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Abstract

We study the learning dynamics of neural networks from a general point of view� The
environment from which the network learns is de�ned as a set of input stimuli� At discrete
points in time� one of these stimuli is presented and an incremental learning step takes place�
If the time between learning steps is drawn from a Poisson distribution� the dynamics of an
ensemble of learning processes is described by a continuous�time master equation� A learning
algorithm that enables a neural network to adapt to a changing environment� must have a
nonzero learning parameter� This constant adaptability� however� goes at the cost of �uctu�
ations in the plasticities� such as synapses and thresholds� The ensemble description allows
us to study the asymptotic behavior of the plasticities for a large class of neural networks�
For small learning parameters we derive an expression for the size of the �uctuations in an
unchanging environment� In a changing environment� there is a trade�o� between adaptabil�
ity and accuracy �i�e�� size of the �uctuations	� We use the networks of Grossberg 
J� Stat�
Phys� ��� �� �����	� and Oja 
J� Math� Biol� ��� ��� �����	� as simple examples to analyze
and simulate the performance of neural networks in a changing environment� In some cases
an optimal learning parameter can be calculated�
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I Introduction

In neural�network models� learning plays an essential role� Learning is the mechanism by which
a network adapts itself to its environment� The result of this adaptation process� in both natural
as well as in arti�cial systems� is that the network obtains a representation of this environment�
The representation is encoded in the plasticities of the network� such as synapses and thresholds�

The function of a neural network can be described in terms of its input�output relation� which
in turn is determined by the architecture of the network and by the learning rule� Examples of
such functions may be classi�cation �as in multilayered perceptrons�� feature extraction �as in
networks that perform a principle component analysis�� recognition� transformation for motor
tasks� or memory� The representation of the environment that the network has learned enables
the network to perform its function in a way that is �optimally	 suited for the environment on
which it is taught�

The environment can be de�ned as a set of examples or stimuli� and learning is usually
modeled as the process of randomly drawing examples from the environment and presenting them
to the neural network� Thus learning becomes a stochastic process� So far the learning process in
arti�cial neural networks has been considered almost exclusively for the case when the network is
given examples from a �xed unchanging environment� The aim of these learning algorithms has
been to �nd the one static representation of the environment� in terms of synapses and thresholds�
that optimizes the function of the network for that speci�c environment� This requires that for
large times the learning parameter� which controls the amount of learning� should go to zero�
since otherwise 
uctuations in the representation will persist and thus optimality in the above
sense is never achieved� Conditions for convergence to an asymptotic solution are derived by
Ljung ��� and Kushner and Clark �� for general stochastic processes� More speci�cally� Ritter
and Schulten ��� discuss the convergence properties of Kohonen�s topology conserving maps and
Clark and Ravishankar ��� give a convergence theorem for Grossberg learning�

Such algorithms� for which the learning parameter vanishes asymptotically� are clearly not
the ones that are used in natural neural networks� Natural adaptive systems always learn�
Examples of such learning exist on very large time scales �people learn with age� as well as on
short time scales �attention for details� discovery of regularities�� This constant tendency to
learn accounts for the adaptability of biological neural systems to a changing environment�

In order to implement such behavior in arti�cial neural networks� the learning parameter
should not go to zero asymptotically� but should take a constant nonzero value� The adaptability

of the neural network is best served with a large learning parameter� The larger the learning
parameter� the faster the response of the neural network to the changing environment� On the
other hand� a large learning parameter gives rise to large 
uctuations around the desired optimal
representation� This has a negative e�ect on the accuracy of the network�s representation of the
environment at a given time� Given some criterion for the network�s adaptability and accuracy�
there is an optimal learning parameter that is certainly nonzero for a neural network operating
in a time�dependent environment� It is interesting to note that similar ideas have been proposed
by Wiener ��� in connection with his work on linear prediction theory�

We propose to study the learning dynamics of a large class of neural networks for constant
learning parameter �� In Sec� II� we de�ne the class of learning algorithms that we will consider�
If the time between learning steps is drawn from a Poisson distribution� the dynamics of an
ensemble of learning processes is described by a continuous�time master equation ����

From this we can calculate in Sec� III the dynamics of macroscopic quantities such as the
expected representation and its 
uctuations� We illustrate our formalism with Grossberg learn�
ing ���� for which the evolution of the macroscopic quantities is exactly solvable�

For general learning rules� the asymptotic solutions cannot be calculated� In Sec� IV we
therefore make an approximation valid for small 
uctuations� as proposed by Van Kampen ����
If it is assumed that the asymptotic solution is peaked around the �noise free	 limit� the expected
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representation and its �uctuations obey a coupled set of linear di�erential equations of which
the asymptotic solution can be calculated� We compare our analytical results with simulations
for the Oja learning rule ���� which calculates the principal component of the covariance matrix
of the input distribution�

In Sec� V we discuss the performance of learning rules in a gradually changing environment�
The formalism� as developed in Sec� II and III is applicable to this case as long as changes in
the environment are slow in comparison with the time scale of the learning algorithm� For a
simple changing environment and Grossberg learning� the asymptotic solution can be calculated
exactly� and illustrates the con�icting goals of accuracy and adaptability�

In Sec� VI� the analysis of Sec� IV is repeated for a changing environment� Again a set of
linear di�erential equations is obtained� The usefulness of the analytical results are illustrated
with Oja	s learning rule� which receives its input from a slowly rotating environment�

In Sec� VII� some conclusions are drawn�

II The learning process

In this section we will de
ne the class of learning algorithms that we consider� Let the represen�
tation that the neural network builds of the environment be given by a N �dimensional vector
w � w�� � � � � wN �

T � This vector w contains all the synaptic strengths and thresholds of the
neural network� and completely speci
es the state of the neural network in the learning process�
The environment of the network is assumed to be a set of stimuli �x to be taken from a subset
� � �n� Here n denotes the dimension of the stimulus space� which will often be equal to the
number of input neurons� The environment is 
xed� The probability that the network gets
exposed to a stimulus �x is given by a probability distribution ��x�� which for the moment is
time independent�

We consider the following learning mechanism� At distinct points in time a stimulus �x is
presented to the network and a learning step takes place� The network changes its weight vector
w to w� � w��w� obeying

�w � � fw� �x� � ��

where fw� �x�� the so�called �stochastic force�� is an arbitrary function fw� �x� � �N ��n � �N

� representing the set of all real numbers� and � is the learning parameter� Eq� �� simply
states that the new network state w� after the learning step is a function of the state w before
this learning step and the randomly drawn input vector �x�

Eq� �� applies to most of the learning rules in neural network theory� Depending on the
particular choice of the stochastic force fw� �x�� learning processes of neural networks with quite
di�erent functionalities can be described� A few illustrative examples are the following�

i� Kohonen	s topological feature map ���� as used in Ritter and Schulten ����

��wi � � �x� �wi�h�i� imax�x�� �

with i labeling the neurons� �wi a set of feedforward connections� imax�x� the neuron that

res maximally when stimulus �x is presented� and h� a bell�shaped function of width ��

ii� Hop
eld	s associative memory ����� �wij � � xixj� with i labeling the neurons xi the
stimulus value at neuron i� and wij the lateral connections�

iii� An input�output relation such as the multilayered perceptron with backpropagation �����
�w � ���wE� with w the weights and thresholds of the network� and E an error function
which should be minimized�

Two other examples� Oja	s principal component network and Grossberg	s �center�of�mass� net�
work will be used as speci
c examples to illustrate our theory in the subsequent sections�
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The learning process as de�ned in Eq� ��� is a stochastic process since at each learning step
the input vector �x is drawn at random� In order to describe this learning process we must
therefore talk in terms of probabilities� expectation values� and �uctuations� The most obvious
probability to look at is pi�w�	 the probability that the network is in state w after i learning
steps� Thus� the learning process becomes a Markov process �see� e�g�� Ref� 
����	

pi�w
�� �

Z
dNw T �w�jw�pi���w� � ��

where T �w�jw� is the transition probability to go in one learning step from state w to state w�	

T �w�jw� �

Z
dnx ���x� �N �w� �w� �f�w� �x�� �

D
�N �w� �w� �f�w� �x��

E
�
� ���

Eq� �� describes a random walk with discrete iteration steps labeled by i�
It can be shown 
���� that� under certain conditions including a slowly vanishing of the

learning parameter�

lim
i��

�i � � �
�X
i��

�i �� �

the learning process converges to a stationary solution

pS�w� � �N �w �w
�� � ���

where the points w� are stable �xed points of the di�erential equation

dw�t�

dt
� hf�w�t�� �x�i

�
� f�w�t�� � ���

These stable �xed pointsw� are� by de�nition of the learning rule� locally optimal representations
of the environment� If a global energy function E�w� exists such that fi�w� � ��wi

E�w� for
all w� then the stable �xed points w� are local minima of this energy function E�w��

Instead of the above approach� we will discuss learning processes with small but non�
vanishing learning parameters� Therefore we need a continuous�time description that is valid for
all values of the learning parameter �� Bedeaux� Lakatos�Lindenberg and Shuler 
�� showed� that
such a continuous�time description can be obtained through the assignment of random values �t

to the time interval between two succeeding iteration steps labeled by i� If these �t are drawn
from a probability density

���t� �
�

	
exp

�
�
�t

	

�
�

the probability 
�i� t�� that after time t there have been exactly i transitions� follows a Poisson
process� Now the probability P �w� t�� that a network is in state w at time t� is de�ned

P �w� t� �
�X
i��


�i� t�pi�w� �

This probability function P �w� t� can be di�erentiated with respect to time� yielding the master
equation

�P �w�� t�

�t
�

Z
dNw

�
W �w�jw�P �w� t� � W �wjw��P �w�� t�

�
� ���

with the transition probability per unit time

W �w�jw� �
�

	
T �w�jw� � ���

This result is valid independently of 	 � the average time between two successive learning steps�
and the learning parameter �� Through 	 we have introduced a physical time scale� which is
also re�ected in the transition probability rate W �w�jw� in Eq� ����
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Through the assignment of random time values to the learning steps� we have obtained a
continuous�time master equation ��� describing the evolution of an ensemble of learning neural
networks� We will denote the distribution of states w at time t by ��t�� The expectation value
for an arbitrary function ��w� at time t is written

h��w�i��t� �

Z
dNw P �w� t���w� � �	�

III Learning in a �xed environment

A consequence of an asymptotically constant nonzero learning parameter is that 
uctuations
will persist and the learning process� in general� will not converge to a deterministic solution
like the one in Eq� ���� So local optimality is not likely to be achieved� As an indication of the
deviation from local optimality� we de�ne the error

E �
D
kw�w�k�

E
����

� km���k� Tr
h
�����

i
� ���

with de�nitions of the bias and the covariance matrix� respectively�

mi�t� � hwii��t� � w�i �

��
ij�t� �

D�
wi � hwii��t�

��
wj � hwji��t�

�E
��t�

�

Note that the error E as de�ned in Eq� ��� gives a measure of the performance of the network
in the neighborhood of w�� it does not give any information about the global performance of
the network� In order to compute this error� we will focus on the evolution equations of the
macroscopic quantities hwi��t� and ���t��

Using the master equation ��� and the de�nition �	�� we obtain

�

�

d hwii��t�

dt
� hfi�w�i��t� �

�

�

d��
ij�t�

dt
�

D
fi�w�

�
wj � hwji��t�

�E
��t�


D�

wi � hwii��t�

�
fj�w�

E
��t�

 � hDij�w�i��t� � ����

with the drift vector f�w� already de�ned in Eq� ��� and the di�usion tensor D�w��

Dij�w� � hfi�w� �x�fj�w� �x�i� �

In Eq� ����� hwi��t� describes the �mean tendency� of the learning system and ���t� the super�
imposed 
uctuations� The di�usion tensor D�w� is a positive de�nite matrix� It contains the

uctuations in the learning rule�

The evolution equations in Eq� ���� are exact� i�e�� they are valid for all values of �� The exact
evolution equations for higher�order cumulants can be derived in the same way� For our purposes�
the expectation value of the state and the covariance matrix provide adequate information about
the learning process� Note that� since terms of order �� and higher do not contribute to the
evolution of hwi��t� and ���t�� Eq� ���� can also be derived from a Fokker�Planck approach

which results from a Taylor expansion including terms up to order ���
To illustrate the dynamics of a learning process� we consider Grossberg learning ���� The

network consists of one neuron with n inputs� Its weight vector w follows the learning rule�

�w � � �x�w� � ����

Obviously the dimension of the weight vector w is equal to the dimension of the input space�
the set of stimuli x � � � �n� Since the di�erent dimensions in Eq� ���� are uncoupled�
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we can restrict ourselves to one dimension� The convergence of the Grossberg learning rule
in case of equally spaced time intervals between the learning steps has been studied by Clark
and Ravishankar ���� The stable �xed point of Eq� ��	 is the probabilistic mean of the input
distribution
 w� � hxi��

The evolution equations for the mean hwi��t� and the standard deviation ��t	 can be calcu
lated exactly� Eq� ���	 yields

�
d hwi��t�

dt
� �� m�t	 �

�
d���t	

dt
� ���� �	� ���t	 � ��m��t	 � ���� � ���	

with de�nitions m�t	 � hwi��t� � hxi� and �� �
D
�x� hxi�	

�
E
�
� the variance of the input

distribution� The solution of Eq� ���	 is

m�t	 � m��	 e��t�� �

���t	 �
�

�� �
�� �

�
����	 �

�

�� �
�� �m���	

�
�� e���t��

��
e�������t�� � ���	

So the ensemble of learning neural networks converges for � � � to the asymptotically stable
solution

hwi���� � hxi� �

����	 �
�

�� �
�� �

The expectation value converges to hxi� � w�� The error E is therefore equal to the �nal
variance in the weights w that is proportional to the variance of the input distribution and for
small learning parameters also to the learning parameter� The standard deviation diverges at
� � ��

We have simulated this Grossberg learning for an ensemble of �� ��� independently operating
neural networks looking at an environment with ��x	 � �	�l for jxj � l and ��x	 � � elsewhere�
Three examples of individual networks and hwi��t� � ��t	 are plotted as a function of time in

Fig� ��a	� Fig� ��b	 shows the variance ���t	� both calculated and simulated� The results are in
excellent agreement with Eq� ���	�

IV A Gaussian approximation

Eq� ���	� which describes the evolution of the mean and the covariance matrix� is elegant but
in general unsolvable� Therefore we make a Gaussian approximation valid for small �uctuations
as proposed by Van Kampen ���� For this approximation to be valid� one must assume that the
learning process converges to a stationary solution of the master equation ��	� Convergence can
be proved in case of a �nite number of possible states w �see� e�g�� Ref� ����	� The convergence
proof for a continuous state space requires the a priori existence of a stationary solution� We
will show the existence of stationary solutions within our approximation scheme� This justi�es�
a posteriori� the Van Kampen approximation�

Application of the approximation method introduced by Van Kampen to the evolution equa
tions ���	 yields

�

�

d hwii��t�
dt

� fi�hwi��t�	 �
�

�

X
jk

Qijk�hwi��t�	�
�
jk�t	 �

�

�

d��
ij�t	

dt
� �

X
k

Gik�hwi��t�	�
�
kj�t	 �

X
k

��
ik�t	Gjk�hwi��t�	 � �Dij�hwi��t�	 � ���	
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with de�nitions

Gij�w� � �
�fi�w�

�wj

� Qijk�w� �
�fi�w�

�wj�wk

�

In Eq� ���� higher order terms are omitted� According to this approximation j	��t�j tends to
become �jDj�jGj for t�� �by j � � � j we mean the order of magnitude of the tensor�� This value
can be used to check the self
consistency of this approximation� The equations are approximately
valid if the largest neglected terms are much smaller than the terms we take into account� i�e��

�j��wf j
�jDj � j�wf jj�

�
wf j

� �

�j��wDj � j�wf j �

�j��wf j
�jDj � j�wf j

� � ����

If the drift term f�w� and the diusion tensor D�w� are su�ciently smooth� we can always �nd
a learning parameter � such that the requirements ���� are ful�lled� Eq� ���� is a set of two
coupled nonlinear dierential equations which describe the evolution of the expected state and
the superimposed �uctuations for small �uctuations� Note that Eq� ���� is� strictly speaking�
only valid for t � � as long as 	��t� is of the same order of magnitude as 	����� In many
cases this is true for the entire learning process �see� e�g�� Fig� ��b���

We will show that for small learning parameters there exist stationary solutions of the master
equation ��� that are peaked in the neighborhood of the stable �xed points w� of Eq� ���� We
expand Eq� ���� with respect to the bias m�t� � hwi��t� �w

��

�

�

dmi�t�

dt
� �

X
j

Gijmj�t� �
�

�

X
jk

Qijk	
�
jk�t� �

�

�

d	�
ij�t�

dt
� �

X
k

Gik	
�
kj�t��

X
k

	�
ik�t�Gjk � �Dij � ����

with all tensors evaluated at w�� Note that the stability of w� implies that the symmetric part
of the matrix G�w�� must be positive semide�nite� For convenience� we will exclude matrices
G�w�� with zero eigenvalues� The analysis including ��at directions� should be restricted to the
eigenspace spanned by the eigenvectors with nonzero eigenvalues�

In Eq� ����� higher orders are omitted and self
consistency can be checked using j	����j �
�jDj�jGj and jm���j � �jQjjDj�jGj�� The approximate validity of Eq� ���� requires ���� and

�jDjj��wf j � j�wf j
� �

�j��wf jj�wDj � j�wf j
� � ����

Under these conditions� the set of linear dierential equations ���� gives an approximate de

scription of the convergence of the learning process �Eqs� ��� and ����� to a stationary state�

The stationary solution of Eq� ���� obeys

X
j

Gijmj��� �
�

�

X
jk

Qijk	
�
jk��� �

X
k

Gik	
�
kj��� �

X
k

	�
ik���Gjk � �Dij �

In closed form the asymptotic solution is

mi��� � �
X

jklmn

h
G��

i
ij
Qjkl

Z
�

�
dy

h
e�Gy

i
km

Dmn

h
e�G

Ty
i
nl
�

	�
ij��� � �

X
kl

Z
�

�
dy

h
e�Gy

i
ik
Dkl

h
e�G

Ty
i
lj
� ����
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The existence of this stationary solution of the master equation ��� a posteriori justi�es our ap�
proximation scheme as outlined in this section� Note that in this approximation the asymptotic
mean representation hwi���� deviates from the locally optimal representation w� proportional
to �� The asymptotic standard deviation is proportional to

p
�� which is signi�cantly larger

than � for small learning parameters�
If the matrix G�w�� is symmetric� the error E de�ned in Eq� �	� can be calculated yielding

E 

�

�
Tr
h
G��D

i
� ��	�

where terms of order �� are neglected� Eq� ��	� summarizes a few characteristics of the asymp�
totic solution of the learning process� First of all� the error is proportional to the diusion matrix
D�w�� which contains the �noisiness� of the environment� Secondly� the error is inversely pro�
portional to the curvature at the stable solution� i�e�� the steeper the valley of the minimum� the
smaller the error�

The �perfectly trainable� neural networks form a special class of learning neural networks�
These networks have a stable �xed point w� such that f�w�� �x� 
 � ��x � �� In this point� the
diusion D�w�� 
 �� so there are no �uctuations� Since there is no way to escape from this
point� as can be seen from the transition probability T �wjw�� 
 �N �w � w

�� in Eq� ���� w�

acts like a sink� In this particular case there is no harm in choosing a relatively large learning
parameter� An example is a backpropagation network ���� that obtains a representation w

�

of the environment such that all input vectors �x � � are transformed exactly into the desired
output vectors� i�e�� for which the backpropagation error E�w�� 
 ��

The set of equations ���� describes the exponential decay of the expected bias and �uctua�
tions in the representation of the neural network� The response time� the typical time constant
of these exponential decays� is dierent in the dierent eigenvector directions of the matrix G�
Let us denote the response time in the eigenvector direction � with corresponding eigenvalue ��
by ��� then�

�� 

	

� Re ����

 ����

The response time� which is an indication for the adaptability of a neural network to a changing
environment� is inversely proportional to the learning parameter� Combining Eq� ��	� and ����
we see that in order to reduce the response time by a factor �� the learning parameter must be
increased by a factor �� yielding a twice as large error E �

We conclude this section by calculating the asymptotic solutions m��� and ����� for the
nonlinear learning rule of Oja �	�� This algorithm computes the principal component of the
covariance matrix of the stimulus set �� The network consists of one neuron with n inputs� Its
weight vector w follows the learning rule

�w 
 � wT
x �x� �wT

x�w� 
 ����

With the de�nition of the covariance matrix of the input distribution C �
D
xx

T

E
�
� it is easy to

show that the normalized eigenvector of C with the largest eigenvalue is the only stable �xed
point w� of Eq� ����

We take n 
 � and draw our stimuli at random from a rectangle�

��x�� x�� 
 ���x�����x�� with ���x� 


�
���l� for jxj  l�
� otherwise �

with l� � l�� The covariance matrix of the input distribution has the form

C 


�
�� �
� ��

�
�
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Figure �� Asymptotic bias� variance� and error for Oja learning as a function of the learning

parameter� Eigenvalues of the covariance matrix of the input distribution� 	� 
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���� Simulations were done with  ��� neural networks� �a� Bias km���k computed from

Eq� ���� �solid line� and simulated ���� �b� Variance Tr
�
�����

�
computed from Eq� ���� �solid

line� and simulated ���� �c� Error E computed up to order � �solid line�� including all �
�

contributions �dashed line�� and simulated ����
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where �� � l����� The eigenvectors of the covariance matrix of the input distribution with the
largest eigenvalue �� are� w� � �� � 	
T and w� � ��� � 	
T � Calculation of the stationary
solution ���
 is straightforward and leads to

m��
 � �
�

�

��
�

�� � ��
w

� �

���
 �
�

�

�
	 	

	 ����

�����

�
� ���


In Fig� � km��
k and Tr
�
���


�
are plotted as a function of the learning parameter �� both

calculated �Eq� ���
� solid line� and simulated �with � 			 neural networks� asterisk
� The
deviation between simulation and computation is less than �	� up to about � � 	�	��

The approximation scheme outlined in this section can be extended including higher�order
terms of �� Since the term km��
k� is already of order ��� one only has to compute the second�
order terms of Tr

�
���


�
to obtain a second�order estimate of the error� Straightforward

calculation� using the �rst�order terms computed in Eq� ���
� yields

E �
�

�

����

�� � ��
�

��

�

���
�
�

�� � ��
�

��

��

�
��
�

�� � ��

��
�

This expression yields the dashed line in Fig� ��c
� which� of course� gives a better prediction of
the simulations than the solid line which shows the error calculated up to order � �according to
Eq� ���
��

The stationary probability distribution for � � 	�	� and � 			 neural networks is plotted in
Fig� ��a
� In Fig� ��b
 contour lines are drawn� The contour lines of a Gaussian with bias and
covariance matrix �calculated up to order ��
 are drawn in Fig� ��c
� It is clear that the real
probability distribution is not a simple Gaussian� but nevertheless the deviation of the simulated
bias and variance from the values predicted by theory is small �Fig� �
�

V A gradually changing environment

We will now discuss the master equation describing the learning process in a gradually changing
environment� By this we mean that we will assume that the set of stimuli ��t
 and the probability
density ���x� t
 change as a function of time t� Therefore� the transition probability for the
network to go from a state w to a state w� at time t becomes

Tt�w
�jw
 �

Z
dnx ���x� t
 �N �w� �w� �f�w� �x

 �

For a gradually changing environment �i�e�� such that changes on a time scale 	 are insigni�cant�
j	
t�j � j�j
� we can write

	
dP �w�� t


dt
�

Z
dNw Tt�w

�jw
P �w� t
 � P �w�� t
 �

With the obvious de�nitions

f�w� t
 � hf�w� �x
i��t� �

D�w� t
 � hD�w� �x
i��t� �

the evolution equations for the expectation value of w and the covariance matrix ��t
 are
written

	

�

d hwii��t�
dt

� hfi�w� t
i��t� �

	

�

d�
ij�t


dt
�
D
fi�w� t


�
wj � hwji��t�

�E
��t�

�
D�

wi � hwii��t�

�
fj�w� t


E
��t�

� � hDij�w� t
i��t� �
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The time dependency of the environment leads to a time dependency of the stable �xed
points w��t�� Similar to the error de�ned in Eq� ���� we can de�ne an error E indicating the
performance of a neural network operating in a time	dependent environment


E � lim
T��

�

T

Z T

�
dt
D
kw�w��t�k�

E
��t�

� lim
T��

�

T

Z T

�
dt
n
km�t�k� �Tr

h
��t�

io
� ����

with m�t� � hwi��t� �w
��t�� as usual� The idea is that minimization of this error leads to an

optimal learning parameter�
As an example we will discuss the performance of the Grossberg learning rule �Eq� ����� in

a time	dependent one	dimensional environment� where the input distribution is moving along
the axis with constant velocity v and constant standard deviation �
 ��x� t� � ���x � vt�� with
���x� � ���l for jxj � l and ���x� � � elsewhere� The aim of this learning rule is to make w
coincide with the mean value of the probability distribution ��x� t�� i�e�� w��t� � hxi��t�� The

evolution equations for hwi��t� and ��t� are given in Eq� ����� but now with de�nition

m�t� � hwi��t� � w��t� � hwi��t� � hxi��t� �

The asymptotic solution of these evolution equations is

hwi��t� � hxi��t� �
�v

	
� hxi��t�����

��t� � � �
��

	�� � 	�

h
	� � 
�

i
� ����

with the typical constant


 �
v�

�
�

the ratio between the distance covered in the average time between two learning steps and the
standard deviation� From Eq� ���� we see that� on the average� the representation which the
network has of the environment� hwi��t�� lags a time ��	 behind the best possible representation�
hxi��t�� Second� the standard deviation diverges at 	 � �� as in the static case� but diverges also
at 	 � � for nonzero velocities�

Eq� ���� is illustrated in Fig� �� where the simulated probability distribution of the weight
w is sketched for three di�erent cases
 zero velocity� small velocity �v � ������� and relatively
large velocity �v � ������� Simulations were done with � ��� neural networks for 	 � ���� and
� � �� For zero velocity the probability distribution of the di�erence between the weights and
the probabilistic mean is symmetric around the origin� A slowly moving environment gives rise
to a small delay and a slightly broader distribution� If the environmental change is relatively
large� the probability distribution sincerely lags behind and is much broader�

The error de�ned in Eq� ���� yields in this example

E �
	� � �
�

	���� 	�
�� �

For nonzero velocity the error diverges at 	 � � and 	 � � and has a global minimum for some
� � 	 � �� This error is plotted in Fig� ��a� as a function of the learning parameter� For small
learning parameters� the error is dominated by the bias� for large learning parameters by the
standard deviation� The optimal learning parameter can be found by minimization of this error
E � For small 
 the optimal learning parameter is proportional to 
����

VI Nonlinear learning rules

In this section we will discuss the performances of neural networks operating in a time	dependent
environment with a nonlinear learning rule� We will show that for slow changes and small
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learning parameters linear dierential equations still give a useful description of the learning
process�

Making again the expansions described in Sec� IV� we �nd

�

�

dmi�t�

dt
	 �
X

j

Gij�t�mj�t� �
�

�

X

jk

Qijk�t��
�

jk�t��
�

�
vi�t� �

�

�

d��

ij�t�

dt
	 �
X

k

Gik�t��
�

kj�t��
X

k

��

ik�t�Gjk�t� � �Dij�t� � ����

with de�nition v�t� � �w��t� and notation G�t� � G�w��t��� and so on� The approximate validity
of these equations requires not only ���� and ����� but also

j�vjj	�wf j � �j	wf j
� �

j�vjj	wDj � �jDjj	wf j � ����

These conditions may be summarized as follows� Changes in the environment of order v� must be
small compared to the size of a learning step �f � Eq� ���� then gives an approximate description
of the learning process for times t � ���� i�e�� such that terms of the form exp���t�� � can be
neglected�

For symmetric G�t� we may rewrite Eq� ���� in the eigenvector directions 
 of the matrix
G�t�� We make some further simpli�cations by assuming that the environmental changes are
such that ��� v�� D�� and Q��� are independent of time� This is true for the moving distribution
in the Grossberg example �Sec� V� and for the example we will discuss next� an Oja network
operating in a slowly rotating environment� Furthermore� the following analysis can be viewed as
a zeroth�order approximation� which is valid if the changes of these parameters are insigni�cant
on a time scale of ��� the response time de�ned in Eq� ��
�� We can calculate the asymptotic
solution

m� 	 �
�v�
���

�
�

���

X

��

Q���D��

�� � ��
�
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��

�� �
�D��

�� � ��
� ���	

If in the expression for the bias m� the second term due to the nonlinearity of the learning rule
is much smaller than the 
rst term due the environmental change� this solution corresponds to

hw�i��t� � w�

��t� ��	 �

with the delay �� equal to the response time de
ned in Eq� ��	� The delay is inversely propor�
tional to the learning parameter� In this special case we can also calculate the error E � de
ned
in Eq� ���	� neglecting terms of order ���

E �
�

��

X

�

�
�v�
��

��

� �
X
�

D��

���
� ���	

The optimal learning parameter is the learning parameter for which E is minimal�

�optimal �
�

sP
� ��v����	

�P
�D������

� ���	

The optimal learning parameter is proportional to v���� Substitution of this optimal learning
parameter in Eq� ���	 yields Emin � v���� For minimal error the contributions of the bias and
the standard deviation are of the same order of magnitude� Note that the requirements ���	�
���	 and ���	 are all ful
lled for small changes v and � � �optimal�

We discuss some simulations with the nonlinear learning rule of Oja �Eq� ���	� in order to see
whether they support our analysis� The neural network consisting of one neuron is still taught
with random samples from a rectangle as in Sec� IV� But now we are rotating the rectangle with
constant angular velocity 	 around the axis which goes through the origin and is perpendicular
to the rectangle� The principal component of the covariance matrix of the input distribution
and thus w��t	 follows�

w
��t	 � �

�
cos�	t	
sin�	t	

�
�

Since in this example ��� v�� D�� and Q��� are indeed independent of time� the results given by
Eq� ���	 are approximately valid if all corresponding conditions are satis
ed� We can calculate
the squared bias and the variance up to order ���

kmk� �
�

��

�
	�

�� � ��

��
�

��

��

�
��
�

�� � ��

��
�

Tr
h
��
i

�
�

�

����

�� � ��
�

��

�

���
�
�

�� � ��
� ��	

These terms are plotted in Fig� ��b	� together with the error E �solid line	� which is just the
sum of the squared bias �dashed line	 and the variance �dash�dotted line	� The computed values
are reasonable estimates for the values found by simulations for learning parameters � 
 ���
For smaller learning parameters the conditions ���	 are violated and agreement is not to be
expected� From Eqs� ���	� ���	 and ���	 it can be estimated that �� � � � ��� Substitution
of all relevant parameters in Eq� ���	 leads to the optimal learning parameter �optimal � ����
The optimal learning parameter in simulations is not much di�erent�

VII Conclusions and discussion

We have set up a general framework for studying the asymptotic solutions of a large class of
learning neural networks for nonzero asymptotic learning parameters �� The conditions for
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the validity of the framework in a �xed environment are given in Eqs� ���� and ���� and are
roughly equivalent to � �wf � �� If the network has obtained a stationary representation of the
environment	 a nonzero learning parameter gives rise to 
uctuations in the representation of the
network proportional to � and allows the network to adapt to a new	 di�erent environment in a
time which is inversely proportional to �� The size of these e�ects can be calculated analytically�

In a constantly changing environment	 the analysis holds approximately �see the conditions
in Eq� ���� as long as the rate of change in the environment v is small in comparison with
the �learning rate� �f�� � There is a trade�o� between adaptability and accuracy� the more
adaptable the network is	 the less accurate it is	 and vice versa� If an error criterion is de�ned
which takes these two e�ects into account	 the learning parameter has an optimal value which
is proportional to v����

To be able to do the analysis above	 we had to the make the following essential assumptions�

�i� Learning is described by a �rst order process as given by Eq� ���� the new network state
w��w depends only on the present network state w and on the training pattern �x�

�ii� At each learning step a training pattern �x is drawn at random from the probability distri�
bution ���x� t�	 i�e�	 the value of �x drawn at time t is independent of previous values of �x�
This assumption	 in combination with the �rst assumption	 enabled us to describe learning
as a Markov process� Violation of either of these complicates the analysis signi�cantly�
For example	 it is clear that this analysis is not directly applicable to learning processes
concerning the storage of temporal sequences�

�iii� A physical time scale is introduced by drawing the time intervals between successive
learning steps from a Poisson distribution� This is an elegant way to transform a dis�
crete random�walk equation into a continuous time master equation for any value of the
learning parameter �� It may also be applied to describe the dynamics of spin states in
Hop�eld�type neural networks in di�erential form	 even for a �nite number of neurons�
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