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Abstract- We give an error potential for self- 
organising learning rules. The gradient of this er- 
ror potential leads to the well-known learning rule 
of Kohonen, except for the determination of the 
”winning” unit. The existence of an error poten- 
tial facilitates a global description of the learn- 
ing process. A one-dimensional topological map 
is treated as an example. 

I. INTRODUCTION 

Sensory maps are a crucial first step in the information 
processing of the brain. The external information is rep- 
resented in a orderly, topology-preserving manner, i.e., 
neighbouring units in the sensory map represent simi- 
lar inputs. The formation of these maps is a process 
of self-organization for which several learning paradigms 
have been suggested [l, 21. The proposal of Kohonen [3] 
does not aim at the modelling of all biological details, 
but tries to capture the most important features of self- 
organizing processes. Basically, this algorithm works as 
follows. Given a certain input vector from the environ- 
ment, the unit with the smallest Euclidian distance to 
this vector is called the ”winner.” The weight vector of 
this unit and, to some extent, its neighbouring units, are 
moved towards the input vector. After this learning step, 
another input vector is drawn at random from the environ- 
ment, etcetera. The properties of this learning procedure 
are studied in great detail [4, 5, 61. Recently, a lot of ef- 
fort is devoted to the search for an energy function that is 
minimized by the learning rule [7, 8, 91. The existence of 
such an energy function or error potential facilitates a de- 
scription of the global performance of the learning proce- 
dure [lo]. The best possible state is the global minimumof 
the error potential, undesired (meta)stable configurations 
are simply local minima. In self-organizing learning rules 

possible local minima are topological defects like twists 
and kinks [ll]. 

The definitions in Sec. I1 will be used in Sec. I11 to inves- 
tigate whether it is possible to find an error potential for 
the original Kohonen learning rule. In Sec. IV we go the 
other way around. We start with a well-defined error po- 
tential and try to derive an on-line learning procedure. An 
example, kinks in a one-dimensional map, will be treated 
in Sec. V. Implications and further lines of research are 
discussed in Sec. VI. 

11. THE LEARNING PROCEDURE 

The network consists of n units labeled 1 ,..., i,.. .,n. 
To each unit we ascribe an m-dimensional weight vec- 
tor Gi. The combination of all weight vectors is the N- 
dimensional state vector W = (w1, . . . , w,, . . . , w , ) ~ ,  so 
N = n x m. An on-line learning procedure, a repetition 
of the following three steps, takes care of the adaptation 
of this state vector. 

1. Pick an input vector from the environment. 

This is why the learning procedure is called on-line: 
the network state is adjusted at each presentation 
of a training pattern. The environment G? is a set 
of m-dimensional input vectors Z with probability 
density function p ( 5 ) .  The average of an arbitrary 
function q(5) with respect to this environment R is 
written 

2 .  Determine the winning unit. 

We ascribe a ”winning error” gi(W, Z) to each unit 
i. The unit with the smallest winning error is the 
”winner.” For Kohonen’s learning rule the winning 
error is the Euclidian distance between the input 
vector and the weight vector of the unit, i.e., 
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3. 

For a nice mathematical description of this deter- 
mination of the winner, we define, for any arbitrary 
vector q, the following average with respect to the 
winning error (for notational convenience we will 
drop the arguments W and 5) 

n 

i= 1 

In the limit P -+ 00 only the components with the 
smallest winning error survive, i.e., 

n 

i= l  

def . with gmin = mlngi . (3) 
t 

So, ((. . .)), stands for a "winner-take-all" mecha- 
nism with respect to the winning errors g,(W,?). 
This special average ( (q ) ) ,  depends on W and i 
not only through q,(W,Z), but also through the 
winning errors g,(W, Z), which is important for dif- 
ferentation and integration. That part of the envi- 
ronment for which unit i is the winner is called the 
"receptive field of unit i. 

Adapt the network state such that the local error of 
the winning unit becomes smaller. 

Apart from the winning error, we also ascribe a "lo- 
cal error" ei(w, 2) to each unit i. The learning rule 
is written formally 

A W  = 9 F(W, 5) = -9 ((Ve(W, Z)))oo , (4) 

where r ]  is the learning parameter and V denotes 
the gradient with respect to the network state W. 
This fairly cryptical and unusual definition of the 
learning rule becomes clearer if we write Kohonen's 
learning rule in these terms. We choose the local 
error 

1 
Kohonen: ek(W, 5) = hk, 111 - Gill2 . ( 5 )  

i = l  

The matrix with components hi, defines the topo- 
logical structure between the units. Usually, hij is 
a decreasing function of the distance between the 

units i and j in the topological map. The learning 
rule (4) now yields 

h'ohonen: AS, = 9 hc(W,s), (5- Gi) , 
with K(W,  5) the winner, the unit with the smallest 
Euclidian distance between its weight vector and the 
input vector. 

There are two closely related questions we would like 
to answer. The first question will be discussed in Sec. 111, 
the second one in Sec. IV. 

1 .  

2. 

111 

Is it possible to write the average learning rule (4) 
as the gradient of some global error potential, i.e., 
can we find a function E ( W )  such that 

( ( ( W W Z ) ) ) , ) n  = V E ( W ) ?  

Does the gradient of a global error potential of 
the form E ( W )  = (((e(W,Z)))m)n lead to a self- 
organizing on-line learning rule, i.e., can we find 
learning rules D i ( W ,  Z) such that 

TJ (((e(W15)))CJn = ( ( ( D ( w m J * ?  

DOES THERE EXIST AN ERROR POTENTIAL FOR 
KOHONEN LEARNING ? 

To investigate whether there exists an error potential for 
Kohonen's learning rule or, more general, an error poten- 
tial for learning rules of the form (4), we have to calculate 
the derivative of the average learning rule 

F ( W )  2' ( F ( W ,  . 

The difficult part in calculating this derivative is the con- 
tribution of the winner-take-all mechanism. That is why 
we introduced the winner-take-all mechanism as a special 
limit of a weighted average with respect to the winning er- 
ror. Using shorthand notation a,Fv %' BFv(W,5)/aW,, 
etcetera, we have 

Here it is allowed to interchange the gradient and the limit, 
but not to interchange the gradient with respect to W and 
the average with respect to the winning errors gi(W, Z), 
which is a function of W .  'The gradient can be calculated 
using the definition (2). We obtain 

a,Fv = - ( + 
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The average learning rule is the gradient of some error 
potential if and only if O,F, = O,F,. Obviously, the first 
term in (6) is symmetric. The second term is symmetric 
if and only if the local error is a monotonic function of the 
winning error, i.e., if and only i f  the local error also deter- 
mines the winning unit. In fact, we might as well say that 
the local error must be equal to the winning error, since 
any monotonically increasing function of the winning er- 
ror is totally equivalent to the winning error itself in the 
limit /3 -+ 00. So, only if the local and winning error are 
equal, the learning procedure (4) can be interpreted as 
a (stochastic) way to minimize a well-defined error crite- 
rion. The Kohonen choices (1) and (5) do not satisfy this 
requirement, except in the limit of no lateral interaction 

IV. DOES A N  ERROR POTENTIAL LEAD TO AN ON-LINE 

Here we do not ask whether it is possible to find an error 
potential corresponding to an existing learning rule, but 
we start with a well-defined error potential and try to 
derive a learning rule from it. An obvious choice for the 
error potential is 

hjj = & j .  

LEARNING RULE ? 

(7) 
i.e., the local error of the winning unit, averaged over the 
whole environment. A similar error potential is suggested 
in [12]. It can be interpreted as a transmission error be- 
tween neural layers [13]. The derivative of the error po- 
tential (7) obeys 

The first term is exactly the learning rule (4) averaged 
over the environment R. It is difficult (see [SI), to inter- 
pret the second term as the average of an on-line learning 
rule. Therefore we would like to get rid of it. For some 
combinations of W and Z there is just one winner, say k .  
In this case 

( e& - ek) ( v g k  - V g h )  = 0 .  

However, there exist combinations of W and Z for which 
there are two (or more) winning units, say k and I ,  with 
g k ( W I Z )  = g r ( W , Z )  = g m i n ( W , Z ) ,  so, with Zexactly on 
the boundary of the receptive fields of unit k and 1. Then 
we have 

This "boundary term" is zero if either e k  = el or V g t  = 
V g l .  This second possibility is clearly not true for the 
Kohonen learning rule and is hard to satisfy in general. 
So, the only way to  exclude boundary terms is to  ensure 
that on these boundaries the local errors are equal. The 
conclusion is that the second term in (8) vanishes if and 
only if 

We arrive at  a similar conclusion as above: the gradient 
of an error potential of the form (7) leads to an on-line 
learning rule if and only if the local error  also determines 
the winning unit. 

In the meantime, we have proved that we may inter- 
change taking the derivative and determining the winner, 
i.e., that 

if the local error and the winning error are equal, i.e., if 
e i ( W , Z )  = g i ( W ,  5). With this particular choice, the on- 
line learning rule (4) performs stochastic gradient descent 
on the error potential (7). For the rest of the paper, we 
will choose the local error and the winning error equal to 
Kohonen's local error (5). The resulting learning rule is 
equal to Kohonen's learning rule except for the determi- 
nation of the winning unit. 

V. AN EXAMPLE: KINKS I N  ONE DIMENSION 

We consider a one-dimensional map consisting of three 
units. The weight vector is written w = ( w l ,  w2, ~ 3 ) ~ .  
The input probability distribution obeys 

4 2 )  = e(t )  e(1 - .) 7 

i.e., t is drawn with equal probability from the interval 
[0,1]. The lateral isteraction matrix h with components 
hjj is defined 

It is normalized such that C j  hij = 1 V i .  U gives the 
strength of the interaction between neighboring units in 
the map. U = 0 means no lateral interaction. 

Ordered configurations are called "lines." One of them, 
denoted by (123) since wl  < w2 < w3, is drawn schemati- 
cally in Fig. l(a). The other one is (321), i.e., w1 and tu3 
are exchanged. There are four different disordered con- 
figurations called "kinks:" (132), (213), (231), and (312). 
The first one is sketched in Fig. l(b). 
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0.0- o.o+ 
1 i 

Figure 1: Configurations in a one-dimensional map. 
(a) Line. (b) Kink. 

By numerical calculations, it can be proved that for 
U < U* z 0.082 the error potential (7) has six minima: 
two lines are global minima, four kinks are local minima. 
At U = U* the local minima disappear and only two global 
minima remain. 

We would like to picture how the error potential changes 
by going from the local to the global minimum. To get 
rid of two degrees of freedom, we bring in the following 
constraints. These are based on the fact that at a min- 
imum always one of the weights is approximately equal 
to 1/6, the second to 112, and the third to 516. So, at 
the minima, the sum of the weights and the sum of the 
squared distances between the weights are approximately 
constant 

w1+ w2 + w3 x ;, 

(w2 - w1)2 + (w3 - w2)2 + ( w g  - w1)2 2! 5 . 
Combining these constraints (772!” is replaced with ”=”), 
W is totally parametrized by the angle 4, 

W l ( 4 )  = f - q x s 4 ,  

wz(4 )  = f + 9 cos 4 - i sin 4 , i w 3 ( 4 ) = f + $ c o s 4 + i s i n 4 .  

In terms of 4, the lines and the kinks are positioned as 
follows. 

minimum line kink kink line kink kink 

configuration (123) (213) (231) (321) (312) (132) 

dJ ~ / 6  7r/2 5 ~ / 6  7n/6 3a/2 l l n / 6  

phase 1/12 114 5/12 7/12 314 11/12 

The error potential as a function of the ”phase” 4/(27r) 
is plotted in Fig. 2 for U = 0, 0.04, 0.08, and 0.12. At 
U = 0 all minima are equally deep. For U > 0, symmetry 
is broken: the kinks have a higher error potential than the 
lines. Eventually, the disordered local minima disappear. 

0 0.2 0.4 0.6 0.8 1 
phase 

x 
4r 

v 
0 0.2 0.4 0.6 0.8 1 

phase 

x 

0‘ I 
0 0.2 0.4 0.6 0.8 1 

phase 

0‘ J 
0 0.2 0.4 0.6 0.8 1 

phase 

Figure 2: The error potential E as a function of the 
”phase” 4/(27r) for different values of the interaction 
strength U. (a) U = 0. (b) U = 0.04. (c) U = 0.08. 
(d) U = 0.12. 
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VI. DISCUSSION 
In this paper an error potential and corresponding learn- 
ing rule for the self-organization of topological maps are 
derived. The resulting learning rule is exactly equal to 
the one proposed by Kohonen, except for the determina- 
tion of the winning unit. The disadvantage of our learning 
rule is that the determination of the winning unit is com- 
putationally more expensive. (The Euclidian distances, 
which require n x m multiplications, must be multiplied 
with the lateral interaction matrix h. This requires n x Ihl 
extra multiplications, with Ihl the number of nonzero lat- 
eral connections for one unit.) The advantage is that we 
know exactly what error potential is minimized by the 
learning procedure. Furthermore, the existence of an er- 
ror potential facilitates a global description of the learning 
process. The lower the error potential, the "better" the 
network state. Fixed points of the learning dynamics are 
minima of the error potential [14]. Local minimaof the er- 
ror potential correspond to topological defects, like kinks 
in one-dimensional maps or twists ("butterflies") in two- 
dimensional maps. Global minima are perfectly ordered 
configurations. 

Results from a general study concerning learning in neu- 
ral networks with local minima [lo] can be applied to 
calculate transition times between different minima. In 
this context it means that we can calculate the transi- 
tion times from topological defects to perfectly ordered 
configurations, i.e., the (average) time it takes to remove 
a kink in a one-dimensional map or to  unfold a twist in 
a twedimensional map [15]. Other research aims at the 
derivation of cooling schedules for the learning parameter 
that guarantee convergence to the global minimum of the 
error potential [IS]. 
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