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Preface  

One of the main hurdles in medicinal chemistry is the presence of the blood-brain 

barrier. This mono-layer of cerebral endothelial cells prevents passage of basically all 

molecules into the brain parenchyma, except for a few low molecular weight lipophilic 

molecules. Small polar molecules and proteins can only cross the blood-brain barrier via 

receptor mediated transcytosis (Figure 1). Most potent drugs, developed for brain and 

central nervous system related diseases, lack the ability to cross the blood-brain barrier. 

Furthermore, since most drugs are hydrophobic they also suffer from low 

bioavailability1. Both hurdles might be tackled by the development of drug formulations 

in the form of nano-carriers. A specific group of nano-carriers are polymeric vesicles or 

polymersomes which have gained much attention over the past 10 years. 

 

 

Figure 1. a) The blood brain barrier is 
formed by a monolayer of cerebral 
endothelial cells, forming a barrier that 
physically separates the blood stream from 
the brain parenchyma. b) Cerebral endo-
thelial cells are connected via tight 
junctions that effectively seal the 
paracellular pathway. Small polar 
molecules and larger proteins can only 
enter the brain by receptor mediated 
transport, specifically designed to regulate 
the microenvironment of the brain. 
Reprinted with permission (Ref. 1) 
 

 

Polymersomes are spherical vesicles that are composed of amphiphilic block 

copolymers. The amphiphilic polymers form a bilayered structure, enclosing a aqueous 

lumen, while the bilayered membrane forms a hydrophobic compartment of 10 – 20 nm 

in thickness2,3 (Figure 2). When the overall structure is regarded the resemblance with 
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liposomes is clear, yet there are also some major differences. Polymersomes are formed 

from amphiphilic block copolymers with a molecular weight of 5-100 kDa, whereas 

liposomes are assembled from phospholipids with an average weight of 500-800 Da. 

The higher molecular weight of the building blocks establishes itself in a lower critical 

micelle concentration, resulting in a more robust and stable membrane. Furthermore, 

the membrane is thicker, which allows for a more efficient storage and transport of 

hydrophobic drugs. These features render polymersomes as potent nonocariers for 

biomedical applications, like (targeted) drug delivery4 and in vivo imaging5. 

 

 

Figure 2. Schematic presentation of 
polymersomes formed from a bilayer of 
amphiphilic block copolymers. The surface 
is tagged with peptides as which mediate 
transport over the blood-brain barrier. 
Furthermore, tracking moieties are 
included for visualization and radio-
isotope labelling. 
 

 

 The research described herein aims at the development of polymersomes as smart 

nano-carriers to target and accommodate transport over the blood-brain barrier (Figure 

2). In order to design such a carrier we need to develop a good understanding of factors 

like size, stability and stealth character that will influence in vivo behaviour. 

Furthermore, a reliable synthetic platform is needed to be able to synthesize 

biocompatible amphiphilic polymers that self-assemble in polymersomes of controlled 

size. These arguments form the basic design criteria of polymersome for biomedical 

applications. In order to target the vesicles to the brain, or any tissue of interest, there is 

also a need to introduce targeting and/or tracking moieties at the periphery. Therefore 

reliable chemistry is essential to modify the periphery of vesicles, while keeping good 

control over the overall stability. Finally, with the chemistry available there is a need for 

efficient and specific targeting moieties, which are still active after they have been 

coupled to the periphery of polymersomes.  
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 In Chapter 16 recent literature on the design and use of polymeric vesicles in 

biomedical application was reviewed. Next, in Chapter 2 the platform chemistry to 

synthesise block copolymers, self-assemble polymersomes of well defined size and 

functionalize the periphery with peptides and fluorescent tracers was developed. In 

Chapter 37 the effect of polymersome size on in vivo circulation was evaluated via the 

quantitative method of radio-isotope labelling. Furthermore these polymersomes were 

applied in SPECT/CT imaging. In Chapter 48, polymersomes tagged with a small peptide 

(G23) that recognizes gangliosides GM1 and GT1b were developed. These vesicles were 

shown to accommodate blood-brain barrier transport both in vitro and in vivo. Next, in 

Chapter 59 a more quantitative study after the biodistribution of G23 tagged 

polymersomes was performed. For that purpose, polymersomes were both targeted and 

labelled with a radio-isotope. 

  In the final two chapters a more fundamental study after the controlled modification 

of the surface topology of polymersomes was performed. In Chapter 610 block 

copolymer analogues were prepared of which the blocks were connected via a 

hydrazone bond. By mixing in this polymer, and applying acidic conditions, it was shown 

that the degree of surface PEGylation can be controlled from 100 to 5 percent. Below 5 

percent PEGylation the colloidal stability was lost in a pH dependent rate. Finally, in 

Chapter 711 polymersomes from hydrazone-coupled block copolymers were shown to 

exchange surface PEG chains between vesicles and the enviroment via the aniline 

catalyzed transimination equilibrium. This method allowed to modify the polymersome-

periphery to form complex (asymmetrically)-functionalized vesicles. 

 

(1) Cecchelli, R.; Berezowski, V.; Lundquist, S.; Culot, M.; Renftel, M.; Dehouck, M. P.; Fenart, L. Nat Rev Drug Discov 2007, 6, 
650. 
(2) Discher, B. M.; Won, Y. Y.; Ege, D. S.; Lee, J. C. M.; Bates, F. S.; Discher, D. E.; Hammer, D. A. Science 1999, 284, 1143. 
(3) Discher, D. E.; Eisenberg, A. Science 2002, 297, 967. 
(4) Ahmed, F.; Pakunlu, R. I.; Srinivas, G.; Brannan, A.; Bates, F.; Klein, M. L.; Minko, T.; Discher, D. E. Mol Pharmaceut 2006, 
3, 340. 
(5) Christian, D. A.; Garbuzenko, O. B.; Minko, T.; Discher, D. E. Macromol Rapid Comm 2010, 31, 135. 
(6) Brinkhuis, R. P.; Rutjes, F. P. J. T.; van Hest, J. C. M. Polym Chem-Uk 2011, 2, 1449. 
(7) Brinkhuis, R. P.; Stojanov, K.; Laverman, P.; Eilander, J.; Zuhorn, I. S.; Rutjes, F. P. J. T.; van Hest, J. C. M. Bioconjugate 
Chemistry 2012, 23, 958. 
(8) Georgieva, J.; Brinkhuis, R. P.; Stojanov, K.; Weijers, C. A. G. M.; Zuilhof, H.; Rutjes, F. P. J. T.; Hoekstra, D.; van Hest, J. C. 
M.; Zuhorn, I. S. Angewandte Chemie int. ed. 2012, 51, 8339. 
(9) Stojanov, K.; Georgieva, J.; Brinkhuis, R. P.; van Hest, J. C. M.; Rutjes, F. P. J. T.; Dierckx, R. A. J. O.; de Vries, E. F. J., Mol. 
Pharm. 2012, 9, 1620. 
(10) Brinkhuis, R. P.; Visser, T. R.; Rutjes, F. P. J. T.; van Hest, J. C. M. Polym Chem-Uk 2011, 2, 550. 
(11) Brinkhuis, R. P.; de Graaf, F.; Borre Hansen, M.; visser, T. R.; Rutjes, F. P. J. T.; van Hest, J. C. M., Polym Chem-UK, 
accepted. 
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Polymeric Vesicles in Biomedical Applications 

 

 

 

 

 

 

 

 

 

 

Polymeric vesicles, or polymersomes, are nano- to micrometer sized polymeric capsules with a bilayered 

membrane. Applications of these vesicles are foreseen in nano medicine, in vivo imaging and drug 

delivery. Such applications put many restrictions on the choice of polymer, the size and the surface of the 

vesicle. In this respect much can be learned and translated to polymersome science from lines of 

research with a longer history of practical knowledge such as liposomal formulation and polymer drug 

conjugation. The dimensions of a vesicle, such as size and shape can be controlled for polymersomes and 

will influence the in vivo circulation time. The surface can be adjusted to induce stealth character, or 

chemically modified to introduce targeting moieties. And last but not least the choice of block 

copolymers - the building blocks of a polymersome - can introduce features like biocompatibility, 

inherent or induced permeability and triggered release. In this Chapter we will discuss the recent 

advances in polymersome science with regard to biomedical applications and will specifically address 

the abovementioned features which affect their biological behaviour 

 

 

 

 

 

 

 

 

 

René P. Brinkhuis, Floris P.J.T. Rutjes and Jan C.M. van Hest, Polymer Chemistry 2011, 2, 1449-1462 
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1.1 Introduction 

Polymeric vesicles, or polymersomes, are nano- to micro- meter-sized polymeric 

capsules with a bilayered membrane which is comprised of amphiphilic block 

copolymers. Although the aggregation behaviour of amphiphilic polymers was 

noticed before1-4, the first systematic study after the formation of polymersomes was 

reported by Discher et al.5. In this paper the name polymersomes was coined, in 

analogy to liposomes. With regard to the bilayer membrane architecture, the 

similarity between polymersomes and liposomes is obvious in the sense that both 

species are composed of a bilayer of amphiphiles enclosing an aqueous compartment. 

There are however also major differences. The building blocks of liposomes are in 

most cases naturally occurring phospholipids with a molecular weight well below 1 

kDa; a polymersome is constructed of amphiphilic block copolymers with a 

molecular weight of up to 100 kDa. This higher molecular weight of the building 

blocks manifests itself in a tougher, less permeable and less fluidic membrane and as 

a result superior physical and chemical stability. With regard to the use of high 

molecular weight building blocks and the resulting robustness of the capsule 

structure one can argue that polymersomes resemble to a certain extent viral 

capsids6-7 and therefore can be interesting candidates for in vivo and cellular 

delivery.  

 

 Amphiphilic block copolymers have not only been found to form vesicular 

structures; in fact, the formation of a bilayered vesicular structure puts quite some 

restrictions on the overall block copolymer composition. Depending on the ratio 

between the hydrophobic and hydrophilic part of the polymer, spherical micelles, 

rods and vesicles have been found to form spontaneously8. The morphology that is 

observed is dependent on the geometry of the amphiphile, which can vary between 

cylindrical and conical depending on the ratio of the hydrophobic and hydrophilic 

segments. For small molecular weight amphiphiles this geometry is captured in the 

dimensionless packing parameter9-10 - depicted in Figure 1 - which to some extent 

can also be translated to polymeric amphiphiles. More intuitively, however, the 

hydrophilic fraction (f) is better suited to predict the expected morphology 6-8. 
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Figure 1. Several structures formed by the self assembly of amphiphilic block copolymers as determined 
by the geometry of the amphiphile. The geometry is captured by the dimensionless packing parameter 
p=V/(a0lc). Reprinted with permission (ref. 10)10. 

Block copolymers with a hydrophilic fraction of more than 45 – 50 percent will 

mostly yield micelles. In the region where f is around 35 ± 10% in many cases 

polymersomes are observed and in case the hydrophilic fraction is less than 25 

percent, inverted structures can be expected. Finally, there is a small region where 

worm-like micelles have been reported, when the hydrophilic fraction is around 50 

percent. Although this basic empirical rule holds quite well in most cases, the exact 

aggregation behaviour can depend strongly on the type of block copolymer and the 

conditions applied.  

 

 Polymersomes have been prepared in a variety of ways. Among them two 

methods seem to be favoured. First of all the “solvent switch” method is broadly 

applied11-12. The block copolymer is dissolved in an organic solvent which is a good 

solvent for both blocks. The organic solvent is diluted with or injected in a non-

solvent of one of the blocks, mostly water or a buffered solution, until the desired 

aggregates are formed. Residual organic solvents are removed by dialysis or are 

allowed to evaporate. One of the major drawbacks is the need of an organic solvent 

which is not always compatible with applications in which bioactive compounds have 

to be encapsulated. Furthermore, traces of the organic solvents tend to stay behind 

which is not desirable for in vivo applications. The second general method is a 
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technique based on rehydration12. A polymer film is cast on a substrate and an 

aqueous solution is used to rehydrate the polymer to form vesicles. Furthermore, 

methods like electro formation, bulk rehydration and rehydration from pre-treated 

substrates have been applied. The choice of the method of formation has a big 

influence on the properties such as size of the obtained vesicles.  

 

 Vesicles are thought to form in a two-step procedure. In an early stage of 

formation a flat bilayer is formed from micelles or polymer clusters, as depicted in 

Figures 2a-b. Thereafter under the influence of a curvature change, and therefore a 

change in packing parameter, this sheet will form a closed structure or a vesicle 13-14. 

This mechanism is depicted in the cartoon presented in Figure 3.  This sequence of 

events leads to statistical encapsulation of compounds dissolved in the water layer, 

but does not provide an explanation for the many fascinating shapes found 

experimentally13. More recent simulation studies show the possibility of an 

alternative, more complex, mechanism in which vesicles do not evolve from the 

closing of a bilayer membrane, but evolve from micelles that grow and change 

morphology14-15. It should be noted that for the second pathway the loading 

efficiency of hydrophilic compounds would be lower compared to the former one 

since there is no closure, and hence encapsulation step involved. Experimentally, 

polymersome formation along path I is supported by Du et al.16 (Figure 2). They were 

able to trap and visualize transition states like micelles and lamellae that eventually 

formed polymersomes by systematically adjusting the solvent polarity and 

chemically locking the structure prior to transmission electron microscope (TEM) 

imaging. Experimental evidence for the second route was found by Adams et al.17 

They showed that indeed poor loading efficiencies for hydrophilic compounds were 

found. These two seemingly contradictive experimental results show that it is 

possible that multiple mechanisms of formation do exist, depending on the exact 

conditions applied14. 
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Figure 2. Several stages of polymersome formation captured by Du and co-workers16 as a function of the 
water/organic solvent ratio. First spheres and rods are formed that transform into lamella which close to 
form polymersomes due to an increase in water content. Reprinted with permission (ref. 16). 

 

Figure 3. Cartoon of polymersome formation along path I as described by Antonietti et al.13. First spheres 
transforming into sheets are formed which close in a second step to form polymersomes. Reprinted with 
permission (ref. 13). 

 The field of polymersome research has been reviewed extensively in the past 

6,10,12,18-25 and often the potential of polymersomes for biomedical applications such 

as smart drug delivery systems, in vivo imaging vehicles or artificial organelles is 

mentioned. Many of these applications involve cell specific interactions and/or 

require non-toxic and tuneable in vivo behaviour, and these criteria put quite some 

restrictions on e.g. the choice of polymer and the polymersome dimensions. In the 

remainder of this chapter we specifically address the factors that affect the use of 

polymersomes in biomedical applications. In the next sections we will focus on 

suitable components for the construction of polymeric vesicles for this specific field 
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of application. We will furthermore address the importance of size, topology, 

tuneable stability and permeability. Finally, a selection of functionalization methods 

will be discussed. In addition we will illustrate these topics with recent research and 

try to extrapolate facts from liposomal research to polymersomes.  

 

1.2 Block Copolymers 

The starting point of formation for any polymersome are the amphiphilic diblock or 

triblock copolymers that are the building blocks of the membrane. More than a 

decade of research into polymeric vesicles not only yielded some understanding 

underlying the formation of block copolymer nanostructures, but also allowed 

researchers to use their full creativity in the synthesis of new amphiphilic polymers. 

This resulted in an extensive library of block copolymers known today to form 

aggregates. For a comprehensive overview of polymers used for polymersome 

formation, one is referred to recent reviews on biohybrid amphiphiles24 and 

synthetic amphiphilic block copolymers10,26. This section will focus on the most 

common types of polymers used in biomedical polymersome research.  

 For biomedical applications it is obligatory to use biodegradable or at least 

biocompatible polymers as building blocks. The field of polymer drug conjugates has 

already a long history of practical knowledge on suitable polymers that are in clinical 

use/evaluation nowadays27-28. These polymers include synthetic polymers such as 

poly(ethylene glycol) (PEG), poly(N-(2-hydroxypropyl)methacrylamide) (pHPMA), 

poly(vinyl pyrrolidone) (PVP) and poly(ethylene-imine) (PEI), but also natural 

polymers like dextran, dextrin and pseudosynthetic polymers such as poly L-

glutamic acid (PGA) and poly(L-lysine) are commonly used. The translation from 

polymer drug conjugates to polymersome-forming amphiphilic block copolymers is 

not always straightforward, but many examples can be found in literature in which 

biocompatible and bio-inspired block copolymers have been employed to form 

polymeric vesicles. 
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1.2.1 Synthetic polymers 

The first well-studied polymersome-forming system was based on the biocompatible 

block copolymer poly (ethylene-oxide)-b-poly (ethyl-ethylene) (PEO-b-PEE)5. 

Although the PEE block is highly biocompatible, it is the PEO block that gives these 

polymersomes useful in vivo characteristics. The water-soluble poly (ethylene-oxide) 

(PEO) or poly (ethylene-glycol) (PEG) is a polymer which is generally known for 

good biocompatibility and excellent in vivo behaviour. Application of a PEG mantle is 

used in liposome formulations to strongly reduce in vivo and in vitro non-specific 

protein adsorption, resulting in stealth behaviour and therefore prolonged 

circulation times29-30. PEG has been coupled to many hydrophobic blocks such as the 

non-degradable polystyrene (PS) and polybutadiene (PBd)31, or biodegradable 

polymers such as polycaprolactone (PCL) or poly(lactic acid) (PLA)32-34. Each 

hydrophobic polymer introduces specifically desired characteristics in the 

polymersome. Polystyrene as an example has a relatively high glass transition 

temperature (Tg) and will yield after removal of the organic solvent a rigid semi-

crystalline membrane. Polybutadiene on the other hand has a Tg well below room 

temperature which will result in a flexible and fluidic membrane allowing for 

extrusion and therefore size control after polymersome formation. Polymersomes of 

polybutadiene-b-polyethylene glycol (PBd-b-PEG) are generally considered as fully 

biocompatible and therefore popular in research towards in vivo applications like 

drug delivery. However, polybutadiene is not biodegradable, at least not on the 

timescale of days. PCL and PLA on the other hand are biodegradable and bio-

compatible and are therefore also often encountered as the hydrophobic block 31-34.  

 Instead of using the neutral and inert PEG block as hydrophilic element, also 

some more functional moieties can be applied. The most straightforward way is to 

introduce ionic character in a block copolymer. In this way the water-soluble PEG 

block was replaced for poly acrylic acid (PAA) to introduce negatively charged acid 

residues35, but also the zwitterionic, phospholipid mimic, poly(2-methacryloyloxy-

ethyl phosphorylcholine) (PMPC) has been applied as the hydrophilic block by Armes 

and co-workers36-38. They furthermore showed that polymersomes with interesting 

pH-dependent properties are obtained if both blocks contain zwitter-ionic or 

ionisable monomers as is the case with vesicles prepared from poly(2-

(diisopropylamino)ethyl methacrylate) (PDPA) as the hydrophobic and PMPC36 as 
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the hydrophilic block. The PDPA block is hydrophobic at a pH above 6.4, but readily 

becomes hydrophilic and protonated below this pH. This results in a sharp transition 

from polymersomes to free dissolved block copolymers upon lowering the pH, which 

can be used as a drug release mechanism.  

 The previous example involved an external stimulus (pH change) to release 

content from the vesicle, but also amphiphilic block copolymers with inherently 

leaky properties have been reported. Polymersomes of polystyrene-b-poly 3-

(isocyano-L-alanyl-aminoethyl) thiophene (PS-PIAT) turned out to be excellent 

candidates for nanoreactors, since these polymersomes are permeable for small 

molecules while large molecules such as enzymes stay trapped inside3, 39. Although 

not fully understood, this permeability is probably a result of the helical rodlike 

secondary structure of the hydrophilic PIAT block, which frustrates the packing of 

the polymers in a closed bilayer.  

 These selected examples already show a few of the many possibilities to alter 

and tune the characteristics of the polymersomes, like robustness, charge and 

permeability. One crucial property however remains biocompatibility and/or 

biodegradability. It is therefore a logical step that many researchers have developed 

amphiphilic block copolymers capable of forming polymersomes which are partly 

based on naturally occurring building blocks such as amino acids, nucleotides and 

carbohydrates. 

 

1.2.2 Bio(hybrid) polymers 

Oligo- and polypeptides are highly versatile and biodegradable polymersome 

building blocks, since their properties can be varied in many different ways. A wide  

variety of secondary structures can be created based on the primary sequence of 

amino acids. By selecting the correct amino acid residues stimulus-responsive 

behaviour is introduced, such as pH dependent charge and hence solubility 40. One of 

the first reports on the formation of vesicular structures from peptide hybrids made 

use of an antibacterial hydrophobic helical peptide, Gramicidin A. By coupling 

Gramicidin A with PEG an amphiphilic block copolymer was obtained41 which readily 

formed a variety of aggregated structures in aqueous solution. Among the obtained 

structures a vesicle-like aggregate was found, which was called a peptosome2,42. 

Since then the name peptosome has been more generally used for peptide-containing 
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polymersomes. This early example involved a hydrophobic peptide which was buried 

under a PEG mantle. However, in most other cases the peptide moiety is the 

hydrophilic part, forming the periphery of the vesicles. This was for example 

demonstrated by Dirks et al.43 who coupled a tripeptide, Gly-Gly-Arg-AMC, via the 

copper-catalysed azide-alkyne Huisgen (3+2) cycloaddition to polystyrene. Even 

more common than the use of oligopeptides is the application of polypeptides as 

building blocks in polymersome-forming block copolymers. Peptides consisting of a 

repetition of the same amino acid, and block copolymers of homopolypeptides can 

nowadays be obtained in a controlled fashion by the polymerisation of N-

carboxyanhydrides (NCA) with a nickel catalyst and an amine initiator44-45. In this 

way PBd was used as the amine functional initiator to polymerize for example PBd-

poly(L-glutamate)46-49 and PBd-poly(L-lysine)50 which both have been extensively 

studied with respect to their aggregation behaviour. These examples involve a 

combination of synthetic polymers and polypeptides, but also block copolymers of 

which both the hydrophobic and the hydrophilic part are composed of polypeptides 

have been designed to form polymersomes.40,51-52 In two recent examples Kimura et 

al. showed the usefulness of peptosomes for in vivo cancer imaging53. They 

constructed peptosomes out of a block copolymer composed of poly(N-

methylglycine) and poly(γ-methyl-L-glutamate) (PMLG) in which a near infrared dye 

was encapsulated. These peptosomes showed good in vivo circulation times and low 

recognition by the reticuloendothelial system RES (blood clearance mostly by liver 

and spleen). 

 

 Another group of naturally occurring building blocks which have recently gained 

more attention are carbohydrates or polysaccharides23,54-56. In natural systems 

saccharides are conjugated to the surface of cells via lipids constituting the cell 

membrane (glycolipids), and they are also found conjugated to proteins 

(glycoproteins). These glycoconjugates play an important role in biological processes 

such as cellular recognition and pathogen infection. In many cases these processes 

are mediated via interactions between saccharides and receptor proteins, called 

lectins. In general lectins have only a low affinity for saccharides, so this needs to be 

compensated by multivalent interactions via the so-called cluster glycoside effect. 

Application of (poly)saccharides in polymersomes as hydrophilic part of block 
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copolymers or as the end group of block copolymer amphiphiles allows for the 

construction of highly functionalised and multivalent vesicle surfaces.  

 Although quite some research has focused on the synthesis of polysaccharide 

block copolymers not many examples have been reported that actually form 

polymersomes23. An example which also demonstrates specific recognition is a fairly 

simple rod-coil amphiphile, tetra(p-phenylene)-block-PEG12-α-D-mannopyranoside57 

This molecule formed small polymersomes which specifically interacted with the pili 

of a specific Escherichia coli bacterial strain as depicted in Figure 4. When the head 

group was replaced for galactose, polymersomes were still formed, but without the 

binding properties. Another example involved a β-cyclodextrin head group coupled 

to PS which also formed vesicles58. The hydrophobic interior of β-cyclodextrin was 

used to attach hydrophobic fluorescent dyes and the adamantane-coupled enzyme 

horse radish peroxidise (HRP) to the surface.  

 

 

Figure 4. Rod coil amphiphile which forms 
small vesicles. The manno-pyranoside 
head group induces recognition and 
binding to the pili of Escherichia coli. 
Replacing this moiety for galactose had no 
influence on the aggregate formation, but 
resulted in loss of recognition57. Reprinted 
with permission (ref. 57). 

 

 Block copolymers comprising polysaccharides such as dextran-b-poly(benzyl-L-

glutamate) (PBLG)54 dextran-b-PS and hyaluronan-b-PBLG59 have also been used for 

vesicle formation. Dextran-b-PS was found to form both micelles and vesicles, 

depending on the PS length. The usefulness of these peptide-carbohydrate hybrid 

polymersomes in drug delivery was nicely demonstrated in a series of recent papers 
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by Lecommandoux et al.60-62 They prepared docetaxel loaded hyaluronan-b-PBLG 

polymersomes and showed both in vivo and in vitro (tumour-) targeting by the 

hyaluronan periphery as well as release and shrinkage of the tumours in animal 

models. Finally, an elegant first example of a thermoresponsive saccharide-

containing block copolymer was reported by Otsuka et al.63. They coupled 

maltoheptaose (mal7) to poly(N-isopropylacrylamide) (PNIPAM) via click chemistry 

to obtain polymersomes. They showed that above the lower critical solution 

temperature (LCST) of PNIPAM polymersomes were spontaneously formed whereas 

below the LCST the assemblies were dissolved again. 

 

1.2.3 Polymeric vesicles with non-bilayer structures 

A group of vesicle-forming polymers exists which don’t yield a bilayer structure. An 

interesting example is the self-assembly into vesicles of ABA or ABC triblock 

copolymers64. Although the overall composition is similar to a vesicle bilayer, namely 

two hydrophilic outer blocks separated by a hydrophobic inner domain, the entire 

structure is a single layered vesicle. By changing the blocks A, B or C one can even 

direct the orientation of the polymers in the membrane, thereby obtaining 

asymmetric membranes that display different functional groups on the inside and 

outside as was elegantly demonstrated by Wolfgang Meier and co-workers. Very 

recently Percec et al.65 reported an in depth investigation into a variety of 

amphiphilic, or Janus dendrimers that formed a variety of aggregates, among them a 

vesicular structure that was named dendrimersomes. A peptidic-dendron 

polymersome was also reported to form polymersome-like structures66. Another 

interesting system comprises the so-called polyion polymer complexes or 

PICsomes67-71. They are based on two polymers with opposite charges that self-

assemble and phase separate into vesicular structures This is an example of a series 

of polymers that recognize each other and form recognition-induced aggregates, so-

called RIP’s72-74. A final example of vesicles that do not exhibit a bilayered membrane 

was developed by Caruso and Möhwald75. They showed that enzymes can be 

entrapped in vesicles that were formed by a layer-by-layer deposition of anionic and 

cationic polymers.  
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1.3 Structural Factors 

For in vivo and biomedical applications of polymersomes it is important to ascertain 

that particles circulate sufficiently long to reach the desired place. This can be 

achieved by protecting the particle from interactions with the immune system. We 

have already mentioned examples of polymers that exhibit such stealth-like 

behaviour which was attributed to the PEG surface of the particles. It should be noted 

however that although PEGylation is a good start to rule out non-specific 

interactions, it is by itself not enough to escape clearance by the RES. Not all factors 

influencing in vivo circulation times have been fully investigated yet, but in case of 

polymersomes, the analogy between polymersomes and liposomes allows for some 

extrapolation.  

 From liposome research it is known that factors like stealth-like behaviour, size 

and shape play an important role76-77. Therefore this section will review how these 

parameters can be controlled. Furthermore, we will highlight research where these 

effects have been observed.  

 

1.3.1 Stealth-like behaviour 

To prolong blood circulation times and prevent recognition by the RES a PEG mantle 

is applied in liposomal formulations by introducing up to ten percent PEGylated 

phospholipids. PEG has very useful characteristics in the sense that it blocks (almost 

all) non-specific protein adsorption and induces no immune response, basically 

giving a vessel stealth characteristics29-30. These stealth liposomes have blood 

circulation half times in the order of 15 hours and will circulate in traceable amounts 

for many days. Discher and co-workers investigated the in vivo fate of polymersomes 

formed from PBd-b-PEG by preparing polymersomes with a fluorescent dye 

entrapped78-79. These polymersomes were inherently hundred percent PEGylated. 

The blood circulation half life was determined by counting fluorescent dots in blood 

samples derived at different time points. Compared to PEGylated liposomes the 

circulation half life appeared even longer and polymersomes could still be found 

after several days. These results show that PEGylated polymersomes also display 

stealth-like behaviour. It should be noted that not only PEG has the useful 

characteristics of reducing interactions with opsonins and preventing clearance by 
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the reticuloendothelial system (RES). Also the zwitterionic polymer PMPC has been 

recognized to reduce the adsorption of opsonins80. Other possibilities include use of 

pHPMA, and oligosaccharides such as cyclodextrin, which might be used since these 

polymers are already under investigation as polymer-conjugated therapeutics27. 

Finally in liposomal formulations poly(oxazoline) conjugates also showed prolonged 

circulation times81. The non-adsorptive character and hydration shell of the 

hydrophilic mantle is obligatory to create stealth-like particles, but it is certainly not 

enough.  

 

1.3.2 Size  

Although not fully investigated for polymeric vesicles it is known from liposome 

science that size has a big influence on blood circulation times, RES recognition, 

biodistribution and the mechanism of cell uptake76,82. Figure 5 shows a literature 

compilation by Harashima et al. on the influence of the size of liposomes on the 

circulation time. What is not clear from this picture is that there is also a lower limit 

for prolonged circulation times. The junctions in vascular endothelium of healthy 

tissue vary depending on the tissue type. In most tissues these openings are below 2-

6 nm, so too small for liposomes and polymersomes to enter. Organs and tissue with 

discontinuous endothelium like the fenestrated endothelium of kidney glomerulus or 

sinusoidal endothelium of the liver and spleen can have pores of 40-60 and up to 150 

nm83. Particles with a size below these values will therefore be excreted or trapped 

within the tissue resulting in clearance from the circulation. It is notable that 

tumours can have discontinuous microvasculature with pore sizes above 100 nm. In 

fact, this is the basis for non targeted delivery to tumours since particles that are 

small enough to enter will accumulate in the tumour. Taking these mechanisms into 

account the optimum size for circulation in the blood stream is expected to be 

around 80-150 nm. It might be expected that a similar trend is valid for 

polymersomes and the polymersome size should be controlled to achieve optimal 

blood circulation half lives. 
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Figure 5. Compilation of literature by 
Harashima et al.76 on the effect of particle 
size on the blood clearance of liposomes. 
Reprinted with permission (ref. 76). 

 For polymersomes the eventual vesicle size can be influenced at different points 

in the process of preparation. The first level to exert influence is on the polymer 

level. For example, it has been shown that there is correlation between amphiphile 

molecular weight and aggregate size84. Furthermore, the polydispersity11 of the block 

copolymer and the ratio between blocks can have an influence on the size 

distribution. 

 One stage further, one can influence the size using different methods of vesicle 

formation85. Rehydration methods and solvent displacement86 or injection87 methods 

have been applied and mostly yield 50 to 800 nanometre-sized polymersomes. On 

the other hand electroformation will yield micrometre-sized giant polymersomes. 

Howse et al.85 recently showed that they were able to use surface-directed 

templating with different mesh surfaces to influence the size of PEO-PBO vesicles. 

They were able to deposit block copolymer domains of predefined size on a grid and 

showed that rehydration from these grids yielded control over polymersome size as 

depicted in Figure 6. Smaller polymer domains yielded smaller polymersomes (5-10 

µm) with in all cases small size distributions. The presence of pH-responsive, 

ionizable groups can also allow control over size during vesicle formation by 

changing the pH or ionic strength49. A certain amount of control over polymersome 

size was shown by Shen et al.88 They were able to influence the vesicle size by 

changing the solvent nature and composition during solvent displacement formation 

of PS-PAA polymersomes. Luo et al.86 showed also that binary organic solvent 

systems can be used to influence size. Furthermore the presence of additives like 

dendrimers89, (homo)polymers11 and surfactants90 have been shown to influence the 

average polymersome size and polydispersity11.  
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Figure 6. Rehydration of amphiphilic block copolymers from a surface template. The dimensions of the 
polymer domain (L) dictate the eventual polymersome size (dmax)85. i) block copolymer domain of 
predefined dimensions, ii) hydration and phase separation, iii) further hydration and lamellae formation, 
iv) expansion, v) detachment, vi) energy minimisation resulting in polymersome formation. Reprinted 
with permission (ref. 85) 

 Finally polymersomes can be resized after they have been formed. In this respect 

the most straightforward way to obtain polymersomes of a predefined size is by 

extrusion. This basically means that a preformed sample of polymersomes is pressed 

through a filter with nanopores79. This procedure has also been proven to be 

applicable on larger scale by the use of hollow nano-fibers91. The only restriction is 

that the polymeric membrane should remain fluidic till the end of the procedure, 

therefore polymers with a low Tg are needed. In the stage after formation it is also 

possible to exert influence on the size via more sophisticated methods than 

extrusion. Eisenberg and co-workers reported that membrane fusion and fission 

driven by a change in dioxane/water content (change of interfacial energy) allowed 

vesicles to grow and shrink reversibly86,88.  

 Another example involves the swelling of the membrane by an external stimulus. 

In this way pH-responsive blocks have been introduced in the corona to trigger size 

change, but also a change in secondary structure of polypeptides has been 

employed46. In a recent example by Yu and Eisenberg92 the formation of so-called 

“breathing vesicles” from PEO-PS-PDEAEMA was reported. By variation of the pH 

they were able to swell and shrink the polymersome (membrane) with a factor of 

~1.9 changing simultaneously the membrane permeability as depicted in  Figure 7. 

This approach shows that a well-chosen balance between solubility and hydration 

will keep the aggregate together, but still allows considerable changes. If this balance 

is not carefully chosen, the polymersome will disassemble into its constituents.  
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Figure 7. Reversible change of the PEG-b-
PS-b-PDEAEMA membrane upon pH 
change. (A) Cryo-TEM images of the vesicle 
wall structure at several pH values. (B) 
Schematic illustration of the presumed 
membrane structure at corresponding pH 
values. Reprinted with permission (ref 92)

 

 

Figure 8. Morphologies possible for 
triblock copolymers as determined 
theoretically by Li et al.93 Reprinted with 
permission (ref. 93). 

1.3.3 Shape 

The influence of shape and topology on in vivo behaviour is not so well studied for 

liposomes and polymersomes. In fact, probably the most illustrative example for the 
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influence of shape in amphiphilic assemblies for in vivo behaviour comes from rod 

like micelles as studied by Geng et al.94 They showed that worm-like micelles, which 

are non spherical in nature, have blood circulation times exceeding those of spherical 

particles like liposomes and polymersomes by far; even if the persistence length at 

the moment of injection is several microns. Micelles or worm-like micelles95-97 do not 

have an aqueous lumen and therefore do not allow for delivery of hydrophilic 

compounds, but also worm-like polymersomes have been observed and described98-

99 that do enable the encapsulation of hydrophilic compounds, and which should 

have similar behaviour.  

 These cylindrical shapes are not the only non-spherical shaped vesicles that have 

been reported. In fact, a realm of non-spherical aggregates is possible13. This has 

already been demonstrated for giant phospholipid vesicles (10-50 um) of which it is 

known that they can transform shape from spherical into a variety of nonspherical 

shapes upon a change in environment100-101. Theoretical studies on triblock 

copolymers by Li et al.93 showed that this transformation should also be possible for 

polymersomes as depicted in the phase diagram in Figure 8.  

 Recently, experiments have been performed in which non-spherical polymeric 

assemblies were created chemically16 or via kinetic entrapment.102 It should 

therefore be possible in the near future to investigate the effect of shapes other than 

rodlike or spherical on in vivo behaviour 

 

1.4 Release and Permeabilisation Mechanisms 

One of the advantages of polymersomes over liposomes is their more robust and 

therefore less leaky membrane, which is very useful for improved circulation times 

and the prevention of uncontrolled release of drugs. However, at one point almost 

each in vivo application involves a disruption step to release the vesicle content or 

make the content accessible. Despite the fact that polymersomes display improved 

stability, many successful examples exist of stimuli-responsive vesicles, which 

release their contents upon action of an external trigger9,20,24. It is also possible to 

achieve permeability control, i.e. controlled pore formation, without complete 

disruption of the vesicular structure. In the next section we will highlight a few 

recent and illustrative examples.  
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1.4.1 Triggered Disruption 

The most straightforward example of a release mechanism is actually degradation of 

the biodegradable polymers of which the vesicle is composed. Polymersomes of PCL-

b-PEG released their cargo due to biodegradation based on (pH driven) hydrolysis of 

the polymers. During this process a transformation change from polymersomes to 

rods and eventually micelles was in some cases observed due to the change in 

hydrophilic fraction (f). By mixing in a stable PBd-b-PEG block copolymer it was 

possible to tune the speed of degradation6,31. Besides hydrolysis disruption based on 

chemical alteration of the block copolymer by oxidation99, or reduction have been 

reported20.  

pH-Triggered release mechanisms which in principle are reversible have also been 

reported. A nice example of a polymersome that can disassemble upon a pH change 

was already encountered in Section 1.2.1. Armes and co-workers used the 

biocompatible zwitterionic PMPC-b-PDPA block copolymer to form polymersomes at 

pH above six. By lowering the pH a sharp transition was observed from vesicles to 

molecularly dissolved polymers due to protonation of the PDPA block. The 

polymersome content was thereby instantaneously released. The driving force for 

polymersome formation is in most cases based on phase separation due to the 

amphiphilic character of the block copolymer. By switching the character of the 

hydrophobic block to hydrophilic it is possible to dissolve the whole polymersome 

and release the content. Recently Kim et al.103 reported a system based on this 

principle. They developed a stimulus-responsive amphiphilic polymer containing 

boronic acid moieties in the hydrophobic domain that, upon increase of pH and in the 

presence of monosaccharides such as D-glucose, became soluble in an aqueous 

environment. Another interesting example was reported by Lecommandoux. They 

prepared polymersomes of a block copolymer comprising two polypeptides, poly-L-

glutamate-b-poly-L-lysine (PGA-b-PLys). By changing the pH they were able to 

switch the solubility of both blocks, effectively flopping the whole membrane104. 

Those examples all involve a change in pH as the trigger, but there are more stimuli 

explored.  

 Also changes in temperature can be used for altering the hydrophilicity of a block 

copolymer20. From literature there are quite some polymers, peptides and proteins 

which demonstrate LCST behaviour as was mentioned before in Section 1.2.2 with 
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the example by Otsuka et al.63. Figure 9 shows another very versatile example based 

on P(DEAEMA98-b-NIPAM392), a so-called “schizophrenic” polymer105-106. This system 

was shown to reversibly dissolve and assemble into polymersomes, as well as 

transform micelles to polymersomes based on either a pH and/or a temperature 

trigger105. Based on a pH-induced conformational change Bellomo et al.40 reported a 

release mechanism for polymersomes composed of a dipeptide block copolymer 

which contained a stable hydrophilic α-helix of PEGylated poly-L-lysine and a 

hydrophobic α-helix of poly(L-leucine0.3-co-L-lysine0.7). Upon lowering the pH the 

alpha-helix of the hydrophobic block transformed into a random coil due to 

protonation of the lysine residues. This conformational change was found to disrupt 

the vesicle, allowing the transport of calcium ions and dyes in and out of the 

polymersome.  

 

 

Figure 9. Mechanism of aggregation and dissolution of schizophrenic vesicles as described by Smith et 
al.105 Reprinted with permission (ref. 105) 

 

Figure 10. Polymersome disruption by 
illuminating with UV light. A fraction of the 
polymeric building blocks is functionalized 
with azobenzene moieties. Illumination 
with light induced a conformational 
change, disrupting the polymersome and 
releasing its content107. Reprinted with 
permission (ref 107) 
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Figure 11. Polymersomes loaded with enzymes in the lumen and porphyrins in the membrane respond to 
light by a morphology change and eventually release of content108. Reprinted with permission (ref. 108) 

 Researchers also have developed methods of disruption, based on external 

stimuli such as ultrasound and light. An interesting system was reported by Mabrouk 

et al.107 as depicted in Figure 10. They described how the incorporation of 

azobenzene moieties allowed for a conformational change in the membrane upon 

illumination with UV light. Their polymersomes were disrupted within a second. 

Figure 11 shows another example of a light-driven vesicle shape transformation and 

release. Robbins et al108 reported that polymersomes formed from PBd-b-PEG with 

porphyrins entrapped in the membrane and proteins in the lumen disrupted in 

response to light. When either the protein or the porphyrin was left out this effect 

was negligible, indicating a synergy between the fluorophore and the encapsulated 

enzyme. 

 

1.4.2 Controlled Permeability 

For some applications a complete disruption of the vesicle is not desired. Rather, the 

polymersome should be semi-permeable. This is for example the case in enzyme 

therapeutics or artificial organelles, in which enzymes are encapsulated in the 

vesicle. The polymersome functions as a protective cage, i.e keeping the enzymes in 

and allowing substrate and products to diffuse in and out of the polymersome. 

Different strategies have been reported to create in a controlled fashion these semi-

permeable or leaky polymersomes. 

An example of an inherently leaky polymersome is based on the earlier mentioned 

PS-b-PIAT block copolymer system. These polymersomes have been used as 

biocatalytic reactors, by encapsulating enzymes in the lumen. It was shown that 

substrate diffused through pores in the membrane, and the encapsulated enzyme 
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was not able to escape, essentially making it a nano reactor with a semi permeable 

membrane39. This line of research was developed further by creating a nano 

reactor109 capable of performing a three-enzyme cascade reaction. The cascade 

scheme is depicted in Figure 12. and shows that one enzyme is entrapped in the 

lumen, a second is captured in the hydrophobic membrane and finally a third enzyme 

is coupled covalently to the surface via clickable anchors. Another system that has 

been reported by Kataoka to assemble a semi-permeable membrane is based on 

oppositely charged block copolypeptides which yield PICsomes71. These PICsomes 

have also been used as biocatalytic nanoreactors. Although these two examples show 

the usefulness of semi-permeable vesicles, in both cases the permeability was not 

tuneable.  

 

 

Figure 12. Polymersome nano-reactor 
performing a three enzyme cascade 
reaction. All three enzymes are associated 
with the PS-PIAT vesicle and leaving out 
one will stop the whole cascade109. 
Reprinted with permission (ref. 109) 

 

 Meier and co-workers followed a bio-inspired approach for the construction of 

semi-permeable vesicles.110 They nicely showed that bacterial transmembrane 

channel proteins OmpF and aquaporin111,112 could be successfully reconstituted into 

the membrane of polymersomes composed of the triblock copolymer poly(2-methyl 

oxazoline)-b-poly(dimethylsiloxane)-b-poly(2-methyloxazoline) (PMOXA-PDMS-

PMOXA), which made these vesicles selectively porous. In nature many 

transmembrane pores have a directed orientation, but upon reconstitution into 

liposomes or polymersomes they tend to adopt a random orientation, basically 

blocking out fifty percent of the channels. By using an asymmetric ABC type of 

triblock copolymer it is possible to form vesicles with either the A or the C block on 

the outside112, effectively constructing an asymmetric membrane as depicted in  

Figure 13. Meier and co-workers reconstituted aquaporin 0 in these membranes and 
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were able to tune the direction of insertion. An elegant approach towards the 

construction of semi-permeable polymersomes113 was the reconstitution of LamB 

protein in PDMS-b-PMOXA polymersomes. This protein was recognized by 

Bacteriophage lambda and used to dock the phage, after which it injected its DNA 

into the polymersome, as nicely captured by TEM imaging in Figure 14.  

  In another example Choi et al.114 showed that it is also possible to reconstitute 

two different proteins, bacteriorhodopsin and F1-ATP-ase, in a polymeric vesicle 

membrane, as depicted in Figure 15. ATP-ase can be regarded as a proton gradient 

driven motor that, while rotating, converts ADP into ATP. The required proton 

gradient is supplied by bacteriorhodopisin, which is activated by a light source. Choi 

and co-workers nicely showed that the enzymes worked together. If no light was 

applied there was no production of ATP. This research is one of the first systems 

reported where a complex biocatalytic process is performed in a polymersome 

nanoreactor.  

 Only few examples of synthetic approaches towards controlled semi-permeable 

polymersomes have been reported. One of the first of these approaches was reported 

by Tsourkas and co-workers115. They designed polymersomes based on PBd-b-PEG 

and mixed in phospholipids, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-choline 

(POPC). After they crosslinked the PBd membrane, POPC was extracted leaving a 

porous vesicle. The same method was applied by exchanging POPC for the 

biodegradable block copolymer poly(caprolactone)-PEG. After crosslinking and 

hydrolysis a highly permeable polymersome was obtained116. Recently, another fully 

synthetic approach to controlled permeable polymersomes was reported by Kim et 

al.117 They used the boronic acid based block copolymers described in Section 1.4.1 

and mixed it in with PS-PEG, which forms a semi-crystalline membrane. Upon 

washing away the boronic acid polymer by applying sugar and base they were able to 

form pores in the membrane of which the size was tuneable by the ratio of boronic 

acid block copolymer and PS-PEG. This procedure could be used in combination with 

the encapsulation of CalB, allowing the substrate to pass the membrane while 

keeping CalB enclosed. They also showed that bigger pores allowed faster diffusion 

of substrate, as determined by the reaction rate.  
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Figure 13. Asymmetric polymersome membranes obtained from ABC triblock copolymers allow for the 
directed reconstitution of transmembrane channels.112 By changing the molecular weight of the A and C 
block either the A or the C block is directed outwards. Reprinted with permission (Ref. 112) 

 

 

 

Figure 14. Schematic and TEM image of a polymersome in which membrane protein LambB is 
reconstituted.113 This membrane protein is recognized by bacteriophage lambda which is shown to dock 
on the polymersome to inject its RNA. Reprinted with permission (ref. 113) 
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Figure 15. Light driven nano reactor. 
Under the influence of light 
bacteriorhodopisin (BR) establishes a 
proton gradient, which is used by ATP-ase 
to produce ATP from ADP 114. Reprinted 
with permission (ref. 114). 

  

 

1.5 Surface Functionality 

PEGylated liposomes are neutral and are considered to be long circulating vesicles, 

with circulation times up to days. When compared to natural systems there is 

however room for improvement. Red blood cells for example circulate up till 100 

days. Their cell surface has an overall negative charge due to the external glycocalyx 

moieties. The effect of surface charge of liposomes has therefore been studied, but 

the general trend is not so obvious and seems to be influenced by the size of the 

liposome, especially in rat and mice studies.76 In rabbits a clear trend was observed 

which was in favour of neutral PEGylated liposomes (t1/2 = 19.3h.), while negative 

and PEGylated negatively charged liposomes showed circulation half times of only 

9.6 and 16.5 hours respectively118. Charge is only one of the possible functionalities 

which affect the interaction of polymersomes with biological systems. Another aspect 

is surface topology. Research on both will be discussed in the next sections  

 

1.5.1 Surface topology 

Christan et al.119 recently reported on the synthesis and in vivo evaluation of 

polymersomes with a red blood cell like surface (i.e. negatively charged surface). 

They prepared polymersomes of PBd-b-PEG with a near infrared dye entrapped, and 
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compared them with polymersomes where a fraction of PBd-b-PAA was introduced 

to obtain a negative surface charge. After 24 hours they showed that polymersomes 

with negative surfaces predominantly accumulated in the liver. Liposomes often are 

covered with up to ten percent of PEG chains that induce stealth character. In general 

it is thought that the conformation of the surface PEG chains has an influence on the 

stealth effect. PEG chains can either adopt a mushroom conformation to cover the full 

surface or a fully stretched conformation depending on the available space. Smart et 

al.120 studied these conformations for polymersomes both theoretically and 

experimentally. For polymersomes it is not so straightforward to reduce the number 

of PEG chains in the corona. Often PEG is a part of the block copolymer, covalently 

linked to the hydrophobic block and needed to form and stabilize the polymersome 

in solution. By the introduction of a hydrazone bond between PS and PEG (PS-Hz-

PEG) He et al.121 showed that polymersomes constructed of this polymer were able to 

shed off their PEG mantle by adjusting the pH. Brinkhuis et al.122 (Chapter 6) used 

this concept on PBd-Hz-PEG vesicles and systematically mixed in a non-hydrolysable 

analogue. They showed that after vesicle formation the number of PEG chains could 

be reduced to five percent without losing colloidal stability. This is already an 

example where the surface structure is adapted, but more complex surface 

topologies have also been reported, involving domain formation. 

 In liposomes it is possible to create surface domains via micro-phase separation 

either assisted or not assisted by the addition of ions123. This domain formation was 

recently also described in polymersomes124. The effect of more complex surface 

topologies on cell interactions was shown by Battaglia et al.125. They were able to 

create domains within the polymersome surface by mixing different ratios of two 

triblock copolymers based on PMPC. They nicely showed how the ratio of polymers 

influenced the size and number of domains present in their polymersomes as 

depicted in Figure 16. Furthermore, this figure indicates how the cellular uptake is 

influenced by the surface topology and size of these patchy polymersomes, pointing 

out the importance of surface topology. 
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Figure 16. a)Effect of the ratio of PMPC-PDPA and PEG-PDPA on the domain size of patchy polymersomes. 
b) the number and size of domains influence the cell binding and uptake of patchy polymersomes125. 
Reprinted with permission (ref 125). 

1.5.2 Surface functionalization 

In many biomedical applications reported thus far, such as in vivo imaging, 

polymersomes have been used which contained a functional content, e.g. near 

infrared fluorescent dyes53,119,126 and MRI contrast agents115-116, but which did not 

have any surface functionality. In fact, they were mostly designed for prolonged in 

vivo circulation times, which means that they were predominantly PEGylated. 

However, for imaging and drug delivery it might be desirable to functionalize the 
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periphery with ligands or moieties that allow (specific) recognition. In principle two 

approaches can be followed for this purpose. In the first method the functional group 

is attached to the polymer prior to vesicle formation. One of the first examples of this 

approach was the preparation of a functionalized polymersome for cellular delivery 

via the conjugation of the cell penetrating peptide Tat to PBd-b-PEG. After the 

polymersomes were formed they showed good cellular uptake and were able to 

deliver a near infrared dye loaded polymersome to dendritic cells126. However this 

approach is not always trivial. If the functionality that needs to be introduced is too 

hydrophobic, the moiety might fold back in the membrane upon polymersome 

formation, reducing its availability. Furthermore, if bigger moieties need to be 

introduced, this will put quite some restrictions on the preparation methods and also 

the expected behaviour of the amphiphiles. Therefore researchers have also 

developed a second approach which entails post functionalization of polymersomes 

either via covalent or via strong non-covalent interactions, as recently reviewed by 

Meier and co-workers.25 

 In many cases non-covalent interactions are reversible and this can be useful, but 

also makes the system less robust. A non-covalent interaction that is almost as strong 

as a chemical bond is the interaction between biotin and streptavidin127. Hammer 

and co-workers128 used polymersomes of PBD-B-PEG end-functionalized with biotin 

(actually biocytin) to study the adhesiveness of these polymersomes to streptavidin, 

both surface immobilized and free in solution. They showed that when biotin was 

attached to a longer PEG chain than the non-functionalized membrane polymers 

there was a difference in adhesive properties. When biotin sticks out of the 

membrane the adhesion to immobilized streptavidin increased whereas in solution 

no difference was found. The group of Meier published a series of papers where they 

used biotin-functional polymers to adhere polymersomes to streptavidin129-130. In 

one example131 they used a double biotinylated triblock copolymer PMOXA-PDMS-

PMOXA to adhere biotinylated ligands to the surface. In this case streptavidin with 

four binding sites fulfilled the function of effectively connecting the polymersome 

and targeting ligand. The fact that streptavidin has four binding sites also puts some 

restrictions on its applicability. If the concentration of streptavidin becomes too high 

crosslinking of polymersomes will become dominant and bigger aggregates will form. 

The interaction of cyclodextrin and adamantane is another example of a host-guest 
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pair that strongly interacts and of which one of the binding partners can be easily 

immobilized on the surface of a polymeric membrane58,132  

 An interesting, strong, metal ion complexation that is often used in protein 

science to purify proteins from a cell lysate is the nickel–NTA interaction with 

histidine-tags. The group of Meier showed two133-134 examples where they 

immobilized the NTA ligand on the surface of PBD-B-PEG polymersomes. They 

demonstrated to be able to complex both green fluorescent protein (GFP) and bone 

morphogenetic protein (BMP) via their His-tags on the polymersome surface. 

 

 Functional moieties have also been attached covalently to premade 

polymersomes. However, there are some restrictions to the chemistry involved. In 

most cases polymersomes are formed and used in an aqueous environment, so the 

chemistry should be applicable in water and be selective. A recent report 135 on the 

immobilisation of polymersomes on a substrate exploited peripheral aldehydes to 

form an imine bond, which is in principle reversible. An irreversible bond that can be 

formed and is common in bio-conjugation techniques is the amide bond. Carboxylic 

acids present on the periphery of polymersomes were activated as NHS esters33 

which allowed the attachment of several proteins via available amine residues. 

Another coupling strategy adopted from bioconjugation is the use of the maleimide 

functionality. Maleimides readily react with thiols which can be made available in a 

controlled fashion in both peptides and proteins by the introduction of a cysteine 

residue. In this way Pang et al. 136 showed how they were able to couple mouse-anti-

rat monoclonal antibodies for brain delivery in rats to the surface of polymersomes.  

 As depicted in Figure 17 Opsteen et al.137 reported the use of the copper-

catalysed (2+3) Huisgen cycloaddition to immobilise fluorescent dansyl, GFP and 

biotin on the surface of azide end-functional PS-PAA vesicles. PS-PAA was easily 

synthesised via ATRP and the introduction of the azide moiety was achieved by 

substitution of the bromine end group present after ATRP. However, not all block 

copolymers allow for easy modification. Therefore, van Dongen et al. 138 adopted a 

strategy in which they mixed in up to ten percent of an acetylene-functional PS-PEG 

in their PS-PIAT polymersomes. These so-called anchors allowed for the 

immobilisation of enzymes on the vesicle surface. In order to steer away from the 

toxic Cu catalyst, in recent years also strain-promoted copper-free click reactions 
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have been developed139. Other click strategies have also been adopted. Very recently 

Petersen et al.140 introduced the vinyl sulfone moiety in polymersomes. This moiety 

also reacts fast and selective with thiols. They showed how via this method RGD 

peptides could be coupled on the periphery of their poly(methyl caprolactone)-b-PEG 

polymersomes.   

  

 

 

Figure 17. Surface functionalization of 
polymersomes assembled from PS-PAA-N3 

with molecular probes via click chemistry. 
The same methodology has been applied 
to immobilize proteins, e.g. green 
fluorescent protein137. Reprinted with 
permission (ref 137) 

 

 

 Besides the use of surface functionalization to improve drug delivery or in vivo 

imaging, it has been employed to improve on the cellular uptake of the polymersome 

nanoreactors as discussed in section 4.2. 

  A first report of such an artificial organelle inside a cell was provided by Ben-

Haim et al.141. They showed how PMOXA-PDMS-PMOXA polymersomes functionalized 

with oligonucleotide polyguanylic acid (polyG) are efficiently recognized by 

macrophages and engulfed. A selection of other cell types did not show significant 

cell uptake, underlining the specificity for macrophages. After assessing the fate and 

distribution of the polymersomes inside the macrophages they loaded the newly 

constructed organelle with trypsin, an intestinal protease, and delivered it to the cell. 

As a traceable substrate they chose the hydrophobic tripeptide serine protease 

specific substrate BZiPAR (bis-(CBZ-Ile-Pro-Arg)-R110), which can diffuse passively 

through both cell membranes and the polymeric membrane. First they blocked the 

cell’s own protease to prevent false positives. After the substrate reached the 
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polymersome loaded trypsin in the cell, the substrate was converted to release the 

coupled Rhodamine effectively making the cells fluorescent.  

 In a more recent example van Dongen, Verdurmen et al.139 used the inherently 

semi-permeable polymersome based on PS-PIAT to construct an artificial organelle. 

They ligated the cell penetrating peptide Tat to the surface of their polymersomes to 

induce cellular uptake by HeLa cells. The enzyme horseradish peroxidase (HRP), 

which was encapsulated in the polymersome, subsequently catalysed the oxidation of 

compound 3,3’,5,5’-tetramethylbenzidine (TMB) by hydrogen peroxide. The 

oxidation product of TMB was easily detected and showed good conversion inside 

the cell. This model reaction was used to demonstrate that the artificial organelle 

was capable of neutralizing oxidative species in a cellular environment.  

 

1.6 Conclusion 

Polymersomes are new versatile carriers that have high potential for in vivo imaging and 

nano therapeutics. Although quite different from liposomes general aspects known from 

liposomal science can be used to design polymersomes with specific functions. Control 

can be exerted over size, shape, surface function and topology, which will influence the 

in vivo circulation time and therefore the applicability of these nano-carriers. A large 

variety of examples can nowadays be found in literature that show how polymersome 

research has caught up with liposomal science in the past decade and in many cases 

adds extra dimensions to what is possible. 
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In this chapter we describe the synthesis of block copolymers of polybutadiene-triazole-poly(ethylene glycol), 

which form the basis of Chapters 3, 4 and 5, via a copper catalyzed “click” approach. We introduce a variety 

of different end functionalities at the poly(ethylene glycol) block, while keeping the polybutadiene block 

constant. Secondly, we show in this chapter that polymersomes of polybutadiene-triazole-poly(ethylene 

glycol) are readily formed, and sized down, via either the solvent switch or rehydration method. The latter 

allows for straightforward loading of hydrophobic drugs in the membrane. 

Finally, polymersomes were formed and tagged with a fluorescent dye and the cell penetrating Tat-peptide to 

illustrate the self assembly of polymeric vesicles and the surface functionalization with peptides. Bare 

polymersomes hardly showed binding to a monolayer of hCMEC/D3 cells, whereas polymersomes conjugated 

with Tat to the periphery showed good association with this cell line. 
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2.1 Introduction 

Polymersomes, or polymeric vesicles, have large potential for use in biomedical 

applications1 as was discussed in depth in Chapter 1. The basic building blocks of 

polymersomes are amphiphilic block copolymers2. In order to form a bilayer vesicular 

structure the hydrophilic block should constitute approximately 25 percent of the block 

copolymer amphiphile. For imaging and targeting applications, it is obligatory to 

introduce functional handles in the polymeric vesicles to attach tracers or targeting 

moieties3. Therefore a set of amphiphilic block copolymers is required with a variety of 

functionalities.  

 Throughout this thesis we chose to work with the amphiphilic block copolymer of 

1,2-polybutadiene-block-poly(ethylene glycol) (PBd-b-PEG) to form polymeric vesicles. 

This choice was made mainly for three reasons. First of all, this block copolymer is 

generally considered to be biocompatible and has been reported to readily form 

polymersomes within a relatively large experimental window4. Secondly, the 

poly(ethylene glycol) block covering the periphery is known to introduce stealth 

characteristics and is therefore preventing all non-specific interactions with living cells 

and bio(macro)molecules5. Finally, 1,2-polybutadiene is a hydrophobic polymer with a 

glass transition temperature well below room temperature. Therefore the membrane 

forming the polymersome is relatively fluidic and dynamic in nature. This allows 

polymersomes to be resized to a desired average particle size by means of extrusion and 

ultrasound. A low glass transition temperature also allows polymersomes to be formed 

via rehydration in addition to the solvent switch method6. Formation of polymersomes 

via rehydration will yield relatively large polymersomes – which can be downsized - and 

is anticipated to allow the encapsulation of hydrophilic drugs in the lumen.  

 

Synthetic approach 

We chose to adopt a modular approach to synthesize block copolymers of PBd-b-PEG 

based on the copper catalyzed (2+3) cycloaddition7 of azides and alkynes as depicted in 

Scheme 1. Both polymer blocks are connected via a triazole moiety, resulting in 

polybutadiene-triazole-poly(ethylene glycol). The main advantage of this approach is the 

possibility to synthesize a set of block copolymers with different end groups, starting 

from a single batch of polybutadiene. Thus only the poly(ethylene glycol) (PEG) block 

has to be modified in order to access end-functional or higher molecular weight 
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analogues. As shown in Scheme 1 we aimed for the synthesis of PBd66-b-PEG22 in 

combination with a maleimide or amine functional PEG44 analogue. 

 

 

Scheme 1. Synthetic overview to amphiphilic block copolymers of PBd-b-PEG (1-3) with different end 
functionalities. Polymer 1 is inert and forms the basic building block for polymersome formation. Block 
copolymer 2 bears an amine end group to allow conjugation with isothiocyanate derivatives of e.g. 
fluorescein. Finally, polymer 3 is maleimide end-functionalized to allow for conjugation with cysteine 
containing peptides. 

In this chapter we describe the synthesis of the amphiphilic block copolymer PBd-b-PEG, 

as well as the amine and maleimide end-functional analogues. We show that this block 

copolymer easily forms resizable polymersomes, either via the solvent switch method or 

via rehydration. Furthermore, we demonstrate that conjugation of peptides to the 

surface can be achieved and that in the case of Tat-peptides cell adhesion is induced. The 

experimental procedures also serve as an experimental platform for the biofunctional 

systems described in Chapters 3-5. 
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2.2 Results and Discussion 

2.2.1 Block copolymer synthesis 

Polybutadiene is synthesized via anionic polymerization of 1,3-butadiene8. The choice of 

solvent in the polymerization has a large influence on the reactivity of the monomers. 

Propagation in THF will mainly yield 1,2-polybutadiene, while propagation in e.g. 

hexane will yield mainly 1,4-polybutadiene as reported by Kalnin’sh and Panarin9. Since 

we chose to adopt a modular approach, we need to introduce a functional end-group. 

Three methods exist for the introduction of functional groups in anionic polymerizations 

as was summarized by Hirao and Hayashi10. One can either (i) start with a protected 

functional group as the initiator, (ii) polymerize monomers with a protected functional 

group, or the strategy we adopted (iii) terminate the living polymer with a protected 

functional group.  

 The polymerizations of 1,3-butadiene were straightforward and could be easily 

followed by the colour of the reaction mixture. After addition of butyllithium at -78 °C 

the colour changed from yellow to dark orange, and turned to pale yellow after all 

monomer was consumed. At that point, the polymerization was terminated with 1-

(trimethylsilyl)propargyl bromide to obtain alkyne end-functional PBd. The product was 

analyzed by means of size exclusion chromatography (SEC) as depicted in Figure 1. The 

product showed a double molecular weight distribution which is a phenomenon 

previously observed and explained by Tohyama et al.11 During termination fast halogen-

metal exchange between the living polymer and terminating molecule occurs as a side 

reaction, after which the living polymer chain can react with the halogenated polymer 

chain via a SN2’ mechanism. The double molecular weight polymer therefore does not 

contain any functional group and is not reactive toward azides. Furthermore excess of 

PBd is easily removed via column chromatography after PBd-b-PEG is formed as shown 

in the SEC traces in Figures 1 and 2 for the formation of polymer 1a.  

 Poly(ethylene glycol) is a frequently used hydrophilic polymer and commercially 

available in a variety of different lengths. We purchased poly(ethylene glycol) (PEG) 

with a molecular weight of 1 kg/mol and poly(ethylene glycol) monomethyl ether 

(mPEG) with molecular weights of 1 and 2 kg/mol. The synthesis of the mono-azide 

functionalized polymers 7a-b proceeded straightforward using mesylation and 
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subsequent nucleophilic substitution by azides following previously reported 

procedures12.  

 

 

Figure 1. SEC traces for the synthesis of 1a starting from polybutadiene (5) and PEG derivative 7a. As can 
be seen polybutadiene shows a bimodal distribution after polymerization, which does however not 
interfere in the synthesis of 1a 

 

Figure 2. The non reactivity of the dimeric polybutadiene polymerization by-product was further 
illustrated by analyzing the silica column waste fraction (dashed line). It mainly contains the higher 
molecular weight polybutadiene, while the lower molecular weight polybutadiene in 5 (solid line) is 
consumed to form the desired block copolymers. 

Starting from PEG with a molecular weight of 1 kg/mol we synthesized the hetero 

bifunctional derivative 8, which formed the precursor for compounds 9 and 10. First, an 

azide and carboxylic acid were introduced to obtain a statistical mixture of the diacid 

(25%), diazide (25%) and desired compound 8 (50%). The three products were 

separated on a silica column to isolate α-azido ω-carboxy poly(ethylene glycol) (8). In 

the infrared spectrum of 8 (Figure 3), the presence of an azide is clearly visible as shown 

by the absorption around 2100 cm-1. The carbonyl stretch of the carboxylic acid residue 
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shows an absorption around 1650 cm-1. In addition, in the 1H-NMR spectrum the two 

protons next to the azide (triplet at 3.39 ppm) and the two protons next to the 

carboxylic acid (singlet at 3.98 ppm) are clearly visible and integrate in a 2:2 ratio. 

 The amine functionality of 10 was introduced in a two step procedure. First, the 

methyl ester derivative 19 was formed, after which 1,2 diaminoethane was coupled via a 

nucleophilic acyl substitution. These two conversions were quantitative and can be 

visualized by analyzing the 1H-NMR spectrum showing a clear shift of the singlet of the 

methylene group adjacent to the carbonyl.  

 

  

Figure 3. Left) Indicative infrared absorptions of 8 (dashed) compared to PEG (solid) PEG derivative 8 
contains both an azide (2100 cm-1) signal as well as the carbonyl stretch of the carboxylic acid (1650 cm-1). 
Right) Indicative proton NMR shifts (CDCl3) of 8 contains a triplet at 3.38 ppm originating from the 
methylene next to the azide moiety, a broad signal originating from the backbone and finally a singlet at 
3.98 ppm originating from the methylene next to the carboxylic acid function. 

The PBd and PEG blocks were coupled via the copper catalyzed azide/alkyne (3+2) 

cycloaddition, which is often referred to as “click reaction”7. The use of this click reaction 

to form block copolymers has been described in detail by Opsteen et al.12-13 The reaction 

was performed under argon with a twofold excess of polybutadiene to ensure that all 

PEG was coupled to PBd. After the coupling reaction, the excess of PBd – along with the 

double molecular weight by-product - was removed via silica gel column 

chromatography. Eluting with dichloromethane, polymers 1, 2 and 11 had an Rf value of 

0 compared to 1 for PBd (5). After the excess of PBd had been eluted, polymers 1, 2 and 

11 were eluted with 8% methanol in dichloromethane. The SEC traces associated with 

the standard block copolymer 1a are shown in Figures 1 and 2.  
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Via this methodology three types of block copolymers were obtained. One without a 

functional handle (1a-b), which served as a basic building block for polymersome 

formation, a second one with an amine end function (2) allowing for fast labelling with 

isothiocyanate probes to visualize polymersomes. Finally, a carboxylic acid end 

functional block copolymer (11) was synthesized. Next, polymer 11 was coupled to 

maleimide derivative 1214 via a carbodiimide mediated coupling to obtain the 

maleimide end functional block copolymer 3. This maleimide functional polymer served 

as scaffold to conjugate peptides, enzymes and antibodies to the polymersome 

periphery by means of thiol-maleimide coupling15. 

 

2.2.2 Polymersome formation and functionalization 

Polymersomes have been reported to form in a variety of ways. Of all reported methods, 

the solvent switch method (and variations thereof) and the rehydration method are 

most often applied6. In the solvent switch method the amphiphilic block copolymer is 

dissolved in a solvent suitable for both blocks, after which aggregation is induced by 

dilution of the polymer solution with a poor solvent for one of the blocks, in most cases 

an aqueous buffer. The rehydration method generally yields relatively large 

polymersomes of up to several micrometers. In this technique first a thin, thoroughly 

dried block copolymer film is formed by coating a block copolymer solution onto a glass 

or Teflon substrate. Polymeric vesicles are formed by rehydrating the film in aqueous 

buffer, which allows polymeric vesicles to bubble off the polymer film into the solution.  

 

First the rehydration method was used to form polymersomes of polymer 1a without 

any additional surface functionalities. To visualize the polymersome membrane, 0.01 

weight% of the hydrophobic and fluorescent dye Nile-Red was dissolved in 1 mL 

chloroform along with 1 mg of polymer 1a. While fast rotating the chloroform was 

removed under reduced pressure to obtain a thin polymer film on the inside of a glass 

vial, which was dried thoroughly for an additional hour under reduced pressure (5 

mbar). Polymeric vesicles were formed by the addition of 3 mL THF:MilliQ (1:3), while 

the sample was rotated at atmospheric pressure. After 15 minutes the THF was removed 

to obtain polymersomes in MilliQ. The membranes of the vesicles were visualized by 

means of confocal laser scanning microscopy (CLSM) as depicted in Figure 4. 
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Figure 4. Several CLSM pictures of giant polymersomes prepared via the rehydration method. The 
membrane was loaded with 1 w% of the hydrophobic fluorescent dye Nile-Red. 

 

Figure 5. Top left) DLS results of polymersomes formed via rehydration with the drug C1 encapsulated 
both before (solid) and after (dashed) the sample was resized by ultrasound treatment. Top right) DLS 
analysis of polymersomes formed via the solvent switch method (long dashed), which were downsized by 
means of extrusion; 200 nm (dash-dotted) and 100 nm (solid). Bottom left) molecular structure of 
hydrophobic model drug C1. Bottom right) TEM image of a dried polymersome sample formed via solvent 
switch of 1a and extruded through 200 nm membranes (bar is 200 nm).  
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Analogous to the encapsulation of Nile-Red, we also encapsulated 1 w% of the 

hydrophobic model drug C1 in the membrane (Figure 5). The polymersome size 

distribution was analyzed directly after rehydration by means of dynamic light 

scattering (DLS) as depicted in Figure 5. Since for most biomedical applications vesicles 

in the micrometer size regime are too large, we reduced the size of these drug loaded 

vesicles by treating them with ultrasound, prior to removal of THF. The resulting 

vesicles showed a particle size distribution around 90 nm. The encapsulation efficiency 

of C1 was 90 percent and stable for at least 5 days as was measured by means of HPLC 

analogous to the procedure reported by van Rooy et al.16 for this compound.  

 Intrinsically smaller polymeric vesicles were obtained upon forming polymersomes 

via the solvent switch method as was deduced from the DLS measurements depicted in 

Figure 5 (right panel). Polymersomes were formed by dissolving 10 mg of polymer 1a in 

1 mL THF, after which 3 mL of MilliQ was added slowly to form the polymersomes. The 

initial size was around 500 nm and was downsized to 200 and 100 nm by means of 

extrusion through membranes with predefined sizes as depicted in Figure 5. 

Transmission electron microscope (TEM) pictures were obtained from the 200 nm 

samples (Figure 5, bottom) and showed polymersomes characterized by a single 

membrane of approximately 12-18 nm17. 

 

2.2.3 Surface functionalization and cell adhesion  

In the preceding paragraphs, the synthesis of polymers and the methods to form 

polymersomes were described and illustrated. All polymersome samples described thus 

far, however, did not contain any functionalities coupled to the periphery. As noted in 

the first section, we chose PEG as the hydrophilic polymer since it is known to prevent 

all interactions with the environment. Therefore polymersomes consisting of polymers 

1a-b were not expected to show any interactions both in vitro and in vivo. In order to 

induce (specific) interactions of polymersomes the periphery should be functionalized 

with a suitable ligand.  

 To illustrate that interactions with living cells can be induced in vitro, we prepared a 

set of polymersomes according to the solvent switch procedure. This time, however, we 

partially labelled the amine end functional polymer 2 with fluorescein isothiocyanate 

(FITC) and mixed it in for 10 percent. The maleimide end functional polymer 3 was also 

mixed in for 10 percent, so that the standard polymer 1a made up 80 percent of the 
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polymer (10 mg polymer in total in 1 mL of THF). Polymersomes were formed by the 

addition of 3 mL phosphate buffered saline (1xPBS) and extruded through a 200 nm 

membrane to obtain polymersomes of 200 nm and a PDI of 0.12. The remainder of THF 

was removed by running the sample over a Sephadex G200 column after which the 

combined opaque polymersome fractions were diluted to 10 mL (1 mg polymer/mL 

PBS). 

 

 

Figure 6. CLSM images of a monolayer of hCMEC/D3 cells, incubated with fluorescent polymersomes (bar 
is 20 µm). Polymeric vesicles which are not functionalized with peptides only show limited association 
with the cell monolayer (left), whereas polymersomes with Tat-peptide on the surface show high 
association with these cells.  

Tat-peptide18 was synthesized by standard Fmoc chemistry19 with an additional 

cysteine added to the C-terminus to allow conjugation to the peripheral maleimide of 

polymersomes. To reduce possible Cys-Cys dimmers of the peptide, 1 mg of peptide 

(excess) was dissolved in 0.25 mL PBS together with 0.5 mg of (tris(2-

carboxyethyl)phosphine (TCEP). After 15 minutes the peptide solution was added to 1.5 

mL of the polymersome solution and allowed to couple for 1 hour. The excess of TCEP 

and Tat-peptide were removed by dialysis against PBS for 24 hours, after which both the 

polymersomes without and with Tat-peptide were separately added to the medium of a 

monolayer of hCMEC/D320 cells grown on a transwell filter (for details on this specific 

cell type and assay, see Chapter 4). The cells were fixed and visualized by CLSM, 

selectively exciting the fluorescein label on the polymersomes. Comparison of the 

fluorescent images (Figure 6) shows that the polymersomes without any targeting 

moiety do not interact with the cell layer, whereas the Tat-functionalized polymersomes 
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strongly interact with the cells. This experiment therefore clearly demonstrates that 

polymersomes of 1 indeed display stealth characteristics toward these cells and that the 

chemistry developed in this chapter allows for labelling of polymersomes with 

fluorescent markers and peptides. 

 

2.3 Conclusion 

In this chapter we have shown the modular synthesis of the amphipilic block copolymer 

of PBd-b-PEG (1a-b) along with its amine (2) and maleimide (3) analogues. These 

polymers readily formed polymersomes via rehydration techniques and allowed the 

encapsulation of the hydrophobic dye Nile-Red and the hydrophobic drug C1 in the 

membrane. The drug loaded polymersomes could be resized by ultrasound treatment to 

90 nm with a PDI of 0.15. Intrinsically smaller polymersomes were formed via the 

solvent switch method and sized down by extrusion. Upon mixing in 10 percent of 

fluorescently labelled polymer 2 and 10 percent of maleimide functional polymer 3 we 

were able to visualize polymersomes by CLSM and conjugate the cell penetrating Tat-

peptide to the periphery. Polymersomes without Tat-peptide showed limited association 

with a monolayer of hCMEC/D3 cells, while Tat-polymersomes showed a strong 

association with the cells. Thus, we showed that we gained access to PBd-b-PEG block 

copolymers and were able to form polymersomes with controlled size, membrane 

loading and surface functionalization forming an experimental platform for the 

polymersomes and experiments described in Chapters 3-5. 
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2.5 Experimental Procedures 

General Notes Compound 12 was synthesized according to the literature procedure published by 

van der Venken et al.14 

 

Materials Sec-butyllithium (ALDRICH 1.4M in hexane), tetrabutylammonium fluoride (TBAF) 

(ALDRICH, 1.0M in THF), sodium hydride (ALDRICH, 60% dispersion in mineral oil , Chelex resin 

(ALDRICH), were used as received. Tetrahydrofuran (THF) (ACROS ORGANICS, 99+% extra pure, 

stabilized with BHT) was distilled under argon from sodium/benzophenone, and triethyl amine 

(TEA) (BAKER) was distilled from calcium hydride under an argon atmosphere prior to use. 

Polymersome extrusions were performed using 200 nm filters (Acrodisc 13 mm Syringe Filter, 0.2 µm 

Nylon membrane) and 0.1 µm PC membrane (WHATMAN). Column chromatography was carried out 

using silica gel (Acros, 0.035-0.070 mm, pore diameter ca. 6 nm)) Note that silica gel from other 

suppliers gave less satisfactory results for α- azido ω- carboxy poly(ethylene glycol).  

 

Instrumentation Infrared (IR) spectra were obtained using a Thermo Matson IR 300 FTIR 

spectrometer. Data are presented as the frequency of absorption (cm-1). Proton nuclear magnetic 

resonance (1H NMR) spectra were recorded on a Varian Unity Inova 400 FTNMR spectrometer. 

Chemical shifts are expressed in parts per million (δ scale) relative to the internal standard 

tetramethylsilane (δ=0.00 ppm). Molecular weight distributions were measured using size exclusion 

chromatography (SEC) on a Shimadzu (CTO-20A) system equipped with a guard column and a PL gel 

5 μm mixed D column (Polymer Laboratories) with differential refractive index and UV (λ=254 nm 

and λ=345nm) detection, using tetrahydrofuran (SIGMA ALDRICH chromasolv 99.9%) as an eluent at 

1 mL/min and T = 35 °C. Particle size distributions were measured on a Malvern instruments 

Zetasizer Nano-S. 

 

Polybutadiene-block-poly(ethylene glycol) general procedure (1a/b, 2 and 11) Poly(ethylene 

glycol) 7a, 7b or 10 (7a, 10: 80 mg 0.08mmol, 7b: 160 mg 0.08 mmol) and 5 (800 mg, 2.6 equiv. 

0.21mmol) were dissolved in dry tetrahydrofuran (10 mL) under an argon atmosphere. The general 

procedure is further described for the coupling of 7a and 5. The temperature was raised to 55 °C and 

CuBr (30 mg, 0,2 mmol) and PMDETA (70 mg, 0,3 mmol) were added. The reaction was allowed to 

proceed for 12 hours after which all solvents were removed. The crude product was redissolved in 50 

mL dichloromethane and washed with 0.33 M EDTA (3 × 25 mL). The organic layer was dried over 

MgSO4 and poured on a short silica column, which was eluted with dichloromethane. After all non -

reacted polybutadiene (5) was flushed off, the product was eluted with 8 v% methanol in 

dichloromethane. After removal of all solvents the product was obtained (250 mg, 60%, 1a). The 

product was analyzed by size exclusion chromatography, showing a single size distribution (PDI = 

1.14) with a shift toward higher hydrodynamic volume compared to polybutadiene. 1HNMR: δ 1.16 

(m, 134H, CH2CH), 2.11 (m, 67H, CH2CH), 3.37 (s, 3H, CH3O), 3.64 (m, 90H, CH2CH2O), 4.94 (m, 134H, 

CHCH2), 5.45 (m, 67H, CHCH2). Mn was determined by NMR (1a. 4.7 kg/mol, 1b. 5.7 kg/mol, 3. 4.7 
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kg/mol and 11. 4.7 kg/mol) The SEC traces are shown in Figures 1 (1a) Figure 7 (1b). 

 

maleimide end functional polybutadiene-b-poly(ethylene glycol) (3) Polymer 11 (100 mg, 21 

µmol) was dissolved in 6 mL dichloromethane. Next, N,N’-diisopropylcarbodiimide (DIPCDI, 400 μL, 

1M in DMF) and N-hydroxybenzotriazole (HOBt, 450 μL, 1M in DMF) were added. After ten minutes, 

12 (20 mg, 0.14 mmol) was added and the solution was stirred overnight. All dichloromethane was 

removed and ice cold methanol (10 mL) was added at once. The precipitate was gently shaken to 

dissolve side products and excess of 12. After 1 hour the suspension was centrifuged at 5000 rpm for 

30 minutes. Methanol was decanted and a new aliquot was added to repeat the centrifuge step  (3x). 

The product was dried under vacuum to yield the product (60 mg, 60%). 1HNMR (CDCl3): δ 1.16 (m, 

134H, CH2CH), 2.11 (m, 67H, CH2CH), 3.65 (m, 90H, CH2CH2O), 4.08 (s, 2H, OCH2CON), 4.94 (m, 134H, 

CHCH2), 5.45 (m, 67H, CHCH2), 6.96 (s, 2H, maleimide); SEC (THF): Mw/Mn 1.17, Mn = 4.7 kg/mol. 

 

propyne- endcapped polybutadiene (5) A Schlenk tube was thoroughly cleaned, rinsed with 

butyllithium, flushed with MilliQ and oven dried over night. The Schlenk tube was evacuated and an 

argon atmosphere was applied, after which 1,3-butadiene (7.1 g, 131 mmol) was condensed at -78 °C. 

THF was distilled under argon over sodium/benzophenone and was added to the flask (10 mL). The 

polymerisation was initiated by the addition of sec-butyllithium (1,4 mL, 2 mmol, 1.4M in hexane). 

The mixture was allowed to heat up to -35 °C as the colour changed from pale yellow to orange. After 

the colour changed back to yellow the reaction was terminated by the addition of dry THF (10 mL) 

containing trimethylsilyl propargylbromide (400 mg, 2.1 mmol). After all colour had disappeared 

tetrabutyl ammonium fluoride (4 mL, 4 mmol,1M in THF) was added and the mixture was stirred for 

1 hour. All solvents were removed and the product was dissolved in dichloromethane, after which it 

was filtered over a slab of silica, eluting with dichloromethane. The final product was obtained by 

coevaporation with toluene (4x 50 mL) to remove any traces of propargyl bromide. The product 

contained two molecular weight distributions as determined by size exclusion chromatography 

(THF): 3.7 kg/mol (60%) and 7.4 kg/mol (40%). The higher molecular weight, a polymer dimer as 

reported and explained by Tohyama et al.21, is not reactive toward azides and was easily removed by 

silica column chromatography, after the block copolymers were formed as shown in Figures 4-6. 

1HNMR: δ 5.45 (m, 67H, CHCH2), 4.94 (m, 134H, CHCH2), 2.11 (m, 67H, CH2CH), 1.16 (m, 134H, 

CH2CH).  

 

α- azido ω-methoxy poly(ethylene glycol) (7a/b) Poly(ethylene glycol) monomethyl ether (5 

mmol, 1 or 2 kg/mol to obtain respectively 7a or 7b) was coevaporated with benzene (3x) and 

dissolved in dry and under argon distilled THF (250 mL). The general procedure is further described 

for the preparation of 7a. The flask was cooled on an ice bath and air was replaced by argon before 

freshly distilled triethyl amine was added (5 mL). The mixture was stirred for 3 hours, after which 

mesyl chloride (1.14 gram 2 equiv. 10mmol) in THF (10 mL) was added. The mixture was allowed to 

warm to room temperature and was stirred for 6 hours. All THF was removed and methanol  (100 mL) 

containing sodium azide (3.25 g, 10 equiv., 50mmol) was added. The mixture was refluxed overnight 



Chapter 2 

 
56 

after which methanol was removed and water (100 mL) was added. The product was extracted with 

dichloromethane (5x 100 mL). The combined organic layers were dried over magnesium sulfate and 

DCM was removed, yielding 4.5 gram (90%) product 7a. The SEC traces of both 7a and 7b are 

depicted in Figures 1 and 7 respectively. 1HNMR (7a): δ 3.37 (s, 3H, CH3O), 3.39 (t, 2H, CH2N3), 3.64 

(m, 90H, CH2CH2O). FTIR: 2098 cm-1 (azide). SEC (THF): Mn (7a) = 1 kg/mol, Mw/Mn = 1.19.  

 

α- azido ω- carboxy poly(ethylene glycol) (8) Poly(ethylene glycol) (5 g, 5 mmol, 1 kg/mol) was 

coevaporated with benzene (3x) and dissolved in dry and under argon distilled THF (250 mL). The 

flask was cooled on ice and air was replaced by argon, followed by the addition of distilled triethyl 

amine (5 mL). The mixture was stirred for 3 hours, after which mesyl chloride (0.6 gram, 1.1 equiv., 

5.1mmol) in THF (10 mL) was added over 1 hour. The reaction was allowed to warm to room 

temperature and stirred for 6 hours. THF was removed. Next, methanol (100 mL) and sodium azide 

(3.25 g, 10 equiv. 50 mmol) were added. The reaction was heated to reflux overnight, whereafter 

methanol was removed and water (100 mL) was added. The mixture of statistical products was 

extracted with dichloromethane (5x 100 mL). The combined organic layers were dried over MgSO4, 

and dichloromethane was removed.  

 The products were coevaporated with benzene (3x), dissolved in freshly distilled THF (250 mL) 

and cooled on an ice bath. An argon atmosphere was applied and sodium hydride (400 mg, 60% in oil, 

2 equiv.) was added. After three hours t-butyl bromoacetate (2.9 g, 3equiv. 14mmol) in THF (10 mL) 

was added and the temperature was raised to 50 °C. The reaction was allowed to proceed overnight, 

after which all solids were filtered off and THF was removed. The products were dissolved in 2M HCl 

(100 mL) and heated to reflux for 5 hours. The final product was extracted with dichloromethane  (5x 

100 mL). The combined organic layers were dried over MgSO4 and all solvents were removed. The 

product (Rf = 0.5) was purified using silica column chromatography (eluent MeOH:DCM:NH 3 

=15:85:5) yielding 1.5 gram (30%) of product. TLC: R f = 0.5, permanganate staining, eluent 

DCM:MeOH = 92:8. 1HNMR: δ 3.39 (t, 2H, CH2N3), 3.64 (m, 90H, CH2CH2O), 4.00 (s, 2H, OCH2COOH). 

FTIR: 2098 cm-1 (azide), 1570 (C=O of carboxylic acid salt). SEC (THF): Mn = 1 kg/mol, Mw/Mn = 1.19 

 

α- azido ω- amino poly(ethylene glycol) (10) α- azido ω- carboxy poly(ethylene glycol) (8, 1 g, 1 

mmol) was dissolved in methanol (50 mL) Next, concentrated sulphuric acid (5 drops) was added. 

The mixture was heated under reflux overnight, after which methanol was removed. The product was 

dissolved in water (50 mL) and extracted with dichloromethane (5x 50 mL). The organic layer was 

dried over MgSO4 and all solvents were removed. TLC: Rf = 0.65, permanganate staining, eluent 

DCM:MeOH = 92:8. Indicative 1HNMR shifts: δ 4.17 (s, 2H, OCH2COOMe), 3.75 (s, 3H, COOCH3) and IR: 

1748 cm-1 (carbonyl/ester) 

 The product was dissolved in methanol (50 mL) and 1,2-diamino ethane (0.5 mL, excess) was 

added. The mixture was heated under reflux for 48 hours, after which all methanol was removed. The 

product was dissolved in 1M hydrochloric acid (50 mL) and extracted with dichloromethane (5x 50 

mL). The combined organic layers were dried over MgSO4 and all solvents were removed to yield 800 

mg product (80%). TLC: Rf = 0.55, permanganate and nynhydrin staining, eluent DCM:MeOH = 92:8. 
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1HNMR: δ 2.99 (t, 2H CH2CH2NH2), 3.39 (t, 2H, CH2N3), 3.64 (m, 90H, CH2CH2O), 4.01 (s, 2H, 

OCH2CONH). FTIR: 2098 cm-1 (azide), 1696 cm-1 (amide). SEC (THF): Mn = 1 kg/mol, Mw/Mn = 1.24. 

 

 

Figure 7. SEC (THF) traces of alkyne –endcapped polybutadiene after anionic polymerization (solid line, 
5), α-azido ω-methoxy poly(ethylene glycol) (short dashed line, 7b) and the block copolymer 
polybutadiene-b-poly(ethylene glycol) (long dashed line, 1b). 

Partial Fluorescein labelling of polymer 2 Polymer 2 (50 mg, 10 µmol) was dissolved in THF (10 mL) 

and Et3N (1 mL) was added. Next, fluorescein isothiocyanate (1 mg, 0.2 equiv.) was added and allowed to 

react for 48 hours. Solvents were removed and the labelled polymer was purified by preparative SEC 

(THF) to yield 25 mg product (50 %). The product was a single spot on TLC (8 percent methanol in DCM; 

UV and permanganate stain) which appeared brightly fluorescent and in contrast to the starting material 

showed good absorption @ 340 nm in the UV detector of SEC. 

 

Tat-peptide Tat-peptide was synthesized by means of standard Fmoc chemistry. The purity was 

more than 95 percent as analyzed by means of HPLC eluting in water/acetonitrile containing 0.1% 

v/v trifluoroacetic acid. The volume fraction of acetonitrile was increased from zero to hundre d 

percent over 30 minutes. Maldi-TOF (cyano-4-hydroxycinnamic acid): [M+H] calc: 1719.0 g/mol and 

[M+H] found: 1718.7 g/mol.  

 

Polymersome formation via rehydration Polymer 1 (1 mg) and the drug or dye (1w%, 0.1 mg) was 

dissolved in chloroform (1 mL) and added to a 5 mL glass vial. While fast rotating the chloroform was 

removed under reduced pressure to obtain a thin polymer film on the inside of the glass vial, which 

was dried thoroughly for an additional hour under reduced pressure (5 mbar). Polymeric vesicles 

were formed by the addition of 3 mL THF:MilliQ (1:4), while the sample was rotated at atmospheric 

pressure. After 15 minutes the polymersomes were reduced in size by treating them for 60 minutes 

with ultrasound (35 °C, 48 kHz, 200W). Finally THF was removed to obtain polymersomes in 3 mL 

MilliQ.  
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Determination of drug encapsulation Polymersomes were formed via the rehydration method as 

described above, containing 1 w% of C1. The free drug was spun down in an eppendorf tube to pellet 

the free drug and the top 1.00 mL of the polymersomes was freeze-dried. The drug was extracted into 

500 µL acetonitrile and analyzed on HPLC. The amount of encapsulated drug was back calculated. To 

validate this method we also added free drug to empty polymersomes and repeated the procedure to 

find no drug encapsulated (negative control). A calibration curve (0.01 – 0.1 mg C1/mL) was 

measured on a analytical HPLC, eluting over 30 minutes in a gradient of 0 to 100% aceto nitrile in 

water (both containing 0.1 v% TFA, 0.7 mL/min). C1 was dissolved in MeCN and the UV detector was 

set to measure absorbtion at 333 nm.   

 

Polymersome formation via solvent switch the desired ratio of block copolymer 1:2:3 (10 mg 

total) was dissolved in THF (1 mL) and slowly diluted with MilliQ or 1x PBS buffer (3 mL). The 

opaque solution was extruded subsequently trough 400 nm, 200 nm and 100 nm filters (WHATMAN, 

extrusion kit) and purified over a Sephadex G200 column. The opaque fractio ns were combined and 

diluted to 10 mL (1 mg polymer/mL) The average size and polydispersity was determined by DLS. 

 

Conjugation of peptides to polymersomes TCEP (0.5 mg) was dissolved in 300 µL PBS pH 7.4 and 

added to peptide (1 mg, excess to maleimides). The solution was allowed to stand for 15 minutes, after 

which it was added to the polymersomes (1.5 mL). The coupling was allowed to proceed for three hours, 

after which the solution was transferred into a dialysis bag (Spectrapore MWCO 12-14 kDa) and dialyzed 

against PBS buffer for 24 hours (replacing PBS every 5-10 hours). 
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Size Dependent Biodistribution and SPECT 

Imaging of 111In-labelled Polymersomes 

 

 

 

 

 

 

 

Polymersomes, self assembled from the block copolymer polybutadiene-block-poly(ethylene glycol), were 

prepared with well-defined diameters between 90 and 250 nm. The presence of ~1% of diethylene 

triamine penta acetic acid on the polymersome periphery allowed to chelate radioactive 111In onto the 

surface and determine the biodistribution in mice as a function of both the polymersome size and 

poly(ethylene glycol) corona thickness (i.e. PEG molecular weight). Doubling the PEG molecular weight 

from 1 kg/mol to 2 kg/mol did not change the blood circulation half-life significantly. However, the size 

of the different polymersome samples did have a drastic effect on the blood circulation times. It was 

found that polymersomes of 120 nm and larger become mostly cleared from the blood within 4 hours, 

presumably due to recognition by the reticuloendothelial system. In contrast, smaller polymersomes of 

around 90 nm circulated much longer. After 24 hours more than 30 percent of the injected dose was still 

present in the blood pool. This sharp transition in blood circulation kinetics due to size is much more 

abrupt than observed for liposomes and was additionally visualized by SPECT/CT imaging. These 

findings should be considered in the formulation and design of polymersomes for biomedical 

applications. Size, much more than for liposomes, will influence the pharmacokinetics and therefore 

long circulating preparations should be well below 100 nm. 
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3.1 Introduction 

Polymersomes, or polymer vesicles, are a relatively new class of nanocapsules that 

are formed by the self assembly of amphiphilic block copolymers in aqueous media 1. 

Polymersomes can be regarded as the polymeric analogues of liposomes with a 

thicker, more stable and less leaky membrane. These characteristics make 

polymersomes an interesting class of nanocarriers for the delivery of diagnostic and 

therapeutic agents. For these applications it is generally desired to have long 

circulating particles which are not readily cleared from the blood stream by the 

reticuloendothelial system (RES)2. From liposomal in vivo studies it is known that 

size, next to PEGylation and charge, is a major factor that influences the blood 

circulation kinetics and biodistribution. Liposomes of more than 200 nm have been 

shown to accumulate in the spleen and liver, whereas liposomes of less than 70 nm 

tend to accumulate predominantly in the liver3,4. Liposomes with a size between 90 

and 150 nm have the longest blood circulation times. The blood circulation times of 

liposomes can be further enhanced by the introduction of up to ten percent 

PEGylated phospholipids5,6. Polyethylene glycol (PEG) prevents the opsonisation by 

blood proteins and the subsequent recognition and degradation by macrophages of 

the reticuloendothelial system. PEGylated liposomes may exhibit blood circulation 

half-lives (t½) of more than 15 hours, depending on the PEG chain length, charge and 

size of liposomes3,4,7. Finally, the effect of surface charge in liposomal formulations8 

and nanocarriers9 has been studied. Both a slightly negative and positive surface 

charge was reported to have a positive effect on the blood circulation kinetics.  

 The number of reports on biodistribution of neutral polymersomes is limited and 

is basically restricted to the work of Discher10,11 who used fluorescently labelled 

polymersomes to determine the effect of longer PEG chains and surface charge on t½ 

values, the work of Lee et al.12 and the recent work by Kataoka et al. who studied the 

size dependence of fluorescently labelled polyelectrolyte vesicles (PICsomes) for the 

preferred accumulation in tumour tissue compared to healthy tissue13. Also near 

infrared dyes have been encapsulated in order to visualize tumours in mice14,15. 

Discher et al. reported that polymersomes exhibit blood circulation half-lives up to 

28 hours. These high t½ values are partly due to the fact that polymersomes are fully 

PEGylated upon choosing PEG as the hydrophilic part of the block copolymer that 

constitutes the polymersome bilayer. It was furthermore shown that neutral 
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polymersomes circulate with the highest t½ values. Finally Tsourkas et al.16 

encapsulated a Gd-based magnetic resonance imaging (MRI) contrast agent for 

enhanced MRI imaging. By measuring the concentration of Gd in blood, they were 

also able to determine a concentration time profile.  

 One of the most quantitative methods to determine the biodistribution of drug 

delivery vehicles in vivo is by radio isotope labelling. This technique is often used for 

liposomal formulations, but has until now been hardly explored for polymersomes. 

There is one report on the biodistribution and radiolabelling (14C/3H) of negatively 

charged polymersomes12 and one study that shows data on the encapsulation and 

biodistribution of a radio-labelled model drug encapsulated in polymersomes17. 

However, the effect of polymersome size on biodistribution has not been analysed 

before with this technique. If radiolabelling of polymersomes with a suitable isotope 

such as 111In would be developed, this would not only allow quantitative 

determination of organ distribution but also visualisation with SPECT/CT imaging, as 

has previously been demonstrated for 50 nm polymer micelles 18,19.  

 

 

Figure 1. Schematic presentation of polymersome formation, 111In labelling and in vivo SPECT/CT 
imaging. 

 In this chapter we present a systematic study into the effect of size on the 

biodistribution of polymersomes via the quantitative technique of 111In 

radiolabelling, in combination with SPECT/CT imaging as depicted schematically in 

Figure 1. It is shown that polymersomes of around 90 nm in diameter have long 

circulation times in male Balb/C mice. Upon increasing the diameter to 120 nm and 

above the long circulating properties are lost and polymersomes are cleared from the 
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blood stream within a few hours by mainly the liver and spleen. The effect on 

circulation time upon changing the size from 90 to 120 nm is also clearly visualized 

by SPECT/CT imaging.  

 

3.2 Results and Discussion 

The amphiphilic block copolymer used in this study was polybutadiene-block-

poly(ethylene glycol) (PBd-b-PEG) because of its well-known biocompatibility and 

glass transition temperature (Tg) well below room temperature. Because of this low 

Tg the membrane of polymersomes formed from PBd-b-PEG remains fluidic which 

allows good control over the size via standard sizing techniques such as extrusion.  

 The general synthetic route towards the three block copolymers used in this 

study is depicted in Scheme 1 (see also Chapter 2). As can be seen from this scheme 

we adopted a modular approach based on the copper-catalyzed (2+3) cycloaddition 

reaction20. One of the main advantages of this modular approach is the possibility  to 

vary the molecular weight of PEG between 1 and 2 kg/mol, while keeping the 

molecular weight (distribution) of PBd exactly constant at 3.7 kg/mol. Polybutadiene 

was synthesised by means of anionic polymerisation. The reaction was initiated with 

sec-butyllithium at -78 °C. After all monomer was consumed, the living polymer was 

endcapped with 3-bromo-1-(trimethylsilyl)-1-propyne21. Deprotection with 

tetrabutyl ammonium fluoride yielded the alkyne-functional polybutadiene 1. 

Poly(ethylene glycol) monomethyl ether was purchased with a molecular weight of 

either 1 or 2 kg/mol. The introduction of an azide was straight forward by 

mesylation and azidation as published elsewhere22. PBd and PEG were coupled in 

THF at 60 °C by the addition of copper bromide and PMDETA as ligand. This reaction 

yielded the non functional block copolymers PBd-b-PEG with a molecular weight of 

approximately 4.7 kg/mol (4a) and 5.7 kg/mol (4b) depending on the PEG molecular 

weight. These inert block copolymers served as the basic building blocks for 

polymersome formation.  

 To allow radiolabelling of polymersomes with 111In a third block copolymer was 

synthesised with diethylene triamine penta acetic acid (DTPA) as chelating end 

group. Polybutadiene was coupled to α-amino-ω-azido-poly(ethylene glycol) via the 

same click approach as described above to obtain amine end-functional PBd-b-PEG 

(5) with a molecular weight of 4.7 kg/mol (PEG molecular weight of 1 kg/mol). DTPA 
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is a metal chelating agent that coordinates well to bi- and tri-valent metals. Copper, 

as used in the coupling reaction of PBd and PEG, can also coordinate strongly to 

DTPA. To prevent undesired occupation of DTPA by copper, all traces of copper in 

the different PBd-b-PEG analogues were removed by treating the polymers with 

Chelex resin in THF (as confirmed by ICP-MS). Finally p-benzyl-isothiocyanate DTPA 

was introduced in block copolymer 5 by reacting the amine end group and 

isothiocyanate in THF with triethylamine as base to form polymer 6.  

 

 

Scheme 1. Overview of polymers and the reaction path towards these compounds. Exact details on 
the synthesis can be found in the experimental section at the end of this Chapter and in Chapter 2. i) 
anionic polymerisation of 1,3 butadiene followed by endcapping and deprotection ii) azidation with MsCl 
followed by NaN3 iii) coupling of polymers via copper catalysed (2+3) cycloaddition iv) NaH, t-butyl 
bromoacetate in THF, followed by deprotection in 1M HCl v) esterification in MeOH/H 2SO4 vi) 
nucleophilic acyl substitution by 1,2 diamino ethane in MeOH vii) amine coupling of p-SCN-Bn-DTPA. 

 Polymersomes were formed by slowly diluting a solution of 4a:6 or 4b:6 = 99:1 

(w:w) in THF with 2-(N-morpholino)ethanesulfonic acid (MES) buffer with a pH of 

5.5. After the addition of MES buffer the samples were extruded through 0.2 µm 
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syringe filters to yield polymersomes of around 250 nm diameter. To size the 

polymersomes even further down the samples were either extruded through 100 nm 

filters (to yield ~120 nm polymersomes) or treated with ultrasonic sound waves at 

35 °C (to yield ~90 nm polymersomes). After resizing, the samples were washed with 

MES buffer and concentrated. It should be noted that extrusion through 100 nm 

membranes yielded the narrowest particle size distribution, whereas ultrasound 

waves and extrusion through syringe filters gave broader distributions. All partic le 

polydispersities were found to be below 0.15, which is comparable to results often 

encountered for liposomal formulations (see Figures 4 and 5 for the full DLS curves). 

The characteristics of the polymersomes are summarized in Table 1, as is the 111In 

labelling efficiency and blood plasma stability of the different samples which will be 

discussed next. 

 

Table 1. Overview of polymersome characteristics.  

ID size 
(nm) 

PDI Mw PEG 
(kg/mol) 

ζ 
potentiala 

111In 
labelling  
efficiency 

specific 
activity 
(MBq/mg) 

4 h 
plasma 

24 h 
plasma 

1k90 94 0.15 1 -14.76 97% 10 85% 79% 
1k120 115 0.05 1 -13.11 95% 10 84% 78% 
1k250 259 0.14 1 -12.42 94% 10 87% 80% 
2k90 87 0.13 2 -9.96 60% 6 77% 73% 

a) Zeta potentials were measured on a NanoSight NS500 in tap-water with an applied potential of 
24V. Polymersomes (250 nm) formed from only polymer 4a, i.e no DTPA chelated to the surface, have 
a zeta potential of -6.32 mV. 

 

 111In labelling was performed by adding 15 MBq 111InCl3 to 30 µL of 

polymersome solution. Samples that labelled with an efficiency of more than 95 

percent were used without further purification, and were diluted with PBS to 1.25 

MBq per mL. The one sample that had a labelling efficiency of only 60 percent (2k90) 

was purified over a PD10 desalting column after which it was also diluted with PBS. 

The stability of the 111In-labelled preparations was tested by adding 20 µL of each 

sample to 500 µL human blood serum. After 24 hours about 80 percent of the 

Indium-111 radioactivity was still associated with the polymersomes as summarized 

in Table 1. These results show that these polymersomes of well-defined size allow for 

stable radio isotope labelling for in vivo applications. 

 

 



Size Dependent Biodistribution and SPECT Imaging of 111In-labelled Polymersomes 

 
67 

 After establishing polymersome synthesis and evaluation of the radiolabelling 

stability we studied the biodistribution as function of size and peripheral PEG 

thickness. As might be expected from similar studies based on liposomes, larger 

particles will influence the circulation kinetics negatively. In order to study if a 

similar trend is also valid for polymersomes, we injected male Balb/c mice (6 weeks 

old, 20-23 g/animal) with 250 kBq (0.2 mL or 0.42 mg/kg) of 111In-labelled 

polymersome solution in the tail vein. Each group contained four animals which were 

sacrificed after 4 or 24 h. Tissues of interest were collected, weighed and counted for 

radioactivity as summarized in Figure 2.  

 Upon looking at the blood levels a clear effect of polymersome size can be 

recognized immediately. Vesicles of 90 nm circulate much longer than vesicles of 120 

nm and larger. After 4 hours more than 50 percent of the 90 nm polymersomes were 

still present in the blood pool, which after 24 hours was reduced to 25 percent 

(based on a blood volume assumption of 1.5 g per animal). This allows us to estimate 

the blood half live of these 90 nm polymersomes to be around 20 hours, a number 

comparable to blood circulation half lives as reported by Photos et al10. Upon 

increasing the particle size both the liver and spleen accumulation became higher, an 

effect that is more abrupt for the liver than for the spleen. The abundance of 90 nm 

polymersomes in lungs was relatively high, which most likely is caused by high blood 

levels in lung tissue. These data show that – similarly to liposomes – smaller 

polymersomes circulate longer. However there is a major difference in the 

correlation between size and blood circulation kinetics of these polymersomes and 

liposomes. For polymersomes the transition from long-circulating to short-

circulating , upon increasing the size, is much more abrupt than for liposomes. A 

possible explanation might be found in the more rigid1 structure of polymersomes 

which results in less flexibility. This feature could be of practical use since it could 

have a beneficial effect on tumour accumulation via the enhanced permeability and 

retention (EPR) effect13,23. 
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Figure 2. Biodistribution of differently sized 111In-labelled polymersomes in Balb/C mice 
(n=4/group). a) 4 hours post injection and b) 24 hours post injection. 
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 In order to investigate the effect of the PEG corona on biodistribution two 

polymersome samples were included in these experiments with an average diameter 

of ~90 nm, but with different PEG lengths of 1 and 2 kg/mol (Table 1 and Figure 2). 

Although the sample with the thicker PEG corona seemed to circulate longer in the 

blood stream and showed lower liver and spleen accumulation this effect is not 

significant, especially because there is also a small size difference between both 

samples. 

 

 A powerful method of imaging organs/tissue particle distributions in living 

animals (and humans) is by Single Photon Emission Computed Tomography (SPECT) 

imaging. SPECT/CT imaging is a tool often used in nuclear medicine to obtain three 

dimensional images in a non-invasive manner. The polymersomes as described in 

this chapter have a high enough specific activity to image them by this technique. 

Typically for imaging of mice 15 MBq of activity is needed, an amount easily 

accessible via the route described herein.  

 In order to illustrate by SPECT/CT the abrupt transition from long circulating to 

fast clearance upon increasing the polymersome size, we prepared samples of 90 nm 

polymersomes and 120 nm polymersomes with 15 MBq of 111In. The procedure was 

analogous as described above, only the dilution factor with PBS was adjusted to end 

up with a sample of 75 MBq per mL. Each animal was injected intravenously with 15 

MBq (0.2 mL, 25.2 mg/kg) 111In-polymersomes in the tail vein and was scanned after 

4 hours. The resulting images are depicted in Figure 3. The top panel of Figure 3  (a-c) 

shows the results for the long circulating polymersomes of 90 nm with a PEG 

molecular weight of 1 kg/mol. As visualized by radioactivity in the heart and lungs, 

the polymersomes are still present in the blood circulation. The lower panel of Figure 

3 (d-f) shows 4 h post-injection scans of the 120 nm polymersomes. All the 

radioactivity is present in liver and spleen. This is in agreement with the 

biodistribution data as discussed above. These scans again show the strong size 

dependence of polymersomes with regard to blood circulation kinetics.  
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Figure 3. SPECT/CT images (4 h p.i.) of polymersomes injected in male BalB/c mice. Top (a-c) long 
circulating 90 nm polymersomes clearly show circulation through the liver, lungs and carotid artery. 
Bottom (d-f), 120 nm polymersomes show fast accumulation in the liver and the spleen.  

3.3 Conclusion 

We have demonstrated that for polymersomes, size is an important factor in the 

blood circulation kinetics. Polymersomes of 120 nm and larger are readily cleared 

from the blood, whereas smaller polymersomes of approximately 90 nm are long 

circulating with an estimated blood half life of 20 hours. We have shown that 

polymersomes containing 1 percent of a DTPA end-functional amphiphilic block 

copolymer of polybutadiene-block-poly(ethylene glycol) can be prepared with a 

sufficient specific activity for SPECT/CT imaging. The effect of size on the 

biodistribution could therefore also be illustrated by this technique to confirm that 

90 nm polymersomes are long circulating whereas 120 nm polymersomes readily 

accumulate in the liver and spleen. The effect of increasing the PEG molecular weight 

from 1 to 2 kg/mol was not found to be significant in this case. These findings should 

be taken into account upon designing polymersome formulations for imaging or drug 

delivery purposes. Polymersome size, much more than for liposomes, will influence 

the circulation kinetics of polymersomes.  
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3.5 Experimental Procedures 

General note The synthesis of polymers 1-5 was described in detail in Chapter 2. Animal 

experiments were approved by the local animal welfare committee and carried out according to 

national regulations. 

 

Materials p-isothiocyanate-benzyl diethylenetriamine penta-acetic acid (MACROCYCLICS >94%), 

Chelex resin (ALDRICH), were used as received. Tetrahydrofuran (THF) (ACROS ORGANICS, 99+% 

extra pure, stabilized with BHT) was distilled under argon from sodium/benzophenone , and triethyl 

amine (TEA) (BAKER) was distilled from calcium hydride under an argon atmosphere prior to use. 

Polymersome extrusions were performed using 200 nm filters (Acrodisc 13 mm Syringe Filter, 0.2 µm 

Nylon membrane) and 0.1 µm PC membrane (WHATMAN). 111InCl3 was purchased from Covidien, 

Petten, The Netherlands. Instant Thin-Layer Chromatography Silica Gel impregnated glass fibre 

(ITLC-SG) strips were purchased from Varian.  

 

Instrumentation Infrared (IR) spectra were obtained using a Thermo Matson IR 300 FTIR 

spectrometer. Data are presented as the frequency of absorption (cm -1). Molecular weight 

distributions were measured using size exclusion chromatography (SEC) on a Shimadzu  (CTO-20A) 

system equipped with a guard column and a PL gel 5 μm mixed D column (Polymer Laboratories) 

with differential refractive index and UV (λ=254 nm and λ=345nm) detection, using tetrahydrofuran 

(SIGMA ALDRICH chromasolv 99.9%) as an eluent at 1 mL/min and T = 35 oC. Particle size 

distributions were measured on a Malvern instruments Zetasizer Nano-S and zeta potentials were 

measured on a NanoSight NS 500 instrument. 

 

Conjugation of Diethylene Triamine Penta Acetic acid (DTPA) (6)  amine end-functional 

polybutadiene-block-poly(ethylene glycol) (5, 110 mg, 23 µmol) was dissolved in THF (10 mL). To the 

solution, p-isothiocyanate-benzyl diethylene-triamine-penta-acetic-acid (14 mg, 0.95 equiv. 22 µmol) 

and triethylamine (5 mL) were added. The mixture was stirred at room temperature for 48 hours, 

after which all solvents were removed. The products were dissolved in THF (5 mL) and cooled on ice 

for 6 hours, after which the solution was filtered through a 200 nm syringe filter. The product was 

obtained by removing all THF. The DTPA end groups were not quantified, yet their presence was 

confirmed by FTIR and 111In test labelling. FTIR: 1730 cm-1 (carboxylic acid). SEC (THF): Mw/Mn = 

1.26, Mw (theoretical) = 5.3 kg/mol. 
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Polymersome formation (general) Polymer 4a (9.9 mg, 2.1 µmol) or 4b (9.9 mg, 1.7 µmol) and  

diethylene-triamine-penta-acetic-acid functional polybutadiene-block-poly(ethylene glycol) 6 (0.1 

mg, 0.02 µmol)were dissolved in THF (200 µL). Polymersomes were formed by the slow addition of 

0.1 M. 2-(N-morpholino)ethanesulfonic acid buffer of pH 5.5 (0.6 mL, MES). The samples were passed 

three times through a 200 nm syringe filter to yield polymersomes of ~250 nm. Polymersomes of 

~120 nm were obtained by multiple extrusion through 100 nm filters (one pass will yield ~160 nm 

polymersomes) and polymersomes of less than 100 nm were obtained by treating the sample with 

ultrasonic sound waves (48 kHz, 200W) for 30 minutes at 35 °C. Samples were washed and 

concentrated to 200 µL by means of a spin column (100 kDa MWCO, 3000 rpm). Note that for the 

biodistribution samples a stock solution containing 9.9 mg 4a and 0.1 mg 6 per 200 µL THF was 

prepared to prevent variation in concentration and ratio of polymers. The DLS results of all samples 

are depicted in Figures 4 and 5. 

 

111In labelling To 30 µL polymersomes, 150 µL 0.1 M. 2-(N-morpholino)ethanesulfonic acid (MES) 

buffer (pH 5.5) and 15 MBq 111InCl3 were added. The labelling mixture was incubated at room 

temperature for 30 minutes. Labelling efficiency was analyzed by Instant Thin-Layer 

Chromatography Silica Gel impregnated glass fibre (ITLC-SG), developed in 0.1 M NH4Ac (pH 5.5)/0.1 

M EDTA (1:1, v/v). Samples with a labelling efficiency of more than 95 percent were used without 

purification and diluted with PBS buffer prior injection. Samples with a coupling efficiency of less 

than 95 percent were purified over a PD10 desalting column and diluted with PBS.  

 

Blood Plasma stability To study the stability of polymersome preparations, 20 µL of radio-labelled 

polymersomes was incubated in 500 µL blood serum for 4 and 24 hours at 37 °C. Association of 111In 

with the polymersomes was analyzed by ITLC-SG, developed in 0.1 M NH4Ac (pH 5.5)/0.1 M EDTA 

(1:1, v/v). 

 

Biodistribution studies Biodistribution was analyzed in male BALB/c mice (6 weeks of age, 20-23 g 

per animal). The animals were divided in 8 groups of 4 animals and injected in their tail vein with 

250 kBq (0.2 mL or 0.42 mg/kg) of 111In-labelled polymersome preparation. Mice were sacrificed by 

CO2 inhalation 4 or 24 h postinjection (p.i.), a blood sample was drawn, and tissues of interest were 

dissected, weighed, and counted in a gamma-counter along with a standard of the injected activity to 

allow calculation of the injected dose per gram tissue (% ID/g).  

 

SPECT/CT imaging Two animals were selected for SPECT/CT imaging and injected with 15 MBq (0.2 

mL, 25.2 mg/kg) 111In-polymersomes in the tail vein. The animals were sacrificed by CO 2 inhalation 

and scanned with the U-SPECT-II (MILabs) 4 hours postinjection. 
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Figure 4. DLS intensity size distributions of sample 2k90nm (top) and 1k 90nm (bottom) as measured on 
a Malvern Nano S machine. Both samples were resized by treatment with ultrasound (48 kHz, 200 W, 35 
degrees Celsius ). 

 

Figure 5. DLS intensity size distributions of sample 1k120nm (top) and 1k 250nm (bottom) as measured 
on a Malvern Nano S machine. Both samples were resized by means of extrusion through respectively 200 
and 100 nm membranes. 
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In this chapter we report the design of polymersomes tagged with a dodecamer peptide, G23, that are able to 

cross the blood-brain barrier both in vitro and in vivo. Transport over the blood-brain barrier was induced by 

recognition of G23 to the gangliosides GM1 and GT1b to accommodate transcytosis of 220 nm polymersomes 

in an in vitro model and 166 nm polymersomes in vivo. These findings open new opportunities for the 

development and formulation of medicines against brain related diseases. 
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4.1 Introduction 

The effective treatment of brain-related diseases is severely hampered by the presence 

of the blood-brain barrier (BBB), a polarized layer of endothelial cells that physically 

separate blood from brain tissue1. Besides being able to cross the BBB, drugs must 

display sufficient stability and bioavailability2. Once drugs have reached the brain side, 

they are exposed to multidrug receptors on the endothelial cell surface to rapidly clear 

them from the brain3. Of these challenges, both bioavailability and crossing the BBB may 

be overcome by the application of nanocarriers that effectively target the endothelial 

cell layer and induce transcytosis across the BBB.  

The best studied nanocarriers for drug delivery over the BBB are liposomes. To 

target them over the BBB, liposomes have been decorated4-7 with antibodies, proteins8 

or peptide9-10 parts of protein binding domains11. However, most targeted liposomes 

showed only a limited association with the BBB in vivo as was recently shown by van 

Rooy et al. in a comparative study8. Only liposomes conjugated to transferrin antibody 

RI7217 – having a molecular weight of 90 kg/mol – were able to significantly enhance 

brain uptake. 

A relatively new class of nanocarriers consist of polymeric vesicles, or 

polymersomes12-13, which spontaneously self-assemble in aqueous media from 

amphiphilic block copolymers. They resemble liposomes in their basic morphology, but 

have as a clear difference a thicker bilayer membrane. This renders them considerably 

more stable than liposomes, and improves the blood circulation ability14. Furthermore, 

the large apolar compartment allows a more efficient transport of hydrophobic drugs. 

Since the majority of CNS drugs are hydrophobic, there is a large added value in 

preparing polymeric carriers for efficient transport over the BBB into the brain 

parenchyma. Until now, only one group has reported the conjugation of transferrin15 or 

transferrin antibody RI721716 to polymersomes, for targeted transport over the BBB. 

Clearly, to develop an efficient nanocarrier system, a broader choice in selective 

targeting units is required. Moreover these targeting units should still be active when 

conjugated to the polymersome surface and preferential have a low molecular weight 

for easy synthesis and conjugation.  

In this chapter we report the design and synthesis of a polymersome nanocarrier, 

tagged with a dodecamer peptide of only 1645 g/mol, that is able to efficiently cross the 

BBB, both in vitro and in vivo. The peptide G23 was identified by means of phage display 
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with ganglioside GM1 as target. Although the G23 peptide has previously been reported 

for binding to gangliosides17, it has now been employed for the first time to 

accommodate transport of nanocarriers over the BBB.  

 

 

Figure 1. Cartoon of polymeric vesicles tagged with a small GM1 binding peptide. The polymersome 
formulations are able to efficiently cross the BBB into the brain parenchyma, opening new routes toward 
effective treatment of brain-related diseases. 

4.2 Results and Discussion 

The block copolymers for the formation of polymersomes are depicted in Scheme 1. 

Details on the synthetic procedures can be found in Section 4.5 and Chapter 2. We chose 

to work with amphiphilic block copolymers (1) consisting of polybutadiene and 

poly(ethylene glycol) (PEG) mainly for two reasons. First of all, this block copolymer is 

generally considered to be biocompatible, and secondly the low glass transition 

temperature of polybutadiene allows for extrusion – and therefore resizing – of the 

resulting polymersomes. This has been shown to be of great importance for long in vivo 

circulation18-19. Furthermore, PEG induces stealth behaviour of the vesicles and 

therefore prevents cell adhesion as well as opsonisation and thereby recognition by the 

reticulo endothelial system (RES). To functionalize the polymersomes with targeting 

peptides, maleimide end groups were introduced (2). As a tracing moiety, either 
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fluorescein (4), rhodamine (5) or diethylenetriamine pentaacetate (6) (DTPA, for radio-

isotope labelling) was introduced in 3 via isothiocyanate derivatives of the tracer.  

 

 

Scheme 1. Left) Amphiphilic block copolymers used in this study. Polymer 1 is the main building block of 
the polymersomes. Polymer 2 is a maleimide-functionalized analogue to couple peptides. Starting from 
polymer 3, fluorescein, rhodamine and DTPA end-functionalized analogues were obtained. Right) TEM 
picture of polymersomes formed from 1, 2 and 4 in a ratio of 8:1:1. The black bar represents 200 nm. 

The peptides that were known before this study to target the BBB were limited to Tat-

peptide9-10, opioid-derived peptides20 and the bigger RVG-9R peptide11, which all 

showed limited in vivo delivery into the brain parenchyma. In order to identify more 

potent peptides, we recognized that caveolae, which are present on the luminal surface 

of endothelial cells, are well known as cellular entry portals for transcytotic transport21. 

Since caveolae are enriched in GM1, we reasoned that this could be an appropriate 

target to mediate transport into the brain. A phage library selection was performed, 

using the Ph.D-12 library from BioLabs with immobilized GM1 as target22. After three 

panning rounds 20 plaques were selected of which 10 shared a known carbon nanotube 

binding sequence23. Three plaques shared the sequence defined as G23. The other seven 

plaques showed unique sequences. We selected the peptides defined as G23 and G88 

based on their efficient binding and homogeneous patterning upon interaction of the 

phages with human Cerebral Microvascular Endothelial Cells (hCMEC/D3)24 as shown in 

Figure 9. The selected peptides were synthesized via standard Fmoc chemistry with an 

additional C-terminal cysteine as a functional handle.  
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Polymersomes were prepared by mixing block copolymers 1, 2 and 4 in a ratio of 8:1:1 

for all in vitro studies (Table 1). The polymeric vesicles were formed via the solvent 

switch method, after which they were extruded to an average size of 220 nm with a 

polydispersity index (PDI) of 0.11. The selected peptides were coupled via 

cysteine/maleimide chemistry, starting from the same batch of maleimide-

functionalized polymersomes. To check whether the peptide coupling was successful, 

zeta potentials were measured. The zeta potentials showed in all cases a clear change in 

surface charge after coupling of the peptides (table 1). For in vivo experiments 

polymersomes were prepared with rhodamine as tracer, thus combining polymers 1, 2 

and 5 in a ratio of 8:1:1. The polymersomes were reduced in size to 160 nm, to allow 

sufficiently long blood circulation to pass the brain endothelial cells, yet short enough to 

prevent false comparison of targeted and non-targeted particles due to a big difference 

in blood clearance19.  

 

Table 1. Characteristics of polymersome samples used for in vivo and in vitro studies. 

ID/Peptide[a] Sequence[b] Size (PDI) Charge[c] Zeta[d]  

Nonfluor – 220 (0.11) – –6.32 

G88fluor  NPAGPSPAHIISC 220 (0.11) 0 –14.59 

G23fluor HLNILSTLWKYRC 220 (0.11) +2 –1.70 

Scrfluor KISHLLNYRTWLC 228 (0.10) +2 –2.83 

G23(5%)fluor HLNILSTLWKYRC 227 (0.12) +2 –3.21 

Nonrhod – 164 (0.10) – –2.64 

G23rhod HLNILSTLWKYRC 165 (0.12) +2 –8.42 

[a] Samples contain 10 mol% fluorescently labelled polymer (fluor = fluorescein, rhod = rhodamine), 10% 
of the surface is covered with peptides. [b] Peptide sequences with C-terminal cysteine for coupling to the 
polymersome surface. [c] Formal charge at pH 7. [d] Measured in water with an applied potential of 24 V.  

First the transcytosis capacity of targeted and non-targeted polymersomes was 

determined in hCMEC/D3 cells, cultured on transwell filters. The hCMEC/D3 cell line is a 

good model for the human blood-brain barrier, as developed and verified by Weksler et 

al.24-25. Recently this assay was used and validated by Ragnaill et al.26 to study the 

transcytosis of SiO2 nanoparticles. An overview of the experimental setup is provided in 

Figure 2c. The polymersomes were added to the apical side of the model and incubated 

for 18 hours at 37 °C, after which the percentages of applied dose in the apical chamber 

(AP), basolateral chamber (BA) and cell monolayer (FIL) were determined by means of 

fluorescence spectroscopy.  
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Figure 2. a) In vitro transcytosis capacity of polymersomes functionalized with the selected peptides. b) 
Scrambling of the G23 sequence and lowering the surface functionalization with G23 both resulted in 
reduced in vitro transcytosis. c) Schematic overview of the in vitro hCMEC/D3 cell transwell assay. d) 
Kinetic plot of in vitro G23/mediated transcytosis of polymersomes.  

As evident from Figure 2a, the G23-polymersomes showed the most prominent 

transcytotic capacity. Specifically, 30.8 ± 1.4% of the G23-polymersomes were recovered 

at the basolateral side. This implies on average a more than four-fold increase in 

transcytotic capacity, compared to the basolateral recovery of non-targeted 

polymersomes (5.7 ± 0.8%), or polymersomes tagged with G88 (6.8 ± 1.9%). In addition 

to a highly efficient appearance in the basolateral medium, the G23-polymersomes 

showed an enhanced association with the cells (Figure 2a; G23; FIL). Thus, 5.5 ± 2.3% of 

the added dose remained cell-associated, representing 2-3 times as much as the cellular 

association of the other polymersome preparations tested, i.e. non-targeted (1.5% ± 

0.8%) and those tagged with G88 (1.5 ± 0.4%). These data thus emphasize the specific 

role of G23 in mediating the observed enhancement in transcytotic transport, and 

exclude potential leakiness of the cell monolayer, as this should have resulted in a non-

specific appearance of polymersomes in the basolateral medium. The specificity of G23-

mediated transport was further supported by determining the kinetics of transcytosis of 
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the G23-polymersomes across hCMEC/D3 cells. As shown in Figure 2d, typical 

saturation kinetics were obtained, supporting the involvement of an active, receptor-

mediated transport pathway, possibly reflecting differences in the kinetics of 

transcytosis and recycling of the receptor(s).  

To investigate a potential correlation between physicochemical properties (e.g. 

charge, hydrophobicity) and transcytotic capacity of the peptide, a scrambled version of 

the G23-peptide (Scr) was prepared and its ability in transport of polymersomes was 

compared to that of ‘native’ G23 and non-targeted polymersomes. As illustrated in 

Figure 2b a twofold reduction in transcytosis across the in vitro BBB model was 

observed between Scr-polymersomes and G23-targeted polymersomes. Secondly the 

peptide density was reduced to 5 mol%. Lowering the incorporation of G23 in 

polymersomes also led to a two-fold reduction in transcytosis (Figure 2b). Together, 

these data strongly support the view that the G23-peptide, when coated on the surface 

of polymersomes, displays a specific capacity in mediating their transport across 

polarized hCMEC/D3 cells. 

 

Although in a different context, peptide G23 was reported to bind to a structurally 

similar ganglioside GT1b17. Furthermore the removal of tetanus toxin C from its 

ganglioside receptor GT1b by peptide G23 has been reported27, together with this study 

clearly indicating that G23 recognizes at least two gangliosides. In nature additional 

gangliosides are encountered which are structural equivalents of GM1. We therefore 

investigated whether these gangliosides are present on the BBB model and secondly for 

which gangliosides G23 tagged polymersomes have affinity.  

Using a set of specific antibodies against individual ganglosides, immuno analysis 

revealed the presence of GD1a and GT1b, but not GD1b at the cell surface of hCMEC/D3 

cells as shown in Figure 3. Subsequently, we investigated whether the G23-

polymersomes display binding capacity towards GD1a and GT1b, using related and 

unrelated gangliosides as controls. The gangliosides – spotted on a dot blot – were 

incubated with radioactively labelled G23-polymersomes, after which binding only 

occurred to GM1 and GT1b. Accordingly, we determined whether the binding of G23-

polymersomes to GT1b also occurs in a cellular context by establishing the extent of 

colocalization between GT1b and fluorescently labelled G23-polymersomes. The 

colocalization of G23-polymersomes with GT1b was 16.2 ± 6.4%, while colocalization 
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with GD1a was less than 3% (Figure 4). Hence, these data support that both GM1 and 

GT1b may function as target sites for G23-polymersomes. 

 

 

Figure 3. Distribution of gangliosides, GD1a, GD1b and GT1b in a monolayer of hCMEC/D3 cells. The 
nuclei are stained blue by DAPI and the gangliosides are stained red via the corresponding antibody.  
 

 

Figure 4. Colocalisation of G23 tagged polymersomes (green) with ganglioside GD1a (left, stained in red), 
ganglioside GT1b (middle, stained red) and the evaluation of the amount of colocalisation (right). 

To reveal the potential of G23 to also mediate BBB passage in vivo, rhodamine-labelled 

G23-polymersomes and non-targeted polymersomes were administered by intracarotid 

artery injection in BALB/c mice. The brain distribution of both rhodamine-labelled 

polymersomes was then analyzed 24 h after injection by preparing thin brain slices as 

described in detail in the Section 4.5. The nuclei were stained green (CD31), the vessels 

were stained blue (DAPI) and polymersomes red (rhodamine). As demonstrated in 

Figure 5, next to their localization within the endothelial cells of the BBB (Figures 5a, b – 

upper panel), substantial amounts of the G23-polymersomes reached the brain 

parenchyma (Figures 5a, b – lower panel, c), indicating that they crossed the BBB and 

penetrated into the brain tissue. In marked contrast, non-targeted polymersomes were 

found mainly in the leaky vessels of the forth ventricle (Figure 5d) and ependymal cells 

of the aqueduct (Figures 5e, f – lower panel), and only occasionally in brain parenchyma 
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(Figures 5e, f – upper panel), further emphasizing the potency of G23 to mediate 

effective transfer of polymersomes across the BBB.  

 

 

Figure 5. In vivo brain distribution of polymersomes after intracarotid artery injection in mice. BALB/c 
mice were injected with G23- and non-targeted polymersomes. 24 h after injection brains were isolated 
and processed as specified in methods. (a, magnification in (b) upper panel) G23-polymersomes are found 
in microvessels, visualized with CD31 (PECAM), and in (a, magnification in (b) lower panel, and c) brain 
parenchyma. (d) Non-targeted polymersomes are found in the leaky vessels of the forth ventricle, and in 
(e, magnification in (f) upper panel) in parenchyma, and (e, magnification in (f) lower panel) ependymal 
cells of the aqueduct. Polymersomes are pseudocolored in red, CD31 in blue, and nuclei in green. Scale 
bars, 50 μm. 

4.3 Conclusion 

In conclusion, we have identified the low molecular weight peptide, G23, which when 

coupled to polymeric vesicles, binds to cell surface localized gangliosides GM1 and GT1b. 

By doing so it is able to mediate the transport of nanocarriers over the blood brain 

barrier both in vitro and in vivo. The combination of the low molecular weight targeting 

peptide, GM1/GT1b as targeting receptor, the robust polymeric carrier and the efficient 

in vitro and in vivo transcytosis is unprecedented and therefore adds new possibilities 

to the development of efficient drug nanocarriers for the treatment of brain and central 

nervous system-related diseases  
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4.5 Experimental procedures 

 

4.5.1 Synthesis and characterisation 

Notes The synthesis of compounds 1-3 and 7-14 were performed as discussed in Chapter 2. 

 

Materials Chelex resin (ALDRICH), was used as received. Tetrahydrofuran (THF) (ACROS ORGANICS, 

99+% extra pure, stabilized with BHT) was distilled under argon from sodium/benzophenone, and 

triethylamine (TEA) (BAKER) was distilled from calcium hydride under an argo n atmosphere prior to 

use. 111InCl3 was purchased from Covidien, Petten, The Netherlands. Instant Thin-Layer 

Chromatography Silica Gel impregnated glass fibre (ITLC-SG) strips were purchased from Varian. 

Thin layer chromatography (TLC) was performed on Merck precoated silica gel 60 F-254 plates (layer 

thickness 0.25 mm). Compounds were visualized by UV, ninhydrin and/or permanganate reagents. 

Column chromatography (CC) was carried out using silica gel, Acros (0.035-0.070 mm, pore diameter 

ca. 6 nm). Polymersome extrusions were performed using 200 nm filters (Acrodisc 13 mm Syringe 

Filter, 0.2 µm Nylon membrane) and 0.1 µm PC membrane (WHATMAN).  

 

Instrumentation Infrared (IR) spectra were obtained using a Thermo Matson IR 300 FTIR spectrometer. 

Data are presented as the frequency of absorption (cm-1). Molecular weight distributions were measured 

using size exclusion chromatography (SEC) on a Shimadzu (CTO-20A) system equipped with a guard 

column and a PL gel 5 μm mixed D column (Polymer Laboratories) with differential refractive index and 

UV (λ = 254 nm and λ = 340nm) detection, using tetrahydrofuran (SIGMA ALDRICH chromasolv 99.9%) as 

an eluent at 1 mL/min and T = 30 °C. Particle size distributions were measured on a Malvern instruments 

Zetasizer Nano-S. and zeta potentials were measured on a NanoSight NS500 system in water with an 

applied potential of 24 V. MilliQ water was obtained from a Labconco water pro PS system. 
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Scheme 2. Synthetic route to amphiphilic block copolymers of PBd-b-PEG (1-3) with different end 
functionalities as developed in Chapter 2. Polymer 1 is inert and forms the basic building block for 
polymersome formation. Block copolymer 2 bears an amine end group to allow conjugation with 
isothiocyanate derivatives of e.g. fluorescein. Finally, polymer 3 is maleimide end functionalized to allow 
for conjugation with cysteine bearing peptides. Prior to use, all polymers were extensively washed with 
Chelex 100 resin in THF to remove any traces of copper. The amount of residual copper was in all cases 
determined by ICP-MS and found to be equal or less than MilliQ references. 

Fluorescent labelled polybutadiene-b-poly(ethylene glycol) (4 and 5) Compound 3 (50 mg, 10 µmol) 

was dissolved in THF (10 mL) and Et3N (1 mL) was added. Rhodamine B isothiocyanate (7.5 mg, ca. 1.5 

equiv.) or fluorescein isothiocyanate (7.5 mg, ca. 1.5 equiv.) was added and allowed to react for 48 hours. 

Solvents were removed and product 4 or 5 was purified by preparative SEC (THF) to yield 25 mg product. 

The product was a single spot on TLC (8 v% methanol in DCM; UV and permanganate stain) which 

appeared brightly fluorescent. Note that the isothiocyanate coupling of rhodamine B proceeded slowly as 

can be seen from the SEC traces (absorption @ 340 nm) in Figure 6. The elution volume that was collected 

in preparative SEC (THF) is depicted in the box (6.7 to 8.1 mL) 
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Figure 6. SEC (THF) analysis of block copolymer 
3, which does not absorb at 340 nm before the 
addition of rhodamine B isothiocyanate. After 2 
hours the labelled polymer (top~7.5 mL) does 
absorb at 340 nm, which increases over the next 
46 hours. The dashed box indicates the volume, 
containing product 5 (or 4 case of FITC), which 
was collected by preparative SEC in THF. 

 

PBd-b-PEG-DTPA (6) This reaction was performed as described in Chapter 3. In short, the amine end 

functional polybutadiene-b-poly(ethylene glycol) 3 (110 mg, 23 µmol) was dissolved in THF (10 mL). To 

the solution, p-isothiocyanate-benzyl diethylene-triamine-penta-acetic-acid (14 mg , 0.95 equiv. 22 µmol) 

and triethylamine (5 mL) were added. The mixture was stirred at room temperature for 48 hours, after 

which all solvents were removed. The products were dissolved in THF (5 mL) and cooled on ice for 6 

hours, after which the solution was filtered through a 200 nm syringe filter. The product was obtained by 

removing all THF. The DTPA end groups were not quantified, yet their presence was confirmed by FTIR 

and 111In test labelling. FTIR: 1730 cm-1 (carboxylic acid). SEC (THF): Mw/Mn = 1.26, Mw (theoretical) = 

5.3 kg/mol. 

 

Peptide Synthesis All peptides were synthesised by means of standard Fmoc chemistry. To the C-

terminus of all native peptide sequences (as determined in phage display) was an additional cysteine 

added to allow bioconjugation. All peptides were more than 90 percent pure as analyzed by means of 

HPLC (water/acetonitrile with 0.1% TFA; gradient acetonitrile from 0 to 100% in 30 minutes). 

Additionally in all cases the right mass was found by means of Maldi-TOF (Maldi-TOF (cyano-4-

hydroxycinnamic acid), analyzed with moverz software:  

 

G23:  [M+H] calc: 1645.88 g/mol and [M+H] found:1645.6 g/mol.  

SCR:  [M+H] calc: 1645.88 g/mol and [M+H] found: 1645.6 g/mol.  

G88:  [M+H] calc: 1262.6 g/mol and [M+H] found: 1262.1 g/mol.  

 

4.5.2 Polymersome formation and peptide conjugation 

Fluorescent, maleimide displaying polymersomes Compounds 1 (8 mg, 1.7 µmol), 3 or 4 (1 mg, 

0.2 µmol) and 2 (1 mg, 0.2 µmol) were dissolved in THF (200 µL). Polymersomes were formed by the 

slow addition of 0.8 mL of PBS buffer of pH 7.4. The samples were passed six times through a 200 nm 

syringe filter (Aerodisc) to yield polymersomes of approximately 220 nm. To obtain polymersomes of 
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around 160 nm the solution was extruded six times over a 100 nm filter (Lipex high pressure 

extruder, Northern Lipids). The resulting opaque suspension was purified over a Sephadex G200 

column (1.5 x 8 cm). The opaque fractions were combined and PBS was added to a total volume of 10 

mL, i.e. a polymersome suspension containing 1 mg polymer per mL. The final polymersome solution 

was analyzed by DLS to determine the mean size and polydispersity index.  

 

 

Figure 7. TEM image of polymersomes formed 
from block copolymer 1. The black bar 
represents 200 nm. 

 

 

Radio-labelled, maleimide displaying polymersomes Compounds 1 (9 mg, 1.9 µmol), 5 (0.1 mg, 

0.02 µmol) and 2 (1 mg, 0.2 µmol) were dissolved in THF (200 µL). Polymersomes were formed by 

the slow addition of 0.6 mL of 0.1 M. 2-(N-morpholino)ethanesulfonic acid (MES) buffer of pH 5.5. 

The samples were passed three times through a 200 nm syringe filter to yield polymersomes of  

approximately 220 nm. The solution was extruded six times over a 100 nm filter (extrusion kit) to 

obtain polymersomes of around 160 nm. The resulting opaque suspension was purified over a 

Sephadex G200 column (1.5 x 8 cm), eluting with MES buffer. The opaque fractions were combined 

and the mean particle size was determined by DLS. 

 To 0.2 mL of polymersomes, 25 MBq of 111InCl was added and allowed to chelate for 20 minutes, 

after which the coupling efficiency was analyzed by Instant Thin-Layer Chromatography Silica Gel 

impregnated glass fibre (ITLC-SG) strips, developed in 0.1 M NH4Ac (pH 5.5)/0.1 M EDTA (1:1, v/v). 

The sample was purified over a PD10 desalting column, eluting with PBS buffer pH 7.4, and diluted 

with PBS to a total volume of 10 mL, i.e. a polymersome suspension containing 1 mg polymer per mL. 

 

Conjugation of peptides to polymersomes Tris(2-carboxyethyl)phosphine (0.5 mg, TCEP) was 

dissolved in PBS of pH 7.4 (300 µL) and added to the peptide (1 mg). The solution was allowed to 

stand for 15 minutes, after which it was added to 1.5 mL of polymersomes . The coupling was allowed 

to proceed for three hours, after which the solution was transferred into a dialysis bag (Spectrapore 

MWCO 12-14 kD) and dialysed against PBS buffer for 24 hours (replacing PBS every 5-10 hours). The 

zeta potential of the polymersomes was determined by means of DLS (Table 1) and all preparations 

were tested for hCMEC/D3 cell binding as shown in Figure 8. 
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Figure 8. CLSM images revealing association of polymersomes (green fluorescent dots) with a 
monolayer of hCMEC/D3 cells. Left) Untargeted fluorescein labelled polymersomes. Middle) 
Polymersomes tagged with 10% G88 and labelled with fluorescein. Right) Polymersomes tagged with 
10% G23 and labelled with fluorescein for visualization. 

4.5.3 Phage display for selection of GM1-binding peptides 

To perform a phage library selection on monosialotetrahexosylganglioside (GM1), GM1 -C11-N3 was 

covalently coupled to a 96-wells plate via the Cu-catalyzed azide-alkyne cycloaddition, which assures 

a proper physiological orientation of the oligosaccharide chains22. A maleimide-functionalized plate 

(Thermo Scientific, Waltham, MA) was washed with phosphate buffered saline (3x, PBS (0.1 M 

Na2HPO4, 0.15 M NaCl pH 7.2) and incubated for 2 h at room temperature with 0.5 M propargylamine 

diluted in immobilization buffer (0.2 M NaHCO3, 0.5 M NaCl, pH 8.0), with refreshing the solution 

after the first hour. Next, the plate was washed two times with ultrapure sterile water and GM1 -C11-

N3 (0.2 μg/well), sodium ascorbate (0.28 μg/well) and CuSO4 (0.3 μg/well), all diluted in water, were 

sequentially added to the plate. After an overnight incubation at room temperature the plate was 

washed two times with ultrapure sterile water, followed by adding a small volume of PBS to cover th e 

bottom of the plate, and stored at 4 °C. The coupling reaction was verified with Alexa Fluor 488 

labelled cholera toxin B (CTxB-AF488). 0.43 nM CTxB-AF488 was added to the plate, followed by an 

incubation for 90 min at 37 °C Subsequently, the plate was washed 10 times with PBS and the 

fluorescence intensity was measured on a Perkin-Elmer LS 500 luminescence spectrometer. The 

fluorescence signal showed a 1.42-fold increase compared to a 5 mg/mL BSA-treated plate.  

Three panning rounds with a premade phage library (Ph.D.-12, BioLabs) encoding peptide 12-mers, 

were performed according to the manufacturer’s protocol. Briefly, each well was incubated with blocking 

buffer (5 mg/mL BSA in 0.1 M NaHCO3 pH 8.6) for 1 h at 4 °C. After six times washing with Tris-Buffered 

Saline Tween-20 (TBST, 50 mM Tris-HCl pH=7.5, 0.1% [v/v] Tween-20), 10 μl of a 100-fold dilution of the 

original library in TBST (2 x 109 phage clones) was added to the wells and incubated for 1 h at room 

temperature with gentle shaking. The plate was washed 10 times with TBST, with an increase in the 

Tween-20 concentration to 0.5% [v/v] in the second and third panning round, to remove non-bound 

phages. Phages that were bound to the GM1-coated plate were eluted with 0.2 M Glycine-HCl containing 1 

mg/mL BSA (pH 2.2) for 15 min at room temperature. Eluted phages were amplified in ER2738 E.coli, 

purified, precipitated in PEG/NaCl (20% [w/v] polyethylene glycol-8000, 2.5 M NaCl) or titered on 

IPTG/Xgal LB plates. After the third panning round, 20 out of the approximately 100 plaques present were 

randomly chosen and the DNA was isolated. The DNA was precipitated with ethanol from suspensions of 
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phage pellets in iodide buffer (10 mM Tris-HCl (pH 8.0), 1 mM EDTA, 4 M NaI), according to the 

manufacturer’s protocol for single-stranded phage DNA isolation. The DNA samples were sequenced by 

BaseClear BV, Leiden, The Netherlands. 

 

4.5.4 In vitro evaluation 

hCMEC/D3 cell line maintenance and differentiation A human brain microvessel endothelial cell line, 

hCMEC/D3, was obtained from Dr. P.O. Couraud (Institut Cochin, Paris, France). Cells were maintained in 

25 cm2 flasks precoated with 100 μg/mL rat tail collagen type I (Cultrex, R&D Systems, Trevigen) in EBM-

2 basal medium (Lonza Group, Basel, Switzerland), supplemented with EGM-2-MV bullet kit (Lonza Group, 

Basel, Switzerland) containing VEGF, R3-IGF-1, hEGF, hFGF-B, hydrocortisone, and 2.5% FBS and 100 

μg/mL penicillin/streptomycin. For differentiation of the cells EBM-2 basal medium was supplemented 

with 1 μM dexamethasone (Sigma, St. Louis, MO) and 1 ng/mL bFGF (Invitrogen, Carlsbad, CA). Cells were 

maintained at 37 °C under an atmosphere of 5% CO2. 

 

Incubation of hCMEC/D3 cells with fluorescently labelled phage particles Individual phage clones 

were amplified according to manufacturer’s protocol. Briefly, an overnight culture of ER2738 E. coli was 

diluted 1:100 and 10 μl of phage stock in glycerol was added to 1 mL of the diluted bacterial culture. The 

suspension was incubated for 4.5 h under shaking and subsequently centrifuged for 30 sec at 14 000 rpm., 

the supernatant transferred to a fresh tube and re-centrifuged. In a fresh tube, 1/6 volume of 20% 

PEG/2.5 M NaCl was added to the upper 80% of the supernatant. Phages were allowed to precipitate at 

4°C for 2 hours. The PEG precipitate was spun down at 12,000 g for 15 minutes at 4°C, supernatant 

decanted, re-spun and residual supernatant removed with a pipette. The phage pellet was re-suspended in 

100 μl 0.25 mg/mL FITC (Sigma, St. Louis, MO) in 0.3 M NaHCO3 (pH 8.6). After 1 h of incubation under 

gentle shaking conditions, 20% PEG/2.5 M NaCl (1/5 of the original volume) was added. The resulting 

phage suspensions were kept for 30 min on ice and subsequently centrifuged for 10 min at 14 000 rpm at 

4 °C. The supernatant, containing unbound FITC, was discarded and the pellet was resuspended in TBS. 

The precipitation and re-suspension of the phage particles was repeated twice more. The protein content 

in the final suspension was determined with a NanoDrop 1000 spectrometer (Thermo Scientific, Waltham, 

MA). Equal amounts of protein (phages) were added to hCMEC/D3 cells, grown on coverslips, and 

incubated for 2 h at 37°C. Cells were washed with prewarmed hank’s buffered salt solution (HBSS) and 

fixed. Samples were analysed and representative images were acquired, using a Provis AX70 

epifluorescence microscope (Olympus corporation, Center Valley, PA).  
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Figure 9. CLSM images of cell binding of fluorescein labelled plagues displaying the peptide sequences as 
selected in phage display. G88 and G23 were selected for further research based on their cell adhesion and 
homogeneous patterning. 

 

Transcytosis assay 2 x 105 cells/cm2 were seeded onto Transwell filters with a pore size of 0.4 μm 

(Corning Life Sciences B.V., Amsterdam, The Netherlands), precoated with collagen type I. Differentiation 

media was changed twice a week and the transendothelial electrical resistance (TEER) values were 

measured using a Millicell-ERS (Millipore, Billerica, MA). Experiments were performed in hCMEC/D3 

monolayers, cultured for 14 days with TEER values of ~ 30 Ω/cm2. For further details see reference25.  

Fluorescein-labelled polymersomes (40 μg/mL) diluted in EBM-2 medium, were added to the apical 

compartment and incubated for 16-18 h at 37 °C. The media in the apical and basal compartments were 

collected and the filter membrane with the cells was separated from the support. Subsequently, the filter 

was soaked in water to osmotically rupture the cells, resulting in release of the polymersomes. The 

fluorescence intensity in the three compartments, i.e., apical, basal and filter with cells, was measured 

with a Perkin-Elmer spectrofluorometer LS500 at the corresponding wavelengths 495 nm (excitation) and 

520 nm (emission).  

 

Immunofluorescence detection of cell surface gangliosides in hCMEC/D3 cells, and their 

colocalization with G23-polymersomes hCMEC/D3 cells were seeded onto glass coverslips, precoated 

with 100 μg/mL collagen type I, and maintained in differentiation medium. The medium was refreshed 

when cells reached confluency and the experiments were performed the next day. To detect cell surface 

exposed glycosphingolipids, live cells were incubated with primary antibodies anti-GD1a 5 μg/mL, anti- 

GD1b 5 μg/mL, anti-GT1b 20 μg/mL (Seikagaku Corp., Japan) in 1% BSA (PBS) for 30 min, at 10 °C. Cells 

were fixed with 2.4% paraformaldehyde and incubated with secondary antibodies in the presence of DAPI 
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and mounted, or alternatively, the medium was aspirated and 40 μg/mL of G23-polymersomes were 

added for an additional 30 min at 10 °C prior to fixation. The coverslips were mounted onto microscopic 

slides with Faramount aqueous mounting medium (Dako). Images were acquired with a confocal 

microscope (Leica TCS SP2 (AOBS), 63x oil objective, NA = 1.4), and processed using ImageJ software (NIH, 

http://rsb.info.nih.gov/ij). After background correction, the colocalization analysis was performed 

according to the auto-threshold method. The extent of colocalization is presented as colocalizing pixels 

between particles and the lipid/protein of interest, divided by the total number of particles’ pixels, i.e., 

percentage of colocalizing pixels.  

 

Dot blot analysis of G23-polymersome binding to isolated gangliosides The binding of G23-

polymersomes to isolated gangliosides was determined in a dot blot assay as described in reference28 with 

minor modifications. Briefly, 10 μl of a 0.5 μM solution of GM1, and 5 μl of a 1 μM solution of GM2, GM3, 

GD3, GD1a, GD1b and GT1b gangliosides (Alexis Corporation, Läufelfingen, Switzerland) were spotted 

onto an immobulon-FL (PVDF) membrane (Millipore Corporation, Billerica, MA). The membrane was 

incubated with radio-labelled G23-polymersomes (5 μg/mL) in PBS containing 1% BSA for 3h. Upon 

extensive washing the membrane was air dried, covered with a multipurpose Cyclone phosphor imaging 

screen (Perkin-Elmer, Downers Grove, IL, USA), and placed in an X-ray film cassette overnight at room 

temperature. The screen was subsequently analyzed using a Perkin-Elmer Cyclone Storage Phosphor 

System (Downers Grove, IL, USA). The positions of gangliosides were visualized on the screen by spraying 

with Ehrlich’s reagent (20 mL of 37% hydrochloric acid with 0.6 g of 4-(dimethylamino)-benzaldehyde 

(Sigma-Aldrich, Steinheim, Germany) solubilised in 80 mL ethanol), and heating at 120 °C for 10 min. 

 

4.5.5 In vivo evaluation 

Intracarotid artery injection of G23-polymersomes in mice Male 20–25 g BALB/c mice were obtained 

from Harlan (Horst, The Netherlands). The mice were kept in standard macrolon cages (26.2 x 42 x 15 cm) 

under controlled conditions (23 ± 1°C, 12-h light, 12-h dark cycle, pellets (Arie Blok, Woerden, The 

Netherlands) and water ad libidum). The experiments were approved by the Animal Ethics Committee of 

the University of Groningen, The Netherlands and performed by licensed investigators in accordance with 

the Law on Animal Experiments of The Netherlands. Mice were anaesthetized by isoflurane/oxygen. The 

neck was shaved and the mice were placed under a dissecting microscope. The neck was prepared for 

surgery with chlorhexidine and the skin was cut by a mediolateral incision. The muscles were separated to 

expose the right common carotid artery, which was then separated from the vagal nerve. The proximal 

end of the common carotid artery was clamped with a micro clamp. The tip of a 29 G needle connected to a 

0.3 mL syringe was inserted into the carotid artery. The polymersomes were injected over 15 - 20 s (< 

0.01 mL/s) in order not to open the blood brain barrier29. Following polymersomes administration the 

needle was retracted, the puncture hole was closed by suture and covered with collagen to prevent any 

leakage. The micro clamp was removed to establish the blood flow. The skin was closed with ~5 sutures. 

At the end of the procedure, 0.1 mg/kg buprenorfine (Temgesic) was injected subcutaneously for 

postoperative pain relief. The animal was kept warm during recovery. The surgical procedure took 15 
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min/animal. Rhodamine-labelled G23- polymersomes and non-targeted polymersomes were injected in 3 

animals each. 24 h after polymersomes administration the mice were sacrificed by carbon dioxide 

asphyxiation, the brains were isolated, snap frozen in liquid nitrogen and stored at -80 oC until further 

processing. 8 and 10 μm brain sections were made on a Leica CM 3050 cryostat microtome and mounted 

onto polylysine microscopic slides (ThermoScientific, Waltham, MA). The sections were air dried for 1 h at 

room temperature and fixed for 15 min at -20 °C in acetone. After blocking with 10% goat serum in PBS 

for 1 h at room temperature, the sections were incubated with an antibody against PECAM- 1 (CD31) 

(MEC 13.3, BD Biosciences) overnight at 4 °C. Alexa Fluor 633 conjugated secondary antibody (Invitrogen 

Carlsbad, CA) was applied for 2 h at room temperature, together with DAPI. Samples were analyzed with a 

confocal microscope (BMBME Leica SP2) and a TissueFaxs fluorescence microscope (TissueGnostics, 

Vienna, Austria). 
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Brain and Organ Distribution of G23, Scrambled 

G23 and RI7217 Tagged Polymersomes 

 

 

 

 

 

 

 

 

In the previous chapter we developed a small peptide (G23) tagged polymersome that is able to efficiently 

cross the blood brain barrier in an in vitro model by recognition of ganglioside GM1 and GT1b. Furthermore 

we showed that these polymersomes are able to cross the blood brain barrier into brain parenchyma in vivo. 

In vivo and in vitro transport was either analyzed by means of fluorescence spectroscopy or confocal laser 

scanning microscopy of fluorescently labelled polymersomes. A more quantitative method to analyze 

biodistributions proceeds by means of radiolabelling as employed in Chapter 3. In this chapter, we compare 

the biodistribution of G23, scrambled G23 and RI7217 tagged polymersomes in the most relevant organs and 

different regions of the brain via the method of radioisotope labelling. We demonstrate that G23 

polymersomes indeed show enhanced accumulation in the brain, albeit that also in the lungs a 15 fold 

increase in accumulation was observed. These findings underline that G23 tagged polymersomes might be 

promising carriers for brain targeting, but also suggest that application in lung tissue targeting is feasible. 
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5.1 Introduction 

One of the major challenges in medicinal chemistry is the development of drugs or drug-

formulations that are able to cross the blood-brain barrier (BBB)1. The effective 

treatment of many brain-related diseases is hampered by the presence of this polarized 

layer of endothelial cells that physically separates blood from brain tissue2. Furthermore 

most conventional drug candidates lack stability and/or bioavailability3, or once having 

reached the brain side are cleared by multidrug receptors on the endothelial cell 

surface1. The field of nanomedicine may offer solutions to overcome these obstacles by 

making devices available such as nanocarriers providing options for tissue-targeted 

delivery of therapeutics and local release of drugs. 

 Various targeting moieties and targeting sites have been employed to induce 

transport of liposomes over the BBB4. However, in a recent comparative study van Rooy 

et al.5 showed that most peptides and proteins are rather ineffective in inducing this 

transport. The most widely applied targeting moiety in literature is transferrin antibody 

RI7217, which in combination with transferrin and insulin have also been employed to 

target polymersomes over the BBB6-7.  

 In Chapter 4 we described the development of a dodecamer peptide tagged 

polymersome that is able to cross the blood brain barrier both in vitro and in vivo. This 

report was the first to describe transport of polymersomes over the BBB by a small, 

1645 g/mol, peptide which recognizes ganglioside GM1 and GT1b as targeting site. The 

polymersomes were visualized either by fluorescence spectroscopy or by confocal laser 

scanning microscopy. Although this analysis method provides a good impression of the 

efficiency with which polymersomes can cross the BBB into the brain parenchyma, it 

does not allow for a quantitative determination. A method that does so for 

biodistribution is radioisotope labelling, as we showed in Chapter 3 for differently sized 

polymersomes.  

 

 In this chapter we analyze in vivo biodistributions of polymersomes conjugated with 

G23 peptide, scrambled G23 peptide (Scr) and RI7217 by means of 111In radioisotope 

labelling. After 24 hours, G23 tagged polymersomes showed increased brain 

accumulation by a factor of 5.8 compared to polymersomes bearing the scrambled G23 

sequence. Polymersomes tagged with the 90 kg/mol RI7217 antibody showed a 10.3 

fold increase in brain accumulation. The most striking result was found in the 
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biodistribution over the organs. G23 polymersomes gave a 15 fold increase in lung 

accumulation compared to polymersomes tagged with the scrambled G23 sequence. 

These data underline that G23-functionalized polymersomes are promising for targeted 

delivery over the BBB, although application in lung tissue targeting might be another 

viable option. 

 

 

Figure 1. Polymersomes were self assembled from 89 w% (1), 1 w% (2) and 10 w% (3). After self 
assembly the polymersomes were labelled with radioactive 111In and conjugated with peptide G23, Scr or 
transferrin antibody RI7217. Next, biodistributions were determined in male Balb/c mice. 

5.2 Results and Discussion 

The block copolymers used in this study are depicted in Figure 1 and are equal to the 

polymers described in Chapters 2 and 3. This Figure shows that polymersomes were 

formed from a mixture of polymers 1, 2 and 3 in a ratio of 89:1:10 followed by 111In 

labelling and finally peptide conjugation. It should be noted that switching the order of 

events led to a poor 111In labelling efficiency.  

 Peptides G23 and Scr were synthesized via Fmoc chemistry8 with a C-terminal 

cysteine for conjugation, only the monoclonal antibody RI7217 did not contain a free 

accessible cysteine. Therefore on average 3.1 thiols - as determined via Ellman’s reagent 

- were introduced by means of a standard SATA modification9. The formation of 

polymersomes was accomplished via the solvent switch method, starting from a solution 

of 10 mg polymer in 0.2 mL THF. After the addition of 0.6 mL 2-(N-

morpholino)ethanesulfonic acid MES buffer (0.1 M, pH 5.5, metal free) polymersomes 
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were formed as indicated by the opaque colour. The sample was extruded subsequently 

over 200 and 100 nm membranes to obtain polymersomes of 166 nm with a 

polydispersity index of 0.12 as determined by dynamic light scattering (DLS) before 

radiolabelling and conjugation of the targeting moieties. The polymersomes were 

purified over a Sephadex G200 column, labelled with 25 MBq 111In and subsequently the 

MES buffer was switched for phosphate buffered saline (PBS, 20 mM, pH 7.4) over a 

PD10 desalting column. After switching buffers, the peptides or the antibody were 

coupled to the peripheral maleimide groups via the C-terminal cysteine or SATA 

moieties, respectively. Finally the samples were dialyzed over night to remove excess of 

peptide. The 111In labelling efficiency was tested by means of IC-TLC after the initial 

indium labelling and subsequent dialysis. The radioisotope labelling efficiency was 

virtually quantitative and appeared stable towards dialysis. The polymersomes were 

diluted with PBS to 1 mg of polymer per mL (0.2 µmol polymer per mL, 2.5 MBq per mL) 

 After the successful formation of labelled polymersomes, the biodistribution in male 

Balb/c mice was evaluated by injecting 200 µL of polymersomes in the tail vain. The 

biodistribution over the main organs was determined as well as the distribution of 

polymersomes over different parts of the central nervous system (CNS). In Chapter 3 

was shown that polymersomes of 120 nm and larger are readily cleared from the blood 

stream. The current research was performed using polymersomes with an average 

diameter of 166 nm, which are expected to circulate in the blood stream for less than 4 

hours, excluding significant contributions of blood associated polymersomes in different 

organs to the counts (Table 1).  

 The observed distribution of polymersomes over the central nervous system is 

depicted in Figure 2. It shows that the G23 peptide is able to increase the transport of 

polymersomes into the total brain with a factor of 6.5 (4 hours) and 5.8 (24 hours) as 

compared to the scrambled sequence of G23. In the cerebellum, cortex and brain rest a 

similar increase as compared to scrambled G23 was observed, which in all cases was 

statistically relevant. This underlines the specificity of the native G23 sequence to 

enhance blood brain barrier transport. We also included RI7217 tagged polymersomes 

in this study, since RI7217 is the most widely employed targeting moiety in literature. 

Compared to the scrambled G23 sequence, polymersomes tagged with this antibody 

showed a 10 fold increase in total brain accumulation after 24 hours. Furthermore, 
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0.096 % ID/g was found to be associated with the total brain, a number that is in 

agreement with previous reports on polymersomes in male Balb/c mice6.  

Upon comparing G23 and RI7217 targeted polymersomes a clear trend becomes 

apparent from Figure 2. In all CNS domains, the RI7217 tagged polymersomes seem to 

perform better than the G23 tagged polymersomes. However, the difference in brain 

distribution is not statistically significant after 4 hours, while after 24 hours the 

accumulation in the cortex and brain rest is significantly lower for G23 polymersomes, 

but not for the total brain and cerebellum.  

 

Figure 2. Biodistribution at 4 and 24 hours post injection (p.i.) of RI7217, G23 and Scr tagged 
polymersomes over different parts of the central nervous system in male Balb/c mice (n = 4, 9 weeks of 
age, 20-23 gram). †) Statistically significant difference as compared to Scr as calculated for G23, and *) 
statistically significant difference compared to RI7217 as calculated for G23. 

 

Table 1. Biodistribution of polymersomes 
tagged with G23, Scr and RI7217 after blood 
volume correction as described in the 
experimental section. 

 

Comparison of in vivo transport over the blood brain barrier with other targeted 

nanocarriers reported in literature is not straightforward, since the animal model, 
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method of administration and type/size of nanocarrier will influence the experimental 

outcome. However, in a recent literature study by van Rooy et al.4, it was summarized 

that most targeted carriers show a 2 to 3 fold increase in BBB transport. Among the 

small peptides, Tat-peptide coupled to poly(lactic-co-glycolic acid) nanoparticles 

showed a most prominent (6.5 fold) increase in brain uptake in mice10, followed by a 4.9 

fold for the nine amino acid bradykinin agonist peptide RMP-7 targeted liposomes in 

rat11. This suggests that G23 targeted polymersomes are among the most efficient 

peptide targeted nanocarriers reported to date.  

 

 We also analyzed the biodistribution of targeted polymersomes over all main organs 

and corrected them for blood values12 (Table 1). As anticipated – since we applied 

polymersomes of 166 nm – after 4 and 24 hours almost all polymersomes were cleared 

from the blood stream and accumulated in the liver and spleen. However, as depicted in 

Figure 3, the G23 tagged polymersomes revealed an interesting deviation from the 

expected distribution in the lung tissue. Compared to the scrambled sequence of G23, 

polymersomes tagged with native G23 showed a statistically significant 15 fold increase 

in lung association. This data again underlines the specificity of the sequence of G23 

peptide in targeting, since the scrambled sequence did not show deviation from the 

expected biodistibution (Chapter 3). Interestingly, this finding opens up new 

opportunities for the application of G23 targeted polymersomes in lung tissue targeting. 

 

 

Figure 3. Biodistribution at 4 and 24 hours post 
injection (p.i.) of RI7217, G23 and Scr tagged 
polymersomes over lung tissue in male Balb/c 
mice (n = 4, 9 weeks of age, 20-23 gram). †) 
Statistically significant difference compared to 
Scr as calculated for G23, and *) statistically 
significant difference compared to RI7217 as 
calculated for G23. 
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The biodistribution of polymersomes tagged with RI7217 did not reveal any significant 

deviations. This is in agreement with considerations in literature behind the choice for 

RI7217 in BBB targeting research. Although other transferrin antibodies have been 

reported to cross the BBB more efficiently, RI7217 has the highest specificity,5 i.e. does 

not target other tissues. 

 

5.3 Conclusion and Perspective 

G23 tagged and radio-labelled polymersomes were designed for GM1 (and GT1b) 

mediated brain targeting and indeed show a significant increase in brain accumulation. 

Compared to RI7217 tagged polymersomes, G23 labelled polymersomes accumulate to a 

slightly lower extent in the brain than RI7217 tagged polymersomes. Although no direct 

comparison could be made, G23 tagged polymersomes can cross the BBB rather 

efficiently compared to other small peptide targeted nanocarriers reported in literature. 

In addition, the lung association of G23 tagged polymersomes appeared substantial with 

a 15 fold increase compared to the scrambled sequence of G23. Hence, polymersomes 

tagged with G23 peptide may also have potential for targeted drug delivery to the lungs. 

 

 With respect to future experiments, it may be worthwhile to reconsider the size of 

the polymersomes applied. If the nanocarrier is circulating longer in the blood, the 

chances of transport either over the blood brain barrier or to the lungs might be higher. 

Furthermore it would be interesting to look beyond the design of G23 targeted 

polymersomes into the method of administration. Perhaps, it is possible to favour BBB 

transport over lung accumulation by injecting G23 targeted polymersomes into the 

intracarotid artery as was performed in Chapter 4. 
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5.5 Experimental Procedures 

Radiolabelled, maleimide displaying polymersomes Polymers 1 (9 mg, 1.9 µmol), 2 (0.1 mg, 0.02 

µmol) and 3 (1 mg, 0.2 µmol) were dissolved in THF (200 mL). Polymersomes were formed by slow 

addition of 0.6 mL 0.1 M 2-(N-morpholino)ethanesulfonic acid (MES) buffer of pH 5.5. The samples 

were passed three times through a 200 nm syringe filter to yield polymersomes of approximately 250 

nm. The solution was extruded six times over a 100 nm filter (extrusion kit) to obtain po lymersomes 

of around 160 nm. The resulting opaque suspension was purified over a Sephadex G200 column (1.5 

x 8 cm), eluting with MES buffer. The opaque fractions were combined and the mean particle size was 

determined by DLS. 

 25 MBq of 111InCl was added to the polymersomes and allowed to chelate for 20 minutes, after 

which the coupling efficiency was analyzed by Instant Thin-Layer Chromatography Silica Gel 

impregnated glass fibre (ITLC-SG) strips, developed in 0.1 M NH4Ac (pH 5.5)/0.1 M EDTA (1:1, v/v). 

The sample was purified over a PD10 desalting column, eluted with PBS buffer pH 7.4, and diluted 

with PBS to a total volume of 10 mL, i.e. a polymersome suspension containing 1 mg of polymer per 

mL (2.5 MBq per mL). 

 

Conjugation of peptides to polymersomes A solution of tris(2-carboxyethyl)phosphine (TCEP, 0.5 

mg) was dissolved in PBS (300 µL) of pH 7.4 and added to the peptide (1 mg, excess  to maleimides). 

The solution was allowed to stand for 15 minutes, after which it was added to 1.5 mL of the 

polymersomes. The coupling was allowed to proceed for three hours, after which the solution was 

transferred into a dialysis bag (Spectrapore MWCO 12-14 kDa) and dialysed against PBS buffer for 12 

hours. 

 

Conjugation of RI7217 to polymersomes RI7217 antibody was coupled to maleimide 

polymersomes by a sulfhydryl-maleimide coupling technique as described previously9 with minor 

modifications. Free sulfhydryl groups were introduced into the antibody using N-succinimidyl-S-

acetylthioacetate, (SATA. Free SATA was separated from the antibody by centrifugation over a filter 

with a 30 kDa cut-off (MWCO). SATA groups were deacetylated for 90 min at room temperature by 

addition of 100 μl of deacetylation solution (0.1M PBS, 0.5M hydroxylamine and 0.02 mM TCEP, pH 

7.4) per millilitre of antibody to generate sulfhydryl groups. This resulted in an SH/protein 

(mol/mol) ratio of 3.1 as determined by Ellman’s reagent assay. After deacetylation, the RI7217 

antibody was allowed to react with 111In-labelled maleimide polymersomes overnight at 4°C. 

 

Radio TLC Quality control of the coupling of 111In to the polymersomes was performed by spotting 5 

μL of the polymersome preparation on an ITLC-SG strip. TLC strips were developed with 0.1 M 

ammonium acetate (pH 5.5)/0.1 M EDTA (1:1, v/v) as the eluent. After development, the strips were 

air-dried and read in a VCS-103 radiochromatograph scanner (AmRay Medical, Drogheda, Co.Louth, 

Ireland). Regions of interest were drawn for 111In-labelled polymersomes (Rf value: 0) and unbound 

111In (Rf value: 0.8-0.9), and the relative amounts of these compounds for each sample were 
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measured. Efficiency of 111In-labelling of polymersomes was >95% and 111In-labelled polymerisomes 

were stable at room temperature for more than 10 days. Nevertheless, 111In-labelled polymersomes 

were freshly prepared for each set of in vivo experiments. 

 

Tissue biodistribution of functionalized polymersomes Male Balb/c mice were obtained from 

Harlan (Horst, The Netherland). The mice were kept in standard macrolon cages under controlled 

conditions (23 ± 1°C, 12-h light, 12-h dark cycle, chow (Arie Blok, Woerden, The Netherlands) and 

water ad libidum). All experiments were approved by the Animal Ethics Committee of the University 

of Groningen, The Netherlands and performed by licensed investigators in accordance with the Law 

on Animal Experiments of The Netherlands. Mice (n = 4) were injected with 200 μl of radio -labelled 

polymersomes (ca. 180 ug polymer per mouse = 38 nmol polymer / mouse; ca. 0.5 MBq) in PBS by 

penile vein injection using a 3 / 10 cc Terumo Insulin Syringe U-100 attached to a 29 G needle. At 4 

and 24 h after injection, the mice were sacrificed by cervical dislocation. At each time point the 

kidney, brain, liver, lung, muscle, spleen, and femur (containing bone marrow) were collected, and a 

blood sample was drawn. The brain was divided into the cerebrum and cerebellum. The cerebrum 

was subdivided into cerebral cortex and brain rest. The samples were weighed and the radioactivity 

was measured using a Compugamma CS 1282 gamma counter (LKB-Wallac, Turku, Finland). The 

radioactivity levels in the injected polymersome solutions served as internal standards. The results 

were expressed as percentage injected dose per gram of tissue (%ID/g). Where indicated, tissue 

levels were corrected for capillary blood content12 using the formula: corrected tissue concentration 

= [organ concentration – (capillary blood content x blood concentration)] / ( 1 – capillary blood 

content), where the tissue capillary blood content is expressed as a fraction of the organ volume, 

which approximates for bone, brain, kidney, liver, lung, muscle and spleen to 0.11, 0.03, 0.24, 0.31, 

0.50, 0.04 and 0.17, respectively)13. 

 

Statistical analysis Results are presented as mean + standard deviation. The statistical analysis was 

conducted using SPSS 16.0 for Windows. Due to inhomogeneity of variance the biodistribution data 

were analyzed by the nonparametric Kruskal-Wallis test, followed by the Mann-Whitney U test to 

compare the groups for which the Kruskall-Wallis test was significant. P values < 0.05 were 

considered statistically significant. 
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Shedding the Hydrophilic Mantle of Polymersomes 

 

 

 

 

 

 

 

 

 

 

Block copolymers of polybutadiene-b-poly(ethylene glycol) were prepared in which both segments were 

coupled via an acid sensitive hydrazone moiety. Polymersomes that were subsequently formed showed 

a strong pH-dependent colloidal stability as a result of the pH sensitive removal of the PEG block. By 

mixing this stimulus responsive block polymer with an inert analogue it was possible to systematically 

remove percentages of PEG from the polymersome mantle. The minimum amount of surface PEGylation 

needed to retain stable polymersomes was found to be as low as five percent.  
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6.1 Introduction 

Polymeric vesicles, or polymersomes, can be regarded as the polymeric analogues of 

liposomes. They are formed by the self-assembly of amphiphilic block copolymers in 

aqueous media1-2. Compared to liposomes, polymersomes are characterized by an 

increased membrane stability and the ability to enclose larger quantities of 

hydrophobic compounds2. This makes them highly interesting for usage as 

nanocarriers in biomedical applications such as drug delivery and in vivo imaging3. 

Nowadays researchers have gained a high degree of control over polymersome 

composition, size and peripheral functionalities which are all important elements in 

the design of drug delivery vehicles4. An important challenge however remains the 

triggered release of compounds from the interior of the polymersomes, which 

requires a controlled destabilization of the membrane.  

 Destabilization of the particles is often realized by degradation or a triggered 

change in solubility of one of the blocks5, but it can in principle also be realized by 

removal of the stabilizing hydrophilic segment of the amphiphilic block copolymer. 

This hydrophilic block is in most cases the biocompatible polymer poly(ethylene 

glycol) (PEG) which introduces stealth-like properties to the nanocarriers when they 

circulate through the body. Basically it is the shielding of the hydrophobic domain by 

highly stretched peripheral PEG chains6 which gives rise to the stability of 

polymersomes in water. Until now it is however unclear how much PEG is required 

to maintain a stable colloidal polymeric capsule. To investigate this, a systematic 

removal of different percentages of PEG from the polymersome surface should be 

accomplished. This requires the introduction of a triggerable cleavage site between 

the hydrophobic and hydrophilic parts of the block copolymer that constitutes the 

polymersome membrane. 

 Different block copolymer cleavage methods have already been reported, based on 

UV light7-8, reduction9-14 or oxidative and enzymatic pathways15. Site selective acidic 

cleavable block copolymers reported today make use of a triphenyl ether linker16, a 

cyclic ortho ester17 or cis aconitic acid18. All other acid labile systems are based on 

random hydrolysis19-22. An interesting pH cleavable moiety for block copolymer 

cleavage is the hydrazone linkage. This functionality is well known for its strong acid 

dependent stability in the physiological pH range23-25. Hydrazones have been used in 

the field of liposomal delivery systems as cleavable linkers between PEG chains and 
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surface peptides in order to hide the peptides up to the moment of cellular uptake26. 

In another example Kataoka et al. showed the efficient release of drugs, conjugated 

via hydrazone bonds, from polymeric micelles upon lowering the pH to endosomal 

levels27. Amphiphilic block copolymers of which the hydrophobic and hydrophilic 

parts are connected by the pH sensitive hydrazone linkage have very recently been 

reported to form pH responsive aggregates in aqueous solution28.  

 

 

Figure 1. Formation of an inert and an acid labile amphiphilic block copolymer via hydrazone formation 
(1, 2) and click chemistry (3, 4), respectively. These polymers readily form polymersomes. Lowering the 
pH will hydrolyse the hydrazones, shedding the poly(ethylene glycol) shell. This will either result in fully 
disrupting the vesicle or reducing the degree of polymersome PEGylation. 

In this chapter the controlled colloidal destabilization of polymersomes formed by 

the self assembly of amphiphilic block copolymers of polybutadiene-b-poly(ethylene 

glycol) (PBd-b-PEG) is investigated. By using different combinations of an inert 

amphiphilic block copolymer and PBd-b-PEG of which both parts are connected by a 

hydrazone linker, the minimum amount of PEG needed for stabilization is 

determined. We show that it is possible to take away 95 percent of peripheral PEG 

chains by lowering the pH, without disrupting the colloidal stability of 

polymersomes. Furthermore, we can tune the speed of polymersome degradation by 

adjusting the PEG chain length. This research therefore adds a new element to the 

methods available to control polymersome stability and gives new insights in the 

stabilizing power of PEG chains on the polymersome surface. An overview of the 

procedure followed is depicted schematically in Figure 1.  
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6.2 Results and Discussion 

Hydrazone coupled block copolymers 1 and 2 were synthesized as depicted in 

Scheme 1. Polybutadiene was synthesized by means of anionic polymerisation and 

terminated with a protected aldehyde, diethyl chloroacetal29. PEG with a molecular 

weight of 1 and 2 kg/mol was modified into a hydrazide to obtain 8 and coupled to 

aldehyde end-capped polybutadiene 6 by hydrazone formation. Stable block 

copolymers 3 and 4 were prepared as described in Chapter 2. In figure 2 the size 

exclusion chromatograpy (SEC) results of the coupling via hydrazone formation are 

depicted as analyzed for polymer 1. This reaction proceeded readily in 

dichloromethane without the addition of a catalyst. The desired block copolymers 

were in all cases obtained with a polydispersity index well below 1.2 as determined 

by SEC. 

 

 

Scheme 1. Synthetic route to hydrazone coupled block copolymers 1 and 2. i) anionic polymerisation 
of 1,3 butadiene and endcapping ii) deprotection of aldehyde. iii) PEG methyl ester formation and iv) 
PEG hydrazine formation v) coupling of polybutadiene and poly(ethylene glycol) by hydrazone 
formation.  

 To determine the pH sensitivity it was investigated whether the obtained 

hydrazone-functional polymers could be fully cleaved at low pH, or whether an 

equilibrium between polymer 1/2 and their cleaved products was obtained. For this 

purpose polymers 1 and 2 were assembled into polymersomes, after which the pH 

was lowered to 4.4. Subsequent TLC analysis showed no traces of the block 

copolymer, only the free PEG and polybutadiene blocks were observed. These results 

were confirmed by SEC analysis. As can be observed from Figure 2 no significant 

amount of block copolymer was present after one hour incubation at pH 4.4.  
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Figure 2. SEC traces of a) Coupling of polybutadiene and PEG via hydrazone formation. b) After 
incubation of 2 at pH 4.4 the original polybutadiene chain is obtained back. 

 The pH dependent stability of polymersomes, assembled fully from cleavable 

polymers 1 or 2, was evaluated next. A standard solution of extruded polymersomes 

with an average diameter of around 200 nm was prepared. The pH of this solution was 

7.5, so no significant hydrolysis could take place in the time frame of sample preparation 

(see Figure 3a). After injection of a polymersome sample in buffers ranging in pH, the 

size distribution was monitored over time by dynamic light scattering (DLS). This 

method was useful to study destabilization of the polymersomes, since we envisioned 

that whenever enough PEG was cleaved off, the bare polybutadiene would start to 

aggregate and form larger, more polydisperse aggregates which eventually would phase 

separate with water. The DLS results as depicted in Figure 3 show two trends. First of all 

Figure 3a shows how below pH 5.4 polymersomes assembled from 1 lost their stability 

within one hour and started to aggregate, whereas at physiological pH (7.4) the vesicles 

were stable in solution for more than three days. Secondly, the DLS curves plotted in 

Figure 3b show a marked difference in destabilization rate between PBd-b-PEG 1 and 2 

while incubating in the same buffer, pH 6.4. Whereas polymersomes composed of 1, 

with the shorter PEG block of 1 kg/mol, started to aggregate after three hours, the time 
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needed to induce aggregation of polymersomes composed of 2, with a PEG length of 2 

kg/mol was more than doubled. These results suggest that the time dependent stability 

of these polymeric vesicles can be tuned by adjusting the block copolymer composition. 

Furthermore, these polymersomes are stable at physiological pH but readily aggregate 

under slightly acidic conditions. What is not clear from these results is whether the gain 

in stability is a result of slower hydrolysis or better shielding, if longer peripheral PEG 

chains are applied.  

 

 

Figure 3. a) Relative size distribution of polymersomes composed of 1 as a function of time in hours upon 
incubation in buffers of different pH. b) Relative size distribution of polymersomes composed of 1 and 2 at 
pH6.4 as a function of time in hours. 

 Via this experiment it is also not possible to determine the composition of the 

vesicles at the point where aggregation starts to occur. It is actually the bending 

point in the graph which is interesting because this reflects the composition in which 

there is just enough PEGylation left to stabilize the polybutadiene sphere. To 

estimate the polymersome composition at the bending points we decided to prepare 

mixed polymersomes composed of an inert amphiphilic block copolymer (3 or 4) and 
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a pH sensitive one (1 and 2). Furthermore, in the previous section we showed that at 

pH 4.4 block copolymers 1 and 2 are fully cleaved and there is no sign of an 

equilibrium. 

 We therefore exposed the mixed polymersomes to a medium with a pH of 4.4. At 

this point all cleavable PEG chains were removed, leaving a polybutadiene bilayer 

displaying only the non cleavable PEG chains as drawn in Figure 1. After three days 

all samples were re-measured with DLS to check whether the particle size remained 

the same or aggregation had occurred. These measurements were performed for 

both the 1 kg/mol PEG and 2 kg/mol PEG analogues for which the results are 

depicted in Table 2. All samples were stable even after cleaving off 90 percent of the 

PEG chains. The first sample to become unstable consisted of polymersomes that had 

a ratio of 95 percent 1 to 5 percent of 3. This actually means that a little more than 5 

percent PEGylation with PEG of 1 kg/mol is enough to stabilize the polybutadiene 

sphere. Upon doubling the chain length to PEG of 2 kg/mol we were able to remove 

more than 95 percent of the periphery without disrupting the system. This means 

that when longer PEG chains are employed even less than 5 percent PEGylation will 

efficiently stabilize these polymersomes. 

 

Table 2. Average size of mixed vesicles 1 with 3 and 2 with 4. In all cases the DLS revealed a 
polydispersity well below 0.1 and a derived count rate of ±6000 kcps, except for the unstable ones 
printed in bold, for which the polydispersity becomes large (>0.6) and the derived count -rate small 
(<500 kcps). 

 Time(h) 0% 85% 90% 95% 100% 

PEGylation 
1kg/mol 

0 227  230  239 226 208 

 72 234  220  247 2000+ 2000+ 

PEGylation 
2kg/mol 

0 208  212  251 223 201 

 72 208  215  244 242 2000+ 

 

Although this low amount of PEGylation needed to stabilize polymersomes surprised 

us at first, it can easily be rationalized by considering generally known systems. In 

liposomal formulation it is common to introduce five to ten percent PEGylation to 

induce longer blood circulation times by blocking all interactions with the 

environment. Furthermore it has been shown for cationic lipid vesicles that ten  

percent of PEGylation is enough to block all cell interactions, basically shielding a 
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positively charged bilayer from its surrounding30. Finally a theoretical study by 

Smart et al showed how only a very limited amount PEG chains can cover a surface 

by either adopting a mushroom or a fully stretched shape depending on the PEG 

density6. 

 

6.3 Conclusion 

We have constructed polymersomes composed of a mixture of stable and pH 

sensitive, cleavable PBd-b-PEG amphiphilic block copolymers. With these mixed 

polymersomes we were able to determine the minimum amount of poly(ethylene 

glycol) needed for stabilization. At physiological pH these polymersomes retained 

their colloidal stability for at least three days. Under slightly acidic conditions 

polymersome stability was only lost when the degree of PEGylation was lowered to 

5%. This percentage could be even further decreased by doubling the poly(ethylene 

glycol) molecular weight.  
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6.5 Experimental Procedures 

General note All reactions are described for the lower molecular weight analogue, polyethylene glycol 

with a molecular weight of 1 kg/mol. The procedures for the poly(ethylene glycol) with a molecular 

weight of 2 kg/mol were identical and performed with equimolar amounts. The synthesis of polymers 3 

and 4 is described in Chapter 2.  

 

Materials Sec-butyllithium (ALDRICH 1.4M in hexane), 1,3 butadiene (SIGMA ALDRICH, 99+%), 

polyethylene glycol 1000 monomethyl ether (FLUKA), polyethylene glycol 2000 monomethyl ether 

(FLUKA), sodium hydride (ALDRICH, 60% dispersion in mineral oil), hydrazine (ALDRICH, 1M in THF) 

were used as received. Tetrahydrofuran (THF) (ACROS ORGANICS, 99+% extra pure, stabilized with BHT) 

was distilled under argon from sodium/benzophenone and triethyl amine (TEA) (BAKER) was distilled 

from calcium hydride under an argon atmosphere prior to use. Polymersome extrusions were performed 

using 200 nm filters (Acrodisc 13 mm Syringe Filter, 0.2 µm Nylon membrane) and dialysis was 

performed using Spectra/Por molecular porous membrane tubing (Spectrum Laboratories, Inc, 12-14.000 

MWCO) 
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Instrumentation MilliQ water was obtained from a Labconco water pro PS system. Thin layer 

chromatography (TLC) was performed on Merck precoated silica gel 60 F-254 plates (layer thickness 0.25 

mm). Compounds were visualized by UV, ninhydrin or permanganate reagent. Column chromatography 

(CC) was carried out using silica gel, Acros (0.035-0.070 mm, pore diameter ca. 6 nm). Infrared (IR) 

spectra were obtained using a Thermo Matson IR 300 FTIR spectrometer. Data are presented as the 

frequency of absorption (cm-1). Proton nuclear magnetic resonance (1H NMR) spectra were recorded on a 

Varian Unity Inova 400 FTNMR spectrometer. Chemical shifts are expressed in parts per million (δ scale) 

relative to the internal standard tetramethylsilane (δ=0.00 ppm). Molecular weight distributions were 

measured using size exclusion chromatography (SEC) on a Shimadzu (CTO-20A) system equipped with a 

guard column and a PL gel 5 μm mixed D column (Polymer Laboratories) with differential refractive index 

and UV (λ=254 nm and λ=345nm) detection, using tetrahydrofuran (SIGMA ALDRICH chromasolv 99.9%) 

as an eluent at 1 mL/min and T = 30 °C. Particle size distributions were measured on a Malvern 

instruments Zetasizer Nano-S . 

 

Polybutadiene-hydrazone-poly(ethylene glycol) (1) Polymers 8 (80 mg) and 6 (800 mg , 2 equiv.) 

were dissolved in dry dichloromethane (2 mL). The mixture was allowed to react for 24 hours while 

gently stirring after which the mixture was poured on a short silica column, which was eluted with 

dichloromethane. After all non reacted 6 was flushed off the product was eluted with 8 percent methanol 

in dichloromethane. After removal of all solvents 300 mg of the product was obtained in 60 percent yield. 

1HNMR (CDCl3): δ 5.45 (m, 67H, CHCH2), 4.94 (m, 134H, CHCH2), 3.65 (m, 90H, CH2CH2O), 3.38 (s, 3H, 

CH3O), 2.11 (m, 67H, CH2CH), 1.16 (m, 134H, CH2CH). SEC (THF): Mw/Mn = 1.14, see Figure 4. Mn: 4.7 

kg/mol. 

 

Polybutadiene-hydrazone-poly(ethylene glycol) (2) 1HNMR (CDCl3): δ 5.45 (m, 67H, CHCH2), 4.94 (m, 

134H, CHCH2), 3.65 (m, 180H, CH2CH2O), 3.38 (s, 3H, CH3O), 2.11 (m, 67H, CH2CH), 1.16 (m, 134H, CH2CH). 

SEC (THF): Mw/Mn = 1.17, Mn: 5.7 kg/mol. 

 

Aldehyde endcapped Polybutadiene (6) All glassware was extensively cleaned, flushed with 1.6 M 

butyllithium, rinsed again and flame dried. Then 1,3 butadiene (10.6 gram, 0.19 mol) was condensed into 

a Schlenk tube and freshly distilled THF (10 mL) was added. The solution was stirred and cooled to -78 °C 

after which sec-butyllithium (2 mL, 1.4M in hexane, 2.8 mmol) was added at once. The deep orange 

reaction mixture was allowed to warm to -35 °C and stirred until the colour changed to pale yellow. 

Another aliquot of THF (10 mL) was added and the temperature was fixed at -35 °C. The reaction was 

terminated by the addition of 3-chloroacetaldehyde diethyl acetal (2 equiv.) via a syringe and the reaction 

was allowed to warm to room temperature. After the yellow colour had disappeared MilliQ (10 mL) and 

TFA (5 mL) were added. The mixture was heated to reflux overnight, after which all THF was removed. 

Then NaOH solution (65 mL, 1M) was added and the product was extracted with DCM (3x 50 mL). DCM 

was removed and the product was purified over a silica column (1:1 hexane:DCM, Rf = 0.9) to remove the 

excess of acetaldehyde. The product was obtained quantitatively as a colourless viscous oil. 1HNMR 
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(CDCl3): δ 9.72 (d, 1H, CH2CHO), 5.45 (m, 67H, CHCH2), 4.94 (m, 134H, CHCH2), 2.11 (m, 67H, CH2CH), 1.16 

(m, 134H, CH2CH). SEC (THF): Mw/Mn = 1.14, see Figure 4, Mn: 3.7 kg/mol 

 

α- methoxy ω-methyl ester poly(ethylene glycol) (7) Poly(ethylene glycol) monomethyl ether, (5 g, 

1kg/mol, 5 mmol), was coevaporated with benzene three times and dissolved in freshly distilled THF (250 

mL). Next, sodium hydride (350 mg, 60% on mineral oil, 1.75 equiv.) was added while an argon 

atmosphere was applied. While stirring, hydrogen gas was allowed to escape for three hours. The 

temperature was raised to 60 °C and methyl bromoacetate (3 g, 3.8 equiv.) was added via a syringe. The 

reaction was allowed to proceed for 12 hours after which all THF was removed and the products were 

dissolved in 25 mL dichloromethane. The solution was poured on a slab of silica gel and flushed with 

dichloromethane (250 mL). The product was eluted with 10 percent methanol in dichloromethane, 

yielding 4.5 gram (90%) product. TLC was run in 14 % MeOH in DCM. Staining was performed with 

KMNO4, and with ninhydrin as a control (no staining); Rf = 0,60. 1HNMR (CDCl3): δ 3.38 (s, 3H, CH3O), 3.65 

(m, 90H, CH2CH2O), 3.75 (s, 3H, COOCH3), 4.17 (s, 2H, OCH2COO). FT- IR: 2876 cm-1 (C-H sat.), 1748 cm-1 

(C=O). SEC (THF): Mw/Mn = 1.22 

 

α- methoxy ω-hydrazide poly(ethylene glycol) (8) 1.5 gram of 7 (1.5 mmol) was coevaporated with 

benzene three times and dissolved in 50 mL methanol under an argon atmosphere. While stirring, 

1hydrazine solution (5 mL, 1M in THF, 10 equiv.) was added at once. The reaction was refluxed overnight 

after which the mixture was concentrated. The crude product was dissolved in dichloromethane (50 mL) 

and washed with 1M HCl solution (50 mL). The organic layer was dried over MgSO4 and all solvents were 

removed, yielding 1.2 gram (80%) of product. TLC was performed with 14 % MeOH in DCM as eluent; 

ninhydrin was used as staining agent ; Rf = 0,55. 1HNMR (CDCl3) : δ 3.38 (s, 3H, CH3O), 3.65 (m, 90H, 

CH2CH2O), δ 4.14 (s, 2H, OCH2CON). FT-IR: 3400 cm-1 (NH), 1683 cm-1 (C=O). SEC (THF): Mw/Mn = 1.22, see 

Figure 4  

 

Figure 4. SEC traces of PBd-b-PEG (1) and its constituents PBd (6) and PEG 1000 derivative (8). 
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Full hydrolysis experiments Vesicles were prepared by dissolving polymer 1 or 2 (40 mg) in THF (0.5 

mL). While gently stirring, milliQ (2 mL) was added drop wise. The opaque solution was extruded twice 

through a 200 nm syringe filter and purified over a Sephadex G200 column. To 900 µL of this vesicle 

solution, 88 µL of a 2 M Na2HPO4 solution and 12 µL of a 1M citric acid solution was added (10x 

concentrated McIlvain buffer)31. After three hours THF (3 mL) was added and the solutions were spotted 

on TLC eluting with 10% methanol in dichloromethane, as were their constituents and the untreated 

polymers 1 and 2. staining was performed with MNO4. The acid treated samples showed no trace of 

polymer 1 or 2 but instead showed spot on the position of PEG and PBd. The untreated samples showed a 

single spot in between PEG and PBd. Finally under these conditions none of the buffering components 

were eluted on TLC. The remainder of the solution was analyzed by GPC as depicted in Figure 2b. Because 

of the addition of the buffering components, eluting right after PEG, it was not possible to obtain an 

undisturbed signal of the free PEG.  

 

Polymersome preparation In general polymeric vesicles were prepared by dissolving 10 mg block 

copolymer (1, 2, 3, 4 or the desired combination) in THF (0.5 mL). While gently stirring, MilliQ (2 mL) was 

added drop wise. The opaque solution was extruded twice through a 200 nm syringe filter and purified 

over a Sephadex G200 column and all vesicle containing fractions were combined (DLS). The combined 

vesicle size distribution was measured by DLS.  

 

Stability studies All buffers were prepared according the method of McIlvaine31 which combines a 0.2 M 

Na2HPO4 and 0.1 citric acid solution to the desired pH in milliQ water. Vesicles were prepared as described 

above in MilliQ. For each measurement, 200 µL of vesicle solution was added to 800 µL of buffer. The pH 

was checked and the size distribution was monitored in time by dynamic light scattering. 
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Dynamically Functionalized Polymersomes via 

Hydrazone Exchange 

 

 

 

 

 

 

 

 

 

 

Polymersomes composed of block copolymers that are coupled via a hydrazone moiety (Chapter 6) are shown 

to exchange surface PEG chains with the environment via an aniline catalyzed transiminiation under 

equilibrium conditions. We show that the transimination equilibrium can be used to functionalize 

polymersomes with a different inner and outer moiety in a dynamic covalent way. Secondly, we show that 

addition of aniline as catalyst allows to exchange surface properties between polymersomes. These results 

therefore open new routes to the design of complex vesicular surfaces. 
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7.1 Introduction 

Polymersomes, or polymeric vesicles, can be regarded as the polymeric analogue of 

liposomes. Due to the higher molecular weight of the building blocks, polymersomes are 

considerably tougher and less permeable than their low molecular weight counterparts1. 

As a result, polymersomes have an interesting potential for a range of applications such 

as drug delivery2-3 and in vivo imaging4-5. For in vivo applications excellent control over 

stability and release properties is required, as well as the possibility to functionalize the 

carrier with specific targeting moieties, e.g. ligands. An appreciable amount of research 

has focused on the functionalization of polymersome surfaces6 with enzymes, peptides7 

and antibodies2,8. However, all these reported functionalization strategies are 

irreversible or make use of non-covalent interactions6,9. In contrast, one can also imagine 

that polymeric vesicles can be functionalized via covalent bonds that are reversible in 

nature.  

 Reversible covalent bonds are (or can be brought) in an equilibrium state, meaning 

that the bond is reversibly formed and broken as exploited in dynamic combinatorial 

chemistry10. In a recent example, Minkenberg et al.11 used reversible chemistry to 

spontaneously form amphiphiles that evolved to the thermodynamically most favourable 

supramolecular composition. If this chemistry is also applicable to preformed polymeric 

vesicles, it would allow the functionalization of polymersomes in a dynamic and modular 

way, in which one sample can be (re)-functionalized with a variety of different 

compounds, while keeping control over vesicle size and stability. Covalent bonds that 

have the potential to be brought into equilibrium have also been built in polymersomes. 

However, the reversibility has only been used for (triggered) disruption12-14, 

unidirectional surface functionalization15 or drug release16-17. 

 In Chapter 6 we showed that the colloidal stability of polymersomes can be 

controlled by the introduction of a hydrazone bond. Block copolymers of which both 

blocks are coupled via a hydrazone moiety can form polymeric vesicles which are stable 

at physiological pH. However, upon lowering the pH they lose their colloidal stability due 

to hydrolysis of the hydrazone18. Simultaneously, a similar system was independently 

reported by He et al.19 In both studies, lowering of the pH was used as a trigger to fully 

hydrolyze the hydrazone bond in the block copolymer, thus removing the PEG periphery.  

 At neutral pH, hydrazone bonds are equilibrium structures which favour bond 

formation as depicted in Figure 1a. However, bond formation and dissociation are very 
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slow. A method to induce faster dynamics in this equilibrium, without shifting the 

position, proceeds by the addition of a catalyst, aniline20. Following this methodology, 

Dirksen et al.21-23 showed that aniline-catalyzed hydrazone exchange between peptide 

fragments is 70 fold faster than the non-catalyzed reaction.  

 In this chapter, we report the use of the aniline catalyzed hydrazone equilibrium in 

the design of polymersomes with dynamic covalent surfaces. We form polymersomes of 

a hydrazone coupled amphiphilic block copolymer and make use of the aniline catalyzed 

hydrazone equilibrium to exchange surface functionalities with the surrounding solution 

as illustrated in Figures 1b-c. In this way, polymeric vesicles with a different inner and 

outer functionality can be formed. Finally, we show that exchange of surface properties 

between polymersomes is possible, following the same approach. This methodology 

therefore opens new routes in the design of complex polymeric membranes, starting 

from simple polymersome scaffolds. 

 

 

Figure 1. a) Equilibrium between hydrazide, aldehyde and hydrazone. The rate constant can be enhanced 
by the addition of aniline. b) After removing a PEG chain from the polymersome surface, either a PEG 
chain from solution or the original PEG chain can attack. c) Presentation of the exchange on the block 
copolymer level, expressing the role of aniline.  

7.2 Results and Discussion 

In Scheme 1 the basic building blocks for the self-assembly of polymersomes and the 

exchange reactions are depicted. Details on the synthetic procedures can be found in 

Section 7.5. We chose to work with the amphiphilic block copolymer polybutadiene-
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block-poly(ethylene glycol) for two reasons. First of all, this block copolymer is generally 

considered to be biocompatible and secondly the low glass transition temperature of 

polybutadiene allows for extrusion and therefore resizing of the polymersomes. This 

allowed us to prepare well-defined monodisperse samples making comparison of their 

properties relatively straightforward. PEG derivatives 1 and 2 contained a hydrazide 

moiety and were partially labelled with fluorescent dansyl and fluorescein (DY495) 

markers, respectively. Amphiphilic block copolymer 3 contained a hydrazone bond 

between both blocks and no functional end group. Block copolymer 4 was partially 

functionalized with rhodamine (DY549) and 5 was functionalized with a maleimide end-

group. Finally, as a negative control the stable amphiphilic block copolymers 6 and 7 

were employed. These polymers are direct analogues of 3 and 4, differing only in the 

connection between both blocks.  

 

 

Scheme 1. Overview of polymers used in this study. Polymers 1 and 2 are PEG derivatives, both containing 
a hydrazide moiety and labelled with dansyl or fluorescein (DY495), respectively. Polymers 3, 4 and 5 are 
amphiphilic block copolymers of polybutadiene-b-poly(ethylene glycol), containing a hydrazone linker 
between both blocks. Polymers 4 and 5 are functionalized with a rhodamine dye (DY549) and a maleimide 
end group, respectively. Finally, block copolymers 6 and 7 do not contain a hydrazone moiety. Polymer 6 
contains no functional end group and 7 is partially labelled with rhodamine B. Both are included as 
negative controls.  

We prepared polymersomes derived from 3 and 6 with a diameter of 220 nm. Thus, 

polymersomes from 3 contained a hydrazone moiety, while polymersomes from 6 did 

not and therefore served as a negative control. After the polymersomes were formed, the 

fluorescent PEG derivative 1 was added to all samples. To initiate the exchange of surface 

PEG for the dansyl-functionalized PEG (1) in solution, aniline (12 equiv) was added as 
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catalyst to the polymersomes formed from 6 and half of the polymersomes formed from 

3. To the other half of this sample no catalyst was added to serve as second negative 

control. For each time point a fraction of the samples was withdrawn and purified by 

size exclusion chromatography (SEC) to separate aniline and unbound PEG from the 

polymersomes. Next, the fluorescence intensity of the polymersome fraction was 

measured in a plate reader as plotted in Figure 2a (340 nm (excitation), 560 nm 

(emission)).  

 

 

Figure 2. Dynamic functionalization of polymeric vesicles. a) Aniline-catalyzed hydrazone surface 
exchange on polymeric vesicles (black) is faster than non-catalyzed exchange (blue). If no hydrazone is 
present in the block copolymer, surface exchange is not possible (red). Vesicles were stable and did not 
change in size during the exchange experiment: 0 hours b) and 30 hours c) as determined by DLS. 

 In principle, both samples prepared from polymer 3 should be able to exchange PEG 

chains with the environment by breaking and forming the hydrazone bonds. However, in 

the presence of aniline this equilibrium was set much faster, as is clearly visible from 

Figure 2a. The aniline containing sample reached its maximum fluorescence after 4.5 

hours, while the non catalyzed sample had not yet reached its equilibrium position after 

30 hours. The negative control, prepared from polymer 6, does not contain a hydrazone 
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bond and therefore was unable to exchange surface chains with its surroundings, 

therefore no increase in fluorescence was observed.  

 As these experiments were performed at neutral pH, it was expected that these 

polymeric vesicles kept their colloidal stability18-19. To confirm this, we analyzed the size 

distribution of the polymeric vesicles at each time interval by dynamic light scattering 

(DLS). As shown in Figures 2b-c no significant change in particle distribution was 

observed between 0 and 30 hours and moreover the derived count rate at a fixed 

measurement position appeared nearly equal for all data points, indicating identical 

concentration and size. This led us to conclude that indeed the surface of these 

polymersomes was in a dynamic equilibrium with its environment. 

 

 

To take this concept one step further, we prepared polymeric vesicles of a combination of 

3 and 4 in a ratio of 95:5. These polymeric vesicles thus exhibited hydrazone bonds and 

were partially fluorescently labelled at both the inner and outer surface. As can be 

derived from the absence of fluorescence in the negative control in Figure 2a (6 with 

aniline), free PEG is not able to cross the membrane of these polymeric vesicles on this 

timescale. Therefore PEG exchange is expected only to proceed on the polymersome 

outer surface, creating a vesicle with a different inner and outer functionalization. We 

repeated the aniline-catalyzed experiment with the abovementioned rhodamine 

prefunctionalized vesicles. Again at each time point any free PEG chains and aniline were 

separated from the polymersomes by size exclusion chromatography. The size and 

concentration of all samples was checked by DLS and found to be equal. Next we 

analyzed the fluorescence intensity of both fluorophores separately in a 96 well plate 

reader (dansyl excitation 340 nm, emission 540 nm; rhodamine excitation 540 nm, 

emission 592 nm). Within five hours, the rhodamine intensity decreased to 0.5 (Figure 

3a), which is consistent with our hypothesis that only the outer membrane is susceptible 

to dynamic exchange. Furthermore, the emission of dansyl reached its maximum 

following an opposite trend compared to the decrease of rhodamine (Figure 3b).  

 



Dynamically Functionalized Polymersomes via Hydrazone Exchange 

 
123 

 

Figure 3. a-b) Starting from rhodamine-functionalized polymersomes the outer rhodamine is replaced by 
a dansyl-functionalized surface. c) Emission spectra of polymersomes before and after surface exchange of 
rhodamine-functionalized PEG chains by their fluorescein analogue. d) CLSM visualization of rhodamine 
and e) CLSM visualization of fluorescein on the same polymersomes and f) CLSM overlay image of d and e. 
The white bar represents 20 µm. 

To visualize the double functionalization of vesicles, we applied confocal laser scanning 

microscopy (CLSM). For this purpose, we replaced dansyl-PEG for a fluorescein-PEG 

derivative (2) and repeated the experiment. As depicted in Figure 3c (red) at time zero, 

after mixing and purification by SEC, the emission spectrum of the polymersomes only 

contained rhodamine emission (480 nm, for excitation of both fluorophores). However, 

when after 24 hours a sample was purified by size exclusion chromatography, the 

emission spectrum contained both rhodamine and fluorescein emission. Furthermore, 

Figure 3d-f show CLSM pictures obtained after 24 hours. Both fluorophores were excited 

at the same time (476 nm) and selectively captured as described in Section 7.5. As can be 

seen from Figures 3d-f, a good overlay between both fluorophores exists, indicating that 

both moieties are present on the same polymeric vesicle. The full and unfiltered pictures 

are shown in Section 7.5. 

 In the described experiments, it is not possible to visualize separately the 

functionalization of the in inner and outer surface. This might be possible on giant 

unilamellar vesicles24 in combination with high resolution CLMS. However, together 

these experiments clearly indicate that a different inner and outer membrane 

functionalization is obtained. The first experiment proved that free PEG chains in 

solution cannot cross the polymersome membrane on this time scale. The double 
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functionalization experiment clearly shows a decrease of 0.5 in rhodamine intensity and 

finally CLSM shows the colocalization of both fluorophores. Therefore we can conclude 

that the method as described herein allows for the substitution of the outer PEG surface 

of polymersomes for a new PEG surface containing a different functionality.  

 

 

Figure 4. a) Dynamic hydrazone exchange between vesicles functionalized with rhodamine and vesicles 
functionalized with cell penetrating Tat-peptides will result in a single set of doubly functionalized 
vesicles. b) After exchange polymersomes are both visible by CLSM (coloured in red) and associated with 
Hela cells c) Exchange in absence of Tat-vesicles will not yield vesicles that are both fluorescent and cell 
adhering. d) If rhodamine labelled vesicles are prepared from block copolymers lacking the hydrazone 
moiety (6 and 7), the experiment will not yield vesicles that are both fluorescent and cell adhering. The 
top images of b, c and d show CLSM and bright field overlay images and the bottom CLSM images of 45 x 
45 µm selections. The full unfiltered images are shown in Section 7.5. 

In the preceding experiments we have shown that hydrazone-functionalized polymeric 

vesicles are able to exchange moieties with the surrounding solution. We next 

investigated whether this exchange would also take place between polymeric vesicles. 

For this purpose we synthesized a block copolymer analogue with a maleimide end 

group and a hydrazone unit between both blocks (5). We formed polymersomes of a 

combination of 3 and 5 in a ratio of 8:2. The maleimide functionalities were reacted with 
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a cysteine residue connected to the cell penetrating Tat-peptide25-26, resulting in Tat-

functional polymersomes.  

 Rhodamine-functional polymersomes of 3 and 4 (9:1) were also formed as used in 

the previous experiments. Both types of polymersomes thus contained the hydrazone 

moiety between both blocks. Rhodamine polymersomes can be visualized by CLSM, but 

will not adhere to Hela cells, whereas Tat-polymersomes can adhere to cells7, but are 

invisible in CLSM. If dynamic exchange between these vesicles should take place, the 

resulting set of polymersomes should be both fluorescent and have cell-adhesion 

capacity as depicted schematically in Figure 4a.  

 After both the rhodamine and the Tat-polymersomes were formed, they were mixed 

in a 1:1 ratio and aniline was added. The exchange was allowed to proceed overnight, 

after which aniline and possible free PEG chains were removed by SEC. The sample was 

added to a Hela cell culture and after washing the cells, CLSM indeed confirmed the 

presence of cell adhering, fluorescent polymersomes as shown in Figure 4b. This clearly 

shows that both the cell adhesion and fluorescent properties are contained in a single 

polymersome. To exclude false positive results we included two negative controls in this 

study. When rhodamine polymersomes were reacted with aniline without the presence 

of Tat-polymersomes, no polymersomes were visibly associated with Hela cells (Figure 

4c). Secondly, if rhodamine polymersomes were formed lacking the hydrazone moiety (6 

and 7) and were reacted overnight in the presence of both aniline and Tat-

polymersomes, also no vesicles were visible in the Hela cells culture (Figure 4d). 

 

7.3 Conclusion  

 In conclusion, we have introduced a new concept to functionalize polymeric vesicles 

in a dynamic fashion. We have shown that polymersomes formed from a hydrazone-

coupled block copolymer exchange their surface functionality both with dissolved 

species and with other vesicles via the hydrazone equilibrium. Via this method 

polymeric vesicles can be conveniently formed with different inner and outer 

functionalities. Furthermore, multiple functional surfaces can be obtained via one single 

exchange experiment by mixing the appropriate sets of polymersomes.  
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7.5 Experimental Procedures 

General notes The full synthetic route, including reaction steps and compounds reported in 

previous chapters is depicted in Scheme 1. Details of the synthesis of compounds 6, 7, 8, 10 and 

12 can be found in Section 2.5. Details of the synthesis of compounds 3 and 11 can be found in 

Section 6.5. Details of the synthesis of compound 15 were reported by Karlèn et al.27 Details of 

the synthesis of compound 16 were reported by Deiters et al.28 

Materials BCN dyes SX-1030 and SX-1031 were purchased from Synaffix and copper bromide was 

washed in ethyl acetate and dried under vacuum prior to use. All other reagents were at least 98% pure 

and used without further purification. Tetrahydrofuran (THF) (ACROS ORGANICS, 99+% extra pure, 

stabilized with BHT) was distilled under argon from sodium/benzophenone and triethylamine (TEA) 

(BAKER) was distilled from calcium hydride under an argon atmosphere prior to use. Polymersome 

extrusions were performed using 200 nm filters (Acrodisc 13 mm Syringe Filter, 0.2 µm Nylon membrane). 

 

Instrumentation MilliQ water was obtained from a Labconco water pro PS system. Thin layer 

chromatography (TLC) was performed on Merck precoated silica gel 60 F-254 plates (layer thickness 0.25 

mm). Compounds were visualized by UV, ninhydrin and/or permanganate reagents. Column 

chromatography (CC) was carried out using silica gel, Acros (0.035-0.070 mm, pore diameter ca. 6 nm). 

Infrared (IR) spectra were obtained using a Thermo Matson IR 300 FTIR spectrometer. Data are presented 

as the frequency of absorption (cm-1). Proton nuclear magnetic resonance (1HNMR) spectra were 

recorded on a Varian Unity Inova 400 FTNMR spectrometer. Chemical shifts are expressed in parts per 

million (δ scale) relative to the internal standard tetramethylsilane (δ=0.00 ppm). Molecular weight 

distributions were measured using size exclusion chromatography (SEC) on a Shimadzu (CTO-20A) 

system equipped with a guard column and a PL gel 5 μm mixed D column (Polymer Laboratories) with 

differential refractive index and UV (λ=254 nm and λ=340nm) detection, using tetrahydrofuran (SIGMA 

ALDRICH chromasolv 99.9%) as an eluent at 1 mL/min and T = 30 oC. Particle size distributions were 

measured on a Malvern instruments Zetasizer Nano-S. A TECAN Infinite 200 PRO plate reader was used to 

perform fluorescence intensity measurements. Confocal Laser Scanning Microscopy (CLSM) images were 

recorded on a Leica DM IRE2 TCS SP2 AOBS inverted microscope. An Argon laser and a Vioflame diode 

laser were used to excite the different fluorophores.  
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Scheme 1. Overview of the synthetic route to all structures employed in this chapter. Details on the 
synthetic procedures are described below. 

α-Dansyl ω-hydrazine poly(ethylene glycol) (1) Compound 10 (100 mg, 0.1 mmol) was dissolved in 

THF (10 mL) under an argon atmosphere. CuBr (5 mg), PMDETA (1 drop) and dansyl probe 16 (26 mg, 

0.95 equiv.) were added and heated to reflux overnight. Probe 16 was consumed as determined by TLC, 

after which all solvents were removed and the products were dissolved in DCM (1 mL). The product was 

purified on a silica column, eluting with DCM to remove any traces of 16. The product (70 mg, 60%) was 

obtained by eluting with 8% methanol in dichloromethane (Rf = 0.55 as a bright single fluorescent spot). 

1H-NMR (CDCl3): δ 9.33 (s, 1H, CONHNH2), 8.55 (d, 1H), 8.27 (t, 2H), 7.62 (s, 1H, CCH2N), 7.54 (q, 2H), 7.19 

(d, 1H), 4.42 (t, 1H, SNHCH2), 4.06 (s, 2H, OCH2CO), 3.79 (m, 2H, CH2N), 3.64 (m, 90H, CH2CH2O), 2.89 (s, 

6H, N(CH3)2), 1.70 (s, 2H, NHNH2). SEC (THF): Mn = 1.1 kg/mol, Mw/Mn = 1.26 (detection at 340 nm, 

while the starting material 10 does not absorb at 340 nm). 

 

Partial fluorescein labelling of α-azido ω-hydrazine poly(ethylene glycol) (2) Polymer 10 (100 mg, 

0.1 mmol) was dissolved in methanol (10 mL) and fluorescein probe SX-A1030 (5 mg, 0.06 equiv.) was 

added. The reaction was allowed to proceed overnight, after which all solvents were removed. TLC, eluting 

with acetonitrile:MilliQ (9:1) showed full consumption of dye SX-A1030 (RF = 0.75) and a new bright 
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fluorescent product (RF = 0.05) at the same height as 10 was formed (note that mixing of PEG and SX-

A1030 results in a clear separation under these conditions). The product was dissolved in ice-cold 

dichloromethane (1mL) and filtered over a 0.1 µm syringe filter. The product (85 mg, 80%) was obtained 

by removing all dichloromethane. SEC (THF): Mn = 1.4 kg/mol, Mw/Mn = 1.31 (detection at 340 nm, 

whereas the starting material, 10, does not absorb at 340 nm). 1HNMR (CDCl3): no significant deviation 

from 10, due to labelling with only 0.06 equiv. of dye. 

 

Partial Rhodamine labelled Polybutadiene-hydrazone-poly(ethylene glycol) (4) Compound 14 (100 

mg, 0.021 mmol) was dissolved in THF (10 mL) and Rhodamine probe SX-A1031 (5 mg, 0.02 equiv.) was 

added. The reaction was allowed to proceed overnight. Solvents were removed and product 4 was 

purified by preparative GPC (THF) to yield 70 mg product. The product was highly fluorescent and in 

contrast to 14 showed absorption in the GPC detector at 340 nm (see Figure 5). Mw/Mn = 1.22, Mn: 4.7 

kg/mol. 1HNMR (CDCl3) no significant deviation from 14, due to the low concentration of dye. 

 

 

Figure 5. Using equal polymer concentrations 
for SEC (THF) analysis. UV absorption at 340 nm 
can be detected for polymer 4, due to the 
presence of SX-1031, whereas only limited 
absorption is observed before the coupling (14).  

 

 

Maleimide end-functional Polybutadiene-hydrazone-poly(ethylene glycol) (5) Compound 14 (100 

mg, 21 µmol) was dissolved in THF (10 mL) under an argon atmosphere. Next, CuBr (5 mg, 34 µmol), 1 

drop of PMDETA (ca 50 mg, 0.28 mmol) and maleimide 15 (5 mg, 1.6 equiv.) were added and heated to 

reflux overnight. All solvents were removed and the products were dissolved in dichloromethane (1mL). 

The product was purified on a silica column, eluting with a gradient of 0 % to 8% methanol in 

dichloromethane to obtain 55 mg product (Rf in 8% methanol/DCM = 0.65). The product showed, in 

contrast to 14, good UV (254 nm) absorption in SEC analysis. SEC (THF): Mw/Mn = 1.26, Mn: 4.7 kg/mol 

(see Figure 6). 1HNMR (CDCl3): δ 6.96 (s, 2H, maleimide), 5.45 (m, 67H, CHCH2), 4.94 (m, 134H, CHCH2), 

3.65 (m, 90H, CH2CH2O), 2.11 (m, 67H, CH2CH), 1.16 (m, 134H, CH2CH).  
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Figure 6. Using equal polymer concentrations 
for SEC (THF) analysis. UV absorption at 254 nm 
can be detected for polymer 5, due to the 
presence of triazoles and a maleimide, whereas 
only limited absorption is observed before the 
introduction of a maleimide (14). 

  

 

Rhodamine labelled Polybutadiene-triazole-poly(ethylene glycol) (7) 50 mg 12 (10 µmol) was 

dissolved in THF (10 mL) and Et3N (1 mL) was added. Next. Rhodamine B isothiocyanate (7.5 mg, 1.5 

equiv) was added and allowed to react for 48 hours. Solvents were removed and product 7 was purified 

by preparative SEC (THF) to yield the product product (25 mg, 45%). The product was a single spot on 

TLC (8 percent methanol in DCM; UV and permanganate stain) which appeared brightly fluorescent. Note 

that the isothiocyanate coupling of rhodamine B proceeded slowly and the reaction did not go to 

completion as can be seen from the SEC traces (absorption @ 340 nm) in Figure 7. The elution volume 

that was collected in preparative SEC (THF) is depicted in the box (6.7 to 8.1 mL) 

 

 

Figure 7. SEC (THF) analysis of block copolymer 
12, which does not absorb at 340 nm before the 
addition of rhodamine B isothiocyanate. After 2 
hours the labelled polymer (top~7.5 mL) does 
absorb at 340 nm, which increases over the next 
46 hours. The dashed box indicates the volume, 
containing product 7, that was collected by 
preparative SEC in THF.  

 

 

α-azido ω-hydrazine poly(ethylene glycol) (10) Compound 8 (1g, 1 mmol ) was dissolved in methanol 

(50 mL) and 5 drops of concentrated sulfuric acid were added. The mixture was heated under reflux 

overnight, after which methanol was removed. The product was dissolved in water (50 mL) and extracted 

with dichloromethane (5x 50 mL). The organic layer was dried over MgSO4 and all solvents were removed. 

TLC: Rf = 0.65, permanganate staining, running in DCM:MeOH = 92:8. Indicative 1H-NMR (CDCl3) shifts: δ 

4.17 (s, 2H, OCH2COOMe), 3.75 (s, 3H, COOCH3) and IR: 1748 cm-1 (carbonyl/ester) 

 The product was dissolved in methanol (50 mL) and hydrazine (15 mL, 1M in THF) was added. The 

mixture was heated under reflux for 48 hours, after which almost all solvents were removed. The product 



Chapter 7 

 
130 

was dissolved in dichloromethane (50 mL) and washed with 1M hydrochloric acid (50 mL). The aqueous 

layer was extracted with dichloromethane (5x 50 mL). The combined organic layers were dried over 

MgSO4 and all solvents were removed to yield 800 mg product (80%). TLC: Rf = 0.55, permanganate and 

ninhydrin staining, eluent DCM:MeOH = 92:8. 1HNMR (CDCL3): 3.39 (t, 2H, CH2N3), 3.64 (m, 90H, 

CH2CH2O), 4.01 (s, 2H, OCH2CONH). FTIR: 2098 cm-1 (azide), 1696 cm-1 (C=O). SEC (THF): Mn = 1 kg/mol, 

Mw/Mn = 1.22. 

 

ω-azido-Polybutadiene-hydrazone-poly(ethylene glycol) (14) Polymer 10 (80 mg) and 13 (800 mg , 

2.5 equiv. 3.7 kg/mol) were dissolved in dry dichloromethane (2 mL). The mixture was allowed to react 

for 24 hours while gently stirring after which the mixture was poured on a short silica column, which was 

eluted with dichloromethane. After all non-reacted 13 was flushed off the product was eluted with 8 

percent methanol in dichloromethane. After removal of all solvents 240 mg of the product was obtained in 

65 percent yield. 1HNMR (CDCl3): δ 5.45 (m, 67H, CHCH2), 4.94 (m, 134H, CHCH2), 3.65 (m, 90H, CH2CH2O), 

2.11 (m, 67H, CH2CH), 1.16 (m, 134H, CH2CH). SEC (THF): Mw/Mn = 1.18, Mn: 4.7 kg/mol (see Figure 8). 

 

 

Figure 8. Synthesis of ω-azido-polybutadiene-
hydrazone-poly(ethylene glycol) (14) from 
polymers 10 and 13. Due to an increase in 
molecular weight the GPC trace shifts to shorter 
elution time. 

 

 

Tat-peptide Tat-peptide was synthesized by means of standard Fmoc chemistry. The purity was more 

than 95 percent as analyzed by means of HPLC eluting in water/acetonitrile both containing 0.1% v/v 

trifluoroacetic acid. The volume fraction of acetonitrile was increased from zero to hundred percent over 

30 minutes. Maldi-TOF (cyano-4-hydroxycinnamic acid): [M+H] calc: 1719.0 g/mol and [M+H] found: 

1718.7 g/mol.  

 

Polymersome formation (general procedure) 20 mg of the desired (ratio) of block copolymer(s) was 

dissolved in THF (2 mL) and slowly diluted with MilliQ water (6 mL) to obtain an opaque solution. The 

solution was extruded three times through a 200 nm syringe filter. THF was removed by purification over 

a Sephadex G200 column, eluting with demineralised water, after which the polymersome fractions were 

combined. If needed the pH was adjusted to neutral (NaOH) and the total volume was adjusted to 10 mL 
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(2 mg/mL, 0.4 mM). The average size was determined by dynamic light scattering and was in all cases 

around 200 nm with a PDI below 0.2. 

 

Dansyl-PEG solution exchange Three sample solutions were prepared containing: A) 3 mL 

polymersomes formed from 3 (0.4 mM), 0.8 mg of 1 (0.26 mM) and 1.7 mg aniline (6 mM) B) 3 mL 

polymersomes formed from 3 (0.4 mM) and 0.8 mg of 1 (0.26 mM) and C) 3 mL polymersomes formed 

from 6 (0.4 mM), 0.8 mg of 1 (0.26 mM) and 1.7 mg aniline (6 mM) At different time points a 600 µL 

sample of A, B and C was withdrawn and purified over a Sephadex G200 column, eluting with milliQ. The 

average size at a fixed attenuator and measurement position was determined by DLS and if necessary the 

samples were diluted to equally derived count rates. No significant change in size and polydispersity in 

time was observed. samples were prepared in a 96 well plate (200 µL/well) and measured in a plate 

reader, 340 nm excitation and 560 nm emission.  

 

Dansyl-PEG/Rhodamine-PEG solution exchange Polymersomes were formed of 3 and 4 in a ratio of 95:5 

as described above. The experiment was started by mixing 3 mL of polymersomes (0.4 mM), 3 mg of 1 (1.0 

mM) and 1.7 mg aniline (6.0 mM). At different time points a 600 µL sample was withdrawn and purified 

over a Sephadex G200 column, eluting with MilliQ. The average size at a fixed attenuator and 

measurement position was determined by DLS and if necessary the samples were diluted. No significant 

changes in size and polydispersity in time were observed. samples were prepared in a 96 well plate (200 

µL/well) and measured in a plate reader. Only the dansyl probe was observed upon excitation at 355 nm 

and the emission was measured at 540 nm. The rhodamine probe was selectively analyzed with an 

excitation of 540 nm and emission at 592 nm. Note that these excitations and emissions are not the 

spectral maxima of the probes, but allow the selective determination of both fluorophores. 

 

Fluorescein-PEG/Rhodamine-PEG solution exchange This experiment was performed to visualize the co 

localization of two fluorophores at polymersomes. As dansyl was not a suitable probe for CLSM due to fast 

quenching, it was replaced by fluorescein (compound 2). Polymersomes were formed of 3 and 4 in a ratio 

of 95:5 as described above. The experiment was started by mixing 600 µL of polymersomes (0.4 mM), 0.5 

mg 2 (0.56 mM) and 3 mg aniline (50 mM). After 24 hours a sample was purified over a Sephadex G200 

column eluting with MilliQ water. The average size at a fixed attenuator and measurement position was 

determined by DLS and no significant change in size and polydispersity was observed. The emission 

spectrum of both fluorophores was determined simultaneously in the plate reader by excitation at 480 nm. 

For the CLSM experiment the sample was excited with a 476 nm laser. Rhodamine was selectively 

visualized by recording emission between 580-610 nm and fluorescein was recorded between 500-530 

nm (Figure 9). 
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Figure 9. Left, selective detection of rhodamine emission after 24 hours of catalyzed exchange. Middle, 
selective detection of fluorescein emission and right, the overlay of both images showing the presence of 
both fluorophores at the same polymeric vesicles after 24 hours of equilibration.  

Tat-PEG/Rhodamine-PEG surface exchange Three sets (P1, P2 and P3) of polymersomes were formed as 

described above. P1 was formed from 3 and 4 in a ratio of 9:1 (rhodamine-labelled) (10 mL, 0.4 mM), P2 

was formed from 6 and 7 in a ratio of 9:1 (same as P1 but no hydrazone bonds) (10 mL, 0.4 mM) and P3 

was formed from 3 and 5 in a ratio of 8:2 (Maleimide, but no fluorescent label) (10 mL, 0.4 mM) 

 

P3 polymersomes were functionalized with Tat-peptide: 1.1 mg Tat (~0.5 equiv towards maleimides) was 

dissolved in 1 mL MilliQ and 5 mg tris(2-carboxyethyl)phosphine(TCEP) gel (Piercenet) was added. The 

mixture was incubated for 30 minutes after which the solution was filtered and added to the full 10 mL of 

maleimide-functional polymersomes P3. Possible residual Tat-peptide was removed by spin column 

(4000 rpm, 0.1 nm pores) until the eluate showed negative on Kaiser test (ninhydrin for free amines). The 

total volume was adjusted to 10 mL to have equal concentrations compared to P1 and P2 (0.4 mM). 

Three samples to test polymersome-polymersome surface exchange were prepared as follows: A) 600 µL 

P1 + 600 µL P3 + 1 mg aniline (1.2 mL sample; 0.4 mM in polymer and 9 mM in aniline); B) 600 µL P2 + 

600 µL P3 + 1 mg aniline (negative control, 1.2 mL sample; 0.4 mM in polymer and 9 mM in aniline) and C) 

600 µL P1 and 0.5 mg aniline (negative control, 0.6 mL sample; 0.4 mM in polymer and 9 mM in aniline) 

After 16 hours all samples were purified over a Sephadex G200 column eluting with milliQ water. 

 

Hela Cell Studies The cellular adhesion experiments were performed with HeLa cells, which were seeded 

one day before the experiment in 8-well microscopy chambers (Nunc, Wiesbaden, Germany) at a density 

of 40,000 cells/well. At the time of the experiment, cells had grown to approximately 50% confluence. The 

polymersome samples (20 μL) were diluted with Dulbecco’s Modified Eagle Medium DMEM (380 μL) and 

added to the cells, which were incubated for 1.5 h at 37 °C. The cells were washed with DMEM (3 × 400 

μL) and imaged immediately. Confocal laser scanning microscopy was performed using a Leica 

Microsystems TCS SP2 AOBS system (Mannheim, Germany). Excitation of rhodamine was achieved with 

an argon laser [488 nm (47%), 514 nm (39%) and 561 nm (36%)] and the resulting emission was 

acquired between 575 and 725 nm as an average of four scans. The full images are depicted in Figures 10-

12 
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Figure 10. Aniline catalyzed dynamic exchange between a set of Tat-functional polymersomes and a set of 
rhodamine functional polymersomes results in a new set of polymersomes that are both cell penetrating 
(Tat, Hela cells) and visible under CLSM. Top) Confocal fluorescent image, polymersomes are coloured as 
red dots; bottom) corresponding bright field image of the Hela cells. 



Chapter 7 

 
134 

 

 

Figure 11. Negative control: Aniline-catalyzed dynamic exchange between a set of Tat-functional 
polymersomes and a set of irreversibly functionalized (no hydrazone bond) rhodamine-polymersomes 
does not result in polymersomes that are both cell penetrating (Tat, Hela cells) and visible under CLSM. 
Top) Confocal fluorescent image, fluorescent-cell penetrating polymersomes would appear as red 
coloured dots. The absence of polymersomes indicated that indeed no polymersomes adhered or 
penetrate the Hela cells. Bottom) corresponding bright field image. 
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Figure S10. Negative control: Aniline-catalyzed dynamic exchange involving rhodamine-functionalized 
polymersomes in absence of Tat-polymersomes does not result in a new set of polymersomes that are 
both cell penetrating (Hela cells) and visible under CLSM. Top) Confocal fluorescent image, polymersomes 
would appear as red coloured dots. The absence of polymersomes indicated that indeed no polymersomes 
adhered or penetrate the Hela cells. Bottom) corresponding bright field image. 

 



Chapter 7 

 
136 

7.6 References  

(1) Discher, B. M.; Won, Y. Y.; Ege, D. S.; Lee, J. C. M.; Bates, F. S.; Discher, D. E.; Hammer, D. A. Science 1999, 284, 1143. 

(2)Pang, Z. Q.; Lu, W.; Gao, H. L.; Hu, K. L.; Chen, J.; Zhang, C. L.; Gao, X. L.; Jiang, X. G.; Zhu, C. Q. J Control Release 2008, 

128, 120. 

(3) Ahmed, F.; Pakunlu, R. I.; Brannan, A.; Bates, F.; Minko, T.; Discher, D. E. J Control Release 2006, 116, 150. 

(4) Cheng, Z. L.; Tsourkas, A. Langmuir 2008, 24, 8169. 

(5) Christian, D. A.; Garbuzenko, O. B.; Minko, T.; Discher, D. E. Macromol Rapid Comm 2010, 31, 135. 

(6) Egli, S.; Schlaad, H.; Bruns, N.; Meier, W. Polymers 2011, 3, 252. 

(7) Christian, N. A.; Milone, M. C.; Ranka, S. S.; Li, G. Z.; Frail, P. R.; Davis, K. P.; Bates, F. S.; Therien, M. J.; Ghoroghchian, 

P. P.; June, C. H.; Hammer, D. A. Bioconjugate Chem 2007, 18, 31. 

(8) Meng, F. H.; Engbers, G. H. M.; Feijen, J. J Control Release 2005, 101, 187. 

(9) Nehring, R.; Palivan, C. G.; Moreno-Flores, S.; Mantion, A.; Tanner, P.; Toca-Herrera, J. L.; Thunemann, A.; Meier, W. 

Soft Matter 2010, 6, 2815. 

(10) Lehn, J. M.; Eliseev, A. V. Science 2001, 291, 2331. 

(11) Minkenberg, C. B.; Li, F.; van Rijn, P.; Florusse, L.; Boekhoven, J.; Stuart, M. C. A.; Koper, G. J. M.; Eelkema, R.; van 

Esch, J. H. Angew Chem Int Edit 2011, 50, 3421. 

(12) Cerritelli, S.; Velluto, D.; Hubbell, J. A. Biomacromolecules 2007, 8, 1966. 

(13) Sourkohi, B. K.; Cunningham, A.; Zhang, Q.; Oh, J. K. Biomacromolecules 2011, 12, 3819. 

(14) Sourkohi, B. K.; Schmidt, R.; Oh, J. K. Macromol Rapid Comm 2011, 32, 1652. 

(15) Egli, S.; Nussbaumer, M. G.; Balasubramanian, V.; Chami, M.; Bruns, N.; Palivan, C.; Meier, W. J Am Chem Soc 2011, 

133, 4476. 

(16) Ryu, J. H.; Chacko, R. T.; Jiwpanich, S.; Bickerton, S.; Babu, R. P.; Thayumanavan, S. J Am Chem Soc 2010, 132, 

17227. 

(17) Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K. Angew Chem Int Edit 2003, 42, 4640. 

(18) Brinkhuis, R. P.; Visser, T. R.; Rutjes, F. P. J. T.; van Hest, J. C. M. Polym Chem-Uk 2011, 2, 550. 

(19) He, L.; Jiang, Y.; Tu, C. L.; Li, G. L.; Zhu, B. S.; Jin, C. Y.; Zhu, Q.; Yan, D. Y.; Zhu, X. Y. Chem Commun 2010, 46, 7569. 

(20) Cordes, E. H.; Jencks, W. P. J Am Chem Soc 1962, 84, 826. 

(21) Dirksen, A.; Dirksen, S.; Hackeng, T. M.; Dawson, P. E. J Am Chem Soc 2006, 128, 15602. 

(22) Dirksen, A.; Yegneswaran, S.; Dawson, P. E. Angew Chem Int Edit 2010, 49, 2023. 

(23) Dirksen, A.; Dawson, P. E. Bioconjugate Chem 2008, 19, 2543. 

(24) Zhou, Y. F.; Yan, D. Y. J Am Chem Soc 2005, 127, 10468. 

(25) Green, M.; Loewenstein, P. M. Cell 1988, 55, 1179. 

(26) Frankel, A. D.; Pabo, C. O. Cell 1988, 55, 1189. 

(27) Karlen, B.; Lindeke, B.; Lindgren, S.; Svensson, K. G.; Dahlbom, R.; Jenden, D. J.; Giering, J. E. J Med Chem 1970, 13, 

651. 

(28) Deiters, A.; Cropp, T. A.; Mukherji, M.; Chin, J. W.; Anderson, J. C.; Schultz, P. G. J Am Chem Soc 2003, 125, 11782. 

 



 

 

8 

137 

Summary & Perspective 

 

 

 

 

 

 

 

 

 

 

Manny potent drugs are hampered by a low bioavailability and never reach the desired tissue, which 

therefore renders them useless in a clinical environment. Additionally, organisms are equipped with 

impermeable physiological barriers, among them the blood-brain barrier. One strategy to overcome these 

obstacles is by chemical modification of the drugs to increase their bioavailability. However, this strategy 

involves alteration of the chemical structure which in many cases reduces the potency of the drug. 

Nanotechnology might overcome these obstacles by providing carriers that transport the unmodified drug to 

the desired place in the body. This thesis describes the design of such a polymeric nanocarrier system based 

on the block copolymer polybutadiene-block-poly(ethylene glycol) which has the ability to target and cross 

the blood-brain barrier and allows for in vivo SPECT imaging.  
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8.1 Summary 

In the first chapter an overview of the recent literature on polymeric vesicles, also 

known as polymersomes, in biomedical applications is given. From this chapter it 

becomes clear that the possibilities to tailor and optimize polymeric vesicles for a given 

application are only limited by the creativity of the researchers. The design flexibility 

makes polymersomes interesting candidates for nanomedicine, but also introduces a 

high degree of complexity. The rational design of a vesicle starts on the level of the 

choice of monomers to form amphiphilic block copolymers of predefined molecular 

weight, and reaches all the way up to the supramolecular level where shape, size, 

porosity and surface functionality become important.  

 To tackle this complexity, while retaining the flexibility in design, we have developed 

in chapter 2 a chemical platform based on the amphiphilic block copolymer 

polybutadiene-block-poly(ethylene glycol) which has the property to self assemble into 

polymersomes.  This platform allows to construct vesicles functionalized with multiple   

proteins, peptides and imaging probes; furthermore, control over the polymersome size 

is easily obtained. This chemical platform forms the basis of the research as described in 

chapters 3-7. 

 

 In chapter 3, size was demonstrated to be an important factor influencing the blood 

circulation of polymersomes. Vesicles of the amphiphilic block copolymer 

polybutadiene-block-poly(ethylene glycol) with an average size of 250, 120 and 90 nm 

were formed and labelled with a radioisotope, 111In. The biodistribution in mice over all 

main organs was analyzed and showed a similar trend as found for liposomes. However, 

for polymersomes the transition from long blood circulation to fast clearance by the 

liver and spleen was more abrupt, leading to the conclusion that long circulating 

polymersomes should be formulated well below a size of 100 nm. This sharp transition 

from long blood circulation (90 nm) to fast liver and spleen accumulation (≥ 120 nm) 

was also visualized by the non invasive technique of SPECT/CT imaging. 

 In chapters 4 and 5 we designed a G23-peptide functionalized polymeric vesicle that 

is able to efficiently cross the blood brain barrier by recognition of the gangliosides GM1 

and GT1b. These chapters also nicely illustrate that the design of polymersomes for 

biomedical (and other) applications is not only dependent on a good control over the 

chemistry and supramolecular assembly. To identify potent targets and ligands and test 
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them both in vitro and in vivo an in dept knowledge over the function and physiology of 

(in this case) the blood-brain barrier is needed. These kinds of potential drug delivery 

systems therefore can only be developed by a tight interplay between groups of 

different expertise such as (polymer) chemistry, nuclear medicine and cell membrane 

biology.  

 The resulting G23- tagged polymeric vesicles were additionally labelled with 

fluorescent or radioisotope labels for in vitro and in vivo analysis. In vitro studies 

showed a high and selective transcytosis potential for the G23-polymersomes which was 

confirmed by in vivo experiments in mice. An in dept in vivo analysis (chapter 5) 

revealed that G23-polymersomes were able to cross the blood-brain barrier with an 

efficiency comparable with antitransferrin-tagged polymersomes, which can be 

regarded as a golden standard. However, an unexpected result was the high 

accumulation of G23-polymersomes in lung tissue, which might either be circumvented 

by smart drug administration or be used to its advantage for targeted drug delivery to 

lung tissue (e.g. tuberculosis). 

 

 The final two experimental chapters (6 and 7) describe a more fundamental line of 

investigation into the design and functionalization of polymersomes. Again, a block 

copolymer based on polybutadiene-block-poly(ethylene glycol) was designed. However, 

this time both blocks were coupled via a hydrazone moiety, which is a dynamic bond 

and pH sensitive within the physiological relevant window.  

 In chapter six we explore the pH dependent stability of polymersomes assembled 

from hydrazone-coupled block copolymers. It was shown that these polymersomes of 

predefined size lost their colloidal stability upon lowering the pH from 7.4 to 6.4 and 

less. When a pH stable block copolymer, as developed in chapter 2, was mixed in  

structural control was regained.  It was demonstrated  that the presence of less than 5% 

of surface PEGylation was sufficient to maintain colloidal stability. 

 Finally, chapter 7 explores the (catalyzed) dynamic nature of polymersomes 

assembled from hydrazone-coupled block copolymers. It was shown that the 

introduction of a hydrazone moiety in polymersomes allows for the construction of 

more complex, asymmetrical and multifunctional polymeric vesicles. The dynamic 

nature of the hydrazone bond allowed the exchange of surface functionality both with 

polymers which were molecularly dissolved and between polymersomes. This opens up 
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new routes toward more complex multi-functionalized polymeric vesicles with control 

over size and colloidal stability. 

 

8.2 Perspective 

In this thesis a line of research is described, which  involves the successful design of a 

polymersome drug delivery system that can cross the blood-brain barrier in vivo. 

Although several research questions have been appropriately answered, such as 

targetability, and optimal size for biodistribution, in order to move toward actual 

applications of these polymeric vesicles in the clinic, important challenges still have to 

be dealt with in a future line of research.  

 

Throughout this thesis the amphiphilic block copolymer polybutadiene-block-

poly(ethylene glycol) was used because of its low glass transition temperature and 

biocompatibility. Although this polymer is not biodegradable on a timescale of days this 

polymer was chosen since it allowed us to control the overall polymersome structure in 

a relatively “simple” model. The lack of biodegradability rules out the complicating 

factor of decomposition, but seriously hampers the applicability in a clinical setting and 

therefore the biodegradability needs to be addressed in the future research. 

 In many cases there can be important, and sometimes unpredictable discrepancies 

between model systems and the actual drug delivery vehicles. For example, in chapter 3 

size was subject to research with respect to biodistribution in mice. Although studies 

with the empty polybutadiene-block-poly(ethylene glycol) polymersomes give 

important insights, they may not reflect the full complexity of a targeted drug delivery 

vesicle. In chapter 2 it was briefly mentioned that 1 weight percent of a drug could be 

encapsulated in the vesicle membrane. At this moment it is under investigation whether 

membrane stiffening, due to drug encapsulation, will influence the blood circulation of 

90 nm polymersomes. The effect of size and membrane stiffness are only two 

parameters that have to be simultaneously considered to understand blood circulation. 

 The results as discussed chapter 4 and 5 are highly promising for the development of 

a real biomedical application. In fact, both the in vitro and in vivo efficiency of transport 

for G23-tagged polymersomes over the BBB is high compared to most other delivery 

systems. Moreover, the design of this G23-vesicle, along with the identification of 
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G23/GM1 as tag and target, was accomplished within four years. However, also in this 

case many questions still have to be answered. Would a differently sized polymersome 

perform better, how much of a certain drug can be maximally encapsulated, how can a  

release mechanism be effectively introduced when the carrier reaches the brain 

parenchyma and is there an enhanced therapeutic effect? Furthermore, it should be 

noted that although the brain delivery of G23-polymersomes is high compared to other 

delivery systems, it is still less than one percent of the injected dose that reaches the 

brain.   

 

In 1999 Discher et al. published the first in dept study into polymeric vesicles which he 

coined polymersomes. One feature that was immediately noted is the resemblance with 

liposomes. Upon extending this comparison, it should be noted that liposomes have been 

studied for more than 50 years and are nowadays found in approved drug formulations. 

In this perspective liposomes have a head-start of more than 40 years. However, after a 

decade of research into polymeric vesicles one can say that basically anything which can 

be done with liposomes has been published with polymeric vesicles. Furthermore, in 

many (but not all) cases polymeric vesicles outperform liposomes, making biomedical 

applications feasible and just a matter of time. 

 In the near future, a gain in therapeutic effect by replacing existing therapeutics 

based on e.g. liposomes may be foreseen. But  probably the biggest potential for 

polymersomes lies in the huge diversity of polymers that can and have been used to 

meet specific criteria for a given application. Chemists can use their full creativity to 

adjust polymeric vesicles after receiving new input from different fields of science. And 

it is this adjustability and flexibility in design which elevates polymeric therapeutics 

above conventional approaches. Polymer therapeutics will continue to solve biomedical 

problems, where the possibilities for conventional medicine end. 
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Samenvatting & Visie 

 

 

 

 

 

 

 

 

 

 

Veel potentiële medicijnen zijn kansloos in een klinische toepassing, omdat ze leiden onder een te lage 

biologische beschikbaarheid en dus nooit in het juiste weefsel aankomen. Daarnaast kent het lichaam een 

aantal vrijwel onneembare barrières, waaronder de bloed-hersenbarrière. Een manier om de biologische 

beschikbaarheid van medicijnen te verbeteren is door ze chemisch aan te passen, maar dit resulteert vaak in 

een verminderde werking. Een relatief nieuwe manier om dit opstakel te nemen wordt gevonden  in de 

nanotechnologie. Nanotechnologie maakt het mogelijk om deeltjes ter grootte van 1/1000 tot 1/50 

haardikte te vormen waar een medicijn ingesloten wordt. Door vervolgens specifieke liganden op deze 

deeltjes te zetten kan het naar de juiste plek gebracht worden om het medicijn af geven. In dit proefschrift 

wordt de ontwikkeling van zo’n polymeer nanodeeltje beschreven dat in staat is de bloed-hersenbarrière over 

te steken en door middel van SPECT/CT scan gevisualiseerd kan worden. 
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8.1 Samenvatting 

 

In het eerste hoofdstuk wordt een overzicht gegeven van de meest recente literatuur op 

het gebied van polymeer nanodeeltjes (polymersomen) in biomedische toepassingen. 

Uit deze literatuurstudie komt naar voren dat de enige beperkende factor in de 

optimalisatie en toepassing 

van polymersomen de 

creativiteit van de onderzoeker 

is. De flexibiliteit in het design 

maakt van polymersomen een 

interessante klasse van 

deeltjes voor medicijn afgifte, 

maar maakt ook dat het 

formuleren erg complex wordt. 

Rationeel design begint 

daarom bij de keuze van monomeren om polymeren te maken van een goed gekozen 

lengte en gaat door tot de supramoleculaire chemie, waar keuzes als vorm, deeltjes 

grootte en oppervlakte chemie centraal komen te staan.  

 Om een weg te vinden in deze complexe chemische ruimte hebben wij in hoofdstuk 2 

een chemisch platform ontwikkeld gebaseerd op het amfifiele blok copolymeer 

polybutadiene-poly(ethylene oxide). Dit polymeer is in staat om zichzelf te assembleren 

in een dubbel membraan dat de buitenkant van een sferisch deeltje vormt, een 

polymersoom. Tevens wordt een methode beschreven om deze deeltjes in grootte te 

variëren van 1/1000 tot 1/50 van een haardikte en ze te functionaliseren met eiwitten, 

peptiden en fluorescente/radioactieve labels. Dit chemische platform vormt dan ook het 

uitgangspunt voor het onderzoek als beschreven in hoofdstukken 3-7.  

 

In hoofdstuk 3 wordt aangetoond dat deeltjes grootte een belangrijke factor is als het 

gaat om bloedcirculatie. Polymersomen met een gemiddelde grootte van 250, 120 en 90 

nm zijn gelabeld met een radioactief isotoop van indium (111In). De biodistributie na 4 

en 24 uur over de belangrijkste organen en het bloed is vervolgens bepaald in muizen. 

De algemene trend was gelijk aan die van liposomen (de fosfolipiden analoog van 

polymersomen). Echter, de overgang van lange bloed circulatie naar snelle lever- en 



Summary & perspective 

 
145 

mildopname was veel abrupter. Dit leidt tot de conclusie dat voor lange bloedcirculatie 

de polymersomen kleiner dan 100 nm moeten zijn. Daarnaast is het effect van lange 

bloedcirculatie voor 90 nm deeltjes en snelle lever- en mildopname voor deeltjes van 

120 nm gevisualiseerd d.m.v. SPECT/CT scans, een veel gebruikte techniek in de 

nucleaire geneeskunde. 

 In hoofdstukken 4 en 5 wordt de ontwikkeling van een peptide (G23) 

gefunctionaliseerde polymersome dat de bloed-hersenbarrière kan oversteken 

beschreven. Dit gebeurd door herkenning van de gangliosiden GM1 en GT1b. Deze 

hoofdstukken illustreren tevens dat de ontwikkeling van polymersomen voor 

biomedische (en andere) toepassingen een multidisciplinair onderzoek is, waarvoor 

onderzoekers uit verschillende velden intensief met elkaar samen moeten werken. In dit 

geval was naast chemische kennis ook gedegen kennis over de fysiologie van de bloed-

hersenbarrière en nucleaire geneeskunde nodig om liganden te identificeren en die 

zowel in vitro als in vivo te testen.  

 Deze samenwerking resulteerde in de ontwikkeling van G23-gefunctionaliseerde 

polymersomen met een fluorescente en/of radioactieve (111In) label voor in vitro en in 

vivo studies.  In vitro cel studies laten zien dat G23-gefunctionaliseerde polymersomen 

in staat zijn om selectief over een bloed-hersenbarrière model transporteren 

(hCMEC/D3, transcytose). Dit wordt ook bevestigd door een eerste kleinschalige muis 

studie. 

 In hoofdstuk 5 is de in vivo bioditributie van G23-polymersomen in de hersenen en 

overige organen in detail bestudeerd (muis studies). Deze resultaten zijn in een directe 

studie vergeleken met transferrin antilichaam gefunctionaliseerde polymersomen. 

Transferrin antilichaam, met een molecuul gewicht van ~90.000 Dalton, wordt 

momenteel gezien als de gouden standaard. Onze resultaten laten zien dat het G23- 

peptide, met een molecuulgewicht van slechts 1.640 Dalton, vergelijkbare resultaten 

geeft. Echter, we zagen ook een grootte specifieke toename van G23-polymersomen in 

het longweefsel. Dit zou onderdrukt kunnen worden door aangpaste toediening van de 

polymersomen, of in het voordeel gebruikt kunnen worden voor medicijn afgifte in de 

longen. 

 

De laatste twee hoofdstukken (6 en 7) laten een meer fundamentele studie naar design 

en functionalisering van polymersomen zien. Wederom is het polymeer polybutadiene- 
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poly(ethylene glycol) gesynthetiseerd, maar dit maal zijn beide delen door een hydrazon 

binding met elkaar verbonden. Hydrazon bindingen zijn dynamische bindingen met een 

pH gevoeligheid in een fysiologisch relevante range (pH 5-8).  

 In hoofdstuk 6 wordt de pH gevoeligheid van deze binding in polymersomen 

bestudeerd. We tonen aan dat deze polymersomen stabiel zijn bij een pH van 7.4 (bloed) 

en hun colloïdale stabiliteit verliezen wanneer de pH verlaagd wordt naar 6.4 en lager 

(endosoom). Door het inmengen van verschillende hoeveelheden van het stabiele 

polymeer uit hoofdstuk 2 konden polymersomen met verschillende PEGyleringsgraden 

worden verkregen. De minimum hoeveelheid poly(ethyleen glycol) die nodig is om de 

colloïdale stabiliteit van polymersomen te behouden is 5 procent. 

Tot slot wordt in hoofdstuk 7 een studie gepresenteerd waarin polymersomen met een 

hydrazon binding stabiel gehouden worden bij pH 7.4. Dit maal werden de aniline 

gekatalyseerde dynamische eigenschappen van de hydrazon binding gebruikt om 

functionele groepen te introduceren door middel van oppervlakte uitwisseling. Dit 

resulteerde in asymmetrische membranen met verschillende functionele groepen aan de 

binnen- en buitenzijde van de polymersomen. Daarnaast werd aangetoond dat 

uitwisseling van functionele groepen tussen polymersomen mogelijk is. Deze resultaten 

openen nieuwe mogelijkheden voor de constructie van complexe multifunctionele 

polymersomen met controle over hun grootte en colloïdale stabiliteit. 

8.2 Visie 

Dit gehele proefschrift is gebaseerd op het polymeer polybutadiene-poly(ethylene 

glycol). Dit polymeer werd gekozen vanwege zijn lage glastransitie temperatuur 

(vervormbaar bij kamertemperatuur) en biologische tolerantie. Echter, dit polymeer is 

niet biologisch degradeerbaar op een tijdschaal van dagen. Toch hebben we voor dit 

polymeer gekozen, omdat het ons in staat stelt om een relatief simpel polymersome 

model te bestuderen met goede controle over de structuur. Daarnaast zou 

biodegradeerbaarheid een extra complexiteit met zich mee brengen, namelijk het uit 

elkaar vallen van de structuur tijdens de studies. Echter, het is juist de robuustheid van 

ons model dat in een klinische toepassing zeer ongewenst is. Daarom moet de factor 

degradeerbaarheid in vervolgstudies zeker geïntroduceerd worden.  

 Daarnaast zijn alle in vitro en in vivo studies zijn uitgevoerd met lege polymersomen 

om belangrijke inzichten te krijgen in bijvoorbeeld de bloedcirculatie en biodistributie 
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van polymersomen. Echter, ook dit is een versimpelde weergave van een polymersome 

medicijn-afgifte systeem. In hoofdstuk 2 werden kort enkele experimenten beschreven 

die aantonen dat polymersomen beladen kunnen worden met 1 procent van een model 

drug. Deze belading veranderd de stijfheid van het membraan en zal wellicht een 

invloed op de bloedcirculatie en biodistributie hebben. Een mogelijke verandering als 

gevolg van medicijn belading wordt momenteel dan ook onderzocht.  

 Het onderzoek als beschreven in hoofdstuk 4 en 5 zijn zeer veel belovend voor 

toekomstige biomedische toepassingen. De muizen leken niet te leiden onder de 

polymersome injecties en zowel de in vitro als in vivo resultaten laten een zeer hoog 

transport van polymersomen over de bloed-hersenbarrière zien. Zeker in vergelijking 

tot de meeste reeds bekende systemen. Hierbij moet ook aangemerkt worden dat het 

ontwikkelen van de polymersomen, het identificeren van G23-peptiden en het in vitro/in 

vivo testen binnen vier jaar is uitgevoerd. Een extra optimalisatie itteratie zou zeker tot 

nog betere resultaten leiden, want ook deze hoofdstukken laten vragen onbeantwoord. 

Zou een andere grootte polymersomen in deze setting andere resultaten geven 

(combinatie van de factoren grootte en functionalisatie), hoe kunnen we een medicijn 

vrijgeven als de polymersome in het hersenweefsel is aangekomen en is er een 

therapeutisch effect in een ziektemodel? Daarnaast moeten we aantekenen dat, hoewel 

ons systeem nu al efficiënt is vergeleken met andere onderzoeken, er nog altijd minder 

dan 1 procent van de  geïnjecteerde dosis in het hersenweefsel terecht komt. Er is dus 

nog veel ruimte voor verbetering en het ontwikkelen van betere inzichten ten aanzien 

van het gebruik van polymersomen in biomedische toepassingen en in het gebied van 

“polymer therapeutic” in het algemeen. 

 

In 1999 werd door Discher een eerste systematische studie naar de structuur van holle 

sferische polymeer structuren uitgevoerd. In deze publicatie noemt hij deze structuren 

polymersomen, naar analogie van liposomen die reeds meer dan 50 jaar bekend en 

bestudeerd werden. Tegenwoordig worden liposomen gevonden in medicijnen die 

goedgekeurd zijn voor gebruik in de kliniek. In dat opzichte hebben studies naar 

liposomen in biomedische toepassingen een voorsprong van meer dan 40 jaar. Echter 

als je de literatuur vandaag de dag bestudeerd wordt duidelijk dat in ruim tien jaar alles 

wat ooit gedaan is met liposomen ook met polymersomen is gedaan. Daarnaast blijkt 

steeds weer dat in veel (maar niet alle) toepassingen polymersomen beter presteren dan 
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liposomen omdat er veel meer design vrijheid is. Daarom is de introductie van de eerste 

medische toepassingen van polymersomen in mijn optiek voor de hand liggend en 

slechts een kwestie van tijd. Ik ben er dan ook van overtuigd dat in de nabije toekomst 

bestaande therapieën gebaseerd o.a. liposomen vervangen worden door polymersome 

analoge, maar de grootse potentie ligt in enorme diversiteit van polymeren en 

structuren die mogelijk zijn voor polymersomen en “polymer therapeutics” in het 

algemeen om aan specifieke criteria te voldoen. De creativiteit van de chemici is slechts 

de beperkende factor om formuleringen te verbeteren nadat wetenschappers uit andere 

disciplines hun input terug hebben gegeven. Het is deze flexibiliteit die “polymeric 

therapeutics” ver boven conventionele methoden uit tilt. Polymeric therapeutics zal 

biomedische oplossingen blijven bieden waar conventionele therapieën geen antwoord 

hebben. 
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