
UNIVERSIDADE DO ALGARVE

Affine Image Registration Using Genetic

Algorithms and Evolutionary Strategies

Mosab Bazargani

Mastrado em Engenharia Informática

2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sapientia

https://core.ac.uk/display/161853339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSIDADE DO ALGARVE

Affine Image Registration Using Genetic

Algorithms and Evolutionary Strategies

Mosab Bazargani

Tese orientada por

Fernando Miguel Pais de Graça Lobo

Thesis submitted in conformity with the requirements

for the degree of Master of Science
Graduate Department of Computer Science

Universidade do Algarve

2012

Abstract

This thesis investigates the application of evolutionary algorithms to align two or

more 2-D images by means of image registration. The proposed search strategy is a

transformation parameters-based approach involving the affine transform. A noisy ob-

jective function is proposed and tested using two well-known evolutionary algorithms

(EAs), the genetic algorithm (GA) as well as the evolutionary strategies (ES) that are

suitable for this particular ill-posed problem. In contrast with GA, which was originally

designed to work on binary representation, ES was originally developed to work in contin-

uous search spaces. Surprisingly, results of the proposed real coded genetic algorithm are

far superior when compared to results obtained from evolutionary strategies’ framework

for the problem at hand. The real coded GA uses Simulated Binary Crossover (SBX), a

parent-centric recombination operator that has shown to deliver a good performance in

many optimization problems in the continuous domain. In addition, a new technique for

matching points, between a warped and static images by using a randomized ordering

when visiting the points during the matching procedure, is proposed. This new tech-

nique makes the evaluation of the objective function somewhat noisy, but GAs and other

population-based search algorithms have been shown to cope well with noisy fitness eval-

uations. The results obtained from GA formulation are competitive to those obtained

by the state-of-the-art classical methods in image registration, confirming the usefulness

of the proposed noisy objective function and the suitability of SBX as a recombination

operator for this type of problem.

Keywords: Evolutionary algorithm (EA), image registration (IR), affine trans-

form, point-pattern matching, genetic algorithm (GA), evolutionary strategies (ES), sim-

ulated binary crossover (SBX).

i

I dedicate this work to the most beautiful expression of my life;

“my mother”

ii

Acknowledgements

I would like to thank all those collaborators who helped me in the process that now comes

to completion with this thesis.

First and foremost, I want to thank my supervisor Fernando G. Lobo. Without his

support and patience, this thesis would not have been possible. I am indebted to him

for his help and support, and will always appreciate the time and consideration that he

devoted to my work.

Kind gratitude to my beloved family, my mother who passed away in my embrace

and on her peaceful face was pictured the whole world’s love, my father and two sisters

who taught me to be myself. They taught me to never give up in achieving my ultimate

goals. They are the spiritual support of my life. A very special thanks goes to Houman

Samim, my brother in law, who has always been there for me.

I am very thankful to Ali Mollahosseini, who I first met two years ago, and since then

until he left to the USA we were working in the same laboratory. We interacted intensely

on a daily basis. I would also like to thank him for all the scientific and social discussions

we had.

I am also very grateful to António dos Anjos and his family, especially his father

whom I take my hat off to. Some of the ideas presented in this thesis resulted from

discussions António and I had. He always tried to encourage me to learn more and more

in computer science area.

Kind gratitude to Ana Cristina Pires and Gil Guilherme, my Salsa teachers, who

showed me a new path in my life. I would also like to thank all my salsa friends, for their

understanding, kindness and companionship, for all the great times we shared.

How can I forget Denise Candeias for all her help at the final stage of my writing.

Last but not the least, I would like to thank all my colleagues and friends, for being

there always with me whenever needed.

iii

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Contributions . 3

1.4 Organization of the Thesis . 4

2 Genetic Algorithms and Evolution Strategies 7

2.1 Introduction . 7

2.2 Natural Evolution . 8

2.3 History of Evolutionary Computation . 11

2.4 Evolutionary Algorithms . 13

2.4.1 Components of Evolutionary Algorithms 14

2.4.1.1 Representation . 15

2.4.1.2 Selection . 15

2.4.1.3 Recombination . 16

2.4.1.4 Mutation . 17

2.4.1.5 Replacement (Survivor Selection) 17

2.4.1.6 Termination Condition 17

2.5 Genetic Algorithms . 18

2.5.1 Tournament Selection . 19

v

2.5.2 Variation . 19

2.5.2.1 Simulated Binary Crossover (SBX) 19

2.5.2.2 Gaussian Mutation . 21

2.6 Evolutionary Strategies . 21

2.6.1 Representation . 22

2.6.2 Parent Selection . 23

2.6.3 Recombination . 23

2.6.4 Mutation . 23

2.6.4.1 Polynomial Mutation . 24

2.6.5 Survivor Selection . 26

2.6.6 Self-Adaptation . 27

2.6.6.1 1/5 Success Rule . 27

2.6.6.2 Uncorrelated Mutation with One or n Step-Size(s) . . . 28

3 Image Registration 31

3.1 Introduction . 31

3.2 Warping . 33

3.2.1 Geometric Transform . 34

3.2.1.1 Rigid . 34

3.2.1.1.1 Affine Transform 34

3.2.1.2 Non-Rigid . 36

3.3 Estimation of the Difference . 37

3.4 Related Work . 37

3.4.1 Classical Methods . 38

3.4.2 EC and MH methods . 38

4 Application of Evolutionary Algorithms to Image Registration 41

4.1 Introduction . 41

vi

4.2 Representation . 42

4.3 Objective Function . 42

4.4 GA Operators . 46

4.4.1 GA Experimental Results . 47

4.5 ES Operators . 52

4.5.1 ES Experimental Results . 53

4.6 Discussion . 55

4.7 Summary . 57

5 Conclusion and Future Work 59

5.1 Conclusion . 59

5.2 Future Work . 61

Appendix A Framework of evolutionary Strategies 63

A.1 Introduction . 63

A.2 The ESs Representation . 64

A.3 The Standard (µ/ρ +, λ)–ESs Algorithm 65

A.4 Self-Adaptation . 68

A.4.1 1/5 Success Rule . 68

A.4.2 Uncorrelated Mutation with One or n Step-Size(s) 68

A.4.2.1 Mutation Rate in Binary Search Space 68

A.4.2.2 Mutation Rate in Integer Search Space 70

A.4.2.3 Mutation Rate in Real-Valued Search Space 71

A.5 Initialization . 72

A.6 Parent Selection . 74

A.7 Variation . 74

A.7.1 Simulated Binary Crossover (SBX) 74

A.7.2 Bit-Flip Mutation . 74

vii

A.7.3 Geometrical Mutation . 76

A.7.4 Polynomial Mutation . 79

Appendix B Application Details 81

B.1 Execution of the Application . 81

B.2 An Example of the Input File . 82

Bibliography 87

viii

List of Figures

1.1 Two octagons; left: static image; right: deformed image. 3

2.1 Epistatic gene interaction, and the behavior of pleiotropy and polygeny. . 10

2.2 Probability distribution, used in the simulated binary crossover (SBX),

are shown for different values of the distribution index n. Figure courtesy

of Deb and Jain [26]. 21

2.3 Probability distribution to create a mutated value for continuous variables.

Figure courtesy of Deb and Goyal [25]. 25

3.1 Finding a transformation by point correspondence. 32

3.2 Elementary geometric transforms for a planar surface element used in the

affine transform: translation, rotation, scaling, stretching, and shearing. . 35

4.1 An example of the correspondence matrices: points s1, s2, s3, s4, s5, s6,

s7, s8 correspond to d1, d2, d3, d4, d5, d6, d7, d8, respectively, for mapping

point-sets D to S. However, if mapping S to D, points s1, s2, s3, s4, s5, s6,

s7, s8 correspond to d1, d2, d4, d5, d6, d7, d8, d3, respectively. 45

4.2 Correspondence matrix M ′′(S → R): based on new match-order vector;

points s8, s5, s3, s2, s1, s6, s7, s4 correspond to points d8, d5, d4, d2, d1,

d6, d7, d3. 46

ix

4.3 Non-affine distorted point-sets (left, blue dots for static image points, red

dots for deformed image points) and GA affine image registration (right,

red dots are the warped image points) results obtained after 500 genera-

tions using population size 120. The warped images are zoomed for better

visualization. Note that even better matching could be obtained with

larger population sizes, but the improvements are negligible as shown in

Figure 4.4. 49

4.4 Best objective function value through generations for various population

sizes obtained for various point-sets. The results are averaged over 100

independent runs. 50

4.5 Affine distorted point-sets and respective registration results. On the left

column, (a), the blue dots are the static image points and the red dots are

the deformed image points. On the other columns, (b), (c), and (d), the

red dots are the warped image points. The warped images are zoomed for

better visualization. The GA results were obtained after 500 generations

using population size 120. Observe that for the case of GA and TPS-RPM,

the deformed and static points are almost on top of each other, meaning

that the match is almost perfect. For SC the results are slightly inferior

compared with those obtained by the GA and TPS-RPM. 51

4.6 These images are obtained directly from [78]. The top, middle, and bottom

images, correspond to our point-sets 1, 4, and 3, respectively. The blue

dots are the static image points and the red dots are the warped image

points. 52

4.7 Standard deviation of the objective function value of the population mem-

bers averaged over 100 runs with a (160 + 1120)-strategy using different

mutation operators for point-sets 4 and 5. The other point-sets have sim-

ilar behavior. 54

x

4.8 Best objective function value through generations for (160+1120)-strategy

for various point-sets. The results are averaged over 100 independent runs. 55

4.9 Best objective function value through generations for (160+1120)-strategy

and (160, 1120)-strategy for point-sets 4 and 5. The results are averaged

over 100 independent runs. 56

A.1 The mechanism of the transformation function (a = 6, b = 8). Figure

courtesy of Li [56]. 78

xi

xii

List of Algorithms

2.1 The general scheme of an evolutionary algorithm 14

4.1 Objective function . 43

A.1 Outline of the (µ/ρ +, λ)–ES . 67

A.2 Outline of the (µ/ρ +, λ)–ES with 1/5 success rule 69

A.3 Integer step-size mutation . 70

A.4 Real-valued step-size mutation . 71

A.5 Simulated binary crossover (SBX). 75

A.6 Integer object parameters mutation . 77

A.7 Transformation function T r
[a,b](x), for interval boundaries a and b. 78

A.8 Polynomial mutation. 79

xiii

xiv

List of Tables

4.1 Minimum square errors of affine deformed point-sets 56

xv

xvi

The aim of science is not to open the

door to infinite wisdom, but to set a

limit to infinite error.

Bertolt Brecht

Chapter 1

Introduction

1.1 Motivation

“If God had wanted to put everything into the universe from the beginning, he

would have created a universe without change, without organisms and evolu-

tion, and without man and man’s experience of change. But he seems to have

thought that a live universe with events unexpected even by himself would be

more interesting than a dead one.”

In the above mentioned quote, Karl Popper, one of the greatest philosophers of sci-

ence of the 20th century, brilliantly explains the reason of the existence of evolution of

everything surrounding us. In our world today, there are problems with characteristics

which are similar to the adaptation problems encountered in Nature which have been

solved through evolution. Such problems occur when the task is to find the best (or

a reasonably good solution) out of many possible solutions to a given problem. These

kind of problems have been reported in a variety of fields such as computer science,

management science, industrial engineering, biology, and many others.

Since these kind of problems are solved in Nature, it is quite rational to seek a solution

for them which is inspired by Nature. Evolution provides inspiration to compute solutions

1

2 Chapter 1. Introduction

to problems that have previously appeared intractable.

All evolutionary systems process through generations, where a small change at one

stage can result in large differences at a later stage. This feature is called butterfly effect.

The butterfly effect is a common trope in fiction when presenting scenarios involving time

travel and with hypotheses where one storyline diverges at the moment of a seemingly

minor event resulting in two significantly different outcomes.

According to this theory, we would need to germinate another planet and wait several

millions of years to study how life could possibly be over there after solving one problem.

Since it would be impossible and also irrational we could use computer science to simulate

such a world through evolutionary algorithms.

To assess how evolutionary algorithms can cope with real world problems, especially

ill-posed problems, in this thesis the image registration problem is optimized by means

of evolutionary algorithms.

Image registration (IR) is the process of finding the transformation that aligns one

image to the other image. This is a key problem in computer vision encountered in many

areas, e.g., medical image analysis, pattern recognition, face tracking, handwriting recog-

nition, astro- and geophysics, and analyzing images from satellites. Image registration

can be defined in a simple language with only a few words: given a static and a de-

formed image, find a suitable transformation such that the transformed deformed image

becomes similar to the static image. However, it is easy to state the problem but hard

to solve it. The main reason comes from the fact that the problem is ill-posed. Small

changes of the input images can cause completely different registration results. Further-

more, the solution may not be unique. Suppose we have to register the deformed image

to the static image that are depicted in Fig. 1.1. For the sake of simplicity, only rigid

transformations are allowed, i.e., rotation and transformations. Several solutions can be

immediately discovered, e.g., a pure translation, a rotation of 45 degrees, a rotation of

90 degrees followed by a translation, and so on.

1.2. Objectives 3

Figure 1.1: Two octagons; left: static image; right: deformed image.

In this thesis, the goal is to find the best mapping function, also called transform,

that warps a Deformed image (D) in the direction of a Static image (S), based on the

images’ features (e.g. point positions).

1.2 Objectives

The thesis has the following main objectives:

• Application of evolutionary algorithms to image registration.

• Design and program a framework for evolutionary strategies in C++.

• Study a new noisy objective function using a real coded representation for image

registration by means of genetic algorithm and evolutionary strategies.

1.3 Contributions

The main contributions of this thesis are:

• Propose a new technique for matching points between a warped and static im-

ages by using a randomized ordering when visiting the points during the matching

procedure [7].

4 Chapter 1. Introduction

• Application of a real coded GA to align two or more 2-D images by means of

image registration. The proposed search strategy is a transformation parameters-

based approach involving affine transformation. The real coded GA uses simulated

binary crossover (SBX). This work has been accepted as a poster publication at

ACM GECCO 2012, one of the most prestigious conferences in the EC field [7].

• Design and program a generic framework for evolutionary strategies in C++. This

framework is fully object oriented and includes the classical 1/5 success rule and

the self-adaptive uncorrelated mutation strategies. Moreover, discrete, intermedi-

ate, and simulated binary crossover (SBX) as recombination operators and bit-flip,

geometrical, Gaussian, and polynomial as mutation operators are included. Im-

plemented ingredients of the evolutionary strategies (ES) are elaborated in Ap-

pendix A.

• Investigate the effect of simultaneous usage of SBX and real-valued mutation op-

erators on the applications’ behavior (Sect. 5.1).

1.4 Organization of the Thesis

The thesis is composed of six chapters. Chapter 1 starts off by explaining the motivation

of this work, and continues clarifying the main objectives and contributions of the thesis.

It is finalized by the details of organization of the thesis.

Chapter 2 presents a brief overview of the natural evolution and the history of evolu-

tionary computation. Afterwards, it introduces the evolutionary algorithms and its key

ingredients as search methods inspired by natural selection and genetics. It continues

by addressing genetic algorithms and its major representations. This chapter ends by

reviewing the basic procedures of standard evolutionary strategies and its terminology.

Moreover, the operators used in this work are explained in this chapter.

Chapter 3 reviews the basics of image registration. Thereupon, it introduces two

1.4. Organization of the Thesis 5

classes, rigid and non-rigid, geometric transforms. Affine and polynomial transforms and

thin plate splines (TPS) are given as examples of those classes. Additionally, some well

known techniques for solving image registration problems, including both classical as well

as evolutionary computation and metaheuristic based approaches are discussed.

Chapter 4 proposes a new objective function for matching points between deformed

and static images by using a randomized ordering when visiting the points during the

matching procedure. Then, the new objective function is studied by means of genetic

algorithm and evolutionary strategies. The control parameters for both evolutionary

algorithms are discussed in this chapter. It investigates the behavior of SBX in the noisy

objective function. Furthermore, it discusses the behavior of evolutionary strategies and

genetic algorithm for the image registration problem.

Chapter 5 concludes the thesis. Just as the thesis itself, this chapter ends suggesting

some topics for future work in the application of EAs to image registration.

6 Chapter 1. Introduction

Chapter 2

Genetic Algorithms and Evolution

Strategies

2.1 Introduction

Evolutionary Computation (EC) covers all aspects of the simulation of evolutionary pro-

cess in computer systems. It is quite a recent and tremendously growing field as well as

an optimization process. The term itself was invented as recently as 1991, and represents

an effort to bring together researchers who have been following different approaches to

simulating various aspects of evolution [3]. Those aspects are genetic algorithms (GAs)

[40, 59, 61], evolutionary strategies (ESs) [5, 12], and evolutionary programing (EP)

[36, 37, 62]. Note, since last decade these aspects are extended. Although simulations

of the natural evolution have been used by biologists to study adaptation in changing

environments to gain insight into the evolution of the complex organisms found on Earth,

it has also been shown that complex optimization problems can be solved with simulated

evolution. EC techniques have been successfully applied to various optimization problems

in engineering, economics, biology, chemistry, physics, and computer science.

There are many computational problems that require searching through a huge num-

7

8 Chapter 2. Genetic Algorithms and Evolution Strategies

ber of possible solutions. Moreover, many computational problems require complex so-

lutions that are difficult to program by hand. The classical techniques for solving com-

plex optimization problems have been generally unsatisfactory when applied to nonlinear

optimization problems especially those with temporal, stochastic, or chaotic elements.

Nonetheless, these problems can be classified under the same group of problems that Na-

ture solves itself. In other words, biological evolution is an appealing source of inspiration

for computing the solutions to problems that have previously appeared intractable.

This chapter is devoted to two classes of algorithms in EC (ESs and GAs) which

have been implemented and used in this work. First of all, natural evolution and history

of genesis of evolutionary computation are addressed. A general scheme that forms

the common basis of all evolutionary algorithms variants and its key ingredients are

elaborated. Afterward, genetic algorithms are briefly described. Furthermore, it details

GA operators that are applicable to representations in the continuous domain, as that

will be the case for the image registration problem that is addressed in this thesis. Finally,

evolutionary strategies involving self-adaptation and its components are elaborated.

2.2 Natural Evolution

In 1859, Darwin came up with the origin of species [23] which presented a theory for

existence and evolution of life on Earth. According to his theory, the vast majority of

the history of life can be fully accounted for by physical (evolution) processes operating

on and within populations and species [48]. These processes are: replication, variation,

and selection. Replication is an obvious property of extant species. In other words, it

increases the population size of species that would have reproductive potential at an

exponential rate if all individuals were to reproduce successfully. Variation comes about

through the transfer of an individual’s genetic program (asexually or/and sexually) to

progeny. Variation is introduced due to errors in the replication process, resulting in a

2.2. Natural Evolution 9

gradual development of new organisms [58]. These changes often occur due to coping

errors. Sexual recombination is another form of variation and is itself a product of

evolution. Competition is a consequence of expanding populations in a finite resource

space, because of the limited resources on Earth, replication can not go on infinitely;

individuals of the same species or other have to compete with each other and only the

fittest survive. Thus, natural evolution implicitly causes the adaptation of life forms to

their environment once only the fittest have a chance to reproduce.

Natural evolution is an open-ended dynamic process in which the fitness of an individ-

ual can only be defined in relation to the environment. For example, an Indian elephant

has a high fitness in its native environment, since it is well adapted to the weather of

mainland Asia. Bringing the Indian elephant to the North Pole would certainly reduce

its fitness. Sometimes, species become extinct when they are not able to react to rapid

changes in their environment [23].

At this point it is useful to get formally across to the principle of natural evolution

by means of some biological terms. In the context of evolutionary algorithms, these

biological terms are used in the spirit of analogy with real biology, though the entities

they refer to are much simpler than the real biological ones [59].

All living organisms consist of cells, and each cell contains a copy of a set of one or more

chromosome(s), which are strings of DNA. The chromosome serves as a “blue print” for

the organism. It can be conceptually divided into genes, each of them encodes a particular

protein and, is also located at a specific locus on the chromosome. Very roughly, the genes

can be spotted as encoding of a trait, such as eye color. The different possible settings of

a trait (e.g. black, white, green) are called alleles. Most complex organisms have more

than a single chromosome in each cell. All chromosomes taken together make up an

organism’s genome which is the complete collection of genetic material. Each organism

carries its genetic information referred to as the genotype. In other words, genotype refers

to the particular set of genes contained in a genome. The organism’s traits, which are

10 Chapter 2. Genetic Algorithms and Evolution Strategies

developed while the organism grows up, constitute the phenotype. Genotype gives rise

to the phenotype of the organism under fetal or later development.

The two types of reproduction which are mentioned above can be found in nature

(asexual, and sexual). The asexual recombination, also known as haploid, where an

organism reproduces itself by cell division and the replication of its chromosome(s). Off-

spring are subject to mutation during this process in which one or more alleles of gene

are changed, genes are deleted, or they are reinserted at other loci on the chromosome.

Diploid points out the sexual recombination (the second type of reproduction) which has

paired chromosomes. In Nature, most sexually reproducing species are diploid, including

human beings, having 23 pairs of chromosomes in each cell. In this type of recombination

also well known as crossover, genes are exchanged between the chromosomes of the two

parents to form a new set of chromosome(s). The fitness of a particular organism is

mostly defined as the probability the organism has to live and reproduce, called viability,

or defined by the number of offspring the organism has, called fertility.

1

2

3

4

5

6

7

8

9

10

a

b

c

d

e

f

g

h

i

j

Gene Gene product Character

Figure 2.1: Epistatic gene interaction, and the behavior of pleiotropy and polygeny.

2.3. History of Evolutionary Computation 11

Due to the universal effects of gene interaction which is called epistasis, the results

of genetic variations are hardly predictable. The effect that a single gene may simulta-

neously influence several phenotypic traits is called pleiotropy. And conversely, a single

phenotypic characteristics may be determined by the simultaneous interaction of many

genes. This effect is called polygeny. There are no one-gene, one-trait relationships in

natural evolved systems [34]. Fig. 2.1 illustrates the pleiotropy and polygeny. Epistatic

interaction in form of pleiotropy and polygeny are always found in living organisms,

consequently, the phenotype varies as a complex, nonlinear function of the interaction

between the underlying genetic structures and the environmental conditions.

2.3 History of Evolutionary Computation

Writing history is one of the most difficult works. It becomes more complicated when it

dates back further down in the past. On the contrary, the evolutionary computation is

a recent area for scientific research and most of its initiators are still around. It started

in the mid-1950s when several scientists used digital computer models to understand the

natural process of evolution better [51, 59].

In the 1960’s decade, on both sides of the Atlantic Ocean (Germany and USA) the

basis of what we today identify as evolutionary algorithms (EAs) were clearly estab-

lished [51]. ESs were a joint development of a group of three students, Bienert, Rechen-

berg, and Schwefel, in Berlin (1965). On the other side of the ocean, the roots of EP were

laid by Fogel, Owens, and Walsh in San Diego, California (1966). GAs were developed

by Holland, his colleagues, and his students at the University of Michigan in Ann Arbor

(1967). Over the following 25 years each of these branches developed quite independently

from each other [51], resulting in unique parallel fields which are described in more detail

in the following paragraphs. However, after 1990 the boundaries between the three main

EC streams have broken down to some extent. Nowadays, there is a widespread inter-

12 Chapter 2. Genetic Algorithms and Evolution Strategies

action among researchers studying various EC methods, and there are more than three

EC methods. Moreover, in 1996, Bäck introduced a common algorithmic scheme for all

brands of current evolutionary algorithms [1].

In 1964, three students at the Technical University of Berlin introduced evolutionary

strategies (Evolutionsstrategie in German). They developed an approach to optimize the

real-valued parameters for devices such as airfoils [13, 63, 71]. Only then did Rechenberg

(1965) hit upon the idea to use dice for random decision [51]. After the first computer

experiment on implementing ES by Schwefel (1965), the use of normally instead of bi-

nomially distributed mutations become standard in most of later computer experiments

with real-valued parameters. It was Rechenberg (1973) who formulated a 1/5 success

rule for adapting the standard deviation of mutation. Self-adaptation with respect to

correlation coefficients and mutation step-size was achieved with the (µ, λ) ES in 1975

by Schwefel and published in his Dr.-Ing. thesis [72]. During 1980s the notion of self-

adaptation by collective learning first came up and the importance of recombination and

soft selection was clearly demonstrated. In 1996, Hansen and Ostermeier invented the

new robust method, called covariance matrix adaptation (CMA–ES) for governing the

individual step-sizes for each coordinate or correlations between coordinates [42].

Genetic algorithms were invented by Holland [49] and were developed by his students

and colleagues. Holland’s original goal was to study the phenomenon of adaptation as

it occurs in Nature and to develop ways in which the mechanisms might be imported

into computer systems. Compared to ES and EP, Holland’s GA was the first algorithm

incorporating a form of recombination (crossover). During the following two decades

Holland and his students kept working on the general theory of adaptive systems, but

the idea did not spread around the world the before publication of Goldberg’s book [40].

That book, in particular, served as a significant catalyst by presenting current GA theory

and applications in a clear and precise form easily understood by a broad audience of

scientists and engineers, and it’s one of the high cited documents in the field of EC.

2.4. Evolutionary Algorithms 13

By the mid-1980s, the first international conference on GAs was held in Pittsburgh,

Pennsylvania, USA. In 1993, Juels, Baluja, and Sinclair came up with the idea [52] of

replacing the population by a probability vector [57]. It was the base of a new robust

approach for GAs and EAs, known as Estimation of Distribution Algorithms (EDAs) [46].

2.4 Evolutionary Algorithms

Evolutionary algorithms (EA) have several branches including genetic algorithms, evo-

lutionary strategies, evolutionary programing, and many others. Algorithm 2.1 shows a

general template of EA without referring to a particular algorithm. All proposed meth-

ods are special cases of this scheme. It starts with initializing a population randomly,

i.e., a set of candidate solutions. All candidate solutions are applied to a quality func-

tion (to be maximized/minimized) as an abstract fitness measure, the higher/lower the

better. Then, in the main loop, a temporary population is selected from the current

population (survival of the fittest), which causes a rise in the fitness of the population.

Thereupon, the evolutionary operators including mutation and recombination are applied

to all members (individuals) of the temporary population. Recombination is an operator

applied to two or more selected individuals (the so-called parents) and results in one or

more new candidate(s) (offspring). Mutation is applied to one candidate and results in

a new candidate. The main loop is repeated until a termination criterion is fulfilled; for

example, if the number of generations evolved exceeds a predefined limit. The newly

created individuals are evaluated by calculating their fitness. Before a new generation is

processed, the new population is selected from the old and temporary populations.

The evolutionary process makes the population increasingly better at adapting to

the environment. Variation operators — recombination and mutation — create the

necessary diversity and thereby facilitate novelty while selection acts as a force pushing

toward quality. In general, the combined application of variation and selection leads to

14 Chapter 2. Genetic Algorithms and Evolution Strategies

Algorithm 2.1 The general scheme of an evolutionary algorithm

Input: A problem at hand with an objective function f to optimize

Output: A solution or a set of solutions

1: g ← 0;

2: initialize-population(P 0);

3: evaluate(P 0 using f);

4: while termination-condition = false do

5: P ′ ← select-for-variation(P 0);

6: P ′ ← recombine(P ′);

7: P ′ ← mutate(P ′);

8: evaluate(P ′ using f);

9: P g+1 ← select-for-survival(P (g) , P ′);

10: g ← g + 1;

11: end while

improving fitness values in consecutive populations.

The fitness evaluation is the central part of an evolutionary algorithm. It is usually

the objective function of the problem to be solved by the evolutionary algorithm. In

other words, the objective function is an expression of environmental requirements.

2.4.1 Components of Evolutionary Algorithms

This section discusses EA in detail. EAs have a number of components and operators that

must be specified in order to define a particular EA. The most important components

are:

• Representation

• Selection

• Recombination

2.4. Evolutionary Algorithms 15

• Mutation

• Replacement (Survivor Selection)

• Termination Condition

In the following subsections these components are addressed.

2.4.1.1 Representation

The first step in evolutionary algorithms is defining a representation for a given opti-

mization problem. Every search and optimization algorithm deals with solutions, each

of which represents an instantiation of the underlying problem. For instance, given an

optimization problem defined over n real-valued variables, the set of all possible instanti-

ations of these variables (i.e. the set of all n-dimensional real valued vectors) would form

the set of all possible solutions, or search space. Representation can be binary, integer,

and real, permutations, and even more complex such as lists, trees, and other variable-

length structures. In some optimization problems, the solutions may contain different

types of variables, called mixed representation.

2.4.1.2 Selection

In each iteration of the EAs, selection is the first step, which consists of selecting a set

of promising solutions from the current population based on the quality of each solution

(objective function value). The basic idea of this operator is to make more copies of

the solutions that perform better according to the objective function value than those

that perform worse. There are two main types of selection methods, fitness proportion-

ate selection and ordinal selection. In the fitness proportionate selection methods (e.g.

roulette-wheel selection), each selected solution is drawn from the same probability dis-

tribution and the probability of selecting the solution is proportional to its objective

function value. Whilst, in the ordinal selection, the probability of selecting a particular

16 Chapter 2. Genetic Algorithms and Evolution Strategies

member of the population does not directly depend on its objective function value but

it depends on the relative quality of this solution compared to other members of the

current population. Ordinal selection methods are generally more popular than fitness

proportionate selection methods [41]. There are two main reasons for that; firstly, ordinal

selection methods are invariant to linear transformation of fitness and they pose fewer

restrictions on the fitness function than fitness proportionate selection methods do. Sec-

ondly, ordinal selection methods enable a sustained pressure toward solutions of higher

quality and the strength of this pressure is often easier to control. Tournament selection

is one of the most popular ordinal selection methods. Different selection operators can

be found in [31, 41].

2.4.1.3 Recombination

Recombination combines subsets of parent population by exchanging, merging or inter-

acting some of their parts. In biological systems, recombination is a complex process that

occurs between pairs of chromosomes which are physically aligned; and breakage occurs

at one or more corresponding locations on each chromosome, an homologous chromosome

fragments are exchanged before the breaks are repaired [14]. Recombination is guided

by the two following requirements (e.g. [10]):

• Building block hypothesis (BBH): The BBH [40] explains the different good

building blocks from different parents mixed together, thus combining the good

properties of the parents in the offspring.

• Genetic repair (GR): It is not the different features of the different parents that

flow through the application of the recombination operator into the offspring, but

their common features [9]. In other words, recombination extracts the similarities

from the parents.

For more information on recombination operators, the reader is directed to [11, 14, 26]

2.4. Evolutionary Algorithms 17

2.4.1.4 Mutation

Mutation is responsible for introducing small variation(s) to the chromosomes, which

is achieved by performing random modifications locally around a solution. It generally

refers to the creation of a new solution from one and only one parent [4], otherwise the

creation is referred to as a blend of two or more chromosomes which is recombination.

In general, mutation is guided by the following requirements (e.g. [1, 10]):

• Accessibility: Every state of the search space should be accessible from any other

state by means of a finite number of applications of the mutation operators;

• Feasibility: The mutation should produce feasible individuals. This guideline can

be crucial in search spaces with a high number of infeasible solutions;

• Symmetry: No additional bias should be introduced by the mutation operators;

• Similarity: Evolutionary algorithms are based on the assumption that a solution

can be gradually improved. This means it must be possible to generate similar

solutions by means of mutation.

2.4.1.5 Replacement (Survivor Selection)

The main aim of the replacement is to form the new population for the next generation.

There are two main approaches for replacement, full replacement and steady-state. In

full replacement, all of the new candidate solutions replace the original solutions. In

contrast, in steady-state replacement, the new population is drawn from the union of the

old population and new candidate solutions.

2.4.1.6 Termination Condition

As termination conditions the following standard stopping rules can be used:

1. resource criteria:

18 Chapter 2. Genetic Algorithms and Evolution Strategies

• maximum number of generation;

• maximum cpu–time.

2. convergence criteria:

• in the space of the objective function values;

• without improving the objective function values after a certain number of

generations.

2.5 Genetic Algorithms

Among all different evolutionary algorithms, genetic algorithms (GAs) have a significant

similarity to the general scheme of evolutionary algorithm (Algorithm 2.1). As it was

addressed in the introduction section, GAs are stochastic optimization methods [32, 40,

49, 59, 61]. This section gives a basic overview of the standard GA and its key ingredients.

In addition, more details are introduced about the operators’ types that are applied in

this thesis. An optimization problem in GA is normally defined by:

• Representation of potential solutions to the problem (chromosome’s type).

• An objective function to evaluate the quality of each candidate solution.

GAs work with a population or a set of candidate solutions (chromosomes), in order

to find a solution or a set of solutions that perform(s) best with respect to the speci-

fied measure (objective function value). Then, the population (candidate solutions) is

updated for a specific number of iterations. Each iteration uses the following operators:

1. Selection

2. Variation — crossover (recombination) and mutation

3. Replacement

2.5. Genetic Algorithms 19

Similarly to all kinds of EAs, GAs can have different kinds of representation. Here,

we are just focused on the real-valued representation and operators as our representation

in this work is based on that. In the following subsections those operators are described.

2.5.1 Tournament Selection

The main idea of tournament selection is to sample a population subset of size s, and

then select the best solution out of this subset. In what concerns choosing chromosomes

(s times) randomly to involve to the subset, it can be done with or without replacement.

This process usually repeats N times, where N is the population size.

2.5.2 Variation

Crossover andmutation are applied to the set of solutions that are selected in the previous

operator (selection). Crossover combines chromosomes by exchanging some of their parts.

Mutation is responsible for introducing small variation(s) to the chromosomes, which is

achieved by performing random modifications locally around a solution. The next two

subsections addresses two popular variation operators for real coded representations,

simulated binary crossover (SBX) and Gaussian mutation. These operators are used in

the GA application to image registration.

2.5.2.1 Simulated Binary Crossover (SBX)

The SBX operator was designed to work with real-coded EAs [27]. This recombination

scheme involves two parent values (p1 and p2) that create two offspring values (c1 and c2),

relatively speaking; it is variable-wise operator, where each variable, from participating

parent solutions, is recombined independently with a certain pre-specified probability to

create two new values. The resulting offspring solutions are then formed by concatenating

the new values from recombinations of one of the existing parent values, as the case may

be. It is also a parent-centric operator, where the offspring solutions are created around

20 Chapter 2. Genetic Algorithms and Evolution Strategies

the parents solution. The user-specific control is achieved by means of a parameter n.

The effect of n is shown in Fig. 2.2.

SBX uses a probability density function given by

P(βi) =







0.5(n+ 1)× βn
i if β ≤ 1,

0.5(n+ 1)× 1

βn+2
i

otherwise ,

(2.1)

where βi ∈ [0,∞] is called the spread factor and is defined as the ratio of the absolute

difference in offspring values to that of the parents of the i-th variable. For each variable

of the participating parents, the spread factor is calculated using an appropriate mapping

from a randomly generated number and then P decides the location of the offspring. The

SBX probability distribution is shown in Fig. 2.2.

This distribution can easily be obtained from a uniform random number ui ∈ U(0, 1)

by the transformation:

β(ui) =







(2× ui)
1

n+1 if ui ≤ 0.5

(2× (1− ui))
−1
n+1 if ui > 0.5

. (2.2)

For the two participating parent values (p1 and p2), two offspring values (c1 and c2)

can be created as a linear combination of parent values for an event with β(ui) value

drawn from (2.2), as follows:

c1 = 0.5(1 + βi)× p1 + 0.5(1− βi)× p2 , (2.3)

c2 = 0.5(1− βi)× p1 + 0.5(1 + βi)× p2 . (2.4)

The resulting weights to p1 and p2 are biased in such a way that offspring values close to

the parent values are more likely than offspring values away from them (see Fig. 2.2).

2.6. Evolutionary Strategies 21

-1 0 1 2 3 4 5 6 7 8

0.2

0.4

0.6

0.8

1.0

P
ro

b
ab

il
it

y
 d

is
tr

ib
u
ti

o
n

Offspring solution

0.0

n = 2

n = 5

P
1

P
2

Figure 2.2: Probability distribution, used in the simulated binary crossover (SBX), are
shown for different values of the distribution index n. Figure courtesy of Deb and
Jain [26].

2.5.2.2 Gaussian Mutation

In this mutation, each variable is modified by adding a random number according to a

Gaussian distribution with zero mean. Significant mutation needs high variance of the

Gaussian distribution and vice versa.

2.6 Evolutionary Strategies

This section introduces evolutionary strategies (ES), another member of the evolutionary

algorithm family. ESs are typically used for continuous parameters optimization [31].

Nevertheless, just as in GAs it can also be used in binary and integer search spaces. Here,

we just go through real-valued representation. Nowadays, almost all of ESs algorithms

22 Chapter 2. Genetic Algorithms and Evolution Strategies

use self-adaptation techniques (on-line adaptation). In general, self adaptivity means that

some strategy parameters of the EA are varied during the search process by incorporating

them into the genetic representation of the individuals [5]. In ESs the parameters are

included in the chromosomes and co-evolve with the solutions. Compared to the GA, the

ES stands out by using endogenous parameters included in each chromosome that allows

the population in an ES to self-adapt in the direction of the optimal solution(s) [1, 76].

ES as all other EC methods is started by random initialization. After initializing

population and evaluation of individuals, they are randomly and uniformly selected to

be parents for producing children via recombination. This process of selection and recom-

bining the selected parents to produce children continuously generate a certain number

of individuals — the number of children is greater than the number of parents. The chil-

dren are further perturbed via mutation. Finally, the survival selection picks a certain

number of the best children to survive. For a comprehensive introduction to ESs see [12].

In the following subsections, the main components of ESs as well as some operators

for real-valued representation are described.

2.6.1 Representation

Standard evolutionary strategies are typically used for continues parameter optimizations

(Rn → R). An individual of the evolutionary strategies typically consists of two compo-

nents, a candidate solution or object parameters and endogenous strategy parameters.

The object parameters are presented as ~x = 〈x1, . . . , xn〉 ∈ R
n. Endogenous strategy

parameters, ~σ, essentially encoded the n-dimensional normal distribution and are to be

used to control certain statistical properties of the mutation operators. Endogenous

strategy parameters are very special in ES and can evolve during the whole evolution

process, while GAs do not have that. With adding strategy parameters to the vector ~x,

the ES’s individuals shape as follows:

2.6. Evolutionary Strategies 23

〈x1, . . . , xn,
︸ ︷︷ ︸

~x

σ1, . . . , σn
︸ ︷︷ ︸

〉

~σ . (2.5)

2.6.2 Parent Selection

Parent selection in evolutionary strategies is independent of the parental objective func-

tion values. Whenever a recombination operator requires a parent, it is drawn randomly

with uniform distribution from population of µ individuals. This contrasts to standard

selection techniques in genetic algorithms [40], where the selection relies on the objective

function values. Here, it should be considered that in ES terminology, the word “parent”

hints the whole population — often called parent population — while in GA terminology,

it refers to a member of the population that has been selected to undergo variation.

2.6.3 Recombination

Both part of the selected individuals (object parameters and strategy parameters) from

parent selection undergo recombination. The basic recombination scheme in evolutionary

strategies involve two or more parents that create one child. To obtain λ offspring, re-

combination is performed λ times. There are two well-known recombination operators in

evolutionary strategies, discrete and intermediate recombinations. In discrete recombi-

nation, one of the parent alleles is randomly chosen with equal chance for either parents,

while, using intermediate recombination, the values of the parents’ alleles are averaged.

According to the literature, discrete and intermediate recombinations are recommended

for object and strategy parameters, respectively [1, 31].

2.6.4 Mutation

For applying mutation, step-size values (strategy parameters) are needed, which repre-

sent standard deviation values to be used in the sampling of values drawn from a Normal

24 Chapter 2. Genetic Algorithms and Evolution Strategies

distribution. In practice, the mutation step-sizes, ~σ, are not set by the user — never-

theless, they are initialized by the user — rather they are coevolving with the solutions

according to the self-adaptation. To achieve this, it is essential to modify the strategy

parameter(s) first and afterward mutate the object parameters with the new strategy

parameter(s). The rationale behind this is that a new individual is evaluated twice.

Firstly, it is evaluated directly for its viability during survival selection and secondly, it

is evaluated for its ability to create good offspring. Different types of variables can have

different kinds of mutation operators. Mutation of strategy parameters are explained

in section 2.6.6. Real-valued representation has two well-known mutation operators for

object parameters, Gaussian and Polynomial mutation. Gaussian mutation is addressed

in section 2.5.2.2 and in the following subsections, polynomial mutation is elaborated.

2.6.4.1 Polynomial Mutation

One of the popular mutation in real-valued search spaces is polynomial mutation which

was designed by Deb and Goyal [25]. It has one controllable parameter, a so-called

mutation distribution parameter, m. That parameter in ESs is provided as a strategy

parameter σi, and controls the magnitude of the expected mutation of the candidate

solution variable; relatively speaking, small values of σi produce large mutations on

average while large values of σi produce small mutations.

This mutation uses a polynomial probability distribution with mean at the current

value and variance as a function of the distribution index m. The probability distribution

used in this mutation is defined as follows:

P(δ) = 0.5× (m+ 1)× (1− |δ|)m , (2.6)

where δ is a perturbation factor, and m, as defined before, is the distribution index. This

distribution is shown in Fig. 2.3 for different values of m. Furthermore, this probability

2.6. Evolutionary Strategies 25

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

-1.0 -0.5 0.0 0.5 1.0

P
ro

ba
bi

lit
y

de
ns

ity

Probability distribution

m = 0
m = 1
m = 4

Figure 2.3: Probability distribution to create a mutated value for continuous variables.
Figure courtesy of Deb and Goyal [25].

distribution is valid in range δ ∈ (−1, 1). It can easily be obtained from a uniform

random number u by the transformation:

δ(u) =







(2× u) 1
m+1 − 1 if u < 0.5

1− (2× (1− u)) 1
m+1 if u ≥ 0.5

. (2.7)

Thereafter, the mutated value is calculated as follows:

x′i = xi + δ(ui)×∆max . (2.8)

where ∆max is a fixed quantity which represents the maximum permissible perturbation

in the current value xi and x
′
i is the mutated value.

26 Chapter 2. Genetic Algorithms and Evolution Strategies

2.6.5 Survivor Selection

Parent selection and variation operators yield a certain number of offspring (λ), afterward

their objective function values are calculated. For the next generation, the best µ of them

are chosen deterministically, either from a combined pool comprising current population

and offspring population, called (µ+ λ)-selection (elitist selection), or from the offspring

only, called (µ, λ)-selection. These notations were introduced by Schwefel in 1977 [73].

At first blush, the (µ + λ)-selection seems to be more effective than (µ, λ)-selection.

As (µ+ λ)-selection always guarantees the survival of the best individual, a monotonous

course of evolution is achieved this way. However, this selection scheme has some disad-

vantages when compared to the (µ, λ)-selection — which restricts lifetimes of individuals

to one generation. Some reasons of preference of (µ, λ)-selection rather than (µ + λ)-

selection are now presented:

• The (µ, λ)-selection discards all parent population which enables it to prevent get-

ting stuck in the local optima, it is therefore an advantage in cases of multi-modal

topologies.

• If the objective function is noisy (it changes in time), the (µ+λ)-selection preserves

outdated solutions, so it is not partially able to follow toward optimum. In other

words, it is not theoretically admissible to compare two sets with the same objective

function affected by different noises.

• The (µ+ λ)-selection hinders the self-adaptation mechanism with respect to strat-

egy parameters to work effectively, because misadapted strategy parameters may

survive for a relatively large number of generations when an individual has good

object parameters which cause a good objective function value, while in contrast, it

has bad strategy parameters. These kind of individuals mostly yield bad offspring.

In general, with elitist selection, the individuals with bad strategy parameters may

survive.

2.6. Evolutionary Strategies 27

The survivor selection has a high pressure in ESs. Practically, λ is much higher than

µ, because the extreme case µ = λ for (µ, λ)-selection leads to a random walk behavior

of the algorithm, i.e., no selection takes place. A ratio of µ/λ ≈ 1/7 is recommended [1].

Therefore, µ also has to clearly be chosen, larger than one (e.g. µ = 15) [1, 75].

2.6.6 Self-Adaptation

The strategy parameters determine the distance that the mutated object parameters will

lie from the original parameters in the search space. They are also called step-sizes.

Step-size(s) should get smaller as long as the objective function values get closer to the

optimum solution. The aim of self-adaptation is to modify those strategy parameters

by means of applying evolutionary operators to them in a similar way as to the solution

representations. The competitive process of evolutionary algorithms is then exploited

to determine if the changes of the parameters are advantageous concerning their impact

on the objective function value of individuals. For a comprehensive introduction to the

self-adaptation see the special issue of the Evolution Computation Journal (2001) and

moreover see [2, 11, 30, 54, 55, 60].

This section is devoted to mutation of the strategy parameters. Firstly, 1/5 suc-

cess rule is explained, it is considered as one of the famous on-line adjustment of the

strategy parameters. Then, uncorrelated mutation with one or n step-size(s) of strategy

parameters in real-valued search space are addressed.

2.6.6.1 1/5 Success Rule

Theoretical studies motivated a self-adaptation of step-sizes by the famous 1/5 success

rule of Rechenberg since 1973 [64]. This rule states that the ratio of successful mutations

should be 1/5. If it is greater than 1/5, the step-size should be increased; if it is less, the

step-size should be decreased. The rule is executed at periodic intervals, and step-size,

28 Chapter 2. Genetic Algorithms and Evolution Strategies

σ, is reset by the following equation:

σ =







σ if ps > 1/5,

σ × c if ps < 1/5,

σ if ps = 1/5,

(2.9)

where ps is the relative frequency of successful mutations measured over a number of

trials, and the parameter c, as an adjustment factor, is in the range 0.817 ≤ c ≤ 1 [31].

Schwefel suggested the factor c = 0.82 in 1981 [74], and later on, he came up with reasons

to use the factor c = 0.85 in 1995 [76], which should take place every certain number of

generations.

2.6.6.2 Uncorrelated Mutation with One or n Step-Size(s)

Choosing an appropriate mutation rate is known to have an important impact on the

performance of an EA, and to avoid inappropriate settings of the mutation rate, which

can lead to poor performance of an EA, the self-adaptation is applied. There are two

types of uncorrelated mutation rules, one step-size and n step-sizes. The former, has

only one strategy parameter in each individual while in the later form, each gene within

individual has its own strategy parameter.

The mutation mechanism for uncorrelated mutation with one step-size is described

as follows:

σ′ = σ × eτ.N (0,1) , (2.10)

x′i = xi + σ′ ×Ni(0, 1) , (2.11)

where σ is mutated each time step by multiplying it by a term eτ.N (0,1). N (0, 1) denotes

a draw from the standard normal distribution, while Ni(0, 1) denotes a separate draw

2.6. Evolutionary Strategies 29

from the standard normal distribution for each variable xi. The parameters τ can be

interpreted as learning rate.

The mutation mechanism for uncorrelated mutation with one step-size is described

as follows:

σ′i = σi × eτ.N (0,1)+τ ′.Ni(0,1) , (2.12)

x′i = xi + σ′i ×Ni(0, 1) , (2.13)

where τ and τ ′ are called global and local learning rate, respectively. The common base

mutation eNi(0,1) provides the flexibility to use different mutation strategies in different

directions.

30 Chapter 2. Genetic Algorithms and Evolution Strategies

Chapter 3

Image Registration

3.1 Introduction

Image registration (IR) has been applied in a large number of research areas, including

medical image analysis, computer vision and pattern recognition [87]. The goal of IR

is to find a geometric, or elastic transformation that makes one image similar to the

other (Fig. 3.1) [28]. In all IR problems, there are at least two images, a Static (S)

and Deformed (D), that represent the same object, or scene viewed from a different

perspective, and/or with different deformation. Defining it more formally, IR aims to

find the best mapping function T to warp D towards S, as shown below:

W = T (D) ≈ S . (3.1)

W is a warped image that should be as closely shaped to S as possible. IR typically has

the four following steps [87]:

1. Feature detection;

2. Feature matching;

3. Mapping function design;

31

32 Chapter 3. Image Registration

4. Image transformation and re-sampling.

In order to find the correct transformation, image features such as closed-boundary re-

gions, edges, line intersections, corners, and so on, should be extracted (feature detection).

These features can be used as control points. Correspondences have to be set between

the extracted features of S and D (feature matching). Then, the type of transforming

model has to be chosen and its parameters estimated (mapping function). Finally, D is

transformed by means of the mapping function (image transformation).

Figure 3.1: Finding a transformation by point correspondence.

IR can be seen as a function approximation method [78], and it is a NP-Complete

problem [53]. The most important aspect of parametric IR is the discovery of the un-

known parametric transformation that relates the two images. Two different approaches

can be found in the literature:

• Matching-based approaches

• Transformation parameters-based approaches

Matching-based approaches conduct a search within the space of possible feature

correspondences (typically point matching) between the two images. Thereafter, the

parameters for the transformation are calculated based on the correspondence found.

3.2. Warping 33

In contrast, transformation parameters-based approaches perform a direct search in the

space of the parameters of the transformation.

IR methods can also be classified according to the type of models that they allow

to transform D into S (sometimes also referred in the literature as the scene and model

images). Two major types of models used are: linear and non-linear transformations.

Linear transformations preserve the operations of vector addition and scalar multiplica-

tion. The same does not hold for non-linear (or elastic) transformations, which allow

local deformations of the image.

The chapter starts by describing several geometrical warping models (or transforma-

tion). The estimation of the difference between warped and static images is considered in

Sect. 3.3. The chapter ends with a brief literature review of related work that has been

proposed to address the IR problem, both with classical, EC and Metaheuristic (MH)

methods in Sect. 3.4.

3.2 Warping

Independent from the IR algorithm, warping is a very important step in the registration

process. Image warping is the application of the calculated transform to the deformed

image or, in other words, the process of geometrically transforming a given image. In

order to apply geometric transformations to the image, a transform function has to

be defined. Transforms may be rigid or non-rigid. Non-rigid warping is also called

elastic [28].

One way of applying the transformation is by transforming each position of the de-

formed image D and setting the corresponding position in the warped image W , the

following way:

W (T (i))← D(i) , (3.2)

where i represents the corresponding positions. This process is referred to as forward

34 Chapter 3. Image Registration

warping. Another way of applying the transformation to the image, is by finding a value

in the deformed image for each position of the warped image. This approach is called

backward warping. Therefore, T which is used in Equation (3.2) is not suitable anymore,

and the inverse of the transformation should be used the following way:

W (i)← D(T−1(i)) . (3.3)

With this approach all the positions of the warped image W are visited once.

3.2.1 Geometric Transform

A common and straightforward approach for doing IR is to deal with the deformation as

if it was global. Thus, the transformation is applied globally to the image. Rotation and

translation are the most common differences between static and deformed point-sets, and

these, very often, affect the image globally.

Transformations that are frequently used to correct global misalignments are de-

scribed in the following subsections.

3.2.1.1 Rigid

Transformation can be classified as rigid and non-rigid according to the transform used

in the process of registration. Rigid transformations preserve the straightness and size of

all lines, as well as the angles between them. A rigid transformation can be split in two

parts, i.e., translation and rotation. The affine transform can be seen as a special case of

the rigid classification which furthermore is able to do shearing.

3.2.1.1.1 Affine Transform

The affine transform is a linear transformation that includes the following elementary

transformations: translation, rotation, scaling, stretching, and shearing [50]. These ele-

mentary transformations are illustrated in Fig. 3.2.

3.2. Warping 35

Translation Rotation Scaling Stretch Shearing

Figure 3.2: Elementary geometric transforms for a planar surface element used in the
affine transform: translation, rotation, scaling, stretching, and shearing.

A geometric operation transforms a given image D into a new image W by modifying

the coordinates of the image points, as follows:

D(x, y)
T−→ W (x′, y′) . (3.4)

The original values of image D, located at (x, y), warp to the new positions (x′, y′) in

the new image W. To model this process, we first need a mapping function T that is

a continuous coordinate transform. An affine transformation function works in the 2-D

space, thus, the search space is:

T : R2 −→ R
2 . (3.5)

The mapping function can be redefined as:

W = T (D)

T : R2 −→ R
2 .

(3.6)

The warped image W (x′, y′), in the case of the affine transformation, can be specified as

the following two separated functions for the x and y components:

x′ = Tx(x, y) (3.7)

y′ = Ty(x, y) . (3.8)

36 Chapter 3. Image Registration

An affine transformation can be expressed by vector addition and matrix multiplication

as shown in Equation 3.9,






x′

y′




 = S






cos θ − sin θ

sin θ cos θ











x

y




+






tx

ty




 (3.9)

where S is the scaling parameter. By multiplying S with the rotation matrix, Equation

3.9 can be written as:






x′

y′




 =






a11 a12

a21 a22











x

y




+






tx

ty




 . (3.10)

Finally, by using homogeneous coordinates, the affine transformation can be rewritten as

Equation 3.11.









x′

y′

1









=









θ0 θ1 θ2

θ3 θ4 θ5

0 0 1

















x

y

1









. (3.11)

The affine transform has six parameters: θ0 , θ1 , θ2 , θ3 , θ4 , and θ5 . θ2 and θ5 specify the

translation and θ0 , θ1 , θ3 , and θ4 aggregate rotation, scaling, stretching, and shearing.

3.2.1.2 Non-Rigid

Non-rigid transforms, also called deformable and elastic, allow more complex distortions

in the image. These include the stretching and curving of the image. There are different

kinds of transforms that are classified as non-rigid transformations, e.g., projective trans-

form [45], quadratic and cubic polynomial [15], and thin plate splines (TPS) [29], just to

mention a few.

3.3. Estimation of the Difference 37

3.3 Estimation of the Difference

After estimating the transformation, and warping the image, the similarity between the

static image and the warped image should be evaluated in order to assess the quality of

the registration. This is a crucial step if image registration is done automatically, and

not by manually selecting and placing landmarks. There are many choices for similarity

estimators. The sum of squared differences is probably the most commonly used. It is

defined ∀~x ∈ S ∩W by the following equation:

SSD(S,W) =

N∑

i

(S(~x)−W (~x))2 , (3.12)

where N is the number of points under analysis. The SSD is often normalized by dividing

it by N , resulting in the mean squared error (MSE) as follows:

MSE(S,W) = SSD(S,W)/N . (3.13)

The SSD and MSE measure the distances’ difference between corresponding points in

two images, thereafter, it is equal to 0 when two similar images are perfectly aligned

and increases as misalignment increases. When the images to be registered differ only by

geometry and/or Gaussian noise, the SSD is a well suited similarity measure [81].

3.4 Related Work

There are a variety of techniques for solving IR problems. This section presents a brief re-

view of some of the most important ones, including both classical, as well as evolutionary

computation and metaheuristic (MH) based approaches.

38 Chapter 3. Image Registration

3.4.1 Classical Methods

Two state-of-the-art approaches from this category of methods are Robust Point Match-

ing (TPS-RPM) [17], and Shape Context (SC) [8].

TPS-RPM is a method for matching two point-sets in a Deterministic Annealing (DA)

setting. It uses a fuzzy-like matrix instead of a binary permutation matrix to find the

matching between two sets of points. In TPS-RPM, both the point correspondences and

the transformations are computed interchangeably. Therefore, RPM can be viewed as a

general framework for point matching and can accept different transformation models [17]

like affine, and even more complicated models like Thin Plate Splines (TPS) [29]. This

method is a kind of a hybrid in the sense that it can be considered both a matching-based

and a transformation-based approach for IR.

Shape Context (SC) is a matching-based approach that is usually used to estimate the

transformation between two images, by finding matches between samples from the edges

of the objects in the images. It basically consists of analyzing the spacial relationship

between points. It uses four main parameters. The first defines the number of radial bins

for the creation of the histograms, the second is the number of theta bins that defines how

many slices the histograms should be divided into, and the third and fourth parameters,

the minimum and maximum width of the bins, respectively. For more information on

these and other classical IR methods, the reader is directed to [15, 18, 87].

3.4.2 EC and MH methods

Evolutionary Algorithms (EAs) and other metaheuristics (MHs) methods have been ap-

plied to solve IR problems. EAs and MHs are stochastic optimization methods which aim

at finding a solution or a set of solutions that perform(s) best with respect to a certain

objective(s). During the last decades these algorithms have been successful in solving a

variety of search and optimization problems, and the domain of image registration has

3.4. Related Work 39

been no exception. As opposed to the classical methods, which are typically based on

gradient-based search, EAs and MHs tend to escape more easily from local optima and

can be considered, in general, robust methods.

The first known application of evolutionary computation to image registration is due

to Fitzpatrick et al. [33] who applied a genetic algorithm (GA) to relate angiographic

images. For the subsequent 15 years or so, other EC approaches have been proposed by

different authors, but most of them were based on the canonical GA with proportionate

selection and a binary representation for solutions. Such a GA has severe limitations

when solving optimization problems in the continuous domain, especially due to the

problem of Hamming cliffs originated from the discretization of real valued variables into

binary coded values, to the fixed precision that depends on the number of bits used for

each decision variable, and for imposing lower and upper bounds for a variable’s value.

Moreover, it is known for several years that fitness proportionate selection methods have

several drawbacks when compared to ordinal-based selection methods such as ranking,

tournament, or truncation selection [41]. Nonetheless, most of the early EC approaches

for IR used such kind of GA setup [79, 80, 38, 85, 86]. Another limitation of the early

approaches was that they only dealt with translation and rotation [33, 38, 47, 85], ignoring

scaling, stretching, and shearing.

Most modern EC applications to IR use a direct real coded representation of so-

lutions [66, 47, 39, 16, 19, 84, 78]. Besides EC, other MH approaches have been ap-

plied to IR, namely Tabu Search [82], Particle Swarm Optimization [83], Iterated Local

Search [21], and Scatter Search [20, 70] just to name a few. A detailed review of these

works cannot be made in this thesis, but the interested reader can consult recent surveys

on the topic [22, 69].

40 Chapter 3. Image Registration

Chapter 4

Application of Evolutionary

Algorithms to Image Registration

4.1 Introduction

This section introduces a real coded genetic algorithm for the optimization of the param-

eters of an affine transformation for the case of 2-D images. The proposed algorithm is

a transformation parameters-based approach, since we are performing a direct search for

the parameters that define the registration transformation. For the sake of simplicity, we

assume we have two 2-D synthetic point-sets representing features from the two images.

In other words, it is assumed that the feature detection step of the IR pipeline has been

solved beforehand. The problem undergoes two different evolutionary algorithms, ES and

GA. In the next sections, the representation, the operators, and the objective function

that were used in this study are described.

In this chapter, the new noisy objective function is proposed (Sect. 4.3). Sect. 4.4

presents a real coded GA formulation and operators for the IR problem. The experimental

results of the GA formulation are presented and discussed in Sect. 4.4.1. Once the ES

is more used for continuous search space, it was also applied to the problem at hand.

41

42 Chapter 4. Application of Evolutionary Algorithms to IR

Sect. 4.5 presents an ES representation and operators for the problem, and the ES results

are presented in Sect. 4.5.1. Sect. 4.6 discusses the results that are obtained from GA

and ES formulation for IR.

4.2 Representation

The representation is straightforward. For the 2-D case, the affine transformation is

defined by six parameters, θ0 . . . θ5 , as explained in Subsect. 3.2.1.1.1. A candidate

solution for the GA is therefore represented by a chromosome vector with six genes, each

a real number.

4.3 Objective Function

In order to guide the search for an appropriate set of parameters for the affine trans-

formation, we need to measure the proximity between the static and the warped image

(the deformed image after the affine transformation is performed). The closer the two

images are, the better the affine transformation is. Since each image is represented by

a point-set, we need a way to find the similarity between two point-sets. To do so we

first find a correspondence between points in the warped and static images. Once the

correspondence is obtained, the objective function value is the weighted similarity of the

two point-sets using the Euclidean distance of the matched points.

Algorithm 4.1 gives details of the steps involved in evaluating a candidate solution.

In the algorithm, upper case letters denote matrices or vectors, and lower case letters

with subscripts denote a specific element of the matrix or vector. The next paragraphs

describe the major steps of Algorithm 4.1.

To compute the objective function value of a candidate solution, we start by warping

the deformed image D according to the parameters of the affine transformation specified

in the candidate solution C, yielding a new point-set W (line 1 of Algorithm 4.1). Then

4.3. Objective Function 43

Algorithm 4.1 Objective function

Input: S,D,C

/* S is the static image points */

/* D is the deformed image points */

/* C is a chromosome */

Output: Objective function value

1: W ← T (D,C);

2: /* Euclidean distance between the point-

sets */

3: for all i ∈ {1, . . . , n} do
4: for all j ∈ {1, . . . , k} do
5: δij ← ‖wi, sj‖;
6: end for

7: end for

8: /* Initialize correspondence matrices */

9: for all i ∈ {1, . . . , n} do
10: for all j ∈ {1, . . . , k} do
11: m′ij ← 0;

12: m′′ij ← 0;

13: end for

14: end for

15: /* Find the closest non-assigned point */

16: /* O is the matched-order vector */

17: for all i ∈ O do

18: j ←W2S(∆,M ′, i); // (W → S)

19: M ′ij ← 1;

20: end for

21: for all j ∈ O do

22: i← S2W(∆,M ′′, j); // (S → W)

23: M ′′ij ← 1;

24: end for

25: Q = M ′ +M ′′;

26: /* Calculate weights */

27: for all i ∈ {1, . . . , n} do
28: for all j ∈ {1, . . . , k} do
29: if qij 6= 0 then

30: q∗ij ← q−1ij ;

31: else

32: q∗ij ← 0;

33: end if

34: end for

35: end for

36: /* Weighting matches */

37: for all i ∈ {1, . . . , n} do
38: for all j ∈ {1, . . . , k} do
39: mij ← m′ij × q∗ij ;

40: end for

41: end for

42: fitness← 0;

43: for all i ∈ {1, . . . , n} do
44: for all j ∈ {1, . . . , k} do
45: fitness← fitness+ (mij × δij);

46: end for

47: end for

48: return fitness;

44 Chapter 4. Application of Evolutionary Algorithms to IR

the matching of points in W into points in S is modeled using a correspondence binary

matrix M (n, k) based on the closest-point rule, where n and k correspond to the number

of points in the warped and static images, respectively. The closest-point is measured

using the Euclidean distance between matched points. Each point in any set corresponds,

at most, to one point in the other set. To find the correspondence for each point, the

closest point in the other set is chosen. If the nearest point has already been assigned to

another point, the next non-assigned nearest point is chosen. This procedure is performed

once to find the correspondence matrix M ′(n, k) from the warped set to the static set

(W → S), and then a second time to find the correspondence matrix M ′′(n, k) from the

static set to the warped set (S → W). This is achieved by lines 3–24 of Algorithm 4.1.

Figure 4.1 shows the possible M ′ and M ′′ matrices of two different point-sets, as well as

the calculated correspondence.

The order in which the correspondence points are found (lines 17 and 21 of Algo-

rithm 4.1), plays a vital role in the resulting correspondence matrix. A match-order

vector is proposed to specify the order in which the points of a given set are visited when

finding its closest-point match from the other set (W → S and S → W). For different

orderings, different correspondences may be found. Therefore, the match-order vector is

randomly created in each generation. This makes the evaluation of a candidate solution

a somewhat noisy process. In a given generation, two identical solutions obtain the same

objective function value. But the same thing is not necessarily true for two identical

solutions from different generations. For instance in Fig. 4.1, if the order s8, s5, s3, s2,

s1, s6, s7, s4 is used instead of s1, s2, s3, s4, s5, s6, s7, s8, then, the resulting M ′′ will be

different as shown in Fig. 4.2.

Fortunately, GAs are well known for being able to handle well noisy fitness evaluations

due to the processing of a population of solutions. Note that we could have used a fixed

pre-determined ordering for all evaluations but decided not to do so because the point

matching procedure would be somewhat biased with respect to the used ordering.

4.3. Objective Function 45

d
1

d
2

d
3

d
4

d
5

d
6

d
7

d
8

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

d
1

d
2

d
3

d
4

d
5

d
6

d
7

d
8

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

0

1

1

1

1

1

1

1

10

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0 0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0 00

d
1

d
2

d
3

d
4

d
5

d
6

d
7

d
8

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0 0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

d
1

d
2

d
3

d
4

d
5

d
6

d
7

d
8

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

0

2

2

1

1

1

1

1

10

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

1

0

0

0

0 0

0

0 0

0

0

0

0

0

0

0

0

0

0

1

1

0

0 0

0

0

0

1

0 10

M'' (n,k)

S D

M' (n,k)

D S

Q (n,k)

d
1

d
2

d
3

d
4

d
5

d
6

d
7

d
8

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

0

1

1

1

1

1

10

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0 0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0 00

.5

.5

d
1

d
2

d
3

d
4

d
5

d
6

d
7

d
8

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

0

.5

.5

1

1

1

1

1

10

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

1

0

0

0

0 0

0

0 0

0

0

0

0

0

0

0

0

0

0

1

1

0

0 0

0

0

0

1

0 10

Q* (n,k) M (n,k)

D S

Figure 4.1: An example of the correspondence matrices: points s1, s2, s3, s4, s5, s6, s7,
s8 correspond to d1, d2, d3, d4, d5, d6, d7, d8, respectively, for mapping point-sets D to
S. However, if mapping S to D, points s1, s2, s3, s4, s5, s6, s7, s8 correspond to d1, d2,
d4, d5, d6, d7, d8, d3, respectively.

At this point (line 24 of Algorithm 4.1), matrices M ′ and M ′′ specify the point-

matchings from W → S and S → W , respectively. We then obtain matrices Q and

Q∗. Q is simply the sum of M ′ and M ′′, thus each qij can have a value of 2, 1, or 0,

depending on whether point i matches point j in both directions, in a single direction, or

has no match at all. Matrix Q∗ is obtained from Q by inverting the non-zero elements.

46 Chapter 4. Application of Evolutionary Algorithms to IR

d
1

d
2

d
3

d
4

d
5

d
6

d
7

d
8

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

0

1

1

0

0

1

0

00

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0

0 0

0

0 0

0

0

0

1

0

0

0

0

0

1

0

0

0

0 1

0

0

0

0

0 0 1

M'' (n,k)

S D

Figure 4.2: Correspondence matrix M ′′(S → R): based on new match-order vector;
points s8, s5, s3, s2, s1, s6, s7, s4 correspond to points d8, d5, d4, d2, d1, d6, d7, d3.

Finally, matrix M is calculated from the element-wise multiplication of matrices M ′ and

Q∗. Fig. 4.1 further illustrates matrices Q, Q∗, and M .

The objective function is based on the weighed similarity of two point-sets using the

Euclidean distance of the matched points. The points that are connected exclusively from

one direction (either W → S or S →W) are penalized, and those that are connected in

both directions are given half weight in terms of Euclidean distance. In other words, if

the connection exists in both directions the objective function value decreases.

This objective function is very similar to the one used by Seixas et al. [78]. The main

difference is the use of a newly generated matched order vector in each generation, which

makes the point-matching procedure less dependent on a fixed ordering of visiting the

points.

4.4 GA Operators

With respect to the GA variation operators, we use Simulated Binary Crossover (SBX)

proposed by Deb and Agrawal [27] (Sect. A.7.1) and Gaussian mutation (Sect. 2.5.2.2).

The utilization of SBX crossover and Gaussian mutation is a natural choice because the

problem has a continuous search space. SBX uses a probability distribution to create the

offspring, and it does so by biasing the offspring to be created near the parents. SBX

4.4. GA Operators 47

is a parent-centric recombination operator because the offspring it produces are located

around the parents. This behavior contrasts with mean-centric recombination operators

whose offspring are located at the center of mass of parents.

It has been shown that parent-centric operators have in general a better performance

than mean-centric operators [24]. This has motivated our choice of SBX as a crossover

operator. Surprisingly, none of the real coded GAs proposed in the literature for address-

ing the IR problem have used SBX or other parent-centric crossover operators. Instead

most used recombination operators such as uniform [66, 16], arithmetic [47] and blend

crossover [19].

4.4.1 GA Experimental Results

This section describes the experimental results from testing the proposed GA formula-

tion. Five point-sets available at http://noodle.med.yale.edu/~chui/rpm/TPS-RPM.

zip are used. Each set is composed at most by 105 points. They include the deformed

and static points’ locations. The deformed points were generated from the static ones

by a non-affined (i.e. free-form) transform. This means that it will not be possible to

obtain a perfect matching of the images by using an affine transformation model alone.

All point coordinate values have a precision of 16 floating point.

The GA setup was the same for all data sets. Most parameter settings were tuned

beforehand, and held fixed for all the experiments. We use tournament selection with-

out replacement of size 5, SBX crossover with distribution index 2 [27], and Gaussian

mutation with mean zero and standard deviation 1/3 for all the genes. The crossover

probability was set to 1.0 and each gene undergoes SBX with probability 0.5. For re-

placement we use a replace worst strategy, with the worst half of the individuals of the

current population being replaced by the best half of the newly generated solutions. This

replacement strategy makes the GA elitist, never losing the best solution found so far.

The GA ran for 500 iterations. The experiments were performed with populations of

48 Chapter 4. Application of Evolutionary Algorithms to IR

size 30, 60, 120, 240, and 480 individuals, and for each size, 100 independent runs were

executed.

According to population sizing theory of GAs [44], larger populations sizes tend to

produce a better solution quality, but also at the expense of more processing time. Fig-

ure 4.4 shows the objective function value of the best individual in the population at

every generation, averaged over the 100 runs, for the various population sizes and for the

various point-sets. The performance behavior is more or less identical for all point-sets.

We can observe a substantial progress for the first 50 generations, still some progress be-

tween generations 50–200, and from there on the improvements are minor. As expected,

larger population sizes give better solution quality but the improvements are negligible

for population sizes larger than 120.

Figure 4.3 illustrates the five point-sets before and after warping. It should be noticed

that these are sets where deformations are non-affine, therefore the resulting warped

images will never match perfectly. Nevertheless, they present a very good approximation.

When compared to the approach from [78], it is possible to observe that our results are

more precise.

This can be seen visually by comparing Figures 4.3 and 4.6, and is especially obvious

for point-set 4. For point-set 1 it is hard to assess which one is better. Point-set 3 is

not comparable because the transformation was made (accidentally) in the reverse order

in [78]. Experiments with point-sets 2 and 5 were not reported in [78].

In order to assess the quality of the proposed approach in what concerns affine de-

formations, affine deformed images were generated from the same five static images, and

used in subsequent experiments. The results were compared to those produced by well

known classical state-of-the-art approaches such as SC and TPS-RPM, and are illustrated

in Figure 4.5. It can be seen that the results produced by the proposed GA are slightly

better than those of the SC and are very competitive with those obtained by TPS-RPM.

Moreover, the resulting registered images can be observed in Fig. 4.5(a).

4.4. GA Operators 49

(a) point-set 1

(b) point-set 2

(c) point-set 3

(d) point-set 4

(e) point-set 5

Figure 4.3: Non-affine dis-

torted point-sets (left, blue

dots for static image points,

red dots for deformed image

points) and GA affine image

registration (right, red dots are

the warped image points) re-

sults obtained after 500 gen-

erations using population size

120. The warped images are

zoomed for better visualiza-

tion. Note that even bet-

ter matching could be obtained

with larger population sizes,

but the improvements are neg-

ligible as shown in Figure 4.4.

50 Chapter 4. Application of Evolutionary Algorithms to IR

 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

 0.11
 0.12

 100 200 300 400 500

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

generation

population size
30
60

120
240
480

(a) point-set 1

 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

 0.11
 0.12

 100 200 300 400 500

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

generation

population size
30
60

120
240
480

(b) point-set 2

 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

 0.11
 0.12

 100 200 300 400 500

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

generation

population size
30
60

120
240
480

(c) point-set 3

 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

 0.11
 0.12

 100 200 300 400 500

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

generation

population size
30
60

120
240
480

(d) point-set 4

 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

 0.11
 0.12

 100 200 300 400 500

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

generation

population size
30
60

120
240
480

(e) point-set 5

Figure 4.4: Best objective function value through generations for various population sizes
obtained for various point-sets. The results are averaged over 100 independent runs.

4.4. GA Operators 51

(a) point-sets (b) GA (c) SC (d) TPS-RPM

Figure 4.5: Affine distorted point-sets and respective registration results. On the left
column, (a), the blue dots are the static image points and the red dots are the deformed
image points. On the other columns, (b), (c), and (d), the red dots are the warped image
points. The warped images are zoomed for better visualization. The GA results were
obtained after 500 generations using population size 120. Observe that for the case of GA
and TPS-RPM, the deformed and static points are almost on top of each other, meaning
that the match is almost perfect. For SC the results are slightly inferior compared with
those obtained by the GA and TPS-RPM.

52 Chapter 4. Application of Evolutionary Algorithms to IR

Figure 4.6: These images are obtained directly from [78]. The top, middle, and bottom
images, correspond to our point-sets 1, 4, and 3, respectively. The blue dots are the
static image points and the red dots are the warped image points.

4.5 ES Operators

Just as in GA representation (Sect. 4.4), a candidate solution for the ES is represented

by a chromosome vector with six genes, each a real number. Each gene of the solutions,

corresponds to one of the six parameters of the affine transformation (Subsec. 3.2.1.1.1).

With respect to the self-adaptation, the number of strategy parameter(s), are chosen,

that can either be 1 in the case of 1/5 success rule or uncorrelated mutation with 1

step-size, or 6 in the case of uncorrelated mutation with n step-size (see Sect. 2.6.6).

Several kinds of operators were used to study the ES behavior for this particular

problem. Further ahead in this section these operators are listed.

Three different kinds of self-adaptation strategies are used 1/5 success rule, uncorre-

lated mutation with 1 step-size, and uncorrelated mutation with n step-size.

4.5. ES Operators 53

With respect to the ES variation operators, three different recombination and two dif-

ferent mutation operators that are suitable for the real-valued search spaces are tested.

The recombination operators are intermediate recombination, discrete recombination,

and SBX (Sect. 2.6.3). With respect to mutation operators, Gaussian and Polyno-

mial mutation are used (Sect. 2.6.4). Finally, the survivor selection, (µ, λ) are (µ + λ)

(Sect. 2.6.5), are examined.

4.5.1 ES Experimental Results

This section presents the experimental results found by the ES for the five point-sets

available at http://noodle.med.yale.edu/~chui/rpm/TPS-RPM.zip. The point-sets

are the same to what was used in the GA experiments.

To find a reliable ES setup, different combination of parameter settings and operators

are tested. These different combination make 210 various setup, and for each combi-

nation, 10 independent runs were executed. The best setup is almost identical for all

point-sets.

The experiments were performed with populations of size 10, 20, 40, 80, and 160

individuals where according to Schwefel’s empirical research, the ratio between the pop-

ulation size and the generated number of offspring, µ/λ, should be at least 1/7 [77].

So, for the above population sizes, the number of offspring are 70, 140, 280, 560, and

1120, respectively. As it was expected according to the population size theory [44], large

population sizes obtain a better solution, however, with an increased processing time.

Three different self-adaptation were used and the uncorrelated mutation with 1 step-size

compared to other kinds of self-adaptation has a better performance for all point-sets.

The ES procedure starts with parent selection (Sect. 2.6.2), where the number of the

parental individuals are drawn randomly with uniform distribution and using them as

inputs of recombination operators. For the parent selection, three different sizes of 2,

4, and 8 for each point-set were used. Parent selection size of 2 has better performance

54 Chapter 4. Application of Evolutionary Algorithms to IR

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 100 200 300 400 500

st
an

da
rd

 d
ev

ia
tio

n

generation

Gaussian mutation
Polynomial mutation

(a) point-set 4

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 100 200 300 400 500

st
an

da
rd

 d
ev

ia
tio

n

generation

Gaussian mutation
Polynomial mutation

(b) point-set 5

Figure 4.7: Standard deviation of the objective function value of the population members
averaged over 100 runs with a (160 + 1120)-strategy using different mutation operators
for point-sets 4 and 5. The other point-sets have similar behavior.

for all point-sets except point-set 4, in that, size 4 performs better. Both parts of indi-

viduals, object parameters and strategy parameters, undergo recombination operators.

Intermediate recombination is used as a recommended operator for the strategy parame-

ters [1, 31]. Among those recombination tested in this work, the discrete recombination

has the best performance for all point-sets except point-set 1 where SBX recombination

got better results. Two different mutation operators were studied for various point-sets,

Gaussian mutation and polynomial mutation. Gaussian mutation has a better perfor-

mance for all point-sets. Fig. 4.7 shows that the Gaussian mutation has less perturbation

around results compared to the polynomial mutation, which makes the EA formulation

more adequate for this particular problem.

Fig. 4.8 shows the objective function value of the best individual in the population of

size 160 at every generation, averaged over the 100 runs, for various point-sets. Parameter

settings for each point-set was tuned as explained before. The performance behavior is

more or less identical for point-sets 1 and 4. A substantial progress for the first 200

generations can be observed and still some progress between generations 200-300, from

there on the improvements are minor. Point-set 2 has a consequential progress for the

first 100 generations. Point-sets 3 and 5 have almost the same behavior which have a

4.6. Discussion 55

considerable progress for the first 50 generations.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 100 200 300 400 500

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

generation

point-set 1
point-set 2
point-set 3
point-set 4
point-set 5

Figure 4.8: Best objective function value through generations for (160 + 1120)-strategy
for various point-sets. The results are averaged over 100 independent runs.

There are two methods for survivor selection in ES, (µ, λ)-strategy and (µ + λ)-

strategy. On the contrary to literature where (µ, λ)-strategy is recommended [1, 31, 65,

76], for this particular problem (µ+ λ)-strategy had a better performance. The (µ+ λ)-

strategy is kind of elitist selection, it chooses the best µ from the union of parents and

offspring. Fig. 4.9 shows the behavior of the different survivor selection for point-sets 4

and 5. This behavior is identical for all other point-sets.

4.6 Discussion

The results of ES representation shows that the ES formulation for the IR is not promis-

ing when using large perturbation through individuals, since it had a better results when

using discrete recombination and small parent selection size (size of 2). Being more effi-

cient using Gaussian mutation rather than polynomial mutation, shows the formulation

56 Chapter 4. Application of Evolutionary Algorithms to IR

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 100 200 300 400 500

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

generation

(µ+λ)
(µ,λ)

(a) point-set 4

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 100 200 300 400 500

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

generation

(µ+λ)
(µ,λ)

(b) point-set 5

Figure 4.9: Best objective function value through generations for (160 + 1120)-strategy
and (160, 1120)-strategy for point-sets 4 and 5. The results are averaged over 100 inde-
pendent runs.

is more promising by searching a wide space around the current solution than the per-

turbation through individuals or tied space around the solution. Considering what the

results show, the uncorrelated mutation with 1 step-size has a significant higher standard

deviation of objective function values of individuals in each generation.

In ES the strategy parameters are used to control the mutation perturbation and

restrict that closely to the current solution through executions. Taking the results shown

in Fig. 4.7 into account, it seems that decreasing the strategy parameter values are faster

than the progressing of the objective function values. It leads the ES formulation for IR

to end up having premature results. In contrast to ES approach, GA approach keeps the

standard deviation of the mutation operator constant through executions.

Table 4.1: Minimum square errors of affine deformed point-sets

Point GA ES SC TPS-RPM
set (best solutions found by GA and ES)

1 0.0193379395226184 0.1901773795341200 0.2171168813846202 0.0021012035584104
2 0.0028343261311595 0.0846977804666287 0.0000000000000014 0.0007527405941700
3 0.0016668807905935 0.0519722652700338 0.0962479821502197 0.0017388923566028
4 0.0013677616851059 0.0250264560914390 0.2057605902210515 0.0014588099414611
5 0.0046540173682426 0.1158731130896308 0.0450579276900900 0.0017750298978483

Table 4.1 shows the resulting minimum square errors (MSEs) after applying ES as

4.7. Summary 57

well as GA, SC, and TPS-RPM to the set of affine deformed images, represented in

Fig. 4.5(b), 4.5(c), and 4.5(d), respectively.

4.7 Summary

This chapter proposed a new noisy objective function for the image registration. Two

well-known types of the evolutionary algorithms were used to test the proposed objective

function, ES and GA. The resulting algorithm was applied to 2-D synthetic point-sets,

with deformed images’ points obtained from both affine and non-affine transformation.

Although the ES is basically designed to work on continuous search spaces, for this

particular problem the GA presents better performance (Table 4.1).

The GA formulation uses Simulated Binary Crossover (SBX), and Gaussian mutation

produced good results compared to the classical methods as well as ES. Results are

superior when compared to those presented in [78]. Furthermore, GA experimental results

show that the proposed approach achieves a very precise registration. When compared

to other approaches, in general, ours present a smaller MSEs. The GA results will soon

be published in [7].

58 Chapter 4. Application of Evolutionary Algorithms to IR

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Image Registration is the process of aligning two or more images of the same scene taken

at different times, from different directions, and/or by different sensors, by finding the

best mapping function between them [15, 87]. There are many complicated image trans-

forms such as polynomial transforms, however, in many practical problems, usually for

the sake of simplicity, only affine transforms are used for image registration. For example,

for the registration of X-ray images of bones, one may consider only rigid transforma-

tions. Even when non-rigid transforms are applied, in the majority of cases the images

are first registered through affine transforms and only then do the non-rigid transforms

apply, otherwise the elastic transform may be extremely complex [28]. Therefore, affine

transform is chosen in this work to do image registration. Most research in this area is

based on classical algorithms and methods, but during the past two decades or so, there

has been a growing interest in the application of Evolutionary Computation (EC) and

other Metaheuristic (MH) methods to solve the problem.

Evolutionary Algorithms (EAs) are stochastic optimization methods inspired by prin-

ciples of natural selection and genetics. The goal of EAs is to find a solution or a set of

59

60 Chapter 5. Conclusion and Future Work

solutions that perform(s) best with respect to an objective function.

This work proposed a real coded EA that is especially suited for doing image regis-

tration of affine distorted images. Furthermore, a scheme called match-order vector to

increase the randomness of point selection and prevent from getting trapped into local

minima, is proposed. To study the behavior of the designed method, two types of evolu-

tionary algorithms, GA and ES, are used. Although ES is basically designed for working

in continuous search space, it didn’t work as well as a real coded GA formulation.

As opposed to previous EC approaches for solving IR, our GA method uses Simulated

Binary Crossover (SBX), a parent-centric recombination operator that has been giving

good results on a variety of continuous real world optimization problems within a GA

framework. The use of a randomized ordering when visiting points during the point-

matching procedure was also proposed, and although this technique yields a noisy fitness

function evaluation, the results obtained show that the GA is capable of dealing with it

quite well.

The resulting algorithm was applied to 2-D synthetic point-sets, with deformed images

points obtained from both affine and non-affine transformations. For the case of non-

affine distorted points, our method produces a more precise registration than previously

published results by means of an evolutionary algorithm on the same point-sets [78]. For

the case of affine distorted points, the proposed real coded GA produced better results

than shape context (SC), and is competitive with TPS-RPM, two well known classical

state-of-the-art image registration methods. Although those classical methods are further

able to transform non-affine distorted images, we can compare our approach with those

methods just in the case of affine deformation where the proposed EA formulation is

designed for that. Results of the GA application has been accepted as a publication at

GECCO 2012 [7].

5.2. Future Work 61

5.2 Future Work

As experimental results show, both GA and ES were capable of dealing with this problem

very well and are competitive to other advanced methods, however, there is still room

for improvement. The work can be extended in both image processing and evolutionary

computation.

The presented approach is specialized only for affine transformation. The repre-

sentation and objective function can be modified in such way that it covers non-affine

(free-form) transformation such as the polynomial transform. Two well-known forms

of the polynomial transform are quadratic and cubic transforms. Something else that

can be done is to explore the image processing field deeper in order to be able to do

complete experiment (four steps of doing image registration) from beginning to the end,

whereas, here the main effort was to find the mapping function, the third step of the

image registration procedure (Sect. 3.1).

There are also some future studies in the evolutionary computation part that would be

done. Recently it has been suggested that it can be beneficial to use a modified version of

SBX which adaptively shifts between a parent-centric and a mean-centric recombination

operator, by using population statistics gathered during the execution of the optimization

run [6]. As an alternative to a GA and ES approaches, a modern evolution strategy such

as CMA-ES [43] is also likely to deliver very good results for this type of problem.

Although the provided evolutionary strategies framework is generic and includes sev-

eral operators for binary, integer, and real-valued representations, it can still be extended

with more operators, and spread in the Internet with a manual for that.

62 Chapter 5. Conclusion and Future Work

Appendix A

Framework of evolutionary

Strategies

A.1 Introduction

The ESs was introduced in Chapter 2. Here, we give details about algorithms, operators,

and components that are needed in terms of implementing a generic framework of evolu-

tionary strategies. As there is not any available ES framework in the Internet a generic

framework of standard ES is designed. The framework covers mixed binary, integer, and

real-valued representations and has more than a 5000 lines code. It is written in object-

oriented C++ and available in http://www.deei.fct.ualg.pt/~a38477/es.tar.gz.

This appendix is organized as follows. ESs representation is the subject of Sect. A.2.

The standard (µ/ρ +, λ)–ES algorithm is outlined in Sect. A.3. Self adaptation is elabo-

rated in Sect. A.4. Sects. A.5 and A.6 are devoted to initialization and parent selection,

respectively. Finally, different variation operators and their algorithms are addressed.

63

64 Appendix A. Framework of evolutionary Strategies

A.2 The ESs Representation

ESs are typically used for continuous parameters optimization, but they can also be

applied to problems with binary and integer search spaces. The usual goal of an evolution

strategy is to optimize the given objective function, F , with respect to a set of object

parameters. Standard representation of the object parameters of the n-dimensional search

points, ~x = 〈x1, . . . , xn〉 is very straightforward, when each xi is represented by any data

type.

F (~x) −→ optimization, xi ∈ X . (A.1)

In principle, let X be any data type of finite but not necessarily fixed length [12]. The

binary n-dimensional search space B
n, the integer search space Z

n, and the real-valued

search space R
n are examples for X . In contemporary ESs, the problem at hand can

have n-dimensional object parameters with a mixture of various data structures [77]. In

general, the objective function can be defined as follow:

F : X n −→ R, X ∈ {any data type } . (A.2)

Nowadays, ESs use self-adaptation almost entirely: they are used to control cer-

tain statistical properties of the genetic operators. The vector ~x = 〈x1, . . . , xn〉 forms

only part of a typical ES genotype, but usually, individuals contain a set of endogenous

(i.e. evolvable) strategy parameters, in particular, parameters of the mutation operator.

Strategy parameters, σ value(s), represent the mutation step-size, and their number nσ

is usually either 1 or n. For any reasonable self-adaptation mechanism at least one σ

must be presented [31].

Individuals with mixture data structures have a separated set of strategy parameter(s)

for each single data type. The general form of individuals in ES for a mixture data

structure of binary, integer, and real-valued with different dimensional search space is

A.3. The Standard (µ/ρ +, λ)–ESs Algorithm 65

represented by:

〈b1, . . . , bnb
,

︸ ︷︷ ︸

~b

z1, . . . , znz
,

︸ ︷︷ ︸

~z

r1, . . . , rnr
,

︸ ︷︷ ︸

~r
︸ ︷︷ ︸

object parameters

̺1, . . . , ̺n̺
,

︸ ︷︷ ︸

~̺

ς1, . . . , ςnς
,

︸ ︷︷ ︸

~ς

σ1, . . . , σnσ
︸ ︷︷ ︸

〉

~σ
︸ ︷︷ ︸

strategy parameters . (A.3)

An ES individual shown in (A.3) can be represented as a 6-tuple ~a of the following form:

~a = (~b, ~z, ~r, ~̺, ~ς, ~σ) . (A.4)

where:

~b = 〈b1. . . . , bnb
〉 nb binary object parameters;

~z = 〈z1. . . . , znz
〉 nz integer object parameters;

~r = 〈r1. . . . , rnr
〉 nr real-valued object parameters;

~̺ = 〈̺1. . . . , ̺n̺
〉 n̺ step-size(s) for binary object parameters;

~ς = 〈ς1. . . . , ςnς
〉 nς step-size(s) for integer object parameters;

~σ = 〈σ1. . . . , σnσ
〉 nσ step-size(s) for real-valued object parameters.

~̺, ~ς , and ~σ form the strategy parameters set of an individual and are used in muta-

tion of its various types of object parameters (see Sect. A.4).

A.3 The Standard (µ/ρ +, λ)–ESs Algorithm

The general algorithm frame of ESs is developed by Schwefel in 1981 [35]. It uses multiple

parents and offspring in the ESs’ procedure. Two main approaches were explored, denoted

by (µ+λ)–ES and (µ, λ)–ES. Those refer to an ES parametrized according to the relation

1 ≤ µ < λ < ∞ [68]. Within one ES generation step, λ individuals (offspring) are

generated from the set of µ parent individuals.

66 Appendix A. Framework of evolutionary Strategies

The (µ/ρ +, λ)–ES notation expressed the way the offspring population is generated.

The specific strategy parameters µ, λ, and ρ are kept constant during the evolution

run. These parameters are so-called exogenous strategy parameters. The ρ refers to the

number of parents involved in the procreation of one or two — in simulated binary

crossover (SBX) recombination, ρ is 2 and it produces 2 offspring (see Sect. A.7.1) —

offspring. There is a special ES case without recombination for ρ = 1. All other cases

(ρ > 1) are strategies with recombination. The “+,” in the notation refers to the used

survival selection type, i.e., (µ+ λ)–ES and (µ, λ)–ES.

The outline of the (µ/ρ +, λ)–ES is given in Algorithm A.1. In what follows of this

section a brief description of the algorithm is given.

The algorithm starts with generation zero (line #1), when all individuals of the

parental population are initialized through lines #2-5 (see Sect. A.5). Each initialized

individual is evaluated by means of an objective function (line #4). After initialization

a while-loop is entered (lines #6-18) to generate the next parental population through

produced offspring. This loop — which is generating new trials and selecting those

with least error — continues until a sufficiently good solution (or solutions) is reached

or the available computation is exhausted (line #6). From parental population, P (g), at

generation g a new offspring population, O(g), is produced by running variation operators

λ times through lines #7-12. Each iteration of this interior loop generates one or two

offspring, depends on the selected recombination. Nonetheless, the Algorithm A.1 is

designed for generating one offspring at a time. However, for the SBX recombination,

the interior loop should be run only λ/2 times — in this case λ should be even. In the

marriage step, line #8, a direct ancestors, S of size ρ is randomly chosen from the parent

population size µ. Recombination of the strategy parameter(s) as well as recombination of

the object parameter(s) take place in line #9. Whereas the recombination of the strategy

parameter(s) does not have any effect on the recombination of the object parameter(s),

their application order can be exchanged. The mutation which is included in the strategy

A.3. The Standard (µ/ρ +, λ)–ESs Algorithm 67

Algorithm A.1 Outline of the (µ/ρ +, λ)–ES

Input: µ, ρ, λ, A problem at hand with an objective function f to optimize

/* µ Population size */

/* ρ Parent selection size */

/* λ Offspring size */

Output: A solution or a set of solutions

1: g ← 0;

2: for all i ∈ {1, . . . , µ} do
3: Pi

(g) ← initialize(nb, nz, nr, n̺, nς , nσ);

4: evaluate(Pi
(g), nb, nz, nr);

5: end for

6: while termination-condition = false do

7: for all i ∈ {1, . . . , λ} do
8: S ← marriage(P (g), ρ);

9: Oi
(g) ← recombine(S, ρ, nb, nz, nr, n̺, nς , nσ);

10: Oi
(g) ← mutate(Oi

(g), nb, nz, nr, n̺, nς , nσ);

11: evaluate(Oi
(g));

12: end for

13: switch selection-type of

14: case (µ , λ): P (g+1) ← selection(O(g), µ);

15: case (µ + λ): P (g+1) ← selection(P (g), O(g), µ);

16: end switch

17: g ← g + 1;

18: end while

and object parameters’ mutations, is done in line #10. In order to ensure the correctness

of self-adaptation, the mutation of the strategy parameter(s) should be done before the

mutation of the object parameter(s) [12]. After having a complete offspring population

O(g), survival selection, in lines #13-16, is performed resulting in a new parent population

P (g+1).

68 Appendix A. Framework of evolutionary Strategies

A.4 Self-Adaptation

There are two evolutionary operators, recombination and mutation, that are applied to

the strategy parameters. The order of applying recombination operators on the object

parameters and strategy parameters is not important while the mutation operator should

apply firstly on the strategy parameters and then object parameters. The recombina-

tion operators that are applicable to the strategy parameters [11] are the same as the

recombination operators of the real-valued objective parameters.

A.4.1 1/5 Success Rule

1/5 self-adaptive success rule is introduced in Sect. 2.6.6.1. Algorithm A.2 shows the

effect of the 1/5 success rule on the (µ/ρ +, λ)–ES (Algorithm A.1).

A.4.2 Uncorrelated Mutation with One or n Step-Size(s)

Uncorrelated mutation with one and n step-size(s) are introduced in Sect. 2.6.6.2. Fol-

lowing this subsection the mutation of the strategy parameter(s) in binary, integer, and

real-valued search spaces for both uncorrelated mutation with one step-size as well as n

step-sizes, are described.

A.4.2.1 Mutation Rate in Binary Search Space

In ES, those chromosomes that involve binary search spaces have a common feature, they

have a probabilistic bit-flip scheme as mutation operator, where each bit is mutated with

a certain probability ̺i. The operator used for mutating the strategy parameters of the

variables with the binary search spaces is

̺′i =
1

1 + 1−̺i
̺i
× exp(γ ×N (0, 1))

(A.5)

A.4. Self-Adaptation 69

Algorithm A.2 Outline of the (µ/ρ +, λ)–ES with 1/5 success rule
Input: µ, ρ, λ, c, q, A problem at hand with an objective function f to optimize

/* µ is population size */

/* ρ is parent selection size */

/* λ is offspring size */

/* c is adjustment factor, c = 0.85 is suggested by Schwefel [77] */

/* q is restart frequency*/

Output: A solution or a set of solutions

1: g ← 0; counter ← 0; reset← 0;

2: for all i ∈ {1, . . . , µ} do

3: Pi
(g) ← initialize(nb , nz , nr, n̺, nς , nσ);

4: evaluate(Pi
(g), nb, nz, nr);

5: end for

6: while termination-condition = false do

7: for all i ∈ {1, . . . , λ} do

8: S ← marriage(P (g) , ρ);

9: Oi
(g) ← recombine(S, ρ, nb, nz , nr, n̺, nς , nσ);

10: Oi
(g) ← mutate(Oi

(g), nb, nz, nr , n̺, nς , nσ);

11: evaluate(Oi
(g));

12: if F (O
(g)
i) > F (S) then

13: counter ← counter + 1;

14: end if

15: end for

16: switch selection-type of

17: case (µ , λ): P (g+1) ← selection(O(g) , µ);

18: case (µ + λ): P (g+1) ← selection(P (g) , O(g), µ);

19: end switch

20: if reset = q then

21: reset← 0;

22: ps ←
counter

λ× q
;

23: if ps > 1/5 then

24: ms ← 1/c;

25: else if ps < 1/5 then

26: ms ← c;

27: else

28: ms ← 1;

29: end if

30: for all i ∈ {1, . . . , µ} do

31: ~̺i ← ~̺i ×ms;

32: ~ςi ← ~ςi ×ms;

33: ~σi ← ~σi ×ms;

34: end for

35: else

36: reset← reset+ 1;

37: end if

38: g ← g + 1;

39: end while

70 Appendix A. Framework of evolutionary Strategies

where ̺′i is the bit-flip mutation probability which is applied to each binary variable and

N (0, 1) denotes a draw from log–normal distribution in the interval of]0, 1[. A value

γ = 0.22 is empirically determined [55].

By applying the pure form of (A.5) to the binary strategy parameters, the population

is likely to converge to the local optimal solutions, caused by the mutation rates that

prematurely collapse to very small values and thereby effectively yielding no mutation.

An important fix included in [55] is to restrict the value of ̺i to the interval [1
n
, 1
2
], for

n > 3, and (A.5) is redefined as,

̺′i = min

{

1

2
,max

{

1

n
,

1

1 + 1−̺i
̺i
× exp(γ ×N (0, 1))

}}

. (A.6)

A.4.2.2 Mutation Rate in Integer Search Space

The mutation of strategy parameters of the integer genomes is given in Algorithm A.3.

Algorithm A.3 Integer step-size mutation
Input: ςi

/* ςi is the step-size of ith gene */

Output: ςi
′

/* ςi
′ is updated of the step-size of ith gene */

1: Nc ← N (0, 1);

2: τ ← 1√
2× nz

;

3: τ ′ ← 1
√
2
√
nz

;

4: if nς = 1 then

5: ς1
′ ← max(1, ς1 × exp(τ ×Nc));

6: else

7: for all i ∈ {1, . . . , nς} do
8: ςi

′ ← max(1, ςi × exp(τ ×Nc + τ ′ ×N (0, 1)));

9: end for

10: end if

A.4. Self-Adaptation 71

In lines #1-3 of the algorithm, a constant random number N (0, 1), learning rates τ

(global learning rate) and τ ′ (local learning rate) are being defined. N (0, 1) represents a

random number sampled from a normal distribution with mean 0 and variance 1. These

variables are used in the mutation of the integer step-sizes in lines #4-10 where the

global factor exp(τ ×Nc) allows for an overall change of the mutability, while the local

factor exp(τ ′ × N (0, 1)) enables individual changes to step-size ς ′i. In lines #5 and #8,

a minimum step-size value of 1 is enforced.

A.4.2.3 Mutation Rate in Real-Valued Search Space

The mutation of strategy parameters of the real-valued genomes is given in Algorithm A.4.

Algorithm A.4 Real-valued step-size mutation

Input: σi

/* σi is the step-size of ith gene */

Output: σi
′

/* σi
′ is updated of the step-size of ith gene */

1: Nc ← N (0, 1);

2: τ ← 1√
2× nr

;

3: τ ′ ← 1
√
2
√
nr

;

4: ε← 10−30;

5: if nσ = 1 then

6: σ1
′ ← max(ε, σ1 × exp(τ ×Nc));

7: else

8: for all i ∈ {1, . . . , nσ} do
9: σi

′ ← max(ε, σi × exp(τ ×Nc + τ ′ ×N (0, 1)));

10: end for

11: end if

Similar to the integer case, in lines #1-4 of the algorithm, a constant random number

N (0, 1), learning rates τ (global learning rate) and τ ′ (local learning rate), and threshold

72 Appendix A. Framework of evolutionary Strategies

rate ε are being defined. N (0, 1) represents a random number sampled from a normal

distribution with mean 0 and variance 1. These variables are used in the mutation

of the real-valued step-sizes in lines #5-11 where the global factor exp(τ × Nc) allows

for an overall change of the mutability, while the local factor exp(τ ′ × N (0, 1)) enables

individual changes to step-size σ′i. Furthermore, since standard deviations very close

to zero are unwanted —to avoid convergence to local optimal solutions, the following

boundary rule is used to force step-sizes to be no smaller than a threshold:

σ′ < ε ⇒ σ′ = ε . (A.7)

The minimum value ε = 10−30 is suggested by [65].

A.5 Initialization

Initialization of the individuals of the population in ESs includes object and strategy

parameters. All genotypes — included binary, integer, and real-valued — have real-

valued strategy parameters. The object parameters and strategy parameters are obtained

as follows:

~b = (bi = ‖P (0.5)‖)nb

i=1 , (A.8)

~z = (zi = ‖U (lBound zi, uBound zi)‖)nz

i=1 , (A.9)

~r = (ri = U (lBound ri, uBound ri))
nr

i=1 , (A.10)

~̺ =

(

̺i = U

(
1

nb

,
1

2

))n̺

i=1

, (A.11)

~ς = (ςi = (uBound zi − lBound zi) /
√
nz)

nς

i=1 , (A.12)

~σ = (σi = (uBound ri − lBound ri) /
√
nr)

nσ

i=1 , (A.13)

A.5. Initialization 73

where:

P (0.5) Bernoulli trial with probability of success 0.5;

U(a, b) random number sampled from a uniform distribution with lower bound a

and upper band b;

lBound zi lower bound of the domain of integer object parameter zi;

uBound zi upper bound of the domain of integer object parameter zi;

lBound ri lower bound of the domain of real-valued object parameter ri;

uBound ri upper bound of the domain of real-valued object parameter ri.

The binary object parameters in ~b are initialized with Bernoulli trial with fixed prob-

ability of success 0.5. The integer and real-valued object parameters in ~z and ~r, respec-

tively, are initialized uniform randomly to values in their allowed domains.

The lower and upper bound of 1/nb and 1/2, respectively, for the mutation proba-

bilities in ~̺ are motivated by the observation that mutation loses its causality [56]. The

lower bound of 1/nb assures a minimum of one bit-flip mutation in every application of

the mutation operator, and upper bound of 1/2 mutates about half of the binary object

parameters. Integer step-sizes ~ς, and real-valued step-sizes ~σ are initialized to ∆xi/
√
n,

where ∆xi denotes the estimated distance between starting point and optimum [73]. This

rule explicitly chooses small initial standard deviation (strategy parameter(s)) because,

depending of the topology of the objective function, a combination of a large standard

deviation and weak selective pressure (a too large value of µ) may cause the algorithm

to diverge [1]. Nevertheless, the self-adaptation process quickly scales them into the

appropriate range.

While using a single mutation probability for each genotype (i.e., nb = 1 and/or nz = 1

and/or nr = 1), each position in related object parameters is decided independently from

mutation decision, but with equal probability for all positions.

74 Appendix A. Framework of evolutionary Strategies

A.6 Parent Selection

The first selection of the ES algorithm (line #8 of Algorithm A.1, the operator is called

‘marriage’) is independent of the parental objective function (F) values. This contrasts

to standard selection techniques in genetic algorithms [40], where the selection relies on

the objective function values. In this step of the algorithm, ρ number of the parental

individuals of size µ are drawn randomly with uniform distribution (with or without

replacement) and using them as input(s) of variation operators. In the special case of

ρ = µ, all parents become members of the parent family S. Note, if ρ = 1, then,

recombination is simply a copy of a random selected parent.

A.7 Variation

In the following sections, algorithms of several variation operators (recombination and

mutation) for binary, integer, and real-valued search spaces are addressed.

A.7.1 Simulated Binary Crossover (SBX)

SBX is introduced in Sect. A.7.1. The complete SBX algorithm can be found in Algo-

rithm A.5.

A.7.2 Bit-Flip Mutation

The probabilistic bit-flip scheme, is used in canonical EAs, as a mutation operator, to

manipulate binary object parameters. In the multi strategy parameters, each binary

object parameter is mutated with a certain probability ̺i. In contrast, in the single

strategy parameter just as in GAs, all binary object parameters are mutated with the

same probability. Given a binary individual of the form ~b = 〈b1, . . . , bnb
〉 ∈ B

nb , the

A.7. Variation 75

Algorithm A.5 Simulated binary crossover (SBX).

Input: ~r1, ~r2, ~σ
′

/* ~r1 = 〈r11. . . . , r1nr
〉 is the first parent */

/* ~r2 = 〈r21. . . . , r2nr
〉 is the second parent */

/* ~σ ′ = 〈σ′1. . . . , σ′nσ
〉 are updated step-sizes for real objective parameters */

Output: ~r ′1 , ~r
′
2

/* ~r ′1 = 〈r′11. . . . , r′1nr
〉 is the updated of the first parent */

/* ~r ′2 = 〈r′21. . . . , r′2nr
〉 is the updated of the second parent */

1: for all i ∈ {1, . . . , nr} do
2: ε← 10−6;

3: if r1i > r2i then

4: r1i ↔ r2i;

5: end if

6: ∆← r2i − r1i;
7: if r1i − lBound ri < uBound ri − r2i then
8: δ ← r1i − lBound ri;
9: else

10: δ ← uBound ri − r2i;
11: end if

12: if δ < 0 then

13: δ ← 0;

14: end if

15: u← U(0, 1);

16: if (rigid boundary = true and ∆ > ε) then

17: u← u×
(

1− 1

2
×
(

1 +
2δ

∆

)σi+1
)

;

18: end if

19: if u < 0.5 then

20: β ← (2u)
1

σi+1 ;

21: else

22: β ←
(

1

2(1− u)

) 1
σi+1

;

23: end if

24: r′1i ← 0.5 (r1i + r2i) + 0.5β∆;

25: r′2i ← 0.5 (r1i + r2i)− 0.5β∆;

26: end for

76 Appendix A. Framework of evolutionary Strategies

bit-flip mutation operator is

b′i =







1− bi if U(0, 1) ≤ ̺i,

bi if U(0, 1) > ̺i,

(A.14)

where U(0, 1) denotes a new uniform random variable sampled for each i ∈ {1, . . . , nb}.

A.7.3 Geometrical Mutation

As opposed to real-valued object parameters, integer object parameters are less commonly

used in evolutionary strategies. In 1994, Rudolph came up with a method of generating

a discrete geometrical counterpart of the continuous normal probability distribution by

taking the difference of two geometrically distributed random variables G1 and G2 [67].

Note that among different kind of distributions defined on integer search spaces, the

multidimensional geometric distribution is the one with maximum entropy and finite

variance. The strength of the mutation is controlled by a set of strategy parameter(s) ~ς ′,

which represent the mean value of the absolute variation of the integer object parameters.

Details of this mutation operator are found in Algorithm A.6.

Line #4 of Algorithm A.6 is taking care of single or multi strategy parameters(s). The

geometrical distributed random value with mean strategy parameter ς ′i can be generated

by transforming a uniformly distributed random value u, by using:

ψ = 1− (
ς ′

nz

)×



1 +

√

1 +

(
ς ′

nz

)2




−1

, (A.15)

G =

⌊
ln(1− u)
ln(1− ψ)

⌋

. (A.16)

The doubly geometrically distributed random number G1 − G2 is used for updating

the object variables zi (lines #6-12). Then, if the boundary is set to rigid, the updated

integer object parameters should be within their feasible interval. To accomplish that, the

A.7. Variation 77

Algorithm A.6 Integer object parameters mutation

Input: ~z, ~ς ′

/* ~z = 〈z1. . . . , znz
〉 are integer object parameters */

/* ~ς ′ = 〈ς ′1. . . . , ς ′nς
〉 are updated step-sizes for integer object parameters */

Output: ~z ′

/* ~z ′ = 〈z′1. . . . , z′nz
〉 are updated integer object parameters */

1: for all i ∈ {1, . . . , nz} do
2: u1 ← U(0, 1);

3: u2 ← U(0, 1);

4: s← ς ′min(nς ,i)
;

5: ψ ← 1− (s/nz)×
(

1 +
√

1 + (s/nz)2
)−1

;

6: G1 ←
⌊
ln(1− u1)
ln(1− ψ)

⌋

;

7: G2 ←
⌊
ln(1− u2)
ln(1− ψ)

⌋

;

8: if rigid boundary = true then

9: z′i ← T z
[lBound zi,uBound zi]

(zi +G1 −G2);

10: else

11: z′i ← zi +G1 −G2;

12: end if

13: end for

mutation operator needs to be extended and exploit a transformation function T[a,b] (line

#9). In other words, the transformation function brings parameters beyond boundaries

back into the feasible domain. The transformation function can be viewed as a reflection

at the interval boundaries. An example of how the transformation function works can be

found in Fig. A.1.

The transformation function can be used for both continuous and integer search

spaces. This function starts in the direction of the original unbounded mutation, when-

ever it meets with an interval boundary the direction is inverted until the total length of

the unbounded mutation has been covered. The method can be efficiently implemented

78 Appendix A. Framework of evolutionary Strategies

82 4 6 10

8

2

4

6

10

x

T
(x
)

Figure A.1: The mechanism of the transformation function (a = 6, b = 8). Figure
courtesy of Li [56].

as seen in Algorithm A.7.

Algorithm A.7 Transformation function T r
[a,b](x), for interval boundaries a and b.

Input: x, a, b
/* x is the original value */
/* a is the lower bound of the value */
/* b is the upper bound of the value */

Output: x′

/* x′ value checked or transformed to be in [a, b] */
1: y ← (x− a)/(b− a);
2: if ⌊y⌋ mod 2 = 0 then
3: y′ ← |y − ⌊y⌋|;
4: else
5: y′ ← 1− |y − ⌊y⌋|;
6: end if
7: x′ ← a+ (b− a)× y′;

Algorithm A.7 lists the transformation function T r
[a,b](x) for real-valued x (where a

and b are the lower and upper bounds of the value, respectively); for an integer value the

transformation function T z
[a,b](x) is obtained as follows:

T z
[lBound zi,uBound zi]

(x) = ⌊T r
[lBound zi,uBound zi]

(x)⌋ , (A.17)

A.7. Variation 79

A.7.4 Polynomial Mutation

Details of the polynomial mutation can be found in Sect. 2.6.4.1. The mutation procedure

for given real-valued object parameters is given in Algorithm A.8. Lines #10-23 represent

the rigid type of the polynomial mutation.

Algorithm A.8 Polynomial mutation.

Input: ~r, ~σ ′

/* ~r = 〈r1. . . . , rnr〉 are real objective parameters */

/* ~σ ′ = 〈σ′1. . . . , σ′nσ
〉 are updated step-sizes for real-valued objective parameters */

Output: ~r ′

/* ~r ′ = 〈r′1. . . . , r′nr
〉 are updated real-valued objective parameters */

1: for all i ∈ {1, . . . , nr} do
2: u← U(0, 1);

3: ∆max ← uBound ri − lBound ri;

4: if rigid boundary = false then

5: if u < 0.5 then

6: δ ← (2u)
1

σi+1 − 1;

7: else

8: δ ← 1− (2× (1− u))
1

n+1 ;

9: end if

10: else

11: lDelta← max

(

−1, lBound ri − ri

∆max

)

;

12: uDelta← min

(

1,
uBound ri − ri

∆max

)

;

13: if −lDelta < uDelta then

14: uDelta← −lDelta;

15: else

16: lDelta← −uDelta;

17: end if

18: if u < 0.5 then

19: δ ←
(

2u+ (1− 2u)× (1− lDelta)σi+1
) 1

σi+1 − 1;

20: else

21: δ ← 1−
(

2× (1− u) + (u− 0.5) × (1− uDelta)σi+1
) 1

σi+1
;

22: end if

23: end if

24: r′i ← ri + δ ×∆max;

25: end for

80 Appendix A. Framework of evolutionary Strategies

Appendix B

Application Details

B.1 Execution of the Application

In order to find the best setup setting, the EAs should be tested with several different

operators and parameters settings. Since EAs are stochastic optimization methods, it is

necessary to average the results through all runs with different seeds.

In this thesis two well-known evolutionary algorithms, GA and ES, have been imple-

mented and applied to IR problem. Implemented GA’s software for IR problem can be

found in http://www.deei.fct.ualg.pt/~a38477/ir_ga.tar.gz. ES framework can

be found in http://www.deei.fct.ualg.pt/~a38477/es.tar.gz. Both applications

are written fully object oriented in std C++, and are available as open-source packages,

under GPL licence.

In this thesis two well-known of evolutionary algorithms, GA and ES are programmed

and applied to IR problem. To study the behavior of the algorithms, 2-D synthetic

point-sets were used. Deformed images’ points were obtained from both affine and non-

affine transformations. Affined deformed point-sets can be found in http://www.deei.

fct.ualg.pt/~a38477/affined-distortion.tar.gz, and non-Affine deformed point-

sets can be found in http://noodle.med.yale.edu/~chui/rpm/TPS-RPM.zip.

81

82 Appendix B. Application Details

In order to run the applications with different parameters, a bash script code under

linux operating system is written, and is systematically run with all different setup set-

tings. Then a program which is written in python is used to merge and calculate the

average of all runs of the setup setting. In the following, the bash script code is shown,

and the next section shows an example of the input configuration file.

1 POPSIZE=10
SELSIZE=2
NO\ RUNS=100
POPSTEPS=5
SELSTEPS=3

6 POINT\ SET=02\\ po in t \\ s e t . txt
f o r K in ‘ seq 1 $POPSTEPS‘ ; do

SELSIZE=2
f o r S in ‘ seq 1 $SELSTEPS ‘ ; do

f o r MR in ‘ seq 0 2 ‘ ; do
11 f o r R in ‘ seq 0 2 ‘ ; do

f o r M in ‘ seq 0 1 ‘ ; do
i f [[$R −ne 2 | | $SELSIZE −eq 2]] ; then
NAME=P$POPSIZE\\ S$SELSIZE\\ MuR$MR\\ Xt$R\\ MuT$M
./ es inputs /$NAME $POINT\ SET $NO\ RUNS

16 python mergeintoone . py $NO\ RUNS
f o r I in ‘ seq 1 $NO\ RUNS ‘ ; do

rm i n p u t f i l e \ run$I . txt ;
done

f i
21 done

done
done
SELSIZE=$ ((2 ∗ $SELSIZE))

done
26 POPSIZE=$ ((2 ∗ $POPSIZE))

done

B.2 An Example of the Input File

In this part an example of the input files is shown. Note, line starting with # sign, are

comments.

#

This file contains a sample configuration for running a standard Evolutionary Strategy (ES).

Here you can specify the test function, the parameters of the algorithm,

and various report options.

#

B.2. An Example of the Input File 83

Lines starting with a ’#’ are comments and are ignored by the program.

#

Lines starting with a ’$’ are array inputs for

the ’n distrib SBX’ and lower and higher bound of the genes.

Do not forget to specify the array type exactly after ’$’.

Do not forget to include the ’$’ after adding array data.

#

The format of a configuration option is ’option name: value’

Do not forget to include the ’:’ after the option name

#

##

GENERAL SETTINGS

##

#

specification of the test function.

#

’test function:’ can be:

points matching

one max

#

test function: points matching

#

objective function needs additional data

#

objfunc additional data: on

#

output file

#

out filename: P160 S2 MuR1 Xt1 MuT0 out.txt

#

seed to initialize random number generator.

must be a real number on 0..1

#

seed: 0.43642425593

#

the optimization type can be:

minimum optimization

maximum optimization

#

optimization type: minimum optimization

#

real values floating point precision

number of digits are appeared after floating point

#

variable precision: 16

#

population size

#

popsize: 500

#

selection size

selection correspond to the first random selection from parents

#

selectionsize: 2

#

offspring size

number of offspring which should be generated from parental population

WARNING:

it is more sufficient, if offspring size be 7 times bigger than population size (popsize)

84 Appendix B. Application Details

#

offspringsize: 3500

#

standard deviations (step size) very close to zero are unwanted

it is used to force step size to be no smaller than a threshold

epsilon value, which is 10−30 (Reehuis and Thomas Back 2010)

#

step size threshold: 10^-30

#

beta is a variable which is using for mutating of rotation angles

its default value is 5 degree which is equivalent to 0.0873 radians

(References: Tomas Baeck 2010, Eiben 2003, Tomas Baeck 1996)

#

beta: 0.0873

#

parameter c has an effect on the 1/5 rule

parameters c is in the range 0.817 <= c <= 1

Schwefel 1981 suggested the value 0.82 for the parameter

Schwefel 1995 and Fogel 2000 suggested the value 0.85 for the parameter

#

c success rule: 0.85

#

number of generation before resetting step size in 1/5 rule

the suggested value is 10 (Thomas Baeck, Evolutionary Computation, mutation operators section)

#

no iteration before one fifth: 10

#

selection type can be:

with replacement

without replacement

#

selection type: without replacement

#

survivor type can be:

mu plus lambda

mu comma lambda

#

survivor selection: mu plus lambda

#

recombination strategy parameters can be:

discrete strategy parameters recombination

intermediate strategy parameters recombination

#

xover strategy parameters: intermediate strategy parameters recombination

#

mutation rule can be:

one fifth rule

uncorrelated mutation one ss

uncorrelated mutation n ss

correlated mutation

#

mutation rule: uncorrelated mutation one ss

#

stop criterion can be:

max generations

max fitness

avg fitness

max fit not improve

avg fit not improve

B.2. An Example of the Input File 85

#

#

stop criterion: max generations

#

’stop criterion arg:’ option is used together with ’stop criterion:’ if

applicable. For example, to run a ES for 5 generations set

’stop criterion’ to max generations and ’stop criterion arg’ to 5

#

stop criterion arg: 500

#

stops the algorithm when ’max function evaluations’ have elapsed

do it regardless of the stopping critetion.

#

max function evaluations: 10000000

#

genes lower and higher bound.

#

$genesboundry

0-5,-1,1

$

##

BINARY GENES SETTINGS

##

#

binary genes length

#

chlchrom: 0

#

xover type bin can be:

discrete recombination bin

compact formed recombination

#

xover type bin: discrete recombination bin

#

mutation probability for binary genes

NOTE: use -1, for pmut=1/lchrom

#

p mutation binary: 0.1

##

INTEGER GENES SETTINGS

##

#

integer genes length

#

intlchrom: 0

#

specified that the boundary checking is rigid

#

rigid int: on

#

number of trying for finding a right mutated gene

the mutated gene’s value has to be inside of the boundary

if it didn’t find after the retried number the bound value will be replaced

#

out of bounds retries int: 10

86 Appendix B. Application Details

#

xover type int can be:

intermediate recombination int

discrete recombination int

#

xover type int: intermediate recombination int

#

mutation type int can be:

polynomial mutation int

mixed integer mutation

#

mutation type int: mixed integer mutation

##

REAL GENES SETTINGS

##

#

real genes length

#

rllchrom: 6

#

specified that the boundary checking is rigid

#

rigid real: off

#

number of trying for finding a right mutated gene

the mutated gene’s value has to be inside of the boundary

if it didn’t find after the retried number the bound value will be replaced

#

out of bounds retries real: 10

#

xover type real can be:

intermediate recombination real

discrete recombination real

sbx recombination

#

xover type real: discrete recombination real

#

mutation type real can be:

gaussian mutation real

polynomial mutation real

#

mutation type real: gaussian mutation real

#

n distribution c is an array of distribution indexes of SBX crossover.

#

$n distribution sbx

0-5,2

$

##

REPORT SETTINGS

##

#

on/off reporting flags

#

report to screen: on

B.2. An Example of the Input File 87

report to textfile: on

report pop: on

report string: on

report fitness: on

report strategy parameters: on

report stat: on

report best in population: on

report best so far: on

88 Appendix B. Application Details

Bibliography

[1] T. Bäck. Evolutionary algorithms in theory and practice - evolution strategies, evo-

lutionary programming, genetic algorithms. Oxford University Press, 1996.

[2] T. Bäck. Self-adaptation. In T. Bäck, D. B. Fogel, and Z. Michalewicz, editors,

Handbook of Evolutionary Computation, chapter C7.1. Institute of Physics Publish-

ing Ltd, Bristol and Oxford University Press, New York, 97/1 edition, 1997.

[3] T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary Com-

putation. Institute of Physics Publishing Ltd, Bristol and Oxford University Press,

New York, 1997.

[4] T. Bäck, D. B. Fogel, D. Whitley, and P. J. Angeline. Mutation. In T. Bäck, D. B.

Fogel, and Z. Michalewicz, editors, Handbook of Evolutionary Computation, chapter

C3.2. Institute of Physics Publishing Ltd, Bristol and Oxford University Press, New

York, 97/1 edition, 1997.

[5] T. Bäck, F. Hoffmeister, and H.-P. Schwefel. A survey of evolution strategies. In

R. K. Belew and L. B. Booker, editors, Proceedings of the 4th International Confer-

ence on Genetic Algorithms, pages 2–9, San Diego, CA, USA, July 1991. Morgan

Kaufmann.

[6] S. Bandaru, R. Tulshyan, and K. Deb. Modified sbx and adaptive mutation for

real world single objective optimization. In Proceedings of the IEEE Congress on

Evolutionary Computation, CEC 2011, pages 1335–1342. IEEE, 2011.

89

90 Bibliography

[7] M. Bazargani, A. dos Anjos, F. G. Lobo, A. Mollahosseini, and H. R. Shahbazkia.

Affine image registration transformation estimation using a real coded genetic al-

gorithm with sbx. In Proceedings of the 14th Annual Conference on Genetic and

Evolutionary Computation, GECCO ’12, Philadelphia, USA, 2012. ACM.

[8] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using

shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence,

24(4):509–522, 2002.

[9] H.-G. Beyer. Toward a theory of evolution strategies: On the benefit of sex – the

(µ/µ, λ)-theory. Evolutionary Computation, 3(1):81–111, 1995.

[10] H.-G. Beyer. The Theory of Evolution Strategies. Natural Computing Series.

Springer, Berlin, Heidelberg, 2001.

[11] H.-G. Beyer and K. Deb. On self-adaptive features in real-parameter evolutionary

algorithms. IEEE Transactions on Evolutionary Computation, 5(3):250–270, 2001.

[12] H.-G. Beyer and H.-P. Schwefel. Evolution strategies — a comprehensive introduc-

tion. Natural Computing, 1(1):3–52, 2002.

[13] P. Bienert. Aufbau einer optimierungsautomatik fur drei parameter. Dipl.-Ing. The-

sis, Technical University of Berlin, Institute of Measurement and Control Technology,

Germany, 1967.

[14] L. B. Booker, D. B. Fogel, D. Whitley, P. J. Angeline, and Á. E. Eiben. Recombina-

tion. In T. Bäck, D. B. Fogel, and Z. Michalewicz, editors, Handbook of Evolutionary

Computation, chapter C3.3. Institute of Physics Publishing Ltd, Bristol and Oxford

University Press, New York, 97/1 edition, 1997.

[15] L. G. Brown. A survey of image registration techniques. ACM Computing Surveys,

24:325–376, 1992.

Bibliography 91

[16] C. K. Chow, H. T. Tsui, and T. Lee. Surface registration using a dynamic genetic

algorithm. Pattern Recognition, 37(1):105–117, 2004.

[17] H. Chui. Non-rigid point matching: Algorithms, extensions and applications. PhD

thesis, Yale University, 2001.

[18] H. Chui and A. Rangarajan. A new point matching algorithm for non-rigid regis-

tration. Computer Vision and Image Understanding, 89(2-3):114–141, 2003.

[19] O. Cordón, S. Damas, and J. Santamaŕıa. A CHC evolutionary algorithm for 3D

image registration. In Proceedings of the 10th International Fuzzy Systems Associ-

ation (IFSA), volume 2715 of Lecture Notes in Computer Science, pages 404–411.

Springer, 2003.

[20] O. Cordón, S. Damas, and J. Santamaŕıa. A scatter search based optimizer for the

registration of 3D surfaces. In Proceedings of the IEEE Congress on Evolutionary

Computation, CEC 2005, pages 2738–2744. IEEE, 2005.

[21] O. Cordón, S. Damas, and J. Santamaŕıa. A fast and accurate approach for 3D image

registration using the scatter search evolutionary algorithm. Pattern Recognition

Letters, 27(11):1191–1200, 2006.

[22] S. Damas, O. Cordón, and J. Santamaŕıa. Medical image registration using evo-

lutionary computation: An experimental survey. IEEE Computational Intelligence

Magazine, 6(4):26–42, 2011.

[23] C. Darwin. On the origin of species. John Murray, 1859.

[24] K. Deb, A. Anand, and D. Joshi. A computationally efficient evolutionary algorithm

for real-parameter optimization. Evolutionary Computation, 10(4):371–395, 2002.

[25] K. Deb and M. Goyal. A combined genetic adaptive search (GeneAS) for engineering

design. Computer Science and Informatics, 26:30–45, 1996.

92 Bibliography

[26] K. Deb and H. Jain. Parent to mean-centric self-adaptation in single and multi-

objective real-parameter genetic algorithms with SBX operator. Technical Report

2011017, Department of Mechanical Engineering, Indian Institute of Technology,

Kanpur, PIN 208016, India, Sept. 2011.

[27] K. Deb and A. Kumar. Real-coded genetic algorithms with simulated binary

crossover: Studies on multimodal and multiobjective problems. Complex Systems,

9(6):431–454, 1995.

[28] A. dos Anjos. Automatic processing of bi-dimensional images of “omic” expression

blobs. PhD thesis, Department of Electronic Engineering and Informatics, Faculty

of Sciences and Technology, University of Algarve, 2011.

[29] J. Duchon. Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In

W. Schempp and K. Zeller, editors, Constructive Theory of Functions of Several

Variables, volume 571 of Lecture Notes in Mathematics, chapter 7, pages 85–100.

Springer Berlin/Heidelberg, 1977.

[30] Á. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary

algorithms. IEEE Transactions on Evolutionary Computation, 3(2):124–141, 1999.

[31] Á. E. Eiben and J. E. Smith. Introduction to evolutionary computation. Natural

Computing Series. Springer, 2003.

[32] L. J. Eshelman. Genetic algorithms. In T. Bäck, D. B. Fogel, and Z. Michalewicz,

editors, Handbook of Evolutionary Computation, chapter B1.2. Institute of Physics

Publishing Ltd, Bristol and Oxford University Press, New York, 97/1 edition, 1997.

[33] J. Fitzpatrick, J. J. Grefenstette, and D. Gucht. Image registration by genetic search.

In Proceedings of IEEE Southeast Conference, pages 460–464, 1984.

Bibliography 93

[34] D. B. Fogel. Principles of evolutionary processes. In T. Bäck, D. B. Fogel, and

Z. Michalewicz, editors, Handbook of Evolutionary Computation, chapter A2.1. In-

stitute of Physics Publishing Ltd, Bristol and Oxford University Press, New York,

97/1 edition, 1997.

[35] D. B. Fogel. Evolutionary computation: toward a new philosophy of machine intel-

ligence. Wiley-VCH, third edition, 2006.

[36] G. B. Fogel, D. B. Fogel, and L. Fogel. Evolutionary programming. Scholarpedia,

6(4):1818, 2011.

[37] L. J. Fogel. Intelligence through simulated evolution: forty years of evolutionary

programming. John Wiley & Sons, Inc., New York, NY, USA, 1999.

[38] G. Garai and B. B. Chaudhuri. A cascaded genetic algorithm for efficient optimiza-

tion and pattern matching. Image and Vision Computing, 20(4):265–277, 2002.

[39] H. F. G. Garćıa, A. G. Vega, A. H. Aguirre, J. L. M. Zaleta, and C. A. C. Coello.

Robust multiscale affine 2D-image registration through evolutionary strategies. In

Proceedings of the 7th International Conference on Parallel Problem Solving from

Nature, PPSN VII, pages 740–748. Springer-Verlag, 2002.

[40] D. E. Goldberg. Genetic algorithms in search, optimization, and machine learning.

Addison-Wesley, Boston, MA, USA, 1989.

[41] D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used in

genetic algorithms. In Foundations of Genetic Algorithms, pages 69–93. Morgan

Kaufmann, 1991.

[42] N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation distributions in

evolution strategies: The covariance matrix adaptation. In International Conference

on Evolutionary Computation, pages 312–317. Morgan Kaufmann, 1996.

94 Bibliography

[43] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution

strategies. Evolutionary Computation, 9(2):159–195, 2001.

[44] G. Harik, E. Cantú-Paz, D. E. Goldberg, and B. L. Miller. The gambler’s ruin prob-

lem, genetic algorithms, and the sizing of populations. Evolutionary Computation,

7(3):231–253, 1999.

[45] R. I. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cam-

bridge University Press, 2000.

[46] M. Hauschild and M. Pelikan. A survey of estimation of distribution algorithms.

Technical Report 2011004, University of Missouri–St. Louis, Department of Mathe-

matics and Computer Science, Missouri Estimation of Distribution Algorithms Lab-

oratory (MEDAL), Mar. 2011.

[47] R. He and P. A. Narayana. Global optimization of mutual information: applica-

tion to three-dimensional retrospective registration of magnetic resonance images.

Computerized medical imaging and graphics, 26(4):277–292, 2002.

[48] A. Hoffman. Arguments on evolution: a paleontologist’s perspective. Oxford Univer-

sity Press, New York, USA, 1989.

[49] J. H. Holland. Adaptation in natural and artificial systems. University of Michigan

Press, Ann Arbor, MI, USA, 1975.

[50] B. Jähne. Digital image processing. Springer-Verlag, London, UK, 6th revised and

extended edition, 2005.

[51] K. D. Jong, D. B. Fogel, and H.-P. Schwefel. A history of evolutionary computation.

In T. Bäck, D. B. Fogel, and Z. Michalewicz, editors, Handbook of Evolutionary

Computation, chapter A2.3. Institute of Physics Publishing Ltd, Bristol and Oxford

University Press, New York, 97/1 edition, 1997.

Bibliography 95

[52] A. Juels, S. Baluja, and A. Sinclair. The equilibrium genetic algorithm and the role

of crossover. 1993.

[53] D. Keysers and W. Unger. Elastic image matching is NP-Complete. Pattern Recog-

nition Letters, 24:445–453, 2003.

[54] O. Kramer. Self-adaptive heuristics for evolutionary computation, volume 147 of

Studies in Computational Intelligence. Springer, 2008.

[55] J. W. Kruisselbrink, R. Li, E. Reehuis, J. Eggermont, and T. Bäck. On the log-

normal self-adaptation of the mutation rate in binary search spaces. In Proceedings

of the 13th annual conference on Genetic and evolutionary computation, GECCO

’11, pages 893–900, New York, NY, USA, 2011. ACM.

[56] R. Li. Mixed-integer evolution strategies for parameter optimization and their ap-

plications to medical image analysis. PhD thesis, Leiden Institute of Advanced

Computer Science (LIACS) – Leiden University, 2009.

[57] F. G. Lobo. Lost gems of ec: The equilibrium genetic algorithm and the role of

crossover. SIGEVOlution, 2(2):14–15, July 2007.

[58] P. Merz. Memetic algorithms for combinatorial optimization problems: fitness land-

scapes and effective search strategies. PhD thesis, University of Siegen, Dec. 2000.

[59] M. Mitchell. An introduction to genetic algorithms. MIT Press, Cambridge, MA,

USA, 1998.

[60] A. Ostermeier, A. Gawelczyk, and N. Hansen. A derandomized approach to self

adaptation of evolution strategies. Evolutionary Computation, 2(4):369–380, 1994.

[61] M. Pelikan. Genetic algorithms. Technical Report No. 20010007, Missouri Estima-

tion of Distribution Algorithms Laboratory (MEDAL), University of Missouri St.

Louis, USA, 2010.

96 Bibliography

[62] R. Poli, W. B. Langdon, and N. F. McPhee. A field guide to genetic programming.

Lulu Enterprises, UK Ltd, Mar. 2008.

[63] I. Rechenberg. Cybernetic solution path of an experimental problem. Royal Aircraft

Establishment Library Translation no. 1122, Farnborongh, Hants, U.K., Aug. 1965.

[64] I. Rechenberg. Evolutionsstrategie: optimierung technischer systeme nach prinzipien

der biologischen evolution. Fromman-Holzboog Verlag, Stuttgart, 1973.

[65] E. Reehuis and T. Bäck. Mixed-integer evolution strategy using multiobjective

selection applied to warehouse design optimization. In Proceedings of the 12th annual

conference on Genetic and evolutionary computation, GECCO ’10, pages 1187–1194,

New York, NY, USA, 2010. ACM.

[66] J. M. Rouet, J. J. Jacq, and C. Roux. Genetic algorithms for a robust 3-D MR-

CT registration. IEEE Transactions on Information Technology in Biomedicine,

4(2):126–136, 2000.

[67] G. Rudolph. An evolutionary algorithm for integer programming. In Y. Davidor, H.-

P. Schwefel, and R. Männer, editors, Parallel Problem Solving from Nature - PPSN

III, International Conference on Evolutionary Computation. The Third Conference

on Parallel Problem Solving from Nature, volume 866 of Lecture Notes in Computer

Science, pages 139–148, Jerusalem, Israel, 1994. Springer.

[68] G. Rudolph. Evolution strategies. In T. Bäck, D. B. Fogel, and Z. Michalewicz,

editors, Handbook of Evolutionary Computation, chapter B1.3. Institute of Physics

Publishing Ltd, Bristol and Oxford University Press, New York, 97/1 edition, 1997.

[69] J. Santamaŕıa, O. Cordón, and S. Damas. A comparative study of state-of-the-art

evolutionary image registration methods for 3D modeling. Computer Vision and

Image Understanding, 115(9):1340–1354, 2011.

Bibliography 97

[70] J. Santamaŕıa, O. Cordón, S. Damas, J. M. Garćıa-Torres, and A. Quirin. Perfor-

mance evaluation of memetic approaches in 3D reconstruction of forensic objects.

Soft Computing, 13(8-9):883–904, 2009.

[71] H.-P. Schwefel. Kybernetische evolution als strategie der experimentellen forschung

in der strömungstechnik. Dipl.-Ing. Thesis, Technical University of Berlin, Hermann

Föttinger–Institute for Fluid Dynamics, Germany, March 1965.

[72] H.-P. Schwefel. Evolutionsstrategie und numerische optimierung. Dr.-Ing. Thesis,

Technical University of Berlin, Department of Process Engineering, 1975.

[73] H.-P. Schwefel. Numerische optimierung von computer–modellen mittels der evolu-

tionsstrategie, volume 26 of Interdisciplinary Systems Research. Birkhäuser, Basle,

1977.

[74] H.-P. Schwefel. Numerical optimization of computer models. John Wiley, New York,

USA, 1981.

[75] H.-P. Schwefel. Collective phenomena in evolutionary systems. In P. Checkland

and I. Kiss, editors, Problems of Constancy and Change – The Complementarity

of Systems Approaches to Complexity, Proc. 31st Annual Meeting, volume 2, pages

1025–1033, Budapest, 1987. Int’l Soc. for General System Research.

[76] H.-P. Schwefel. Evolution and optimum seeking. Sixth-Generation Computer Tech-

nology. Wiley Interscience, New York, 1995.

[77] H.-P. Schwefel and G. Rudolph. Contemporary evolution strategies. In F. Morán,

A. Moreno, J. J. M. Guervós, and P. Chacón, editors, Advances in Artificial Life,

Third European Conference on Artificial Life, volume 929 of Lecture Notes in Com-

puter Science, pages 893–907. Springer, June 1995.

98 Bibliography

[78] F. L. Seixas, L. S. Ochi, A. Conci, and D. M. Saade. Image registration using

genetic algorithms. In Proceedings of the 10th Annual Conference on Genetic and

Evolutionary Computation, GECCO’08, pages 1145–1146, New York, USA, 2008.

ACM.

[79] P. W. M. Tsang. A genetic algorithm for affine invariant object shape recognition.

In 1st IEE/IEEE International Symposium on Genetic Algorithms in Engineering

Systems, GALESIA, pages 293–298. IEEE, 1995.

[80] P. W. M. Tsang. A genetic algorithm for aligning object shapes. Image and Vision

Computing, 15(11):819–831, 1997.

[81] P. A. Viola. Alignment by maximization of mutual information. PhD thesis, Mas-

sachusetts Institute of Technology, 1995.

[82] M. P. Wachowiak and A. S. Elmaghraby. The continuous tabu search as an op-

timizer for 2D-to-3D biomedical image registration. In Proceedings of the 4th In-

ternational Conference on Medical Image Computing and Computer-Assisted Inter-

vention, MICCAI 2001, volume 2208 of Lecture Notes in Computer Science, pages

1273–1274. Springer, 2001.

[83] M. P. Wachowiak, R. Smoĺıkova, Y. Zheng, J. M. Zurada, and A. S. Elmaghraby.

An approach to multimodal biomedical image registration utilizing particle swarm

optimization. IEEE Transactions on Evolutionary Computation, 8(3):289–301, 2004.

[84] S. Winter, B. Brendel, I. Pechlivanis, K. Schmieder, and C. Igel. Registration

of CT and intraoperative 3-D ultrasound images of the spine using evolutionary

and gradient-based methods. IEEE Transactions on Evolutionary Computation,

12(3):284–296, 2008.

[85] S. M. Yamany, M. N. Ahmed, and A. A. Farag. A new genetic-based technique for

matching 3-D curves and surfaces. Pattern Recognition, 32(10):1817–1820, 1999.

Bibliography 99

[86] L. Zhang, W. Xu, and C. Chang. Genetic algorithm for affine point pattern matching.

Pattern Recognition Letters, 24(1-3):9–19, 2003.

[87] B. Zitová and J. Flusser. Image registration methods: a survey. Image and Vision

Computing, 21:977–1000, 2003.

