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We propose a method to calculate scattering amplitudes using the Bethe-Salpeter wave function inside
the interaction range on the lattice. For an exploratory study of this method, we evaluate a scattering length
of I =2 S-wave two pions by the use of the on-shell scattering amplitude. Our result is confirmed to be
consistent with the value obtained from the conventional finite volume method. The half-off-shell scattering

amplitude is also evaluated.
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I. INTRODUCTION

Calculation of hadronic interactions by lattice QCD is an
important direction toward understanding fundamental
properties of hadrons from the first principle of the strong
interaction. In many lattice studies of two hadrons, the
scattering phase shift 5(k) or the scattering length a, was
evaluated using the finite volume method proposed by
Liischer [1,2]. Energy eigenvalues of two hadrons on a
finite volume are related to §(k) in the infinite volume
through a known function. This relation was derived from a
two-particle wave function in (relativistic) quantum
mechanics [2] and also from the Bethe-Salpeter (BS) wave
function in quantum field theory [3,4]. In both cases, the
derivation utilized wave functions outside the interaction
range R of the two particles. In contrast, a relation between
the on-shell scattering amplitude and the BS wave function
inside R was discussed in quantum field theory in the
infinite volume [3-5]. A method using a potential from the
BS wave function was also proposed based on quantum
mechanics [6].

In this paper, extending the quantum field theoretical
discussion in the infinite volume, we propose a method to
calculate the on-shell and half-off-shell scattering ampli-
tudes using the BS wave function inside R on a finite
volume lattice. We perform a simulation in quenched QCD
at the pion mass m, = 0.86 GeV to evaluate the scattering
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amplitudes of the isospin I = 2 S-wave two-pion scattering
in the center-of-mass frame. Using the on-shell amplitude,
we investigate the consistency of our method with the finite
volume method by examining a condition of the finite
volume method and by comparing §(k) directly. We also
demonstrate that the half-off-shell scattering amplitude can
be calculated in a similar way. We attempt to extract
information of the scattering from the half-off-shell scatter-
ing amplitude.

II. FORMULATION

The BS wave function of two pions in the infinite volume
¢ (X; k) is related to the scattering amplitude [3-5],

. dp H(p;k) .
k) = ik-x > px 1
¢oo(x ) € + (271_)3 p2 k2= iee ( )

where H(p;k) = igg‘ M(p;k) with M(p;k) being the
half-off-shell

scattering amplitude defined by the
Lehmann-Symanzik-Zimmermann (LSZ) reduction for-

mula [3,4] and E; = 2y/m2 + k*>. Some overall factors in
the expression for ¢, (x; k) are omitted. We consider only
the S-wave scattering in the center-of-mass frame and
neglect the inelastic scattering contribution. At on-shell
p=k, H(k; k) is written by the scattering phase shift 5(k) as

Ar
H(k;k) = 7” %) sin §(k). (2)

In the following, H(p; k) is called the scattering amplitude
for simplicity, though its normalization differs from
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M(p; k). The reduced BS wave function A, (X; k) is defined
by ¢ (X; k) as in Refs. [4,5],

heo (X3 k) = (i 0r + k2) b (X; k)

- [ Sl @

where we use Eq. (1) in the last equality. It is assumed that
he(x;k) = 0 in x > R except for the exponential tail. R is
called the interaction range. H(p; k) can be obtained by
he(X; k) using the Fourier transformation,

H(p:k) = — /_ ™ Bhy (x: k)X, ()

0

It is noted Eq. (4) at p = k was employed for the relation
between (k) and ¢, (x; k) in x > R in Ref. [4].

The same S-wave amplitude H(p;k) can be obtained
from areduced BS wave function on a finite volume A(x; k)
with periodic boundary conditions as

H(p:k) = —F(k.L) / j PxhxiRi(po). 9

where L is the spatial extent. h(x; k) = ho,(x;k)/F(k,L)is
evaluated from the BS wave function on the finite volume
d(x;k) as h(x; k) = (3.1, 07 + k*)¢p(x; k). The exponen-
tial factor =P in Eq. (4) becomes its / = 0 component of
the spherical Bessel function jy(px) in Eq. (5), as we
consider only the S-wave scattering. F(k, L) is the finite
volume correction of the two-pion state, known as the
Lellouch and Liischer factor [7]. A sufficient condition of
Eq. (5)is R < L/2 on the finite volume. If the condition is
satisfied and the exponential tail is negligible in the
statistical precision, we can change the range of the
integration from Eq. (4) to Eq. (5), since h(x;k) in x>R
does not contribute to both integrations. This condition is
also required in the finite volume method [1,2].

Using Egs. (2) and (5) at p = k and removing overall
factors including F(k, L) by taking a ratio, we can extract
5(k) from h(x; k), i.e., ¢(x; k) inside the interaction range.
It is in contrast to the finite volume method, which was
derived from ¢(x; k) outside the interaction range [2—4].
We present Eq. (5) can be another method to calculate 5(k)
and the half-off-shell amplitude.

III. CALCULATION OF SCATTERING
AMPLITUDE ON LATTICE

The I =2 two-pion BS wave function on the lattice
@(x; k) is defined by

p(x:k) = 0|@(x. 1)|z 7", Ey)et, (6)

where |zt 7", E}) is a ground state of two pions in the finite
volume and ®(x, 1) = > " (Ry+[x] + r,2)x" (r, 1) with a
pion interpolating operator 7" (X, t) = d(x, t)ysu(x, t). We
perform A| projection R At [x] to attain an S-wave scatter-
ing state. We assume higher angular momentum scattering
states of / > 4 are negligible compared to the ground state.
¢(x; k) is derived from a pion four-point function in the
center-of-mass frame C,,(x,t), which is given by

Con(X,

Lgink — tsrc|) = <0|(I)(X’ tsink)g(tsrc)|o>’ (7)

where Q(1) = 3 ¢ o 7 (X), )77 (X, 1). tgi and tg, are
the sink and source time slices, respectively. In a large ¢t =
|tink — fsre| > 1 region, where the ground two-pion con-
tribution dominates C,,(X, 1), ¢(x;k) can be obtained as

Ck()b(X; k) = Cfm(Xv t)eEkt’ (8)

with a constant Cy.
The reduced BS wave function on the lattice h(x; k) is
determined by ¢(x; k) as

Crh(x:k) = (A + I2)[Crep(x: k). ©)

where Af(x) =33 (f(x +1i) + f(x — i) = 2f(x)). The
counterpart of Eq. (5) on the lattice is given by

Hy(pik) = = Cih(x: k) jo(px). (10)

xel’?

At p = k, we obtain the on-shell amplitude H(k; k) as
H(k; k) = Hy(k; k)/Coo, (11)

where Cyg = C/F(k,L).
The conventional finite volume method utilizes two
asymptotic forms of ¢(x;k) in x > R [2,4],

Crp(x; k) = vpoG(x; k) (12)
= Cpoe'®® sin (kx + 8(k)) /kx + - - -, (13)

where  G(x;k) = Y ere™P(p? —k*)7!/L? with T =
{p|p = 2z/L)n,n € Z*} being the Green function on
the finite volume L* with the periodic boundary condition.
vgo and Cy, are constants. The dots express terms of the
spherical Bessel function j;(kx) of [ > 4. We can expand
G(x;k) by jj(kx) and [ =0 Neumann function ng(kx).
Comparing the coefficients of j,(kx) and ny(kx) in the
expanded form of Eq. (12) with those of Eq. (13) yields the
two equations

CooH (ks k) = vgp, (14)
kcot5(k)CooH (ks k) = 4mvgngoo(k), (15)
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where goo(k) = > er(p* —k*)7!/L?. Taking a ratio of
these equations gives the formula of the finite volume
method to evaluate the S-wave §(k), k cot 8(k) = 4mgyy(k).
Using Eq. (14), we will examine the consistency between a
numerical result from H(k;k) and that from the finite
volume method.

IV. SETUP

Our simulation is executed in the quenched lattice QCD.
The simulation setup conforms to Refs. [4,8]. The gauge
action is Iwasaki type [9]. Gauge configurations are
generated at the bare coupling f# = 2.334 on the lattice
size of 243 x 64 by the Hybrid Monte Carlo algorithm. The
number of configurations is 200, separated by 100 trajec-
tories. The lattice spacing has been found to be a~! =
1.207 GeV [8]. The quark action is a mean field improved
Clover type [10] with Cgw = 1.398. The quark hopping
parameter is &,y = 0.1340, corresponding to m, =
0.85755(25) GeV.

We employ a random Z(2) source at . spread in the
spatial volume and also in the spin and color spaces to
reduce the calculation cost. We use four random sources at
one time slice and calculate six C,,(x,f) from all the
possible combinations of the two quark propagators with
the different random sources. We repeat the calculation
every two time slices on a configuration to increase the
statistics. We also employ a wall source for a check of
source independence of our results. Wall sources are set at
ty. and ty. + 1 to avoid Fierz contamination. The total
number of the wall source points is 16. The quark
propagators are solved with the periodic boundary con-
dition in space and with the Dirichlet boundary condition in
time, which is imposed to be separated by 12 time slices
from f..

V. RESULT

Figure 1 illustrates the result of h(X;k)/d(Xf; k) as a
function of x, which is calculated from a ratio of Eq. (9) to
Eq. (8) at X = (12,7,2). In the figure and the following
analyses, we choose ¢ = 44 for Ci¢(x; k) in Eq. (8). We use
k? determined from E;, by a single exponential fitof C ., (¢) =
>« Crur(x, 1) with a fitrange of 12 < ¢ < 44. The result of k*
is presented in Table I. In x> 10, h(x;k)/P(Xpes; k)
becomes consistent with zero in our statistics, suggesting
the interaction range R ~ 10 < L/2 = 12. Our calculation
satisfies the sufficient condition to use Eq. (5). Our value of R
is consistent with that in Ref. [4].

H (k; k) is evaluated by performing the spatial summa-
tion in Eq. (10) with p = k. The result by all spatial
summation agrees with that by up to |x| = 10 ~ R, indicat-
ing the estimate of R is valid.

We also examine whether H; (k; k) calculated on the
lattice satisfies the condition of the finite volume method of
Eq. (14). An indicator quantity R(x) is defined as

0.40 T T -
24% x 64, B =2.334, Cgyy = 1.398
0351
Kyql = 0.13400
0.30 0.0008 : : : :
= 0.25 0.0006 % 4 A
2 020} 0.0004 q 1]
= . 0.0002 ﬁ g
= 0157 0.0000 |-+t 1
X o.10f : -0.0002 11
< °.
0.05r % -0.00047 8 9 10 11 12
0.00 B —
0.055 5 10 15 20 25

FIG. 1. h(x;k)/¢(Xpep; k) with Xf = (12,7,2) as a function
of x. The inside panel shows the same data with an enlarged scale
in7<x<12.

. HL(k; k)

. R CooH (k; k)
= Gy CH)

R
() >R v9oG(X; k)

G(x;k), (16)

where we use Eqgs. (11) and (12) in the arrow. G(X; k) is
evaluated using the formula in Appendix B of Ref. [4]. If
Eq. (14) is satisfied, R(x) equals unity. The result of R(x) is
plotted in Fig. 2. R(x) approaches unity in a large x region,
as expected. In x > R ~ 10, R(x) agrees with unity within
2 standard deviations.

tan 5(k) is evaluated from H (k; k) using the asymptotic
form of Cip(x,t) in Eq. (13) at a reference point
Xt = (12,7,2). We choose X, examining the size
of the leading [ =4 contribution in the dots terms
by Yao(Ra:[x/x])ja(kx)/(Yoo(Ry+ [x/x])jo(kx)) at each
position in x > R, where Y,,(x/x) are spherical har-
monics. X is chosen such that [Yyo(Ry+ [x/x])ja(kx)/

(Yoo(Ras [x/x])jo(kx))| < 107°. tan §(k) is then given by
Sin(eref>

tan5(k) - 477.')Crefck¢(xref; k)/HL (ka k) - Cos(eref) ’ (17)

where H (k;k)/(CrpXer3k)) =4mxopsind (k) / sin (kx e +6(k)).
In the ratio H; (k; k)/(Crd(Xpes; k)), the overall factors of
H, (ki k), Cope®®, are canceled. We cannot determine the
phase ¢X) by this method. Correspondingly, the determi-
nation is impossible by the finite volume method.

The scattering length a is obtained from tan§(k) as
ag/m, = tan 8(k)/(km,). We omit higher-order terms of
k. k* is small enough in our calculation. Our result from
Eq. (17) agrees with that from the finite volume method as

TABLE 1. Results for k*, ay/m,(E;) obtained by the finite
volume method and ay/m,(H(k;k)) obtained by Eq. (17).

K (GeV?)
1.549(45) x 1073

ay/my(Ey) (GeV72) ay/m,(H(k;k)) (GeV~2)
—0.997(27) —0.994(25)
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1.05 \ \ \
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Kyqt = 0.13400
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FIG. 2. R(x) defined in Eq. (16) as a function of x. The dashed
line expresses R(x) = 1.

shown in Table I and the value in Ref. [4]. Those results are
compared in Fig. 3. It is noted ambiguity from the choice of
X is well below the statistical error. For example, we have
ag/m, = —1.001(27) with xs = (10,4,4) and ay/m, =
—1.006(27) with X = (9,5, 2).

As a check, the largest [ = 4 contribution in the dots
terms of Eq. (13), which appears at x = (L/2,L/2,L/2),
is also estimated. Using this position as X still leads to a
similar result, ay/m, = —0.967(25). It confirms the sys-
tematic error from the / = 4 contribution is not significant
compared to the statistical error.

The analysis using Eq. (16) and the comparison of
ag/m,, conclude H; (k; k) calculated on the lattice satisfies
Eq. (14) and gives a 5(k) consistent with that by the finite
volume method. The uncertainties in the two methods are
also comparable. It should be emphasized that H; (k; k) is
calculated using ¢(x;k) inside the interaction range, in
contrast to the derivation of the finite volume method and
the analysis of Ref. [4] using ¢(x; k) in x > R.

We also evaluate the half-off-shell amplitude H(p;k)
using Eq. (10). Figure 4 presents H(p; k) as a function of

-0.80
243 x 64, p = 2.334, Cgy = 1.398
0851 . =0.13400
-0.90 1
i
S 095}
]
)
% <1001
1S
> -1.05F 1
© from H(k;k) —e—
110 !
from Ey
EREL !
from E,(CP-PACS(2005)) 1~
-1.20
FIG. 3. Comparison of scattering lengths ay/m, from H(k; k)

with X, = (12,7,2) (circle) and from the finite volume method
(square), together with the result of Ref. [4] (open square).

1.2 : : :
24% x 64, B = 2.334, Cgy, = 1.398

1.0 Kyal = 0.13400
0.8 \

06 Ep=4m, —

H(p;k) / H(k;k)

%
i}iii
0.4r iifi;
iiii;

i;iih
02f i,

0.0 - . : -
0 0.5 1 15 2 25
p°lGeV?]

FIG. 4. Half-off-shell amplitude H(p; k) normalized by the on-
shell value H(k; k) as a function of p?. The vertical dotted line
denotes the threshold energy of the two-pion scattering.

Hp(pk) _ H(psk)
Hy(kk) — H(kk)"

A clear signal of H(p; k) is obtained. The result decreases
as p? increases. In the figure, the inelastic threshold of the
two-pion scattering is also plotted. It is smooth at the
threshold, which may be due to the quenched approxima-
tion. While H(p;k) cannot be directly compared with
experiment, it might be an additional input to constrain
parameters of effective models of hadron scatterings as a
supplement to experimental data.

It is noted that the half-off-shell amplitude on the lattice
itself depends on the choice of the operator. The depend-
ence, however, is canceled in a ratio of H; (p; k)/H (k; k).
We numerically confirmed the operator independence of
H;(p;k)/H(kik) = H(p;k)/H(k; k) by the use of wall
sources, in addition to random sources. Both results agree
within errors. If we employ a sink smearing of one of the
pion operators for the BS wave function, an additional
overall factor appears. This additional factor can be
analytically erased [11].

We further attempt to extract information of the scatter-
ing from H(p; k) with two assumptions. We assume that
around p*> = k> the phase of H(p:k) equals ¢, and
O(H(p;k)e~®R)) /op* ~I(H (p;p)e~®P)) /Op?. Under the
assumptions, the effective range expansion kcotd(k) =
ay' + rk? + O(k*) leads to an estimate of the effective
range r,

p* normalized by its on-shell value as

2 2H/ in2
o k. +sm5(k)7 (18)
2k sin 6(k) cos 5(k)

where H' is the slope of H(p; k)/H (k; k) with respect to p?
at p> =k> Using our measured data, we estimate
r = —2.64(41) GeV~!, which is not inconsistent with r =
—0.3(8.4) GeV~! using the data of kcot5(k) in Ref. [4].

011501-4



SCATTERING AMPLITUDE FROM BETHE-SALPETER WAVE ...

PHYS. REV. D 98, 011501 (2018)

VI. SUMMARY

We proposed a new method to calculate the scattering
phase shift 5(k) from the on-shell scattering amplitude on
the lattice H; (k;k) obtained with the BS wave function
¢(x;k) inside the interaction range by definition of
quantum field theory. By a simulation of S-wave [ =2
two-pion scattering in the center-of-mass frame, the con-
sistency of our method with the finite volume method was
examined. Our data of R(x) defined by Eq. (16) were found
to satisfy the condition in the finite volume method of
Eq. (14) in x > R. Our result of the scattering length aq/m,
from H; (k; k) agrees with the value from the finite volume
method. The consistency concludes our method using
information inside the interaction range can be an alter-
native to the finite volume method using data outside the
interaction range.

We note issues of scaling violation. One is rotational
symmetry breaking of h(x;k). It can be considered as a
scaling violation of H; (k;k). The size of the rotational
symmetry breaking in H; (k; k) is estimated by the differ-
ence between H; (k; k) with the minimum and maximum
values of h(x;k) at each degenerate point of |x|. The
breaking effect is found to be 3%, close to our statistical
error. Another is lattice artifacts of 4(x; k) at small |x|. The
artifacts are expected to be significant, but suppressed in
H, (k; k). It is clearly understood by the Jacobian factor r?
of H(p; k) in Eq. (5) in spherical coordinates. We noticed
agreement between aq/m, from H(k; k) and that from the

finite volume method in Fig. 3 indicates each method has a
similar size of the scaling violation. Nevertheless, it is
important future work to perform simulations at a different
value of the lattice spacing for the investigation of the
scaling violation.

We also evaluated the half-off-shell scattering amplitude
H (p; k) by lattice QCD. It might be a supplemental input
to theoretical models of hadrons. We extracted the effective
range from H; (p; k) with some assumptions. Although it
was not inconsistent with the result from Ref. [4], our
assumptions still need to be validated.

We remark it is essential to obtain the reduced BS wave
function h(x; k) for the on-shell and half-off-shell ampli-
tudes. h(x; k) is directly related to the amplitudes H; (p; k)
in a simple form of Eq. (10). We may derive similar
relations between the scattering amplitude and the reduced
BS wave function in moving frames and scattering systems
of more than two particles.
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