
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, c© JOT 2011

Online at http://www.jot.fm.

A Platform to Support
Object Database Research

Michael Grossniklausa Stefania Leoneb Alexandre de Spindlerc

Moira C. Norried

a. Department of Computer and Information Science
University of Konstanz, 78457 Konstanz, Germany

b. Department of Computer Science
University of Southern California, Los Angeles, CA 90089, USA

c. Centre for Business Information Management
Zurich University of Applied Sciences, 8400 Winterthur, Switzerland

d. Department of Computer Science
ETH Zurich, 8092 Zurich, Switzerland

Abstract Databases play a key role in an increasingly diverse range of
applications and settings. New requirements are continually emerging and
may differ substantially from one domain to another, sometimes even to the
point of conflict. To address these challenges, database systems are evolving
to cater for new application domains. Yet little attention has been given
to the process of researching and developing database concepts in response
to new requirements. We present a platform designed to support database
research in terms of experimentation with different aspects of database
systems ranging from the data model to the distribution architecture.
Our platform is based on the notion of metamodel extension modules,
inspired by proposals for adaptive and configurable database management
systems. However, rather than building a tailored system from existing
components, we focus on the process of designing new components. To
qualitatively evaluate our platform, we present a series of case studies
where our approach was used successfully to experiment with concepts
designed to support a variety of novel application domains.

Keywords Object databases; Metamodel extension modules; Research
platform.

1 Introduction

A wide variety of applications, ranging from enterprise and automated business systems
to personal information management on the desktop or mobile devices, require the

Michael Grossniklaus, Stefania Leone, Alexandre de Spindler, Moira C. Norrie. A Platform to Support
Object Database Research. In Journal of Object Technology, vol. 12, 2013, pages 2:1–31.
doi:10.5381/jot.2013.12.2.a2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZHAW digitalcollection

https://core.ac.uk/display/161852569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jot.fm/copyright.html
http://www.jot.fm
http://dx.doi.org/10.5381/jot.2013.12.2.a2
http://dx.doi.org/10.5381/jot.2013.12.2.a2

2 · Michael Grossniklaus, Stefania Leone, Alexandre de Spindler, Moira C. Norrie

use of database management systems (DBMS). Emerging application domains often
give rise to new research challenges and, ultimately, novel database technologies. For
example, user-generated content in Web 2.0 introduced new requirements for managing
and sharing personal data, while the emergence of mobile social applications has led
to opportunistic data sharing and location-based data management.

Even though the database community has acknowledged that catering for all
application domains in a single system is difficult or even impossible [SC05], little
attention has been paid to how the research and development of novel database
technologies can be better supported. We believe there is a need for platforms that
support research in terms of design, prototyping, testing and deployment of such
technologies in order to quickly respond to new requirements.

The features of such a platform to support object database research go beyond
the current forms of tailor-made data management [ARSS08] supported by adaptable
and configurable database systems. Most of these approaches are based on a general
system architecture that predefines components and interfaces. Adaptation to a
specific application or use case is achieved by configuration, i.e. default components
can be replaced with custom implementations or excluded if not required. In the
setting of database research, this architectural approach suffers from the limitation
that it focuses on how existing components are implemented rather than how new
components can be supported. It is therefore difficult to extend the underlying data
model with novel concepts, without replacing major parts of the system.

We present an approach that focuses on structuring the development of new
database components, rather than building tailored systems from existing components.
Consequently, database adaptation and extension in our approach is defined at the
conceptual, rather than technological level. At its core, our approach is based on a well-
defined system metamodel with adaptations and extensions of the database realised
by evolving the system metamodel using so-called metamodel extension modules. In
comparison to the architectural approach, the common system metamodel shared by
all modules replaces the need for a standardised architecture with predefined database
components. As we will see, the common metamodel is also the basis for specifying
elaborate contracts between modules to support more advanced forms of refinement
and reuse than is possible in the architectural approach.

Our metamodel extension modules consist of three parts: a metamodel extension
defining new concepts, a library providing functionality to manage the new concepts,
and a language extension to interact with the new concepts. This design is motivated
by the observation that the requirements of novel application domains can affect the
database at the data storage, functionality and/or interface level. To support the
prototyping and testing of novel database technologies, metamodel extension modules
can be loaded and unloaded dynamically. While our approach is generally applicable
since most databases define a system metamodel at their core, we demonstrate it
in the setting of an object database system. Object databases are typically tightly
integrated with object-oriented programming languages and therefore requirements at
the interface level are more pronounced than with other types of database systems.
Accordingly, we have chosen to present typical case studies that reflect use cases of
object databases in a mostly single-user and embedded setting.

This article is an extended presentation of Grossniklaus et al. [GLdN10], where
we first introduced the notion of metamodel extension modules. While we previously
focused on metamodel extension modules as a mechanism to support adaptation in
databases, the present article discusses how this module mechanism enabled us to

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a2

A Platform to Support Object Database Research · 3

build a platform to research object database technologies. Additionally, this platform
is qualitatively evaluated based on the presentation of a series of case studies that
demonstrate how we used it to prototype solutions for emerging database application
domains. As mentioned above, new requirements can affect a database system in
different ways and we have carefully selected the case studies to illustrate how our
module mechanism copes with various types of requirements. To summarise, the main
contributions of this article are as follows.

• A platform to support object database research must meet certain require-
ments. In this article, we precisely define these requirements and outline the
challenges of building such a platform.

• We present the realization of our platform to support object database research
in terms of a formal approach, so-called metamodel extension modules, and a
detailed presentation of its implementation.

• A series of case studies and a critical discussion provide a qualitative evalu-
ation of our approach in terms of accomplishments and open issues.

The remainder of this article is structured as follows. We begin in Section 2 with a
discussion of the state of the art and the background in which our work is situated.
We then motivate the challenges of building a platform to support object database
research in Section 3. Section 4 formally introduces the concept of metamodel extension
modules that is the enabling technology for this platform. In Section 5, we present the
design, implementation and use of the platform. Section 6 discusses a series of case
studies that give qualitative evidence as to the validity of our approach. In Section 7,
we discuss and evaluate our approach with respect to the challenges outlined at the
beginning of the paper. Finally, concluding remarks are given in Section 8.

2 Background

Current database products either tend to focus more or less explicitly on a single domain
or only provide limited adaptation capabilities. To support adaptation, the monolithic
structure and static functionality of a traditional DBMS is replaced with some form of
component-based architecture. Generally, a Component DBMS (CDBMS) is composed
of a set of core components and can be extended by introducing new components
for an application domain [DG01]. A component typically offers a well-defined set of
functionalities such as an algorithm or the implementation of a specific data type and
application developers configure a DBMS by linking components together.

CDBMS can be classified into four categories [DG01], ranging from rather mono-
lithic approaches with well-defined extension points to architectures where the DBMS
can be configured in many different ways. A pluggable DBMS architecture provides
well-defined extension points, where components with specific functionality such as
abstract data types (ADT) or special indexes can be plugged into a DBMS that is
based on System-R [SMA+07]. Examples of commercial System-R based systems
with support for ADT are Oracle Database1 and DB22. Another category is database
middleware, which integrates existing components at the data store level using an
integration layer. In the case of DBMS services, database functionality is bundled into

1http://www.oracle.com/database/
2http://www.ibm.com/software/data/db2/

Journal of Object Technology, vol. 12, 2013

http://www.oracle.com/database/
http://www.ibm.com/software/data/db2/
http://dx.doi.org/10.5381/jot.2013.12.2.a2

4 · Michael Grossniklaus, Stefania Leone, Alexandre de Spindler, Moira C. Norrie

loosely-coupled services. Finally, configurable DBMS architectures extend the idea of
DBMS services by supporting service implementations, which can be exchanged or
adapted to new requirements.

The emergent trend of service-oriented architectures (SOA) has led to a number of
proposals for service-oriented database architectures (SODA), e.g. [SZDG08, TB06].
The general idea of these architectures is very close to that of the above-mentioned
CDBMS. The service-oriented DBMS (SDBMS) architecture [SZD07, SZDG08] has
been defined based on the layered architecture proposed by Härder [Här05]. In addition
to being able to extend functionality, it allows for the selection of an alternative service
or service composition in the case of service failure. This could also involve introducing
a wrapper to adapt the interface of a service. While the proposed architecture promises
the flexibility required, there are no details about the mechanisms used to achieve the
different kinds of flexibility and the implementation of the architecture.

The CoBRA DB project [IDMW08, IFMW08] aims at providing run-time adap-
tation for DBMS. The focus lies on modularizing a DBMS and supporting module
exchange at run-time in a transparent and atomic way. The authors experimented
with two methods of enabling dynamic adaptation, namely dynamic aspect-oriented
programming (d-AOP) and a second approach where a component implementation, or
part of it, is exchanged in order to adapt the component while the interface remains
valid. Irmert et al. [ILN+09] present how a Transaction Manager can be added and
removed at run-time using the d-APO approach, which has several disadvantages in
terms of performance, code maintenance, limited functionality and testing [IFMW08].

In mobile applications, computing resources such as memory, processing capabilities,
networking and power may all be limited and it is therefore important that a DBMS can
be configured and optimized for a particular application setting. COMET [NNNH04] is
a component-based real-time database for automotive systems that represents DBMS
that can be statically configured for a given application or target device. FAME-
DBMS [RSS+08] is an approach to configurable DBMS in the area of embedded
systems that follows the idea of software product lines with static system composition.
DBMS functionality is tailored after the application has been developed to provide
the minimal functionality required based on code analysis. For example, if the join
operation is never used, the configured DBMS will not provide the operator. This
approach is a design-time approach and run-time adaptation is not supported.

More recently, OctopusDB [DJ11] was proposed to restore the idea of a “one size fits
it all” database system. OctopusDB is designed as a single system capable of mimicking
different types of data management systems, such as OLTP databases, OLAP data
warehouses, data stream management systems and search engines. In OctopusDB,
the flexibility required to adapt to these scenarios is achieved by abandoning the
assumption that a data management system is built around a central store. Instead of
using a fixed store, OctopusDB collects all data in a central log that records insert
and update operations as logical log entries. Based on the workload, OctopusDB
transparently creates so-called storage views that represent all or part of the central
log in a specific physical layout. As a single abstraction, storage views unify query
optimisation, view maintenance, index selection and store selection. However, their
use as a basis to extend, rather than adapt, databases has not yet been investigated.

In summary, although the need for flexible, customisable and configurable database
systems has been recognised, none of the existing approaches focuses on supporting
database research. Instead, their focus is entirely on adapting existing functionality
rather than extending databases with new functionality. In this paper, we argue that

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a2

A Platform to Support Object Database Research · 5

support for database research requires even more flexibility as it needs to be possible
to introduce new concepts and functionality. Further, since many proposals adopt
approaches in which specific components are replaced or specialised, it is difficult to
support adaptation across many components such as storage, query processing and
constraint management. For example, the kinds of adaptation that require changes to
the basic structures of the data model to support spatial information or versioning
may require changes to many parts of the system, especially if all data is to be handled
uniformly. We therefore decided to investigate how a DBMS could be adapted through
changes to the metamodel rather than to specific services or components.

We conclude this section by noting that part of our work relates to the challenge of
supporting domain-specific languages [MHS05, Fow10]. Apart from other contributions,
our database research platform provides an environment that can be used to define
domain-specific languages. This aspect of our work is reminiscent of Scala [OAC+04,
OSV11] and its support for defining internal domain-specific languages. Although
this feature has been used to support language-integrated queries [SZ09] in Scala,
adapting and extending databases as well as providing a platform for database research
are outside the scope of their work. Recently, domain-specific languages such as
Pig Latin [ORS+08] and Hive [TSJ+09] have been proposed to facilitate processing
of big data sets on large clusters using MapReduce [DG04]. Since the approach
presented in this article addresses the challenges of supporting object database research,
these approaches are out of the scope of this work. Finally, we point out that the
area of adaptive middleware [SM03] and the ability to update components at run-
time has been a long-standing research issue in the area of component systems
and software engineering, referred to as business process adaptation, e.g. [PBJ98,
MSKC04, BNS+05, SSH+05]. However, the focus there is mainly on issues of updating
software components at run-time in terms of replacing executable code rather than
on information management issues and, to the best of our knowledge, none of these
approaches deal with altering or extending the metamodel itself, i.e. the object model
in the case of object-oriented software components.

3 Challenges and requirements

We introduce three main challenges associated with building a platform for object
database research. These challenges are motivated by possible database research goals
and are therefore different from the requirements of production systems. On the one
hand, such a platform must provide a high degree of flexibility in conceptual system
design and support run-time changes to the data model. On the other hand, the need
to manage large amounts of data or optimal run-time performance are less important
at this stage. Since projects often combine several of these goals, a research platform
needs to address all of them in order to be generally applicable. Furthermore, we
argue that these challenges imply requirements that surpass what has been addressed
by the approaches presented in the previous section.

3.1 Challenge 1: Development of novel database behaviour

Novel and emerging database application domains often present previously unaddressed
requirements. For example, the advent of CAD/CASE systems [CW98] to manage
complex design objects required novel database behaviour since traditional database
transactions consisting of a small number of read and write operations were a poor

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a2

6 · Michael Grossniklaus, Stefania Leone, Alexandre de Spindler, Moira C. Norrie

match to intricate design processes requiring large and long-running transactions. To
address this, DBMS were extended with design transactions using a check-out/check-in
paradigm rather than begin, commit and abort operations.

In the context of object databases, providing new database behaviour is a com-
mon goal of many research projects. For example, new requirements in database
behaviour arise when interfacing event-based object-oriented programming with an
object database. Traditionally, programming languages and databases employ two
different and even conflicting event mechanisms. In the case of programming languages,
events are defined, fired and handled. In contrast, databases provide the notion of
triggers that are invoked by the system when predefined events occurs. In Section 6.1,
we present a unified event model for consistent event-based systems.

3.2 Challenge 2: Support for new forms of data management

The second challenge of database research that we have identified is to provide new
forms of data management. In the case of CAD/CASE systems, the management
of large design objects and revision histories with multiple parallel branches were
required. In order to address these requirements, DBMS were augmented with the
notion of complex objects and versioning mechanisms.

For example, a new requirement arises from the fact that software is typically
developed in a modular and incremental way. In contrast, the database application
design process is sequential and often leads to monolithic systems, making it harder
to respond to changing or evolving requirements. In Section 6.2, we present a novel
data management construct that supports modular and step-wise database design.

3.3 Challenge 3: Exploration of different database architectures

New application domains often require databases to support novel forms of distribution
and different network architectures. For example, information sharing in mobile settings
has led to a variety of distribution architectures such as centralised, e.g. [EPS+01],
decentralised, e.g. [XOW04], and semi-centralised client-server, e.g. [BBM+07].

In a layered architecture, distribution is implemented on top of the database
supporting a particular architectural variant and mode of information sharing. A
research platform should support investigations of how fundamental concepts for
distribution and sharing could be integrated within a database. In Section 6.3, we
show how we used our research platform to build a database that supports the
development of applications with differing requirements for network architectures and
information sharing.

3.4 Additional requirements

Addressing all three challenges leads to additional requirements not yet considered
by previous work on configurable and tailor-made DBMS. As presented previously,
these systems approach the problem of providing new functionality by adaptation of
existing functionality. In particular, their approach typically entails the replacement
of a general database component with a specialised component that implements the
adapted functionality. This approach is valid if the results of a research project are
mature, stable and general enough to benefit most applications. However, the nature
of the challenges outlined above will often lead to new functionality that cannot be
realised by adapting or replacing existing functionality. As argued in Steiner [Ste98],

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a2

A Platform to Support Object Database Research · 7

supporting novel DBMS functionality is best done by introducing new concepts that
are orthogonal to the existing data model. Orthogonal in this context means that
these concepts are not restricted to specific constructs of the data model, for example
only to tuples in the case of relational databases, but rather that the database
developer can define the level of granularity on which to apply these concepts. Even if
new functionality can eventually be implemented as an adaptation, prototyping this
functionality as extensions rather than adaptations can be advantageous. By definition,
research is experimental and exploratory in nature and, therefore, prototyping needs
to be rapid and lightweight. In our experience, these requirements are more closely
met by extensions, since they reduce upfront overhead and have better support for
trial and error.

Another new requirement with respect to existing approaches is the need to
support both general and domain-specific extensions. Both approaches have their
advantages and disadvantages. Advances made through general database research
potentially benefit a large number of applications, might not be able to address
the specific requirements of a given domain. Vice versa, the setting of a particular
application domain might also provide opportunities that can be leveraged to address
its requirements more elegantly. The ability to do so is one of the main advantages
of domain-specific database research. This requirement is especially pertinent in the
context of the third challenge, where the exploration of different architectural styles
precludes the approach of a standardised system architecture that is common to existing
solutions. General solutions might use a client-server or standalone architecture that
can be applied in a variety of use cases. In contrast, domain-specific application
scenarios such as mobile and personal databases might require highly specialised
architectures to deal with limited devices or special types of data transfer.

4 Metamodel extension modules

The development of a database application typically involves defining a model of the
application domain and implementing the means to create, retrieve, update and delete
instances of the domain concepts. The application model is itself defined in terms
of the DBMS metamodel that specifies the core constructs supported by the system.
In the case of relational databases, the metamodel includes the concepts of relations
and attributes, while object metamodels describe object types and their properties.
Therefore, a DBMS must offer the basic database operations to create, retrieve, update
and delete instances of the metamodel concepts in order to specify an application
model. Also, most DBMS offer a database language (DBL) to support data definition,
data manipulation and data retrieval.

Our approach assumes that data and metadata are handled uniformly, so that both
the data model and the application model are represented explicitly as data. This
means that, not only may all database functionalities such as storage management,
query processing and constraint management be applied to metadata as well as data,
but also that they can be updated dynamically at run-time. The key to our approach to
DBMS adaptation is to allow the core metamodel, corresponding database operations
and the DBL to be adapted or extended.

We claim that many requirements imposed by database applications can be met
by extending the metamodel with additional concepts. To support this, we employ
a modular system metamodel, an overview of which is shown in Figure 1. The core
database module Modulecore is shown on the left-hand side of Figure 1. It comprises

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a2

8 · Michael Grossniklaus, Stefania Leone, Alexandre de Spindler, Moira C. Norrie

MM1

DBL1

CRUD1

MM2

DBL2

CRUD2

MM3

DBL3

CRUD3A
p

p
lic

a
ti
o

n
s

M
o

d
u

le
 R

u
n

ti
m

e

P
e

rs
is

te
n

t
S

to
ra

g
e

MMcore

DBLcore

CRUDcore

Figure 1 – Metamodel extension modules

the core metamodel MMcore as well as the component to create, retrieve, update and
delete core metamodel concepts (CRUDcore) and the core database language DBLcore.
MMcore is a set of concepts {C1

core, . . . , C
n
core}, such as collection, object and attribute

in the case of an object database.
As seen in Figure 1, the definition of metamodel extension modules follows the

design of the core system in the sense that each module also provides metamodel
concepts, operations to manipulate them and an extension to the database language.
The additional manipulation operations and database language extension for the new
metamodel concepts are required to make the new functionality available to other
parts of the system as well as to the application developer or end-user. In summary,
database extensions consist of three components which, together, form what we refer
to as a metamodel extension module.

More formally, a module can be defined as a triple

Moduleext = 〈MMext,CRUDext,DBLext〉

where MMext is a set of additional concepts made available to the application developer
to address application-specific requirements, CRUDext refers to the database operations
and DBLext refers to the extensions to the database language.

In general, such an extension is a set of concepts {C1
ext, . . . , C

m
ext} where each

concept Ci
ext ∈ MMext extends or instantiates a concept Cj

base ∈ MMcore∪MM1∪ . . .∪
MMk, formally written as Ci

ext / Cj
base. Note that, once the metamodel extensions

have been added to the metamodel by loading the module, they become part of it and
remain indistinguishable from the perspective of an application or developer.

The term CRUDext refers to the operations that enable applications and developers
to manage the instances of all concepts defined by the module.

∀Ci ∈ MMext : ∃CRUDext(Ci) ∈ CRUDext

where CRUDext(Ci) allows for instances of concept Ci to be created, retrieved, updated
and deleted. When a module is loaded, its operator set CRUDext is registered with
the database so that they can be retrieved and used by an application or developer.

The component DBLext is a set of symbols extending the core database language
DBLcore to allow access to the operations offered by CRUDext. In general, a database
language is defined by a grammar G consisting of a set N of non-terminal symbols, a
set Σ of terminal symbols and the set P of production rules where each rule maps

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a2

A Platform to Support Object Database Research · 9

from one string of symbols to another. In short, the grammar can be written as
G = (N,Σ, P). Consequently, with each module loaded, the core language DBLcore

defined by the core grammar Gcore is extended by DBLext by unifying its grammar
with the core grammar as

Gcore ∪Gext = (Ncore ∪Next,Σcore ∪ Σext, Pcore ∪ Pext).

Moreover, there may exist dependencies among modules. By default, all modules
are dependent on the core module. However, a module may additionally be dependent
on other modules which means that they must be loaded first. Similarly, a module
cannot be unloaded if other loaded modules depend on it. In order for the module
run-time to check dependencies, a list [Module1, . . . ,Modulen] of all dependent modules
is defined as part of each module declaration.

Since the core of our system also includes a metamodel, database operations and a
language, our system is built so that the core itself is defined as a module and loaded
accordingly. In contrast to all other modules, the core module cannot be unloaded
since all other modules implicitly depend on it. Nevertheless, the core module can be
configured at design-time to adapt it, for example, to a mobile environment requiring
lightweight databases or a heavily-used Web application relying on additional concepts
to increase performance.

5 Platform to support research

After presenting the core metamodel based on the concepts introduced in the previous
section, we describe the implementation of our platform and then show how it can be
used by researchers.

5.1 Core metamodel

A core database module consists of a core metamodel MMcore, core management
functionality CRUDcore and a core database language DBLcore. Our approach works
independently of a given data model as long as it is defined through a metamodel. There-
fore, the approach can be equally applied to relational, XML and object databases. We
have implemented the approach in the object database system OMS Avon [NGD+08]
and will present the details of the approach using this system as an example.

The concepts of the core metamodel MMcore are shown in Figure 2. It is based on
the OM data model [Nor93] which integrates features of entity-relationship (ER) and
object-oriented models. In comparison to more common modelling languages such
as UML, OM has specifically been designed to model and manage object data and
therefore provides concepts relevant to object database applications at its core rather
than as extensions or profiles. OM uses a two-level model to clearly distinguish the
typing and classification of entities. Each object has at least one object type that
specifies the representation and behaviour of the object in terms of attributes and
methods. Note that OM supports subtyping and also multiple instantiation in order
to allow for objects with multiple types.

Objects are classified through membership in collections and each collection has a
membertype that restricts membership to objects of a particular type. A collection
is represented graphically as a shaded box with the membertype specified in the
shaded part. Just as types can be specialised through subtyping, classifications can be
specialised through subcollections. A collection may have multiple subcollections and

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a2

10 · Michael Grossniklaus, Stefania Leone, Alexandre de Spindler, Moira C. Norrie

(1:*)
type

Types

collection

Collections
Has

MemberType
(0:*)

assocation

Associations

objectTypeISA

ObjectType
ISAs

collectionISA

Collection
ISAs

classification

Classifi-
cations

partition

objectType

ObjectTypes

baseType

BaseTypes

object

Objects

classification

Disjoint

classification

Covers

classification

Intersects

classification

Partitions

Figure 2 – Graphical representation of the core metamodel

classification constraints such as disjoint, cover, partition and intersect may be placed
over these.

Graphically represented as shaded ovals, associations are a first-order concept of
the model and defined as collections of pairs of values from the associated source
and target collections. As in some extended ER models, cardinality constraints are
specified by a minimum and maximum value that express the number of target objects
to which a source object can be linked and vice versa. Associations can also be
specialised over collections.

As can be seen in Figure 2, the instances of all constructs of the core model—types,
collections, associations, ISA relationships (subtypes and subcollections) and also
classification constraints—are represented as objects. These objects are classified
through membership of the corresponding metadata collections.

Formally, the concepts defined by the core metamodel MMcore are given by its set
of types, its set of collections and its set of associations.

MMcore = {{object, type, collection, association, . . .},
{Objects,Types,Collections,Associations, . . .},
{HasMembertype, . . .}}

While it is beyond the scope of this paper to present all aspects of the OM model
in detail, we note that, based on the described metamodel, two different types of
extensions can be distinguished as illustrated in Figure 3. On the left, we sketch a
module that extends the core metamodel by specialisation. With this type of extension,
tailor-made concepts for particular types of database systems can be realised by creating
subtypes (and subcollections) of the core types (and collections) that specialise and,
possibly, override the definitions of core concepts. On the right, we show a module
that extends the core metamodel by association. In this case, genuinely new concepts
are introduced and linked to existing concepts.

Figure 4 shows a UML class diagram of the manipulation operators for these
concepts, which define create, retrieve, update and delete methods for instances of
the corresponding type. For example, the creation of a collection takes the name and
membertype of the collection as arguments, internally creates an object, dresses it with
the collection type, sets the name and membertype attributes and returns the object.
Given a collection object, its name and membertype can be retrieved with methods

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a2

A Platform to Support Object Database Research · 11

...

...

...

Core Module

...

...

...

...

Core Module

...

...

Extension by Specialisation Extension by Association

 collection

Collections

 collection

Collections

Figure 3 – Different types of metamodel extensions

create(Name): ObjectType
retrieve(Name): ObjectType
getName(ObjectType): Name
addAttribute(ObjectType, Name, Type)
remove Attribute(ObjectType, Name)
getAttributes(ObjectType): Collection
delete(ObjectType)

ObjectTypes

create(Name, MemberType): Collection
retrieve(Name): Collection
getName(Collection): Name
getMemberType(Collection): MemberType
addMember(Collection, Member)
removeMember(Collection, Member)
delete(Collection)

Collections

create(Name, Domain, Range, Relation, ...): Association
retrieve(Name): Association
getName(Association): Name
getDomain(Association): Collection
getRange(Association): Collection
getRelation(Association): Collection
addMember(Association, Member, Member)
removeMember(Association, Member, Member)
delete(Association)

Associations

Figure 4 – UML class definitions of the core system operators

getName() and getMemberType(). An object dressed with this membertype can be
added to or removed from the collection using the addMember() and removeMember()

methods. Finally, the delete() method removes a collection object.
The third part of the core module is the database language DBLcore. Associated

with the OM data model, the OML language [Lom06] encompasses a data definition,
data manipulation and query language. The query language is based on a collection
algebra that defines a set of operators to manipulate and process collections and
associations. Apart from being used for data definition, manipulation and querying,
OML also serves as a declarative object-oriented implementation language for the
methods of database objects as well as for stored procedures and triggers. An example
of an OML script is given below.

1 /* data definition language */

2 create type contact (name : string, phone : string);

3 create collection Contacts as set of contact;

4 /* data manipulation language */

5 $obj := create object;

6 dress $obj with contact (name = "Fred Bloggs", phone = "(222) 555-4433");

7 insert [$obj] into Contacts;

8 /* query language */

9 $fred := first(all $c in Contacts having ($c.name like "(F|f)red.*"));

In the data definition section, the application developer creates an object type
contact (line 2), which is used as membertype for collection Contacts (line 3). The first
statement creates an object of type objectType in the core metamodel, while the second
statement creates a collection object. The data manipulation section demonstrates how
an object is created (line 5) and instantiated with the contact type using the dress

operation (line 6). Then the object is inserted into the Contacts collection (line 7).
Finally, a simple selection query over the Contacts collection is shown that selects the
previously created object (line 9). Formally, OML is defined by a grammar expressed
as a set of productions Pcore. For reasons of space, only a subset of Pcore is given
below.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a2

12 · Michael Grossniklaus, Stefania Leone, Alexandre de Spindler, Moira C. Norrie

statements → statement { ";" statement }
statement → [ddl statement | dml statement | query expression]

ddl statement → create statement

create statement → "create" [create object | create objecttype | . . .]

create object → "object"

create objecttype → "type" name "(" attribute list ")"

. . .

Correspondingly, the DBLcore component is given by

DBLcore = {{statements, statement, ddl statement, . . .},
{"create", "object", "type", . . .}, Pcore}.

5.2 Implementation

Our research platform is implemented in Java and uses Berkeley DB Java Edition3 as
a storage backend. On the right of Figure 1, the low-level persistent storage is shown.
It is designed to provide persistent data management tailored to the requirements of
the modular extension mechanism. The storage layer achieves its flexibility by means
of the data model outlined in Figure 5. We distinguish the notion of an object which
strictly identifies a real-world object and an instance which bears the attribute values
declared by an object type. An extent is a bulk value used to support collections and
associations. Note that attribute values and extent members may be objects, extents
or built-in values such as integer or string.

Object Instance Value

name: String

ObjectType

name: String

type: Type

Attribute

Extent

Object

BuiltIn

Value

BuiltInType

memberType: Type

ExtentType
TypeExtent

Value

Object

Extent

Figure 5 – Data model of persistent storage

createObjectType(Object, Attribute[])
createExtentType(Object, Type)

createObject(): Object
dress(Object, ObjectType)
strip(Object, ObjectType)
setAttributeValue(Object, ObjectType, Attribute, Value)
getAttributeValue(Object, ObjectType, Attribute): Value

createExtent(ExtentType): Extent
add(Extent, Value)
remove(Extent, Value)
iterator(Extent): Iterator

Storage API

Figure 6 – Persistent storage API

The API of the storage component is shown in Figure 6. Once an object has been
created, instances can be added or removed using the dress() and strip() methods,
respectively. Attribute values can be set and retrieved by providing the object, the
object type declaring the attribute to be accessed and the attribute itself. An extent
is created by providing the extent type. Given an extent, values can be added and
removed as well as accessed through an iterator. Methods to delete types, objects and
extents as well as query functionality are also provided, but not shown in the figure.

The entry point to our platform is the DatabaseManager and its interface is shown
in Figure 7 along with the Database interface. The database manager manages all

3http://www.oracle.com/technology/products/berkeley-db/

Journal of Object Technology, vol. 12, 2013

http://www.oracle.com/technology/products/berkeley-db/
http://dx.doi.org/10.5381/jot.2013.12.2.a2

A Platform to Support Object Database Research · 13

registerCRUD(String)
getCRUD(String): CRUD
...

Database

createDatabase(String)
openDatabase(String): Database
closeDatabase(Database)
deleteDatabase(Database)
getDatabase(String)

DatabaseManager

Figure 7 – DatabaseManager and Database interface

loadModules()
loadModule(String)
unloadModule(String)

ModuleManager

bootstrap()
registerCRUDs()
generateDBL()
unload()

<<interface>>
Module

dress(OMObject)
strip(OMObject)
setAttributeValue(OMObject, String, Value)
getAttributeValue(OMObject, String)

Object

OMObject

getMember()
addMember(OMObject)
removeMember(OMObject)

Extent

OMExtent

Figure 8 – Module Runtime

database instances and offers the functionality to create, retrieve, open, close and
delete a database. Apart from other functionality, the Database interface provides
methods to register and retrieve CRUD operators of metamodel extension modules. To
manage the modules for each database, the database manager uses the ModuleManager,
which is part of the module runtime shown in Figure 8. To orchestrate the lifecycle
of modules, the module manager requires that developers of metamodel extension
modules implement the Module interface, which is also defined by the runtime.

When a database is opened, the database manager invokes the module manager’s
loadModules() method, which first loads the core module and then loads all modules
registered to be loaded automatically during initialisation of the database. For
each module, the loadModules() method invokes the first three methods of the
Module interface, namely bootstrap(), registerCRUDs() and generateDBL(). The
bootstrap() method initialises the new metamodel concepts using the data definition
operators provided by the core module. The registerCRUDs() method registers the
CRUD operators and the generateDBL() method generates the database language
extension. As a result of the loading process, the general metamodel is extended with
the module’s concepts and all of its database operations and language extensions are
registered with the database. At run-time, the module manager allows single modules
to be loaded and unloaded dynamically using the loadModule() and unloadModule()

methods. The unloadModule() of the ModuleManager simply delegates its invocation
to the unload() command of the corresponding module.

Apart from the Module and ModuleManager classes, the module runtime also pro-
vides the classes OMObject and OMExtent, which serve to wrap objects and extents
managed by the persistent storage. Instances of OMObject uniformly represent appli-
cation data objects and types as well as system metadata objects and types. It offers
means to add and remove instances (dress() and strip()) as well as to read and
write attribute values. OMExtent allows for members to be added, accessed and re-
moved. By separating the metamodel concepts from the actual concept representation
within the programming language, we achieve the flexibility of being able to alter and
extend the metamodel at run-time. Therefore, altering and extending the metamodel
in the database does not require any changes to the in-memory Java representations
of metamodel concepts.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a2

14 · Michael Grossniklaus, Stefania Leone, Alexandre de Spindler, Moira C. Norrie

macro

Macros

site

Sites

scope

Scopes

lifecycle

Lifecycles

type

Types

(1:*)
Triggers

(0:*) (1:*)

Handles
(0:*)

CanTrigger CanHandle

(0:*)(0:*)

user

Users

(1:*) (1:*)

TypeScopeTriggerScope

ExecuteAction

(1:1)

(0:*)

ExecuteAt

(1:*)

(0:*)

HasLifecycle

(1:1)

(0:*)

handler

Handlers

(1:1)

(0:*)

(1:1)

(0:*)

eventType

EventTypes

trigger

Triggers

C
o

re

M
o

d
u

le
E

x
te

n
s
io

n
 M

o
d

u
le

Figure 9 – Graphical representation of the event system metamodel

6 Case studies

To demonstrate the generality of our approach, we now present three case studies
corresponding to the three types of research challenges presented in Section 3. The
selection of case studies also reflects application scenarios in which object databases
are typically used, such as embedded and mobile settings. Therefore, object databases
are often used as single-user databases with an emphasis on tight integration with
an object-oriented programming language. The first and the second case study both
highlight how our platform was used to improve this integration. While the first
case study demonstrates the unification of event-based programming and database
triggers, the second focuses on supporting techniques of modular design and reuse
known from object-oriented programming directly within object databases. Finally,
the third case study is situated in the area of mobile information systems and uses our
platform for object database research to design and validate concepts that facilitate
the development of such applications. We report on the first case study in detail to
document all aspects of defining and creating a metamodel extension module, while
the other two focus on specific points of interest.

6.1 Event-based programming

Event-based programming is a popular paradigm for decoupling components and
enabling asynchronous processing. The underlying concept of automatically invoking
actions in response to pre-defined events is well-known in database systems as triggers.
Since object databases are tightly coupled with programming languages, it is desirable
to also support event-based programming directly in the database. In previous
work [GNS07, GLdN09], we investigated how concepts from programming languages
and database triggers could be unified into a general and flexible event model for
object databases. Our model is capable of supporting a rich variety of application
requirements common in emerging domains such as sensor databases as well as more
traditional applications. Further, it also supports distributed triggers where an event
in one database may trigger an action in another database.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a2

A Platform to Support Object Database Research · 15

Using our platform, we have implemented the event model as a metamodel extension
module. The corresponding metamodel shown in Figure 9 defines how the three
core concepts—EventTypes, Triggers, and Handlers—interact to provide the desired
functionality. The type eventType is a specialisation of the type type defined by the core
module and defines the list of parameters that are passed to the handler when events
of this type are triggered. Instances of type eventType are linked to user instances
through associations canTrigger and canHandle to control who can trigger and handle
events of this type. Given sufficient user permissions, applications can then trigger
and handle events of a certain type using the event module’s CRUD classes or its
DBL extension, which will both be discussed later in this section. Finally, eventType
instances are associated with a scope instance, which defines the set of objects targeted
by the event. Type handler defines a condition which guards the execution of the
associated macro, i.e. OM’s notion of a stored procedure. Since our event system is
designed for distributed settings, a handler can be associated with any number of site
instances that define where the event action will be executed. Finally, handlers are also
associated with a lifecycle instance, which can either be a time span, a point in time or
a number of notifications. When a handler is notified, the condition is evaluated and,
if it returns true, the macro is executed. Instances of type trigger record the operation
that has occurred, the object on which the operation has happened, a list of parameter
values passed to the handler and the user that executed the operation. Furthermore,
a multiplicity attribute specifies whether this trigger is fired once or multiple times,
and, in the latter case, with which period and for how many times or for how long.

Based on the event system’s metamodel, we define the three components of the
metamodel extension module as follows. The first part, the module’s metamodel, is
simply the sum of its types, collections and associations.

MMevent = {{eventType, trigger, handler, . . .},
{EventTypes,Triggers,Handlers, . . .},
{Triggers,Handles, . . .}}

Note that all collections, if not indicated otherwise in Figure 9, are subcollections of
the Objects collection (not shown in the figure) of the core metamodel. The operators
providing the creation, retrieval, update and deletion of these metamodel concepts are
defined as

CRUDevent = {EventTypes,Triggers,Handlers, . . .}.

A subset of these operations, which are provided to manage and configure our event
system, are illustrated in Figure 10. Note that the implementations of the event
system operators rely on the presence of the core system operators in the same way
the event metamodel extends the core metamodel. For example, the creation routine
of EventTypes will invoke the create method in Types to create a general type and
then dresses it with the eventType type.

To interact with our event system at the level of a programming language, we
have defined DBLevent, which is an extension of DBLcore, i.e. OML as presented in
the previous section, to provide constructs to trigger and handle events. The simple
example below illustrates the definition of an event type, trigger and handler. The
trigger is fired whenever an instance of type person changes. The event type defines
the person’s name as the payload and the scope to be type person. It also grants
trigger access to local users and handler access to any user. The handler simply prints

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a2

16 · Michael Grossniklaus, Stefania Leone, Alexandre de Spindler, Moira C. Norrie

create(EventType, Action): Handler
getEventType(Handler): EventType
getAction(Handler): Action
delete(Handler)

Handlers

create(Scope): EventType
getScope(EventType): Scope
delete(EventType)

EventTypes

create(EventType, Scope): Trigger
getEventType(Trigger): EventType
register(Trigger, EventHandler)
unregister(Trigger, EventHandler)
delete(Trigger)

Triggers

create(): Type
delete(Type)

Types

create(): Object
delete(Object)

Objects

uses uses uses

uses
Core Module

Extension Module

Figure 10 – UML class definitions of the event system operators

that name to the console. To do so, we use an inline command, rather than a macro.
Finally, we add an onchange event to the person type that fires the trigger, passing
along the name of the person that has changed.

1 /* Create event type */

2 create eventtype person_change (name: string) scope type person

3 enable trigger local.*, handler any.*;

4 /* Create handler */

5 create handler person_change_handler for person_change

6 condition (...)

7 exec (print "Person " + name + " changed.")

8 lifecycle once;

9 /* Create trigger and link to person type */

10 alter type person (

11 onchange create trigger for person_change fire ($self.name);

12)

Formally, the language sketched above is defined as the set of production rules
Pevent below. We limit ourselves to a subset to illustrate the approach.

create statement → "create" [. . . | create eventtype | create handler | create trigger]

create eventtype → "eventtype" name "(" attribute list ")" scope def [access def]

create handler → "handler" name "for" eventtype ref [condition def]

"exec" (macro ref | script) [lifecycle def]

create trigger → "trigger" [name] "for" eventtype ref

"fire" "(" value list ")" [multiplicity def]

. . .

Together with the terminals and non-terminals, the productions above are the basis
for the definition of the database language component DBLevent as

DBLevent = {{create eventtype, create handler, create trigger, . . .},
{"eventtype", "handler", "trigger", "scope", . . .}, Pevent}.

Once the metamodel extension, the CRUD operators, and the database language
have been defined, the module needs to be realised using the interfaces of our platform
to support object database research. In order to give a sense of the development effort

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a2

A Platform to Support Object Database Research · 17

involved and to show how a developer would use the platform, we briefly outline the
implementation of the event module in terms of source code examples. We begin by
presenting the module’s main class, which defines the module’s metamodel, and then
outline the create method from the CRUD operator for type eventType.

The main class EventModule, which implements the Module interface shown in
Figure 8 in Section 5, is summarised in the code listing below. The first method,
bootstrap(), creates the metamodel of the module. In the listing, we outline the
code that creates the metadata concepts for type eventType. The statements on lines 5
and 6 create definitions for attributes name and scope, respectively. Attribute name is
of type STRING and scope is of type OID. Since both of these types are defined by the
core metamodel module, they can be retrieved using the CRUD operator for objects of
type namedObject, which is accessible through method namedObjects(). Once these
attribute definitions have been created, the type eventType itself is created on line 7.
The main class of a metamodel extension module also registers the CRUD operators
with the database. This task is performed by method registerCRUDs() (line 11) and
the call to register the CRUD operator for type eventType is shown on line 13.

1 public class EventModule extends AbstractModule implements Module {

2
3 public void bootstrap(OMTransaction tx) {

4 /* ... */

5 OMStructuredValue nameAttr = this.getDatabase().attributes().create(tx,

"name", this.getDatabase().namedObjects().retrieve(tx,

Schema.STRING));

6 OMStructuredValue scopeAttr =

this.getDatabase().attributes().create(tx, "scope",

this.getDatabase().namedObjects().retrieve(tx, Schema.OID));

7 this.getDatabase().objectTypes().create(tx, "eventType", new

OMStructuredValue[] { nameAttr, handlersAttr });

8 /* ... */

9 }

10
11 public void registerCRUDs() {

12 /* ... */

13 this.getDatabase().registerCRUD(new EventTypes(this.getDatabase()));

14 /* ... */

15 }

16
17 /* ... */

18
19 }

Users and developers can interact with the concepts of a metamodel extension
module either imperatively using the CRUD operators or declaratively using the DBL.
The listing below contains a code excerpt of the CRUD operator for type eventType.
We show the create() method that instantiates a new event type object and initialises
its fields. On line 4, we begin by creating a new object4. To instantiate the new
object with type eventType, we use method dress() on line 6. Once the object has
been dressed with a certain type, the corresponding attribute values can be set on
lines 7 and 8. Finally, we return the newly created event type on line 9. The browse()

4Since our database system uses multiple inheritance, creating a new object consists merely of
creating a new object id.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a2

18 · Michael Grossniklaus, Stefania Leone, Alexandre de Spindler, Moira C. Norrie

method returns a façade that corresponds to the interface EventType, which provides
easy and non-generic access to the event type’s fields and methods.

1 public class EventTypes {

2
3 public EventType create(OMTransaction tx, String name, Scope scope) {

4 OMObject eventType = this.getDatabase().objects().create(tx);

5 OMObject eventTypeType = this.getDatabase().namedObjects().retrieve(tx,

"eventType");

6 eventType.dress(tx, eventTypeType);

7 eventType.setAttributeValue(tx, eventTypeType, "name", name);

8 eventType.setAttributeValue(tx, eventTypeType, "scope",

scope.getBaseObject());

9 return eventType.browse(EventType.class);

10 }

11
12 /* ... */

13
14 }

In order to register the main class of a metamodel extension module, a so-called
module description file needs to be provided. The XML syntax of module description
files is illustrated in the following example. Note that every module is identified by a
unique name and can therefore be cross-referenced in module description files. The
description file also contains information about module dependencies and other options.
For example, the load policy controls when a module is initialised. Since the event
module is a central module used by many other modules, it is loaded right when a
database is opened. Finally, state management can be set to persistent or transient to
control whether or not a module’s metadata is retained after the module is unloaded.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <module xmlns="http://www.globis.ethz.ch/avon/modules" version="1.2">

3 <name>avon-event</name>

4 <main-class>EventModule.class</main-class>

5 <dependencies>

6 <dependency>avon-core</dependency>

7 </dependencies>

8 <load-policy>DB_OPEN</load-policy>

9 <state>persistent</state>

10 </module>

As can be seen from these examples, the application programming interface of our
platform is very generic and conceptually situated at the level of the metamodel. In
order to provide additional concepts and functionality, a developer needs to “meta-
program”, i.e. instead of directly instantiating classes, generic interface methods are
used. While this approach leads to more verbose code that is slightly more challenging
to maintain, it also has several important advantages that justify our choice. First, this
generic approach provides the degree of flexibility required in a platform to support
research. As data model concepts are not cast into compiled classes, the model can
be dynamically evolved at run-time by changing the system metamodel. Second, the
resolution of module dependencies can be postponed from compile-time to run-time.
An extension module that extends another module does not need to access the source
or compiled code of the base module. It only requires that the base module is available
at run-time and that its metamodel concepts are known by name. In our approach, it

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a2

A Platform to Support Object Database Research · 19

is therefore the metamodel that defines the contract between the various modules of
the database system. This characteristic stands in strong contrast to other approaches
that rely on interface definitions to encapsulate system components.

The event module was developed by a graduate student in the context of a master
thesis of six months duration. The rich event model provided by the module has
proven to be an enabling technology for several other database extensions, for example,
the mobile information sharing module presented in Section 6.3. As a result of its
success, the event module has been integrated with and is now maintained as part of
the main distribution of OMS Avon.

6.2 Information components

While modular and incremental development is a state-of-the-art practice in software
engineering, information systems are still developed sequentially, resulting in a mono-
lithic system that is hard to modify and adapt. In Leone et al. [LGN11], we introduced
the concept of information components as a mechanism to support the creation and
composition of an information system in a modular manner based on a sharing and
reuse paradigm. The unit of reuse is an information component that comprises both
metadata and data. If only metadata is present, then the composition is at the schema
level to support the design process. Optionally, data may be included to support data
reuse. Sharing and reuse is realised by means of queries over well-defined component
export interfaces, which, for a specific component, specify the data and metadata
offered for reuse. By providing means for fine-grained reuse of metadata and data
across information components, new information components can be created by making
use of existing ones and combining them in new ways.

Figure 11 gives an example of a composition scenario. Assume that a small retail
company manages products and customers. On the left hand side, we illustrate two
components, one for customer management and one for product management. Assume
the company now decides to sell their products online. They could reuse the metadata
and data of the customer and product components, and compose a new online store
component as illustrated on the right hand side. Queries over component export
interfaces define the reuse of both metadata and data from existing components. To
support reuse of existing components, export interfaces are registered with a component
registry, which can be browsed by developers. The definition and registration of a
component’s export interface is part of the component definition process.

Figure 12 gives an overview of the metamodel extension for information components.
An information component defines information elements for metadata and data.
Metadata objects are instances of the metamodel concepts of the core module, modelled
through the subcollection relation between Metadata and Objects, and, consequently,

Customer

Customers Component

Provider delivers Product

Products Component

hasAddress Customer

Order
Item

Order

Has

places

Components Composed OnlineStore Component

hasAddress

Provider delivers Product refers

Figure 11 – Composition Scenario

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a2

20 · Michael Grossniklaus, Stefania Leone, Alexandre de Spindler, Moira C. Norrie

(0:*)

(1:1)

(0:*)

(1:1)

(1:*)

(0:*)
component

Information
Components

(1:*)

Defines

Exports

object

Information
Elements

object

Metadata

object

Data

DefinedBy

(0:*)

(0:*)
Imports

exportInterface

Export
Interfaces

DefinedBy

(1:*)

p
ar

ti
ti

o
n

object

Objects

Core ModuleExtension Module

Figure 12 – Graphical representation of the information components metamodel

createComp(String)
deleteComp(String)
addMetadata(String, Object)
removeMetadata(String, Object)
addData(String, Object)
removeData(Object)
...

InformationComponents

share(String, ExportInterfacet)
reuse(Query, Query)
browseComponents()
searchComponent(String)

Registry

String name;
String description;
String name_old;
Query mdQuery;
Query dQuery;

ExportInterface

create():Object
delete(Object)

Objects

uses uses

Core Module

Extension Module

Figure 13 – UML class definition of information components operators

information components extend the core by specialisation. The metadata objects
define the structure of the data objects, as indicated by the DefinedBy association
between Metadata and the Data.

The reuse of information elements is reflected by the Import association, which
is a subassociation of the Defines association between the InformationComponents
collection and the InformationElements. The Import association defines, for a given
information component, the information elements that have been imported from
other information components. A component may also offer metadata and data for
sharing. This is reflected by the Export association between InformationComponents
and InformationElements, which is also a subassociation of Defines. Information element
export is specified by a query that declares the information elements to be reused.
Note that an information component can define multiple such export queries.

Figure 13 gives an overview over the operators that can be used to create and
manipulate instances of metamodel constructs. The InformationComponents operator
supports the creation, retrieval, deletion, composition and manipulation of information
components. Sharing and reuse functionality is provided by the Registry operator.
Components can be made available for reuse using the method share() that takes two
input parameters—the component name (which may be a new name due to renaming)
as well as an export interface. ExportInterface objects encapsulate all information
needed to support component export, such as a possible renaming, a component
description used when browsing the registry and inspecting the component as well
as queries over the metadata and data to be exported. Information components may
import metadata and data from the registry using the reuse() method that again

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a2

A Platform to Support Object Database Research · 21

takes two input parameters, the queries over the metadata and data. Component
reuse is realised by reference and is simply a view on local metadata and data objects
and thus supported by OMS Avon.

The first version of the information component module was developed by a graduate
student as part of a six month master thesis. It was used to build a platform support-
ing the collaborative design and development of personal information management
systems [LGN11]. Non-expert users can select provided components and compose them
graphically to construct their personal information space. A refined and generalised
version of the module was used as a basis to realise a community-based design and
development platform for eCommerce systems [LN11]. Developers can build tailored
eCommerce solutions based on a set of components that represent basic eCommerce
building blocks, and can be selectively customised and composed.

6.3 Mobile information sharing

Existing development platforms for mobile applications lack integrated support for
information sharing, which means that developers need to address these requirements
repeatedly and at a low-level. As an example, consider a mobile application that
allows tourists to enter and share reviews for places that they visit. One way of
realising this functionality is to have a central server, while another would be to
share the reviews via kiosk servers at points of interest, using Bluetooth or WiFi
ad-hoc connectivity to automatically transfer reviews about a location to and from the
tourists’ mobile devices. Existing approaches tend to build a layer that implements a
specific distribution model on top of traditional database systems. In contrast, our
aim was to integrate concepts into a database that provide native support for data
sharing, while allowing developers the flexibility of configuring their own distribution
models and collaboration logic.

Our approach introduces a general notion of shared collections, where the collabo-
ration logic can easily be configured. To validate the approach, we implemented it in
OMS Avon as a metamodel extension module. Details of the shared collection concept
and how it supports different modes of data sharing are given in [dGN09, de 10].
Here, we will focus on showing how shared collections could be embedded in an
object-oriented development environment by leveraging the language extension of the
metamodel extension module.

Shared collections extend data collections and introduce functionality to share
members with collections of the same name in other databases that can be located
on different devices. We use the form Name to refer to a collection by its name and
Name〈T 〉 if the member type is of importance. On all devices, the shared collection
C〈T local〉 is configured so that it is connected to collections with the same name C
and compatible member type T remote residing on other devices in physical proximity.
Member types are compatible if they are the same or if T local is a supertype of T remote.

Shared collections provide share operations for the sharing of a single, multiple or
all members, each with a single or multiple peers. Also, setAvailable operations are
used to turn on the availability to receive members, which can be unconstrained or
restricted to a single or set of peers. Both share and setAvailable methods are used
to configure the sharing behaviour in terms of when and which members are shared
with which peers. Consequently, different distribution architectures and modes of data
sharing can be realised by configuration rather than implementation.

Table 1 summarises the collaboration configurations and operations, their argu-
ments and example values. Data filters use queries to specify, which members should

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a2

22 · Michael Grossniklaus, Stefania Leone, Alexandre de Spindler, Moira C. Norrie

Table 1 – Shared Collection Configurations and Operations

Configuration Arguments Examples
Data Filter Query Members created locally

Members related to recipient
Trigger Event, Condition, Action User action

Data creation or manipulation
Connection state

Sharing Mode Transmission Semantics Copy, Reference
Durability Persistent, Transient

Neighbourhood Peers Peer B on A and C
Peers A and C on B

Operation Arguments
setAvailable Configuration
share Member(s), Peer(s),

Configuration

be shared. A trigger specifies whether a sharing processes is initiated by user actions,
collection updates or peers appearing in physical proximity. The sharing mode specifies
whether shared members should be transferred with copy or reference semantics, and
if data should persist after disconnection. Finally, each shared collection is associated
with a set of peers that form its neighbourhood. Members may be shared with one
particular peer or be broadcast to all peers in the neighbourhood.

We leverage the fact that metamodel extension modules can define a language
extension to introduce shared collections as a first-order concept in our database
language. While this implementation has served as a proof of concept, we note
that it would also be possible to extend existing languages such as Java, Scala, or
C++ with the shared collection concept, either by using a pre-compilation step or
language extensions. Using what we call “collection-oriented programming”, developers
implement a mobile information system by specifying domain classes, collections of
persistent and/or shared data and configuring the persistent and sharing services to
meet their requirements. Below we show example source code for the case of the tourist
application. As shown on line 1, classes are created for domain entities such as reviews
in the usual way. Line 3 then defines the collection of reviews, where the keyword
persistent declares that the collection members are to be stored persistently and
the three dots denote the definitions of the remaining characteristics such as methods,
queries and event handling. Data filters specifying a set of members to be shared are
defined using the query keyword to attach a query to a collection. For example, we
could attach two queries to the collection of reviews, one to access reviews authored
by the user (line 4) and the other to access reviews about the current location (line 5).
Similarly, an event handler is attached to the collection on line 6, where the type of
event handled is specified and the three dots indicate the handler implementation.

1 class Review { String text; User author; ... }

2
3 persistent collection Reviews<Review> {

4 query AuthoredByUser() { ... }

5 query AboutLocation() { ... }

6 handle AddEvent(Event event) { ... }

7 }

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a2

A Platform to Support Object Database Research · 23

Based on this skeleton, it is possible to configure our tourist application with
the following sharing behaviour. When a tourist comes close to a kiosk server, a
new peer object is added to the system collection called Neighbourhood on both the
mobile device and the server. On the server, the addition is handled by executing
the AboutLocation query and sharing the result of this query with the mobile de-
vice. Conversely, on the mobile device, the addition is handled by executing the
AuthoredByUser query and sharing the result with the server. In this way, the tourist
receives reviews from other users, while their own review is exchanged with and stored
on the server. The server collection of reviews would be configured to make them
persistent, whereas the collection on the mobile device could be configured to have
reviews received transient so that the data is deleted once they leave the location and
are no longer connected to the server.

Using OMS Avon together with the shared collection module, the tourist application
was implemented with less effort than would be required using state of the art mobile
application development platforms including the Apple iPhone, Google Android and
Microsoft Windows Phone SDK. Since all of the recurring requirements such as
information persistence and sharing as well as proximity detection are addressed once
from within OMS Avon, they do not need to be addressed by the application developer
for each application. Moreover, based on the general collaboration concepts introduced
by the shared collection module, different distribution models and modes of information
sharing can be realised by means of configuration rather than implementation. As a
result, we were able to investigate a number of different application scenarios including
a recommender system where spatio-temporal proximity was used as the basis for user
similarity in collaborative filtering [dSNG08].

6.4 Further examples

To show the range of projects that we have been able to support using our research
platform, we conclude this section by mentioning two other projects.

Context-awareness is an important topic in web engineering and, in earlier research,
we investigated models and mechanisms to support this in content management
systems [BDG+05, GN07]. To take this work further, we re-implemented the approach
as a metamodel extension module in OMS Avon and developed a domain-specific
language, XCML, for context-aware web applications [NGLN10, NGLN12].

Object databases traditionally represent application logic by means of methods
tightly bound to objects through their type definitions. We wanted to investigate
means of being able to define and reuse behaviour more generally and flexibly, for
example across type definitions, or for that behaviour to evolve over time. In Leone et
al. [LNSd09], we introduce a notion of role-based services that support the dynamic
binding of active content to database objects. As proof of concept, the concept
was implemented using a metamodel extension and applied to personal resource
management to allow different services to be used in different contexts.

7 Discussion

In this section, we begin by validating our approach with respect to the challenges
and requirements established in Section 3. We then discuss experiences gained from
applying our platform in different projects, outline best practices derived from those
experiences, and address limitations of our approach.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a2

24 · Michael Grossniklaus, Stefania Leone, Alexandre de Spindler, Moira C. Norrie

Table 2 – Classification of the case study examples

Case Study Module
Database
Behaviour

Data
Management

Different
Architectures

Event-based programming X – –
Information components – X –
Mobile information sharing X – X
Web content management X X –
Role-based services X – –

7.1 Validation

To validate our approach, we return to the challenges of the object database research
space introduced in Section 3. In Table 2, we classify the projects presented in the
previous section with respect to the types of research challenges addressed.

The metamodel extension module for event-based programming is an example of
introducing new behaviour into an object database. As a consequence, the focus of
the module lies on the CRUD operators that implement this new behaviour and the
language extension that exposes it to programmers. While the metamodel shown in
Figure 9 introduces several new concepts, the goal of these concepts is to configure the
behaviour of the module, rather than to introduce new forms of data management.

In contrast, the main focus of the metamodel extension module for information
components is providing new forms of data management. The functionality provided by
the CRUD operators and language extension supports the management of information
components by defining new data definition and manipulation operations that allow
information components to be managed as well as shared and reused.

Finally, the metamodel extension module for mobile information sharing shows
how the platform can support experimentation with new distribution architectures
and modes of information sharing. While the focus of this project was clearly on
architectural challenges, the module also introduces a significant amount of new
database functionality that governs information sharing in a mobile setting. However,
a large portion of this additional database behaviour was actually provided by the
module for event-based processing, which demonstrates how the module concept allows
research itself to be modularised.

We also noted in Section 3.4 that a research platform for object database technolo-
gies needs to meet additional requirements. The first of these is that both adaptation
and extension should be supported. We have described how adaptation is supported
by specialisation of concepts in the core model, whereas extension is supported by as-
sociation of new concepts. For example, in the case of mobile information sharing, the
concept of a shared collection was introduced as a specialisation of the core collection
concept to add functionality, while, in the case of the event module, the concept of an
event handler was introduced by association to the macro concept of the core model.

The second requirement is that a research platform needs to support both domain-
specific and general database research. Revisiting the case studies presented in the
previous section, we can observe that our approach of using metamodel extension
modules does not bias the proposed research platform in this respect. The modules
for event-based programming, role-based services and information components are all
examples of contributions resulting from general database research. In contrast, the
module for web content management is domain-specific to the area of web engineering

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a2

A Platform to Support Object Database Research · 25

in the same way as the module for mobile information sharing is specific to the area
of mobile and pervasive computing.

7.2 Experiences and best practices

In the following, we report on experiences gained while using the platform to realise
the implementation of numerous projects, ranging from short-term student works to
PhD theses and even larger projects.

Apart from enabling and fostering our research, the presented approach also proved
beneficial in terms of organising, structuring and managing the work involved in
designing and developing new database technologies. At any point in time, our object
database was used productively in both education and research, while being extended
and adapted in parallel for new application domains. Even with meticulous release
planning and advanced software revision systems, managing a project of this nature is
very challenging. By building the metamodule extension module mechanism into the
database system itself, we were able to isolate different projects from the core database
system as well as from each other. Thereby, it was possible to support experimentation
and prototyping without compromising the stability and development of the core
database system. A similar separation could be achieved by creating code branches
for every research project in a revision control system. We believe that our solution is
more elegant because, on the one hand, modules intrinsically have the right granularity
in comparison to branches and, on the other hand, they do not require complicated
merges once a project is completed. In our platform, a stable and complete module is
simply included in the main distribution and activated on demand.

The flexibility and generality of our platform implies that developers are faced
with a number of possibilities as to how they can realise a project. For example,
a major design decision is whether to integrate the new concepts into the existing
database in a tight or loose manner. In our approach, tight integration corresponds to
extension by specialisation, which refines or overrides existing concepts. In contrast,
loose integration corresponds to extension by association, which simply links new
concepts to existing ones. As shown by the case studies presented, it is also possible
to mix these two approaches in a single metamodel extension module. In order to
support users of our research platform, we have defined a number of best practices that
are intended to guide this decision. As mentioned above, one factor that can influence
this choice is whether the module adapts existing or introduces new functionality.
The distinction between general and domain-specific research is another indication of
how to design a module. In our experience, modules that implement the results of
general research projects benefit from tight integration with the core system, whereas
domain-specific modules can be more loosely attached. Finally, the development
life-cycle of a module also impacts the decision. New and experimental modules that
are still being prototyped are best realised as loose extensions, while stable modules
that are ready to be deployed can be more tightly integrated. As a consequence, we
have seen several modules that transitioned with respect to their integration approach
over time.

7.3 Limitations of the approach

We conclude the discussion of our approach by characterising possible limitations and
corresponding solutions. Extending and adapting a database system at the metamodel
level rather than at the level of an application programming interface affects the

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a2

26 · Michael Grossniklaus, Stefania Leone, Alexandre de Spindler, Moira C. Norrie

run-time performance. In contrast to a more strongly coupled approach, our generic
approach that is motivated by the required flexibility implies that most calls translate
to a number of metamodel queries. Therefore, the great flexibility of our approach
can be a disadvantage in a production setting. Additionally, the direct applicability of
our approach in commercial object databases is limited by the fact that these systems
often do not expose a well-defined metamodel, which can be extended. However, the
role of our platform is to support the design, development, and validation of new
concepts and functionality. Once these new technologies have proven successful and
useful, they are ported to a specific production system, where they can be cast into
that system’s data model and optimized for performance.

The implementation of the platform itself imposes certain limitations. While the
storage model that we provide is very general, it ultimately is a row-oriented storage
and will therefore render experimentation with column-oriented technologies difficult.
One possibility to avoid this limitation would be to implement a column-oriented view
on top of our row-oriented storage in analogy to Bruno [Bru09]. Another, more radical,
solution could be to replace our current storage with a back-end similar to the one
proposed by OctopusDB [DJ11].

At the time of writing this article, we have not yet fully addressed the challenges
of loading and unloading modules in a general way. In contrast to pure software
modules, metamodel extension modules can depend on a persistent state. In some
cases, unloading a module implies that its state is removed, while in other cases the
module’s state cannot safely be removed. Currently, module developers can specify
whether the state of a module is transient or persistent in the module description file.
Additionally, they can control the management of the persistent state in terms of the
bootstrap() and unload() methods in Module. In the future, we hope to provide
more support for this issue by identifying modules that share common requirements
and can therefore be handled in a uniform way.

8 Conclusion

We motivated the need for research platforms to address the requirements of novel
database applications. Moreover, we argued that the support currently offered by so-
called customisable or tailor-made databases is insufficient since they are not designed
to support experimentation and the prototyping of new concepts and functionality.

Our approach to building a research platform evolved from our previous work on
adaptive data management and is based on the notion of metamodel extension mod-
ules, rather than the configuration of components within a standardised architecture.
Metamodel extension modules consist of a metamodel that defines new concepts, an
API and implementation to manipulate and interact with the new concepts, and an
optional database language.

We demonstrated the use of the platform and its generality by presenting a variety
of research projects that were successfully conducted using our platform. These
projects covered the three main dimensions of database research, namely development
of novel behaviour, support for new forms of data management and exploration of
different architectures. To facilitate the applicability of our work outside our research,
we also discussed lessons learnt from our experiences in terms of best practices and
limitations of the approach.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.5381/jot.2013.12.2.a2

A Platform to Support Object Database Research · 27

References

[ARSS08] Sven Apel, Marko Rosenmüller, Gunter Saake, and Olaf Spinczyk, edi-
tors. Proc. EDBT Workshop on Software Engineering for Tailor-made
Data Management (SETMDM). ACM, 2008. doi:10.1145/1385486.

[BBM+07] Arianna Bassoli, Johanna Brewer, Karen Martin, Paul Dourish, and
Scott Mainwaring. Underground Aesthetics: Rethinking Urban Com-
puting. IEEE Pervasive Computing, 6:39–45, 2007. doi:10.1109/MPRV.

2007.68.

[BDG+05] Rudi Belotti, Corsin Decurtins, Michael Grossniklaus, Moira C. Norrie,
and Alexios Palinginis. Interplay of Content and Context. J. Web. Eng.,
4(1):57–78, 2005.

[BNS+05] Jaiganesh Balasubramanian, Balachandran Natarajan, Douglas C.
Schmidt, Aniruddha S. Gokhale, Jeff Parsons, and Gan Deng. Mid-
dleware Support for Dynamic Component Updating. In Proc. Intl. Symp.
on Distributed Objects and Applications (DOA), pages 978–996, 2005.
doi:10.1007/11575801_4.

[Bru09] Nicolas Bruno. Teaching an Old Elephant New Tricks. In Conf. on
Innovative Data Systems Research (CIDR), 2009.

[CW98] Reidar Conradi and Bernhard Westfechtel. Version Models for Software
Configuration Management. ACM Computing Surveys, 30(2):232–282,
1998. doi:10.1145/280277.280280.

[de 10] Alexandre de Spindler. A Collection-Oriented Application Framework for
Mobile Information Systems. PhD thesis, ETH Zurich, Switzerland, 2010.
doi:10.3929/ethz-a-6620201.

[DG01] Klaus R. Dittrich and Andreas Geppert, editors. Component Database
Systems. Morgan Kaufmann, 2001.

[DG04] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data pro-
cessing on large clusters. In Proc. Symp. on Opearting Systems Design &
Implementation (OSDI), pages 137–149, 2004.

[dGN09] Alexandre de Spindler, Michael Grossniklaus, and Moira C. Norrie. Devel-
opment Framework for Mobile Social Applications. In Proc. Intl. Conf.
on Advanced Information Systems Engineering (CAiSE), pages 275–289,
2009. doi:10.1007/978-3-642-02144-2_24.

[DJ11] Jens Dittrich and Alekh Jindal. Towards a One Size Fits All Database
Architecture. In Conf. on Innovative Data Systems Research (CIDR),
pages 195–198, 2011.

[dSNG08] Alexandre de Spindler, Moira C. Norrie, and Michael Grossniklaus.
Recommendation Based on Opportunistic Information Sharing Be-
tween Tourists. J. of IT & Tourism, 10(4):297–311, 2008. doi:

10.3727/109830508788403178.

[EPS+01] Fredrik Espinoza, Per Persson, Anna Sandin, Hanna Nyström, Elenor
Cacciatore, and Markus Bylund. GeoNotes: Social and Navigational
Aspects of Location-Based Information Systems. In Proc. Intl. Conf.
on Ubiquitous Computing (Ubicomp), pages 2–17, 2001. doi:10.1007/

3-540-45427-6_2.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.1145/1385486
http://dx.doi.org/10.1109/MPRV.2007.68
http://dx.doi.org/10.1109/MPRV.2007.68
http://dx.doi.org/10.1007/11575801_4
http://dx.doi.org/10.1145/280277.280280
http://dx.doi.org/10.3929/ethz-a-6620201
http://dx.doi.org/10.1007/978-3-642-02144-2_24
http://dx.doi.org/10.3727/109830508788403178
http://dx.doi.org/10.3727/109830508788403178
http://dx.doi.org/10.1007/3-540-45427-6_2
http://dx.doi.org/10.1007/3-540-45427-6_2
http://dx.doi.org/10.5381/jot.2013.12.2.a2

28 · Michael Grossniklaus, Stefania Leone, Alexandre de Spindler, Moira C. Norrie

[Fow10] Martin Fowler. Domain Specific Languages. Addison-Wesley Professional,
1st edition, 2010.

[GLdN09] Michael Grossniklaus, Stefania Leone, Alexandre de Spindler, and
Moira C. Norrie. Unified Event Model for Object Databases. In
Proc. Intl. Conf. on Object Databases (ICOODB), pages 113–131, 2009.
doi:10.1007/978-3-642-14681-7_7.

[GLdN10] Michael Grossniklaus, Stefania Leone, Alexandre de Spindler, and
Moira C. Norrie. Dynamic Metamodel Extension Modules to Sup-
port Adaptive Data Management. In Proc. Intl. Conf. on Advanced
Information Systems Engineering (CAiSE), pages 363–377, 2010.
doi:10.1007/978-3-642-13094-6_29.

[GN07] Michael Grossniklaus and Moira C. Norrie. An Object-Oriented Version
Model for Context-Aware Data Management. In Proc. Intl. Conf. on
Web Information Systems Engineering (WISE), pages 398–409, 2007.
doi:10.1007/978-3-540-76993-4_33.

[GNS07] Michael Grossniklaus, Moira C. Norrie, and Julian Sgier. Realising
Proactive Behaviour in Mobile Data-Centric Applications. In Proc. Intl.
Workshop on Ubiquitous Mobile Information and Collaboration Systems
(UMICS), pages 561–575, 2007.

[Här05] Theo Härder. DBMS Architecture – New Challenges Ahead. Datenbank-
Spektrum, 14:38–48, 2005.

[IDMW08] Florian Irmert, Michael Daum, and Klaus Meyer-Wegener. A New
Approach to Modular Database Systems. In Proc. EDBT Workshop on
Software Engineering for Tailor-made Data Management (SETMDM),
pages 40–44, 2008. doi:10.1145/1385486.1385498.

[IFMW08] Florian Irmert, Thomas Fischer, and Klaus Meyer-Wegener. Runtime
Adaptation in a Service-Oriented Component Model. In Proc. Intl.
Workshop on Software Engineering for Adaptive and Self-managing
Systems (SEAMS), pages 97–104, 2008. doi:10.1145/1370018.1370036.

[ILN+09] Florian Irmert, Frank Lauterwald, Christoph P. Neumann, Michael
Daum, Richard Lenz, and Klaus Meyer-Wegener. Semantics of a Runtime
Adaptable Transaction Manager. In Proc. Intl. Database Engineering
& Applications Symposium (IDEAS 2009), pages 88–96, 2009. doi:

10.1145/1620432.1620442.

[LGN11] Stefania Leone, Matthias Geel, and Moira C. Norrie. Managing Personal
Information through Information Components. In Information Systems
Evolution, pages 1–14. Springer Berlin Heidelberg, 2011. doi:10.1007/

978-3-642-17722-4_1.

[LN11] Stefania Leone and Moira C. Norrie. Building eCommerce Systems
from Shared Micro-Schemas. In Proc. Intl. Conf. on Cooperative In-
formation Systems (CoopIS), pages 284–301, 2011. doi:10.1007/

978-3-642-25109-2_19.

[LNSd09] Stefania Leone, Moira C. Norrie, Beat Signer, and Alexandre de
Spindler. From Static Methods to Role-Driven Service Invocation
– A Metamodel for Active Content in Object Databases. In Proc.
Intl. Conf. on Conceptual Modelling (ER), pages 444–457, 2009. doi:

10.1007/978-3-642-04840-1_33.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.1007/978-3-642-14681-7_7
http://dx.doi.org/10.1007/978-3-642-13094-6_29
http://dx.doi.org/10.1007/978-3-540-76993-4_33
http://dx.doi.org/10.1145/1385486.1385498
http://dx.doi.org/10.1145/1370018.1370036
http://dx.doi.org/10.1145/1620432.1620442
http://dx.doi.org/10.1145/1620432.1620442
http://dx.doi.org/10.1007/978-3-642-17722-4_1
http://dx.doi.org/10.1007/978-3-642-17722-4_1
http://dx.doi.org/10.1007/978-3-642-25109-2_19
http://dx.doi.org/10.1007/978-3-642-25109-2_19
http://dx.doi.org/10.1007/978-3-642-04840-1_33
http://dx.doi.org/10.1007/978-3-642-04840-1_33
http://dx.doi.org/10.5381/jot.2013.12.2.a2

A Platform to Support Object Database Research · 29

[Lom06] Andrea Lombardoni. Towards a Universal Information Platform: An
Object-Oriented, Multi-User, Information Store. PhD thesis, ETH Zurich,
Switzerland, 2006. doi:10.3929/ethz-a-005364615.

[MHS05] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to
Develop Domain-Specific Languages. ACM Comput. Surv., 37:316–344,
2005. doi:10.1145/1118890.1118892.

[MSKC04] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty
H. C. Cheng. Composing Adaptive Software. Computer, 37(7):56–64,
2004. doi:10.1109/MC.2004.48.

[NGD+08] Moira C. Norrie, Michael Grossniklaus, Corsin Decurtins, Alexandre
de Spindler, Andrei Vancea, and Stefania Leone. Semantic Data Man-
agement for db4o. In Proc. Intl. Conf. on Object Databases (ICOODB),
pages 21–38, 2008.

[NGLN10] Michael Nebeling, Michael Grossniklaus, Stefania Leone, and Moira C.
Norrie. Domain-Specific Language for Context-Aware Web Applications.
In Proc. Intl. Conf. on Web Information Systems Engineering (WISE),
pages 471–479, 2010. doi:10.1007/978-3-642-17616-6_42.

[NGLN12] Michael Nebeling, Michael Grossniklaus, Stefania Leone, and Moira C.
Norrie. XCML: Providing Context-Aware Language Extensions for
the Specification of Multi-Device Web Applications. World Wide Web
Journal, pages 447–481, 2012. doi:10.1007/s11280-011-0152-2.

[NNNH04] Dag Nyström, Mikael Nolin, Christer Norström, and Jörgen Hansson.
COMET: A Component-Based Real-Time Database for Automotive
Systems. In Proc. Workshop on Software Engineering for Automotive
Systems, pages 1–8, 2004.

[Nor93] Moira C. Norrie. An Extended Entity-Relationship Approach to Data
Management in Object-Oriented Systems. In Proc. Intl. Conf. on the
Entity-Relationship Approach (ER), pages 390–401, 1993. doi:10.1007/
BFb0024382.

[OAC+04] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebas-
tian Maneth, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz,
Erik Stenman, and Matthias Zenger. An Overview of the Scala Pro-
gramming Language. Technical Report IC/2004/64, École Polytechnique
Fédérale de Lausanne, 2004.

[ORS+08] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar,
and Andrew Tomkins. Pig Latin: A Not-So-Foreign Language for Data
Processing. In Proc. Intl. Conf. on Management of Data (SIGMOD),
pages 1099–1110, 2008. doi:10.1145/1376616.1376726.

[OSV11] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: A
Comprehensive Step-by-Step Guide. Artima, Inc., 2nd edition, 2011.

[PBJ98] Frantǐsek Plášil, Dušan Bálek, and Radovan Janeček. SOFA/DCUP:
Architecture for Component Trading and Dynamic Updating. In Proc.
Intl. Conf. on Configurable Distributed Systems (CDS), pages 43–51,
1998. doi:10.1109/CDS.1998.675757.

[RSS+08] Marko Rosenmüller, Norbert Siegmund, Horst Schirmeier, Julio Sin-
cero, Sven Apel, Thomas Leich, Olaf Spinczyk, and Gunter Saake.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.3929/ethz-a-005364615
http://dx.doi.org/10.1145/1118890.1118892
http://dx.doi.org/10.1109/MC.2004.48
http://dx.doi.org/10.1007/978-3-642-17616-6_42
http://dx.doi.org/10.1007/s11280-011-0152-2
http://dx.doi.org/10.1007/BFb0024382
http://dx.doi.org/10.1007/BFb0024382
http://dx.doi.org/10.1145/1376616.1376726
http://dx.doi.org/10.1109/CDS.1998.675757
http://dx.doi.org/10.5381/jot.2013.12.2.a2

30 · Michael Grossniklaus, Stefania Leone, Alexandre de Spindler, Moira C. Norrie

FAME-DBMS: Tailor-Made Data Management Solutions for Em-
bedded Systems. In Proc. EDBT Workshop on Software Engineer-
ing for Tailor-made Data Management (SETMDM), pages 1–6, 2008.
doi:10.1145/1385486.1385488.

[SC05] Michael Stonebraker and Ugur Cetintemel. “One Size Fits All”: An
Idea Whose Time Has Come and Gone. In Proc. Intl. Conf. on Data
Engineering (ICDE), pages 2–11, 2005. doi:10.1109/ICDE.2005.1.

[SM03] Seyed Masoud Sadjadi and Philip K. McKinley. A Survey of Adaptive
Middleware. Technical Report MSU-CSE-03-35, Department of Computer
Science, Michigan State University, December 2003.

[SMA+07] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Hari-
zopoulos, Nabil Hachem, and Pat Helland. The End of an Architectural
Era (It’s Time for a Complete Rewrite). In Proc. Intl. Conf. on Very
Large Data Bases (VLDB), pages 1150–1160, 2007.

[SSH+05] Junrong Shen, Xi Sun, Gang Huang, Wenpin Jiao, Yanchun Sun, and
Hong Mei. Towards a Unified Formal Model for Supporting Mechanisms
of Dynamic Component Update. SIGSOFT Software Engineering Notes,
30(5):80–89, 2005. doi:10.1145/1095430.1081720.

[Ste98] Andreas Steiner. A Generalisation Approach to Temporal Data Models
and Their Implementations. PhD thesis, ETH Zurich, Switzerland, 1998.
doi:10.3929/ethz-a-001923958.

[SZ09] Daniel Spiewak and Tian Zhao. ScalaQL: Language-Integrated Database
Queries for Scala. In Proc. Intl. Conf. on Software Language Engineer-
ing (SLE), pages 154–163, 2009. doi:10.1007/978-3-642-12107-4_12.

[SZD07] Ionut Emanuel Subasu, Patrick Ziegler, and Klaus R. Dittrich. To-
wards Service-Based Data Management Systems. In Proc. Workshop
on Database Systems in Business, Technology and Web (BTW), pages
296–306, 2007.

[SZDG08] Ionut Emanuel Subasu, Patrick Ziegler, Klaus R. Dittrich, and Har-
ald Gall. Architectural Concerns for Flexible Data Management. In
Proc. EDBT Workshop on Software Engineering for Tailor-made Data
Management (SETMDM), pages 34–39, 2008. doi:10.1145/1385486.

1385497.

[TB06] Wee Hyong Tok and Stephane Bressan. DBNet: A Service-Oriented
Database Architecture. In Proc. Intl. Conf. on Database and Expert
Systems Applications (DEXA), pages 727–731, 2006. doi:10.1109/DEXA.
2006.48.

[TSJ+09] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad
Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham
Murthy. Hive: A Warehousing Solution Over a Map-Reduce Framework.
Proc. VLDB Endow., 2(2):1626–1629, 2009.

[XOW04] Bo Xu, Aris Ouksel, and Ouri Wolfson. Opportunistic Resource Ex-
change in Inter-Vehicle Ad-Hoc Networks. In Proc. Intl. Conf. on Mobile
Data Management (MDM), pages 4–12, 2004. doi:10.1109/MDM.2004.

1263038.

Journal of Object Technology, vol. 12, 2013

http://dx.doi.org/10.1145/1385486.1385488
http://dx.doi.org/10.1109/ICDE.2005.1
http://dx.doi.org/10.1145/1095430.1081720
http://dx.doi.org/10.3929/ethz-a-001923958
http://dx.doi.org/10.1007/978-3-642-12107-4_12
http://dx.doi.org/10.1145/1385486.1385497
http://dx.doi.org/10.1145/1385486.1385497
http://dx.doi.org/10.1109/DEXA.2006.48
http://dx.doi.org/10.1109/DEXA.2006.48
http://dx.doi.org/10.1109/MDM.2004.1263038
http://dx.doi.org/10.1109/MDM.2004.1263038
http://dx.doi.org/10.5381/jot.2013.12.2.a2

A Platform to Support Object Database Research · 31

About the authors

Michael Grossniklaus is an assistant professor for databases and
information systems at the University of Konstanz. His research
focuses on novel database techniques for emerging application
domains, such as context-aware data management, data stream
processing, or graph data. Currently, he is investigating how object
database technologies can be used for cloud data management.
Contact him at michael.grossniklaus@uni-konstanz.de.

Stefania Leone is a post-doctoral researcher in the Semantic Infor-
mation Research Laboratory at University of Southern California.
Her research interests are in the field of information systems and ob-
ject databases, both at the conceptual and the technological level,
focusing on new ways to enhance and facilitate their design and
development process. Contact her at stefania.leone@usc.edu.

Alexandre de Spindler is a lecturer of information systems at
the Zurich University of Applied Sciences. His research interest
include the design and development of domain-specific support for
information systems development. He is currently investigating
the requirements of a system able to generate domain-specific web
information systems. Contact him at alexandre.despindler@

zhaw.ch.

Moira C. Norrie is a full professor and head of the Global Infor-
mation Systems group at ETH Zurich. Her research and teaching
focusses on the use of object-oriented and web technologies for next
generation information systems. Her research group developed
the OMS database development suite designed to support the
development of object databases from conceptual design through
to implementation. Contact her at norrie@inf.ethz.ch.

Acknowledgments Michael Grossniklaus’ work is partially funded by the Swiss
National Science Foundation (SNF) grant PA00P2 131452. The authors would like to
thank Michael Nebeling who provided the implementation of the XCM metamodel
extension module, Matthias Geel who implemented the information component module
as well as Christoph Lins and Julian Sgier who contributed the metamodel extension
module for events.

Journal of Object Technology, vol. 12, 2013

mailto:michael.grossniklaus@uni-konstanz.de
mailto:stefania.leone@usc.edu
mailto:alexandre.despindler@zhaw.ch
mailto:alexandre.despindler@zhaw.ch
mailto:norrie@inf.ethz.ch
http://dx.doi.org/10.5381/jot.2013.12.2.a2

	Introduction
	Background
	Challenges and requirements
	Challenge 1: Development of novel database behaviour
	Challenge 2: Support for new forms of data management
	Challenge 3: Exploration of different database architectures
	Additional requirements

	Metamodel extension modules
	Platform to support research
	Core metamodel
	Implementation

	Case studies
	Event-based programming
	Information components
	Mobile information sharing
	Further examples

	Discussion
	Validation
	Experiences and best practices
	Limitations of the approach

	Conclusion
	Bibliography
	About the authors

