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Abstract

The bias�variance decomposition of mean�squared error is well under�
stood and relatively straightforward� In this note a similar simple decom�
position is derived� valid for any kind of error measure that� when using
the appropriate probability model� can be derived from a Kullback�Leibler
divergence or loglikelihood�

Introduction

Finding bias�variance decompositions for all kinds of error measures or loss
functions is an active area of research� The decomposition for mean�squared
error is well�known and easily derived �see e�g� �Geman� Bienenstock � Doursat
	

��
� Recently� several suggestions have been made for other loss functions
such as zero�one loss �see �Breiman 	

�� Dietterich � Bakiri 	

�� Friedman
	

�� James � Hastie 	

�� Kohavi � Wolpert 	

�� Tibshirani 	

�� Wolpert
	

�� and references therein
� The generalization of the decomposition for
mean�squared error to a decomposition for zero�one loss depends on one�s de��
nition of desirable properties for the bias and the variance term� In this note�
we will follow the requirements and de�nitions stated in �James � Hastie 	

���
Applying these de�nitions to the Kullback�Leibler divergence� we will arrive at
a simple generalization of the decomposition for mean�squared error�

Theory

Let Y be a random variable� which may be either discrete or continuous� We will
proceed as if Y is continuous� where the discrete case follows immediately if one
replaces integrals by summations and �probability densities� by �probability
distributions�� q�y� is de�ned as the target probability density function that
Y � y� �p�y� is an estimator of this density� For example� �p�y� may correspond
to a probability statement derived from the output of a neural network �see the
examples below�� We have a �possibly in�nite� ensemble of such estimators�
Expectation with respect to this ensemble is indicated by the operator E� We
use the Kullback�Leibler divergence

K�q� �p� �
Z
dy q�y� log

�
q�y�

�p�y�

�
�	�

	



to measure the distance between densities �p�y� and q�y�� The goal is to �nd a
decomposition of the error EK�q� �p� in a bias and variance term�

In the usual setting� the ensemble consists of models that are obtained
through application of a learning algorithm on di�erent training sets� gener	
ated from the same problem domain� In a decomposition of the average error
of these models� the bias is supposed to measure how closely the learning al	
gorithm
s average guess matches the target and the variance how much the
learning algorithm
s guess �bounces around� for di�erent training sets �Kohavi

 Wolpert ������ Modi�cations on a learning algorithm tend to have an oppo	
site e�ect on the bias and the variance� an increase in the number of degrees of
freedom usually leads to a smaller bias and a higher variance�

Note that� contrary to most other papers on bias�variance decompositions�
we do not write the loss function as a direct measure of the distance between
a model
s output and a target� Instead we �rst translate the model
s output
to a probability statement and then de�ne the loss function as the Kullback	
Leibler divergence between this probability statement and a target probability
�see below for the straightforward generalization to the case where the target
probability q�y� is unknown and only a realization Y � t is provided�� A similar
approach is pursued in �Wolpert ������

As suggested in �James 
 Hastie ������ we start the decomposition by
de�ning the variance as the smallest average distance� in this case the smallest
average Kullback	Leibler divergence� between an estimator �p�y� and some �av	
erage model� �p�y�� The asymmetry of the Kullback	Leibler divergence forces
us to be more precise� We keep the densities �p�y� in the role of estimators
and de�ne the average model as the target density that leads to the smallest
possible Kullback	Leibler divergence between the target and the estimators�

variance � min
a�
R
dy a�y���

EK�a� �p� � EK��p� �p� � ���

Introducing a Langrange multiplier for the constraint
R
dy a�y� � � and taking

the functional derivative to a�y�� we easily obtain for the average model

�p�y� �
�

Z
exp�E log �p�y�� � ���

with Z a normalization constant independent of y� In other words� the average
model �p�y� is a �normalized� geometric mean of the densities �p�y�� rather than a
arithmetic mean� as for example proposed in �Hall ����� Wolpert ������ In the
literature on combining experts
 probability statements� ��� is called a logarith	
mic opinion pool �see e�g� �Bordley ����� Genest 
 Zidek ����� Heskes �����
or �Jacobs ����� for the similar but somewhat more involved supra Bayesian
techniques�� A disadvantage of the logarithmic opinion pool is that if any of
the experts assigns probability zero to a particular outcome� the average model
assigns probability zero� independent of what the other experts claim� This
property of the logarithmic opinion pool� however� is perfectly consistent with
a Bayesian point of view� and is only a drawback if the densities �p�y� are not
carefully estimated �Bordley ������

�Whenever a Bayesian assigns probability zero or one� all further discussion is closed� no
amount of new information can ever change his mind �Bordley ����	




The bias is de�ned as the distance K�q� �p� between the average model and
the target distribution� Substituting ��� into ��� we obtain

bias 	 K�q� �p� 	 EK�q� 
p� � logZ �

Using ���� the second term on the righthand side can be transformed into

logZ 	 log

�
exp
E log 
p�y��

�p�y�

�
�y��p�y���

	 E

�Z
dy �p�y� log

�

p�y�

�p�y�

��
	 �EK��p� 
p� 	 � variance �

with the variance de�ned in ���� Rearrangement of terms then gives the desired
decomposition�

error 	 EK�q� 
p� 	 K�q� �p� � EK��p� 
p� 	 bias � variance � ���

Other bias�variance decompositions often include a term measuring the intrinsic
noise� which is a lower bound on the error that can be obtained by any learning
algorithm� A learning algorithm which reproduces the probability distribution
q�y� has Kullback�Leibler divergence equal to zero� This explains why there is
no intrinsic noise term in ����

Equation ��� gives a decomposition for the Kullback�Leibler divergence be�
tween probability densities� � Now suppose that we do not know the complete
target distribution q�y�� but only have a particular observation Y 	 t� In that
case� it is more appropriate to consider the loglikelihoods log 
p�t� for which we�
following the same lines� obtain

�E log 
p�t� 	 � log �p�t� �EK��p� 
p� � ���

The �rst term on the righthand side is the error of the average model� the second
term the variance of the models in the ensemble� For a further decomposition
of the error of the average model into an intrinsic noise term and a bias term�
we have to integrate again over the probability density generating the targets��
This then yields

error 	 �E

�Z
dt q�t� log 
p�t�

�
	 �

Z
dt q�t� log q�t� �K�q� �p� � EK��p� 
p�

	 intrinsic noise � bias � variance � ���

The decompositions ��� and ��� only di�er in their de�nition of the error func�
tion� With the error de�nition in ���� the intrinsic noise term is equal to the
Shannon entropy of the density q�y�� In the following examples� we will illus�
trate the decomposition ��� for a single observation t�

�If we de�ne the error between the estimated probability �p�y� and target q�y� �the other way
around�� i	e	� K�q� �p� �

R
dy �p�y� log
�p�y��q�y��� we obtain exactly the same decomposition�

but with as the average model the linear opinion pool �p�y� 
 E�p�y� 
see e	g	 �Genest �
Zidek ����� Jacobs ����� for a discussion of linear opinion pools�	 This error measure� however�
is much less in use since it cannot be transformed into a loglikelihood for a ��nite set of�
observation�s� instead of a target probability	

�This can be easily illustrated on the mean�squared error	 Suppose �see the �rst example
below� that the average model predicts �m when the target is t	 Without knowing the distri�
bution from which the targets t are drawn� it is impossible to decompose the error � �m� t��

into a separate noise and bias term	



Examples

The mean�squared error is a special case of the Kullback�Leibler divergence if
we interpret model outputs �m as estimates of the mean of a normal distribution
with some �xed variance ���

�p�y� �

r
	


���
exp

�
��y � �m��


��

�
�

The logarithmic opinion pool ��� yields as the average model �p�y� a Gaussian
with the same standard deviation and mean �m � E �m
 as expected� The de�
composition ��� is
 up to an irrelevant proportionality constant
 equivalent to
the usual one as e�g� in �Geman et al� 	��
��

E
h
� �m� t��

i
� � �m� t�� � E

h
� �m� �m��

i
�

As a generalization
 we consider the case where we have estimates �m and ��� for
both the mean and the variance �see e�g� �Bishop � Qazaz 	���
 Williams 	����
and references therein�� The average model �p�y� is still a Gaussian with mean
�m and variance ��� obeying

	

���
� E

�
	

���

�
and

�m

���
� E

�
�m

���

�
�

i�e�
 the logarithmic opinion pool ��� leads to an averaging of reciprocal variances
and a weighted averaging of the estimated means� The decomposition ��� yields

E

�
� �m� t��

���
� log ���

�
�

�
� �m� t��

���
� log ���

�
� E

�
� �m� �m��

���
� log

�
���

���

��
�

The �rst term between brackets on the righthand side is the error of the average
model
 the second term measures the variance of the di�erent estimators�

A new decomposition is obtained for the cross�entropy or logarithmic scoring
function that can be used for classi�cation purposes� We consider the binary
case with Y a binary random variable
 e�g�
 Y � f�� 	g� In the shorthand
notation �p � �p�	�
 the logarithmic opinion pool ��� yields

log

�
�p

	� �p

�
� E

�
log

�
�p

	� �p

�	
�

i�e�
 the average model can be found by averaging the logits �log�odds� of the
estimated probabilities� Given an observed target t
 the decomposition ��� can
be written

E �t log �p� �	� t� log�	� �p�� �

t log �p� �	� t� log�	� �p�� E

�
�p log

�
�p

�p

�
� �	� �p� log

�
	� �p

	� �p

�	
� ���

This decomposition can be contrasted with the one proposed in �Wolpert 	����

which for the binary case in our notation reads

E �t log �p� �	� t� log�	� �p�� �

t log �p� �	� t� log�	� �p��E

�
t log

�
�p

�p

�
� �	� t� log

�
	� �p

	� �p

�	
� ���



where the average model is the linear opinion pool�� i�e�� �p � E�p� The main
disadvantage of the decomposition ��	 is that the variance term still depends
directly on the target t� Whenever the expectation E is de
ned by averaging
over models optimized on training sets generated from the target distribution�
the variance term in ��	 also depends on the target distribution �see �Wolpert
�

�	 for a full exposition of this point	� However� keeping the operation E


xed� e�g� by keeping the distribution over training sets the same� the variance
in ��	 is independent of the �distribution of the	 target t� whereas the variance
in ��	 does depend on the target t�

Most recent papers on bias�variance decompositions focus on zero�one loss
for classi
cation tasks� Given the target class label t� the loss is � if the model�s
estimate �y equals t and � otherwise� As we will see� we can try to interpret zero�
one loss as a limit case of a loglikelihood�type error� Suppose that we transfer
the classi
cation �y into a probability statement which assigns probability � to
class �y and probability � � � to all other class labels y �� �y�

�p��y	 �

�
� if y � �y�
�� � if y �� �y�

In principle we should normalize this distribution� but it is easy to show that
for small �� this normalization constant can be set to one� We call f�y	 the
fraction of models that assigns the class label y� i�e�� f�y	 � E��y�y � Application
of ��	 then yields in leading order of �

�p��y	 � �max
y� f�y���f�y� � �
	

i�e�� in the limit � � �� the average model is nothing but the majority vote
�y � argmax

y
f�y	� Decomposition ��	 is still valid�

�E log �p��t	 � � log �p��t	 �EK��p�� �p�	 �

If we divide by � log � and take the limit �� � on both sides� we arrive at the
decomposition

�� f�t	 � �f��y	� f�t	� � ��� f��y	� � ���	

Considering the way in which we have arrived at this decomposition for zero�
one loss� we are tempted to call the second term between brackets the variance�
However� in taking the limit � � �� we have lost the interpretation of the

rst term as the error of the average model� The crux is that the average
model �
	 in leading order of � still depends on the classi
cation frequencies
f�y	 which� for that reason� also appear in ���	� The average model for � � ��
on the other hand� only depends on the majority vote and is independent of
the exact frequencies f�y	� For a further decomposition of the 
rst term into
a bias term and an inherent noise term� we have to sum over the distribution
q�t	 that generated the class labels t� Most authors de
ne the inherent noise
term to be the error of the Bayes classi
er and ascribe the remaining term to

�Equation ��� is� of course� true for any de�nition of the average model �p� Only by averaging
the logits� one can make the variance independent of the target t and arrive at �	��



the bias� The exact decomposition seems to be somewhat arbitrary� since in
practice one is only interested in changes in the bias and variance terms rather
than in their absolute values� Our de�nition of variance is equivalent to those
given in �Tibshirani ����� James 	 Hastie ���
��

Discussion

We slightly reformulate what in �James 	 Hastie ���
� are called obvious re�
quirements for a bias
variance decomposition� These requirements are similar
in spirit to the desiderata stated in �Wolpert ���
��

�� The decomposition for the mean�squared error is a special case�

�� The variance does not depend on the target distribution directly� Fur�
thermore it is nonnegative and zero i� all estimators are equivalent�

�� The bias only depends on the target distribution and the �average model��
which is de�ned as the model minimizing the variance�

The main result of this note is that� for any likelihood�based estimator� it is
indeed possible to �nd a decomposition ful�lling these requirements� To see
that this is nontrivial� we will sketch how many decompositions are derived
�see e�g� �Dietterich 	 Bakiri ����� Kohavi 	 Wolpert ����� Wolpert ���
���
For convenience� we will stick to the probabilistic notation� One starts by
translating the models �p�y� into some average model �p�y� and de�nes the bias
to be the error between this model and the target� minus the lowest error that
can be obtained by any learning algorithm� In our notation we have

bias � K�q� �p��K�q� q� �

The variance is de�ned as the part of the error that cannot be attributed to
the noise and the bias�

variance � EK�q� �p��K�q� �p� �

In principle� there is no need for this variance to ful�ll the second require�
ment� In fact� this is where previously proposed bias
variance decompositions
of Kullback�Leibler divergence �see e�g� �Hall ���
� Wolpert ���
�� have to give
in� However� we have shown that for any likelihood�based estimator

�� there is an average model �p�y� such that the variance no longer directly
depends on the target density q�y��

�� this variance is the average error to this average model�

�� this average model is the model that yields the lowest variance�

The mean�squared error� for which these nice properties have been known for
long� appears to be nothing but a special case�

Only in some limit case� zero�one loss can be interpreted as a kind of
Kullback�Leibler divergence� The resulting decomposition still obeys the �rst



and second requirement� but the limiting operation �destroys� the third re�
quirement� the bias is no longer just a function of the average model� None
of the bias�variance decompositions for zero�one loss suggested in the litera�
ture 	see 	Breiman 
���� Dietterich 
 Bakiri 
���� Friedman 
���� Kohavi 

Wolpert 
���� Tibshirani 
���� Wolpert 
���� and 	James 
 Hastie 
���� for
a discussion of most of them� satis�es all three requirements�� Most of them
either de�ne the bias and take for granted that the variance depends on the dis�
tribution of targets 	the approach sketched in the beginning of this discussion��
or start by de�ning the variance and are left with the di�cult task to interpret
the bias� The natural decomposition for likelihood�based estimators obtained
in this note� may be seen as an argument in favor of the latter approach�
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