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Abstract

We study on�line backpropagation and show that the existing theoretical descriptions are
strictly valid only on relatively short time scales or in the vicinity of �local� minima of the
backpropagation error potential
 Qualitative global features �e
g
� why is it much easier to
escape from local minima than from global minima� may also be explained by these local
descriptions� but the current approaches cannot give accurate quantitative predictions of
global properties �e
g
� how long does it take to reach the global minimum starting from a
local minimum�


� Introduction

On�line backpropagation stands for backpropagation where at each learning step one of the
training patterns is drawn at random from the training set and presented to the network� This
is in contrast with batch�mode backpropagation where a weight change takes place on account
of the whole training set� The random pattern presentation in on�line backpropagation leads to
a special kind of noise� which helps to escape from local minima in the error function�

In the literature� several suggestions have been made to describe on�line backpropagation as
a deterministic process with superimposed noise ��� �� �	� In this paper we will study the validity
of this approach� We will discuss the usefulness of this description to explain global properties
of on�line backpropagation� such as stationary solutions and mean 
rst passage times�

� Expansions of the master equation

At each learning step� a training pattern x�� with x� denoting the combination of input vector
and desired output vector� is drawn at random from the total training set and presented to the
network� The weight change follows

�w � � fw� x�� � ��

with w the weight vector� which includes the strength of all synapses and thresholds� � the
learning parameter� and f�� �� the backpropagation learning rule� In the following we will use
one�dimensional notation for simplicity�

The learning process �� can be described by the master equation ��� �� �	

�

�t
P w� t� � P w� t� �

Z
dw� T wjw�� P w�� t� � ��

with the transition probability to go from an old state w� to a new one w�

T wjw�� �
�

p

pX
���

�w � w� � � fw�� x��� �

With a smart choice of the time�intervals between subsequent adaptations� the master equa�
tion �� exactly describes the learning process �� ��	� In general� this master equation cannot be
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solved analytically� An option is to look for approximations valid for small learning parameters
��

The �rst step in most approximation schemes is to write the master equation in the form of
its completely equivalent Kramers�Moyal expansion �see e�g� ���	

�
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P �w� t	 


�X
n��

���	n
n�

�n

�wn
�an�w	P �w� t	� with an�w	 � �

p

pX
���

fn�w� x�	 � �	

The Fokker�Planck equation uses only the drift a��w	 and the di�usion a��w	�

�

�t
P �w� t	 
 �� �

�w
�a��w	P �w� t	� �

��

�

��

�w�
�a��w	P �w� t	� � ��	

It is often used to study on�line backpropagation ��� ��� We will show that this approach is
strictly valid only on relatively short time scales and�or to study local properties of on�line
backpropagation�

A proper expansion is Van Kampen�s �small��uctuations expansion� ���� It is based on the
Ansatz that the evolution of w is given by a deterministic part ��t	 and superimposed noise
with standard deviation of order

p
��

w 
 ��t	 �
p
� � � ��	

Substitution of this Ansatz into the Kramers�Moyal expansion �	 and collecting all terms up
to order � leads to a set of three di�erential equations ��� ���

������
�����
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where h�it stands for the ensemble average over P �w� t	 and � denotes di�erentiation of a function
with respect to its argument�

From the set of equations ��	 we conclude that Van Kampen�s Ansatz is valid if the derivative
of the average learning rule a�

�
��	 is negative or on time scales � O����	� The generalization

to higher dimensions is that the Hessian matrix H�w	� containing the second derivatives of the
error potential E�w	� must be positive de�nite� Each of these so�called attraction regions with
positive de�nite Hessian H�w	 contains one �local	 minimum of the error potential E�w	� So� the
small��uctuations Ansatz ��	 is valid in these attraction regions� but �on time scales � O����	�
not outside of these attraction regions�

The small noise approximation ��	 can also be obtained by substituting the Ansatz ��	 into
the Fokker�Planck equation ��	� i�e�� all terms � O���	 in the Kramers�Moyal expansion �	
vanish for small �� In this sense the Fokker�Planck equation ��	 is equivalent to Van Kam�
pen�s equations ��	� However� any �nonlinear	 features that arise from using the Fokker�Planck
equation beyond this small�noise approximation are spurious and cannot be taken seriously ����

� Qualitative explanation of global features

An important di�erence between on�line learning and simulated annealing or Langevin equa�
tions �see e�g� ���	� is that the noise in on�line learning processes is intrinsic and inhomogeneous�
i�e�� depends on the weight vector w� whereas the noise in simulated annealing and Langevin
equations is arti�cial and homogeneous� i�e�� constant over the whole state space� If we de�ne
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Figure �� Average error �rescaled such that Eglobal � � and Elocal � �� versus logarithm of mean �rst
passage time for on�line �lower line� and Langevin learning �upper line�� On�line learning clearly yields
a better performance�

temperature as the average increase in error potential due to the local �uctuations at a particular
minimum w�� we obtain ���

T 	w�
 � hE	w
�E	w�
i
I
w
�

� � Tr �a�	w
�
� �

where the average is over the ensemble of all networks in the attraction region I
w
� of minimum

w
�� So� the local temperature is proportional to the learning parameter and to the local di�usion

at the particular minimum�
As an example� let us consider the XOR problem with an additional pattern 	see Appendix
�

which is known to have deep local minima ��� At the global minima� the trace of the di�usion
matrix is small� since all patterns are classi�ed correctly� At the local minima� one of the
patterns is misclassi�ed� which leads to a much higher local temperature� Simulated annealing
and Langevin equations have a �global temperature�� i�e�� the same local temperature at all
minima� This di�erence suggests that the intrinsic noise of on�line learning makes it relatively
more di�cult to escape from lower lying minima and is therefore favorable�

To test the validity of this statement� we will compare on�line learning with Langevin learn�
ing� a discretized version of the Langevin equation ���� where Gaussian white noise � is added
to the gradient of the total error�

�w � ��trE	w
 �
p
�T �t � � 	�


All ��� learning networks start at a local minimum where four out of �ve patterns are
classi�ed correctly� For di�erent values of the learning parameter � and temperature T 	we keep
�t� � and do not take into account that Langevin learning is about p� � times slower
� we
calculate the mean �rst passage time � into a region of weight space where all �ve patterns
are classi�ed correctly� i�e�� where the output has the correct sign for all �ve patterns� and the
average error for ��� � t � ��� � For a faster escape out of the local minimum� one would like
to choose a large learning parameter 	high temperature
� for a low asymptotic error a small
learning parameter 	low temperature
� As can be seen from �gure �� on�line backpropagation is
clearly better in dealing with this con�ict� a lower 	average
 error can be reached in a shorter
time�

� Quantitative prediction of global features�

In the previous section we used local expansions of the master equation for a qualitative explana�
tion of why on�line backpropagation might be a useful global minimization strategy if compared
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Figure �� Logarithm of mean �rst passage times� starting from a local minimum into a region where all
�ve patterns are classi�ed correctly� versus one over the learning parameter� On�line �upper line� and
Langevin learning �lower line�� Theory based on only drift and di�usion cannot predict these curves�

with adding homogeneous noise� Now we would like to investigate whether we can apply any of
these approaches to make quantitative statements about global properties� Therefore we suggest
to again compare on�line learning with Langevin learning ���	 but now with 
t� � and inho�

mogeneous noise �	 chosen such that the drift vectors and di�usion matrices for both learning
procedures are exactly equal� We start with an ensemble of �� networks at the local minimum
and calculate the mean �rst passage times into the region of weight space where all �ve patterns
are classi�ed correctly� Existing approaches �see e�g� ��	 	 �	 ��� try to compute global proper�
ties of on�line learning using only the drift vector and the di�usion matrix	 i�e�	 cannot make a
di�erence between both learning procedures�

As can be seen from the results in �gure �	 where the logarithm of the mean �rst passage times
is plotted as a function of the reciprocal value of the learning parameter	 the existing approaches
are not sophisticated enough� The graphs of on�line and Langevin learning do not have the same
slope �as suggested in ���	 nor do they converge in the limit of small learning parameters � �as
suggested in ��	 �	 ���� So	 although Fokker�Planck approaches	 only based on drift and di�usion	
can be used for a quantitative analysis of local properties of backpropagation �section �� and
possibly also for a qualitative explanation of global features �section ��	 an application of these
approaches to calculate global properties of on�line backpropagation is doomed to fail �section ���

Appendix

The network	 shown in �gure ��a�	 has N�� adaptive elements	 combined in the weight vector
w � �w��� w��� w��� w��� w��� w��� w��� w��� w���

T 	 two variable inputs	 x� and x�	 and �xed in�
puts x��y���� to incorporate thresholds� Outputs are given by �zj�xj for the hidden units
and zj�yj for the output unit�

yi � tanh

�
�

�X
j��

wijzj

�
� �

To prevent the explosion of the weights	 we add a so�called bias �with ������ and ������ to
the squared backpropagation error�
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Figure �� �a� Network structure� �b� XOR problem with one additional pattern�

After ���	 we choose the set of p
� training patterns sketched in �gure ��b� Circles indicate
negative desired output x�

�

����	 crosses positive output x�

�

��� It is the usual XOR truth

table with an additional pattern at the origin Now the error potential ��� has not only global
minima	 but also deep local minima The thick lines in �gure ��b� show the separation lines of
the hidden units that lead to the optimal solution �all �ve patterns correctly classi�ed�	 the thin
lines those corresponding to the local minima �one pattern misclassi�ed�
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