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CHAPTER 1

Introduction

In this chapter, we introduce some of the basic concepts of reinforcement
learning and Markov decision processes, on which we rely in the rest of this
thesis. We also take a brief look on the important problems that we encounter
in this thesis and describe our proposed solutions for those problems.

Consider the problem of navigating an autonomous mobile robot in an un-
known world. The world may involve several static and dynamic objects in-
cluding other robots or humans, each of them may have some influence on the
behavior of robot. The robot may also influence the world through her con-
trol actions. However, she does not have access to any map or a model of her
world for planning, nor she has any idea that to what extent her actions may
change the world. On the other hand, the robot is equipped with a set of sensors,
which provides her with some information regarding the state of the world. This
information may involve the location of mobile robot in the world, e.g., through
a GPS device, her distance from the nearby objects or some visual information
such as digital images, video, etc. In addition, upon taking a control action, the
world may provide the robot with a reward or a punishment (negative reward),
depending on her performance. For instance, the robot may be rewarded for
finding a treasure or locating the place of an accident, and she may be punished
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2 Chapter 1: Introduction

for hitting an obstacle or consuming too much energy, i.e., taking large control
actions. The robot may use these rewards and punishments for optimizing her
performance. For example, consider the case that upon hitting an obstacle the
robot receives a large negative reward. She can make use of this bad experience
to avoid the obstacle in the next encounter. For that she may need to build
some kind of map or model of the world using the sensory data. Based on this
model, she can find a sequence of control actions, which minimizes the chance
of hitting the obstacle.

The above example presents some of the features of the kind of problems we
deal with in reinforcement learning (RL) (Sutton and Barto, 1998). In RL, sim-
ilar to the example of the mobile robot, the agent often has no substantive prior
knowledge of the outside world. However, she can discover the world through
trial and error by interacting with her surrounding environment: the agent may
try different control policies, i.e., a sequence of control actions, observe the
changes in the state of the world and accumulate the rewards. Based on these
information, she aims at finding the optimal policy, i.e., the policy which opti-
mizes the long-term performance. The long-term performance of the agent, also
known as the value function, is usually quantified as the expected value of the
(weighted)-sum of future rewards upon taking a control policy from each state.
The problem of finding the optimal policy or the optimal value function from a
set of observations, control actions and rewards is one of the main challenges in
the field of RL.

In this thesis, we consider the problem of reinforcement learning in the
infinite-horizon discounted reward Markov decision processes (MDPs) (Puter-
man, 1994b). In particular, we focus on finite state and action problems, where
it is possible to store the (action)-value function for all state-(action) pairs. Nev-
ertheless, our algorithms and theoretical results can be extended to large-scale
(possibly continuous state-action) problems by the means of function approxi-
mation and Monte-Carlo sampling. In Chapter 2, we consider the possibility of
such an extension for dynamic policy programming (DPP) algorithm. Through-
out this thesis, we assume that the state of the world is fully observable by the
agent, i.e., we do not consider the partial observable problems where the obser-
vation of state is incomplete or corrupted by the noise. In addition, we usually
assume that we have access to a stochastic oracle (generative model) which can
generate state-transition samples for every state-action pair on the request of
the RL agent. This is a common assumption in the theory of RL which sim-
plifies the analysis of RL algorithms (Farahmand et al., 2008b; Even-Dar and
Mansour, 2003; Kearns and Singh, 1999). Nonetheless, in Chapter 3 we relax
this assumption by extending our results to a more realistic setting, where the
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samples are streams of state-action pairs generated by following a control policy.
Many RL methods rely on the idea of dynamic programming (DP) for es-

timating the optimal policy or the optimal value function (Bertsekas, 2007a).
Dynamic programming aims at finding the optimal value function by iterating
some initial value function through the Bellman recursion until it converges to
the the optimal value function. For the discounted MDPs, one can prove that DP
converges to the optimal value function exponentially fast (Bertsekas, 2007b).
However, in large-scale problems the exact DP may become computationally in-
feasible since the computational cost of exact DP may scale quadratically with
the size of state space. Also, DP relies on an explicit knowledge of the state-
transition model and reward function which is often not available in RL. A
common approach to deal with these problems is through approximate dynamic
programming (ADP) which combines DP with the function approximation tech-
niques and the Monte-Carlo simulation. ADP algorithms such as approximate
policy iteration (API) and approximate value iteration (AVI) have been suc-
cessfully applied to many real-world problems. Furthermore, the asymptotic
and finite-time behavior of ADP algorithms has been throughly investigated in
previous studies (Farahmand et al., 2010; Thiery and Scherrer, 2010; Munos and
Szepesvári, 2008; Antos et al., 2007; Munos, 2005, 2003; Bertsekas and Tsitsiklis,
1996).

In Chapter 2, we introduce a new convergent policy iteration algorithm,
called dynamic policy programming (DPP). DPP is different from the standard
policy iteration in the sense that it does not rely on the Bellman equation to
estimate the value function. Instead, DPP iterates the parametrized policy from
the DPP update rule. We prove that the exact variant of DPP rapidly converges
to the optimal policy. We also investigate the behavior of DPP in the presence
of approximation, where we prove theoretical guarantees for approximate DPP
in the form of asymptotic and finite-iteration performance-loss bounds. Our
theoretical results indicate that the performance loss of DPP, at each iteration,
depends on the average of the approximation errors of all previous iterations.
This is in contrast to the previous bounds of AVI and API, which are expressed
in terms of the supremum of the errors of previous iterations. The bound with
dependency on the average error can be useful, when we rely on sampling to
estimate the optimal policy. This is due to the fact that the average of some
random variables, in this case sampling errors, is often smaller in size than their
supremum.

RL algorithms may be considered as model based or model free. In model-
based RL, we first estimate the state-transition model and the reward function
using a batch of state-transition and reward samples. We then plug this em-
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pirical model in to the Bellman equation and estimate the value function and
the optimal policy through DP methods such as value iteration and policy itera-
tion (Wiering and van Otterlo, 2012a). In model-free methods we directly aim at
estimating the optimal value function or the optimal policy without resorting to
a model of the MDP. Examples of model-free methods are Q-learning (Watkins
and Dayan, 1992), actor-critic (Barto et al., 1983) and policy gradient meth-
ods (Sutton et al., 1999). Model-free methods, in general, have better memory
requirement than Model-based methods since they do not need to store the
model data. On the other hand, the existing model-free RL algorithms such as
Q-learning have been proven to be less efficient than their model-based coun-
terparts in terms of the number of samples required to find a near-optimal
policy (Even-Dar and Mansour, 2003; Kakade, 2004).

In Chapter 3, we introduce a new model-free RL algorithm called speedy Q-
learning (SQL) to address the problem of slow convergence in the standard Q-
learning. Like Q-learning, SQL relies on stochastic approximation (Kushner and
Yin, 2003) for estimating the optimal action-value function in an incremental
fashion. However, SQL differs form Q-learning by making use of two previous
estimates of the optimal action value-function. This allows SQL to closely follow
the Bellman operator which leads to a fast rate of convergence of 1/

√
k, where

k is the number of iterations. Furthermore, one can show that SQL is superior
to model-based methods such as Q-value iteration in terms of the number of
computations required to achieve a near-optimal estimate of the optimal value
function.

Finally, an important theoretical problem in the field of reinforcement learn-
ing is to analyze the finite-time performance of RL algorithms. One may quan-
tify the finite-time performance of an RL algorithm in terms of the number of
samples required by the algorithm to find a near optimal policy, also known as
the sample complexity of the algorithm (Kakade, 2004). There exist some pre-
vious results which prove bounds on the sample complexity of different model-
based and model-free methods. In particular, the sample complexity of RL
methods under the probably approximately correct (PAC) model has been ex-
tensively studied in several previous works (Munos and Szepesvári, 2008; Even-
Dar et al., 2006; Kakade, 2004; Even-Dar and Mansour, 2003; Kearns and Singh,
1999). The best PAC-style upper-bound on the sample complexity of reinforce-
ment learning matches the lower-bound of RL (Even-Dar et al., 2006) in terms
of almost all the parameters of interest. However, in the case of discounted
MDP with a discount factor γ, there still exists a gap of β2 between the best
previously-known upper-bound and lower bound, where β = 1/(1 − γ) is the
effective horizon of the discounted MDP.
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In Chapter 4, we focus on closing the above-mentioned gap between the
upper bound and the lower bound of model-based RL algorithms. We prove
new upper bounds on the sample complexity of two well-known RL algorithms,
the model-based value iteration (QVI) and the model-based policy iteration (PI)
which improve on the best previous result by a factor of β. We also prove a
new general lower bound on the sample complexity of every RL algorithm which
matches the upper bound up to a multiplicative factor. For the upper bound
we rely on the Bernstein’s inequality which bounds the difference between the
empirical mean and the true mean of a random variable in terms of the variance
of the random variable. This combined with the fact that the variance of sum
of discounted rewards satisfies a Bellman-like equation leads to a tight upper
bound on the sample complexity of QVI and PI. For the lower-bound, we find a
new hard class of MDPs in which every RL algorithm requires a large number
of samples, as much as required by the upper bound up to a multiplicative
constant, to achieve a near-optimal estimate of the optimal value function on
all entries of the class.





CHAPTER 2

Dynamic Policy Programming

In this chapter, we propose a novel policy iteration method, called dynamic
policy programming (DPP), to estimate the optimal policy in the infinite-
horizon Markov decision processes. DPP is an incremental algorithm that
forces a gradual change in policy update. This allows to prove finite-iteration
and asymptotic !∞-norm performance-loss bounds in the presence of approx-
imation/estimation error which depend on the average accumulated error as
opposed to the standard bounds which are expressed in terms of the supremum
of the errors. The dependency on the average error is important in problems
with limited number of samples per iteration, for which the average of the
errors can be significantly smaller in size than the supremum of the errors.
Based on these theoretical results, we prove that a sampling-based variant
of DPP (DPP-RL) asymptotically converges to the optimal policy. Finally,
we illustrate numerically the applicability of these results on some benchmark
problems and compare the performance of the approximate variants of DPP
with some existing reinforcement learning (RL) methods.a

aThis chapter is based on (Azar and Kappen, 2012) and (Azar et al., 2011a) (see the
publications by the author).

7



8 Chapter 2: Dynamic Policy Programming

2.1 Introduction

Many problems in robotics, operations research and process control can be rep-
resented as a control problem that can be solved by finding the optimal policy
using dynamic programming (DP). DP is based on estimating some measures
of the value of state-action Q∗(x, a) through the Bellman equation. For high-
dimensional discrete systems or for continuous systems, computing the value
function by DP is intractable. The common approach to make the computation
tractable is to approximate the value function using function-approximation
and Monte-Carlo sampling (Szepesvári, 2010; Bertsekas and Tsitsiklis, 1996).
Examples of such approximate dynamic programming (ADP) methods are ap-
proximate policy iteration (API) and approximate value iteration (AVI) (Bert-
sekas, 2007b; Lagoudakis and Parr, 2003; Perkins and Precup, 2002; Farias and
Roy, 2000). In addition to these approaches, there are methods which do not
rely exclusively on an approximate value function. These methods include, for
instance, actor-critic methods (Barto et al., 1983), which explicitly consider
two interacting processes, policy gradient methods (Baxter and Bartlett, 2001;
Sutton et al., 1999), and dual dynamic programming (Wang et al., 2007a,b).

ADP methods have been successfully applied to many real world problems,
and theoretical results have been derived in the form of finite iteration and
asymptotic performance guarantee of the induced policy. In particular, the
formal analysis of these algorithms is usually characterized in terms of bounds on
the difference between the optimal and the estimated value function induced by
the algorithm (performance loss) (Farahmand et al., 2010; Thiery and Scherrer,
2010; Munos, 2005; Bertsekas and Tsitsiklis, 1996). For instance, in the case of
AVI and API, the asymptotic #∞-norm performance-loss bounds in the presence
of approximation error εk can be expressed asb

lim sup
k→∞

‖Q∗ −Qπk‖ ≤
2γ

(1− γ)2
lim sup
k→∞

‖εk‖ , (2.1)

where γ denotes the discount factor, ‖ · ‖ is the #∞-norm w.r.t. the state-action
pair (x, a) and πk is the control policy at iteration k.

The bound of Equation (2.1) is expressed in terms of the supremum of the
approximation errors. Intuitively, the dependency on the supremum error means
that to have a small overall performance loss the approximation errors of all
iterations should be small in size, i.e., a large approximation error in only one

bFor AVI the approximation error εk is defined as the error associated with the approx-
imation of the Bellman optimality operator. In the case of API, εk is the policy evaluation
error (see Farahmand et al., 2010; Bertsekas and Tsitsiklis, 1996, chap. 6, for more details).
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iteration can derail the whole learning process. This can cause a major problem
when the approximation error εk arises from sampling. In many problems of
interest, the sampling error can be large and hard to control, since only a limited
number of samples can be used at each iteration. Also, even in those cases where
we have access to large number of samples, it may be difficult, if not impossible,
to control the size of errors for all iterations. This is due to the fact that the
sampling errors are random objects and, regardless of the number of samples
used at each iteration, there is always a fair chance that in some few out-lier
iterations the sampling errors take large values in their interval of definition. In
all those cases, a bound which depends on the average accumulated error ε̄k =
1/(k + 1)

∑
k
j=0εj instead of the supremum error is preferable. The rationale

behind this idea is that the average of the sum of random variables, under some
mild assumptions, can be significantly smaller in size than the supremum of the
random variables. Also, the average error ε̄k is less sensitive to the outliers than
the supremum error. Therefore, a bound which depends on the average error
can be tighter than the one with dependency on the supremum error. To the
best of authors’ knowledge, there exists no previous work that provides such a
bound.

In this chapter, we propose a new incremental policy-iteration algorithm
called dynamic policy programming (DPP). DPP addresses the above problem
by proving the first asymptotic and finite-iteration performance loss bounds with
dependency on ‖ε̄k‖. This implies the previously mentioned advantages in terms
of performance guarantees. The intuition is that DPP, by forcing an incremental
change between two consecutive policies, accumulates the approximation errors
of all the previous iterations, rather than just minimizing the approximation
error of the current iteration. We also introduce a new RL algorithm based
on the DPP update rule, called DPP-RL, and prove that it converges to the
optimal policy with the convergence rate of order 1/

√
k. This rate of convergence

leads to a PAC (“probably approximately correct”) sample-complexity bound
of order O(1/((1 − γ)6ε2)) to find an ε-optimal policy with high probability,
which is superior to the best existing result of standard Q-learning (Even-Dar
and Mansour, 2003). See Section 2.6 for a detailed comparison with incremental
RL algorithms such as Q-learning and SARSA.

DPP shares some similarities with the well-known actor-critic (AC) method
of Barto et al. (1983), since both methods make use of an approximation of the
optimal policy by means of action preferences and soft-max policy. However,
DPP uses a different update rule which is only expressed in terms of the action
preferences and does not rely on the estimate of the value function to criticize
the control policy.
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The contribution of this work is mainly theoretical, and focused on the prob-
lem of estimating the optimal policy in an infinite-horizon MDP. Our setting
differs from the standard RL in the following: we rely on a generative model
from which samples can be drawn. This means that the agent has full control on
the sample queries that can be made about for any arbitrary state. Such an as-
sumption is commonly made in theoretical studies of RL algorithms (Farahmand
et al., 2008a; Munos and Szepesvári, 2008; Kearns and Singh, 1999) because it
simplifies the analysis of learning and exploration to a great extent. We com-
pare DPP empirically with other methods that make use of this assumption.
The reader should notice that this premise does not mean that the agent needs
explicit knowledge of the model dynamics to perform the required updates, nor
does it need to learn one.

This chapter is organized as follows. In Section 2.2, we present the no-
tation which is used in this chapter. We introduce DPP and we investigate
its convergence properties in Section 2.3. In Section 2.4, we demonstrate the
compatibility of our method with the approximation techniques by generalizing
DPP bounds to the case of function approximation and Monte-Carlo sampling.
We also introduce a new convergent RL algorithm, called DPP-RL, which relies
on a sampling-based variant of DPP to estimate the optimal policy. Section 2.5,
presents numerical experiments on several problem domains including the opti-
mal replacement problem (Munos and Szepesvári, 2008) and a stochastic grid
world. In Section 2.6 we briefly review some related work. Finally, in Section
2.7, we summarize our results and discuss some of the implications of our work.

2.2 Preliminaries

In this section, we introduce some concepts and definitions from the theory of
Markov decision processes (MDPs) and reinforcement learning (RL) as well as
some standard notation.c We begin by the definition of the #2-norm (Euclidean
norm) and the #∞-norm (supremum norm). Assume that Y is a finite set. Given
the probability measure µ over Y, for a real-valued function g : Y → R, we shall
denote the #2-norm and the weighted #2,µ-norm of g by ‖g‖22 !

∑
y∈Y g(y)2 and

‖g‖22,µ !
∑

y∈Y µ(y)g(y)2, respectively. Also, the #∞-norm of g is defined by

‖g‖ ! maxy∈Y |g(y)| and log(·) denotes the natural logarithm.

cFor further reading see Szepesvári (2010).
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2.2.1 Markov Decision Processes

A discounted MDP is a quintuple (X,A, P,R, γ), where X and A are, respec-
tively, the state space and the action space. P shall denote the state transition
distribution and R denotes the reward kernel. γ ∈ [0, 1) denotes the discount
factor. The transition P is a probability kernel over the next state upon taking
action a from state x, which we shall denote by P (·|x, a). R is a set of real-valued
numbers. A reward r(x, a) ∈ R is associated with each state x and action a.

Assumption 2.1 (MDP Regularity). We assume that X and A are finite sets
with the cardinalities |X| and |A|, respectively. Also, the absolute value of the
immediate reward r(x, a) is bounded from above by Rmax > 0 for all (x, a) ∈ Z.

Remark 2.1. To keep the representation succinct, we make use of the short-
hand notation Z for the joint state-action space X×A. We also denote Rmax

/
(1−

γ) by Vmax.

A Markovian policy kernel determines the distribution of the control action
given the current state. The policy is called stationary if the distribution of
the control action is independent of time. Given the current state x, we shall
denote the Markovian stationary policy, or in short only policy, by π(·|x). A
policy is called deterministic if for any state x ∈ X there exists some action
a such that π(a|x) = 1. Given the policy π its corresponding value function
V π : X → R denotes the expected total discounted reward in each state x,
when the action is chosen by policy π which we denote by V π(x). Often it is
convenient to associate value functions not with states but with state-action
pairs. Therefore, we introduce Qπ : Z → R as the expected total discounted
reward upon choosing action a from state x and then following policy π, which
we shall denote by Qπ(x, a). We define the Bellman operator Tπ on the action-
value functions by

TπQ(x, a) ! r(x, a) + γ
∑

(y,b)∈Z

P (y|x, a)π(b|y)Q(y, b), ∀(x, a) ∈ Z.

We notice that Qπ is the fixed point of Tπ.
The goal is to find a policy π∗ that attains the optimal value function,

V ∗(x) ! supπ V
π(x), at all states x ∈ X. The optimal value function satis-

fies the Bellman equation:
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V ∗(x) = sup
π(·|x)

∑

y∈X
a∈A

π(a|x) [r(x, a) + P (y|x, a)V ∗(y)]

= max
a∈A



r(x, a) +
∑

y∈X

P (y|x, a)V ∗(y)




, ∀x ∈ X. (2.2)

Likewise, the optimal action-value function Q∗ is defined by Q∗(x, a) =
supπ Q

π(x, a) for all (x, a) ∈ Z. We shall define the Bellman optimality operator
T on the action-value functions as

TQ(x, a) ! r(x, a) + γ
∑

y∈X

P (y|x, a)max
b∈A

Q(y, b), ∀(x, a) ∈ Z.

Q∗ is the fixed point of T.
Both T and Tπ are contraction mappings, w.r.t. the supremum norm, with

the factor γ (Bertsekas, 2007b, chap. 1). In other words, for any two real-valued
action-value functions Q and Q′ and every policy π, we have

‖TQ− TQ′‖ ≤ γ ‖Q−Q′‖ , ‖TπQ− TπQ′‖ ≤ γ ‖Q−Q′‖ . (2.3)

The policy distribution π defines a right-linear operator Pπ· as

(PπQ)(x, a) !
∑

(y,b)∈Z

π(b|y)P (y|x, a)Q(y, b), ∀(x, a) ∈ Z.

Further, we define two other right-linear operators π· and P · as

(πQ)(x) !
∑

a∈A

π(a|x)Q(x, a), ∀x ∈ X,

(PV )(x, a) !
∑

y∈X

P (y|x, a)V (y), ∀(x, a) ∈ Z.

We define the max operator M on the action value functions as (MQ)(x) !
maxa∈A Q(x, a), for all x ∈ X. Based on the new definitions one can rephrase
the Bellman operator and the Bellman optimality operator as
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TπQ(x, a) = r(x, a) + γ(PπQ)(x, a), TQ(x, a) = r(x, a) + γ(PMQ)(x, a).
(2.4)

In the sequel, we repress the state(-action) dependencies in our notation
wherever these dependencies are clear, e.g., Ψ(x, a) becomes Ψ, Q(x, a) becomes
Q. Also, for simplicity of the notation, we remove some parenthesis, e.g., writing
MQ for (MQ) and PπQ for (PπQ), when there is no possible confusion.

2.3 Dynamic Policy Programming

In this section, we introduce and analyze the DPP algorithm. We first present
the dynamic policy programming (DPP) algorithm in Subsection 2.3.1 (see Ap-
pendix A for some intuition on how DPP can be related to the Bellman equa-
tion). we then investigate the finite-iteration and the asymptotic behavior of
DPP and prove its convergence in Subsection 2.3.2.

2.3.1 Algorithm

DPP is a policy iteration algorithm which represents the policy πk in terms
of some action preference numbers Ψk (Sutton and Barto, 1998, chap. 2.8).
Starting at Ψ0, DPP iterates the action preferences of all state-action pairs
(x, a) ∈ Z through the following Bellman-like recursion (the pseudo code of
DPP is presented in Algorithm 2.1):

Ψk+1(x, a) = OΨk(x, a) ! Ψk(x, a)− (MηΨk)(x) + r(x, a) + γ(PMηΨk)(x, a),

where O and Mη denote the DPP and the softmax operators, respectively. The
softmax operator Mη is defined on every f : Z → R as

(Mηf)(x) !

∑

a∈A

exp(ηf(x, a))f(x, a)

∑

b∈A

exp(ηf(x, b))
,

where η > 0 is the inverse temperature.
The control policy πk is then computed as a function of Ψk at each iteration

k:
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πk(a|x) =
exp(ηΨk(x, a))∑

b∈A

exp(ηΨk(x, b))
, ∀(x, a) ∈ Z. (2.5)

Based on (2.5) one can re-express the DPP operator on the action preferences
Ψk as

Ψk+1(x, a) = Ψk(x, a) + TπkΨk(x, a)− πkΨk(x), ∀(x, a) ∈ Z. (2.6)

Algorithm 2.1 (DPP) Dynamic Policy Programming
Require: Action preferences Ψ0(·, ·), γ and η

for k = 0, 1, 2, . . . ,K − 1 do $ main loop
for each (x, a) ∈ Z do $ compute the control policy

πk(a|x) :=
exp(ηΨk(x, a))∑

b∈A

exp(ηΨk(x, b))

end for
for each (x, a) ∈ Z do $ compute the new action-preferences

Ψk+1(x, a) := Ψk(x, a) + TπkΨk(x, a)− πkΨk(x) $ DPP update rule
end for

end for
for each(x, a) ∈ Z do $ compute the last policy

πK(a|x) := exp(ηΨK(x, a))∑

b∈A

exp(ηΨK(x, b))

end for
return πK

2.3.2 Performance Guarantee

In this subsection, we investigate the finite-iteration and asymptotic behavior
of Algorithm 2.1. We begin by proving a finite-iteration performance guarantee
for DPP:

Theorem 2.1 ( The #∞-norm performance loss bound of DPP). Let Assump-
tion 2.1 hold. Also, assume that Ψ0 is uniformly bounded by Vmax for all
(x, a) ∈ Z, then the following inequality holds for the policy induced by DPP
at iteration k ≥ 0:

‖Q∗ −Qπk‖ ≤
2γ
(
4Vmax +

log(|A|)
η

)

(1− γ)2(k + 1)
.
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Proof See Appendix B.1.

Note that the DPP algorithm converges to the optimal policy for every η > 0
and choosing a different η only changes the rate of convergence. The best rate of
convergence is achieved by setting η = ∞, for which the softmax policy and the
softmax operator M are replaced with the greedy policy and the max-operator
M, respectively. Therefore, for η = +∞ the DPP recursion is re-expressed as

Ψk+1(x, a) = Ψk(x, a)− (MΨk)(x) + r(x, a) + γ(PMΨk)(x, a).

We must point out that the choice of η < +∞ may be still useful in the pres-
ence of function approximation, where the greedy update rule can be unstable
due to the non-differentiability of the max operator. In fact, our numerical re-
sults in Subsection 2.5.2 suggests that the performance of DPP in the presence
of function approximation is optimized for some finite value of η rather than
η = +∞ (see Subsection 2.5.2 for more details).

As an immediate consequence of Theorem 2.1, we obtain the following result:

Corollary 2.1. The following relation holds in limit:

lim
k→+∞

Qπk(x, a) = Q∗(x, a), ∀(x, a) ∈ Z.

In words, the policy induced by DPP asymptotically converges to the optimal
policy π∗. The following corollary shows that there exists a unique limit for the
action preferences in infinity if the optimal policy π∗ is unique.

Corollary 2.2. Let Assumption 2.1 hold and k be a non-negative integer. As-
sume that the optimal policy π∗ is unique and let Ψk(x, a), for all (x, a) ∈ Z, be
the action preference after k iteration of DPP. Then, we have:

lim
k→+∞

Ψk(x, a) =

{
V ∗(x) a = a∗(x)
−∞ otherwise

, ∀x ∈ X.

Proof See Appendix B.2.

Notice that the assumption on the uniqueness of the optimal policy π∗ is
not required for the main result of this section (Theorem 2.1). Also, the fact
that in Corollary 2.2 the action preferences of sub-optimal actions tend to −∞
is the natural consequence of the convergence of πk to the optimal policy π∗,
which forces the probability of the sub-optimal actions to be 0.
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2.4 Dynamic Policy Programming with Approx-

imation

Algorithm 2.1 (DPP) only applies to small problems with a few states and
actions. Also, to compute the optimal policy by DPP an explicit knowledge
of model is required. In many real world problems, this information is not
available. Instead it may be possible to simulate the state transition by Monte-
Carlo sampling and then estimate the optimal policy using these samples. In
this section, we first prove some general bounds on the performance of DPP
in the presence of approximation/estimation error and compare these bounds
with those of AVI and API. We then present new approximate algorithms for
implementing DPP with Monte-Carlo sampling (DPP-RL) and linear function
approximation (SADPP). For both DPP-RL and SADPP we assume that we
have access to the generative model of MDP, i.e., an oracle can generate the next
sample y from P (·|x, a) for every state-action pair (x, a) ∈ Z on the request of
the learner.

2.4.1 The !∞-Norm Performance-Loss Bounds for Approx-
imate DPP

Let us consider a sequence of action preferences {Ψ0,Ψ1,Ψ2, . . . } such that, at
round k, the action preferences Ψk+1 is the result of approximately applying
the DPP operator by the means of function approximation or Monte-Carlo
simulation, i.e., for all (x, a) ∈ Z: Ψk+1(x, a) ≈ OΨk(x, a). The error εk is
defined as the difference of OΨk and its approximation:

εk(x, a) ! Ψk+1(x, a)− OΨk(x, a), ∀(x, a) ∈ Z. (2.7)

Note that this definition of εk is rather general and does not specify the
approximation technique used to compute Ψk+1. In the following subsections,
we provide specific update rules to approximate Ψk+1 for both DPP-RL and
SADPP algorithms which also makes the definition of εk more specific.

The approximate DPP update rule then takes the following forms:
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Ψk+1(x, a) = OΨk(x, a) + εk(x, a)

= Ψk(x, a) + r(x, a) + γPMηΨk(x, a)−MηΨk(x, a) + εk(x, a)

= Ψk(x, a) + TπkΨk(x, a)− πkΨk(x, a) + εk(x, a),
(2.8)

where πk is given by (2.5).
We begin by the finite-iteration analysis of approximate DPP. The following

theorem establishes an upper-bound on the performance loss of DPP in the
presence of approximation error. The proof is based on generalization of the
bound that we established for DPP by taking into account the error εk:

Theorem 2.2 (Finite-iteration performance loss bound of approximate DPP).
Let Assumption 2.1 hold. Assume that k is a non-negative integer and Ψ0 is
bounded by Vmax. Further, define εk for all k by (2.7) and the accumulated error
Ek as

Ek(x, a) !
k∑

j=0

εj(x, a), ∀(x, a) ∈ Z. (2.9)

Then the following inequality holds for the policy induced by approximate
DPP at round k:

‖Q∗ −Qπk‖ ≤
1

(1− γ)(k + 1)




2γ
(
4Vmax +

log(|A|)
η

)

(1− γ)
+

k∑

j=0

γk−j‖Ej‖



 .

Proof See Appendix C.

Taking the upper-limit yields corollary 2.3.

Corollary 2.3 (Asymptotic performance-loss bound of approximate DPP). De-
fine ε̄ ! lim supk→∞ ‖Ek‖

/
(k + 1). Then, the following inequality holds:

lim sup
k→∞

‖Q∗ −Qπk‖ ≤
2γ

(1− γ)2
ε̄. (2.10)
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The asymptotic bound is similar to the existing results of AVI and API
(Thiery and Scherrer, 2010; Bertsekas and Tsitsiklis, 1996, chap. 6):

lim sup
k→∞

‖Q∗ −Qπk‖ ≤
2γ

(1− γ)2
εmax,

where εmax = lim supk→∞ ‖εk‖. The difference is that in (2.10) the supremum
norm of error εmax is replaced by the supremum norm of the average error ε̄.
In other words, unlike AVI and API, the size of error at each iteration is not a
critical factor for the performance of DPP and as long as the size of average error
remains close to 0, DPP is guaranteed to achieve a near-optimal performance
even when the individual errors εk are large

As an example: Consider a case in which, for both DPP and AVI/API, the
sequence of errors {ε0, ε1, ε2, . . . } are some i.i.d. zero-mean random variables
bounded by 0 < U < ∞. Corollary 2.3 combined with the law of large numbers
then leads to the following asymptotic bound for approximate DPP:

lim sup
k→∞

‖Q∗ −Qπk‖ ≤
2γ

(1− γ)2
ε̄ = 0, w.p. (with probability) 1, (2.11)

whilst for API and AVI we have

lim sup
k→∞

‖Q∗ −Qπk‖ ≤
2γ

(1− γ)2
U.

In words, approximate DPP manages to cancel i.i.d. noise and asymptot-
ically converges to the optimal policy whereas there is no guarantee, in this
case, for the convergence of API and AVI to the optimal solution. This example
suggests that DPP, in general, may average out some of the simulation noise
caused by Monte-Carlo sampling and eventually achieve a better performance
than AVI and API in the presence of sampling error.

Remark 2.2. The i.i.d. assumption may be replaced by some weaker and more
realistic assumption that only requires the error sequence {ε0, ε1, . . . , εk} to be a
sequence of martingale differences, i.e., the errors do not need to be independent
as long as the expected value of εk, conditioned on the past observations, is 0.
We prove, in the next subsection, that DPP-RL satisfies this assumption and,
therefore, asymptotically converges to the optimal policy (see Theorem 2.3).
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2.4.2 Reinforcement Learning with Dynamic Policy Pro-
gramming

To compute the optimal policy by DPP one needs an explicit knowledge of
model. In many problems, we do not have access to this information but instead
we can generate samples by simulating the model. The optimal policy can
then be learned using these samples. In this section, we introduce a new RL
algorithm, called DPP-RL, which relies on a sampling-based variant of DPP to
update the policy. The update rule of DPP-RL is very similar to (2.6). The
only difference is that we replace the Bellman operator TπΨ(x, a) with its sample
estimate Tπ

kΨ(x, a) ! r(x, a) + γ(πΨ)(yk), where the next sample yk is drawn
from P (·|x, a):

Ψk+1(x, a) ! Ψk(x, a) + Tπk
k Ψk(x, a)− πkΨk(x), ∀(x, a) ∈ Z. (2.12)

Based on (2.12), we estimate the optimal policy by iterating some initial Ψ0

through the DPP-RL update rule, where at each iteration we draw yk for every
(x, a) ∈ Z. From Equation (2.7), the estimation error of the kth iterate of DPP-
RL is then defined as the difference between the Bellman operator TπkΨk(x, a)
and its sample estimate:

εk(x, a) = Tπk
k Ψk(x, a)− TπkΨk(x, a), ∀(x, a) ∈ Z.

The DPP-RL update rule can then be considered as a special case of the
more general approximate DPP update rule of Equation (2.8).

Equation (2.12) is just an approximation of the DPP update rule (2.6).
Therefore, the convergence result of Corollary 2.1 does not hold for DPP-RL.
However, the new algorithm still converges to the optimal policy since one can
show that the errors associated with approximating (2.6) are asymptotically
averaged out by DPP-RL, as postulated by Corollary 2.3. To prove this result
we need the following lemma, which bounds the estimation error εk.

Lemma 2.1 (Boundedness of εk). Let Assumption 2.1 hold and assume that
the initial action-preference function Ψ0 is uniformly bounded by Vmax, then we
have, for all k ≥ 0,

‖Tπk
k Ψk‖ ≤

2γ log(|A|)
η(1− γ)

+ Vmax, ‖εk‖ ≤
4γ log(|A|)
η(1− γ)

+ 2Vmax.
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Proof See Appendix D.

Lemma 2.1 is an interesting result, which shows that, despite the fact that
Ψk tends to −∞ for the sub-optimal actions, the error εk is uniformly bounded
by some finite constant. Note that εk = TπkΨk − Tπk

k Ψk can be expressed in
terms of the soft-max MηΨk, which unlike Ψk, is always bounded by a finite
constant, for every η > 0.

The following theorem establishes the asymptotic convergence of DPP-RL
to the optimal policy.

Theorem 2.3 (Asymptotic convergence of DPP-RL). Let Assumption 2.1 hold.
Assume that the initial action-value function Ψ0 is uniformly bounded by Vmax

and πk is the policy induced by Ψk after k iteration of DPP-RL. Then, w.p. 1,
the following holds:

lim
k→∞

Qπk(x, a) = Q∗(x, a), ∀(x, a) ∈ Z.

Proof See Appendix D.1.

We also prove the following result on the converge rate of DPP-RL to the
optimal policy by making use of the result of Theorem 2.2:

Theorem 2.4 (Finite-time high-probability loss-bound of DPP-RL). Let As-
sumption 2.1 hold and k be a positive integer and 0 < δ < 1. Then, at iteration
k of DPP-RL with probability at least 1− δ, we have

‖Q∗ −Qπk‖ ≤
4(γ log(|A|)/η + 2Rmax)

(1− γ)3



 1

k + 1
+

√
2 log 2|X||A|

δ

k + 1



 .

Proof See Appendix D.2.

Theorem 2.2 implies that, regardless of the value of η and γ, DPP-RL always
converges with the rate of 1/

√
k.

We can optimize the bound of Theorem 2.4 w.r.t. η which leads to the
following corollary:

Corollary 2.4. Let Assumption 2.1 hold and k be a positive integer, also set the
inverse temperature η = +∞, Then, at iteration k of DPP-RL with probability
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at least 1− δ, we have

‖Q∗ −Qπk‖ ≤
8Rmax

(1− γ)3



 1

k + 1
+

√
2 log 2|X||A|

δ

k + 1



 .

This result implies that, in order to achieve the best rate of convergence,
one can set the value of η to +∞, i.e., to replace the soft-max Mη with the max
operator M:

Ψk+1(x, a) := Ψk(x, a) + TkΨk(x, a)−MΨk(x), ∀(x, a) ∈ Z, (2.13)

where TkΨ(x, a) ! r(x, a) + γ(MΨ)(yk) for all (x, a) ∈ Z. The pseudo-code of
DPP-RL algorithm, which sets η = +∞, is shown in Algorithm 2.2.

Algorithm 2.2 (DPP-RL) Reinforcement learning with DPP
Require: Initial action preferences Ψ0(·, ·), discount factor γ and number of steps T

for k = 1, 2, 3, . . . ,K − 1 do $ main loop
for each (x, a) ∈ Z do $ update Ψk(·, ·) for all state-action pairs

yk ∼ P (·|x, a) $ generate the next sample
TkΨk(x, a) := r(x, a) + γMΨk(yk) $ empirical Bellman operator
Ψk+1(x, a) := Ψk(x, a) + TkΨk(x, a)−MΨk(x) $ DPP update rule

end for
for each x ∈ X do $ compute the control policy

amax := argmaxa∈A Ψk+1(x, a)
π(·|x) := 0
πk+1(amax|x) := 1

end for
end for
return πK

Furthermore, the following PAC bound which determines the number of
steps k required to achieve the error ε > 0 in estimating the optimal policy,
w.p. 1− δ, is an immediate consequence of Theorem 2.4.

Corollary 2.5 (Finite-time PAC bound of DPP-RL). Let Assumption 2.1 hold.
Then, for any ε > 0, after

k =
256R2

max log
2|X||A|

δ

(1− γ)6ε2
.

steps of Algorithm 2.2, the uniform approximation error ‖Q∗ −Qπk‖ ≤ ε, w.
p. 1− δ.



22 Chapter 2: Dynamic Policy Programming

2.4.3 Approximate Dynamic Policy Programming with Lin-
ear Function Approximation

In this subsection, we consider DPP with linear function approximation (LFA)
and least-squares regression. LFA is commonly used in many RL algorithms
(Szepesvári, 2010, sec. 3.2). Given a set of basis functions Fϕ = {ϕ1, . . . ,ϕm},
where each ϕi : Z → R is a bounded real valued function, the sequence of
action preferences {Ψ0,Ψ1,Ψ2 · · · } are defined as a linear combination of these
basis functions: Ψk = θTkΦ, where Φ is a m× 1 column vector with the entries
{ϕi}i=1:m and θk ∈ Rm is a m× 1 vector of parameters.

The action preference function Ψk+1 is an approximation of the DPP op-
erator OΨk. In the case of LFA the common approach to approximate DPP
operator is to find a vector θk+1 that projects OΨk on the column space spanned
by Φ by minimizing the loss function:

Jk(θ;Ψ) !
∥∥θTΦ− OΨk

∥∥2
2,µ

, (2.14)

where µ is a probability measure on Z. The best solution, that minimize J , is
called the least-squares solution:

θk+1 = argminJk(θ;Ψ) =
[
E
(
ΦΦT

)]−1
E(ΦOΨk), (2.15)

where the expectation is taken w.r.t. (x, a) ∼ µ. In principle, to compute
the least squares solution equation one needs to compute OΨk for all states and
actions. For large scale problems this becomes infeasible. Instead, one can make
a sample estimate of the least-squares solution by minimizing the empirical loss
J̃k(θ;Ψ) (Bertsekas, 2007b, chap. 6.3):

J̃k(θ;Ψ) !
1

N

N∑

n=1

(θTΦ(Xn, An)− OnΨk)
2 + αθTθ,

where {(Xn, An)}n=1:N is a set of N i.i.d. samples drawn from the distribution
µ. Also, OnΨk denotes a single sample estimate of OΨk(Xn, An) defined by
OnΨk ! Ψk(Xn, An) + r(Xn, An) + γMηΨk(Yn) − MηΨk(Xn), where Yn ∼
P (·|Xn, An). Further, to avoid over-fitting due to the small number of samples,
one adds a quadratic regularization term to the loss function. The empirical
least-squares solution which minimizes J̃k(θ;Ψ) is given by

θ̃k+1 =

[
N∑

n=1

Φ(Xn, An)Φ(Xn, An)
T + αNI

]−1 N∑

n=1

OnΨkΦ(Xn, An), (2.16)
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and Ψk(x, a) = θ̃k+1Φ(x, a). This defines a sequence of action preferences
{Ψ0,Ψ1,Ψ2, · · · } and the sequence of approximation error through Equation
(2.7).

Algorithm 2.3 presents the sampling-based approximate dynamic policy pro-
gramming (SADPP) in which we rely on (2.16) to approximate DPP operator
at each iteration.

Algorithm 2.3 (SADPP) Sampling-based approximate dynamic policy pro-
gramming

Require: θ̃0, η, γ, α, K and N

for k = 0, 1, 2, . . . ,K − 1 do $ main loop
{(Xn, An)}n=1:N ∼ µ(·, ·) $ generate n i.i.d. samples from µ(·, ·)
{Yn}n=1:N ∼ P (·|{(Xn, An)}n=1:N ) $ generate next states from P (·|·)
for each n = 1, 2, 3, . . . , N do

for each a ∈ A do $ compute Ψk for every action of states Xn, Yn

Ψk(Xn, a) = θ̃TkΦ(Xn, a)

Ψk(Yn, a) = θ̃TkΦ(Yn, a)
end for
MηΨk(Xn) =

∑

a∈A

exp(ηΨk(Xn,a))Ψk(Xn,a)∑

b∈A

exp ηΨk(Xn,b)

MηΨk(Yn) =
∑

a∈A

exp(ηΨk(Yn,a))Ψk(Yn,a)∑

b∈A

exp ηΨk(Yn,b) $ soft-max MηΨk for Xn and Yn

OnΨk = Ψk(Xn, An)− r(Xn, An)− γ(MηΨk)(Yn) + (MηΨk)(Xn) $ empirical DPP
operator

end for

θ̃k+1 =
[∑N

n=1 Φ(Xn, An)Φ(Xn, An)T + αNI
]−1 ∑N

n=1 OnΨkΦ(Xn, An) $ SADPP

update rule
end for
return θ̃K

2.5 Numerical Results

In this section, we illustrate empirically the theoretical performance guarantee
introduced in the previous sections for both variants of DPP: the exact case
(DPP-RL) and the approximate case (SADPP). In addition, we compare with
existing algorithms for which similar theoretical results have been derived.

We first examine the convergence properties of DPP-RL (Algorithm 2.2) on
several discrete state-action problems with large state spaces. We compare it
with a synchronous variant of Q-learning (Even-Dar and Mansour, 2003) (QL)
and a model-based Q-value iteration (VI) (Kearns and Singh, 1999). Next, we
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x1 x2500xk xk+1xk−1

a = −1

a = +1

Figure 2.1: Linear MDP: Illustration of the linear MDP problem. Nodes indicate
states. States x1 and x2500 are the two absorbing states and state xk is an example
of interior state. Arrows indicate possible transitions of these three nodes only.
From xk any other node is reachable with transition probability (arrow thickness)
proportional to the inverse of the distance to xk (see the text for details).

investigate the finite-time performance of SADPP (Algorithm 2.3) in the pres-
ence of function approximation and a limited sampling budget per iteration. In
this case, we compare SADPP with regularized least-squares fitted Q-iteration
(RFQI) (Farahmand et al., 2008a) and regularized least-squares policy itera-
tion (REG-LSPI) (Farahmand et al., 2008b), two algorithms that, like SADPP,
control the complexity of the solution using regularization.d

2.5.1 DPP-RL

To illustrate the performance of DPP-RL, we consider the following MDPs:

Linear MDP: this problem consists of states xk ∈ X, k = {1, 2, . . . , 2500} ar-
ranged in a one-dimensional chain (see Figure 2.1). There are two possible
actions A = {−1,+1} (left/right) and every state is accessible from any
other state except for the two ends of the chain, which are absorbing
states. A state xk ∈ X is called absorbing if P (xk|xk, a) = 1 for all a ∈ A

and P (xl|xk, a) = 0, ∀l -= k. The state space is of size |X| = 2500 and the
joint action state space is of size |Z| = 5000. Note that naive storing of
the model requires O(107) memory.

Transition probability from an interior state xk to any other state xl is
inversely proportional to the distance in the direction of the selected ac-
tion. Formally, consider the following quantity n(xl, a, xk) assigned to all

dThe source code of all tested algorithms is available in:
http://www.mbfys.ru.nl/~mazar/Research Top.html.
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non-absorbing states xk and to every (xl, a) ∈ Z:

n(xl, a, xk) =






1

|l − k|
for (l − k)a > 0

0 otherwise
.

We can write the transition probabilities as:

P (xl|xk, a) =
n(xl, a, xk)∑

xm∈X

n(xm, a, xk)
.

Transitions to an absorbing state have associated reward 1 and to any
interior state has associated reward −1.

The optimal policy corresponding to this problem is to reach the closest
absorbing state as soon as possible.

Combination lock: the combination lock problem considered here is a
stochastic variant of the reset state space models introduced in Koenig and
Simmons (1993), where more than one reset state is possible (see Figure
2.2).

In our case we consider, as before, a set of states xk ∈ X,
k ∈ {1, 2, . . . , 2500} arranged in a one-dimensional chain and two possible
actions A = {−1,+1}. In this problem, however, there is only one absorb-
ing state (corresponding to the state lock-opened) with associated reward
of 1. This state is reached if the all-ones sequence {+1,+1, . . . ,+1} is
entered correctly. Otherwise, if at some state xk, k < 2500, action −1 is
taken, the lock automatically resets to some previous state xl, l < k ran-
domly (in the original problem, the reset state is always the initial state
x1).

For every intermediate state, the rewards of actions −1 and +1 are set to 0
and −0.01, respectively. The transition probability upon taking the wrong
action −1 from state xk to state xl is P (xl|xk,−1), as before, inversely
proportional to the distance of the states. That is

n(xk, xl) =






1

k − l
for l < k

0 otherwise
, P (xl|xk,−1) =

n(xk, xl)∑

xm∈X

n(xk, xm)
.

Note that this problem is more difficult than the linear MDP since the
goal state is only reachable from one state, x2499.
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x1 x2500xk xk+1xk−1

a = −1

a = +1

Figure 2.2: Combination lock: illustration of the combination lock MDP problem.
Nodes indicate states. State x2500 is the goal (absorbing) state and state xk is an
example of interior state. Arrows indicate possible transitions of these two nodes

only. From xk any previous state is reachable with transition probability (arrow
thickness) proportional to the inverse of the distance to xk. Among the future states
only xk+1 is reachable (arrow dashed).

Grid world: this MDP consists of a grid of 50×50 states. A set of four actions
{RIGHT, UP, DOWN, LEFT} is assigned to every state x ∈ X. Although
the state space of the grid world is of the same size than the previous two
problems, |X| = 2500, the joint action state space is larger, |Z| = 104.

The location of each state x of the grid is determined by the coordinates
cx = (hx, vx), where hx and vx are some integers between 1 and 50. There
are 196 absorbing wall states surrounding the grid and another one at the
center of grid, for which a reward −1 is assigned. The reward for the walls
is

r(x, a) = −
1

‖cx‖2
, ∀a ∈ A.

Also, we assign reward 0 to all of the remaining (non-absorbing) states.

This means that both the top-left absorbing state and the central state
have the least possible reward (−1), and that the remaining absorbing
states have reward which increases proportionally to the distance to the
state in the bottom-right corner (but are always negative).

The transition probabilities are defined in the following way: taking action
a from any non-absorbing state x results in a one-step transition in the
direction of action a with probability 0.6, and a random move to a state
y -= x with probability inversely proportional to their Euclidean distance
1/ ‖cx − cy‖2.

This problem is interesting because of the presence of the absorbing walls,
which prevent the agent to escape and because of the high level of noise:
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from a non-absorbing state, many states are reachable with significant
probability.

The resulting optimal policy is to survive in the grid as long as possible
by avoiding both the absorbing walls and the center of the grid. Note that
because of the difference between the cost of walls, the optimal control
prefers the states near the bottom-right corner of the grid, thus avoiding
absorbing states with higher cost.

Experimental Setup and Results

For consistency with the theoretical results, we evaluate the performance of all
algorithms in terms of #∞-norm error of the action-value function ‖Q∗ −Qπk‖
obtained by policy πk induced at iteration k. The discount factor γ is fixed to
0.995 and the optimal action-value function Q∗ is computed with high accuracy
through value iteration.

We compare DPP-RL with two other algorithms:

Q-learning (QL) : we consider a synchronous variant of Q-learning for which
convergence results have been derived in Even-Dar and Mansour (2003).
Since QL is sensitive to the learning step, we consider QL with polynomial
learning step αk = 1/(k+1)ω where ω ∈ {0.51, 0.75, 1.0}. It is known that
ω needs to be larger than 0.5, otherwise QL can asymptotically diverge
(see Even-Dar and Mansour, 2003, for the proof).

Model-based Q-value iteration (VI) : The VI algorithm (Kearns and Singh,
1999) first estimates a model using all the data samples and then performs
value iteration on the learned model. Therefore, unlike QL and DPP, VI
is a model-based algorithm and requires to store the model.

Comparison between VI and both DPP-RL and QL is specially problematic:
first, the number of computations per iteration is different. Whereas DPP-RL
and QL require |Z| computations per iteration, VI requires |Z||X|. Second, VI
requires to estimate the model initially (using a given number of samples) and
then iterates until convergence. This latter aspect is also different from DPP-RL
and QL, which use one sample per iteration. Therefore, the number of samples
determines the number of iterations for DPP-RL and QL, but not for VI. What
is determined for VI is the number of samples dedicated to estimate the model.

For consistency with the theoretical results, we use as error measure, the
distance between the optimal action-value function and the value function of
the policy induced by the algorithms. instead of the more popular average



28 Chapter 2: Dynamic Policy Programming

0 1 2 3 4
x 108

10−2

10−1

100

101

102

Linear

Steps

Er
ro

r

0 1 2 3 4
x 108

10−2

10−1

100

101

102

Combination lock

Steps
0 2 4 6 8

x 108

10−2

10−1

100

101

102

Grid world

Steps

 

 
QL (ω=0.51)
QL (ω=0.75)
QL (ω=1.00)
VI
DPP−RL

Figure 2.3: Comparison between DPP-RL, QL and VI in terms of number of steps,
defined as the number of iterations times the number of computations per iteration of
the particular algorithm. Each plot shows the averaged error of the induced policies
over 50 different runs (see the text for details).

accumulated reward, which is usually used when the RL algorithm learns from
a stream of samples.

Simulations are performed using the following procedure: at the beginning of
each run (i) the action-value function and the action preferences are randomly
initialized in the interval [−Vmax, Vmax], and (ii) a set of 105 samples is generated
from P (·|x, a) for all (x, a) ∈ Z. As mentioned before, this fixes the maximum
number of iterations for DPP-RL and QL to 105, but not for VI. We run VI
until convergence. We repeat this procedure 50 times and compute the average
error in the end. Using significantly less number of samples leads to a dramatic
decrease of the quality of the solutions using all approaches and no qualitative
differences in the comparison.

To compare the methods using equivalent logical units independently of the
particular implementation, we rescale their number of iterations by the num-
ber of steps required in one iteration. For the case of VI, the step units are
the number of iterations times |Z||X| and for DPP-RL and QL, the number of
iterations times |Z|.

Figure 2.3 shows the error as a function of the number of steps. First, in
agreement with the theoretical results, we observe that the DPP-error decays
very fast in the beginning and keeps decreasing at a smaller rate afterwards.
We also observe that DPP-RL performs significantly better than QL. The im-
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provement is about two orders of magnitude in both the linear MDP and the
combination lock problems and more than four times better in the Grid world.
QL shows the best performance for ω = 0.51 and the quality degrades as a
function of ω.

Although the performance of VI looks poor for the number of steps shown in
Figure 2.3, we observe that VI reaches an average error of 0.019 after convergence
(≈ 2 · 1010 steps) for the linear MDP and the combination lock and an error of
0.10 after ≈ 4 · 1010 steps for the grid problem. This means for a fixed number
of samples, the asymptotic solution of VI is better than the one of DPP-RL, at
the cost of much larger number of steps.

To illustrate the performance of the methods using a limited CPU time
budget, we also compare the average and standard deviations of the errors
in terms of elapsed CPU time by running the algorithms until a maximum
allowed time is reached. We choose 30 seconds in the case of linear MDP and
combination lock and 60 seconds for the grid world, which has twice as many
actions as the other benchmarks. To minimize the implementation dependent
variability, we coded all three algorithms in C++ and ran them on the same
processor. CPU time was acquired using the system function times() which
provides process-specific CPU time. Sampling time was identical for all methods
and not included in the result.

Table 2.1 shows the final average errors (standard deviations between paren-
thesis) in the CPU time comparison. As before, we observe that DPP-RL con-
verges very fast achieving near optimal performance after a few seconds. The
small variance of estimation of DPP-RL suggests that, as derived in Theo-
rems 2.3 and 2.2, DPP-RL manages to average out the simulation noise caused
by sampling and converges to a near optimal solution, which is very robust.

Overall, these results complement the theory presented in previous sections.
We can conclude that for the chosen benchmarks DPP-RL converges signif-
icantly faster than VI and QL. However, for a fixed number of samples, VI
obtains a better solution than DPP-RL requiring significantly more computa-
tion.

2.5.2 SADPP

In this subsection, we illustrate the performance of the SADPP algorithm in the
presence of function approximation and limited sampling budget per iteration.
The purpose of this subsection is to analyze numerically the sample complexity,
that is, the number of samples required to achieve a near optimal performance
with low variance.
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Table 2.1: Comparison between DPP-RL, QL and VI given a fixed computational
and sampling budget. Table 2.1 shows error means and standard deviations (between
parenthesis) at the end of the simulations for three different algorithms (columns) and
three different benchmarks (rows).

Benchmark
Linear Combination Grid
MDP lock world

Run Time 30 sec. 30 sec. 60 sec.

DPP-RL 0.05 (0.02) 0.20 (0.09) 0.32 (0.03)
VI 16.60 (11.60) 69.33 (15.38) 5.67 (1.73)

QL
ω = 0.51 4.08 (3.21) 18.18 (4.36) 1.46 (0.12)
ω = 0.75 31.41 (12.77) 176.13 (25.68) 17.21 (7.31)
ω = 1.00 138.01 (146.28) 195.74 (5.73) 25.92 (20.13)

We compare SADPP with #2-regularized versions of the following two algo-
rithms:

Regularized fitted Q-iteration (RFQI) (Farahmand et al., 2008a). RFQI
performs value iteration to approximate the optimal action value function.
See also Antos et al. (2007) and Ernst et al. (2005).

Regularized Least Squares Policy Iteration (REG-LSPI) (Farahmand et al.,
2008b). It can be regarded as a Monte-Carlo sampling implementation of
approximate value iteration (AVI) with action-state representation (see
also Lagoudakis and Parr, 2003).

The benchmark we consider is a variant of the optimal replacement problem
presented in Munos and Szepesvári (2008).

Optimal replacement problem

This problem is an infinite-horizon, discounted MDP. The state measures the
accumulated use of a certain product and is represented as a continuous, one-
dimensional variable. At each time-step t, either the product is kept a(t) = 0
or replaced a(t) = 1. Whenever the product is replaced by a new one, the state
variable is reset to zero x(t) = 0, at an additional cost C. The new state is
chosen according to an exponential distribution, with possible values starting
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from zero or from the current state value, depending on the latest action:

p(y|x, a = 0) =

{
βeβ(y−x) if y ≥ x

0 if y < x
p(y|x, a = 1) =

{
βeβy if y ≥ 0

0 if y < 0
.

The reward function is a monotonically decreasing function of the state x
if the product is kept r(x, 0) = −c(x) and constant if the product is replaced
r(x, 1) = −C − c(0), where c(x) = 4x.

The optimal action is to keep as long as the accumulated use is below a
threshold or to replace otherwise:

a∗(x) =

{
0 if x ∈ [0, x̄]

1 if x > x̄
. (2.17)

Following Munos and Szepesvári (2008), x̄ can be obtained exactly via the
Bellman equation and is the unique solution to

C =

∫ x̄

0

c′(y)

1− γ

(
1− γe−β(1−γ)y

)
dy.

Experimental setup and results

For all algorithms we map the state-action space using twenty radial basis func-
tions (ten for the continuous one-dimensional state variable x, spanning the
state space X , and two for the two possible actions). Other parameter val-
ues where chosen to be the same as in Munos and Szepesvári (2008), that is,
γ = 0.6,β = 0.5, C = 30, which results in x̄ . 4.8665. We also fix an upper
bound for the states, xmax = 10 and modify the problem definition such that if
the next state y happens to be outside of the domain [0, xmax] then the product
is replaced immediately, and a new state is drawn as if action a = 1 were chosen
in the previous time step.

We measure the performance loss of the algorithms in terms of the differ-
ence between the optimal action a∗ and the action selected by the algorithms.
We use this performance measure since it is easy to compute as we know the
analytical solution of the optimal control in the optimal replacement problem
(see Equation 2.17). We discretize the state space in K = 100 and compute the
error as follows:

Error =
1

K

K∑

k=1

|a∗(xk)− â(xk)|, (2.18)
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Figure 2.4: Numerical results for the optimal replacement problem. Each plot shows
the error of RFQI, REG-LSPI and SADPP for certain number of samples N . Error
is defined as in Equation (2.18) and averaged over 200 repetitions (see the text for
details).

where â is the action selected by the algorithm. Note that, unlike RFQI and
REG-LSPI, SADPP induces a stochastic policy, that is, a distribution over
actions. We select â for SADPP by choosing the most probable action from
the induced soft-max policy, and then use this to compute (2.18). RFQI and
REG-LSPI select the action with highest action-value function.

Simulations are performed using the same following procedure for all three
algorithms: at the beginning of each run, the vector θ̃0 is initialized in the
interval [−1, 1]. We then let the algorithm run for 103 iterations for 200 different
runs. A new independent set of samples is generated at each iteration.

For each of the algorithms and each N , we optimize their parameters for the
best asymptotic performance. Note that SADPP, in addition to the regularizer
parameter α, has an extra degree of freedom η. Empirically, we observe that the
optimal performance of SADPP is attained for finite η. This differs from DPP-
RL, for which the convergence rate is optimized for η = ∞. This difference may
be related to the observation that replacing the non-differentiable max-operator
(η = +∞) with a differentiable soft-max operator (η < +∞) can improve the
convergence behavior of the algorithm, as shown in Perkins and Precup (2002);
Farias and Roy (2000).

We are interested in the behavior of the error as a function of the iteration
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Table 2.2: Comparison between SADPP, RFQI and REG-LSPI for the optimal
replacement problem. Table shows error means and standard deviations (between
parenthesis) at the end of the simulations (after 103 iterations) for the three different
algorithms (columns) and three different number of samples (rows).

Num. samples 50 150 500

SADPP 0.07 (0.06) 0.02 (0.01) 0.01 (0.01)
RFQI 0.24 (0.19) 0.17 (0.12) 0.08 (0.07)
REG-LSPI 0.26 (0.16) 0.13 (0.10) 0.07 (0.06)

number for different number of samples N per iteration. Figure 2.4 and Table
2.2 show the performance results of the three different algorithms for N ∈
{50, 150, 500} for the first 50 iterations and the total 103 iterations respectively.
We observe that after an initial transient, all algorithms reach a nearly optimal
solution after 50 iterations.

First, we note that SADPP asymptotically outperforms RFQI and REG-
LSPI on average in all cases. Interestingly, there is no significant difference
between the performance of RFQI and REG-LSPI. The performance of all algo-
rithms improve for larger N . We emphasize that SADPP using only 50 samples
shows comparable results to both RFQI and REG-LSPI using ten times more
samples.

A comparison of the variances after the transient (see Table 2.2) shows that
the sample complexity of SADPP is significantly smaller than RFQI and REG-
LSPI. The variance of SADPP using again only 50 samples is comparable to the
one provided by the other two methods using N = 500 samples.

Globally, we can conclude that SADPP has positive effects in reducing the
effect of simulation noise, as postulated in Section 2.4. We can also conclude
that, for our choice of settings, SADPP outperforms RFQI and REG-LSPI.

2.6 Related Work

In this section, we review some previous RL methods and compare them with
DPP.

Policy-gradient actor-critic methods As we explained earlier in Section
2.1, actor-critic method is a popular incremental RL algorithm (Sutton
and Barto, 1998; Barto et al., 1983, chap. 6.6), which makes use of a sep-
arate structure to store the value function (critic) and the control policy



34 Chapter 2: Dynamic Policy Programming

(actor). An important extension of AC, the policy-gradient actor critic
(PGAC), extends the idea of AC to problems of practical scale (Sutton
et al., 1999; Peters and Schaal, 2008). In PGAC, the actor updates the
parameterized policy in the direction of the (natural) gradient of perfor-
mance, provided by the critic. The gradient update ensures that PGAC
asymptotically converges to a local maximum, given that an unbiased esti-
mate of the gradient is provided by the critic (Maei et al., 2010; Bhatnagar
et al., 2009; Konda and Tsitsiklis, 2003; Kakade, 2001). The parameter
η in DPP is reminiscent of the learning step β in PGAC methods, since
it influences the rate of change of the policy and in this sense may play a
similar role as the learning step β in PGAC (Konda and Tsitsiklis, 2003;
Peters and Schaal, 2008). However, it is known that in the presence of
sampling error, asymptotic convergence to a local maxima is only attained
when β asymptotically decays to zero (Konda and Tsitsiklis, 2003; Baxter
and Bartlett, 2001), whereas the parameter η in DPP, and DPP-RL, can
be an arbitrary constant.

Q-learning DPP is not the only method which relies on an incremental up-
date rule to control the sampling error. There are other incremental RL
methods which aim to address the same problem (see, e.g., Maei et al.,
2010; Singh et al., 2000; Watkins and Dayan, 1992).

One of the most well-known algorithms of this kind is Q-learning (QL)
(Watkins and Dayan, 1992), which controls the sampling error by intro-
ducing a decaying learning step to the update rule of value iteration. QL
has been shown to converge to the optimal value function in tabular case
(Bertsekas and Tsitsiklis, 1996; Jaakkola et al., 1994). Also, there are
some studies in the literature concerning the asymptotic convergence of
Q-learning in the presence of function approximation (Melo et al., 2008;
Szepesvari and Smart, 2004). However, the convergence rate of QL is very
sensitive to the choice of learning step, and a bad choice of the learn-
ing step may lead to a slow rate of convergence (Even-Dar and Mansour,
2003). For instance, the convergence rate of QL with a linearly decaying
learning step is of order (1/k)1−γ , which makes the Q-learning algorithm
extremely slow for γ ≈ 1 (Szepesvári, 1997). This is in contrast to our
previously mentioned result on the convergence of DPP-RL in Theorem
2.4 which guarantees that, regardless of the value of η and γ, DPP-RL
always converges to the optimal policy with a rate of order 1/

√
k. The

numerical results of Subsection 2.5.1 confirms the superiority of DPP-RL
to QL in terms of the rate of convergence.
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One can also compare the finite-time behavior of DPP-RL and QL in
terms of the PAC sample complexity of these methods. We have proven
a sample-complexity PAC bound of order O(1/(1 − γ)6) for DPP-RL in
Subsection 2.4.2, whereas the best existing PAC bound for standard QL, to
find an ε-optimal policy, is of order O(1/(1−γ)7) (Even-Dar and Mansour,
2003; Azar et al., 2011b, sec. 3.3.1).e This theoretical result suggests that
DPP-RL is superior to QL in terms of sample complexity of the estimating
the optimal policy, especially, when γ is close to 1.

There is an on-policy version of Q-learning algorithm called SARSA (see,
e.g., Singh et al., 2000) which also guarantees the asymptotic convergence
to the optimal value function. However little is known about the rate of
convergence and the finite-time behavior of this algorithm.

Very recently, Azar et al. (2011b) propose a new variant of Q-learning
algorithm, called speedy Q-learning (SQL), which makes use of a different
update rule than standard Q-learning of Watkins and Dayan (1992). Like
DPP-RL, SQL convergences to the optimal policy with the rate of con-
vergence of order 1/

√
k. However, DPP-RL is superior to SQL in terms

of memory space requirement, since SQL needs twice as much space as
DPP-RL does.

Relative-entropy methods The DPP algorithm is originally motivated (see
Appendix A) by the work of Kappen (2005b) and Todorov (2006), who
formulate a stochastic optimal control problem to find a conditional prob-
ability distribution p(y|x) given an uncontrolled dynamics p̄(y|x). The
control cost is the relative entropy between p(y|x) and p̄(y|x) exp(r(x)).
The difference is that in their work a restricted class of control problems
is considered for which the optimal solution p can be computed directly in
terms of p̄ without requiring Bellman-like iterations. Instead, the present
approach is more general, but does require Bellman-like iterations. Like-
wise, our formalism is superficially similar to PoWER (Kober and Peters,

eNote that Even-Dar and Mansour (2003) make use of a slightly different performance
measure than the one we use in this chapter: The optimized result of Even-Dar and Mansour
(2003), which is of order O(1/(1 − γ)5), is a bound on the sample complexity of estimating
Q∗ with ε precision, whereas in this chapter we consider the sample complexity of finding
an ε-optimal policy. However, the latter can be easily derived for QL from the inequality
‖Q∗ − Qπk‖ ≤ 1/(1 − γ)‖Q∗ − Qk‖, where πk is the greedy policy w.r.t. Qk and Qk is the
estimate of action-value function at iteration k. This inequality combined with the result of
Even-Dar and Mansour (2003) implies a sample complexity bound of order O(1/(1− γ)7) for
QL.
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2008) and SAEM (Vlassis and Toussaint, 2009), which rely on EM algo-
rithm to maximize a lower bound for the expected return in an iterative
fashion. This lower-bound also can be written as a KL-divergence be-
tween two distributions. Also, the natural policy gradient method can
be seen as a relative entropy method, in which the second-order Taylor
expansion of the relative-entropy between the distribution of the states is
considered as the metric for policy improvement (Bagnell and Schneider,
2003). Another relevant study is relative entropy policy search (REPS)
(Daniel et al., 2012; Peters et al., 2010) which relies on the idea of mini-
mizing the relative entropy to control the size of policy update. However
there are some differences between REPs and DPP. (i) In REPS the in-
verse temperature η needs to be optimized while DPP converges to the
optimal solution for any inverse temperature η, and (ii) here we provide
a convergence analysis of DPP, while there is no convergence analysis in
REPS.

2.7 Discussion and Future Work

We have presented a new approach, dynamic policy programming (DPP), to
compute the optimal policy in infinite-horizon discounted-reward MDPs. We
have theoretically proven the convergence of DPP to the optimal policy for
the tabular case. We have also provided performance-loss bounds for DPP
in the presence of approximation. The bounds have been expressed in terms
of supremum norm of average accumulated error as opposed to the standard
bounds which are expressed in terms of supremum norm of the errors. We have
then introduced a new incremental RL algorithm, called DPP-RL, which relies
on a sample estimate instance of the DPP update rule to estimate the optimal
policy. We have proven that DPP-RL converges to the optimal policy with the
rate of 1/

√
k.

We have also compared numerically the finite-time behavior of DPP-RL with
similar RL methods. Experimental results have shown a better performance of
DPP-RL when compared to QL and VI in terms of convergence rate. In these
problems, for equal number of samples, VI converged to a better solution than
DPP-RL, at the cost of many more steps. When compared to VI, DPP-RL
does not need to store the model dynamics, resulting in significant less memory
requirements for large-scale MDPs. This statement is general and holds when
comparing DPP-RL to any model-based method.

We have proposed SADPP as a variant of DPP which makes use of linear
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function approximation and regularization. SADPP has been shown to perform
better than two other regularized methods, RFQI and LSPI. We think that this
is mainly due to the reduction of the effect of simulation noise (Section 2.4).
At the same time, we admit that the existence of an additional parameter η
favors SADPP since SADPP performs best for a finite-value of η . Therefore, it
is interesting to consider soft-max variants of RFQI and LSPI which also make
use of the inverse temperature η. In these cases, η should be initialized at a
finite value and would gradually grow to +∞.

The empirical comparison with those methods that do not make use of gen-
erative model assumption is outside of the scope of the current work and is
left for future research. These methods include, for instance, PGAC methods
that use sequences of samples to learn the value function of the current policy
(Peters and Schaal, 2008; Konda and Tsitsiklis, 2003; Sutton et al., 1999), or
upper-confidence bounds methods which address the exploration-exploitation
dilemma (Jaksch et al., 2010b; Szita and Szepesvári, 2010; Bartlett and Tewari,
2009; Strehl et al., 2009).

Another interesting line of future research is to devise finite-sample PAC
bounds for SADPP in the spirit of previous theoretical results available for
fitted value iteration and fitted Q-iteration (Munos and Szepesvári, 2008; Antos
et al., 2007; Munos, 2005). This would require extending the error propagation
result of Theorem 2.2 to an #2-norm analysis and combining it with the standard
regression bounds.

Finally, an important extension of our results would be to apply DPP to
large-scale action problems. This would require an efficient way to approxi-
mate MηΨk(x) in the update rule of Equation (2.6), since computing the exact
summations becomes expensive. One idea is to sample estimate MηΨk(x) us-
ing Monte-Carlo simulation (MacKay, 2003, chap. 29), since MηΨk(x) is the
expected value of Ψk(x, a) under the soft-max policy πk.





CHAPTER 3

Speedy Q-Learning

We consider the problem of model-free reinforcement learning (RL) in the
Markovian decision processes (MDP) under the probably approximately cor-
rect (PAC) model. We introduce a new variant of Q-learning, called speedy
Q-learning (SQL), to address the problem of the slow convergence in the stan-
dard Q-learning algorithm, and prove PAC bounds on the performance of this
algorithm. The bounds indicate that for any MDP with n state-action pairs
and discount factor γ ∈ [0, 1), a total number of O

(

n log(n)/((1 − γ)4ε2)
)

steps suffices for SQL to converge to an ε-optimal action-value function with
high probability. Our results have better dependencies on ε and 1 − γ (the
same dependency on n), and thus, are tighter than the best available results
for Q-learning. The SQL algorithm also improves on existing results for the
batch Q-value iteration, in terms of the computational budget required to
achieve a near optimal solution.a

aThis chapter is based on (Azar et al., 2011b) and (Azar et al., 2012a).

39
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3.1 Introduction

Finding an optimal policy for a Markovian decision process (MDP) is a clas-
sical problem in the fields of operations research and decision theory. When
an explicit model of an MDP (i.e., transition probability and reward functions)
is known, one can rely on dynamic programming (DP) (Bellman, 1957) algo-
rithms such as value iteration or policy iteration (see, e.g., Bertsekas, 2007a;
Puterman, 1994a) to compute an optimal policy of the MDP. Value iteration al-
gorithm computes the optimal action-value function Q∗ by successive iterations
of the Bellman operator T (will be defined in Section 3.2). One can show that
in the discounted infinite-horizon setting the convergence of value iteration is
exponentially fast, since the Bellman operator T is a contraction mapping (Bert-
sekas, 2007b) on the action-value function Q. However, value iteration rely on
an explicit knowledge of the MDP. In many real world problems the transition
probabilities are not initially known, but one may observe transition samples
using Monte-Carlo sampling, either as a single trajectory obtained by follow-
ing an exploration policy (a rollout), or by simulating independent transition
samples in the state(-action) space using a generative model (simulator) of the
dynamical system. The field of reinforcement learning (RL) is concerned with
the problem of finding an optimal policy or the optimal value function from the
observed reward and transition samples (Sutton and Barto, 1998; Szepesvári,
2010).

One may characterize RL methods as model-based or model-free. In model-
based RL, we first learn a model of the MDP and then use it to approximate
value functions using DP techniques. In contrary, model-free methods compute
an approximation of a value function by making use of a sample-based esti-
mate of the Bellman operator without resorting to learning an explicit model
of the dynamical system. Q-learning (QL) is a well-known model-free RL algo-
rithm that incrementally finds an estimate of the optimal action-value function
(Watkins, 1989). The QL algorithm can be seen as a combination of the value
iteration algorithm and stochastic approximation, where at each time step k a
new estimate of the optimal action-value function for all state-action pairs (x, a)
is calculated using the following update rule:b

Qk+1(x, a) = (1− αk)Qk(x, a) + αkTkQk(x, a)

= (1− αk)Qk(x, a) + αk (TQk(x, a)− εk(x, a)) ,

bIn this section, for the sake of simplicity in the notation, we assume that the action-values
of all state-action pairs are updated in parallel. Note that, in general, this assumption is not
required for the proof of convergence of Q-learning.
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where εk(x, a) = TkQk(x, a)−TQk(x, a), TkQk(x, a) is the empirical estimation
of Bellman operator and αk is the learning step. One may show, using an
induction argument, that for the choice of linear learning step, i.e., αk = 1

k+1 ,
Qk+1 can be seen the average of the estimates of Bellman operator throughout
the learning process:

Qk+1(x, a) =
1

k + 1

k∑

j=0

(TQj(x, a)− εj(x, a)).

It is not then difficult to prove, using a law of large number argument, that
the term 1/(k+1)

∑
k
j=0εj , is asymptotically averaged out, and thus, for k → ∞

the update rule of QL becomes equivalent to Qk+1 = 1/(k + 1)
∑

k
j=0TQj .

The problem with this result is that the rate of convergence of the recursion
Qk+1 = 1/(k + 1)

∑
k
j=0TQj to Q∗ is significantly slower than the original

Bellman recursion Qk+1 = TQk. In fact, one can prove that the asymptotic rate
of convergence of QL with linear learning step is of order Õ(1/k1−γ) (Szepesvári,
1997),c which in the case of γ close to 1 makes its convergence extremely slower
than the standard value iteration algorithm, which enjoys a fast convergence
rate of order Õ(γk). This slow rate of convergence, i.e., high sample complexity,
may explain why the practitioners often prefer the batch RL methods, such as
approximate value iteration (AVI) (Bertsekas, 2007b), to QL despite the fact
that QL has better memory requirements than the batch RL methods.

In this chapter, we focus on RL problems that are formulated as finite state-
action discounted infinite-horizon MDPs and propose a new algorithm, called
speedy Q-learning (SQL), to address the problem of slow convergence of Q-
learning. The main idea is to modify the update rule of Q-learning such that, at
each iteration k, the new estimate of action-value function Qk+1 closely follows
the Bellman operator TQk. This guarantees that the rate of convergence of SQL,
unlike QL, is close to the fast rate of convergence of the value iteration algorithm.
At each time step k, SQL uses two successive estimates of the bellman operator
TQk and TQk−1 to update the action-value function

Qk+1(x, a) = (1−αk)Qk(x, a)+αk

[
kTQk(x, a)− (k−1)TQk−1(x, a)−εk(x, a)

]
,

(3.1)
which makes its space complexity twice as QL. However, this allows SQL to
achieve a significantly faster rate of convergence than QL, since it reduces

cThe notation g = Õ(f) implies that there are constants c1 and c2 such that g ≤
c1f logc2 (f).
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the dependency on the previous Bellman operators from the average 1/(k +
1)
∑

k
j=0TQj (in the case of QL) to only TQk + O

(
1/(k + 1)

)
, with the choice

of αk = 1/(k + 1):

Qk+1(x, a) = (1− αk)Qk(x, a)

+ αk

[
kTQk(x, a)− (k − 1)TQk−1(x, a)− εk(x, a)

]

=
1

k + 1

k∑

j=0

(
jTQj(x, a)− (j − 1)TQj−1(x, a)− εj(x, a)

)

= TQk(x, a) +
1

k + 1
(TQ−1(x, a)− TQk(x, a))

−
1

k + 1

k∑

j=0

εj(x, a),

where in the second line we rely on an induction argument. This shows that
similar to QL, the iterates of SQL are expressed in terms of the average esti-
mation error, and thus, the SQL update rule asymptotically averages out the
sampling errors. However, SQL has the advantage that at each time step k the
iterate Qk+1 closely follows (up to a factor of O(1/(k + 1)) the latest Bellman

iterate TQk instead of the average 1/(k + 1)
∑k

j=0 TQj in the case of QL. As a
result, unlike QL, it does not suffer from the slow convergence due to slow down
in the value iteration process (see Section 3.3.3 for a detailed comparison of QL
and SQL’s convergence rates).

The idea of using previous estimates of the action-values has already been
employed in order to improve the performance of QL. A popular algorithm of
this kind is Q(λ) (Watkins, 1989; Peng and Williams, 1996), which incorporates
the concept of eligibility traces in QL, and has been empirically shown to have
a better performance than QL, i.e., Q(0), for suitable values of λ. Another
recent work in this direction is Double Q-learning (van Hasselt, 2010), which
uses two estimators for the action-value function in order to alleviate the over-
estimation of action-values in QL. This over-estimation is caused by a positive
bias introduced by using the maximum action-value as an approximation for
the maximum expected action-value.

The rest of the chapter is organized as follows. After introducing the notation
used in the chapter in Section 3.2, we present our Speedy Q-learning algorithm
in Section 3.3. We first describe the synchronous and asynchronous versions
of the algorithm in Section 3.3.1, then state our main theoretical result, i.e.,
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high-probability bounds on the performance of SQL in Section 3.3.2, and finally
compare our bound with the previous results on QL and Q-value iteration in
Section 3.3.3. In Section 3.4, we numerically evaluate the performance of SQL
on different problems. Section 3.5 contains the detailed proofs of the results
of Section 3.3.2. Finally, we conclude the chapter and discuss some future
directions in Section 3.6.

3.2 Preliminaries

In this section, we introduce some concepts, definitions, and notation from the
Markov decision processes (MDPs) theory and stochastic processes that are
used throughout the chapter. We start by the definition of supremum norm
(#∞-norm). For a real-valued function g : Y /→ R, where Y is a finite set, the
supremum norm of g is defined as ‖g‖ ! maxy∈Y |g(y)|.

We consider the standard reinforcement learning (RL) framework (Bertsekas
and Tsitsiklis, 1996; Sutton and Barto, 1998) in which a learning agent interacts
with a stochastic environment and this interaction is modeled as a discrete-time
discounted MDP. A discounted MDP is a quintuple (X,A, P,R, γ), where X and
A are the set of states and actions, P is the state transition distribution, R is
the reward function, and γ ∈ (0, 1) is a discount factor. We denote the effective
horizon of MDP by β defined as β = 1/(1 − γ). We also denote by P (·|x, a)
and r(x, a) the probability distribution over the next state and the immediate
reward of taking action a at state x, respectively.d To keep the representation
succinct, we use Z for the joint state-action space X×A.

Assumption 3.1 (MDP regularity). We assume that the joint state-action
set Z is finite with cardinality n, and the immediate rewards r(x, a) are in the
interval [0, 1].e

A policy π determines the distribution of the control action given the past
observations. A policy is called stationary if the distribution depends only on
the last state x and is deterministic if it assigns a unique action to each state
x ∈ X. The value and the action-value functions of a policy π, denoted re-
spectively by V π : X /→ R and Qπ : Z /→ R, are defined as the expected

dFor the sake of simplicity in notation, here we assume that the reward r(x, a) is a deter-
ministic function of state-action pairs (x, a). It is straightforward to extend our results to the
case of stochastic rewards under some mild assumptions, e.g., boundedness of the absolute
value of the rewards.

eOur results also hold if the rewards are taken from some interval [rmin, rmax] instead of
[0, 1], in which case the bounds scale with the factor rmax − rmin.
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sum of discounted rewards that are encountered when the policy π is exe-
cuted. Given a MDP, the goal is to find a policy that attains the best pos-
sible values, V ∗(x) ! supπ V

π(x), ∀x ∈ X. Function V ∗ is called the opti-
mal value function. Similarly the optimal action-value function is defined as
Q∗(x, a) = supπ Q

π(x, a), ∀(x, a) ∈ Z. The optimal action-value function Q∗ is
the unique fixed-point of the Bellman optimality operator T defined as

(TQ)(x, a) ! r(x, a) + γ
∑

y∈X

P (y|x, a)(MQ)(y), ∀(x, a) ∈ Z,

where M is the max operator over action-value functions and is defined as
(MQ)(y) = maxa∈A Q(y, a), ∀y ∈ X.f We now define the cover time of MDP
under the policy π as follows:

Definition 3.1 (Cover Time). Let π be a policy over a finite stat-action MDP
and t ≥ 0 be an integer. Define τπ(x, t) to be the number of time-steps between
t and the first future time that all state-action pairs z ∈ Z are visited (the MDP
is covered) starting from state x ∈ X at time-step t and following π. The state-
action space Z is covered by the policy π if all the state-action pairs are visited
at least once under the policy π.

The following assumption that bounds the expected cover time of the MDP
guarantees that asymptotically all the state-action pairs are visited infinitely
many times under the policy π.

Assumption 3.2 (Boundedness of the expected cover time). Let 0 < L < ∞
and t be an integer. We assume that under the policy π, for all x ∈ X and t > 0,
we have

E
(
τπ(x, t)

)
≤ L.

3.3 Speedy Q-Learning

In this section, we introduce a new RL algorithm, called speedy Q-Learning
(SQL), derive performance bounds for its synchronous and asynchronous vari-
ants, and compare these bounds with similar results on standard Q-learning
(QL).

fIt is important to note that T is a γ-contraction mapping w.r.t. to the (∞-norm, i.e., for
any pair of action-value functions Q and Q′, we have ‖TQ− TQ′‖ ≤ γ ‖Q−Q′‖ (Bertsekas,
2007b, Chap. 1).
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3.3.1 Synchronous and Asynchronous SQL Algorithms

In this subsection, we introduce two variants of the SQL algorithm, synchronous
SQL and asynchronous SQL. In the asynchronous version, at each time step,
the action-value of only one state-action pair, the current observed state-action,
is updated, while the action-values of the rest of the state-action pairs remain
unchanged. For the convergence of this instance of the algorithm, it is required
that all the states and actions are visited infinitely many times, which makes
the analysis slightly more complicated. On the other hand, having access to
a simulator that can generate samples anywhere in the state-action space, the
algorithm may be formulated in a synchronous fashion, in which we first generate
a next state y ∼ P (·|x, a) for each state-action pair (x, a), and then update the
action-values of all the state-action pairs using these samples. The pseudo-code
of the synchronous and asynchronous versions of SQL are shown in Algorithms
3.1 and 3.2, respectively. It is possible to show that asynchronous SQL is reduced
to synchronous SQL when the cover time τπ(x, t) = n for all x ∈ X and t ≥ 0.
In this case, the action-values of all state-action pairs are updated in a row.
In other words, Algorithm 3.1 may be seen as a special case of Algorithm 3.2.
Therefore, in the sequel we only describe the more general asynchronous SQL
algorithm.

Algorithm 3.1 Synchronous Speedy Q-learning
Require: Initial action-values Q0, discount factor γ, and number of steps T

Q−1 := Q0 $ Initalization
t := k := 0
repeat $ Main loop

αk :=
1

k + 1
for each (x, a) ∈ Z do $ Update the action-value function for all (x, a) ∈ Z

Generate the next state sample yk ∼ P (·|x, a)
TkQk−1(x, a) := r(x, a) + γMQk−1(yk)
TkQk(x, a) := r(x, a) + γMQk(yk)
Qk+1(x, a) := (1− αk)Qk(x, a) + αk

(
kTkQk(x, a)− (k − 1)TkQk−1(x, a)

)
$ SQL

update rule
t := t+ 1

end for
k := k + 1

until t ≥ T
return Qk

As it can be seen from the update rule of Algorithm 3.2, at each time step,
the algorithm keeps track of the action-value functions of the two most recent
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Algorithm 3.2 Asynchronous Speedy Q-learning
Require: Initial action-values Q0, policy π, discount factor γ, number of step T , and initial

state X0

t := k := 0 $ Initialization
α0 = 1
for each (x, a) ∈ Z do Q−1(x, a) := Q0(x, a) N0(x, a) := 0
end for
repeat $ Main loop

Draw the action At ∼ π(·|Xt)
Generate the next state sample yk ∼ P (·|Xt, At)

ηN :=
1

Nk(Xt, At) + 1
TkQk−1(Xt, At) := (1− ηN )TkQk−1(Xt, At) + ηN

(
r(Xt, At) + γMQk−1(yk)

)

TkQk(Xt, At) := (1− ηN )TkQk(Xt, At) + ηN
(
r(Xt, At) + γMQk(yk)

)

Qk+1(Xt, At) := (1− αk)Qk(Xt, At) + αk

(
kTkQk(Xt, At)− (k − 1)TkQk−1(Xt, At)

)
$

SQL update rule
Nk(Xt, At) := Nk(Xt, At) + 1
Xt+1 = yk
if min(x,a)∈Z Nk(x, a) > 0 then $ Check if ∀(x, a) ∈ Z have been visited at round k

k := k + 1

αk :=
1

k + 1
for each (x, a) ∈ Z do Nk(x, a) := 0
end for

end if t := t+ 1
until t ≥ T
return Qk

iterations Qk and Qk−1, and its main update rule is of the following form at
time step t and iteration k:

Qk+1(Xt, At) = (1− αk)Qk(Xt, At)

+ αk

(
kTkQk(Xt, At)− (k − 1)TkQk−1(Xt, At)

)
,

(3.2)

where TkQ(Xt, At) = 1/|Yk|
∑

y∈Yk

[
r(Xt, At)+ γMQ(y)

]
is the empirical Bell-

man optimality operator using the set of next state samples Yk, where Yk is a
short-hand notation for Yk,t(x, a), the set of all samples generated up to time
step t in round k by taking action a in state x. At each time step t, Algorithm
3.2 works as follows: (i) it simulates the MDP for one-step at state Xt, i.e., it
first draws the action At ∈ A from the distribution π(·|Xt) and then makes a
transition to a new state yk ∼ P (·|Xt, At), (ii) it updates the two sample es-
timates TkQk−1(Xt, At) and TkQk(Xt, At) of the Bellman optimality operator
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applied to the estimates Qk−1 and Qk of the action-value function at the previ-
ous and current rounds k− 1 and k, for the state-action pair (Xt, At) using the
next state yk, (iii) it updates the action-value function of (Xt, At), generates
Qk+1(Xt, At), using the update rule of Eq. 3.2, (iv) it checks if all (x, a) ∈ Z

have been visited at least once at iteration k, and if this condition is satisfied,
we move to the next round k + 1, and finally, (v) we replace Xt+1 with yk and
repeat the whole process until t ≥ T . Moreover, we let αk decays linearly with
the number of iterations k, i.e., αk = 1/(k + 1). Note that the update rule
TkQk(Xt, At) := (1− ηN )TkQk(Xt, At) + ηN (r(Xt, At) + γMQk(yk)) is used to
incrementally generate an unbiased estimate of TQk.

3.3.2 Main Theoretical Results

The main theoretical results of this chapter are expressed as high-probability
bounds for the performance of both synchronous and asynchronous versions of
the SQL algorithms. g

Theorem 3.1 (Performance Bound of Synchronous SQL). Let Assumption 4.1
hold and QT be the estimate of Q∗ generated by Algorithm 3.1 after T steps.
Then, with probability at least 1− δ, we have

‖Q∗ −QT ‖ ≤ β2



γn
T

+

√
2n log 2n

δ

T



 .

Theorem 3.2 (Performance Bound of Asynchronous SQL). Let Assumption 4.1
and Assumption 3.2 hold and QT be the estimate of Q∗ generated by Algorithm
3.2 after T steps. Then, with probability at least 1− δ, we have

‖Q∗ −QT ‖ ≤ β2



γeL log 2
δ

T
+

√
2eL log 2

δ log
4n
δ

T



 .

These results, combined with the Borel-Cantelli lemma (Feller, 1968), guar-
antee that QT converges almost surely to Q∗ with the rate

√
1/T for both

Algorithms 3.1 and 3.2. Moreover, the PAC bounds of Corollaries 3.1 and 3.2,
which quantify the number of steps T required to reach the error ε > 0 in esti-
mating the optimal action-value function w.p. 1−δ, are immediate consequences
of Theorems 3.1 and 3.2, respectively.

gWe report the detailed proofs in Section 3.5.
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Corollary 3.1 (Finite-time PAC Bound of Synchronous SQL). Under Assump-
tion 4.1, after

T = 0
4 n β4 log 2n

δ

ε2
1

steps (transitions), the uniform approximation error of Algorithm 3.1 is small,
i.e., ‖Q∗ −QT ‖ ≤ ε, with probability at least 1− δ.h

Corollary 3.2 (Finite-time PAC Bound of Asynchronous SQL). Under As-
sumption 4.1 and Assumption 3.2, after

T = 0
4 e L β4 log 2

δ log 4n
δ

ε2
1

steps (transitions), the uniform approximation error of Algorithm 3.2 is small,
i.e., ‖Q∗ −QT ‖ ≤ ε, with probability at least 1− δ.

3.3.3 Relation to the Existing Results

In this section, we first compare our results for the SQL algorithm with the
existing results on the convergence of the standard Q-learning. The comparison
indicates that SQL accelerates the convergence of QL, especially for large values
of β and small values of α. We then compare SQL with batch Q-value iteration
(QVI) in terms of the sample and computational complexities, i.e., the number
of samples and the number of time units i required to achieve an ε-optimal
solution with high probability, as well as space complexity, i.e., the memory
required at each step of the algorithm.

A Comparison with the Convergence Rate of the Standard Q-Learning

There are not many studies in the literature concerning the convergence rate of
incremental model-free RL algorithms such as QL. Szepesvári (1997) provided
the asymptotic convergence rate for QL under the assumption that all the states
have the same next state distribution. This result shows that the asymptotic
convergence rate of QL with a linearly decaying learning step has exponential
dependency on β, i.e. T = Õ(1/εβ).

Even-Dar and Mansour (2003) investigated the finite-time behavior of syn-
chronous QL for different time scales. Their main result indicates that by using

hFor every real number u, )u* is defined as the smallest integer number not less than u.
iIn the sequel, we consider the CPU time required to compute a single-sample estimate of

the Bellman optimality operator as the time unit.
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the polynomial learning step αk = 1
/
(k + 1)ω , 0.5 < ω < 1, synchronous QL

achieves ε-optimal performance w.p. at least 1− δ after

T = O



n




(
β4 log nβ

δε

ε2

) 1
w

+

(
β log

β

ε

) 1
1−ω







 , (3.3)

steps, where the time-scale parameter ω may be tuned to achieve the best per-
formance. When γ ≈ 1, the horizon β = 1/(1− γ) becomes the dominant term
in the bound of Eq. 3.3, and thus, the bound is optimized by finding an ω that
minimizes the dependency on β. This leads to the optimized bound of order
Õ
(
β5/ε2.5

)
with the choice of ω = 0.8. On the other hand, SQL is guaranteed

to achieve the same precision with only O
(
β4/ε2

)
steps. The difference between

these two bounds is substantial for large β2/ε.
Even-Dar and Mansour (2003) also proved bounds for the asynchronous

variant of Q-learning in the case that the cover time of MDP can be uniformly
bounded from above by some finite constant. The extension of their results to
the more realistic case that the expected value of the cover-time is bounded by
some L > 0 (Assumption Assumption 3.2) leads to the following PAC bound:

Proposition 3.1 (Even-Dar and Mansour, 2003). Under Assumption 4.1 and
Assumption 3.2, for all ω ∈ (0.5, 1), after

T = O




[(

L log 1
δ

)1+3ω
β4 log nβ

δε

ε2

] 1
w

+

[
Lβ log

1

δ
log

β

ε

] 1
1−ω





steps (transitions), the approximation error of asynchronous QL ‖Q∗ −QT ‖ ≤
ε, w.p. at least 1− δ.

The dependence on L in this algorithm is of order O(L3+ 1
ω + L

1
1−ω ), which

with the choice of ω ≈ 0.77 leads to the optimized dependency of order O(L4.34),
whereas asynchronous SQL achieves the same accuracy after just O(L) steps.
This result indicates that for MDPs with large expected cover-time, i.e., slow-
mixing MDPs, asynchronous SQL may converge substantially faster to a near-
optimal solution than its QL counterpart.

SQL vs. Q-Value Iteration

Finite sample bounds for both model-based and model-free (Phased Q-learning)
QVI have been derived in (Kearns and Singh, 1999; Even-Dar et al., 2002;
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Kakade, 2004, chap. 9.1). These algorithms can be considered as the batch ver-
sion of Q-learning. They show that to quantify ε-optimal action-value functions
with high probability, we need Õ

(
nβ5/ε2

)
and Õ

(
nβ4/ε2) samples in model-free

and model-based QVI, respectively.j A comparison between their results and the
main result of this chapter suggests that the sample complexity of SQL, which
is of order Õ

(
nβ4/ε2

)
, is better than model-free QVI in terms of β. Although

the sample complexities of SQL and model-based QVI are of the same order,
SQL has a significantly better computational and space complexity than model-
based QVI: SQL needs only 2n memory space, while the space complexity of
model-based QVI is min

(
Õ(nβ4/ε2), n(|X|+1)

)
(Kearns and Singh, 1999). SQL

also improves the computational complexity by a factor of Õ(β) compared to
both model-free and model-based QVI.k Table 3.1 summarizes the comparisons
between SQL and the RL methods discussed in this section.

Methods SQL Q-learning
Model-based Model-free

QVI QVI

SC Õ
(

nβ4

ε2

)
Õ
(

nβ5

ε2.5

)
Õ
(

nβ4

ε2

)
Õ
(

nβ5

ε2

)

CC Õ
(

nβ4

ε2

)
Õ
(

nβ5

ε2.5

)
Õ
(

nβ5

ε2

)
Õ
(

nβ5

ε2

)

SPC Θ(n) Θ(n) min
(
Õ
(

nβ4

ε2

)
, O(n(|X|))

)
Θ(n)

Table 3.1: Comparison between SQL, Q-learning, model-based, and model-free Q-
value iteration (QVI) in terms of sample complexity (SC), computational complexity
(CC), and space complexity (SPC).

3.4 Experiments

In this section, we empirically evaluate the performance of the synchronous SQL
(Algorithm 3.1) on the discrete state-action problems, which we considered in

jFor the sake of simplicity, here we ignore the logarithmic dependencies of the bounds.
kSince SQL performs only one Q-value update per sample, its sample and computational

complexities of are of the same order. The same argument also applies to the standard Q-
learning. On the other hand, in the case of model-based QVI, the algorithm needs to iterate
the action-value function of all the state-action pairs at least Õ(β) times. This leads to
a computational complexity of order Õ(nβ5/ε2) given that only Õ(nβ4/ε2) entries of the
estimated transition matrix are non-zero.
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Section 2.5.1. We also examine the convergence of these algorithms and com-
pare it with Q-learning and model-based Q-value iteration (QVI) (Kearns and
Singh, 1999). The source code of all the algorithms is available at
http://www.mbfys.ru.nl/~mazar/Research Top.html.

3.4.1 Experimental Setup and Results

We now describe our experimental setting. The convergence behavior of SQL is
compared to two other algorithms: the Q-learning algorithm of Even-Dar and
Mansour (2003) (QL) and the model-based Q-value iteration (QVI) of Kearns
and Singh (1999). QVI is a batch RL algorithm that first estimates the model
using the whole data set and then performs value iteration on the learned model.

All the algorithms are evaluated in terms of #∞-norm performance loss of the
action-value function ‖Q∗ −QT ‖ at time-step T . We choose this performance
measure in order to be consistent with the performance measure used in Section
3.3.2. The optimal action-value function Q∗ is computed with high accuracy
using value iteration. We consider QL with polynomial learning step αk =
1/(k+1)ω where ω ∈ {0.51, 0.6, 0.8} and the linear learning step αk = 1/(k+1).
Note that ω needs to be larger than 0.5, otherwise QL may diverge (see Even-
Dar and Mansour, 2003, for the proof).

To have a fair comparison of the three algorithms, since each algorithm
requires different number of computations per iteration, we fix the total compu-
tational budget of the algorithms to the same value for each benchmark. The
computation time is constrained to 30 seconds for the linear MDP and combina-
tion lock problems. For the grid world, which has twice as many actions as the
other benchmarks, the maximum running time is fixed to 60 seconds. We also
fix the total number of samples, per state-action, to 105 samples for all prob-
lems and algorithms. Smaller number of samples leads to a dramatic decrease
in the quality of the solutions of all the three algorithms. Algorithms were im-
plemented as MEX files (in C++) and ran on a Intel core i5 processor with 8
GB of memory. CPU time was computed using the system function times()
that provides process-specific CPU time. Randomization was implemented us-
ing gsl rng uniform() function of the GSL library, which is superior to the
standard rand().l Sampling time, which is the same for all the algorithms,
were not included in the CPU time. At the beginning of every run (i) the
action-value functions are randomly initialized in the interval [−β,β], and (ii)

lhttp://www.gnu.org/s/gsl.
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Figure 3.1: A comparison between SQL, QL, and QVI. Each plot compares the
performance loss of the policies induced by the algorithms at one of the three problems
considered in this section. All the results are averaged over 50 different runs.

a new set of samples is generated from P (·|x, a) for all (x, a) ∈ Z. The corre-
sponding results are computed after a small fixed amount of iterations. All the
results are averaged over 50 different runs.

Figure 3.1 shows the performance-loss in terms of the elapsed CPU time for
the three problems and algorithms with the choice of β = 1000. We observe
that SQL outperforms QL and QVI in all the three problems. It achieves a
reasonable performance very rapidly, just in a few seconds. The minimum and
maximum errors are attained for the combination lock and grid world problems,
respectively. We also observe that the difference between the final outcome of
SQL and QL (the second best method) is significant, about 30 times, in all
domains.

Figures 3.2 and 3.3 show the means and standard deviations of the final
performance-loss as a function of the horizon β. We observe that for large values
of β, i.e. β ≥ 100, SQL outperforms other methods by more than an order of
magnitude in terms of both mean and standard deviation of performance loss.
SQL performs slightly worse than QVI for β ≤ 10. However, the loss of QVI
scales worse than SQL with β, e.g., for β = 1000, SQL has about two order
of magnitude advantage over QVI. QL performs better for larger values of ω
when the horizon β is small, whereas for large values of β smaller ω’s are more
preferable.
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Figure 3.2: A comparison between SQL, QL, and QVI given a fixed computational
and sampling budget. The plot shows the means of the final performance of the
algorithms in terms of the horizon β. All the results are averaged over 50 different
runs.
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Figure 3.3: A comparison between SQL, QL, and QVI given a fixed computational
and sampling budget. The plot shows the the standard deviations of the final perfor-
mance of the algorithms in terms of the horizon β. All the results are averaged over
50 different runs.

These results are consistent with the performance bound of Theorem 3.1 and
indicate that the SQL algorithm manages to average out the simulation noise
caused by sampling, and converges rapidly to a near optimal solution, which is
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robust in comparison to the other algorithms. Moreover, we may conclude that
SQL significantly improves the computational complexity of learning w.r.t. the
standard QL and QVI in the three problems studied in this section.

3.5 Analysis

In this section, we give some intuition about the convergence of asynchronous
variant of SQL and provide the full proof of the finite-time analysis reported in
Theorems 3.1 and 3.2. We start by introducing some notation.

Let Yk be the set of all samples drawn at round k of the SQL algorithms and
Fk be the filtration generated by the sequence {Y0,Y1, . . . ,Yk}. Note that for
all (x, a) ∈ Z, the update rule of Equation 3.2 may be rewritten in the following
more compact form

Qk+1(x, a) = (1− αk)Qk(x, a) + αkDk[Qk, Qk−1](x, a),

where Dk[Qk, Qk−1](x, a) ! 1
αk

[
(1 − αk)TkQk(x, a) − (1 − 2αk)TkQk−1(x, a)

]

and αk = 1/(k + 1). We now define the operator D[Qk, Qk−1] as the expected
value of the empirical operator Dk conditioned on the filtration Fk−1, i.e.,

D[Qk, Qk−1](x, a) ! E(Dk[Qk, Qk−1](x, a)|Fk−1)

=
1− αk

αk
TQk(x, a)−

1− 2αk

αk
TQk−1(x, a),

where the last equality follows from the fact that in both Algorithms 3.1 and 3.2,
TkQk(x, a) and TkQk−1(x, a) are unbiased empirical estimates of the Bellman
optimality operators TQk(x, a) and TQk−1(x, a), respectively. Thus, the update
rule of SQL can be rewritten as

Qk+1(x, a) = (1− αk)Qk(x, a) + αk

(
D[Qk, Qk−1](x, a)− εk(x, a)

)
, (3.4)

where the estimation error εk is defined as the difference between the operator
D[Qk, Qk−1] and its sample estimate Dk[Qk, Qk−1], i.e.,

εk(x, a) ! D[Qk, Qk−1](x, a)−Dk[Qk, Qk−1](x, a), ∀(x, a) ∈ Z.

We have the property that E
[
εk(x, a)|Fk−1

]
= 0, which means that for all

(x, a) ∈ Z, the sequence of estimation errors
{
ε1(x, a), ε2(x, a), . . . , εk(x, a)

}
is
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a martingale difference sequence w.r.t. the filtration Fk. Finally, we define the
martingale Ek(x, a) to be the sum of the estimation errors, i.e.,

Ek(x, a) !
k∑

j=0

εj(x, a), ∀(x, a) ∈ Z. (3.5)

The following steps lead to the proof of Theorems 3.1 and 3.2: (i) Lemma
3.1 shows the stability of SQL, i.e., the sequence of Qk’s stays bounded in SQL.
(ii) Lemma 3.2 states the key property that each iterate Qk+1 in SQL is close
to the Bellman operator applied to the previous iterate Qk, i.e., TQk. More
precisely, in this lemma we show that Qk+1 is equal to TQk plus an estimation
error term of order Ek/k. (iii) Lemma 3.3 provides a performance bound on
‖Q∗ − Qk‖ in terms of a discounted sum of the cumulative estimation errors
{Ej}k−1

j=0 . Lemma 3.1 to 3.3 hold for both Algorithms 3.1 and 3.2. (iv) Given
these results, we prove Theorem 3.1 using a maximal Azuma’s inequality stated
in Lemma 3.2. (v) Finally, we extend this proof to asynchronous SQL, and
prove Therorem 3.2, using the result of Lemma 3.5.

For simplicity of the notation, we often remove the dependence on (x, a),
e.g., writing Q for Q(x, a) and Ek for Ek(x, a). Also note that for all k ≥ 0, the
following relations hold between αk and αk+1 in Algorithms 3.1 and 3.2:

αk+1 =
αk

αk + 1
and αk =

αk+1

1− αk+1
.

Lemma 3.1 (Stability of SQL). Let Assumption 4.1 hold and assume that the
initial action-value function Q0 = Q−1 is uniformly bounded by Vmax = β, then
we have

‖Qk‖ ≤ Vmax, ‖εk‖ ≤ Vmax, and ‖Dk[Qk, Qk−1]‖ ≤ Vmax ∀k ≥ 0.

Proof
We first prove that ‖Dk[Qk, Qk−1]‖ ≤ Vmax by induction. For k = 0 we have

‖D0[Q0, Q−1]‖ = ‖T0Q−1‖ ≤ ‖r‖ + γ‖MQ−1‖ ≤ Rmax + γVmax = Vmax.

Now let us assume that for any k ≥ 0, ‖Dk[Qk, Qk−1]‖ ≤ Vmax. Then we
obtain
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‖Dk+1[Qk+1, Qk]‖ =
∥∥∥ 1−αk+1

αk+1
Tk+1Qk+1 − 1−2αk+1

αk+1
Tk+1Qk

∥∥∥

≤
∥∥∥
(

1−αk+1

αk+1
− 1−2αk+1

αk+1

)
r
∥∥∥

+ γ
∥∥∥ 1−αk+1

αk+1
MQk+1 − 1−2αk+1

αk+1
MQk

∥∥∥

≤ ‖r‖ + γ
∥∥∥ 1−αk+1

αk+1
M
(
(1− αk)Qk + αkDk[Qk, Qk−1]

)

− 1−2αk+1

αk+1
MQk

∥∥∥

= ‖r‖ + γ
∥∥∥M

(
1−αk
αk

Qk +Dk[Qk, Qk−1]
)
− 1−αk

αk
MQk

∥∥∥

≤ ‖r‖ + γ
∥∥∥M

(
1−αk
αk

Qk +Dk[Qk, Qk−1]− 1−αk
αk

Qk

)∥∥∥

≤ ‖r‖ + γ ‖Dk[Qk, Qk−1]‖ ≤ Rmax + γVmax = Vmax,

and thus by induction, we deduce that for all k ≥ 0, ‖Dk[Qk, Qk−1]‖ ≤ Vmax.
The bound on εk follows from

‖εk‖ = ‖E
(
Dk[Qk, Qk−1]|Fk−1

)
−Dk[Qk, Qk−1]‖ ≤ Vmax,

and the bound ‖Qk‖ ≤ Vmax is deduced by the fact that

Qk =
1

k

∑
k−1
j=0Dj [Qj , Qj−1].

The next lemma shows that Qk is close to TQk−1, up to a O( 1k ) term minus
the cumulative estimation error 1

kEk−1.

Lemma 3.2. Under Assumption 4.1, for any k ≥ 1 we have

Qk = TQk−1 +
1

k
(TQ0 − TQk−1 − Ek−1) . (3.6)

Proof
We prove this result by induction. The result holds for k = 1, where Equa-

tion 3.6 reduces to Equation 3.4. We now show that if Equation 3.6 holds for
k ≥ 1 then it also holds for k + 1. Assume that Equation 3.6 holds for k, then
from Equation 3.4 we have
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Qk+1 = (1− αk)Qk + αk

[
1− αk

αk
TQk −

1− 2αk

αk
TQk−1 − εk

]

= (1− αk)
[
TQk−1 + αk−1 (TQ0 − TQk−1 − Ek−1)

]

+ αk

[
1− αk

αk
TQk −

1− 2αk

αk
TQk−1 − εk

]

= (1− αk)

[
TQk−1 +

αk

1− αk
(TQ0 − TQk−1 − Ek−1)

]

+ (1− αk)TQk − (1− 2αk)TQk−1 − αkεk

= (1− αk)TQk + αk (TQ0 − Ek−1 − εk) = TQk + αk (TQ0 − TQk − Ek)

= TQk +
1

k + 1
(TQ0 − TQk − Ek) .

Thus Equation 3.6 holds for k + 1, and as a result, holds for all k ≥ 1.

Now we bound the difference between Q∗ and Qk in terms of the discounted
sum of the cumulative estimation errors {E0, E1, . . . , Ek−1}.

Lemma 3.3 (Error propagation in SQL). Let Assumption 4.1 hold and assume
that the initial action-value function Q0 = Q−1 is uniformly bounded by Vmax =
β, then for all k ≥ 1, we have

‖Q∗ −Qk‖ ≤
1

k



γβ2 +
k∑

j=1

γk−j ‖Ej−1‖



 (3.7)

≤
β

k

[
γβ + max

j=1:k
‖Ej−1‖

]
. (3.8)

Proof
For any sequence of cumulative errors {E0, E1, . . . , Ek−1}, we have∑k

j=1 γ
k−j ‖Ej−1‖ ≤ βmaxj=1:k ‖Ej−1‖. Thus, we only need to prove (3.7),

and (3.8) will automatically follow. We again prove this lemma by induction.
The result holds for k = 1 since we have

‖Q∗ −Q1‖ = ‖TQ∗ − TQ0 − ε0‖ ≤ γ ‖Q∗ −Q0‖ + ‖ε0‖
≤ 2γVmax + ‖ε0‖ ≤ γβ2 + ‖E0‖ .
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Note that the first equality follows from Lemma 3.2. We now show that if
the bound holds for k, then it should also hold for k + 1. If (3.7) holds for k,
then using Lemma 3.2 we have

∥∥Q∗ −Qk+1

∥∥ =

∥∥∥∥Q
∗ − TQk −

1

k + 1
(TQ0 − TQk − Ek)

∥∥∥∥

≤ ‖αk(TQ
∗ − TQ0) + (1− αk)(TQ

∗ − TQk)‖ + αk ‖Ek‖
≤ αk ‖TQ∗ − TQ0‖ + (1− αk) ‖TQ∗ − TQk‖ + αk ‖Ek‖
≤ γαkVmax + γ(1− αk) ‖Q∗ −Qk‖ + αk ‖Ek‖ .

Since we assumed that (3.7) holds for k, we may write

∥∥Q∗ −Qk+1

∥∥ ≤ αkγVmax + γ(1− αk)αk−1



γβ2 +
k∑

j=1

γk−j ‖Ej−1‖





+ αk ‖Ek‖

= γβαk + γ2β2αk + γαk

k∑

j=1

γk−j ‖Ej−1‖ + αk ‖Ek‖

=
1

k + 1



γβ2 +
k+1∑

j=1

γk+1−j ‖Ej−1‖



 .

Thus, Equation 3.7 holds for k+1, and as a result by induction, it holds for
all k ≥ 1.

Before stating the next lemma, we report the maximal Azuma-Hoeffding’s
inequality (see e.g., Cesa-Bianchi and Lugosi 2006), which is used in the proof
of this lemma.

Proposition 3.2 (Maximal Azuma-Hoeffding’s Inequality). Let V
= {V1, V2, . . . , Vk} be a martingale difference sequence w.r.t. a sequence of ran-
dom variables {X1, X2, . . . , Xk}, i.e., E(Vj+1|X1, . . . , Xj) = 0 for all 0 < j ≤ k,

such that V is uniformly bounded by L > 0. If we define Sk =
∑k

i=1 Vi, then for
any ε > 0, we have
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P

(
max
j=1:k

Sj > ε

)
≤ exp

(
−ε2

2kL2

)
.

We now state Lemma 3.4 in which we prove a high probability bound on the
estimation error term in Lemma 3.3, i.e., maxj=1:k ‖Ej−1‖.

Lemma 3.4. Let Assumption 4.1 hold and assume that the initial action-value
function Q0 = Q−1 is uniformly bounded by Vmax = β. Then for all k ≥ 1, with
probability at least 1− δ, we have

max
j=1:k

‖Ej−1‖ ≤ β

√
2k log

2n

δ
. (3.9)

Proof
We begin by providing a high probability bound on max1≤j≤k |Ej−1(x, a)|

for a given state-action pair (x, a). Note that

P

(
max
j=1:k

|Ej−1(x, a)| > ε

)

=P

(
max

[
max
j=1:k

Ej−1(x, a) , max
j=1:k

(
− Ej−1(x, a)

)]
> ε

)

=P

({
max
j=1:k

Ej−1(x, a) > ε

}⋃{
max
j=1:k

(
− Ej−1(x, a)

)
> ε

})

≤P

(
max
j=1:k

Ej−1(x, a) > ε

)
+ P

(
max
j=1:k

(
− Ej−1(x, a)

)
> ε

)
,

(3.10)

We can now bound both terms in (3.10) using the maximal Azuma-Hoeffding’s
inequality stated in Proposition 3.2. As mentioned earlier, the sequence of ran-
dom variables

{
ε0(x, a), ε1(x, a), . . . , εk(x, a)

}
is martingale difference w.r.t. the

filtration Fk generated by random samples {y0, y1, . . . , yk}
(x, a) for all (x, a), i.e., E[εk(x, a)|Fk−1] = 0. So, we have

P

(
max
j=1:k

Ej−1(x, a) > ε

)
≤ exp

(
−ε2

2kV 2
max

)
,

P

(
max
j=1:k

(
− Ej−1(x, a)

)
> ε

)
≤ exp

(
−ε2

2kV 2
max

)
.

(3.11)

Combining (3.11) with (3.10), we deduce



60 Chapter 3: Speedy Q-Learning

P

(
max
j=1:k

|Ej−1(x, a)| > ε

)
≤ 2 exp

(
−ε2

2kV 2
max

)
,

and then by a union bound over the state-action space, we obtain

P

(
max
j=1:k

‖Ej−1‖ > ε

)
≤ 2n exp

(
−ε2

2kV 2
max

)
. (3.12)

Equation 3.12 may be rewritten for any δ > 0 as

P

(

max
j=1:k

‖Ej−1‖ ≤ Vmax

√
2k log

2n

δ

)

≥ 1− δ,

which concludes the proof.

Proof of Theorem 3.1
The result of the theorem follows by plugging Equation 3.9 into Equation

3.8, and taking into account that if n(k−1) < T ≤ nk then Algorithm 3.1 stops
after k iterations and returns Qk.

For the proof of Theorem 3.2, we rely on the following lemma which bounds
the number of steps required to visit all state-action pairs k times with high
probability.

Lemma 3.5. Under Assumption 3.2, from any initial state x0 and for any
integer k > 0, after running Algorithm 3.2 for T = ekL log 1

δ steps, the state-
action space Z is covered at least k times under the policy π with probability at
least 1− δ.

Proof
For any state x0 ∈ X and time t > 0, we define a random variable Qk as the

number of steps required to cover the MDP k times starting from x0 at time t.
Using Markov inequality (Feller, 1968), for any x0 and t, we can bound Qk with
high probability as

P(Qk > ekL) ≤
E (Qk)

ekL
≤

k supt>0 maxx∈X E
(
τπ(x, t)

)

ekL
≤

kL

ekL
=

1

e
.

This mean that after a run of length ekL, the probability that the entire
state-action space is not covered at least k times is less than 1

e . The fact
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that the bound holds for any initial state and time implies that after m > 0
intervals of length ekL, the chance of not covering the MDP k times is less
than 1

em , i.e., P(Qk > mekL) ≤ 1
em . With the choice of m = log 1

δ , we obtain
P(Qk > ekL log 1

δ ) ≤ δ. The bound then can be rewritten as

P

(
Qk ≤ ekL log

1

δ

)
≥ 1− δ,

which concludes the proof.

Proof of Theorem 3.2
Plugging the results of Lemmas 3.5 and 3.4 into Equation 3.8 (each holds

with probability at least 1− δ′, with δ′ = δ/2) concludes the proof of the theo-
rem.

3.6 Conclusions and Future Work

In this chapter, we presented a new reinforcement learning (RL) algorithm,
called speedy Q-learning (SQL). We analyzed the finite-time behavior of this
algorithm as well as its asymptotic convergence to the optimal action-value func-
tion. Our results are in the form of high probability bounds on the performance
loss of SQL, which suggest that the algorithm converges to the optimal action-
value function in a faster rate than the standard Q-learning. The numerical
experiments in Section 3.4 confirm our theoretical results showing that for large
value of β = 1/(1 − γ), SQL outperforms the standard Q-learning by a wide
margin. Overall, SQL is a simple, efficient, and theoretically well-founded RL
algorithm that improves on the existing similar methods such as Q-learning and
sample-based value iteration.

In this work, we are only interested in the estimation of the optimal action-
value function and not the problem of exploration. Therefore, we did not com-
pare our results to PAC-MDP methods (Strehl et al., 2009; Szita and Szepesvári,
2010) and upper-confidence bound based algorithms (Bartlett and Tewari, 2009;
Jaksch et al., 2010b), in which the choice of the exploration policy has an in-
fluence on the behavior of the learning algorithm. However, we believe that it
would be possible to gain w.r.t. the state of the art in PAC-MDPs by combining
the asynchronous version of SQL with a smart exploration strategy. This is
mainly due to the fact that the bound for SQL has been proved to be tighter
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than the RL algorithms used for estimating the value function in PAC-MDP
methods (especially in the model-free case). Also, SQL has a better computa-
tional requirement in comparison to the standard RL methods. We leave this
as a subject for future work.

Another possible direction for future work is to scale up SQL to large, possi-
bly continuous, state and action spaces, where function approximation is needed.
We believe that it would be possible to extend the current SQL analysis to the
continuous case along the same line as in the fitted value iteration analysis by
Antos et al. (2007) and Munos and Szepesvári (2008).



CHAPTER 4

Minimax Bounds on the Sample Complexity of RL

We consider the problem of learning the optimal action-value function in
discounted-reward Markov decision processes (MDPs). We prove new PAC
bounds on the sample-complexity of two well-known model-based reinforce-
ment learning (RL) algorithms in the presence of a generative model of the
MDP: value iteration and policy iteration. The first result indicates that
for an MDP with N state-action pairs and the discount factor γ ∈ [0, 1)
only O

(

N log(N/δ)/
(

(1 − γ)3ε2
))

state-transition samples are required to
find an ε-optimal estimation of the action-value function with the proba-
bility (w.p.) 1 − δ. Further, we prove that, for small values of ε, an
order of O

(

N log(N/δ)/
(

(1 − γ)3ε2
))

samples is required to find an ε-
optimal policy w.p. 1 − δ. We also prove a matching lower bound of
Θ
(

N log(N/δ)/
(

(1 − γ)3ε2
))

on the sample complexity of estimating the
optimal action-value function. To the best of our knowledge, this is the first
minimax result on the sample complexity of RL: the upper bound matches
the lower bound in terms of N , ε, δ and 1/(1 − γ) up to a constant factor.
Also, both our lower bound and upper bound improve on the state-of-the-art
in terms of their dependence on 1/(1− γ).a

aThis chapter is based on (Azar et al., 2012c) and (Azar et al., 2012b).
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4.1 Introduction

An important problem in the field of reinforcement learning (RL) is to estimate
the optimal policy (or the optimal value function) from the observed rewards
and the transition samples (Sutton and Barto, 1998; Szepesvári, 2010). To
estimate the optimal policy one may use model-free or model-based approaches.
In model-based RL, we first learn a model of the MDP using a batch of state-
transition samples and then use this model to estimate the optimal policy or
the optimal action-value function using the Bellman recursion, whereas model-
free methods directly aim at estimating the optimal value function without
resorting to learning an explicit model of the dynamical system. The fact that
the model-based RL methods decouple the model-estimation problem from the
value (policy) iteration problem may be useful in problems with a limited budget
of sampling. This is because the model-based RL algorithms, after learning the
model, can perform many Bellman recursion steps without any need to make
new transition samples, whilst the model-free RL algorithms usually need to
generate fresh samples at each step of value (policy) iteration process.

The focus of this chapter is on model-based RL algorithms for finite state-
action problems, where we have access to a generative model (simulator) of
the MDP. Especially, we derive tight sample-complexity upper bounds for two
well-known model-based RL algorithms, the model-based value iteration and
the model-based policy iteration (Wiering and van Otterlo, 2012a), It has been
shown (Kearns and Singh, 1999; Kakade, 2004, chap. 9.1) that an action-value
based variant of model-based value iteration algorithm, Q-value iteration (QVI),
finds an ε-optimal estimate of the action-value function with high probability
(w.h.p.) using only Õ(N/

(
(1 − γ)4ε2

)
) samples, where N and γ denote the

size of state-action space and the discount factor, respectively.b One can also
prove, using the result of Singh and Yee (1994), that QVI w.h.p. finds an ε-
optimal policy using an order of Õ(N/

(
(1− γ)6ε2

)
) samples. An upper-bound

of a same order can be proven for model-based PI. These results match the best
upper-bound currently known (Azar et al., 2011b) for the sample complexity
of RL. However, there exist gaps with polynomial dependency on 1/(1 − γ)
between these upper bounds and the state-of-the-art lower bound, which is of
order Ω̃

(
N/((1 − γ)2ε2)

)
(Azar et al., 2011a; Even-Dar et al., 2006).c It has

not been clear, so far, whether the upper bounds or the lower bound can be

bThe notation g = Õ(f) implies that there are constants c1 and c2 such that g ≤
c1f logc2 (f).

cThe notation g = Ω̃(f) implies that there are constants c1 and c2 such that g ≥
c1f logc2 (f).
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improved or both.

In this chapter, we prove new bounds on the performance of QVI and PI
which indicate that for both algorithms with the probability (w.p) 1−δ an order
of O

(
N log(N/δ)/

(
(1−γ)3ε2

))
samples suffice to achieve an ε-optimal estimate

of action-value function as well as to find an ε-optimal policy. The new upper
bound improves on the previous result of AVI and API by an order of 1/(1−γ).
We also present a new minimax lower bound of Θ

(
N log(N/δ)/

(
(1 − γ)3ε2

))
,

which also improves on the best existing lower bound of RL by an order of
1/(1 − γ). The new results, which close the above-mentioned gap between the
lower bound and the upper bound, guarantee that no learning method, given
the generative model of the MDP, can be significantly more efficient than QVI
and PI in terms of the sample complexity of estimating the optimal action-value
function or the optimal policy.

The main idea to improve the upper bound of the above-mentioned RL
algorithms is to express the performance loss Q∗−Qk, where Qk is the estimate
of the action-value function after k iteration of QVI or PI, in terms of Σπ∗

,
the variance of the sum of discounted rewards under the optimal policy π∗,
as opposed to the maximum Vmax = Rmax/(1 − γ) as was used before. For
this we make use of the Bernstein’s concentration inequality (Cesa-Bianchi and
Lugosi, 2006, appendix, pg. 361), which is expressed in terms of the variance of
the random variables. We also rely on the fact that the variance of the sum of
discounted rewards, like the expected value of the sum (value function), satisfies
a Bellman-like equation, in which the variance of the value function plays the
role of the instant reward in the standard Bellman equation (Munos and Moore,
1999; Sobel, 1982). These results allow us to prove a high-probability bound of
order Õ(

√
Σπ∗/(n(1− γ))) on the performance loss of both algorithms, where

n is the number of samples per state-action. This leads to a tight PAC upper-
bound of Õ(N/(ε2(1− γ)3)) on the sample complexity of these methods.

In the case of lower bound, we introduce a new class of “hard” MDPs, which
adds some structure to the bandit-like class of MDP used previously by Azar
et al. (2011a); Even-Dar et al. (2006): in the new model, there exist states
with high probability of transition to themselves. This adds to the difficulty of
estimating the value function, since even a small modeling error may cause a
large error in the estimate of the optimal value function, especially when the
discount factor γ is close to 1.

The rest of the chapter is organized as follows. After introducing the nota-
tions used in the chapter in Section 4.2, we describe the model-based Q-value
iteration (QVI) algorithm and the model-based policy iteration (PI) in Subsec-
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tion 4.2.1. We then state our main theoretical results, which are in the form of
PAC sample complexity bounds in Section 4.3. Section 4.4 contains the detailed
proofs of the results of Sections 4.3, i.e., sample complexity bound of QVI and
a matching lower bound for RL. Finally, we conclude the chapter and propose
some directions for the future work in Section 4.5.

4.2 Background

In this section, we review some standard concepts and definitions from the
theory of Markov decision processes (MDPs). We then present two model-based
RL algorithms which make use of generative model for sampling: the model-
based Q-value iteration and the model-based policy iteration (Wiering and van
Otterlo, 2012a; Kearns and Singh, 1999).

We consider the standard reinforcement learning (RL) framework (Bertsekas
and Tsitsiklis, 1996; Sutton and Barto, 1998), where an RL agent interacts
with a stochastic environment and this interaction is modeled as a discrete-time
discounted MDP. A discounted MDP is a quintuple (X,A, P,R, γ), where X and
A are the set of states and actions, P is the state transition distribution, R is
the reward function, and γ ∈ [0, 1) is a discount factor.d We denote by P (·|x, a)
and r(x, a) the probability distribution over the next state and the immediate
reward of taking action a at state x, respectively.

To keep the representation succinct, in the sequel, we use the notation Z for
the joint state-action space X×A. We also make use of the shorthand notations
z and β for the state-action pair (x, a) and 1/(1− γ), respectively.

Assumption 4.1 (MDP Regularity). We assume Z and, subsequently, X and
A are finite sets with cardinalities N , |X| and |A|, respectively. We also assume
that the immediate reward r(x, a) is taken from the interval [0, 1].e

A mapping π : X → A is called a stationary and deterministic Marko-
vian policy, or just a policy in short. Following a policy π in an MDP means
that at each time step t the control action At ∈ A is given by At = π(Xt),

dFor simplicity, here we assume that the reward r(x, a) is a deterministic function of state-
action pairs (x, a). Nevertheless, It is straightforward to extend our results to the case of
stochastic rewards under some mild assumption, e.g., boundedness of the absolute value of
the rewards.

eOur results also hold if the rewards are taken from some interval [rmin, rmax] instead of
[0, 1], in which case the bounds scale with the factor rmax − rmin.
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where Xt ∈ X. The value and the action-value functions of a policy π, de-
noted respectively by V π : X → R and Qπ : Z → R, are defined as the ex-
pected sum of discounted rewards that are encountered when the policy π is
executed. Given an MDP, the goal is to find a policy that attains the best
possible values, V ∗(x) ! supπ V

π(x), ∀x ∈ X. The function V ∗ is called the
optimal value function. Similarly the optimal action-value function is defined
as Q∗(x, a) = supπ Q

π(x, a). We say that a policy π∗ is optimal if it attains
the optimal V ∗(x) for all x ∈ X. The policy π defines the state transition
kernel Pπ as Pπ(y|x) ! P (y|x,π(x)) for all x ∈ X. The right-linear opera-
tors Pπ·, P · and Pπ· are also defined as (PπQ)(z) !

∑
y∈XP (y|z)Q(y,π(y)),

(PV )(z) !
∑

y∈XP (y|z)V (y) for all z ∈ Z and (PπV )(x) !
∑

y∈X Pπ(y|x)V (y)
for all x ∈ X, respectively. The optimal action-value function Q∗ is the unique
fixed-point of the Bellman optimality operator defined as

(TQ)(z) ! r(z) + γ(Pπ∗

Q)(z), ∀z ∈ Z.

Also, for the policy π, the action-value function Qπ is the unique fixed-point
of the Bellman operator Tπ which is defined as (TπQ)(z) ! r(z) + γ(PπQ)(z)
for all z ∈ Z. One can also define the Bellman optimality operator and the
Bellman operator on the value function as (TV )(x) ! r(x,π∗(x)) + γ(Pπ∗V )(x)
and (TπV )(x) ! r(x,π(x)) + γ(PπV )(x) for all x ∈ X, respectively.

It is important to note that T and Tπ are γ-contractions, i.e., for any pair of
value functions V and V ′ and any policy π, we have ‖TV − TV ′‖ ≤ γ‖V − V ′‖
and ‖TπV − TπV ′‖ ≤ γ‖V − V ′‖ (Bertsekas, 2007b, Chap. 1). ‖ · ‖ shall denote
the supremum (#∞) norm, defined as ‖g‖ ! maxy∈Y |g(y)|, where Y is a finite
set and g : Y → R is a real-valued function. We also define the #1-norm on the
function g as ‖g‖1 =

∑
y∈Y |g(y)|.

For ease of exposition, in the sequel, we remove the dependence on z and x,
e.g., writing Q for Q(z) and V for V (x), when there is no possible confusion.

4.2.1 Algorithms

We begin by describing the procedure which is used by both PI and QVI to
make an empirical estimate of the state-transition distributions.

The model estimator makes n transition samples for each state-action pair
z ∈ Z for which it makes n calls to the generative model, i.e., the total number
of calls to the generative model is T = nN . It then builds an empirical model
of the transition probabilities as P̂ (y|z) ! m(y, z)/n, where m(y, z) denotes the
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number of times that the state y ∈ X has been reached from the state-action
pair z ∈ Z (see Algorithm 4.3). Based on the empirical model P̂ the operator

T̂ is defined on the action-value function Q, for all z ∈ Z, by T̂Q(z) = r(z) +
γ(P̂ V )(z), with V (x) = maxa∈A(Q(x, a)) for all x ∈ X. Also, the empirical

operator T̂π is defined on the action-value function Q, for every policy π and all
z ∈ Z, by T̂πQ(z) = r(z)+γP̂πQ(z). Likewise, one can also define the empirical

Bellman operator T̂ and T̂π for the value function V . The fixed points of the
operator T̂ in Z and X domains are denoted by Q̂∗ and V̂ ∗, respectively. Also,
the fixed points of the operator T̂π in Z and X domains are denoted by Q̂π and
V̂ π, respectively. The empirical optimal policy π̂∗ is the policy which attains
V̂ ∗ under the model P̂ .

Having the empirical model P̂ estimated, QVI and PI rely on standard
value iteration and policy iteration schemes to estimate the optimal action-value
function: QVI iterates some action-value function Qj , with the initial value of

Q0, through the empirical Bellman optimality operator T̂ until Qj admits some
convergence criteria. PI, in contrast, relies on iterating some policy πj with
the initial value π0: at each iteration j > 0, the algorithm solves the dynamic
programming problem for a fixed policy πj using the empirical model P̂ . The
next policy πj+1 is then determined as the greedy policy w.r.t. the action-value

function Q̂πj , that is, πj+1(x) = argmaxa∈A Q̂πj (x, a) for all x ∈ X. Note
that Qk, as defined by PI and QVI are deferent, but nevertheless we use a
same notation for both action-functions since we will show in the next section
that they enjoy the same performance guarantees. The pseudo codes of both
algorithms are provided in Algorithm 4.1 and Algorithm 4.2.

Algorithm 4.1 Model-based Q-value Iteration (QVI)
Require: reward function r, discount factor γ, initial action-value function Q0, samples per

state-action n, number of iterations k

P̂ =EstimateModel(n) $ Estimate the model (defined in Algorithm 4.3)
for j := 0, 1, . . . , k − 1 do

for each x ∈ X do
πj(x) = argmaxa∈A Qj(x, a) $ greedy policy w.r.t. the latest estimation of Q∗

for each a ∈ A do
T̂Qj(x, a) = r(x, a) + γ(P̂πjQj)(x, a) $ empirical Bellman operator

Qj+1(x, a) = T̂Qj(x, a) $ Iterate the action-value function Qj

end for
end for

end for
return Qk
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Algorithm 4.2 Model-based Policy Iteration (PI)
Require: reward function r, discount factor γ, initial policy π0, samples per state-action n,

number of iterations k

P̂ =EstimateModel(n) $ Estimate the model (defined in Algorithm 4.3)

Q0=SolveDP(P̂ ,π0)
for j := 0, 1, . . . , k − 1 do

for each x ∈ X do
πj(x) = argmaxa∈A Qj(x, a) $ greedy policy w.r.t. the latest estimation of Q∗

end for
Q̂πj=SolveDP(P̂ ,πj) $ Find the fixed point of the Bellman operator for the policy πj

Qj+1 = Q̂πj $ Iterate the action-value function Qj

end for
return Qk

function SolveDP(P,π)
Q = (I − γPπ)−1r
return Q

end function

Algorithm 4.3 Function: EstimateModel

Require: The generative model (simulator) P
function EstimateModel(n) $ Estimating the transition model using n samples

∀(y, z) ∈ X× Z : m(y, z) = 0 $ initialization
for each z ∈ Z do

for i := 1, 2, . . . , n do
y ∼ P (·|z) $ Generate a state-transition sample
m(y, z) := m(y, z) + 1 $ Count the transition samples

end for
∀y ∈ X : P̂ (y|z) = m(y,z)

n
$ Normalize by n

end for
return P̂ $ Return the empirical model

end function

4.3 Main Results

Our main results are in the form of PAC (probably approximately correct)
sample complexity bounds on the total number of samples required to attain a
near-optimal estimate of the action-value function:
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Theorem 4.1 (PAC-bound on Q∗ −Qk). Let Assumption 4.1 hold and T be a
positive integer. Then, there exist some constants c, c0, d and d0 such that for
all ε ∈ (0, 1) and δ ∈ (0, 1), a total sampling budget of

T = 0
cβ3N

ε2
log

c0N

δ
1,

suffices for the uniform approximation error ‖Q∗−Qk‖ ≤ ε, w.p. at least 1− δ,
after k = 0d log(d0β/ε)/ log(1/γ)1 iteration of QVI or PI algorithm.f

We also prove a similar bound on the sample-complexity of finding a near-
optimal policy for small values of ε:

Theorem 4.2 (PAC-bound on Q∗ −Qπk). Let Assumption 4.1 hold and T be
a positive integer. Define πk as the greedy policy w.r.t. Qk at iteration k of PI
or QVI. Then, there exist some constants c′, c′0, c

′
1, d

′ and d′0 such that for all
ε ∈ (0, c′1

√
β/(γ|X)|) and δ ∈ (0, 1), a total sampling budget of

T = 0
c′β3N

ε2
log

c′0N

δ
1,

suffices for the uniform approximation error ‖V ∗ − V πk‖ ≤ ‖Q∗ − Qπk‖ ≤ ε,
w.p. at least 1 − δ, after k = d′0log(d′0β/ε)/ log(1/γ)1 iteration of QVI or PI
algorithm.

The following general result provides a tight lower bound on the number of
transitions T for every RL algorithm to find a near optimal solution w.p. 1− δ,
under the assumption that the algorithm is (ε, δ, T )-correct:

Definition 4.1 ((ε, δ)-correct algorithm). Let QA : Z → R be the output of
some RL Algorithm A.We say that A is (ε, δ)-correct on the class of MDPs
M = {M1,M2, . . . ,Mm} if

∥∥Q∗ −QA
∥∥ ≤ ε with probability at least 1− δ for all

M ∈ M.g

Theorem 4.3 (Lower bound on the sample complexity of RL). Let Assump-
tion 4.1 hold and T be a positive integer. There exist some constants ε0, δ0,
c1, c2, and a class of MDPs M, such that for all ε ∈ (0, ε0), δ ∈ (0, δ0/N), and
every (ε, δ)-correct RL Algorithm A on the class of MDPs M the total number
of state-transition samples (sampling budget) needs to be at least

fFor every real number u, )u* is defined as the smallest integer number not less than u.
gAlgorithm A, unlike QVI and PI, does not require a same number of transition samples

for every state-action pair and can generate samples arbitrarily.
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T = 0
β3N

c1ε2
log

N

c2δ
1.

4.4 Analysis

In this section, we first provide the full proof of the finite-time PAC bound
of QVI and PI, reported in Theorem 4.1 and Theorem 4.2, in Subsection 4.4.1.
We then prove Theorem 4.3, a new RL lower bound, in Subsection 4.4.2.

4.4.1 Proofs of Theorem 4.1 and Theorem 4.2 - the Upper
Bounds

We begin by introducing some new notation. For any policy π, we define
Σπ(z) ! E[|

∑
t≥0γtr(Zt) − Qπ(z)|2|Z0 = z] as the variance of the sum of

discounted rewards starting from z ∈ Z under the policy π. We also make
use of the following definition of the variance of a function: for any real-
valued function f : Y → R, where Y is a finite set, we define Vy∼ρ(f(y)) !

Ey∼ρ|f(y) − Ey∼ρ(f(y))|2 as the variance of f under the probability distribu-
tion ρ, where ρ is a probability distribution on Y. Weshall denote σV π and
σV ∗ as the discounted variance of the value function V π and V ∗ defined as
σV π (z) ! γ2Vy∼P (·|z)[V

π(y)] and σV ∗(z) ! γ2Vy∼P (·|z)[V
∗(y)], for all z ∈ Z,

respectively. For each of these variances we define the corresponding empirical
variance σ̂V π (z) ! γ2Vy∼P̂ (·|z)[V

π(y)] and σ̂V ∗(z) ! γ2Vy∼P̂ (·|z)[V
∗(y)], respec-

tively, for all z ∈ Z under the model P̂ . We also notice that for any policy π
and for all z ∈ Z, σV π can be written as

σV π (z) = γ2P [|V π − PV π|2](z) = γ2Pπ[|Qπ − PπQπ|2](z).

We now prove our first result which shows that Qk, for both QVI and PI,
is very close to Q̂∗ up to an order of O(γk). Therefore, to prove bound on
‖Q∗ −Qk‖, one only needs to bound ‖Q∗ − Q̂∗‖ in high probability.

Lemma 4.1. Let Assumption 4.1 hold and Q0(z) be in the interval [0,β] for
all z ∈ Z. Then, for both QVI and PI, we have

‖Qk − Q̂∗‖ ≤ γkβ.
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Proof
First, we prove the result for QVI. For all k ≥ 0, we have

‖Qk − Q̂∗‖ = ‖T̂Qk−1 − T̂Q̂∗‖ ≤ γ‖Qk−1 − Q̂∗‖.

Thus by an immediate recursion

‖Qk − Q̂∗‖ ≤ γk‖Q0 − Q̂∗‖ ≤ γkβ.

In the case of PI, we notice that Qk = Q̂πk−1 ≥ Q̂πk−2 = Qk−1, which implies
that

0 ≤ Q̂∗ −Qk = γP̂ π̂∗Q̂∗ − γP̂πk−1Q̂πk−1 ≤ γ(P̂ π̂∗Q̂∗ − P̂πk−1Q̂πk−2)

= γ(P̂ π̂∗Q̂∗ − P̂πk−1Qk−1) ≤ γP̂ π̂∗

(Q̂∗ −Qk−1),

where in the last line we rely on the fact that πk−1 is the greedy policy w.r.t.
Qk−1, which implies the component-wise inequality P̂πk−1Qk−1 ≥ P̂ π̂∗

Qk−1.
The result then follows by taking the #∞-norm on both sides of the inequality

and then recursively expand the resulted bound.

One can easily prove the following lemma, which bounds the difference be-
tween Q̂∗ and Q̂πk , based on the result of Lemma 4.1 and the main result
of Singh and Yee (1994). Lemma 4.2 is required for the proof of Theorem 4.2.

Lemma 4.2. Let Assumption 4.1 hold and πk be the greedy policy induced by
the kth iterate of QVI and PI. Also, let Q0(z) takes value in the interval [0,β]
for all z ∈ Z. Then we have

‖Q̂πk − Q̂∗‖ ≤ 2γk+1β2, and ‖V̂ πk − V̂ ∗‖ ≤ 2γk+1β2.

Proof
Based on the main theorem of Singh and Yee (1994) we have, for both QVI

and PI:

‖V̂ πk − V̂ ∗‖ ≤ ‖Q̂πk − Q̂∗‖ ≤ 2γβ‖Qk − Q̂∗‖
≤ 2γk+1β2,
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where in the last line we make use of the result of Lemma 4.1.

We notice that the tight bound on ‖Q̂πk − Q̂∗‖ for PI is of order γk+1β
since Q̂πk = Qk+1. However, for ease of exposition we make use of the bound
of Lemma 4.2 for both QVI and PI.

In the rest of this subsection, we focus on proving a high probability bound
on ‖Q∗ − Q̂∗‖. One can prove a crude bound of Õ(β2/

√
n) on ‖Q∗ − Q̂∗‖

by first proving that ‖Q∗ − Q̂∗‖ ≤ β‖(P − P̂ )V ∗‖ and then using the Hoeffd-
ing’s tail inequality (Cesa-Bianchi and Lugosi, 2006, appendix, pg. 359) to
bound the random variable ‖(P − P̂ )V ∗‖ in high probability. Here, we fol-
low a different and more subtle approach to bound ‖Q∗ − Q̂∗‖, which leads to
our desired result of Õ(β1.5/

√
n): (i) We prove in Lemma 4.3 component-wise

upper and lower bounds on the error Q∗ − Q̂∗ which are expressed in terms of
(I−γP̂π∗

)−1
[
P−P̂

]
V ∗ and (I−γP̂ π̂∗

)−1
[
P−P̂

]
V ∗, respectively. (ii) We make

use of of Bernstein’s inequality to bound
[
P−P̂

]
V ∗ in terms of the squared root

of the variance of V ∗ in high probability. (iii) We prove the key result of this
subsection (Lemma 4.7) which shows that the variance of the sum of discounted
rewards satisfies a Bellman-like recursion, in which the instant reward r(z) is re-
placed by σV π (z). Based on this result we prove an upper-bound of orderO(β1.5)
on (I−γPπ)−1√σV π for every policy π, which combined with the previous steps

leads to an upper bound of Õ(β1.5/
√
n) on ‖Q∗−Q̂∗‖. A similar approach leads

to a bound of Õ(β1.5/
√
n) on ‖Q∗−Qπk‖ under the assumption that there exist

constants c1 > 0 and c2 > 0 such that n > c1γ2β2|X| log(c2N/δ)).
The following component-wise results bound Q∗−Q̂∗ from above and below:

Lemma 4.3 (Component-wise bounds on Q∗ − Q̂∗ ).

Q∗ − Q̂∗ ≤ γ(I − γP̂π∗

)−1
[
P − P̂

]
V ∗, (4.1)

Q∗ − Q̂∗ ≥ γ(I − γP̂ π̂∗

)−1
[
P − P̂

]
V ∗. (4.2)

Proof
We have that Q̂∗ ≥ Q̂π∗

. Thus:

Q∗ − Q̂∗ ≤ Q∗ − Q̂π∗

= (I − γPπ∗

)−1r − (I − γP̂π∗

)−1r

= (I − γP̂π∗

)−1
[
(I − γP̂π∗

)− (I − γPπ∗

)
]
(I − γPπ∗

)−1r

= γ(I − γP̂π∗

)−1
[
Pπ∗

− P̂π∗]
Q∗ = γ(I − γP̂π∗

)−1
[
P − P̂

]
V ∗.
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In the case of Ineq. (4.2) we have

Q∗ − Q̂∗ = (I − γPπ∗

)−1r − (I − γP̂ π̂∗

)−1r

= (I − γP̂ π̂∗

)−1
[
(I − γP̂ π̂∗

)− (I − γPπ∗

)
]
(I − γPπ∗

)−1r

= γ(I − γP̂ π̂∗

)−1
[
Pπ∗

− P̂ π̂∗]
Q∗

≥ γ(I − γP̂ π̂∗

)−1
[
Pπ∗

− P̂π∗]
Q∗ = γ(I − γP̂ π̂∗

)−1
[
P − P̂

]
V ∗,

in which we make use of the following component-wise inequality:h

(I − γP̂ π̂∗

)−1P̂π∗

Q∗ =
∑

i≥0

(
γP̂π∗

)i
P̂π∗

Q∗

≥
∑

i≥0

(
γP̂ π̂∗

)i
P̂ π̂∗

Q∗ = (I − γP̂ π̂∗

)−1P̂ π̂∗

Q∗.

We now concentrate on bounding the RHS (right hand sides) of (4.1) and (4.2)
in high probability, for that we need the following technical lemmas (Lemma 4.4
and Lemma 4.5).

Lemma 4.4. Let Assumption 4.1 hold. Then, for any 0 < δ < 1 w.p at least
1− δ

‖V ∗ − V̂ π∗

‖ ≤ cv, and ‖V ∗ − V̂ ∗‖ ≤ cv,

where cv ! γβ2
√

2 log(2N/δ)/n.

Proof
We begin by proving bound on ‖V ∗ − V̂ π∗‖:

‖V ∗ − V̂ π∗

‖ = ‖Tπ∗

V ∗ − T̂π∗

V̂ π∗

‖ ≤ ‖Tπ∗

V ∗ − T̂π∗

V ∗‖+ ‖T̂π∗

V ∗ − T̂π∗

V̂ π∗

‖

≤ γ‖Pπ∗V ∗ − P̂π∗V ∗‖+ γ‖V ∗ − V̂ π∗

‖.

hFor any policy π and k ≥ 1: (Pπ)k(·) ! Pπ · · ·Pπ

︸ ︷︷ ︸
k

(·).
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By solving this inequality w.r.t. ‖V ∗ − V̂ π∗‖ we deduce

‖V ∗ − V̂ π∗

‖ ≤ γβ‖(Pπ∗ − P̂π∗)V ∗‖ ≤ γβ‖(P − P̂ )V ∗‖. (4.3)

Now we focus on bounding ‖V ∗ − V̂ ∗‖:

‖V ∗ − V̂ ∗‖ ≤ ‖Q∗ − Q̂∗‖ = ‖TQ∗ − T̂Q̂∗‖

≤ ‖TQ∗ − T̂π∗

Q∗‖+ ‖T̂π∗

Q∗ − T̂Q̂∗‖

= γ‖Pπ∗

Q∗ − P̂π∗

Q∗‖+ γ‖P̂π∗

Q∗ − P̂ π̂∗

Q̂∗‖

= γ‖(P − P̂ )V ∗‖+ γ‖P̂ (V ∗ − V̂ ∗)‖

≤ γ‖(P − P̂ )V ∗‖+ γ‖V ∗ − V̂ ∗‖.

(4.4)

By solving this inequality w.r.t. ‖V ∗ − V̂ ∗‖ we deduce:

‖V ∗ − V̂ ∗‖ ≤ γβ‖(P − P̂ )V ∗‖. (4.5)

We then make use of Hoeffding’s inequality (Cesa-Bianchi and Lugosi, 2006,
Appendix A, pg. 359) to bound |(P − P̂ )V ∗(z)| for all z ∈ Z in high probability:

P(|((P − P̂ )V ∗)(z)| ≥ ε) ≤ 2 exp
(

−nε2

2β2

)
.

By applying the union bound we deduce

P(‖(P − P̂ )V ∗‖ ≥ ε) ≤ 2|Z| exp
(

−nε2

2β2

)
. (4.6)

We then define the probability of failure δ as

δ ! 2N exp
(

−nε2

2β2

)
. (4.7)

By plugging (4.7) into (4.6) we deduce

P

[
‖(P − P̂ )V ∗‖ < β

√
2 log (2N/δ) /n

]
≥ 1− δ. (4.8)

The results then follow by plugging (4.8) into (4.5) and (4.4).

We now state Lemma 4.5 which relates σV ∗ to σ̂Q̂π∗ and σ̂Q̂∗ . Later, we
make use of this result in the proof of Lemma 4.6.
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Lemma 4.5. Let Assumption 4.1 hold and 0 < δ < 1. Then, w.p. at least
1− δ:

σV ∗ ≤ σ̂V̂ π∗ + bv1, (4.9)

σV ∗ ≤ σ̂V̂ ∗ + bv1, (4.10)

where bv is defined as

bv !

√
18γ4β4 log 3N

δ

n
+

4γ2β4 log 6N
δ

n
,

and 1 is a function which assigns 1 to all z ∈ Z.

Proof
Here, we only prove (4.9). One can prove (4.10) following similar lines.

σV ∗(z) = σV ∗(z)− γ2
VY∼P̂ (·|z)(V

∗(Y )) + γ2
VY∼P̂ (·|z)(V

∗(Y ))

≤ γ2
(
(P − P̂ )V ∗2

)
(z)− γ2[(PV ∗)2(z)− (P̂ V ∗)2(z)]

+ γ2
VY∼P̂ (·|z)(V

∗(Y )− V̂ π∗

(Y )) + γ2
VY∼P̂ (·|z)(V̂

π∗(Y )).

It is not difficult to show that VY∼P̂ (·|z)(V
∗(Y )− V̂ π∗

(Y )) ≤ ‖V ∗ − V̂ π∗‖2,
which implies that

σV ∗(z) ≤ γ2[P − P̂ ]V ∗2(z)− γ2[(P − P̂ )V ∗][(P + P̂ )V ∗](z)

+ γ2‖V ∗ − V̂ π∗

‖2 + σ̂V̂ π∗ (z).

The following inequality then holds w.p. at least 1− δ:

σV ∗(z) ≤ σ̂V̂ π∗ (z) + γ2



3β2

√

2
log 3

δ

n
+

2β4 log 6N
δ

n



 , (4.11)

in which we make use of Hoeffding’s inequality as well as Lemma 4.4 and a
union bound to prove the bound on σV ∗ in high probability. This combined
with a union bound on all state-action pairs in Eq.(4.11) completes the proof.
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The following result proves a bound on γ(P − P̂ )V ∗, for which we make
use of the Bernstein’s inequality (Cesa-Bianchi and Lugosi, 2006, appendix, pg.
361) as well as Lemma 4.5.

Lemma 4.6. Let Assumption 4.1 hold and 0 < δ < 1. Define cpv ! 2 log(2N/δ)
and bpv as

bpv !

(
5(γβ)4/3 log 6N

δ

n

)3/4

+
3β2 log 12N

δ

n
.

Then w.p. at least 1− δ we have

γ(P − P̂ )V ∗ ≤
√

cpvσ̂V̂ π∗

n
+ bpv1, (4.12)

γ(P − P̂ )V ∗ ≥ −
√

cpvσ̂V̂ ∗

n
− bpv1. (4.13)

Proof
For all z ∈ Z and all 0 < δ < 1, Bernstein’s inequality implies that w.p. at

least 1− δ:

(P − P̂ )V ∗(z) ≤

√
2σV ∗(z) log 1

δ

γ2n
+

2β log 1
δ

3n
,

(P − P̂ )V ∗(z) ≥ −

√
2σV ∗(z) log 1

δ

γ2n
−

2β log 1
δ

3n
.

We deduce (using a union bound)

γ(P − P̂ )V ∗ ≤
√

c′pv
σV ∗

n
+ b′pv1, (4.14)

γ(P − P̂ )V ∗ ≥ −
√

c′pv
σV ∗

n
− b′pv1, (4.15)

where c′pv ! 2 log(N/δ) and b′pv ! 2γβ log(N/δ)/3n. The result then follows by
plugging (4.9) and (4.10) into (4.14) and (4.15), respectively, and then taking a
union bound.
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We now state the key lemma of this section which shows that for any policy
π the variance Σπ satisfies the following Bellman-like recursion. Later, we use
this result, in Lemma 4.8, to bound (I − γPπ)−1σV π .

Lemma 4.7. Σπ satisfies the Bellman equation

Σπ = σV π + γ2PπΣπ. (4.16)

Proof
For all z ∈ Z we havei

Σπ(z) = E

[∣∣∣∣
∑

t≥0

γtr(Zt)−Qπ(z)

∣∣∣∣
2]

=EZ1∼Pπ(·|z)E

[∣∣∣∣
∑

t≥1

γtr(Zt)− γQπ(Z1)− (Qπ(z)− r(z)− γQπ(Z1))

∣∣∣∣
2]

=γ2
EZ1∼Pπ(·|z)E

[∣∣∣∣
∑

t≥1

γt−1r(Zt)−Qπ(Z1)

∣∣∣∣
2]

− 2EZ1∼Pπ(·|z)

[
(Qπ(z)− r(z)− γQπ(Z1))E

(∑

t≥1

γtr(Zt)− γQπ(Z1)

∣∣∣∣Z1

)]

+ EZ1∼Pπ(·|z)(|Qπ(z)− r(z)− γQπ(Z1)|2)

=γ2
EZ1∼Pπ(·|z)E

[∣∣∣∣
∑

t≥1

γt−1r(Zt)−Qπ(Z1)

∣∣∣∣
2]

+ γ2
VY1∼P (·|z)(Q

π(Y1,π(Y1)))

=γ2[PπΣπ](z) + σV π (z),

in which we rely on E(
∑

t≥1 γ
tr(Zt)− γQπ(Z1)|Z1) = 0.

Based on Lemma 4.7, one can prove the following result on the discounted
variance.

Lemma 4.8.

‖(I − γ2Pπ)−1σV π‖ = ‖Σπ‖ ≤ β2, (4.17)

‖(I − γPπ)−1√σV π‖ ≤ 2 log(2)‖
√

βΣπ‖ ≤ 2 log(2)β1.5. (4.18)

iFor ease of exposition, we slightly abuse the notation here by treating Pπ as a probability
distribution over state-action pairs.
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Proof
The first inequality follows from Lemma 4.7 by solving (4.16) in terms of Σπ

and taking the sup-norm over both sides of the resulted equation. In the case
of Eq. (4.18) we have

‖(I − γPπ)−1√σV π‖ =

∥∥∥∥∥∥

∑

k≥0

(γPπ)k
√
σV π

∥∥∥∥∥∥

=

∥∥∥∥∥∥

∑

l≥0

(γPπ)tl
t−1∑

j=0

(γPπ)j
√
σV π

∥∥∥∥∥∥

≤
∑

l≥0

(γt)l

∥∥∥∥∥∥

t−1∑

j=0

(γPπ)j
√
σV π

∥∥∥∥∥∥

=
1

1− γt

∥∥∥∥∥∥

t−1∑

j=0

(γPπ)j
√
σV π

∥∥∥∥∥∥
,

(4.19)

in which we write k = tl+ j with t any positive integer.j We now prove a bound
on
∥∥∑ t−1

j=0(γP
π)j

√
σV π

∥∥ by making use of Jensen’s inequality, Cauchy-Schwarz
inequality and Eq. (4.17):

∥∥∥∥∥∥

t−1∑

j=0

(γPπ)j
√
σV π

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

t−1∑

j=0

γj
√
(Pπ)jσV π

∥∥∥∥∥∥
≤

√
t

∥∥∥∥∥∥

√√√√
t−1∑

j=0

(γ2Pπ)jσV π

∥∥∥∥∥∥

≤
√
t
∥∥∥
√
(I − γ2Pπ)−1σV π

∥∥∥ = ‖
√
tΣπ‖.

(4.20)

The result then follows by plugging (4.20) into (4.19) and optimizing the
bound in terms of t to achieve the best dependency on β.

Now, we make use of Lemma 4.8 and Lemma 4.6 to bound ‖Q∗ − Q̂∗‖ in
high probability.

Lemma 4.9. Let Assumption 4.1 hold. Then, for any 0 < δ < 1:

jFor any real-valued function f ,
√
f is defined as a component wise squared-root operator

on f .
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‖Q∗ − Q̂∗‖ ≤ ε′,

w.p. at least 1− δ, where ε′ is defined as

ε′ !

√
4β3 log 4N

δ

n
+

(
5(γβ2)4/3 log 12N

δ

n

)3/4

+
3β3 log 24N

δ

n
. (4.21)

Proof
By incorporating the result of Lemma 4.6 and Lemma 4.8 into Lemma 4.3

and taking in to account that (I − γP̂π∗
)−11 = β1, we deduce k

Q∗ − Q̂∗ ≤ b1,

Q∗ − Q̂∗ ≥ −b1,
(4.22)

w.p. at least 1− δ. The scalar b is given by

b !

√
4β3 log 2N

δ

n
+

(
5(γβ2)4/3 log 6N

δ

n

)3/4

+
3β3 log 12N

δ

n
. (4.23)

The result then follows by combining these two bounds using a union bound
and taking the #∞ norm.

Proof of Theorem 4.1
We define the total error ε = ε′ + γkβ which bounds ‖Q∗ − Qk‖ ≤ ‖Q∗ −

Q̂∗‖+ ‖Q̂∗ −Qk‖ in high probability (ε′ is defined in Lemma 4.9). The results
then follows by solving this bound w.r.t. n and k and then quantifying the total
number of samples T = nN .

We now draw our attention to the proof of Theorem 4.2, for which we need
the following component-wise bound on Q∗ −Qπk .

kNote that Lemma 4.8 implies (I − γPπ)−1√σV π ≤ 2 log(2)β1.51 for any policy π.
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Lemma 4.10. Let Assumption 4.1 hold. Then w.p. at least 1− δ

Q∗ −Qπk ≤ Q̂πk −Qπk + (b+ 2γk+1β2)1,

where b is defined by (4.23).

Proof
We make use of Lemma 4.2 and Lemma 4.9 to prove the result:

Q∗ −Qπk = Q∗ − Q̂∗ + Q̂∗ − Q̂πk + Q̂πk −Qπk

≤ b1+ Q̂∗ − Q̂πk + Q̂πk −Qπk by Eq. (4.22)

≤ (b+ 2γk+1β2)1+ Q̂πk −Qπk by Lemma 4.2.

Lemma 4.10 states that w.h.p. Q∗ − Qπk is close to Q̂πk − Qπk for large
values of k and n. Therefore, to prove the result of Theorem 4.2 we only need
to bound Q̂πk −Qπk in high probability:

Lemma 4.11 (Component-wise upper bound on Q̂πk −Qπk).

Q̂πk −Qπk ≤ γ(I − γP̂πk)−1(P − P̂ )V ∗ + γβ‖(P − P̂ )(V ∗ − V πk)‖1. (4.24)

Proof
We prove this result using a similar argument as in the proof of Lemma 4.3:

Q̂πk −Qπk = (I − γP̂πk)−1r − (I − γPπk)−1r

= γ(I − γP̂πk)−1(Pπk − P̂πk)Qπk

= γ(I − γP̂πk)−1(P − P̂ )V πk

= γ(I − γP̂πk)−1(P − P̂ )V ∗ + γ(I − γP̂πk)−1(P − P̂ )(V πk − V ∗)

≤ γ(I − γP̂πk)−1(P − P̂ )V ∗ + γβ‖(P − P̂ )(V ∗ − V πk)‖1.

Now we bound the terms in the RHS of Eq. (4.24) in high probability. We
begin by bounding γ(I − γP̂πk)−1(P − P̂ )V ∗:
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Lemma 4.12. Let Assumption 4.1 hold. Then, w.p. at least 1− δ we have

γ(I − γP̂πk)−1(P − P̂ )V ∗ ≤





√
4β3 log 2N

δ

n
+

(
5(γβ2)4/3 log 6N

δ

n

)3/4


1

+



3β3 log 12N
δ

n
+

√
8γ2k+4β6 log 2N

δ

n



1.

Proof
From Lemma 4.6, w.p. at least 1− δ, we have

γ(P − P̂ )V ∗ ≤

√
2 log 2N

δ σ̂V̂ ∗

n
+ bpv1

≤

√√√√2 log 2N
δ

(
σ̂V̂ πk + γ2‖V̂ πk − V̂ ∗‖2

)

n
+ bpv1

≤

√√√√2 log 2N
δ

(
σ̂V̂ πk + γ2‖Q̂πk − Q̂∗‖2

)

n
+ bpv1

≤

√
2 log 2N

δ σ̂V̂ πk

n
+



bpv +

√
8γ2k+4β4 log 2N

δ

n



1,

(4.25)

where in the last line we rely on Lemma 4.2. The result then follows by com-
bining (4.25) with the result of Lemma 4.8.

We now prove bound on ‖(P − P̂ )(V ∗− V̂ πk)‖ in high probability, for which
we require the following technical result:

Lemma 4.13 (Weissman et. al. 2003). Let ρ be a probability distribution on
the finite set X. Let {X1, X2, · · · , Xn} be a set of i.i.d. samples distributed
according to ρ and ρ̂ be the empirical estimation of ρ using this set of samples.
Define πρ ! maxX⊆X min(Pρ(X), 1− Pρ(X)), where Pρ(X) is the probability of
X under the distribution ρ and ϕ(p) ! 1/(1−2p) log((1−p)/p) for all p ∈ [0, 1/2)
with the convention ϕ(1/2) = 2, then w.p. at least 1− δ we have
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‖ρ− ρ̂‖1 ≤

√
2 log 2|X|−2

δ

nϕ(πρ)
≤

√
2|X| log 2

δ

n
.

Lemma 4.14. Let Assumption 4.1 hold. Then, w.p. at least 1− δ we have

γ‖(P − P̂ )(V ∗ − V πk)‖ ≤

√
2γ2|X| log 2N

δ

n
‖Q∗ −Qπk‖.

Proof
From the Hölder’s inequality for all z ∈ Z we have

γ|(P − P̂ )(V ∗ − V πk)(z)| ≤ γ‖P (·|z)− P̂ (·|z)‖1‖V ∗ − V πk‖

≤ γ‖P (·|z)− P̂ (·|z)‖1‖Q∗ −Qπk‖.
This combined with Lemma 4.13 implies that

γ|(P − P̂ )(V ∗ − V πk)(z)| ≤

√
2γ2|X| log 2

δ

n
‖Q∗ −Qπk‖.

The result then follows by taking union bound on all z ∈ Z.

We now make use of the results of Lemma 4.14 and Lemma 4.12 to bound
‖Q∗ −Qπk‖ in high probability:

Lemma 4.15. Let Assumption 4.1 hold. Assume that

n ≥ 8γ2β2|X| log
4N

δ
. (4.26)

Then, w.p. at least 1− δ we have

‖Q∗ −Qπk‖ ≤ 2



ε′ + 2γk+1β2 +

√
4β3 log 4N

δ

n
+

(
5(γβ2)4/3 log 12N

δ

n

)3/4

+
4β3 log 24N

δ

n
+

√
8γ2k+4β6 log 4N

δ

n



 ,

where ε′ is defined by Eq. (4.21).



84 Chapter 4: Minimax Bounds on the Sample Complexity of RL

Proof

By incorporating the result of Lemma 4.14 and Lemma 4.12 into Lemma 4.11
we deduce

Q̂πk −Qπk ≤

√
2β2γ2|X| log 2N

δ

n
‖Q∗ −Qπk‖1

+





√
4β3 log 2N

δ

n
+

(
5(γβ2)4/3 log 6N

δ

n

)3/4


1

+



3β3 log 12N
δ

n
+

√
8γ2k+4β6 log 2N

δ

n



1,

(4.27)

w.p. 1 − δ. Eq. (4.27) combined with the result of Lemma 4.10 and a union
bound implies that

Q∗ −Qπk ≤ (ε′ + 2γk+1β2)1+

√
2β2γ2|X| log 4N

δ

n
‖Q∗ −Qπk‖1+

+





√
4β3 log 2N

δ

n
+

(
5(γβ2)4/3 log 12N

δ

n

)3/4


1

+



3γβ3 log 24N
δ

n
+

√
8γ2k+4β6 log 4N

δ

n



1.

By taking the #∞-norm and solving the resulted bound in terms of ‖Q∗ −
Qπk‖ we deduce
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‖Q∗ −Qπk‖ ≤
1

1−
√

2β2γ2|X| log 4N
δ

n



ε′ + 2γk+1β2

+

√
4β3 log 4N

δ

n
+

(
5(γβ2)4/3 log 12N

δ

n

)3/4

+
3β3 log 24N

δ

n
+

√
8γ2k+4β6 log 4N

δ

n



 .

The choice of n > 8β2γ2|X| log 4N
δ deduce the result.

Proof of Theorem 4.2
The result follows by solving the bound of Lemma 4.15 w.r.t. n and k, in

that we also need to assume that ε ≤ c
√

β
γ|X| for some c > 0 in order to reconcile

the bound of Theorem 4.2 with Eq. (4.26).

4.4.2 Proof of Theorem 4.3 - The Lower-Bound

In this section, we provide the proof of Theorem 4.3. In our analysis, we rely
on the likelihood-ratio method, which has been previously used to prove a lower
bound for multi-armed bandits (Mannor and Tsitsiklis, 2004), and extend this
approach to RL and MDPs.

We begin by defining a class of MDPs for which the proposed lower bound
will be obtained (see Figure 4.1). We define the class of MDPs M as the set of
all MDPs with the state-action space of cardinality N = 3KL, where K and L
are positive integers. Also, we assume that for all M ∈ M, the state space X

consists of three smaller subsets S, Y1 and Y2. The set S includes K states, each
of those states corresponds with the set of actions A = {a1, a2, . . . , aL}, whereas
the states in Y1 and Y2 are single-action states. By taking the action a ∈ A

from every state x ∈ S, we move to the next state y(z) ∈ Y1 with the probability
1, where z = (x, a). The transition probability from Y1 is characterized by the
transition probability pM from every y(z) ∈ Y1 to itself and with the probability
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1 − pM to the corresponding y(z) ∈ Y2. We notice that every state y ∈ Y2 is
only connected to one state in Y1 and S, i.e., there is no overlapping path in the
MDP. Further, for all M ∈ M, Y2 consists of only absorbing states, i.e., for all
y ∈ Y2, P (y|y) = 1. The instant reward r is set to 1 for every state in Y1 and
0 elsewhere. For this class of MDPs, the optimal action-value function Q∗

M can
be solved in closed form from the Bellman equation. For all M ∈ M

Q∗
M (z) ! γV ∗(y(z)) =

γ

1− γpM
, ∀z ∈ S×A.

Now, let us consider two MDPs M0 and M1 in M with the transition prob-
abilities

pM =

{
p M = M0,

p+ α M = M1,

where α and p are some positive numbers such that 0 < p < p + α ≤ 1, to be
quantified later in this section. We denote the set {M0,M1} ⊂ M with M∗.

In the rest of this section, we concentrate on proving a lower bound on
‖Q∗

M − QA
T ‖ for all M ∈ M∗, where QA

T is the output of Algorithm A after
observing T state-transition samples. It turns out that a lower-bound on the
sample complexity of M∗ also bounds the sample complexity of M from below.
In the sequel, we make use of the notation Em ad Pm for the expectation and
the probability under the model Mm : m ∈ {0, 1}, respectively.

We follow the following steps in the proof: (i) we prove a lower bound on the
sample-complexity of learning the action-value function for every state-action
pair z ∈ S×A on the class of MDP M∗ (ii) we then make use of the fact that
the estimates of Q∗(z) for different z ∈ S×A are independent of each others to
combine the bounds for all z ∈ S×A and prove the tight result of Theorem 4.3.

We begin our analysis of the lower bound by proving a lower-bound on the
probability of failure of any RL algorithm to estimate a near-optimal action-
value function for every state-action pair z ∈ S×A. In order to prove this result
(Lemma 4.17) we need to introduce some new notation: we define QA

t (z) as the
output of Algorithm A using t > 0 transition samples from the state y(z) ∈ Y1

for all z ∈ S×A. We also define the event E1(z) ! {|Q∗
M0

(z)−QA
t (z)| ≤ ε} for

all z ∈ S×A. We then define k ! r1 + r2 + · · · + rt as the sum of rewards of
making t transitions from y(z) ∈ Y1. We also introduce the event E2(z), for all
z ∈ S×A as
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E2(z) !

{

pt− k ≤
√

2p(1− p)t log
c′2
2θ

}

,

where θ ! exp
(
− c′1α

2t/(p(1− p))
)
, and c′1 and c′2 are positive constants (will

be quantified later in this section). Further, we define E(z) ! E1(z) ∩ E2(z).
We also make use of the following technical lemma which bounds the prob-

ability of the event E2(z) from below:

Lemma 4.16. For all p > 1
2 and every z ∈ S×A, we have

P0(E2(z)) > 1−
2θ

c′2
.

Proof
We make use of the Chernoff-Hoeffding bound for Bernoulli’s (Hagerup and

Rüb, 1990) to prove the result: for p > 1
2 , define ε =

√
2p(1− p)t log c′2

2θ , we
then have

P0(E2(z)) > − exp

(
−
KL(p+ ε||p)

t

)

≥ 1− exp

(
−

ε2

2tp(1− p)

)

= 1− exp

(

−
2tp(1− p) log c′2

2θ

2tp(1− p)

)

= 1− exp

(
− log

c′2
2θ

)
= 1−

2θ

c′2

, ∀z ∈ S×A,

where KL(p||q) ! p log(p/q)+ (1− p) log((1− p)/(1− q)) denotes the Kullback-
Leibler divergence between p and q.

We now state the key result of this section:

Lemma 4.17. For every RL Algorithm A and every z ∈ S×A, there exists an
MDP Mm ∈ M∗ and constants c′1 > 0 and c′2 > 0 such that
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Pm(|Q∗
Mm

(z)−QA
t (z)|) > ε) >

θ

c′2
, (4.28)

by the choice of α = 2(1− γp)2ε/(γ2).

Proof
To prove this result we make use of a contradiction argument, i.e., we assume

that there exists an algorithm A for which:

Pm((|Q∗
Mm

(z)−QA
t (z)|) > ε) ≤

θ

c′2
or

Pm((|Q∗
Mm

(z)−QA
t (z)|) ≤ ε) ≥ 1−

θ

c′2
,

(4.29)

for all Mm ∈ M∗ and show that this assumption leads to a contradiction.
By the assumption that Pm(|Q∗

Mm
(z) − QA

t (z)|) > ε) ≤ θ/c′2 for all Mm ∈
M∗, we have P0(E1(z)) ≥ 1− θ/c′2 ≥ 1− 1/c′2. This combined with Lemma 4.16
and by the choice of c′2 = 6 implies that, for all z ∈ S×A, P0(E(z)) > 1/2.
Based on this result we now prove a bound from below on P1(E1(z)).

We define W as the history of all the outcomes of trying z for t times and
the likelihood function Lm(w) for all Mm ∈ M∗ as

Lm(w) ! Pm(W = w),

for every possible history w and Mm ∈ M∗. This function can be used to define
a random variable Lm(W ), where W is the sample path of the random process
(the sequence of observed transitions). The likelihood ratio of the event W
between two MDPs M1 and M0 can then be written as

L1(W )

L0(W )
=

(p+ α)k(1− p− α)t−k

pk(1− p)t−k
=
(
1 +

α

p

)k(
1−

α

1− p

)t−k

=
(
1 +

α

p

)k(
1−

α

1− p

)k 1−p
p
(
1−

α

1− p

)t− k
p .

Now, by making use of log(1−u) ≥ −u−u2 for 0 ≤ u ≤ 1/2, and exp (−u) ≥
1− u for 0 ≤ u ≤ 1, we have
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(
1−

α

1− p

)(1−p)/p ≥ exp

(
1− p

p

(
−

α

1− p
− (

α

1− p
)2
))

≥
(
1−

α

p

)(
1−

α2

p(1− p)

)
,

for α ≤ (1− p)/2. Thus

L1(W )

L0(W )
≥
(
1−

α2

p2
)k(

1−
α2

p(1− p)

)k(
1−

α

1− p

)t− k
p

=≥
(
1−

α2

p2
)t(

1−
α2

p(1− p)

)t(
1−

α

1− p

)t− k
p ,

since k ≤ t.
Using log(1− u) ≥ −2u for 0 ≤ u ≤ 1/2, we have for α2 ≤ p(1− p),

(
1−

α2

2p(1− p)

)t ≥ exp
(
− 2t

α2

p(1− p)

)
≥ (2θ/c′2)

2/c′1 ,

and for α2 ≤ p2/2, we have

(
1−

α2

p2
)t ≥ exp

(
− t

2α2

p2
)
≥ (2θ/c′2)

2(1−p)/(pc′1),

on E2. Further, we have t− k/p ≤
√
2 1−p

p t log(c2/(2θ)), thus for α ≤ (1− p)/2:

(
1−

α

1− p

)t− k
p ≥

(
1−

α

1− p

)√2 1−p
p t log(c′2/2θ)

≥ exp

(

−

√

2
α2

p(1− p)
t log(c′2/(2θ))

)

≥ exp
(
−
√
2/c1 log(c′2/θ)

)
= (2θ/c′2)

√
2/c′1 .

We then deduce that

L1(W )

L2(W )
≥ (2θ/c′2)

2/c′1+2(1−p)/(pc′1)+
√

2/c′1 ≥ 2θ/c′2,

for the choice of c′1 = 8. Thus
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L1(W )

L0(W )
E ≥ 2θ/c′2 E,

where E is the indicator function of the event E(z). Then by a change of
measure we deduce

P1(E1(z)) ≥ P1(E(z)) = E1[ E] = E0

(
L1(W )

L0(W )
E

)

≥ E0 [2θ/c
′
2 E] = 2θ/c′2P0(E(z)) > θ/c′2,

(4.30)

where we make use of the fact that P0(Q(z)) >
1
2 .

By the choice of α = 2(1− γp)2ε/(γ2), we have α ≤ (1− p)/2 ≤ p(1− p) ≤
p/

√
2 whenever ε ≤ 1−p

4γ2(1−γp)2 . For this choice of α, we have that Q∗
M1

(z) −
Q∗

M0
(z) = γ

1−γ(p+α) −
γ

1−γp > 2ε, thus Q∗
M0

(z) + ε < Q∗
M1

(z)− ε. In words, the

random event {|Q∗
M0

(z)−Q(z)| ≤ ε} does not overlap with the event {|Q∗
M1

(z)−
Q(z)| ≤ ε}.

Now let us return to the assumption of Eq. (4.29), which states that for all
Mm ∈ M∗, Pm(|Q∗

Mm
(z)−QA

t (z)|) ≤ ε) ≥ 1− θ/c′2 under Algorithm A. Based
on Eq. (4.30), we have P1(|Q∗

M0
(z) −QA

t (z)| ≤ ε) > θ/c′2. This combined with
the fact that {|Q∗

M0
(z)−QA

t (z)|} and {|Q∗
M1

(z)−QA
t (z)|} do not overlap implies

that P1(|Q∗
M1

(z) − QA
t (z)|) ≤ ε) ≤ 1 − θ/c′2, which violates the assumption of

Eq. (4.29). Therefore, the lower bound of Eq. (4.28) shall hold.

Based on the result of Lemma 4.17 and by the choice of p = 4γ−1
3γ and

c1 = 8100, we have that for every ε ∈ (0, 3] and for all 0.4 = γ0 ≤ γ < 1 there
exists an MDP Mm ∈ M∗ such that

Pm(|Q∗
Mm

(z)−QA
t (z)) > ε) >

1

c′2
exp

(
−c1tε2

6β3

)
,

This result implies that for any state-action pair z ∈ S×A:

Pm(|Q∗
Mm

(z)−QA
t (z)| > ε) > δ, (4.31)

on M0 or M1 whenever the number of transition samples t is less than ξ(ε, δ) !
6β3

c1ε2
log 1

c′2δ
.

Based on this result, we prove a lower bound on the number of samples T
for which ‖Q∗

Mm
−QA

T ‖ > ε on either M0 or M1:
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Lemma 4.18. For any δ′ ∈ (0, 1/2) and any Algorithm A using a total number
of transition samples less than T = N

6 ξ
(
ε, 12δ′

N

)
, there exists an MDP Mm ∈ M∗

such that

Pm

(
‖Q∗

Mm
−QA

T ‖ > ε
)
> δ′. (4.32)

Proof
First, we note that if the total number of observed transitions is less than

(KL/2)ξ(ε, δ) = (N/6)ξ(ε, δ), then there exists at least KL/2 = N/6 state-
action pairs that are sampled at most ξ(ε, δ) times. Indeed, if this was not
the case, then the total number of transitions would be strictly larger than
N/6ξ(ε, δ), which implies a contradiction). Now let us denote those states as
z(1), . . . , z(N/6).

In order to prove that (4.32) holds for every RL algorithm, it is sufficient
to prove it for the class of algorithms that return an estimate QA

Tz
(z), where

Tz is the number of samples collected from z, for each state-action z based on
the transition samples observed from z only.l This is due to the fact that the
samples from z and z′ are independent. Therefore, the samples collected from
z′ do not bring more information about Q∗

M (z) than the information brought by
the samples collected from z. Thus, by defining Q(z) ! {|Q∗

M (z)−QA
Tz
(z)| > ε}

for all M ∈ M∗we have that for such algorithms, the events Q(z) and Q(z′)
are conditionally independent given Tz and Tz′ . Thus, there exists an MDP
Mm ∈ M∗ such that

Pm

(
{Q(z(i))c}1≤i≤N/6 ∩ {Tz(i) ≤ ξ(ε, δ)}1≤i≤N/6

)

=

ξ(ε,δ)∑

t1=0

· · ·
ξ(ε,δ)∑

tN/6=0

Pm

(
{Tz(i) = ti}1≤i≤N/6

)

Pm

(
{Q(z(i))c}1≤i≤N/6 ∩ {Tz(i) = ti}1≤i≤N/6

)

=

ξ(ε,δ)∑

t1=0

· · ·
ξ(ε,δ)∑

tN/6=0

Pm

(
{Tz(i) = ti}1≤i≤N/6

) ∏

1≤i≤N/6

Pm

(
Q(z(i))

c ∩ Tz(i) = ti
)

≤
ξ(ε,δ)∑

t1=0

· · ·
ξ(ε,δ)∑

tN/6=0

Pm

(
{Tz(i) = ti}1≤i≤N/6

)
(1− δ)N/6,

lWe let Tz to be random.
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from Eq. (4.31), thus

Pm

(
{Q(z(i))c}1≤i≤N/6

∣∣{Tz(i) ≤ ξ(ε, δ)}1≤i≤N/6

)
≤ (1− δ)N/6.

We finally deduce that if the total number of transition samples is less than
N
6 ξ(ε, δ), then

Pm(‖Q∗
Mm

−QA
T ‖ > ε

)
≥ Pm

( ⋃

z∈S×A

Q(z)
)

≥ 1− Pm

(
{Q(z(i))c}1≤i≤N/6

∣∣{Tz(i) ≤ ξ(ε, δ)}1≤i≤N/6

)

≥ 1− (1− δ)N/6 ≥
δN

12
,

whenever δN
6 ≤ 1. Setting δ′ = δN

12 , we obtain the desired result.

Lemma 4.18 implies that if the total number of samples T is less than
β3N/(c1ε2) log(N/(c2δ)), with the choice of c1 = 8100 and c2 = 72, then the
probability of ‖Q∗

M −QA
T ‖ ≤ ε is at maximum 1− δ on either M0 or M1. This

is equivalent to the argument that for every RL algorithm A to be (ε, δ)-correct
on the set M∗, and subsequently on the class of MDPs M, the total number
of transitions T needs to satisfy the inequality T ≥ β3N/(c1ε2) log(N/(c2δ)),
which concludes the proof of Theorem 4.3.

4.5 Conclusion and Future Works

In this chapter, we have presented the first minimax bound on the sample
complexity of estimating the optimal action-value function in discounted reward
MDPs. We have proven that both model-based Q-value iteration (QVI) and
model-based policy iteration (PI), in the presence of the generative model of
the MDP, are optimal in the sense that the dependency of their performances
on 1/ε, N , δ and 1/(1 − γ) matches the lower bound of RL. Also, our results
have significantly improved on the state-of-the-art in terms of dependency on
1/(1− γ).
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Overall, we conclude that both QVI and PI are efficient RL algorithms in
terms of the number of samples required to attain a near optimal solution as
the upper bounds on the performance loss of both algorithms completely match
the lower bound of RL up to a multiplicative factor.

In this chapter, we only consider the problem of estimating the optimal
action-value function when a generative model of the MDP is available. This
allows us to make an accurate estimate of the state-transition distribution for
all state-action pairs and then estimate the optimal control policy based on this
empirical model. This is in contrast to the online RL setup in which the choice of
the exploration policy has an influence on the behavior of the learning algorithm
and vise-versa. Therefore, we do not compare our results with those of online RL
algorithms such as PAC-MDP (Szita and Szepesvári, 2010; Strehl et al., 2009),
upper-confidence-bound reinforcement learning (UCRL) (Jaksch et al., 2010b)
and REGAL of Bartlett and Tewari (2009). However, we believe that it would be
possible to improve on the state-of-the-art in PAC-MDP, based on the results of
this chapter. This is mainly due to the fact that most PAC-MDP algorithms rely
on an extended variant of model-based Q-value iteration to estimate the action-
value function. However, those results bound the estimation error in terms of
Vmax rather than the total variance of discounted reward which leads to a non-
tight sample complexity bound. One can improve on those results, in terms
of dependency on 1/(1 − γ), using the improved analysis of this chapter which
makes use of the sharp result of Bernstein’s inequality to bound the estimation
error in terms of the variance of sum of discounted rewards. It must be pointed
out that, almost contemporaneously to our work, Lattimore and Hutter (2012)
have independently proven a similar upper-bound of order Õ(N/(ε2(1 − γ)3))
for UCRL algorithm under the assumption that only two states are accessible
form any state-action pair. Their work also includes a similar lower bound of
Ω̃(N/(ε2(1 − γ)3)) for any RL algorithm which matches, up to a logarithmic
factor, the result of Theorem 4.3.



Figure 4.1: The class of MDPs considered in the proof of Theorem 4.3. Nodes rep-
resent states and arrows show transitions between the states (see the text for details).



APPENDIX A

From Bellman Equation to DPP Recursion

In this appendix we give an informal derivation of the DPP equation. This text
is only for helping the reader to understand the origin of the DPP equation and
it is in no way meant as a justification of DPP. The theoretical analysis and the
proof of convergence of DPP is provided in Section 2.3.2.

Let π̄ be a stochastic policy, i.e, π̄(a|x) > 0 for all (x, a) ∈ Z. Consider the
relative entropy between the policy π and some baseline policy π̄:

gππ̄(x) ! KL (π(·|x)‖π̄(·|x)) =
∑

a∈A

π(a|x) log
[
π(a|x)
π̄(a|x)

]
, ∀x ∈ X.

Note that gππ̄(x) is a positive function of x which is also bounded from above
due to the assumption that π̄ is a stochastic policy. We define a new value
function V π

π̄ , for all x ∈ X, which incorporates g as a penalty term for deviating
from the base policy π̄ and the reward under the policy π:

V π
π̄ (x) ! lim

n→∞
E

[
n∑

k=0

γk

(
rt+k −

1

η
gππ̄(xt+k)

)∣∣∣∣∣xt = x

]

,

where η is a positive constant and rt+k is the reward at time t + k. Also, the
expected value is taken w.r.t. the state transition probability distribution P
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and the policy π. The optimal value function V ∗
π̄ (x) ! supπ V

π
π̄ (x) then exists

and is bounded by some finite constant c > 0. Also, the value function V ∗
π̄ (x)

satisfies the following Bellman equation for all x ∈ X:

V ∗
π̄ (x) = sup

π(·|x)

∑

a∈A

π(a|x)
[
r(x, a)−

1

η
log

π(a|x)
π̄(a|x)

+ γ(PV ∗
π̄ )(x, a)

]
. (A.1)

Equation (A.1) is a modified version of (2.2) where, in addition to maximiz-
ing the expected reward, the optimal policy π̄∗ also minimizes the distance with
the baseline policy π̄. The maximization in (A.1) can be performed in closed
form. Following Todorov (2006), we state Proposition A.1 (closely related re-
sults to proposition A.1 can be found in the recent works of Still and Precup,
2011; Peters et al., 2010):

Proposition A.1. Let η be a positive constant, then for all x ∈ X the op-
timal value function V ∗

π̄ (x) and for all (x, a) ∈ Z the optimal policy π̄∗(a|x),
respectively, satisfy:

V ∗
π̄ (x) =

1

η
log
∑

a∈A

π̄(a|x) exp
[
η(r(x, a) + γ(PV ∗

π̄ )(x, a))
]
, (A.2)

π̄∗(a|x) =
π̄(a|x) exp

[
η(r(x, a) + γ(PV ∗

π̄ )(x, a))
]

exp (ηV ∗
π̄ (x))

. (A.3)

Proof
We must optimize π subject to the constraints

∑
a∈A π(a|x) = 1 and 0 <

π(a|x) < 1. We define the Lagrangian function L (x;λx) : X → 4 by adding
the term λx

[∑
a∈A π(a|x) − 1

]
to the RHS of (A.1). Because π̄ is strictly

positive, minimizing L ensures that the solution is positive and the constraints
0 < π(a|x) ≤ 1 are automatically satisfied. Note that the KL-divergence is
well-defined when both π̄ and π are positive.

L (x;λx) =
∑

a∈A

π(a|x) [r(x, a) + γ (PV ∗
π̄ ) (x, a)]−

1

η
KL (π(·|x)‖π̄(·|x))

− λx

[
∑

a∈A

π(a|x)− 1

]

.
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The maximization in (A.1) can be expressed as maximizing the Lagrangian
function L (x,λx). The necessary condition for the extremum with respect to
π(·|x) is:

0 =
∂L (x,λx)

∂π(a|x)
= r(x, a) + γ (PV ∗

π̄ ) (x, a)−
1

η
−

1

η
log

(
π(a|x)
π̄(a|x)

)
− λx,

which leads to:

π̄∗(a|x) = π̄(a|x) exp (−ηλx − 1) exp [η(r(x, a) + γ (PV ∗
π̄ ) (x, a))] , ∀x ∈ X.

(A.4)

The Lagrange multipliers can then be solved from the constraints:

1 =
∑

a∈A

π̄∗(a|x) = exp (−ηλx − 1)
∑

a∈A

π̄(a|x) exp [η(r(x, a) + γ (PV ∗
π̄ ) (x, a))] ,

λx =
1

η
log
∑

a∈A

π̄(a|x) exp [η(r(x, a) + γ (PV ∗
π̄ ) (x, a))]−

1

η
. (A.5)

By plugging (A.5) into (A.4) we deduce

π̄∗(a|x) =
π̄(a|x) exp [η(r(x, a) + γ (PV ∗

π̄ ) (x, a))]∑

a∈A

π̄(a|x) exp [η(r(x, a) + γ (PV ∗
π̄ ) (x, a))]

, ∀(x, a) ∈ Z. (A.6)

The results then follows by substituting (A.6) in (A.1).

The optimal policy π̄∗ is a function of the base policy, the optimal value
function V ∗

π̄ and the state transition probability P . One can first obtain the
optimal value function V ∗

π̄ through the following fixed-point iteration:

V k+1
π̄ (x) =

1

η
log
∑

a∈A

π̄(a|x) exp
[
η(r(x, a) + γ(PV k

π̄ )(x, a))
]
, (A.7)

and then compute π̄∗ using (A.3). π̄∗ maximizes the value function V π
π̄ . How-

ever, we are not, in principle, interested in quantifying π̄∗, but in solving the
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original MDP problem and computing π∗. The idea to further improve the pol-
icy towards π∗ is to replace the base-line policy with the just newly computed
policy of (A.3). The new policy can be regarded as a new base-line policy, and
the process can be repeated again. This leads to a double-loop algorithm to find
the optimal policy π∗, where the outer-loop and the inner-loop would consist of
a policy update, Equation (A.3), and a value function update, Equation (A.7),
respectively.

We then follow the following steps to derive the final DPP algorithm: (i)
We introduce some extra smoothness to the policy update rule by replacing the
double-loop algorithm by direct optimization of both value function and policy
simultaneously using the following fixed point iterations:

V k+1
π̄ (x) =

1

η
log
∑

a∈A

π̄k(a|x) exp
[
η(r(x, a) + γ(PV k

π̄ )(x, a))
]
, (A.8)

π̄k+1(a|x) =
π̄k(a|x) exp

[
η(r(x, a) + γ(PV k

π̄ )(x, a))
]

exp
(
ηV k+1

π̄ (x)
) . (A.9)

Further, (ii) we define the action preference function Ψk (Sutton and Barto,
1998, chap. 6.6), for all (x, a) ∈ Z and k ≥ 0, as follows:

Ψk+1(x, a) !
1

η
log π̄k(a|x) + r(x, a) + γ(PV k

π̄ )(x, a). (A.10)

By comparing (A.10) with (A.9) and (A.8), we deduce:

π̄k(a|x) =
exp(ηΨk(x, a))∑

a′∈A

exp(ηΨk(x, a′))
, (A.11)

V k
π̄ (x) =

1

η
log
∑

a∈A

exp(ηΨk(x, a))). (A.12)

Finally, (iii) by plugging (A.11) and (A.12) into (A.10) we derive:

Ψk+1(x, a) = Ψk(x, a)− LηΨk(x) + r(x, a) + γ(PLηΨk)(x, a), (A.13)

with Lη operator being defined by

LηΨ(x) ! 1
/
η log

∑

a∈A

exp(ηΨ(x, a)) ∀x ∈ X.
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Eq. (A.13) is one form of the DPP equations. There is an analytically more
tractable version of the DPP equation, where we replace Lη by the Boltzmann
soft-max Mη defined bya

MηΨ(x) !
∑

a∈A

[
exp(ηΨ(x, a))Ψ(x, a)

/ ∑

a′∈A

exp(ηΨ(x, a′))
]
, ∀x ∈ X.

In principle, we can provide formal analysis for both versions. However, the
proof is somewhat simpler for the Mη case, which we make use of it in the rest
of this appendix. By replacing Lη with Mη we deduce the DPP recursion:

Ψk+1(x, a) = OΨk(x, a)

! Ψk(x, a) + r(x, a) + γPMηΨk(x, a)−MηΨk(x)

= Ψk(x, a) + TπkΨk(x, a)− πkΨk(x)

, ∀(x, a) ∈ Z,

where O is an operator defined on the action preferences Ψk and πk is the
soft-max policy associated with Ψk:

πk(a|x) !
exp(ηΨk(x, a))∑

a′∈A

exp(ηΨk(x, a′))
.

aReplacing Lη with Mη is motivated by the following relation between these two operators:

|LηΨ(x)−MηΨ(x)| = 1/ηHπ(x) ≤
log(|A|)

η
, ∀x ∈ X, (A.14)

with Hπ(x) is the entropy of the policy distribution π obtained by plugging Ψ into (A).
In words, MηΨ(x) is close to LηΨ(x) up to the constant log(|A|)

/
η. Also, both LηΨ(x) and

MηΨ(x) converge to MΨ(x) when η goes to +∞. For the proof of (A.14) and further readings
see MacKay (2003, chap. 31).





APPENDIX B

The Convergence Proof of DPP

In this appendix, we provide a formal analysis of the convergence behavior of
DPP.

B.1 Proof of Theorem 2.1

In this section we establish a rate of convergence for the value function of the pol-
icy induced by DPP. The main result is in the form of following finite-iteration
performance-loss bound, for all k ≥ 0:

‖Q∗ −Qπk‖ ≤
2γ
(
4Vmax +

log(|A|)
η

)

(1− γ)2(k + 1)
. (B.1)

Here, Qπk is the action-values under the policy πk and πk is the policy
induced by DPP at step k.

To derive (B.1) one needs to relate Qπk to the optimal Q∗. Unfortunately,
finding a direct relation between Qπk and Q∗ is not an easy task. Instead, we
relate Qπk to Q∗ via an auxiliary action-value function Qk, which we define
below. In the remainder of this Section we take the following steps: (i) we
express Ψk in terms of Qk in Lemma B.1. (ii) we obtain an upper bound on the
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normed error ‖Q∗ −Qk‖ in Lemma B.2. Finally, (iii) we use these two results
to derive a bound on the normed error ‖Q∗ −Qπk‖. For the sake of readability,
we skip the formal proofs of the Lemmas in this appendix since we prove a more
general case in Appendix C.

Now let us define the auxiliary action-value function Qk. The sequence of
auxiliary action-value functions {Q0, Q1, Q2, . . . } is obtained by iterating the
initial Q0 = Ψ0 from the following recursion:

Qk =
k − 1

k
Tπk−1Qk−1 +

1

k
Tπk−1Q0, (B.2)

where πk is the policy induced by the kth iterate of DPP.

Lemma B.1 relates Ψk with Qk:

Lemma B.1. Let k be a positive integer. Then, we have

Ψk = kQk +Q0 − πk−1((k − 1)Qk−1 +Q0). (B.3)

We then relate Qk and Q∗:

Lemma B.2. Let Assumption 2.1 hold k be a positive integer, also assume that
‖Ψ0‖ ≤ Vmax then the following inequality holds:

‖Q∗ −Qk‖ ≤
γ
(
4Vmax +

log(|A|)
η

)

(1− γ)k
. (B.4)

Lemma B.2 provides an upper bound on the normed-error ‖Qk −Q∗‖. We
make use of Lemma B.2 to prove the main result of this Section:

‖Q∗ −Qπk‖ = ‖Q∗ −Qk+1 +Qk+1 − TπkQ∗ + TπkQ∗ −Qπk‖
≤ ‖Q∗ −Qk+1‖ + ‖Qk+1 − TπkQ∗‖ + ‖TπkQ∗ − TπkQπk‖
≤ ‖Q∗ −Qk+1‖ + ‖Qk+1 − TπkQ∗‖ + γ ‖Q∗ −Qπk‖ .

By collecting terms we obtain
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‖Q∗ −Qπk‖ ≤
1

1− γ
(‖Q∗ −Qk+1‖ + ‖Qk+1 − TπkQ∗‖)

=
1

1− γ

[
‖Q∗ −Qk+1‖ +

∥∥∥∥
k

k + 1
TπkQk +

1

k + 1
TπkQ0 − TπkQ∗

∥∥∥∥

]

≤
1

1− γ

[
‖Q∗ −Qk+1‖ +

k

k + 1
‖TπkQ∗ − TπkQk‖ +

1

k + 1
‖TπkQ∗ − TπkQ0‖

]

≤
1

1− γ

[
‖Q∗ −Qk+1‖ +

γk

k + 1
‖Q∗ −Qk‖ +

γ

k + 1
‖Q∗ −Q0‖

]

≤
1

1− γ

[
‖Q∗ −Qk+1‖ +

γk

k + 1
‖Q∗ −Qk‖ +

2γVmax

k + 1

]

≤
1

1− γ

[
‖Q∗ −Qk+1‖ +

γk

k + 1
‖Q∗ −Qk‖ +

γ(4Vmax + log(|A|)/η)
k + 1

]
.

This combined with Lemma B.2 completes the proof.

B.2 Proof of Corollary 2.2

First, we note that Qk converges to Q∗ (Lemma B.2) and πk converges to π∗

by Corollary 2.1. Therefore, there exists a limit for Ψk since Ψk is expressed in
terms of Qk, Q0 and πk−1 (Lemma B.1).

Now, we compute the limit of Ψk. Qk converges to Q∗ with a linear rate
from Lemma B.2. Also, we have V ∗ = π∗Q∗ by definition of V ∗ and Q∗. Then,
by taking the limit of (B.3) we deduce

lim
k→∞

Ψk(x, a) = lim
k→∞

[kQ∗(x, a) +Q0(x, a)− (k − 1)V ∗(x)− (π∗Q0)(x)]

= lim
k→∞

k(Q∗(x, a)− V ∗(x))

+Q0(x, a)− (π∗Q0)(x) + V ∗(x).

We then deduce, for all (x, a) ∈ Z,

lim
k→∞

Ψk(x, a) =

{
Q0(x, a)− (π∗Q0)(x) + V ∗(x) a = a∗(x)

−∞ a -= a∗(x)
,

where a∗(x) = maxa∈A(Q∗(x, a)). This combined with the assumption that the
optimal policy is unique completes the proof.





APPENDIX C

Proof of Theorem 2.2

This appendix provides a formal theoretical analysis of the performance of dy-
namic policy programming in the presence of approximation.

Consider a sequence of the action preferences {Ψ0,Ψ1,Ψ2, . . . } as the iterates
of (2.8). Our goal is to establish an #∞-norm performance loss bound of the
policy induced by approximate DPP. The main result is that at iteration k ≥ 0
of approximate DPP, we have

‖Q∗ −Qπk‖ ≤
1

(1− γ)(k + 1)




2γ
(
4Vmax +

log(|A|)
η

)

(1− γ)
+

k+1∑

j=1

γk−j+1‖Ej−1‖



 ,

(C.1)

where Ek =
∑k

j=0 εk is the cumulative approximation error up to step k. Here,
Qπk denotes the action-value function of the policy πk and πk is the soft-max
policy associated with Ψk.

As in the proof of Theorem 2.1, we relate Q∗ with Qπk via an auxiliary
action-value function Qk. In the rest of this appendix, we first express Ψk in
terms of Qk in Lemma C.1. Then, we obtain an upper bound on the normed
error ‖Q∗ −Qk‖ in Lemma C.5. Finally, we use these two results to derive
(C.1).
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Now, let us define the auxiliary action-value function Qk. The sequence
of auxiliary action-value function {Q0, Q1, Q2, . . . } is resulted by iterating the
initial action-value function Q0 = Ψ0 from the following recursion:

Qk =
k − 1

k
Tπk−1Qk−1 +

1

k
(Tπk−1Q0 + Ek−1), (C.2)

where (C.2) may be considered as an approximate version of (B.2). Lemma C.1
relates Ψk with Qk:

Lemma C.1. Let k be a positive integer and πk denotes the policy induced by
the approximate DPP at iteration k. Then we have

Ψk = kQk +Q0 − πk−1

(
(k − 1)Qk−1 +Q0

)
. (C.3)

Proof
We rely on induction for the proof of this theorem. The result holds for

k = 1 since one can easily show that (C.3) reduces to (2.8). We then show that
if (C.3) holds for k then it also holds for k + 1. From (2.8) we have

Ψk+1 = Ψk + TπkΨk − πkΨk + εk

= kQk +Q0 − πk−1((k − 1)Qk−1 +Q0)

+ Tπk(kQk +Q0 − πk−1((k − 1)Qk−1 +Q0))

− πk(kQk +Q0 − πk−1((k − 1)Qk−1 +Q0)) + εk

= kQk +Q0 + Tπk(kQk +Q0 − πk−1((k − 1)Qk−1 +Q0))

− πk(kQk +Q0) + Ek − Ek−1

= kQk +Q0 + r + γPπk(kQk +Q0 − πk−1((k − 1)Qk−1 +Q0))

− πk(kQk +Q0) + Ek − Ek−1

= kQk +Q0 + k(r + γPπkQk) + r + γPπkQ0

− (k − 1)(r + γPπk−1Qk−1)− (r + γPπk−1Q0)

+ πk−1((k − 1)Qk−1 +Q0))− πk(kQk +Q0) + Ek − Ek−1

= kQk − (k − 1)Tπk−1Qk−1 − Tπk−1Q0 − Ek−1 + kTπkQk + TπkQ0 + Ek

+Q0 − πk(kQk +Q0)

= (k + 1)Qk+1 +Q0 − πk(kQk +Q0),

in which we rely on
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πkπk−1(·) = πk−1(·), Tπkπk−1(·) = Tπk−1(·),

and Equation (C.2).
Thus (C.3) holds for k + 1, and is thus true for all k ≥ 1.

Based on Lemma C.1, one can express the policy induced by DPP, πk, in
terms of Qk and Q0:

Lemma C.2. For all (x, a) ∈ Z:

πk(a|x) =
exp (η (kQk(x, a) +Q0(x, a)))∑
b∈A exp (η (kQk(x, b) +Q0(x, b)))

.

Proof

πk(a|x) =
exp (η (kQk(x, a) +Q0(x, a)− πk−1((k − 1)Qk−1 +Q0)(x)))

Z(x)

=
exp (η (kQk(x, a) +Q0(x, a)))

Z ′(x)
,

where Z(x) and Z ′(x) = Z(x) exp (ηπk−1((k − 1)Qk−1 +Q0)(x)) are the nor-
malization factors.

In an analogy to Lemma B.2 we establish a bound on ‖Q∗ −Qk‖ for which
we make use of the following technical results:

Lemma C.3. Let η > 0 and Y be a finite set with cardinality L. Also assume
that F denotes the space of real-valued functions on Y. Then the following
inequality holds for all f ∈ F:

max
y∈Y

f(y)−
∑

y∈Y

exp(ηf(y))f(y)∑

y′∈Y

exp(ηf(y′))
≤

log(L)

η
.

Proof
For any f ∈ F we have

max
y∈Y

f(y)−
∑

y∈Y

exp(ηf(y))f(y)∑

y′∈Y

exp(ηf(y′))
=
∑

y∈Y

exp(−ηg(y))g(y)∑

y′∈Y

exp(−ηg(y′))
,
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with g(y) = maxy∈Y f(y)− f(y). According to MacKay (2003, chap. 31):

∑

y∈Y

exp(−ηg(y))g(y)∑

y′∈Y

exp(−ηg(y′))
= −

1

η
log
∑

y∈Y

exp(−ηg(y)) +
1

η
Hp,

where Hp is the entropy of probability distribution p defined by

p(y) =
exp(−ηg(y))∑

y′∈Y

exp(−ηg(y′))
.

Define Yf
max ⊂ Y as the set of all entries of Y which maximizes f ∈ F. The

following steps complete the proof.

∑

y∈Y

exp(−ηg(y))g(y)∑

y′∈Y

exp(−ηg(y′))
= −

1

η
log
∑

y∈Y

exp(−ηg(y)) +
1

η
Hp

≤ −
1

η
log



1 +
∑

y/∈Y
f
max

exp(−ηg(y)))



+
1

η
Hp

≤
1

η
Hp ≤

log(L)

η
,

in which we make use of − 1
η log

[
1 +

∑
y/∈Y

f
max

exp(−ηg(y)))
]
≤ 0.

Lemma C.4. Let η > 0 and k be a positive integer. Assume ‖Q0‖ ≤ Vmax,
then the following holds:

‖kTQk + TQ0 − kTπkQk − TπkQ0‖ ≤ γ

(
2Vmax +

log(|A|)
η

)
.

Proof

Define A ! ‖kTQk + TQ0 − kTπkQk − TπkQ0‖. We then obtain, by defini-
tion of operator T:
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A ≤ γ‖kPMQk + PMQ0 − kPπkQk − PπkQ0‖
= γ ‖P (MkQk +MQ0 − πk(kQk +Q0))‖
≤ γ ‖MkQk +MQ0 − πk(kQk +Q0)‖
≤ γ ‖2MQ0 +M(kQk +Q0)− πk(kQk +Q0)‖
≤ γ (2 ‖Q0‖+ ‖M(kQk +Q0)−Mη(kQk +Q0)‖) ,

(C.4)

where in the last line we make use of Lemma C.2. The result then follows by
comparing (C.4) with Lemma C.3.

Now, we prove a bound on ‖Q∗ −Qk‖:

Lemma C.5. Let Assumption 2.1 hold. Define Qk by (C.2). Let k be a non-
negative integer, also, assume that ‖Ψ0‖ ≤ Vmax, then the following inequality
holds:

‖Q∗ −Qk‖ ≤
γ
(
4Vmax +

log(|A|)
η

)

(1− γ)k
+

1

k

k∑

j=1

γk−j‖Ej−1‖.

Proof

We rely on induction for the proof of this Lemma. Obviously the result holds
for k = 0. Then we need to show that if (B.4) holds for k it also holds for k+1:
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‖Q∗ −Qk+1‖ =

∥∥∥∥TQ
∗ −

(
k

k + 1
TπkQk +

1

k + 1
(TπkQ0 + Ek)

)∥∥∥∥

=

∥∥∥∥
1

k + 1
(TQ∗ − TπkQ0) +

k

k + 1
(TQ∗ − TπkQk)−

1

k + 1
Ek

∥∥∥∥

=
1

k + 1
‖TQ∗ − TπkQ0 + k(TQ∗ − TQk + TQk − TπkQk)‖

+
1

k + 1
‖Ek‖

≤
1

k + 1
[‖TQ∗ − TQ0‖+ ‖kTQk + TQ0 − kTπkQk − TπkQ0‖]

+
k

k + 1
‖TQ∗ − TQk‖+

1

k + 1
‖Ek‖

≤
1

k + 1
[γ ‖Q∗ −Q0‖+ ‖kTQk + TQ0 − kTπkQk − TπkQ0‖]

+
γk

k + 1
‖Q∗ −Qk‖+

1

k + 1
‖Ek‖ .

(C.5)
Now based on Lemma C.4 and by plugging (B.4) into (C.5) we have

‖Q∗ −Qk+1‖ ≤
γ

k + 1

[
4Vmax +

log(|A|)
η

]

+
γk

k + 1




γ
(
4Vmax +

log(|A|)
η

)

k(1− γ)
+

1

k

k∑

j=1

γk−j‖Ej−1‖





+
1

k + 1
‖Ek‖

=
γ
(
4Vmax +

log(|A|)
η

)

(1− γ)(k + 1)
+

1

k + 1

k+1∑

j=1

γk−j+1‖Ej−1‖.

The result then follows, for all k ≥ 0, by induction.

Lemma C.5 proves an upper-bound on the normed-error ‖Q∗ −Qk‖. We
make use of this result to derive a bound on the performance loss ‖Q∗ −Qπk‖:
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‖Q∗ −Qπk‖ = ‖Q∗ −Qk+1 +Qk+1 − TπkQ∗ + TπkQ∗ −Qπk‖
≤ ‖Q∗ −Qk+1‖ + ‖Qk+1 − TπkQ∗‖ + ‖TπkQ∗ − TπkQπk‖
≤ ‖Q∗ −Qk+1‖ + ‖Qk+1 − TπkQ∗‖ + γ ‖Q∗ −Qπk‖ .

By collecting terms we obtain

‖Q∗ −Qπk‖ ≤
1

1− γ
(‖Q∗ −Qk+1‖ + ‖Qk+1 − TπkQ∗‖)

=
1

1− γ
‖Q∗ −Qk+1‖

+
1

1− γ

∥∥∥∥
k

k + 1
TπkQk +

1

k + 1
(TπkQ0 + Ek)− TπkQ∗

∥∥∥∥

≤
1

1− γ

[
‖Q∗ −Qk+1‖ +

k

k + 1
‖TπkQ∗ − TπkQk‖

]

+
1

(1− γ)(k + 1)
(‖Ek‖+ ‖TπkQ∗ − TπkQ0‖)

≤
1

1− γ)

[
‖Q∗ −Qk+1‖ +

γk

k + 1
‖Q∗ −Qk‖

]

+
1

(1− γ)(k + 1)
(‖Ek‖+ γ ‖Q∗ −Q0‖)

≤
1

1− γ

[
‖Q∗ −Qk+1‖ +

γk

k + 1
‖Q∗ −Qk‖

]

+
1

(1− γ)(k + 1)
(‖Ek‖+ 2γVmax)

≤
1

1− γ

[
‖Q∗ −Qk+1‖ +

γk

k + 1
‖Q∗ −Qk‖ +

1

k + 1
‖Ek‖

]

+
γ
(
4Vmax +

log |A|
η

)

(1− γ)(k + 1)

This combined with the result of Lemma C.5 completes the proof.





APPENDIXD

The Convergence Proof of DPP-RL

We begin this appendix by introducing some new notation. Let us define Fk as
the filtration generated by the sequence of all random variables {y1, y2, y3, . . . , yk}
drawn from the distribution P (·|x, a) for all (x, a) ∈ Z. We know, by the defi-
nition of εk, that E(εk(x, a)|Fk−1) = 0, which means that for all (x, a) ∈ Z the
sequence of estimation errors {ε1, ε2, . . . , εk} is a martingale difference sequence
w.r.t. the filtration Fk. Now, we provide the proof of Lemma 2.1, on which we
rely for the analysis of both Theorem 2.3 and Theorem 2.4:

Proof of Lemma 2.1

We first prove that ‖Tπk
k Ψk‖ ≤ 2γ log(|A|)

η(1−γ) +Vmax by induction. Let us assume

that the bound ‖Tπk
k Ψk‖ ≤ 2γ log(|A|)

η(1−γ) + Vmax holds. Thus

113
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‖Tπk
k+1Ψk+1‖ ≤ ‖r‖ + γ ‖PπkΨk+1‖ ≤ ‖r‖ + γ ‖MηΨk+1‖

= ‖r‖ + γ ‖Mη (Ψk + Tπk
k Ψk −MηΨk)‖

≤ ‖r‖
+ γ ‖Mη (Ψk + Tπk

k Ψk −MηΨk)−M (Ψk + Tπk
k Ψk −MηΨk)‖

+ γ ‖M (Ψk + Tπk
k Ψk −MηΨk)‖

≤ ‖r‖ +
γ log(|A|)

η
+ γ ‖M (Ψk + Tπk

k Ψk −MηΨk)‖

= ‖r‖ +
γ log(|A|)

η

+ γ ‖M (Ψk + Tπk
k Ψk −MηΨk +MΨk −MΨk)‖

≤ ‖r‖ +
γ log(|A|)

η

+ γ ‖M(MΨk −MηΨk)‖ + γ ‖M (Ψk −MΨk)‖ + γ ‖MTπk
k Ψk‖

≤ ‖r‖ +
2γ log(|A|)

η
+ γ ‖Tπk

k Ψk‖

≤ ‖r‖+
2γ log(|A|)

η
+

2γ2 log(|A|)
η(1− γ)

+ γVmax

≤
2γ log(|A|)
η(1− γ)

+Rmax + γVmax =
2γ log(|A|)
η(1− γ)

+ Vmax,

where we make use of LemmaSoftMaxDiv to bound the difference between the
max operator M(·) and the soft-max operator Mη(·). Now, by induction, we
deduce that for all k ≥ 0, ‖Tπk

k Ψk‖ ≤ 2γ log(|A|)
/
(η(1−γ))+Vmax. The bound

on εk is an immediate consequence of this result.

D.1 Proof of Theorem 2.3

In this section, we provide the proof of Theorem 2.3 which guarantees that
DPP-RL asymptotically converges to the optimal policy w.p. 1.

We make use of the result of Lemma 2.1 and Corollary 2.3 to prove the
theorem. We begin by recalling the result of Corollary 2.3:
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lim sup
k→∞

‖Q∗ −Qπk‖ ≤
2γ

(1− γ)2
lim
k→∞

1

k + 1
‖Ek‖ .

Therefore, to prove the convergence of DPP-RL, one only needs to prove
that 1/(k + 1) ‖Ek‖ asymptotically converges to 0 w.p. 1. For this we rely on
the strong law of large numbers for martingale differences (Hoffmann-Jørgensen
and Pisier, 76), which states that the average of a sequence of martingale dif-
ferences asymptotically converges, almost surely, to 0 if the second moments of
all entries of the sequence are bounded by some 0 ≤ U ≤ ∞. This is the case
for the sequence of martingales {ε1, ε2, . . . } since we already have proven the
boundedness of ‖εk‖ in Lemma 2.1. Thus, we deduce

lim
k→∞

1

k + 1
|Ek(x, a)| = 0, w.p. 1.

Thus

lim
k→∞

1

k + 1
‖Ek‖ = 0, w.p. 1. (D.1)

The result then follows by combining (D.1) with Corollary 2.3.

D.2 Proof of Theorem 2.4

In this section, we prove Theorem 2.4, for which we rely on a maximal Azuma’s
inequality (see, e.g., Cesa-Bianchi and Lugosi, 2006, appendix, pg. 359):

Lemma D.1 (Azuma, 1967). Let Y = {Y1, Y2, . . . , YK} be a martingale dif-
ference sequence w.r.t. a sequence of random variables {X1, X2, . . . , XK}, i.e.,
E(Yk+1|X1, . . . Xk) = 0 for all 0 < k ≤ K. Also, let Y be uniformly bounded by

U > 0. Define Sk =
∑k

i=1 Yi. Then, for any ε > 0, we have

P

(
max

1≤k≤K
Sk > ε

)
≤ exp

(
−ε2

2KU2

)
.

We recall the result of Theorem 2.2 at iteration k:

‖Q∗ −Qπk‖ ≤
γ
(
4Vmax +

log(|A|)
η

)

(1− γ)2(k + 1)
+

1

(1− γ)(k + 1)

k∑

j=0

γk−j‖Ej‖.
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Note that the main difference between this bound and the result of Theorem
2.4 is just in the second term. So, to prove Theorem 2.4 we need to show that
the following inequality holds, with probability at least 1− δ:

1

k + 1

k∑

j=0

γk−j ‖Ej‖ ≤
4(γ log(|A|)/η + 2Rmax)

(1− γ)2

√
2 log 2|X||A|

δ

k + 1
. (D.2)

We first notice that

1

k + 1

k∑

j=0

γk−j ‖Ej‖ ≤
1

k + 1

j∑

k=0

γk−j max
0≤j≤k

‖Ej‖ ≤
max0≤j≤k ‖Ej‖
(1− γ)(k + 1)

. (D.3)

Therefore, in order to prove (D.2) it is sufficient to bound max0≤j≤k ‖Ej‖ =
max(x,a)∈Z

max0≤j≤k |Ek−1(x, a)| in high probability.
We begin by proving high probability bound on max0≤j≤k |Ej(x, a)| for a

given (x, a). We first notice that

P

[
max
0≤j≤k

|Ej(x, a)| > ε

]
= P

[
max

[
max
0≤j≤k

(Ej(x, a)), max
0≤j≤k

(−Ej(x, a))

]
> ε

]

=P

[{
max
0≤j≤k

(Ej(x, a)) > ε

}⋃{
max
0≤j≤k

(−Ej(x, a)) > ε

}]

≤P

[
max
0≤j≤k

(Ej(x, a)) > ε

]
+ P

(
max
0≤j≤k

(−Ej(x, a)) > ε

)
,

(D.4)
The sequence of random variables {ε0(x, a), ε1(x, a), · · · , εk(x, a)} is a mar-

tingale difference sequence w.r.t. the filtration Fk (generated by the random
samples {y0, y1, . . . , yk}(x, a) for all (x, a)), i.e., E[εk(x, a)|Fk−1] = 0. It follows
from Lemma D.1 and Lemma 2.1 that for any ε > 0 we have

P

[
max
0≤j≤k

(Ej(x, a)) > ε

]
≤ exp



 −ε2

2(k + 1)( 4γ log(|A|)
η(1−γ) + 2Vmax)2





P

[
max
0≤j≤k

(−Ej(x, a)) > ε

]
≤ exp



 −ε2

2(k + 1)( 4γ log(|A|)
η(1−γ) + 2Vmax)2



 .

(D.5)
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By combining (D.5) with (D.4) we deduce that

P

[
max
0≤j≤k

|Ej(x, a)| > ε

]
≤ 2 exp



 −ε2

2(k + 1)( 4γ log(|A|)
η(1−γ) + 2Vmax)2



 ,

and a union bound over the state-action space leads to

P

[
max
0≤j≤k

‖Ej‖ > ε

]
≤ 2|X||A| exp



 −ε2

2(k + 1)( 4γ log(|A|)
η(1−γ) + 2Vmax)2



 .

For any 0 < δ < 1, this bound can be re-expressed as

P

[

max
0≤j≤k

‖Ej‖ ≤
(
4γ log(|A|)
η(1− γ)

+ 2Vmax

)√
2(k + 1) log

2|X||A|
δ

]

≥ 1− δ.

This combined with (D.3) proves (D.2) and Theorem 2.4.
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Summary

The focus of this thesis is on the theory reinforcement learning (RL) in the
infinite-horizon discounted-reward Markovian decision processes (MDPs). In
RL we often deal with an agent which interacts with her surrounding environ-
ment. The goal of agent is to optimize her long-term performance by finding
the optimal policy, i.e., a sequence of control actions which maximizes her long-
term return. The long-term return of the agent is often expressed in terms of
the value function which, in the case of discounted reward MDPs, is defined
as the expected value of sum of discounted rewards given to the agent by the
environment.

Many RL algorithms rely on dynamic programming (DP) to estimate the
optimal policy through the Bellman iteration. In the case of discounted reward
MDPs, one can prove that DP converges exponentially fast to the optimal so-
lution. However, DP requires an explicit knowledge of transition model and
reward function, which in many problems of interest is not available. In the
absence of the model data, the common approach is to estimate of the opti-
mal value function empirically using Monte-Carlo sampling. In recent years,
the problem of estimating the optimal policy by sampling has drawn much at-
tention and several RL methods have been developed to address this problem.
Also, in some cases, finite-time and asymptotic performance guarantees have
been established for these methods.

In this thesis, we concentrate on the problem of estimating the optimal policy
and the optimal value function by sampling: we develop new RL algorithms and
analyze their asymptotic and finite-time performances. In addition, we refine
some of the existing theoretical results for the well-known RL algorithms such
as model-based value iteration and policy iteration. Further, we prove some
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general lower bounds on the number of samples required by any RL algorithm
to achieve a near optimal solution (sample complexity bound).

Dynamic Policy Programming

In Chapter 2, we propose a new policy iteration algorithm called dynamic pol-
icy programming (DPP), to compute the optimal policy in discounted-reward
MDPs. We prove that DPP asymptotically converges to the optimal policy
and we establish the rate of convergence for DPP in the tabular case. We also
prove performance-loss bounds for the approximate variants of DPP in terms of
the supremum norm of the average approximation error. This is in contrast to
the existing results for approximate dynamic programming, which are often in
terms of the supremum of the errors. We also propose a new RL algorithm to
estimate the optimal policy, called DPP-RL, which relies on a sample-estimate
variant of the DPP update rule and prove its convergence.

Speedy Q-Learning

In Chapter 3, we introduce a new RL algorithm, called speedy Q-learning (SQL),
to address the problem of slow convergence in the standard Q-learning. We ex-
amine the finite-time and the asymptotic behavior of SQL. We prove high prob-
ability bounds on the performance loss of SQL, suggesting that the algorithm
converges faster to the optimal action-value function than standard Q-learning.
The numerical experiments in Section 3.4 confirm our theoretical results show-
ing that for γ ≈ 1, where γ is the discount factor of the MDP, SQL performs
better than the standard Q-learning.

Sample Complexity of Model-Based RL

In Chapter 4, we establish the first matching lower and upper bound on the
sample complexity of estimating the optimal policy in discounted reward MDPs.
In this chapter, we consider two well-known model-based RL algorithms, Q-value
iteration (QVI) and policy iteration (PI). We show that upper-bounds on the
sample complexity of these methods match the general lower bound of RL in
terms of all the parameters of interest. We also compare our bounds with the
previous results for QVI and PI. We show that our results improve on the state
of the art by a factor of order 1/(1− γ).



Samenvatting

De focus van dit proefschrift is het toepassen van Reinforcement Learning (RL)
op Markov beslissingsprocessen (Markov Decision Processes, MDPs) met dis-
counted reward. In RL hebben we vaak te maken met een agent die inter-
actie heeft met zijn omgeving. Het doel van de agent is om zijn lange termijn
prestaties te optimaliseren door middel van het zoeken naar een optimaal policy,
dat wil zeggen een opeenvolging van acties die uitkeringen op de lange termijn
maximaliseren. De lange termijn uitkeringen van een agent worden doorgaans
beschreven met behulp van een waarde functie die, in het geval van discounted
reward, gedefinieerd is als de verwachtingswaarde van de som van verdiscon-
teerde uitkeringen.

Veel RL algoritmes zijn gebaseerd op Dynamisch Programmeren (DP) en
maken via de zogenaamde Bellman Iteraties een schatting van het optimale
policy. In het geval van MDPs met discounted reward kan men aantonen dat
deze schattingen exponentieel snel convergeren naar de optimale oplossing. DP
algoritmes hebben echter expliciete kennis nodig van het transitie- en uitkeringen
model, die voor veel interessante problemen niet voorhanden zijn. Bij gebrek
aan kennis van het model maakt men veelal een empirische schatting van de
waarde functie door middel van Monte Carlo simulaties. De laatste jaren is er
veel aandacht geweest voor het schatten van het optimale policy aan de hand van
simulaties en dit heeft een aantal RL methoden opgeleverd. In sommige gevallen
zijn er garanties bepaald voor het presteren van deze methodes in asymptotische
context of in een eindig tijdsbestek.

In dit proefschrift concentreren we ons op het schatten van het optimale
policy en de optimale waarde functie door middel van simulaties. Tot dit
doel ontwikkelen we nieuwe RL algoritmes en analyseren we hun prestaties
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in zowel asymptotische context als in een eindig tijdsbestek. Daarnaast ver-
beteren we enkele theoretische resultaten van bekende RL algoritmen zoals
Model Gebaseerde Waarde Iteraties en policy iteratie. Verder zullen we enkele
algemene ondergrenzen bepalen voor het aantal simulaties dat nodig is voor een
bijna optimale oplossing (simulatie complexiteit grens) die geldig zijn voor RL
algoritmes in het algemeen.

Dynamisch Policy Programmeren

In Hoofdstuk 2 stellen we een nieuw policy iteratie algorithm voor, genaamd
Dynamisch policy Programmeren (Dynamic Policy Programming, DPP), om
het optimale policy te berekenen in MDPs met discounted reward. We bewijzen
dat de uitkomsten van het DPP algoritme asymptotisch convergeren naar het
optimale policy, en we bepalen de snelheid van convergeren in het discrete geval.
We geven ook een grens op het verlies aan nauwkeurigheid dat DPP veroorzaakt
bij het gebruik van een benaderend model. Dit verlies geven we in termen van
de supremum-norm van de gemiddelde geaccumuleerde fout bij het gebruik van
een benaderend model. Dit is in tegenstelling met de reeds bekende resultaten
over waardeverlies bij DP, die simpelweg worden uitgedrukt in termen van het
supremum van fouten. Ten slotte stellen we een RL algoritme voor, genaamd
DPP-RL, welke een variante is op DPP die gebruikt maakt van een gesimuleerde
schatting van de bijwerk-regel, en we bewijzen dat het algoritme convergeert.

Speedy Q-Learning

In Hoofdstuk 3 introduceren we een nieuw RL algoritme, genaamd Speedy Q-
Learning (SQL), om de problemen van de relatief langzame convergentie van
standaard Q-Learning te overkomen. We onderzoeken zowel het asymptotische
gedrag van SQL als dat over eindige tijd. We bewijzen grote-waarschijnlijkheid
grenzen voor het prestatie verlies van SQL, en concluderen dat SQL sneller con-
vergeert dan standaard Q-Learning. De numerieke experimenten in Sectie 3.4
bevestigen onze theoretische bevindingen voor γ ≈ 1, waar γ de discount factor
van de MDP is.

Simulatie Complexiteit van Model Gebaseerd RL

In Hoofdstuk 4 geven we een (voorheen onbekende) aansluitende onder- en
bovengrens van de simulatie complexiteit van de schatting van het optimale
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policy in MDPs met discounted reward. In dit hoofdstuk beschouwen we prob-
lemen in de context van model gebaseerd RL. We beschrijven de bovengrenzen
van de simulatie complexiteit van twee bekende model gebaseerd RL algoritmen,
zijnde Q-Waarde Iteratie (Q-Value Iteration, QVI) en policy iteratie (Policy Iit-
eration, PI). Deze bovengrenzen sluiten aan bij de algemene ondergrenzen van
RL algoritmen in termen van de parameters die er toe doen. Ook vergelijken
we onze grenzen met de reeds bekende resultaten over QVI en PI, en laten we
zien dat onze resultaten de huidige grenzen verbeteren met een factor van orde
1/(1− γ).





Acknowledgement

I would like to express my great appreciation to anyone who helped me with
writing this thesis. I am particularly grateful to my research supervisor and
promoter, Bert Kappen, for his patient guidance and valuable critiques of my
research work. Through the duration of my study, Bert gave me the freedom
to study and explore new ideas and approaches. I would like to express my
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