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Carbon and water footprints in Brazilian coffee 
plantations - the spatial and temporal distribution
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INTRODUCTION

Climate changes and global warming estimates for the 
present century (IPCC, 2013; 2014), raise important 
uncertainties related to future sustainability of  the coffee 
crop production, based on Coffea arabica L. (Arabica coffee) 
and Coffea canephora Pierre ex A. Froehner (Robusta coffee) 
that account together for approximately 99% of  world 
coffee production. Recent works have been shown that the 
estimated increase in air [CO2] could have a positive impact 
on the coffee plants, since it strengthens photosynthetic 
performance (Ramalho et al., 2013; DaMatta et al., 2016). 
Furthermore, enhanced air [CO2] can significantly mitigate 
the predicted physiological heat impacts, as regards leaf  
mineral balance (Martins et al., 2014), the triggering 
of  defence mechanisms and gene expression patterns 
(Martins et al., 2016; Rodrigues et al., 2016), and, ultimately, 

contributing to preserve coffee bean quality (Ramalho et al., 
2018). Nevertheless, several reports predicted important 
reductions of  suitable areas, and increases in pest incidence, 
particularly as concerns Coffea arabica L., largely related to the 
increase of  average air temperature, intra-seasonal variability 
of  temperature and water availability (Bunn et al., 2015; 
Craparo et al., 2015; Magrach and Ghazoul, 2015; Martins 
et al., 2017), with impact on the livelihoods of  millions of  
small householders. Although, elevated air [CO2] has the 
ability to soften the predicted impacts of  supra-optimal 
temperatures, it seems indisputable that impacts from 
climate changes are already happening (Craparo et al., 2015; 
van der Vossen et al., 2015), with growing socioeconomic 
impacts caused by progressive and extreme climatic events, 
mainly reported on Central and South America. Moreover, 
the future scenarios of  climate changes show a reduction 
in areas with annual mean rainfall effective for coffee 
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production (Chapagain and Hoekstra, 2007; Eriyagama 
et al., 2014). These findings reinforces the need for the 
implementation of  mitigation and adaptation strategies, 
aiming at decrease the impact of  climate changes and 
global warming on the coffee production and quality 
(Rikxoort et al., 2014; Rahn et al., 2014; Bunn et al., 2015; 
Dubberstein et al., 2018). These strategies of  mitigation 
and adaptation to climatic vulnerability must include the 
increase of  C-sequestration, decreasing carbon footprint, 
and of  water footprint required to grow coffee trees and 
to produce coffee beans (Läderach et al., 2010; Rikxoort 
et al., 2014; Rahn et al., 2014).

There are few reports about strategies to produce coffee 
under influence of  climatic stresses, whereas considering 
as well the need to decrease its carbon and water footprint. 
Some results show that cropping coffee under shaded 
conditions may reduce up to 56% of  carbon footprint 
(Hergoualc’h et al., 2012). Furthermore, this mitigation 
strategy promoted increases in carbon stock up to 32 t CO2-
eq ha-1 (Soto-Pinto et al., 2010; Hergoualc’h et al., 2012). 
Furthermore, the use of  agroforestry systems for coffee 
cultivation can turn a coffee area from a carbon emitter to 
a carbon sequestration (Andrade et al. 2014). Carbon stock 
in green biomass (coffee tree) has not been included in 
carbon footprint of  the product. However, spatial estimates 
indicates that its quantification may reduce 92% of  carbon 
footprint, revealing the mitigation potential of  the coffee 
plantation itself  (Martins et al., 2015).

Disturbing signs are also attributed to water footprint in 
coffee production, since it is estimated that one single 
coffee cup requires the use of  near 140 litters of  water, 
being the most part attributed to growing the trees. This 
fact unveils the impact of  bean processing over the 
water footprint, since only 0.4% of  the footprint comes 
from coffee processing (Chapagain and Hoekstra, 2007). 
Currently, the initial estimates suggest that between 8.2 
and 26.3 cubic meters of  water are used in the production 
of  1 kilogram of  green coffee; varying between regions, 
species and cultivation systems (Chapagain and Hoekstra, 
2007; Eriyagama et al., 2014).

Overall, studies involving carbon and water footprints due 
to coffee production showed that most efforts are being 
developed in regions between 0°N and 30°N of  latitude, 
especially for countries of  Central America, Africa and 
part of  Asia, with only a few reports for regions between 
0°S and 30°S of  latitude, where Brazil is located. Ironically, 
Brazil stands for near 30% of  world coffee production, with 
annual exports yielding ca. 5600 million USD (ICO, 2016). 
This numbers indicate a dimensions of  the socioeconomic 
important of  coffee in Brazil, therefore, any modification 
in the climatic aptitude expected for the regions between 

0°S and 30°S of  latitude (Bunn et al., 2015; Magrach 
and Ghazoul, 2015) would cause large impacts in coffee 
production.

The objective of  this study was (i) to accurately estimate 
and spatialize the water and carbon footprints due to the 
coffee crop from different regions of  Brazil along ten 
years; and (ii) to quantify the proportional responsibility of  
coffee production in the total emission of  CO2 and water 
consumption of  Brazilian agriculture.

MATERIAL AND METHODS

Case study and time-series. This study was performed 
considering Brazil (area: 8,515,767.049 km2), located at 
latitude and longitude of  10° S and 55° W. The geographic 
stratification of  the area planted with coffee trees (ha) was 
carried out based on data of  plantation area (ha) and coffee 
production (tons of  beans), from 10 productive cycles of  
the species Coffea arabica L. and Coffea canephora Pierre ex 
A. Froehner, from 2004/2005 to 2014/2015, based on the 
agricultural census (Table 1).

Calculation of  carbon and water footprints. The carbon 
footprint (t CO2-eq) was calculated using the Cool Farm Tool 
(CFT) (Hillier et al., 2011), based on the coefficient determined 
for coffee produced (beans) in commercial unshaded 
monocultures (Rikxoort et al., 2014). This coefficient is 
between 6.2 and 9.0 t CO2-eq t-1 of  produced coffee beans, 
therefore, an average of  7.6 t CO2-eq t-1 of  coffee beans was 
used for standardization. The water footprint (m3) of  green 
coffee was calculated using the coefficient based in virtual 
water content, representing the volume of  water required 
to produce green coffee. The most suitable coefficient for 
Brazil is 18,925 m3 t-1 (water volume per green coffee beans 
mass, processed through the wet method) (Chapagain and 
Hoekstra, 2007). Data of  10 consecutive years of  cultivation 
were used to calculate carbon and water footprints for 

Table 1: Summary of the climatic means of coffee producing 
regions in Brazil1

State Regions Altitude2 Rainfall3 Temperature4

Minas 
Gerais

South
Cerrado
Chapada
Montanhas

950
800
960

600 to 1,100

1,500
1,400
1,000
1,220

22.0 a 24.0
24.0
24.3

14.6 to 21.8
Espírito 
Santo

Mountains
Conilon

700 to 1,100
100 to 300

1,341
1,100

17.0 to 22.0
24.0

São Paulo Mogiana
Centro‑Oeste

900 to 1,000
200 to 600

1,523
1,350

18.0 to 20.0
20.7

Paraná Norteh”Pioneiro”
Arenito

900
350

1,300
1,246

21.0
21.5

Bahia Cerrado
Chapada

400 to 850
100 to 200

1,120
1,261

24.5
24.2

Rondônia Rondônia 200 1,500 24.6 to 25.6
1IBGE, 2015; 2Altitude: m; 3Rainfall: mm; 4Temperature: °C.
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coffee production systems, because previous studies have 
reported this as representing the time of  maximum carbon 
accumulation in coffee plants (Rodrigues et al., 2000).

Spatialization and data analysis. The data of  carbon 
water footprints were grouped for regions of  the Brazil 
(South, South East, Central West, Northeast and North) 
and statistically analyzed for normality verification 
(Kolmogorov-Smirnov, level of  significance of  0.05) 
through the Genes program (Cruz, 2013). All spatialization 
representations were performed with the program 
ArcGIS® (version 10.2, ESRITM).

RESULTS AND DISCUSSION

The higher estimates for carbon footprint (CFP) and water 
footprint (WFP) in coffee monocultures (C. arabica and 
C. canephora) were found in Southeast region of  Brazil and 
the lower estimates of  CFP and WFP were obtained in the 
Center-West region (Fig 1, Fig 2; Table 2).

This differences in the distribution was somewhat expected, 
since the Southeast region presents the largest plantation 
areas and high level of  production of  coffee fruits (Table 2) 
(Martins et al., 2015), while the Center-West region presents 
agricultural suitability for others species, such as soybean 
and corn, implicating smaller areas for coffee cultivation. 
However, coffee production is gradually advancing for 
central areas of  Brazil supported by large scale irrigation 
schemes, which would increase CFP and WFP of  this 
region in the near future (Fernandes et al., 2012).

The spatial distribution reveals that carbon footprint in Brazil 
varied between 16 million t CO2-eq during the 2005/2006 
season and 22 million t CO2-eq during 2010/2011, 
2012/2013 and 2013/2014 seasons (Fig  1). Water 
footprint spatialization varied between 40,000 million m3 
during 2005/2006 season up to 57,000 million m3 during 
2012/2013 season (Fig 2). The lower CFP and WFP from 
2005/2006 season may be explained by the implication 
of  climatic adversities occurred in coffee plantations, 
especially in Southeast region and north of  Paraná state 
(South region), allied to the renovation of  coffee plantation 
in large areas of  Southeast region, mainly in Espírito Santo 
state (Southeast region) and south of  Bahia state (Northeast 
region). Higher estimates CFP and WFP during 2012/2013 
season are related to the interaction of  favorable climatic 
events to the exploration of  the potential from the areas 
that were being renovated with new technologies from the 
early 2000s (Martins et al., 2015).

The estimates indicate that during 10 consecutive years, 
the coffee plantations in Brazil were responsible for a CFP 

of  near 198 million t CO2-eq (Table 2), corresponding to 
only 1.14% of  the estimated total of  Brazilian emissions 
of  CO2-eq between 2005 and 2014 (ca. 17,429 million Ton 
CO2-eq) (SEEG, 2015). Furthermore, coffee CFP had a 
modest contribution of  ca. 5% of  the total emissions from 
agriculture activities in Brazil, estimated in 4,030 million 

Fig 1. Spatial distribution of Carbon Footprint (million t CO2-eq) for 
coffee monoculture (C. arabica and C. canephora) in Brazil, during 10 
production years (from 2004/2005 to 2014/2015). (Universal transverse 
mercator projection; ellipsoid SIRGAS 2000, zona 24 k).

Table 2: Production of coffee bean (million Ton) and estimate  
Carbon Footprint (million t CO2‑equivalent) and Water  
Footprint (x 1000 million m3) for coffee monoculture  
(C. arabica and C. canephora) in regions of Brazil, during 10 
production years (from 2004/2005 to 2014/2015)

Region Coffee beans
(million t)

Carbon Footprint
(million t 

CO2‑equivalent)

Water Footprint
(x1000 million m3)

North 1.111 8.443 21.024
Northeast 1.556 11.827 29.450
Central‑West 0.313 2.380 5.927
Southeast 21.894 166.394 414.342
South 1.168 8.874 22.097
Total 26.042 197.917 492.840
Standard 
deviation

0.003 0.020 51

Annual 
average

2.604 19.792 49.284
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Ton CO2-eq from 2005 to 2015 (SEEG, 2015). Even 
considering that this coffee CFP values were expressive, 
the present results do not consider the amount of  carbon 
stocked in the vegetation from the varied cultivation 
systems of  Coffea spp., which can mitigate up to 92% of  the 
in-farm carbon footprint from Brazilian coffee (Soto-Pinto 
et al., 2010; Hergoualc’h et al., 2012; Martins et al., 2015).

Considering the total volume of  water used for world crop 
production regarding the main crops, coffee is responsible 
to ca. 2% WFP (Hoekstra and Chapagain, 2006). However, 
due to the importance of  coffee crop to the tropical are, 
a larger weight of  this crop can expected as concerns 
the tropical agriculture in general and the Brazilian one 
in particular. Based on the virtual water consumption 
coefficient (Chapagain and Hoekstra, 2007), the WFP from 
Brazilian coffee will reach values close to 49,300 million m3 
per year (Table 2), which is an important WFP as compared 
to the water consumption by irrigated agriculture in Brazil, 
which is estimated to represent 23,500 million m3 per year 
(ANA, 2017). Nevertheless, although giving a broad idea, 
are not directly comparable, since the estimate for water 
consumption by irrigated agriculture in Brazil only includes 

a small part of  the coffee crop. Indeed, recent estimates 
pointed that irrigated coffee represented only 5.9% of  the 
total area for this crop, with an impact of  6.3% regarding 
the water spent for the main crops (rice, sugar-cane, corn, 
bean, soya, wheat) (FGV-EESP, 2016).

Overall, the results for coffee plantations in Brazil indicate 
higher carbon and water footprints from the Southeast 
region. C-footprint estimates correspond to only 5% of  
the emissions of  greenhouse gasses. Moreover, 92% of  
the carbon footprint may be further mitigated if  we take 
into account the carbon sequestration on the biomass of  
coffee trees. In contrast a large coffee water foodprint 
can be expected considering its water use in the context 
of  the tropical and Brazilian agriculture (under irrigated 
and, particularly, non-irrigated cropping systems). Further 
studies are needed to confirm and actualize these first 
estimates, considering the growing importance of  global 
irrigated agriculture (including coffee), the predicted 
scarcity of  water resources under a context of  climate 
changes, and the required sustainable management of  
water resources.
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