
Scattering amplitude from Bethe-Salpeter wave
function inside the interaction range

著者 Namekawa Yusuke, Yamazaki Takeshi
journal or
publication title

Physical Review D

volume 98
number 1
page range 11501
year 2018-07
権利 Published by the American Physical Society

under the terms of the Creative Commons
Attribution 4.0 International license. Further
distribution of this work must maintain
attribution to the author(s) and the published
article ’ s title, journal citation, and DOI.
Funded by SCOAP 3 .

URL http://hdl.handle.net/2241/00153666
doi: 10.1103/PhysRevD.98.011501

Creative Commons : 表示
http://creativecommons.org/licenses/by/3.0/deed.ja

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Tsukuba Repository

https://core.ac.uk/display/161850624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

Scattering amplitude from Bethe-Salpeter wave function
inside the interaction range

Yusuke Namekawa
Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

Takeshi Yamazaki
Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan,
Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan,
and RIKEN Advanced Institute for Computational Science, Kobe, Hyogo 650-0047, Japan

(Received 29 December 2017; published 16 July 2018)

We propose a method to calculate scattering amplitudes using the Bethe-Salpeter wave function inside
the interaction range on the lattice. For an exploratory study of this method, we evaluate a scattering length
of I ¼ 2 S-wave two pions by the use of the on-shell scattering amplitude. Our result is confirmed to be
consistent with the value obtained from the conventional finite volume method. The half-off-shell scattering
amplitude is also evaluated.
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I. INTRODUCTION

Calculation of hadronic interactions by lattice QCD is an
important direction toward understanding fundamental
properties of hadrons from the first principle of the strong
interaction. In many lattice studies of two hadrons, the
scattering phase shift δðkÞ or the scattering length a0 was
evaluated using the finite volume method proposed by
Lüscher [1,2]. Energy eigenvalues of two hadrons on a
finite volume are related to δðkÞ in the infinite volume
through a known function. This relation was derived from a
two-particle wave function in (relativistic) quantum
mechanics [2] and also from the Bethe-Salpeter (BS) wave
function in quantum field theory [3,4]. In both cases, the
derivation utilized wave functions outside the interaction
range R of the two particles. In contrast, a relation between
the on-shell scattering amplitude and the BS wave function
inside R was discussed in quantum field theory in the
infinite volume [3–5]. A method using a potential from the
BS wave function was also proposed based on quantum
mechanics [6].
In this paper, extending the quantum field theoretical

discussion in the infinite volume, we propose a method to
calculate the on-shell and half-off-shell scattering ampli-
tudes using the BS wave function inside R on a finite
volume lattice. We perform a simulation in quenched QCD
at the pion mass mπ ¼ 0.86 GeV to evaluate the scattering

amplitudes of the isospin I ¼ 2 S-wave two-pion scattering
in the center-of-mass frame. Using the on-shell amplitude,
we investigate the consistency of our method with the finite
volume method by examining a condition of the finite
volume method and by comparing δðkÞ directly. We also
demonstrate that the half-off-shell scattering amplitude can
be calculated in a similar way. We attempt to extract
information of the scattering from the half-off-shell scatter-
ing amplitude.

II. FORMULATION

The BS wave function of two pions in the infinite volume
ϕ∞ðx; kÞ is related to the scattering amplitude [3–5],

ϕ∞ðx; kÞ ¼ eik·x þ
Z

d3p
ð2πÞ3

Hðp; kÞ
p2 − k2 − iϵ

eip·x; ð1Þ

where Hðp; kÞ ¼ EpþEk

4EpEk
Mðp; kÞ with Mðp; kÞ being the

half-off-shell scattering amplitude defined by the
Lehmann-Symanzik-Zimmermann (LSZ) reduction for-
mula [3,4] and Ek ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ k2
p

. Some overall factors in
the expression for ϕ∞ðx; kÞ are omitted. We consider only
the S-wave scattering in the center-of-mass frame and
neglect the inelastic scattering contribution. At on-shell
p¼k,Hðk; kÞ is written by the scattering phase shift δðkÞ as

Hðk; kÞ ¼ 4π

k
eiδðkÞ sin δðkÞ: ð2Þ

In the following, Hðp; kÞ is called the scattering amplitude
for simplicity, though its normalization differs from
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Mðp; kÞ. The reduced BSwave function h∞ðx; kÞ is defined
by ϕ∞ðx; kÞ as in Refs. [4,5],

h∞ðx; kÞ ¼
�X3

i¼1

∂2
i þ k2

�
ϕ∞ðx; kÞ

¼ −
Z

d3p
ð2πÞ3 Hðp; kÞeip·x; ð3Þ

where we use Eq. (1) in the last equality. It is assumed that
h∞ðx; kÞ ¼ 0 in x > R except for the exponential tail. R is
called the interaction range. Hðp; kÞ can be obtained by
h∞ðx; kÞ using the Fourier transformation,

Hðp; kÞ ¼ −
Z

∞

−∞
d3xh∞ðx; kÞe−ip·x: ð4Þ

It is noted Eq. (4) at p ¼ k was employed for the relation
between δðkÞ and ϕ∞ðx; kÞ in x > R in Ref. [4].
The same S-wave amplitude Hðp; kÞ can be obtained

from a reduced BS wave function on a finite volume hðx; kÞ
with periodic boundary conditions as

Hðp; kÞ ¼ −Fðk; LÞ
Z

L=2

−L=2
d3xhðx; kÞj0ðpxÞ; ð5Þ

where L is the spatial extent. hðx; kÞ ¼ h∞ðx; kÞ=Fðk; LÞ is
evaluated from the BS wave function on the finite volume
ϕðx; kÞ as hðx; kÞ ¼ ðP3

i¼1 ∂2
i þ k2Þϕðx; kÞ. The exponen-

tial factor e−ip·x in Eq. (4) becomes its l ¼ 0 component of
the spherical Bessel function j0ðpxÞ in Eq. (5), as we
consider only the S-wave scattering. Fðk; LÞ is the finite
volume correction of the two-pion state, known as the
Lellouch and Lüscher factor [7]. A sufficient condition of
Eq. (5) is R < L=2 on the finite volume. If the condition is
satisfied and the exponential tail is negligible in the
statistical precision, we can change the range of the
integration from Eq. (4) to Eq. (5), since hðx; kÞ in x>R
does not contribute to both integrations. This condition is
also required in the finite volume method [1,2].
Using Eqs. (2) and (5) at p ¼ k and removing overall

factors including Fðk; LÞ by taking a ratio, we can extract
δðkÞ from hðx; kÞ, i.e., ϕðx; kÞ inside the interaction range.
It is in contrast to the finite volume method, which was
derived from ϕðx; kÞ outside the interaction range [2–4].
We present Eq. (5) can be another method to calculate δðkÞ
and the half-off-shell amplitude.

III. CALCULATION OF SCATTERING
AMPLITUDE ON LATTICE

The I ¼ 2 two-pion BS wave function on the lattice
ϕðx; kÞ is defined by

ϕðx; kÞ ¼ h0jΦðx; tÞjπþπþ; EkieEkt; ð6Þ

where jπþπþ; Eki is a ground state of two pions in the finite
volume and Φðx; tÞ ¼ P

rπ
þðRAþ

1
½x� þ r; tÞπþðr; tÞ with a

pion interpolating operator πþðx; tÞ ¼ d̄ðx; tÞγ5uðx; tÞ. We
perform Aþ

1 projection RAþ
1
½x� to attain an S-wave scatter-

ing state. We assume higher angular momentum scattering
states of l ≥ 4 are negligible compared to the ground state.
ϕðx; kÞ is derived from a pion four-point function in the

center-of-mass frame Cππðx; tÞ, which is given by

Cππðx; jtsink − tsrcjÞ ¼ h0jΦðx; tsinkÞΩðtsrcÞj0i; ð7Þ

where ΩðtÞ ¼ P
x1;x2π

þðx1; tÞπþðx2; tÞ. tsink and tsrc are
the sink and source time slices, respectively. In a large t ¼
jtsink − tsrcj ≫ 1 region, where the ground two-pion con-
tribution dominates Cππðx; tÞ, ϕðx; kÞ can be obtained as

Ckϕðx; kÞ ¼ Cππðx; tÞeEkt; ð8Þ

with a constant Ck.
The reduced BS wave function on the lattice hðx; kÞ is

determined by ϕðx; kÞ as

Ckhðx; kÞ ¼ ðΔþ k2Þ½Ckϕðx; kÞ�; ð9Þ

where ΔfðxÞ ¼ P
3
i¼1ðfðxþ îÞ þ fðx − îÞ − 2fðxÞÞ. The

counterpart of Eq. (5) on the lattice is given by

HLðp; kÞ ¼ −
X
x∈L3

Ckhðx; kÞj0ðpxÞ: ð10Þ

At p ¼ k, we obtain the on-shell amplitude Hðk; kÞ as

Hðk; kÞ ¼ HLðk; kÞ=C00; ð11Þ
where C00 ¼ Ck=Fðk; LÞ.
The conventional finite volume method utilizes two

asymptotic forms of ϕðx; kÞ in x > R [2,4],

Ckϕðx; kÞ ¼ v00Gðx; kÞ ð12Þ

¼ C00eiδðkÞ sin (kxþ δðkÞ)=kxþ � � � ; ð13Þ

where Gðx; kÞ ¼ P
p∈Γe

ix·pðp2 − k2Þ−1=L3 with Γ ¼
fpjp ¼ ð2π=LÞn;n ∈ Z3g being the Green function on
the finite volume L3 with the periodic boundary condition.
v00 and C00 are constants. The dots express terms of the
spherical Bessel function jlðkxÞ of l ≥ 4. We can expand
Gðx; kÞ by jlðkxÞ and l ¼ 0 Neumann function n0ðkxÞ.
Comparing the coefficients of j0ðkxÞ and n0ðkxÞ in the
expanded form of Eq. (12) with those of Eq. (13) yields the
two equations

C00Hðk; kÞ ¼ v00; ð14Þ
k cot δðkÞC00Hðk; kÞ ¼ 4πv00g00ðkÞ; ð15Þ
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where g00ðkÞ ¼
P

p∈Γðp2 − k2Þ−1=L3. Taking a ratio of
these equations gives the formula of the finite volume
method to evaluate the S-wave δðkÞ, k cot δðkÞ ¼ 4πg00ðkÞ.
Using Eq. (14), we will examine the consistency between a
numerical result from Hðk; kÞ and that from the finite
volume method.

IV. SETUP

Our simulation is executed in the quenched lattice QCD.
The simulation setup conforms to Refs. [4,8]. The gauge
action is Iwasaki type [9]. Gauge configurations are
generated at the bare coupling β ¼ 2.334 on the lattice
size of 243 × 64 by the Hybrid Monte Carlo algorithm. The
number of configurations is 200, separated by 100 trajec-
tories. The lattice spacing has been found to be a−1 ¼
1.207 GeV [8]. The quark action is a mean field improved
Clover type [10] with CSW ¼ 1.398. The quark hopping
parameter is κval ¼ 0.1340, corresponding to mπ ¼
0.85755ð25Þ GeV.
We employ a random Zð2Þ source at tsrc spread in the

spatial volume and also in the spin and color spaces to
reduce the calculation cost. We use four random sources at
one time slice and calculate six Cππðx; tÞ from all the
possible combinations of the two quark propagators with
the different random sources. We repeat the calculation
every two time slices on a configuration to increase the
statistics. We also employ a wall source for a check of
source independence of our results. Wall sources are set at
tsrc and tsrc þ 1 to avoid Fierz contamination. The total
number of the wall source points is 16. The quark
propagators are solved with the periodic boundary con-
dition in space and with the Dirichlet boundary condition in
time, which is imposed to be separated by 12 time slices
from tsrc.

V. RESULT

Figure 1 illustrates the result of hðx; kÞ=ϕðxref; kÞ as a
function of x, which is calculated from a ratio of Eq. (9) to
Eq. (8) at xref ¼ ð12; 7; 2Þ. In the figure and the following
analyses, we choose t ¼ 44 forCkϕðx; kÞ in Eq. (8). We use
k2 determined fromEk by a single exponential fit ofCππðtÞ ¼P

xCππðx; tÞwith a fit range of 12 ≤ t ≤ 44. The result of k2

is presented in Table I. In x > 10, hðx; kÞ=ϕðxref ; kÞ
becomes consistent with zero in our statistics, suggesting
the interaction range R ∼ 10 < L=2 ¼ 12. Our calculation
satisfies the sufficient condition to useEq. (5). Our value ofR
is consistent with that in Ref. [4].
HLðk; kÞ is evaluated by performing the spatial summa-

tion in Eq. (10) with p ¼ k. The result by all spatial
summation agrees with that by up to jxj ¼ 10 ∼ R, indicat-
ing the estimate of R is valid.
We also examine whether HLðk; kÞ calculated on the

lattice satisfies the condition of the finite volume method of
Eq. (14). An indicator quantity RðxÞ is defined as

RðxÞ ¼ HLðk; kÞ
Ckϕðx; kÞ

Gðx; kÞ →
x>R

C00Hðk; kÞ
v00Gðx; kÞ

Gðx; kÞ; ð16Þ

where we use Eqs. (11) and (12) in the arrow. Gðx; kÞ is
evaluated using the formula in Appendix B of Ref. [4]. If
Eq. (14) is satisfied, RðxÞ equals unity. The result of RðxÞ is
plotted in Fig. 2. RðxÞ approaches unity in a large x region,
as expected. In x > R ∼ 10, RðxÞ agrees with unity within
2 standard deviations.
tan δðkÞ is evaluated from HLðk; kÞ using the asymptotic

form of Ckϕðx; tÞ in Eq. (13) at a reference point
xref ¼ ð12; 7; 2Þ. We choose xref , examining the size
of the leading l ¼ 4 contribution in the dots terms
by Y40ðRAþ

1
½x=x�Þj4ðkxÞ=ðY00ðRAþ

1
½x=x�Þj0ðkxÞÞ at each

position in x > R, where Ylmðx=xÞ are spherical har-
monics. xref is chosen such that jY40ðRAþ

1
½x=x�Þj4ðkxÞ=

ðY00ðRAþ
1
½x=x�Þj0ðkxÞÞj < 10−6. tan δðkÞ is then given by

tanδðkÞ¼ sinðkxrefÞ
4πxrefCkϕðxref ;kÞ=HLðk;kÞ− cosðkxrefÞ

; ð17Þ

whereHLðk;kÞ=(Ckϕðxref ;kÞ)¼4πxref sinδðkÞ=sin(kxrefþδðkÞ).
In the ratio HLðk; kÞ=(Ckϕðxref ; kÞ), the overall factors of
HLðk; kÞ, C00eiδðkÞ, are canceled. We cannot determine the
phase eiδðkÞ by this method. Correspondingly, the determi-
nation is impossible by the finite volume method.
The scattering length a0 is obtained from tan δðkÞ as

a0=mπ ¼ tan δðkÞ=ðkmπÞ. We omit higher-order terms of
k2. k2 is small enough in our calculation. Our result from
Eq. (17) agrees with that from the finite volume method as
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FIG. 1. hðx; kÞ=ϕðxref ; kÞ with xref ¼ ð12; 7; 2Þ as a function
of x. The inside panel shows the same data with an enlarged scale
in 7 ≤ x ≤ 12.

TABLE I. Results for k2, a0=mπðEkÞ obtained by the finite
volume method and a0=mπðHðk; kÞÞ obtained by Eq. (17).

k2 (GeV2) a0=mπðEkÞ (GeV−2) a0=mπðHðk;kÞÞ (GeV−2)

1.549ð45Þ×10−3 −0.997ð27Þ −0.994ð25Þ
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shown in Table I and the value in Ref. [4]. Those results are
compared in Fig. 3. It is noted ambiguity from the choice of
xref is well below the statistical error. For example, we have
a0=mπ ¼ −1.001ð27Þ with xref ¼ ð10; 4; 4Þ and a0=mπ ¼
−1.006ð27Þ with xref ¼ ð9; 5; 2Þ.
As a check, the largest l ¼ 4 contribution in the dots

terms of Eq. (13), which appears at x ¼ ðL=2; L=2; L=2Þ,
is also estimated. Using this position as xref still leads to a
similar result, a0=mπ ¼ −0.967ð25Þ. It confirms the sys-
tematic error from the l ¼ 4 contribution is not significant
compared to the statistical error.
The analysis using Eq. (16) and the comparison of

a0=mπ conclude HLðk; kÞ calculated on the lattice satisfies
Eq. (14) and gives a δðkÞ consistent with that by the finite
volume method. The uncertainties in the two methods are
also comparable. It should be emphasized that HLðk; kÞ is
calculated using ϕðx; kÞ inside the interaction range, in
contrast to the derivation of the finite volume method and
the analysis of Ref. [4] using ϕðx; kÞ in x > R.
We also evaluate the half-off-shell amplitude Hðp; kÞ

using Eq. (10). Figure 4 presents Hðp; kÞ as a function of

p2 normalized by its on-shell value as HLðp;kÞ
HLðk;kÞ ¼

Hðp;kÞ
Hðk;kÞ.

A clear signal of Hðp; kÞ is obtained. The result decreases
as p2 increases. In the figure, the inelastic threshold of the
two-pion scattering is also plotted. It is smooth at the
threshold, which may be due to the quenched approxima-
tion. While Hðp; kÞ cannot be directly compared with
experiment, it might be an additional input to constrain
parameters of effective models of hadron scatterings as a
supplement to experimental data.
It is noted that the half-off-shell amplitude on the lattice

itself depends on the choice of the operator. The depend-
ence, however, is canceled in a ratio of HLðp; kÞ=HLðk; kÞ.
We numerically confirmed the operator independence of
HLðp; kÞ=HLðk; kÞ ¼ Hðp; kÞ=Hðk; kÞ by the use of wall
sources, in addition to random sources. Both results agree
within errors. If we employ a sink smearing of one of the
pion operators for the BS wave function, an additional
overall factor appears. This additional factor can be
analytically erased [11].
We further attempt to extract information of the scatter-

ing from Hðp; kÞ with two assumptions. We assume that
around p2 ¼ k2 the phase of Hðp; kÞ equals eiδðkÞ, and
∂(Hðp;kÞe−iδðkÞ)=∂p2∼∂(Hðp;pÞe−iδðpÞ)=∂p2. Under the
assumptions, the effective range expansion k cot δðkÞ ¼
a−10 þ rk2 þOðk4Þ leads to an estimate of the effective
range r,

r ¼ −
2k2H0 þ sin2δðkÞ
2k sin δðkÞ cos δðkÞ ; ð18Þ

whereH0 is the slope ofHðp; kÞ=Hðk; kÞwith respect to p2

at p2 ¼ k2. Using our measured data, we estimate
r ¼ −2.64ð41Þ GeV−1, which is not inconsistent with r ¼
−0.3ð8.4Þ GeV−1 using the data of k cot δðkÞ in Ref. [4].
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VI. SUMMARY

We proposed a new method to calculate the scattering
phase shift δðkÞ from the on-shell scattering amplitude on
the lattice HLðk; kÞ obtained with the BS wave function
ϕðx; kÞ inside the interaction range by definition of
quantum field theory. By a simulation of S-wave I ¼ 2
two-pion scattering in the center-of-mass frame, the con-
sistency of our method with the finite volume method was
examined. Our data of RðxÞ defined by Eq. (16) were found
to satisfy the condition in the finite volume method of
Eq. (14) in x > R. Our result of the scattering length a0=mπ

from HLðk; kÞ agrees with the value from the finite volume
method. The consistency concludes our method using
information inside the interaction range can be an alter-
native to the finite volume method using data outside the
interaction range.
We note issues of scaling violation. One is rotational

symmetry breaking of hðx; kÞ. It can be considered as a
scaling violation of HLðk; kÞ. The size of the rotational
symmetry breaking in HLðk; kÞ is estimated by the differ-
ence between HLðk; kÞ with the minimum and maximum
values of hðx; kÞ at each degenerate point of jxj. The
breaking effect is found to be 3%, close to our statistical
error. Another is lattice artifacts of hðx; kÞ at small jxj. The
artifacts are expected to be significant, but suppressed in
HLðk; kÞ. It is clearly understood by the Jacobian factor r2

of Hðp; kÞ in Eq. (5) in spherical coordinates. We noticed
agreement between a0=mπ from Hðk; kÞ and that from the

finite volume method in Fig. 3 indicates each method has a
similar size of the scaling violation. Nevertheless, it is
important future work to perform simulations at a different
value of the lattice spacing for the investigation of the
scaling violation.
We also evaluated the half-off-shell scattering amplitude

HLðp; kÞ by lattice QCD. It might be a supplemental input
to theoretical models of hadrons. We extracted the effective
range from HLðp; kÞ with some assumptions. Although it
was not inconsistent with the result from Ref. [4], our
assumptions still need to be validated.
We remark it is essential to obtain the reduced BS wave

function hðx; kÞ for the on-shell and half-off-shell ampli-
tudes. hðx; kÞ is directly related to the amplitudes HLðp; kÞ
in a simple form of Eq. (10). We may derive similar
relations between the scattering amplitude and the reduced
BS wave function in moving frames and scattering systems
of more than two particles.
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