 

Hypoxia is a particularly important regulator of ET expression in many vascular 

beds. In the rat kidney, hypoxia increases ET-1 expression (147). In the rat pulmonary 

circulation, hypoxia can increase both pulmonary and plasma ET expression (81). In 

mouse and human pulmonary artery endothelial cells, hypoxia can increase expression of 

not only ET-1, but also Endothelin Converting Enzyme-1, ETA, and ETB (135). Chronic 

hypoxia can also increase mRNA levels for preproET-1 and ET-1 protein in pulmonary 

smooth muscle and epithelium together with increased medial thickness of bronchiolar 

arteries (2). In turn, hypoxic increases in ET-1 can be attenuated by PPARγ activation 

(135). Interactions between NO and ET, both of which are modulated by hypoxia, also 
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affect the hypoxic remodeling response. In this manner, endothelium derived NO can 

attenuate hypoxic remodeling and medial hypertrophy secondary to increased ET-1 levels 

(209). NO can also downregulate ET-1 levels and this effect can be strong enough to 

abrogate hypoxia-induced increases in ET-1 mRNA and protein in endothelial cells 

(146). In feedback fashion, hypoxic increases in ET-1 can act through the ETA and ETB 

receptors to elevate eNOS mRNA in the pulmonary vasculature while also increasing 

circulating hematocrit and ET-1 levels. These increased ET-1 levels promote thickening 

of the medial layer in pulmonary arteries (29). 

In the normoxic central nervous system, neurons and endothelial cells express 

preproET-1, and neurons also express both ETA and ETB receptors (273, 295). 

Following a hypoxic-ischemic insult, ET-1 expression is upregulated primarily in 

endothelial and glial cells (15, 273). Hypoxia-ischemia can also upregulate ETA and ETB 

receptors in cerebral arteries (257). Such changes in ET-1 signaling pathways can have 

important consequences for post-ischemic recovery, given that ET-1 can reduce cerebral 

perfusion under normoxic, hypoxic, and hypercapnic conditions, such as those typical of 

the post-ischemic brain (7). Consistent with this possibility, overexpression of ET-1 can 

compromise blood-brain-barrier integrity and enhance edema following an ischemic 

cerebral insult (169). In addition, by virtue of its properties as an endogenous ET 

antagonist (75), the hormone relaxin has the potential to ameliorate ET-induced 

cerebrovascular remodeling (46). This hypothesis awaits direct experimental 

confirmation, as does the more general hypothesis that age-dependent hypoxic 

cerebrovascular remodeling is mediated, at least in part, by increased ET-1 effects on 

cerebral arteries. 
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Angiotensin II 

The renin-angiotensin system is best known for its critical roles in regulation of 

salt and water balance, and how dysfunction of this regulation can lead to hypertension. 

Hypertension associated with elevated production of angiotensin, in turn, can also lead to 

secondary changes in vascular structure and function (18, 78). Some of this remodeling, 

however, may be due to direct vasotrophic effects of angiotensin II on vascular smooth 

muscle (120, 269). Correspondingly, any perturbations that alter the levels or activity of 

Angiotensin Converting Enzyme (ACE), responsible for the conversion of angiotensin I 

to angiotensin II, also play a role in hypertensive remodeling and atherosclerosis (116). 

Angiotensins include four main molecules (-I, -II, -III, and -IV) that bind and 

activate two isoforms of G-protein coupled receptors, the AT1 and AT2 (235). AT1 

receptors can be further sub-classified as AT1A or AT1B, each with a unique tissue 

distribution (107, 132). The AT1 receptor appears to induce vascular remodeling when 

activated by angiotensin II (120, 160). The AT2 receptor is typically less abundant than 

the AT1 except in developing tissues (160). Stimulation of AT2 receptors can inhibit 

proliferation and induce cellular differentiation (300). The AT2 receptor also can 

stimulate NO production and cGMP increases in the kidneys, especially during sodium 

depletion (253). Tissue distributions of AT1 and AT2 receptors are highly heterogeneous, 

but both receptors can be expressed on vascular endothelia where they generally exert 

opposing effects (8). Similarly, the AT1 and AT2 receptors also have opposing actions on 

angiotensin II mediated regulation of circulating blood volume and pressure (160, 234). 

These effects can involve interactions among angiotensin II receptors, and the 

mineralocorticoid receptors that bind and respond to aldosterone (227). Local 
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inflammation can enhance the ability of angiotensin II to induce vascular remodeling 

(252). Typically, angiotensin II stimulates expression of PDGF and TGF-β through 

activation of AT1 receptors (69), and can increase eNOS and NO release in fetoplacental 

artery endothelial cells (315). Angiotensin II can also transactivate certain tyrosine kinase 

receptors, including those that mediate responses to PDGF (120, 270). 

One of the most important effects of AT1 activation is increased formation of 

reactive oxygen species (ROS) (173). These ROS molecules, which may originate from 

membrane-bound NADPH oxidase or mitochondrial synthesis (216), can induce vascular 

smooth muscle hypertrophy, hyperplasia, and migration (55, 268). Activation of AT1 by 

angiotensin II can increase the expression and activity of membrane-bound NADPH 

oxidase, and thereby stimulate ROS production (69, 173). Increases in ROS can, in turn, 

have many effects including reaction with NO leading to decreased NO bioavailability. In 

turn, loss of NO can enhance the effects of angiotensin II on smooth muscle growth by 

upregulating AT1 receptors, and can increase expression of endothelial ACE and ET-1 

(316). Angiotensin II can also increase HIF-1α gene expression and protein stability via a 

ROS-dependent mechanism (210, 285). 

Numerous physiological and pathological perturbations influence the levels and 

cardiovascular effects of the angiotensins. Angiotensin II can be induced by VEGF, 

resulting in a positive feedback loop, in which the increased angiotensin II activates AT1 

receptors that further increase expression of HIF-1, VEGF, and VEGF receptors leading 

to additional increases in angiotensin II (314). Hypoxia can alter AT1 expression through 

mechanisms that appear highly sensitive to history and context; hypoxia has been 

reported both to increase (255) and decrease (184) AT1 expression in vascular smooth 
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muscle. During hypertension, the effects of angiotensin II can be modulated by the 

simultaneous actions of FGF-2, resulting in enhanced stimulation of smooth muscle 

hypertrophy, proliferation and remodeling in cerebral but not extracerebral arteries. 

Conversely, angiotensin II can stimulate FGF-2 synthesis, and thereby amplify its effects 

on hypertension-induced cerebrovascular remodeling (284). How angiotensin II 

contributes to hypoxic cerebrovascular remodeling remains unstudied, particularly in the 

immature cerebral circulation. 

 

Catecholamines 

 Catecholamines serve important roles as neurotransmitters in both the central and 

peripheral nervous systems (5). Aside from their well-documented effects on post-

synaptic G-protein coupled receptors, both norepinephrine (NE) and serotonin (5-HT) 

can exert trophic effects on smooth muscle. These effects were recognized for NE in the 

late 1970s when it was observed that sympathetic denervation caused a relative atrophy 

and thinning of rabbit cerebral arteries (23, 24). Subsequent studies furthered these 

findings and documented the ability of adrenergic perivascular nerves to stimulate 

phenotypic transformation in vascular smooth muscle (62) through activation of α1A 

adrenergic receptors by NE (261). Because chronic hypoxia can depress NE content and 

stimulation-evoked release (38, 185), chronic hypoxia should also attenuate the trophic 

influence of NE on cerebrovascular smooth muscle growth and differentiation. In 

addition, chronic hypoxia appears to depress NO release by perivascular nitrergic nerves 

(185), which should further compromise adrenergic vasotrophic stimulation of 

cerebrovascular growth and differentiation. Given that the adrenergic neuroeffector 
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apparatus is functionally immature in fetal cerebral arteries (218), these results raise the 

possibility that cerebrovascular maturation relies on increasing trophic support from the 

adrenergic perivascular innervation. In turn, if chronic hypoxia inhibits the functional 

maturation of the adrenergic perivascular innervation, then the functional effects should 

be similar to adrenergic denervation in the fetal cerebral circulation. This hypothesis 

awaits experimental evaluation. 

The other main neurotransmitter catecholamine with trophic effects is serotonin. 

This molecule can act through a broad variety of G-protein-coupled receptors (85, 176) 

that are heterogeneously expressed by both the smooth muscle and endothelium of 

virtually all blood vessel types (275). In the pulmonary circulation, 5-HT can increase 

vascular permeability and induce smooth muscle proliferation. These effects appear to be 

mediated through activation of 5-HT1B receptors and subsequent stimulation of ROS 

production (175). Pathological increases in the expression of serotonin transporters (5-

HTT or SERT) appear to enhance the proliferative, ROS-dependent effects of 5-HT on 

pulmonary smooth muscle (176, 288). Some mitogenic effects of 5-HT, however, may be 

attributable to increased prostaglandin synthesis (85). For example, 5-HT can stimulate 

prostacyclin production in aortic smooth muscle (71). Prostacyclin, in turn, can stabilize 

HIF-1 through attenuation of ROS production (47) and both prostacyclin and PGE2 can 

increase expression of Ang2 (223). Stimulation of prostacyclin receptors can upregulate 

smooth muscle cell contractile markers reflecting a shift from synthetic to contractile 

phenotype (89). These effects of 5-HT may be more pronounced in older individuals 

(292). Owing to the ability of estradiol to potentiate the proliferative effects of 5-HT, 
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these effects can be more pronounced in females than in males and may contribute to the 

higher incidence of pulmonary arterial hypertension observed in women (291). 

In relation to hypoxic vascular remodeling, hypoxia can increase mRNA for 5-HT 

and thereby enhance smooth muscle proliferation (80). Adenosine, whose concentrations 

are elevated by hypoxia, can potentiate the proliferative effects of 5-HT by enhancing 

expression of the 5-HT transporter. This effect leads to internalization of 5-HT and 

increased ROS production, which contributes to the mitogenic effects of 5-HT on smooth 

muscle (80). In contrast to other vasotrophic factors, hypoxia appears to have little effect 

on the expression of 5-HT receptors and their artery-size dependent patterns of 

expression (263). It remains possible, however, that the perivascular serotonergic 

cerebrovascular innervation could be modulated by chronic hypoxia, as suggested for the 

adrenergic innervation. Because the serotonergic innervation is completely intracranial 

(56), it is not surgically possible to perform a denervation and observe the resulting 

effects on cerebrovascular growth, differentiation, and function. Confirmation of a 

vasotrophic role for the serotonergic cerebrovascular innervation must await the 

development of alternative experimental approaches. 

 

Purines 

 As a class, the purines couple tissue metabolic activity to vascular growth, 

proliferation, and contraction through actions on three main classes of G-protein coupled 

purinergic receptors (P1, P2X, and P2Y) (95). Adenosine can activate four P1 receptors 

(A1, A2A, A2B, and A3) and also the P2X1 receptor. ADP can activate both P2X and P2Y 

receptors (31). ATP can bind and activate P2X1 and P2Y receptors (31, 32, 39, 96). 
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Together, the purines help regulate endothelial and smooth muscle proliferation, 

migration, and apoptosis and thereby contribute significantly to many patterns of vascular 

remodeling (39). ATP, released by perivascular nerves and endothelial cells, can promote 

mitogenesis in vascular smooth muscle (40). In relation to regulation of smooth muscle 

phenotype, synthetic smooth muscle tends to express P2Y1 and P2Y2 receptors more than 

P2X1, whereas in contractile smooth muscle P2X1 abundance predominates over that of 

the P2Y isoforms (40, 83). This pattern raises the important question: are patterns of P2X 

and P2Y receptor expression a cause, or a consequence, of phenotypic transformation in 

smooth muscle? ADP can also induce proliferation and migration of endothelial cells, 

and can activate A2 receptors to inhibit proliferation of smooth muscle cells (40). In 

addition, ADP acts synergistically with PDGF, TGF-β, among others to induce VSM 

proliferation (39, 40). Extracellular adenosine can contribute to pulmonary vascular 

remodeling via A2A receptors, and extracellular actions of both ATP and adenosine can 

stimulate endothelial apoptosis and act through A2 receptor, a P1 receptor subtype, to 

inhibit SMC proliferation (40, 302). Hypoxia can inhibit ATP production due to 

decreased oxygen availability. On the other hand, hypoxia increases adenosine levels and 

thereby amplifies the proliferative effects of adenosine. For example, hypoxic increases 

in adenosine activate endothelial A2A and A2B receptors and stimulate EC proliferation 

(32, 40). Importantly, A2B receptor stimulation can also increase VEGF mRNA to 

promote angiogenesis (40). Through activation of P2 and A2A receptors, adenosine can 

also promote NO release and thereby activate NO-dependent influences on smooth 

muscle growth and differentiation (32, 39). Hypoxia further potentiates these effects of 

adenosine by inhibiting the abundance and activity of adenosine kinase, the enzyme 
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responsible for recycling of adenosine through conversion into AMP (191). This effect is 

mediated by HIF-1α binding to HREs, which depresses transcription of the adenosine 

kinase gene (191). As a group, the purines are important mediators of the coupling 

between oxygen dependent metabolic activity and vascular function. The importance of 

these mechanisms in the cerebral circulation remains largely unstudied in all age groups. 

Owing to the common therapeutic use of agents such as dipyridamole that alter 

circulating purine levels and actions (313), the potential vasotrophic effects of such 

treatments urge caution. 

 

Future Directions 

The past decade has ushered in a revolution in the understanding of vascular 

biology. The classical view of blood vessels as static, homogeneous structures has slowly 

yielded to the more contemporary view of the vascular wall as a highly dynamic and 

heterogeneous tissue with multiple cell types undergoing regular phenotypic 

transformation. The extent and character of these transformations are governed by a 

growing list of vasotrophic factors that continuously modulate vessel structure and 

function to support tissue growth and metabolic demand. The vasotrophic factors 

involved include not only the classical receptor tyrosine kinase ligands such as VEGF, 

PDGF, angiopoietins and FGF, but also a diverse category of smaller multifunctional 

molecules that influence smooth muscle growth and proliferation independent of receptor 

tyrosine kinases. This category includes TGF-β, nitric oxide, endothelin, angiotensin II, 

catecholamines, and purines. These non-classical vasotrophic factors appear to help fine-

tune vascular composition and reactivity to meet the demands of tissue growth, 
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development, and physiological stress. As seen repeatedly, the expression of these 

vasotrophic factors can be heterogeneous among various tissue types and vascular beds to 

ensure a close coupling between metabolic supply and demand. These fundamental 

differences in oxygen requirements for metabolic homeostasis among various tissues 

imply different susceptibilities to hypoxic insults. Consequently, both functional and 

structural adaptations of the vasculature are also organ specific. These mechanisms 

integrate to assure that blood flow and metabolic demand are closely matched in all 

vascular beds, especially under environmental stresses such as hypoxia. From this 

perspective, one of the most promising future endeavors will be to better understand the 

basic principle of “excitation-transcription coupling”, as introduced by Wamhoff (281). 

This idea advances the notion that the same calcium transients that initiate muscle 

contraction simultaneously help activate key transcription factors, such as myocardin 

(130, 213), that drive expression of genes coding for critical proteins required for 

contraction. In this manner, contractile stimuli produce both short-term and long-term 

effects that serve to “condition” the blood vessels involved. How these signals integrate 

with other vasotrophic signals, growth factors, and pathogenic stimuli remains an 

exciting arena for future investigation. 
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Abstract 

In utero hypoxia influences the structure and function of most fetal arteries, 

including those of the developing cerebral circulation. Whereas the signals that initiate 

this hypoxic remodeling remain uncertain, these appear to be distinct from the 

mechanisms that maintain the remodeled vascular state. The present study explores the 

hypothesis that chronic hypoxia elicits sustained changes in fetal cerebrovascular 

reactivity to endothelin-1 (ET-1), a potent vascular contractant and mitogen. In fetal 

lambs, chronic hypoxia (3820 m altitude for the last 110 days of gestation) had no 

significant effect on plasma ET-1 levels or ETA receptor density in cerebral arteries but 

enhanced contractile responses to ET-1 in an ETA-dependent manner. In organ culture 

(24h), 10 nM ET-1 increased medial thicknesses less in hypoxic than in normoxic 

arteries, and these increases were ablated by inhibition of PKC (chelerythrine) in both 

normoxic and hypoxic arteries, but were attenuated by inhibition of CaMKII (KN93) and 

p38 (SB203580) in normoxic but not hypoxic arteries. As indicated by Ki-67 

immunostaining, ET-1 increased medial thicknesses via hypertrophy. Measurements of 

colocalization between MLCK and SMaA revealed that organ culture with ET-1 also 

promoted contractile dedifferentiation in normoxic, but not hypoxic, arteries through 

mechanisms attenuated by inhibitors of PKC, CaMKII, and p38. These results support the 

hypothesis that chronic hypoxia elicits sustained changes in fetal cerebrovascular 

reactivity to endothelin-1 (ET-1) through pathways dependent upon PKC, CaMKII, and 

p38 that cause increased ET-1-mediated contractility, decreased ET-1-mediated smooth 

muscle hypertrophy, and a depressed ability of ET-1 to promote contractile 

dedifferentiation.  
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Introduction 

For most mammals, the final weeks of gestation are a period of rapid change, 

particularly for the fetal cardiovascular system. This brisk pace of change renders the 

immature vasculature vulnerable to many stresses common during the perinatal period, 

including hypoxia, which can be secondary to compromised placental flow, maternal 

pulmonary disease, diabetes, or drug abuse (30). Hypoxic stresses, in turn, typically 

promote vascular remodeling that alters vascular structure and function in the short term 

(42) and increases the risk of later onset cardiovascular disease in adulthood (59). Within 

this context, our previous work has shown that hypoxia modulates fetal vascular structure 

and function, and that Vascular Endothelial Growth Factor (VEGF) is involved in this 

modulation (1). In the present study, we examine the possible involvement of another 

vasotrophic molecule, Endothelin-1 (ET-1), which, like VEGF, is also upregulated by 

hypoxia through the actions of the transcription factor Hypoxia-Inducible Factor-1α 

(HIF-1α) (28). 

ET-1 is a potent contractant in many arteries (15) and also exerts marked 

mitogenic effects in both vascular and non-vascular tissues, due in large part to the broad 

expression of endothelin receptors in many different cell types (15). ET-1 binds and 

activates two main G-protein coupled receptors, ETA and ETB, which are responsible for 

vasoconstriction and vasodilation, respectively (15). These receptors also can activate 

multiple signaling pathways, including those involving Protein Kinase C (PKC) (47), 

Ca2+-calmodulin-dependent protein kinase II (CaMKII) (46, 60), and p38 MAP Kinase 

(45). Through these pathways, ET-1 and its receptors influence proliferation in neonatal 

pulmonary arteries (47), cardiomyocyte hypertrophy (60), vascular smooth muscle 
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growth, proliferation, and migration (46), and many other effects. 

To test our hypothesis that chronic hypoxia modulates the influence of ET-1 

signaling on the fetal cerebral circulation, we measured by immunoassay the circulating 

levels of ET-1 in normoxic and chronically hypoxic term fetal lambs. In these two 

groups, we also measured and compared the abundances of ETA and ETB receptors in 

fetal cerebral arteries, and the contractile effects of ET-1 in the presence and absence of 

the ETA antagonist PD-156707. To assay the effects of chronic hypoxia on ET-1 

signaling through mitogenic pathways, we studied the effects of organ culture with ET-1 

in the presence and absence of chelerythrine (a PKC inhibitor), KN93 (a CaMKII 

inhibitor) and SB203580 (a p38 MAP Kinase inhibitor) in normoxic and hypoxic fetal 

cerebral arteries. In these organ culture experiments, multiple endpoints were examined, 

including the medial thickness within the artery wall, the extent of smooth muscle 

proliferation as indicated by positive staining for Ki-67, and the organization of 

contractile proteins as revealed by confocal colocalization between myosin light chain 

kinase (MLCK) and smooth muscle a-actin (SMaA). Together, these experiments 

revealed that in the fetal cerebral circulation, ET-1 signaling has multiple important and 

diverse effects that are discretely modulated by chronic hypoxia.  

 

Materials and Methods 

The protocols used in these studies were approved by the Animal Research 

Committee of Loma Linda University and complied with all policies in the National 

Institutes for Health Guide for the Care and Use of Laboratory Animals. Tissue 

harvesting and preparation have been previously described in detail (1, 10). 
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All tissues used in these experiments were obtained from normoxic and 

chronically hypoxic term fetal (139–142 days gestation) and young (18–24 month-old) 

nulliparous adult sheep. Normoxic animals were maintained at the LLU animal care 

facility (353 m altitude), where arterial oxygen tensions (PaO2) averaged 23 ± 1 Torr and 

102 ± 2 Torr in fetal and adult sheep respectively (31). Chronically hypoxic sheep were 

maintained for the final 110 days of gestation at the Barcroft Laboratory, White Mountain 

Research Station, Bishop, CA (altitude 3,820 m). At high altitude, PaO2 values averaged 

19 ± 1 and 64 ± 2 Torr for fetal and adult sheep respectively (31). 

Ewes were anesthetized with 10 mg/kg ketamine and 5 mg/kg midazolam, i.v., 

intubated, and ventilated on 1-2% isoflurane with balance %O2. Term fetuses (between 

139-142 days gestation) were accessed via a midline incision, after which whole blood 

was collected from the umbilical vein of normoxic and hypoxic term fetal sheep, into 

heparinized syringes. After blood collection, the umbilical cord was cut and the fetus 

weighed prior to immediate exsanguination by rapid removal of the heart. Ewes were also 

sacrificed by rapid exsanguination. 

 

Tissue Harvest 

Brains were collected from fetuses gestated at sea level (FN) or at 3820 m (FH) 

for the last 110 days of gestation. As previously described (1), harvested brains and 

arteries were continuously bubbled in a HEPES buffer solution (pH 7.4, 122.1 mM NaCl, 

25 mM HEPES, 5.16 mM KCl, 2.4 mM MgSO4, 11.1 mM dextrose, 1.6 mM CaCl2 and 

50 µM EDTA) with 95% O2 and 5% CO2. All arteries were dissected and cleaned of 

loose connective tissue and blood. Middle cerebral arteries (MCAs) designated for 
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contractility and organ culture experiments were mechanically denuded of endothelium 

then cut into 3 mm segments.  

 

Measurement of Plasma ET-1 

The hematocrit of collected whole blood was quantified within 30 min of blood 

collection using the HemataSTAT-II Microhematocrit System. Plasma isolated by 

centrifugation at 2,500 rpm (~1800 rcf) for 15 min at 4 °C was aliquoted and frozen at -

20 °C until further processing. Plasma ET-1 levels were quantified with an ET-1 ELISA 

kit (R&D Systems, Minneapolis, MN) with 90-100% recovery efficiency. All samples 

were analyzed in duplicate. 

 

Western Blotting for ETA and ETB Receptor Levels 

Endothelium-intact MCAs designated for western blot experiments were weighed, 

fast frozen in liquid N2, and kept at -80 °C until tissue homogenization and protein 

extraction. MCAs first were equilibrated briefly at a 1:20 tissue-to-buffer ratio in ice-cold 

RIPA buffer solution containing 150 mM NaCl, 50 mM Tris, 10 mM EDTA, 5 mM 

EGTA, 1% Triton X-100, 0.05% sodium deoxycholate, 0.10% SDS, 10% glycerol, 20 

mM DTT, and 5 µl/ml of buffer protease inhibitor cocktail (Sigma-Aldrich, Saint Louis, 

#M1745), all at a pH of 8.0. Proteins were extracted from the MCA samples via water 

bath sonication for one hour at 4 °C. Thereafter, the samples were then shaken for 90 min 

at 4 °C before centrifugation at 10,000g for 10 min. Supernatants were aliquoted and 

frozen at -80 °C until protein assay and Western blotting. 
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Supernatant protein contents were quantified with the BioRad DC Protein Assay 

using BSA as a standard, according to manufacturer’s directions. Supernatant from the 

protein homogenates were then separated by SDS-PAGE on 4-10% acrylamide gels. 

Increasing known amounts of common carotid protein homogenates were used as a 

relative standard. Beta-mercaptoethanol (150 µL) was added to the top reservoir and gels 

were run at 35 mA constant current. Separated proteins were transferred onto 

nitrocellulose membranes at a constant 30 V overnight (16 hours) in Bjerrum buffer (40 

mM Tris, 39 mM glycine, and 0.01% SDS) with 20% methanol at 4 °C. 

The membranes were blocked with 5% milk in PBS at pH 7.45 (m-PBS) for one 

hour at room temperature with gentle agitation. All subsequent incubations and washes 

were performed with 0.1% Tween-20 in 5% m-PBS (m-PBS-T20). After blocking, 

membranes were incubated with primary antibodies (anti-ETA at 1 µg/ml; Abcam, 

ab85163 and anti-ETB at 1:2000; Abcam, ab117529) overnight (16-18 hours) at 4 °C 

with gentle agitation. Membranes were then washed 5 minutes for a total of 6 times with 

m-PBS-T20 before application of secondary antibody (GAR Dylight 800; Pierce 

Chemical, Rockford, #46422) for 90 minutes. Membranes were again washed 6 x 5 

minutes each in m-PBS-T20 followed by 2 x 5 minutes in PBS pH 7.45. Membranes 

were imaged with the LI-COR Bioscience Odyssey system.  

 

Contractility 

As previously described (1, 10), MCAs designated for contractility measurements 

were mechanically denuded of endothelium with a small tungsten rod and then sectioned 

into 3-mm segments. The endothelium-denuded fetal MCA segments were mounted onto 
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tungsten wires suspended between isometric force transducers, adjusted to a resting 

tension of 0.5 grams, and equilibrated for 30 minutes in a Na+-Krebs buffer solution 

containing 122.1 mM NaCl, 25.6 mM NaHCO3, 11.1 mM dextrose, 5.16 mM KCl, 2.5 

mM MgSO4, 1.60 mM CaCl2, 0.114 mM ascorbic acid, 0.1 mM L-NAME, 0.1 mM L-

NNA, and 0.027 mM EDTA, all at pH 7.4. The arteries were equilibrated at normal ovine 

temperature (38 °C) and continuously bubbled with 95% O2 and 5% CO2. Contractions 

were induced with a K+-Krebs buffer solution containing 122.1 mM KCl, 25.6 mM 

NaHCO3, 11.1 mM dextrose, 5.16 mM NaCl, 2.5 mM MgSO4, 1.60 mM CaCl2, 0.114 

mM ascorbic acid, 0.1 mM L-NAME, 0.1 mM L-NNA, and 0.027 mM EDTA at pH 7.4. 

Following contraction in K+-Krebs buffer, the arteries were returned to resting conditions 

in Na+-Krebs buffer. 

To confirm endothelial denudation, the MCA segments were incubated in Na+-

Krebs buffer with 10 µM 8-Phenyltheophylline (8-PT) (Sigma Aldrich, St. Louis, 

#P2278) for 20 minutes at 0.75 grams, then contracted with 1 µM serotonin 

hydrochloride (5-HT) (Sigma Aldrich, St. Louis, #H9523). The addition of 1 µM ADP 

(Sigma Aldrich, St. Louis, #A5285) following 5-HT contraction was used to validate 

endothelium removal. The 8-PT was present during exposure to ADP to minimize any 

relaxation due to activation of vascular P1 receptors by adenosine released via ADP 

degradation. Na+-Krebs buffer without 8-PT was used to wash the arteries and return 

them to basal resting conditions. The contractile response to K+-Krebs buffer was then 

recorded once more to fully load all intracellular calcium stores, after which the arteries 

were returned to basal resting conditions. At this point, 10 nM PD-156707 (Sigma 

Aldrich, St. Louis, #PZ0141), an ETA antagonist, was added to the Na+-Krebs solution 
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and the arteries were incubated in the solution for 30 minutes. The concentration used (10 

nM) was approximately the IC90 concentration based on published results (37). Control 

arteries received the same amount of diluent as arteries treated with PD-156707 (0.02% 

DMSO in 0.02% 100 mM NaOH). A contractile dose response relation was then 

determined for ET-1 (Sigma Aldrich, St. Louis, #E7764) starting at 10-12 M and 

increasing in half-log increments to a final concentration of 3.16x10-7 M.  

 

Organ Culture 

Endothelium-denuded MCA segments were organ cultured at pH 7.45 in sterile 

DMEM (Sigma Aldrich, St. Louis, no. M56469C) without FBS, to which was added 3.7 

g/l of NaHCO3, 0.5% amino acid solution (Sigma Aldrich, St. Louis, #M5550), 1% non-

essential amino acid solution (Sigma Aldrich, St Louis, #M7145), 4 mM glutamine 

(Sigma Aldrich, St. Louis, #G7513), 2% antibiotic-antimycotic solution (Gibco, 

Carlsbad, #15240-096), and 70 µg/ml of Gentamycin (Gibco, Carlsbad, #15750-060). 

The artery segments were cultured in untreated 12-well plates and maintained in a 

humidified incubator with 5% CO2 in room air at 37 °C for 24 hours. 

After the first 24 hours of culture, DMSO was added to all culture wells at 

0.01875%, which was the final concentration used to solubilize all inhibitors. Matched 

sets of five adjacent segments were then treated as follows: 1) starved controls; 2) ET-1 

at a physiological concentration of 10 nM; 3) 10 nM ET-1 plus 6.6 µM chelerythrine 

(Santa Cruz Biotechnology, Santa Cruz, SC-3547); 4) 10 nM ET-1 plus 10 µM KN93 

(Cayman Chemical, San Diego, #13319); and 10 nM ET-1 plus 10 µM SB203580 (Tocris 

Bioscience, Bristol, #1402). Chelerythrine, KN93, and SB203580 were added to inhibit 
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PKC, CaMKII, and p38 pathway respectively, at approximately the EC90 concentration 

for each inhibitor (24, 29, 54). Owing to the limited availability of only 6 MCA segments 

from a single fetus, additional animals were used to prepare appropriate negative 

controls. Arteries were prepared for organ culture as already described, but received the 

following four treatments: 1) starved controls; 2) 6.6 µM chelerythrine; 3) 10 µM KN93; 

and 4) 10 µM SB203580. 

 

Fluorescent Immunohistochemistry and Confocal Imaging 

As previously described (1), arteries designated for imaging were fixed for 24 

hours in 4% neutral buffered formaldehyde (Electron Microscopy Sciences, Hatfield, 

#15713S), paraffin embedded, and sectioned at 5 µm. Histoclear solution (National 

Diagnostic, Atlanta, #HS-200) was used to deparaffinize the slides before rehydration in 

decreasing concentrations of alcohol. Slides were then incubated in 100 mM glycine in 

PBS, pH 7.45 for 10 minutes to decrease background staining then rinsed with gentle 

agitation in PBS at pH 7.45 for 5 minutes. Antigen retrieval was performed by 

microwave irradiation in citrate buffer at pH 6.03 for 5 minutes. Following antigen 

retrieval, the artery sections were washed with gentle agitation in PBS at pH 7.45, 3 times 

for 5 minutes each, and then permeabilized. Non-specific blocking was achieved by 

exposure to 5% normal goat serum (Pierce Biotechnology, Inc. #31873) with 1% Bovine 

Serum Albumin (Santa Cruz Biotechnology, Santa Cruz, #SC-2323) and 0.3% Triton X-

100 (Sigma Aldrich, St Louis, #T-8787) in PBS at pH 7.45 for 30 min.  

Slides carrying the MCA sections were double stained with three marker-pair 

combinations: 1) polyclonal anti-Ki-67 (Abcam, ab15580) at 1:100 and anti-SMαA at 
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1:400; 2) polyclonal anti-MLCK (Santa Cruz Biotechnology, Santa Cruz, SC-25428) at 

1:50 and monoclonal anti-SMαA (Sigma Aldrich, St Louis, A5228) at 1:400; and 3) 

monoclonal anti-MLC20 (Sigma-Aldrich, St. Louis, #M4401) at 1:100 and anti-MLCK at 

1:50. Slides were incubated in primary antibodies overnight at 4 °C in incubation 

chambers with slight agitation. The following morning the slides were washed in PBS + 

0.1% Tween-20 at pH 7.45, 3 times for 5 minutes each, after which the second antibodies 

(DyLight 488 conjugate and DyLight 633 conjugate - Pierce Chemical, Rockford) were 

applied for two hours in the dark at room temperature with slight agitation. Slides then 

were washed in PBS + 0.1% Tween-20 at pH 7.45, 2 times for 5 minutes each followed 

by a wash in PBS at pH 7.45 for 5 minutes and a final rinse in 50% PBS. Finally, 

mounting medium (SlowFade Gold Antifade Mountant, S36937) was applied and the 

slides were cover-slipped and stored at 4 °C in the dark until imaged with the Olympus 

FV1000 at 200x for wall thickness measurements and at 600x for quantification of 

colocalization.  

Colocalization between markers was determined using a custom non-parametric 

quadrant analysis that provided a measure of contractile protein colocalization 

independent of pixel intensity that identified VSM phenotype (1). The voxel dimensions 

for this analysis were 146 x 146 x 545 nm for the green channel (488 nm) and 185 x 185 

x 693 nm for the red channel (633 nm). For each image, the distribution of pixel 

intensities was analyzed to determine the numbers of pixels above median intensity for 

each channel using CoLocalizer Pro ver 2.6.1 (Colocalization Research Software, 

Switzerland, http://www.colocalizer.com/pro.html). Colocalization of Ki-67 with SMαA 

was calculated as the ratio of the number of pixels above median intensity for both Ki-67 
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and SMαA, divided by the total number of pixels above median intensity for just SMαA. 

Colocalization of MLCK with SMαA was calculated as the ratio of the number of pixels 

above median intensity for both MLCK and SMαA, divided by the total number of pixels 

above median intensity for just SMαA. Similarly, colocalization of MLC20 with MLCK 

was calculated as the ratio of the number of pixels above median intensity for both 

MLC20 and MLCK divided by the total number of pixels above median intensity for just 

MLCK.  

 

Data Analysis and Statistics 

All middle cerebral arteries were analyzed in matched sets within each of the 

main protocols including contractility, Western blotting, and organ culture. For 

contractility experiments, paired segments were distributed to the control and PD-156707 

treatments. Contractile responses to ET-1 were normalized to the corresponding max K+-

induced contraction and arteries exhibiting a maximum contractile response to potassium 

of <1.5 g, a vasodilator response to ADP of > 15%, or a maximum response to ET-1 

<20% of the maximum response to potassium were excluded from further analysis. 

Results from duplicate segments from the same animal were averaged and counted as 

n=1. Emax and pD2 values from FN and FH MCAs were determined via non-linear 

regression. 

Each Western blot gel run to analyze ETA and ETB receptor abundances included 

5 lanes with known standards that were used to construct a logistic standard curve from 

which relative abundances were directly calculated. ETA and ETB standards were 

prepared from endothelium-intact common carotid arteries harvested from non-pregnant 
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adult ewes. For organ cultured arteries, MCAs stained with SMαA and imaged at 200x 

were analyzed with ImagePro6 to measure medial wall thicknesses. Colocalization ratios 

from organ cultured arteries were normalized relative to their corresponding negative 

controls. 

Results obtained for Emax, pD2, relative abundances, medial thicknesses and 

colocalization ratios were analyzed using a univariate ANOVA with oxygen (normoxia 

or hypoxia) and treatment (control, ET, ET+inhibitor, etc.) as factors (SPSS software, ver 

23). For ANOVA results with at least one significant effect, post-hoc comparisons were 

performed using a Least Significant Difference test. Following elimination of outliers 

identified using the 2SD rule (SPSS software, ver 23), homogeneity of variance and 

normal distribution were verified for all datasets. Two-group comparisons were analyzed 

using a Behrens-Fisher test with pooled variance to identify significant differences 

(P<0.05). A minimum observed statistical power of 0.8 was routinely obtained for all 

non-significant differences. 

 

Results 

This study used a total of 85 fetal lambs. Of these, 14 normoxic fetuses (FN) and 

9 hypoxic fetuses (FH) provided endothelium-intact fetal MCAs for Western blots to 

quantify ETA and ETB receptor abundances. All other protocols used mechanically 

denuded fetal MCA segments harvested from 19 FN and 27 FH. Throughout the text, “n” 

indicates the number of animals used in each experiment, not the number of segments. 

All values represent mean values ± SEM, with statistical significance defined as P<0.05. 
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Effects of Chronic Hypoxia on ET-1-Induced Contractions 

The ETA receptor antagonist PD-156707 caused a right-shift in ET-1 

concentration-response relations in endothelium-denuded MCAs from both FN and FH 

groups (Fig. 1). The pD2 values for ET-1 in control normoxic (7.96± 0.16, n=11) and 

hypoxic (7.97±0.096, n=7) arteries did not differ significantly, but treatment with PD-

156707 significantly decreased pD2 values in both FN (7.44±0.11, n=7) and FH 

(7.52±0.09, n=5) MCAs. These results suggest that ETA receptors mediate the contractile 

responses to ET-1 in both normoxic and hypoxic fetal MCAs.  

The maximum contractile response to ET-1 (Emax) was significantly greater in 

untreated (control) chronically hypoxic fetal MCAs (98.3±2.4, n=7) than in normoxic 

fetal MCAs (85.3±6.2, n=11). Treatment with PD-156707 significantly decreased Emax 

values in FH (72.7±9.0, n=5) but not FN (81.6±2.8, n=7) MCAs. 
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Figure 1. Chronic Hypoxia Altered ET-1-Induced Contractility in Fetal MCAs. The ETA 
receptor antagonist (PD-156707) caused a right-shift in the ET-1 concentration-response 
relation and significantly decreased pD2 in both normoxic (FN) and hypoxic (FH) fetal 
MCAs. Untreated FH MCAs exhibited a higher Emax than FN MCAs. Additionally, PD-
156707 treatment decreased Emax in FH but not FN MCAs. Values shown represent means 
± SEM for n=7-11 (FN) and n=5-7 (FH). The symbol ‡ indicates P<0.05 when comparing 
FN and FH. The symbol * indicates P<0.05 for control versus PD-156707. 
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Effects of Chronic Hypoxia on Fetal Plasma ET-1 Levels 

In our model, chronic hypoxia during the last 110 days of gestation did not affect 

circulating ET-1 levels at the end of gestation in ovine fetuses. ET-1 levels in fetal 

plasma at term did not differ significantly between normoxic (1.04±0.06 pg/ml, n=14) 

and hypoxic (1.02±0.07 pg/ml, n=16) fetuses.  

 

Effects of Chronic Hypoxia on ETA and ETB Abundances 

ETA and ETB receptor abundances were calculated relative to levels measured in 

pooled common carotid arteries from adult non-pregnant ewes. ETA receptor abundances 

did not differ significantly between normoxic (0.788±0.082, n=12) and hypoxic (0.852 

±0.084, n=9) fetal MCAs (Fig. 2). In contrast, the relative abundances of ETB receptors 

were significantly greater in normoxic (0.121±0.027, n=14) than in hypoxic 

(0.074±0.005, n=6) fetal MCAs. In addition, the relative abundances were markedly 

greater for ETA than for ETB receptors, indicating that in term fetuses ETA receptor 

levels were much closer to adult carotid values than were ETB receptors. 
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Figure 2. Chronic Hypoxia Altered ET Receptor Expression in Fetal MCAs. Chronic 
hypoxia did not alter ETA receptor expression (FN n=12, FH n=9) but significantly 
decreased ETB receptor expression (FN n=14, FH n=6) in endothelium-intact MCAs from 
term ovine fetuses. Results are presented as means ± SEM. The symbol § indicates P<0.05. 
CCA is the abbreviation of Common Carotid Artery. 
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Effects of Chronic Hypoxia and ET-1 on Medial Thicknesses 

Organ culture with 10 nM ET-1 for 24h significantly increased medial 

thicknesses, and more so in normoxic (146.0±3.4% compared to starved FN controls, 

n=7) than in hypoxic (124.9±7.5% compared to starved FH controls, n=13) fetal MCAs 

(Fig. 3). Arteries treated with both 10 nM ET-1 and 6.6 µM chelerythrine exhibited no 

differences in medial thickness for either normoxic (96.0±14.3% of control, n=9) or 

hypoxic (101.8 ±6.5% of control, n=14) fetal MCAs, indicating that PKC inhibition 

blocked the effects of organ culture with ET-1 on medial thicknesses. Arteries treated 

with both 10 nM ET-1 and 10 µM KN93 exhibited medial thicknesses that were 

significantly less than observed with ET-1 treatment alone for normoxic (110.9±12.5% of 

control, n=9) but not for hypoxic (122.4±11.6% of control, n=12) fetal MCAs, suggesting 

that CaMKII activity was required for ET-1-induced increases in medial thicknesses in 

normoxic but not hypoxic arteries. Similarly, arteries treated with both 10 nM ET-1 and 

10 µM SB203580 exhibited medial thicknesses that were significantly less than observed 

with ET-1 treatment alone for normoxic (122.8±4.5% of control, n=7) but not for hypoxic 

(120.7±7.0% of control, n=14) fetal MCAs, suggesting that p38 activity also was required 

for ET-1-induced increases in medial thicknesses in normoxic but not hypoxic arteries. 
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Figure 3. Effects of Chronic Hypoxia and ET-1 on Medial Wall Thicknesses. Fetal MCAs 
incubated with 10 nM ET-1 for 24h exhibited increased medial wall thicknesses (“o” 
indicates P<0.05), an effect significantly attenuated by chronic hypoxia. In both FN and 
FH arteries, the effect of ET-1 appeared to be PKC-dependent because chelerythrine 
significantly depressed the response to ET-1 in both groups. Both CaMKII (inhibited by 
KN93) and p38 (inhibited by SB203580) pathways may also play a role in ET-1 stimulated 
thickening of the medial layer in FN but not FH arteries. Thickness measurements represent 
mean values ± SEM for n=7-9 (FN) and n=12-14 (FH). The symbol § indicates P<0.05 for 
FN versus FH. The symbol * indicates P<0.05 values significantly different than to ET-1 
alone. 
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Effects of Chronic Hypoxia and ET-1 on Smooth Muscle Proliferation 

To quantify the separate and combined effects of chronic hypoxia and ET-1 on 

smooth muscle proliferation, we measured the colocalization of Ki-67 with smooth 

muscle α-actin (SMaA). Given that our previous work has indicated that smooth muscle 

characteristics differ between inner regions of the medial layer near the lumen and outer 

regions near the adventitia (10), the colocalization of Ki-67 with SMaA was measured 

separately in the inner and outer medial layers of artery wall (Fig. 4). 
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Figure 4. Effects of Chronic Hypoxia and ET-1 Treatment on Proliferation. ET-1 treatment 
significantly decreased colocalization of Ki-67 and SMaA in FH but not FN MCAs in both 
the inner and outer medial layers. In FN arteries, treatment with the PKC inhibitor 
chelerythrine was without effect in the outer layer, but increased colocalization in the inner 
layer. In FH arteries, treatment with chelerythrine increased colocalization in both layers. 
Treatment with the CaMKII inhibitor KN93 was without effect compared to ET-1 alone in 
both layers of both normoxic and hypoxic arteries. Treatment with the p38 inhibitor 
SB203580 significantly decreased colocalization only in the outer layer of normoxic 
arteries. FN and FH values were significantly different for ET-1 treated arteries in the outer 
layer, and were significantly different in the inner layer for all three groups treated with 
kinase inhibitors. Results are presented as means ± SEM for n=7-9 (FN) and n=10-13 (FH). 
The symbol § indicates P<0.05 for FN versus FH. The symbol * indicates P<0.05 for ET-1 
versus ET-1 with inhibitor treatments. 

 

Ki-67 on α-actin (outer media)

%
 S

ta
rv

ed
 C

on
tr

ol

ET ET+Che ET+KN ET+SB
60

80

100

120

140

*
*

º

Ki-67 on α-actin (inner media)

%
 S

ta
rv

ed
 C

on
tr

ol

ET ET+Che ET+KN ET+SB
60

80

100

120

140

FN

FH

*

*

º

§

§

§ §



	

116	

In the outer medial layer, organ culture with ET-1 significantly decreased 

colocalization between Ki-67 and SMaA in hypoxic (92.2±2.2% of control, n=12) but 

not normoxic (99.6±2.4% of control, n=7) fetal MCAs. Organ culture with both ET-1 and 

chelerythrine did not alter Ki-67/SMaA colocalization in normoxic MCAs (101.5±2.9% 

of control, n=8) but the hypoxic value (98.5±1.6% of control, n=12) was significantly 

greater than observed with ET-1 treatment alone. Organ culture with both ET-1 and 

KN93 did not alter Ki-67/SMaA colocalization in either normoxic (94.8±1.9%, n=8) or 

hypoxic (93.6±1.5%, n=11) MCAs when compared to ET-1 treatment alone. Organ 

culture with both ET-1 and SB203580 significantly decreased Ki-67/SMaA 

colocalization in normoxic (93.3±2.4, n=7) but not hypoxic (91.6±2.2, n=12) MCAs with 

ET-1 treatment alone. Within each of the treatment groups, normoxic values were 

significantly different than hypoxic values only in arteries cultured with only ET-1. 

In the inner medial layer, organ culture with ET-1 significantly decreased 

colocalization between Ki-67 and SMaA in hypoxic (91.4±3.2%, n=10) but not 

normoxic (99.6±4.7%, n=9) fetal MCAs. Organ culture with both ET-1 and chelerythrine 

significantly increased Ki-67/SMaA colocalization in normoxic (115.8±6.6%, n=7) and 

hypoxic (102.6±3.2%, n=13) MCAs than observed with ET-1 treatment alone. Organ 

culture with both ET-1 and KN93 did not significantly alter Ki-67/SMαA colocalization 

in normoxic (106.2±4.5%, n=9) or hypoxic (95.3±5.0%, n=11) MCAs compared to ET-1 

treatment alone. Organ culture with both ET-1 and SB203580 did not significantly affect 

Ki-67/SMαA colocalization in normoxic (104.2±5.5%, n=9) or hypoxic MCAs (94.3±2.6, 

n=11) compared to ET-1 treatment alone. Within each of the treatment groups, normoxic 
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values differed significantly hypoxic values for all treatments except in arteries cultured 

with only ET-1. 

Overall, the effects of ET-1 and chronic hypoxia on Ki-67/SMαA colocalization 

differed markedly in the inner and outer medial layers. Normoxic values were 

significantly different than hypoxic values for all treatment groups except ET-1 alone in 

the inner layer, but for no treatment groups except ET-1 alone in the outer layer. In 

addition, the effects of chelerythrine and SB203580 on responses to ET-1 differed 

between normoxic and hypoxic arteries only in the outer medial layer. 

 

Effects of Chronic Hypoxia and ET-1 on Contractile Protein Colocalization 

To explore further the interactive effects of chronic hypoxia and ET-1 on 

cerebrovascular smooth muscle, serial sections of fetal MCAs were double stained for 

MLC20 and MLCK, or for MLCK and SMaA for all treatment groups (Fig. 5). For 

colocalization of MLC20 with MLCK, organ culture with ET-1 did not affect 

colocalization in either normoxic (94.4±3.5%, n=8) or hypoxic (95.1±2.9%, n=13) fetal 

MCAs. Because there was no significant difference between control and ET-1 treatment, 

further experiments with kinase inhibitors were irrelevant. 
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Figure 5. Effects of Chronic Hypoxia and ET-1 on MLCK and SMaA Colocalization. 
Coronal sections of fetal MCAs were double stained with MLCK (green) and SMaA (red) 
after treatment with ET-1 and kinase inhibitors for PKC (chelerythrine), CaMKII (KN93), 
and p38 (SB203580). Yellow indicates areas of colocalization in these merged images. 
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Analysis of the colocalization of MLCK with SMaA revealed that organ culture 

with ET-1 significantly depressed colocalization in normoxic (75.1±4.3% of control, 

n=9) but not hypoxic (95.6±2.7%, n=13) fetal MCAs (Fig. 6). Organ culture with both 

ET-1 and chelerythrine significantly increased MLCK/SMaA colocalization more in 

normoxic (93.1±2.9%, n=8) and hypoxic MCAs (103.1±3.3%, n=13) than with ET-1 

treatment alone. Organ culture with both ET-1 and KN93 significantly increased 

MLCK/SMaA colocalization in normoxic (89.7±1.4%, n=6) and hypoxic MCAs 

(110.5±2.7%, n=11) than with ET-1 treatment alone. Similarly, organ culture with both 

ET-1 and SB203580 significantly increased MLCK/SMaA colocalization in normoxic 

(92.5±2.5%, n=9) and hypoxic MCAs (103.6±2.7%, n=13) compared to ET-1 treatment 

alone. Within each of the treatment groups, normoxic values differed significantly from 

hypoxic values of MLCK/SMaA colocalization for all treatments. 

Together, the results demonstrate that chronic hypoxia significantly altered the 

influence of ET-1 on contractile protein colocalization. For MLCK/SMaA colocalization, 

hypoxia attenuated ET-1-induced decreases in colocalization and increased the extent of 

colocalization observed following combined treatment with ET-1 and any of the three 

kinase inhibitors tested.  
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Figure 6. Effects of Chronic Hypoxia and ET-1 on MLCK and SMaA Colocalization. 
ET-1 significantly decreased the colocalization of MLCK with SMaA in FN but not FH 
MCAs. In both FN and FH arteries, treatment with ET-1 together with inhibition of PKC 
(Che), p38 (SB), and CaMKII (KN93) increased MLCK and SMaA colocalization. FN and 
FH values differed significantly in all treatment groups. Results are presented as means ± 
SEM for n=6-9 (FN) and n=11-13 (FH). The symbol § indicates P<0.05 for FN versus FH. 
The symbol * indicates P<0.05 for ET 1 versus ET-1 with inhibitor treatments.  
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Discussion 

Despite numerous studies of hypoxic vascular remodeling in the cardiac and 

pulmonary circulations, the effects of hypoxic remodeling on the fetal cerebrovasculature 

remain poorly understood, particularly in relation to ET-1, a potent vascular growth 

factor (52). The present study evaluates the hypothesis that hypoxic remodeling of fetal 

cerebral arteries alters ET-1 signaling and offers 3 original findings: 1) chronic hypoxia 

did not alter ET-1 levels in fetal plasma or ETA receptor abundance in fetal MCAs, but 

decreased ETB receptor abundance and increased ET-1-induced contractility; 2) chronic 

hypoxia attenuated the ability of organ culture with ET-1 to stimulate smooth muscle 

hypertrophy and increase medial thickness through pathways dependent upon PKC, 

CaMKII, and p38; and 3) chronic hypoxia also attenuated the ability of organ culture 

with ET-1 to depress colocalization of MLCK with SMaA via mechanisms dependent 

upon PKC, CaMKII, and p38 in organ cultured fetal MCAs. Together, these results 

support the hypothesis that chronic hypoxia modulates the PKC-, CaMKII-, and p38-

dependent mechanisms through which ET-1 influences contractile protein organization, 

wall thickness, and contractility in fetal MCAs. 

 

Hypoxic Vascular Remodeling in the Fetus 

Intrauterine hypoxia is a common but serious condition that typically results in 

numerous fetal complications and neonatal morbidities. Hypoxic cardiovascular 

remodeling during fetal development often causes lifelong consequences that 

compromise cardiopulmonary function and broadly increases susceptibility to ischemia-

reperfusion injury (59). The mechanisms involved in hypoxic fetal vascular remodeling 
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remain uncertain, but abundant evidence suggests that HIFs, the transcription factors 

increased by hypoxia that mediate many hypoxic effects, bind to HREs in multiple gene 

promoters and stimulate release of vascular growth factors such as VEGF (13) and ET-1 

(28) that then alter vascular structure and function. An important feature of these 

responses is that an initial elevation of HIF-1a typically falls within a few weeks of 

hypoxic exposure, despite continued hypoxia (11). Correspondingly, hypoxia can initially 

increase VEGF production in the adult mouse brain, after which VEGF later returns to 

basal normoxic levels despite continued hypoxia (34). Similarly, hypoxia causes 

sustained increases in artery medial wall thickness and VEGF receptor densities in fetal 

lambs that persist as long as hypoxia continues, even though VEGF levels return to basal 

normoxic levels (1). Such evidence suggests that hypoxia acts transiently through HIFs to 

promote the short-term release of vascular growth factors that then produce lasting 

changes in capillary density, collateralization, and vascular function that together 

constitute the vascular remodeling response to chronic hypoxia. 

Evidence from a broad variety of experimental models demonstrates that chronic 

hypoxia increases the expression of ET-1 (2) and also alters reactivity to ET-1 in many 

vascular tissues including guinea pig pulmonary arteries (51), rat pulmonary arteries (2, 

55), rat mesenteric arteries (3), and rat carotid body (12). Due perhaps to differences in 

the duration and severity of chronic hypoxia, however, other studies report that long-term 

hypoxia does not yield a lasting increase in circulating ET-1 and may even decrease ETA 

receptor density in rat thoracic aorta (5). At the individual organism level, chronic 

hypoxia also can exert selective effects on ET-1, ETA, and ETB expression that vary 

significantly among different tissues (36). Together, this evidence emphasizes that the 
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effects of chronic hypoxia on ET-1 are governed by multiple factors that complicate 

efforts to generalize the effects of chronic hypoxia on ET-1 signaling. 

In contrast to VEGF and PDGF, which modulate vascular smooth muscle 

proliferation and differentiation through activation of tyrosine kinase receptors, other 

vascular growth factors act through G-protein coupled receptors to exert both acute and 

chronic effects on vascular smooth muscle structure and function. As for serotonin and 

norepinephrine (22, 58), ET-1 also activates G-protein coupled receptors to produce both 

immediate and potent changes in vascular tone as well as longer-term changes in gene 

expression that influence wall thickness, smooth muscle phenotype, and contractility (16, 

19). Given the findings that hypoxia can increase ET-1 signaling (28) and that ET-1 can 

influence smooth muscle structure-function relations (16), the present study explored the 

hypothesis that chronic hypoxia modulates ET-1 signaling in the fetal cerebrovasculature. 

 

Chronic Hypoxia Increased the Maximum Response to ET-1 in Fetal Cerebral Arteries 

Whereas most previous studies of interactions between chronic hypoxia and ET-1 

signaling have focused on the pulmonary circulation, the present study examined the fetal 

cerebral circulation, which has not been widely studied despite the high clinical 

frequency of cerebral morbidities associated with fetal hypoxia (53). Consistent with 

findings in rat pulmonary (55), mesenteric (3) and carotid (35) arteries, 110 days of 

hypoxia in our fetal sheep model increased contractile responses to ET-1 (Figure 1). In 

contrast to lamb pulmonary (25) and rat mesenteric (3) arteries, however, our fetal lamb 

cerebral arteries did not exhibit any change in sensitivity to ET-1 following hypoxic 
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acclimatization (Figure 1), suggesting that the affinity of ET-1 for the ETA receptor(s) 

probably was not influenced by hypoxia in fetal lamb MCAs. 

Hypoxic enhancement of contractile responses to ET-1 was not maintained by 

increased circulating levels of ET-1 because plasma levels of ET-1 were similar in 

normoxic and hypoxic fetuses. This latter result extends our previous finding that 110 

days of chronic hypoxia did not alter circulating levels of VEGF in the fetal lamb (1) and 

furthers the view that hypoxia produces transient increases in HIFs (11) that drive 

secondary increases in ET-1 (5, 8) and VEGF (1), which resolve to normoxic levels once 

hypoxic adaptation is complete, typically within about 3 weeks (11). In aggregate, this 

evidence reinforces the interpretation that hypoxic adaptation produced lasting changes 

the structure and function of fetal cerebral arteries, particularly in relation to ET-1 

signaling. 

 

Chronic Hypoxia Did Not Markedly Alter ET-1 Receptors in Fetal Cerebral Arteries 

Contractile responses to ET-1 in cerebral arteries are most commonly mediated by 

ETA receptors (39). Correspondingly, in fetal MCAs, dose-response relations for ET-1 

were significantly right-shifted by the ETA antagonist PD-156707 (Figure 1). ETA 

receptor abundances, however, were not significantly affected by chronic hypoxia 

(Figure 2), implying that hypoxic enhancement of contractile responses to ET-1 was not 

due to increased ETA receptor levels. The absence of an effect of chronic hypoxia on 

ETA receptors has been reported previously in mouse astrocytes (26) and cat carotid 

body (43), whereas hypoxia decreased ETA receptors in gravid rat uterus (50) but 

increased ETA abundances in multiple rat tissues including carotid body (12), coronary 
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arteries (3), lungs (3, 55), kidneys (3) and cerebral arteries (48). This pattern of findings 

emphasizes that the effects of chronic hypoxia on ETA receptor expression are highly 

species and tissue specific. 

As also reported in rat pulmonary arteries (55) and mouse astrocytes (26), chronic 

hypoxia significantly decreased ETB levels in the fetal lamb MCAs (Figure 2). In other 

studies, hypoxia exerted no effect on ETB abundance in a variety of non-cerebral rat 

tissues (3), but increased ETB receptor abundance in cultured hypoxic human pulmonary 

endothelial cells (32), cat carotid bodies (43) and rat cerebral arteries (48). In fetal lamb 

MCAs, however, the normoxic and hypoxic abundances of ETB receptors averaged no 

more than 12% and 7% of the levels found in normoxic adult ovine carotids, respectively. 

Although hypoxic decreases in ETB receptors, which typically promote cerebral 

vasodilatation (39), could augment contractile responses to ET-1, the low abundance of 

ETB receptors minimized their potential influence on ET-1-induced contractions. 

Alternatively, the hypoxic increases in contractile responses to ET-1 observed in fetal 

lamb MCA were more likely due to hypoxic changes in the coupling between ETA 

receptors and the contractile apparatus in cerebrovascular smooth muscle. 

 

Chronic Hypoxia Depressed Effects of ET-1 on Medial Thickness through Selective 

Modulation of Kinase Signaling 

Through activation of ETA receptors, ET-1 induces cerebral vasoconstriction via 

phospholipase C-dependent increases in intracellular Ca2+ (9) and can also potently 

stimulate DNA synthesis and proliferation in smooth muscle (33). Many of these 

intracellular effects of ET-1 depend on protein kinase C (PKC) cascades (9), but Ca2+-
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calmodulin dependent kinase II (CaMKII) (9) and p38 MAP Kinase (56) can also 

contribute, particularly under pathophysiological conditions. In turn, hypoxia can 

modulate PKC signaling (47), CaMKII signaling (4), and p38 signaling (6), suggesting 

that hypoxia could modulate ET-1 signaling through influences on these kinases. In 

addition, each of these kinases independently can influence smooth muscle proliferation, 

differentiation, and phenotypic transformation (23, 38, 46). Together, this evidence 

motivated the hypothesis tested in this study, namely that chronic hypoxia influences the 

PKC, CaMKII, and p38 dependent mechanisms through which ET-1 modulates 

contractile protein organization, wall thickness, and contractility in fetal MCAs. 

In agreement with previous studies in rat pulmonary arteries (8), organ culture 

with ET-1 significantly increased medial thicknesses by 46% in normoxic fetal MCAs 

(Figure 3). Treatment with chelerythrine completely eliminated this effect and treatment 

with KN93 and SB203580 significantly attenuated the thickness responses to ET-1 by 

76% and 51% respectively. In contrast, organ culture of hypoxic fetal MCAs with ET-1 

significantly increased medial thicknesses by only 25%, which was significantly less than 

observed in normoxic arteries. In hypoxic fetal MCAs, treatment with chelerythrine again 

completely eliminated the response of thickness to ET-1, but neither KN93 nor 

SB203580 exhibited any significant effect. This pattern of results demonstrated that the 

influence of ET-1 on medial thickness was completely dependent on PKC in both 

normoxic and hypoxic fetal MCAs, and that CaMKII and p38 significantly contributed to 

this thickness response in normoxic, but not hypoxic arteries. This finding raises the 

possibility that hypoxic elimination of contributions from CaMKII and p38 may help 

explain the reduced magnitude of response to ET-1 in hypoxic arteries; further 
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experiments will be needed to explore this idea. Nonetheless, the data clearly demonstrate 

that chronic hypoxia attenuated the roles of CaMKII and p38 in coupling between ET-1 

and expansion of medial thickness. 

An important feature of the thickness measurements summarized in Figure 3 was 

that these were restricted to the medial layer of the fetal MCAs. Numerous studies 

established years ago that hypoxia can increase total wall thickness, but adventitial 

expansion accounted for much of this increase (21, 40). The present focus on the medial 

layer enabled assessment of the relative effects of hypoxia on smooth muscle hypertrophy 

and hyperplasia, which has been a recurrent topic in studies of hypoxic increases in wall 

thickness (41). To assess hyperplasia, we measured immunoreactivity to Ki-67, an 

established marker of proliferation (44). To assure that we measured Ki-67 levels only in 

smooth muscle cells, we quantified colocalization between Ki-67 and SMaA, a known 

cytoplasmic marker of smooth muscle (57). In light of our previous work demonstrating a 

gradient in smooth muscle differentiation between the adventitial and luminal boundaries 

of the medial layer (10), we quantified Ki-67/SMaA colocalization in both boundary 

regions (Figure 4). Using this approach, ET-1 did not increase colocalization of Ki-67 

with SMaA in either region, suggesting that ET-1-induced increases in medial thickness 

did not involve increased proliferation and instead were mediated by hypertrophy and not 

hyperplasia. As such, these results were consistent with previous reports that ET-1 can 

induce a non-proliferative, hypertrophic response in both vascular (17) and non-vascular 

(20) tissues. More importantly, in the present study, ET-1 significantly decreased 

apparent proliferation in both the luminal and adventitial boundary regions, but only in 
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hypoxic arteries, again suggesting that hypoxia altered coupling between ET-1 receptors 

and the intracellular pathways governing hyperplasia. 

To explore how hypoxia might alter the effects of ET-1 on smooth muscle 

proliferation, we assayed the effects of our kinase inhibitors on ET-1-induced changes in 

Ki-67/SMaA colocalization. In the outer medial layer near the adventitia, apparent 

proliferation in the presence of ET-1 was influenced only by SB203580 (p38 inhibitor) in 

normoxic arteries, but was affected only by chelerythrine (PKC inhibitor) in hypoxic 

arteries. In the inner medial layer, however, apparent proliferation in the presence of 

ET-1 was affected only by chelerythrine in both normoxic and hypoxic arteries. Together, 

these results suggest that hypoxia converted a small (6±2%) pro-proliferative effect of 

p38 into a small (6±2%) anti-proliferative effect of PKC in the outer medial layer, but in 

the inner medial layer hypoxia reduced the magnitude of an anti-proliferative effect of 

PKC from 16±3% (normoxic) to 11±3% (hypoxic). This pattern emphasizes that the 

(anti) proliferative effects of ET-1 are not only artery specific, but also vary among 

different regions of the same artery as previously shown for VEGF (10). These results 

also imply that the previously reported anti-proliferative effects of PKC (14) are largely 

responsible for the anti-proliferative effects of ET-1, and that the magnitude of these 

effects are modulated by hypoxia in fetal cerebral arteries. 

 

Chronic Hypoxia Depressed Effects of ET-1 on MLCK Organization through Selective 

Modulation of Kinase Signaling 

One mechanism whereby chronic hypoxia could modulate the ability of ET-1 to 

elicit contraction and smooth muscle hypertrophy would be to alter the phenotype of 
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smooth muscle in fetal cerebral arteries. A broad variety of evidence, including findings 

in fetal lamb carotid arteries (1), has demonstrated that chronic hypoxia can modulate 

smooth muscle differentiation and phenotype (49). In turn, such changes can dramatically 

alter contractile reactivity and phenotypic responses to numerous receptor agonists and 

growth factors (49). To assess the extent to which chronic hypoxia influenced the ability 

of ET-1 to elicit changes in smooth muscle differentiation and phenotype, we measured 

markers for the contractile phenotype of smooth muscle. First, we examined ET-1-

induced changes in MLC20/MLCK colocalization. MLC20 is a component of thick 

filaments and is typically tightly attached to the cross-bridges of myosin heavy chains 

(18). Similarly, MLCK is also typically tightly associated with the myosin molecules in 

thick filaments (27). Due to the nature of this organization, MLC20/MLCK colocalization 

is not highly dynamic and is closely associated with contractile capacity. 

Correspondingly, organ culture with 10 nM ET-1 did not change MLC20/MLCK 

colocalization in either normoxic or hypoxic arteries, indicating that ET-1 did not 

influence this phenotypic marker. 

Previous work from multiple laboratories (7), including our own (1), has shown 

that the extent of colocalization between MLCK, the rate-limiting enzyme for 

contraction, and SMaA, the main component of the smooth muscle cytoskeleton, is a 

reliable marker for the contractile phenotype of smooth muscle. In contrast to MLC20, 

SMaA can have a highly variable association with MLCK, depending on smooth muscle 

phenotype. In fetal cerebral arteries, organ culture with a physiological concentration of 

ET-1 (10 nM) significantly depressed MLCK/SMaA colocalization, suggesting 

attenuated contractility, in normoxic but not hypoxic arteries (Figure 6). In light of 
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observations that ET-1 can signal through PKC (9), CaMKII (20, 46), and p38 (56) to 

modulate phenotype and contractile protein organization, we examined the effects of 

inhibitors of these kinases on phenotypic responses to ET-1. Co-culture of ET-1 with 

chelerythrine, KN93, or SB203580 all attenuated ET-1-induced decreases in 

MLCK/SMaA colocalization in normoxic arteries, indicating that PKC (18±3%), 

CaMKII (15±1%), and p38 (17±3%) all contributed to ET-1-induced contractile 

dedifferentiation. In hypoxic arteries, inhibitors of all 3 kinases also significantly 

increased MLCK/SMaA colocalization compared to culture with ET-1 alone, again 

indicating that PKC (8±3%), CaMKII (15±3%), and p38 (8±3%) all exerted a modest 

influence toward contractile dedifferentiation, even in hypoxic arteries. Following 

treatment with each of the three kinase inhibitors, the extent of MLCK/SMaA 

colocalization was greater in hypoxic than in normoxic arteries, again suggesting that 

hypoxia attenuated the ability of ET-1 to influence smooth muscle phenotype through 

PKC, CaMKII, and p38. 

 

Overview 

The combined results extend previous observations that chronic hypoxia 

modulates the phenotype of vascular smooth muscle. In freshly dissected fetal cerebral 

arteries, the effects of chronic hypoxia did not appear to involve changes in ETA 

abundance but decreased in ETB abundance by 40%. Despite these changes, contractile 

responses to ET-1 were enhanced in fetal cerebral arteries in an ETA-dependent manner, 

suggesting that coupling between the ETA receptor and the contractile apparatus was 

enhanced by chronic hypoxia. In organ culture, ET-1-induced increases in medial 
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thicknesses were depressed by chronic hypoxia. These changes were dependent on PKC, 

CaMKII, and p38 in normoxic arteries, but only upon PKC in hypoxic arteries. Estimates 

of proliferation based on Ki-67 colocalization with SMaA revealed that ET-1 increased 

medial thickness through hypertrophy and not hyperplasia in a PKC dependent manner in 

both normoxic and hypoxic arteries. Chronic hypoxia ablated the ability of ET-1 to 

depress colocalization of MLCK with SMaA, a marker for the contractile phenotype of 

smooth muscle. In both normoxic and hypoxic arteries, inhibition of PKC, CaMKII, and 

p38 all increased colocalization of MLCK with SMaA, suggesting that each of these 

kinases exerted a tonic influence toward contractile de-differentiation in both normoxic 

and hypoxic arteries. Overall, this pattern of results demonstrates that many of the effects 

of ET-1 are mediated through PKC to a varying degree in normoxic and hypoxic fetal 

cerebral arteries. In contrast, CaMKII and p38 help mediate ET-1’s effects on medial 

hypertrophy in normoxic but not hypoxic arteries. These kinases, along with PKC, 

variably promote contractile de-differentiation in both normoxic and hypoxic arteries. 

Although the abundance of ETA receptors was far greater than for ETB receptors in both 

normoxic and hypoxic arteries, it remains possible that both receptor types contributed to 

the observed responses. Equally important, it remains possible that hypoxic attenuation of 

the roles of PKC, CaMKII, and p38 in ET-1 signaling were generalized to all pathways 

dependent on these kinases and were not exclusive to ET-1 signaling. Even so, the results 

clearly demonstrate that chronic hypoxia significantly influenced ET-1 signaling in fetal 

cerebral arteries, as indicated by hypoxia’s ability to increase ET-1 mediated 

contractility, decrease ET-1 mediated smooth muscle hypertrophy, and depress ET-1’s 

ability to promote contractile de-differentiation. 
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CHAPTER FOUR 

DISCUSSION AND CONCLUSIONS 

 
The purpose of this study was to elucidate the mechanisms by which chronic 

hypoxia affects endothelin-1 (ET-1) signaling within the ovine fetal cerebrovasculature. 

In chapter 2, we discussed multiple factors and pathways that contribute to hypoxic 

cerebrovascular remodeling and the resulting structural and functional effects. Hypoxia 

Inducible Factor-1a (HIF-1a), a transcription factor activated by hypoxia, complexes 

with HIF-1β to form the active HIF-1 dimer, which then binds to Hypoxia Responsive 

Elements (HREs) and exerts its effects through multiple vasotrophic factors such as 

Vascular Endothelial Growth Factor (VEGF) and ET-1, among many others (18). 

Hypoxia increases HIF-1a expression (18), which can stabilize VEGF mRNA (13) and 

increase VEGF-A and VEGFR-1 expression (26). In the brain, hypoxia also increases 

VEGF and VEGFR-1 mRNA (14, 24, 28). In a similar manner to VEGF, hypoxia induces 

HIF-1a binding to HREs within the ET-1 promoter region, (17) thereby increasing ET-1 

expression in multiple systems (2, 3, 12, 21, 22). In addition to being a potent 

vasoconstrictor, ET-1 also functions as a trophic factor and has been implicated in 

vascular hypertrophy and arterial remodeling (2, 8, 15, 16). For example, ET-1 promoted 

pulmonary vascular remodeling and increased arterial wall thickness (2, 5, 27, 30).  

However, as previously stated in chapter 1, HIF-1a initially rises but eventually 

falls within a few weeks, despite continued chronic hypoxia (10). In a manner similar to 

the rise and fall in HIF-1α levels, VEGF production in the adult mouse brain also returns 

to basal normoxic levels even in the presence of chronic hypoxia (23). Results from our 

lab also established that chronic hypoxia increases arterial medial wall thickness and 
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VEGF receptors in fetal lambs, even after VEGF returns to basal normoxic levels (1). 

The data suggest that the transient elevation in HIF levels promotes an acute increase of 

growth factors in addition to stimulating longstanding changes in growth factor receptor 

levels, vascular function, which ultimately results in vascular remodeling. The chronic 

elevation in growth factor receptors, not the growth factors themselves, is what maintains 

the remodeled vasculature. It also suggests that chronic hypoxia alters the interactions 

between growth factor receptors, contractile apparatus, and gene expression.  

In chapter 3, we focused on the effects of chronic hypoxia on ET-1 signaling. We 

hypothesized that chronic hypoxia would not alter circulating levels of the ligand (ET-1), 

but alter its receptors (ETA and ETB), intracellular coupling, and change smooth muscle 

cell phenotype and vascular functionality within the fetal middle cerebral arteries 

(MCAs). To this end, we measured circulating plasma ET-1 levels using an ELISA and 

used western blotting to quantify ETA and ETB receptor expression within fetal MCAs. 

The effects of chronic hypoxia and ET-1 coupling through the activation of PKC, 

CaMKII, and p38 pathways on fetal MCA SMC structure and composition were 

examined with immunohistochemistry (IHC) and confocal microscopy. To this end, fetal 

MCAs mechanically denuded of endothelium were cultured in DMEM FBS-starved 

media for 24h prior to incubation with ET-1 and various intracellular kinase inhibitors for 

another 24h, fixed in a formalin solution, preserved in paraffin blocks, then examined 

with IHC and confocal microscopy. Chronic hypoxia and ET-1-induced changes in the 

cellular organization of MLCK on SM a-actin and MLC20 on MLCK were quantified by 

measuring arterial medial thicknesses and colocalization of contractile proteins within the 

arterial wall. 
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Our results show that ET-1-induced contractions within endothelium-denuded 

fetal MCAs were due to ETA receptor activation in both normoxic and hypoxic groups. 

Chronic hypoxic fetal MCAs had a significantly higher maximum contractile response to 

ET-1 than normoxic arteries, which was decreased by ETA receptor inhibition. In our 

model, chronic hypoxia did not alter circulating ET-1 levels in ovine fetuses as measured 

by ELISA or affected ETA receptor abundances within fetal MCAs, implying that 

enhanced ET-1-induced contractility was not due to increased ETA receptor levels but to 

a change in intracellular coupling to the contractile apparatus. In contrast, ETB receptors 

relative abundance was significantly greater in normoxic than hypoxic fetal MCAs, but 

were both significantly less than ETA receptor abundance. However, this may be of little 

physiological significance due to the very low abundance of ETB receptors. 

Our study established that fetal MCAs cultured in ET-1 for 24h had significantly 

increased medial thicknesses compared to starved values, and that normoxic MCAs had a 

greater increase than hypoxic MCAs. The effects ET-1 on medial thicknesses of both 

normoxic and hypoxic fetal MCAs were mediated by PKC. We also established that 

CaMKII and p38 were required for ET-1-induced increases in medial thicknesses in 

normoxic but not hypoxic arteries, demonstrating that chronic hypoxia attenuated 

CaMKII and p38 roles in ET-1 coupling to medial thickness. To elucidate whether the 

changes in medial thicknesses were due to hypertrophy or hyperplasia, we quantified 

SMC proliferation by measuring colocalization of Ki-67 with SMαA within the arterial 

wall. Our results show that ET-1 significantly decreased proliferation in both the outer 

and inner medial layer of hypoxic but not normoxic fetal MCAs. In the inner medial 

layer, PKC inhibition with ET-1 treatment significantly increased Ki-67/SMaA 
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colocalization in normoxic and hypoxic MCAs. However, the colocalization of Ki-

67/SMaA was not affected by ET-1 treatment with either p38 or CaMKII inhibition. This 

data indicates that ET-1-induced increase in medial thickness is due to hypertrophy, not 

hyperplasia.  

Colocalization data indicated that ET-1 via PKC significantly decreased 

MLCK/SMaA colocalization within normoxic but not hypoxic fetal MCAs. On the other 

hand, ET-1 activation of p38 or CaMKII was responsible for depressing MLCK/SMaA 

colocalization in both normoxic and hypoxic fetal MCAs. For MLCK/SMaA 

colocalization, hypoxia attenuated ET-1-induced decreases in colocalization and 

increased colocalization following combined treatment with ET-1 and PKC, p38, or 

CaMKII inhibitors. Together, our results demonstrate that chronic hypoxia significantly 

altered the effect of ET-1 on contractile protein colocalization within fetal MCAs.  

In conclusion of chapter 3, we established that chronic hypoxic remodeling of 

fetal cerebral arteries alters ET-1 signaling. Chronic hypoxia did not alter ET-1 levels in 

fetal plasma or ETA receptor abundance in fetal MCAs, but decreased ETB receptor 

abundance and increased ET-1-induced contractility. In addition to altered contractility, 

chronic hypoxia attenuated the ability of ET-1 in organ culture to stimulate SMC 

hypertrophy and increase medial thickness through PKC, CaMKII, and p38 pathways. 

Chronic hypoxia also attenuated the ability of ET-1 in organ culture to depress 

colocalization of MLCK with SMaA via PKC, CaMKII, and p38 pathways in organ 

cultured fetal MCAs. Together, these results support the hypothesis that chronic 

hypoxia modulates ET-1 signaling via PKC-, CaMKII-, and p38-dependent 

mechanisms, altering contractile protein organization, wall thickness, and 
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contractility in fetal MCAs. This reinforces the concept that chronic hypoxia produces 

long-term changes in not only surface receptors, but also intracellular coupling and 

possibly gene expression, secondary to transient increases in HIF. 

This investigation is uniquely significant in that it utilized ET-1 as a vasotrophic 

factor in a sustained manner rather than an acute exposure as a contractile agent. As one 

of the most potent vasoconstrictors, ET-1 is most commonly used in contractility 

experiments, but its mitogenic role has been poorly understood, especially within fetal 

arteries. This study represents an attempt to determine the effects of long-term 

stimulation with ET-1 in fetal cerebral arteries at a lower, more physiological level. ET-1, 

a non-classical growth factor (G-protein coupled receptor) can also have post-receptor 

coupling, similar to classical growth factors (tyrosine kinase receptors) that can alter 

VSMC phenotypes. This project furthermore sought to elucidate the different 

mechanisms involved in ET-1-induced vascular remodeling and how that could be altered 

by chronic hypoxia in fetal cerebral arteries. A better understanding of how chronic 

hypoxia exerts its effects on ET-1-induced intracellular coupling will help identify 

potential targets for future therapies to prevent detrimental remodeling of cerebral arteries 

in infants exposed to intrauterine hypoxia. 

The clinical implications of this study address a crucial and prevalent pathology—

hypoxic vascular remodeling. Fetuses exposed to chronic hypoxia in utero often 

experience distress that predisposes them to neonatal morbidity and mortality. Fetal 

hypoxia can lead to a myriad of diseases and pathologies, including but not limited to 

premature birth, low birth weight, respiratory distress syndrome, persistent pulmonary 

hypertension, hypoxia-ischemic encephalopathy, and death (20). Fetuses adapt by 



	

144	

remodeling their vasculature, leading to increased risk of cardiovascular diseases in 

adulthood (29, 32). The fetal cerebral circulation has not been studied as extensively as 

the pulmonary circulation, despite the cerebral morbidities associated with fetal hypoxia. 

By better understanding the mechanism by which chronic hypoxia and ET-1 act within 

the cerebrovasculature, we are one step closer to developing strategies against therapeutic 

targets to reverse long-term detrimental vascular remodeling of cerebral arteries.  

 

Future Studies 

This study raises additional questions that deserve further investigation and 

analysis, in particular, whether chronic hypoxia and ET-1 affect kinase mRNA, protein, 

and activity levels within the SMC of fetal cerebrovasculature. As mentioned in chapter 

1, ET-1 increases ERK1/2 and p38 MAPK phosphorylation in VSMCs in murine 

mesenteric arteries (34). As ERK enhances CaMKII phosphorylation and nuclear 

localization in a cell culture model (11), it is plausible that ET-1 can also increase 

CaMKII phosphorylation via ERK. Additionally, ERK may also play a role in PKC 

signaling. In skeletal muscle resistance arteries, PKC activation reduces Akt 

phosphorylation and increases ERK1/2 phosphorylation upon insulin stimulation (6). ET-

1 increases PKC δ phosphorylation in small mesenteric arteries of hypoxic rats (4).  

In addition to altered phosphorylation, ET-1-induced contractions were 

potentiated along with increased PKC ε, PKC a, and ETB receptor expression in rat 

cerebral arteries after subarachnoid hemorrhage (7). Chronic high levels of ET-1 

enhances the expression of PKC a and ε, with the increased PKC a localized to the 

cytoplasm which was then translocated to the nucleus with AT-II stimulation in 
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embryonic rat thoracic aortal SMCs (33). Furthermore, ET-1-induced, Ca2+ independent 

contractions are associated with activation and translocation of PKC a and ε in porcine 

coronary arterial SMCs (25). Another study demonstrated ET-1 enhances vasoconstrictor 

reactivity following eucapnic intermittent hypoxia in pulmonary arteries via a PKC β-

dependent pathway, by increasing PKC activity without altering expression levels (31). 

As these studies have demonstrated, PKC expression levels may be altered without 

translocation (4), but more importantly, its activity could increase without changes in 

expression levels (31). These studies have explored how hypoxia or ET-1 affected 

various intracellular kinase expression, activity, and translocation in multiple cellular and 

animal models, but few investigations focused on fetal cerebrovasculature. 

Another possibility is to examine the differences between fetal and adult vascular 

responses to chronic hypoxia and whether the same remodeling occurs in the different 

age groups. A previous study from our lab demonstrated that vasotrophic factors such as 

VEGF influenced SMC phenotypes in an age-dependent manner (9). Furthermore, 

chronic hypoxia differentially affected SMC marker colocalization between fetal and 

adult common carotid arteries (CCAs). Hypoxia increased non-muscle myosin heavy 

chain (NM-MHC) abundance in both fetal and adult CCAs, but increased smooth muscle 

myosin heavy chain (SM-MHC) abundance in only adult CCAs. Hypoxia decreased 

colocalization of NM-MHC/SMaA in only fetal CCAs and decreased colocalization of 

SM-MHC/SMaA in only adult CCAs. VEGF treatment for 24h in organ culture also 

decreased the colocalization of NM-MHC/SMaA in fetal arteries and decreased 

colocalization of SM-MHC/SMaA in adult arteries (19). These results also prompt the 

question of how chronic hypoxia and ET-1 could affect colocalization of these SMC 
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phenotype markers in fetal MCAs compared to adult MCAs.  

Further investigations should also focus on whether these long-term changes are 

reversible and how they are maintained in the fetal and adult cerebrovasculature. If 

chronic hypoxia alters gene expression, it follows to explore which genes are specifically 

targeted and whether it is mediated by an inheritable genetic change or epigenetics such 

as DNA methylation. During the period of exponential growth within the womb, fetal 

cerebral arteries are especially labile and vulnerable to remodeling. By better 

understanding the mechanisms involved, we can better target therapies to reverse hypoxic 

remodeling.  
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