REM WORKING PAPER SERIES

Calibration and the estimation of macroeconomic models

Nikolay Iskrev

REM Working Paper 034-2018

March 2018

REM — Research in Economics and Mathematics
Rua Miguel Lupi 20,
1249-078 Lisboa,
Portugal

ISSN 2184-108X

Any opinions expressed are those of the authors and not those of REM. Short, up to
two paragraphs can be cited provided that full credit is given to the authors.

LISBON I EAR

SCHOOL OF I PE\ RO
| ) LisBoA | st

MANAGEMENT HME IATIC 5

UNIVERSIDADE DE LISBOA




Calibration and the estimation of macroeconomic
models
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Abstract

We propose two measures of the impact of calibration on the estimation of
macroeconomic models. The first quantifies the amount of information introduced
with respect to each estimated parameter as a result of fixing the value of one
or more calibrated parameters. The second is a measure of the sensitivity of
parameter estimates to perturbations in the calibration values. The purpose
of the measures is to show researchers how much and in what way calibration
affects their estimation results — by shifting the location and reducing the spread
of the marginal posterior distributions of the estimated parameters. This type
of analysis is often appropriate since macroeconomists do not always agree on
whether and how to calibrate structural parameters in macroeconomic models.
The methodology is illustrated using the models estimated in Smets and Wouters

(2007) and Schmitt-Grohé and Uribe (2012).
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1 Introduction

It is a common practice in the empirical macroeconomic literature to mix estimation of
some model parameters with calibration of others. The rationale behind this approach
is either that some parameters are difficult to identify from available data, or that
their values have been well-established elsewhere in the literature. While these may
be reasonable arguments in some cases, the list of calibrated parameters often includes
some for which the empirical evidence is far from settled, and whose values are simply
taken from previous studies, often based on very different models and data patterns.
Convenience and ease of estimation may be a more realistic explanation of the common
practice of fixing some parameters a priori than the possession of true knowledge of
their values. It is therefore important to understand the impact, if any, that parameter
calibration has on model estimation.

The practice of mixing calibration and estimation can have two potentially important
consequences. First, the values of the calibrated parameters may affect the point estimates
of the free parameters.! Thus, mis-calibration could result in biased estimates of some
estimated parameters. Second, from the point of view of estimation calibration of some
parameters is equivalent to assuming that their values are known. This may introduce
information about parameters that are estimated. Put differently, by eliminating all
uncertainty with respect to calibrated parameters, one may also remove some of the
uncertainty about freely estimated parameters.

Clearly, not all free parameters are affected equally by calibration. In general, the
size of the impact will depend on the interactions between free and calibrated parameters
in the context of a given model. Except in very simple cases with a small number of
parameters, it is generally difficult to identify, by intuition or heuristic reasoning alone,
which estimated parameters will be affected, in what way and by how much, as a result
of calibrating one or more model parameters.

One possible way of quantifying the amount of information introduced by calibration
is to re-estimate the model in the absence of calibration, and compare the resulting
uncertainty with that of the restricted model. Similarly, the effect of changing the
calibration values can be assessed be re-estimating the model multiple times conditional
on different values of the fixed parameters. Whether or not these are reasonable ways to

proceed depends on how feasible it is to estimate the larger unrestricted model, or to

10Or, in Bayesian context, the location of the posterior distribution of the estimated parameters.



estimate multiple times the restricted model, and also how strongly one feels about the
reasons for calibration in the first place. Note that estimating the unrestricted model
is almost certain to result in point estimates of the previously fixed parameters that
are different from the calibration values. This might be undesirable if one has strong
views about what those values should be. Furthermore, the point estimates of at least
some freely estimated parameters are likely to be different in the unrestricted model.
This will complicate the comparison of the estimation uncertainty in the restricted and
unrestricted cases.?

The purpose of this paper is to present an alternative approach, which does not
require estimating models more than once, and only uses the estimation results under the
original calibration. The method is based on the asymptotic posterior distribution of the
parameters in the unrestricted case, which we use to construct two different measures.
The first is a measure of the amount of information gained with respect to each free
parameter as a result of knowing the value of one or more calibrated parameters. It
shows the reduction of asymptotic uncertainty as a percent of the uncertainty in the
unrestricted case. The second is a measure of the sensitivity of parameter estimates to
perturbations in the values of different calibrated parameters. In particular, it shows the
sign and the magnitude of the response of different estimated parameters to changes in
the values of the calibrated ones.

The intuition behind our approach is simple: the effect of calibration will depend on
how different parameters interact in a given model. From the point of view of estimation,
these interactions are captured by the parameters’ impact on the model log-likelihood
function. Closely-related parameters are difficult to distinguish on the basis of their effect
on the log-likelihood. Fixing one or more of them provides a lot of information about the
other related parameters, which are also very responsive to changes in the calibration
values. The opposite holds true for unrelated parameters whose effects on the likelihood
function are orthogonal to each other. For instance, consider a standard business cycle
model. In such models there are typically a few parameters that determine the steady
state of the economy. Calibrating some of them will naturally have a stronger impact

on the other steady state-related parameters, both in terms of location and spread of

2Tt is straightforward to think of examples where, because of the choice of calibration values of the
fixed parameters, the estimation uncertainty is much larger than it would be if those parameters were
estimated instead. For instance, if two parameters are nearly unidentifiable when a third one is in a
particular region of the parameter space, but very well identified elsewhere, estimation uncertainty will
be much smaller if the unrestricted model is in a well-identified part of the parameter space, compared
to a restricted model with calibrated value from the poorly identified region.



their posterior distribution. On the other hand, more weakly-related parameters, such
as variance coefficients of shocks, are likely to be unaffected.

The measures we propose formalize this intuition. Specifically, we use the asymptotic
Gaussianity of the posterior distribution of the model parameters, and study the effect
of calibration by comparing the mean and variance of the distribution in the unrestricted
case to the same moments in the restricted case, i.e. conditional on some parameters being
known and fixed. Simple closed-form expressions show that the impact of calibration
depends on the model-implied interdependence between free and calibrated parameters,
which is captured by the correlation structure of the asymptotic posterior distribution.

From a Bayesian perspective, calibration of some model parameters could be inter-
preted as having very strong prior beliefs about the values of those parameters. In this
sense, our paper is similar to Miiller (2012), who proposed measures of prior sensitivity
and prior informativeness in Bayesian models. As Miiller (2012) observes, “likelihood
information about different parameters can be far from independent, so that the marginal
posterior distributions crucially depend on the interaction of the likelihood with the
whole prior.” The same argument shows that calibrating some parameters can have a
significant impact on the posterior distributions of freely-estimated parameters. Unlike
the sensitivity and informativeness measures in this paper, the measures of Miiller (2012)
cannot be applied to parameters that are held fixed during estimation since computing
them requires sampling from the posterior distribution of the full parameter vector. As
noted earlier, combining estimation, both frequentist and Bayesian, with calibration of
some parameters is a rather common practice in the DSGE literature, which makes our
contribution complementary to that of Miiller (2012).3

In terms of methodology, our paper is most closely related to Andrews et al. (2017),
who introduced a measure of sensitivity of parameter estimates to the empirical moments
they are based on. The purpose of their analysis is to identify the most influential
moments, which, if misspecified, could result in a large bias in the estimation results.
Even though our measure of sensitivity is with respect to calibrated parameters and
not moments, its derivation is based on the same idea: we use the joint asymptotic

distribution of free and calibrated parameters, whereas Andrews et al. (2017) use the

30ur measures also have somewhat different interpretations from those of Miiller (2012). In particular,
we measure the amount of information due to calibration by comparing posterior uncertainty with and
without calibration, while Miiller (2012) compares the posterior to the prior uncertainty. Also, our
sensitivity measure shows not only the magnitude of the effect of perturbations in the calibration values,
but also the sign of the effect. Miiller (2012) sensitivity only indicates the magnitude.



joint asymptotic distribution of free parameters and empirical moments. In both cases
sensitivity is measured locally and can be used as an indicator of how robust the
estimation results are to small perturbations in either the calibration values or the
moment conditions. Our paper also shares Andrews et al. (2017) larger goal, namely, to
help increase the transparency of estimated structural models by providing easy-to-use
tools for assessing the importance of different estimation assumptions. In the context of
DSGE models, we believe it is important for researchers to discuss not only the reasons
for and methods of calibration, but also the likely impact of calibration on the estimation
results. The measures derived in this paper serve precisely that purpose and can be
easily incorporated into the standard estimation output usually reported in empirical
DSGE research.

The remainder of the paper is organized as follows. Section 2 defines and motivates
our measures of information gains and sensitivity. In Section 3 we illustrate the use of the
proposed measures using two different DSGE models. The models are a new Keynesian
model estimated in Smets and Wouters (2007), and a real business cycle model with
news shocks estimated in Schmitt-Grohé and Uribe (2012). In each case we show how
calibration used by the authors affects their estimation results. Section 4 offers some

concluding remarks.

2 Methodology

This section describes the methodology we use to measure the impact calibration of
some parameters has on the estimation of the remaining free parameters of a model. We
assume the following setup: a researcher has a model that fully characterizes the density
function pr (yr|@) of a data vector Yr = (Y1,...,Yr), as a function of a parameter
vector @ € @ C R™. The true value of 6 is unknown, and is estimated using maximum
likelihood or Bayesian methods subject to the restriction that some elements of 0 are
known, and are therefore held fixed in the estimation. Further, we assume that estimation
of the full set of parameters is either not feasible or too costly. Hence, the objective is to
characterize the consequences of calibration using only the estimates of the constrained

model.



2.1 Asymptotic normality of the posterior distribution

A well-known property of Bayesian estimation procedures is that, asymptotically, they
inherit the properties of the classical maximum likelihood estimator. This is because
the variation in the prior distribution is dominated by the variation in the likelihood
function, resulting in a posterior distribution whose shape moves arbitrarily close to the
shape of the likelihood function. Hence, asymptotically, the posterior distribution is
Gaussian centered at the maximum likelihood estimator with covariance matrix equal
to the inverse of the expected Fisher’s information matrix. This result is commonly
known as the Bernstein-Von Mises theorem, first established for independent data by
Walker (1969), and extended to stationary time series by Heyde and Johnstone (1979)
and Chen (1985), and to non-stationary time series by Phillips and Ploberger (1996) and
Kim (1998).

More formally, suppose that 0 is the maximum likelihood estimate of 8 and that Z is

the expected Fisher’s information matrix evaluated at é, ie.

6= arg;enéaxpT (yr|0) (2.1)
T L 22

Let m(0) be the prior density of 6. Then, the posterior density is defined as
o (0]Yr) = pr(Yr|6)7(6) (2.3)

Jo pr(Yr|6)m(0)d6

Under suitable regularity conditions and for large T', the posterior distribution of @ is
approximately equal to the normal density with mean 0 and covariance matrix 3 given

by the inverse of the Fisher’s information matrix
77 (0|Yr) =~ N (é, ZA)) , where ¥ =Z71/T (2.4)

Note that a natural implication of the asymptotic normality of the posterior distribution
is that the posterior mean and mode are asymptotically the same, and, as the sample size
grows, both converge to the maximum likelihood estimator. Therefore, instead of MLE
we could equivalently use the mean or the mode of the posterior distribution. Which one

should be used in practice will depend on the point estimates one wishes to focus on.



2.2 Uncertainty reduction due to calibration

We will use the asymptotic distribution to determine the impact of parameter calibration
on the posterior uncertainty of the free parameters. For this, we assume that the
calibrated values are not “wrong”, in the sense of being different from the MLE (or
posterior mean or mode) of the unrestricted model parameter values. Admittedly, this
is a strong assumption, but we make it here in order to determine the pure effect
calibration has on parameter uncertainty, i.e. in the absence of mis-calibration of the
fixed parameters. We will consider the case of erroneous calibration later.

Our approach consists of comparing two covariance matrices — that of the asymptotic
posterior distribution when all elements of @ are unknown, and the one of the asymptotic
posterior distribution of a subset of 6, conditional of the remaining parameters being

known. For concreteness, let 8 = [0}, 0}] and partition ¥ and T as follows:

> 201 2t91t92 : _ 1-91 29192 (25)
29291 202 1—0201 IOQ
From (2.4), the asymptotic marginal posterior distribution of 6 is
T (BI\YT) ~ N (él, 291) (26)

Now, suppose that 8, = 0, is known. The derivatives of the log-likelihood function with
respect to @y are zero, hence the Fisher’s information matrix is given by fgl. Therefore,

the asymptotic posterior distribution of @; conditional on 8y = 0, is
(0e (01|YT, ég) ~ N (él, 291‘92) , where f]gl|92 = fo_ll/T (2.7)

An alternative expression for the covariance matrix in (2.7) is obtained by noting that
T (01|YT, ég) is simply the conditional distribution of 8, given 6, = 0,. From (2.6)
we know that the joint distribution of these two vectors (given Y7) is asymptotically
Gaussian. Therefore, when 65 = 0, is known, the variance of the conditional distribution
of 6, is:

Yo.0, = S, — S0,0,25, Lo,0, (2.8)

Unless 29192 = 0, i.e. 61 and 0, are asymptotically independent, the marginal covariance



matrix f]gl is larger than the conditional covariance matrix f]gl|92. In other words,
knowing 65 reduces the uncertainty about the vector 8; as a whole. To quantify the
effect of fixing 65 on the uncertainty about individual elements of 8;, we define a measure
of the information gain (IG) with respect to a parameter 6; as the percent reduction in

the asymptotic standard deviation of that parameter, i.e.:

tdg, —stdy,
IGy,(62) = (W) x 100, (2.9)

where stdy, and stdg,e, are the square roots of the diagonal elements of f]gl and 291|92,
respectively. Since stdg, > stdg,jg, > 0, the value of IGy, (6;) lies in the range between 0
and 100, with IGy, (62) ~ 0 implying that knowledge of 82 provides little or no information
about 6;, while 1Gy, (62) ~ 100 indicates that knowing 6, removes most of the uncertainty
about 6;.% We can see from (2.8) that the size of the information gain depends on how
correlated 6; and @5 are. In particular, the information gain will be small if the elements
of 29192 are close to zero, i.e. 6; and the parameters in 8, are asymptotically close to
being orthogonal. On the other hand, if one or more parameters in @, are strongly

correlated with 6;, knowing 8, will provide a lot of information with respect to 6;.

2.3 Sensitivity to errors in calibration

So far we have maintained the assumption that the calibrated parameter values are
correct, i.e. they coincide with the values one would obtain if all model parameters
were estimated freely. This, of course, is an unrealistic assumption and it is generally
difficult to predict exactly how errors in the fixed parameters’ values affect the ones that
are estimated. Here we present a simple method for gauging the sign and the relative
magnitude of the bias in the estimated parameter as a result of errors in the calibration
values. As before, we use the Gaussian approximation of the posterior distribution of
0. Suppose that the value of 0, is fixed at ég + Aég. From (2.4), it follows that the

conditional mean of 0; is:
E[01]6; = 0, + A6o] = 6, + 50,6, 55, A0, (2.10)

Note that the first term on the right-hand side is the conditional mean of 8, given

4We can have information gain of 100% if a parameter 6; is only identifiable when one or more other
stdg, —stdg, g,

parameters are fixed, i.e. stdy,|e, < stdy, = co. In that case s

= 2 which we take to equal 1.



0, — 92. Therefore, small deviations of @, in the neighborhood of ég will shift the
conditional mean of 8; by approximately 891792A0A2, where the sensitivity matrix Sg,g,

is defined as
89192 - i91925\3521 - _:/Z‘\-G_ll:/z‘\-elegv (211)

where the second equality follows trivially from the properties of the inverse of partitioned
matrices (see Exercise 5.16 in Magnus and Abadir (2005)). For an arbitrary pair of
parameters 6; € 61 and 0; € 05, the corresponding element Sy, g, of the sensitivity matrix
shows the effect of perturbing the value of calibrated parameter §; on the asymptotic
posterior mean value of free parameter 6;.

The sensitivity measure in (2.11) is similar to the one proposed by Andrews et al.
(2017) to measure the sensitivity of parameter estimates to reduced-form statistics.
Instead of assessing the effect of calibration, Andrews et al. (2017) are interested in the
estimation bias one can expect as a result of violations in certain identifying assumptions.
These violations are interpreted as perturbations in the moment conditions on which
a given estimation procedure, such as the generalized method of moments, is based.
Similar to the approach here, Andrews et al. (2017) derive their local sensitivity measure
using the asymptotic Gaussian approximation of the joint distribution of structural

parameters and moment conditions.

2.4 A simple example

An illustration of the sensitivity and information gain measures for a two-parameter
case is shown in Figure 1, where the joint distribution of 8 = [0;, §,] is Gaussian with
both means equal to zero, variances equal to 1, and correlation coefficient equal to .9.
Sensitivity in this case is equal to .9, which implies that a change of 65 from 0 to 1,
i.e. a perturbation of one standard deviation, would shift the conditional mean of 6,
by .9 x 1 =.9. This represents an increase by .9 standard deviations. The conditional
distribution of  is shown in the figure in green. In addition to the shift in the mean,
we see also that the dispersion of the conditional distribution is smaller than that of the
unconditional distribution. Using the measure of information gain introduced earlier, we
find that IGg, (6,) = 100 x 1=0=20 — 81%,

We can derive further intuition on why in this example the value of 8; increases in

response to a positive perturbation in the value of 6, by examining the local properties of
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Figure 1: Two-parameter example. The figure shows how the conditional distribution
of 6; depends on the value of 0,.

the maximized likelihood function. Specifically, suppose that, instead of the mean of joint
posterior distribution, [0, 0] represents the unconstraint maximum of the log-likelihood
function of 8. The inverse of the covariance matrix is the Fisher’s information matrix,
which has ones in the diagonal and —.9 in the off-diagonal positions. Since the information
matrix is also the covariance matrix of the score vector, this implies that the correlation
between the two elements of the score corr(9¢(6)/06,,0((0)/00s) = —.9. Therefore, the
two parameters on average affect the log-likelihood function in the opposite directions
and of nearly the same magnitude. Since = [0, 0] is the mode of the log-likelihood, any
perturbation in 6, away from 0 will lower the value of the log-likelihood distribution. To

offset that change, #; has to move in the same direction as 5. It is easy to show that,

10



for small deviation AAfy in 05, the optimal change Af; in 6, is given by:

ABy - — (826(63)) (a%(é)) A6, (2.12)

06? 90,00,

This is the same expression as above except that in (2.10) the second derivatives of the
log-likelihood function are replaced with their expected values. Hence, our sensitivity
measure can be interpreted in terms of the required adjustment in the value of a free
parameter in order to compensate for the effect of a perturbation in the value of a
calibrated parameter.

This intuition can be extended to multi-parameter models: starting from the mode
of the log-likelihood function, perturbation of one or more parameters away from their
unrestricted optimal values can be partially offset by adjusting the remaining free
parameters away from their unrestricted optimal values.® Since there are potentially
many parameters that should be adjusted, the optimal size of the adjustment of each
one depends on the full correlation structure, not just the pairwise correlations between

free and calibrated parameters.

3 Applications

We illustrate our information gain and sensitivity measures in two applications: the
medium-scale New Keynesian model of Smets and Wouters (2007), and the real business
cycle model with news shocks of Schmitt-Grohé and Uribe (2012). In each case we take
as given the division of the model parameters into freely-estimated and calibrated ones

as well as the estimation results reported in those articles.

3.1 Smets and Wouters (2007)

The Smets and Wouters (2007) (hereafter SW) model is a medium-scale closed-economy
New Keynesian model featuring price and wage rigidities, habit formation, capital
accumulation, investment adjustment cost, variable capital utilization. The model is
estimated with Bayesian methods using US data on output growth, consumption growth,

investment growth, real wage growth, hours worked, inflation and the nominal interest

5The offset will be only partial unless the log-likelihood function is flat at the mode, i.e. the model is
locally unidentified.
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Table 1: Calibrated parameters, SW (2007) model

parameter value
0  depreciation rate 0.025
Ay steady state wage markup 1.50
gy exogenous spending-output ratio 0.18

ep curvature of goods market aggregator 10.00
gy curvature of labor market aggregator 10.00

rate. There are 41 parameters in the model 36 of which are estimated and the other 5
are calibrated. The calibrated parameters are: depreciation rate (), steady state wage
mark-up (), ), exogenous spending-output ratio (g,), and the curvature parameters of
goods and labor market aggregators (¢, and ). The reasons SW give for calibrating
these parameters are that d and g, are difficult to estimate with the observed series,
while A\, €, and ¢, are not identified. As has been shown previously (see Iskrev (2010)),
Ay is in fact identified, while two pairs of parameters — (§,,¢,) and (&, €,) are not
separately identifiable. That is, in the linearized model &, cannot be distinguished from
ep and &, cannot be distinguished from ¢,,. This implies that the covariance matrix of
the asymptotic posterior distribution of the full set of parameters is singular and our
measures of information gains and sensitivity are not defined. Therefore, here we will
study the effect of fixing 3 of the 5 parameters, namely J, A, and g,, on the distribution
of the 36 parameters which SW estimate, conditional on the curvature parameters of
goods and labor market aggregators (¢, and ¢,,) being both fixed at 10, as in the original
article. We consider the same values for the calibrated parameters as in SW, shown in
Table 1, while for the estimated parameters we take the posterior mean reported in the
article — see Table 2. We use these values to compute our measures of sensitivity to and

information gains from calibration.

The information gains due to calibration of d, A, and g, are reported in panel (a) of
Figure 2. The gains are zero or close to zero for 11 of the free parameters, and exceed 10%
for 8 parameters. The largest information gains are with respect to the wage stickiness
parameter &, — almost 60%, and with respect to the elasticity of labor supply o. — about

40%. There are also significant gains of about 20% with respect to the discount factor 3

6Since lack of identification implies infinite variance of the asymptotic marginal posterior distribution,
in the case of &, and £, we have information gains of 100% due to fixing €, and &,,, respectively.
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and the investment adjustment cost parameter .

To better understand how individual calibrated parameters contribute to the total
information gains, in panels (b), (¢), and (d) of the same figure we report the size of
the gains from fixing only one of the three parameters at a time, either 9, A, or g,,
respectively, while keeping the other two parameters free. This exercise shows that most
of the larger gains — those with respect to &,, 0., ¢, and 3, are due to information
obtained from knowing the value of A\, alone. Knowing the value of § provides significant
amount of information with respect to «, v, and p,. The least informative of the
three calibrated parameters is g,, which nonetheless contributes a substantial amount of
information with respect to ®, o, and .

Turning to the sensitivity of the parameter estimates to changes in the calibration val-
ues, Figure 3 plots the values of our sensitivity measure. To make the values comparable,
we scale sensitivity by the standard deviations of the parameters so that the displayed
values show the change, in terms of standard deviations of the respective parameter, to
a one standard deviation increase in the value of each calibrated parameter. The results
closely mirror those in Figure 2. The largest impact is on the estimate of &,, which
drops by 0.9 standard deviations as a result of one standard deviation increase in .
An increase in \,, also has a significant impact on the values of o., ¢, and 3, raising by
more than .6 standard deviations the values of the first two parameters and reducing by
almost .6 standard deviations the value of 5. As before, the strongest impact from a
change in ¢ is on «, ¥, and p,, all of which decrease by about 0.5 standard deviations as
a result of a one standard deviation increase in 0. In the case of g,, the impact is again
most pronounced with respect to @, 1, and o4, whose values decline by between .3 and
4 standard deviations due to a one standard deviation increase in g,.

Note that unlike the computation of the information gains with respect to a single
parameter in panels (b), (¢) and (d) of Figure 2, the sensitivity measures in Figure 3
are computed assuming that all calibrated parameters remain fixed, and only one of
them is perturbed at a time. In particular, when one of the calibrated parameters is
perturbed only the free parameters are allowed to respond, while the other two calibrated
parameters are kept fixed. This was not the case in Figure 2. The distinction may be
important, particularly when there is a strong interdependence among the calibrated
parameters. For instance, if A\, and g, are free to adjust when ¢ is perturbed, there
may be a much smaller response of the other free parameters since some of the effect

of changing ¢ could be offset by the changes in A\, and g,. On the other hand, if the

13



Table 2: Estimated parameters, SW (2007) model

parameter value

Pga productivity shock in government spending 0.52
! steady state hours 0.54
m  steady state inflation 0.79
&} normalized discount factor (@) 0.17
e MA wage markup 0.84
ttp,  MA price markup 0.70
«  capital share 0.19
v capacity utilization cost 0.55
¢ investment adjustment cost 5.74
o. elasticity of intertemporal substitution 1.38
A habit 0.71
®  fixed cost in production 1.60
Ly  wage indexation 0.59
&w  wage stickiness 0.70
tp  price indexation 0.24
§  price stickiness 0.65
o; elasticity of labor supply 1.84
rr  monetary policy response to inflation 2.05
ray monetary policy response to change in output gap  0.22
r,  monetary policy response to output gap 0.09
P interest rate smoothing 0.81
pa AR productivity shock 0.96
P AR risk premium shock 0.22
py AR government spending shock 0.98
pr AR investment specific shock 0.71
pr AR monetary policy shock 0.15
pp AR price markup shock 0.89
pw AR wage markup shock 0.97
v trend growth rate 0.43
o, standard deviation productivity shock 0.46
op  standard deviation risk premium shock 0.24
o, standard deviation government spending shock 0.53
or standard deviation investment specific shock 0.45
o, standard deviation monetary policy shock 0.25
standard deviation price markup shock 0.14

0, standard deviation wage markup shock 0.24

Note: The values are of the mean of the posterior distribution of the

Smets and Wouters (2007) model. (a) 8 =100(8~! — 1) where 3 is the

usual discount factor.
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calibrated parameters are close to independent, changing one of them would lead to a
small or no change in the other two, even if those were allowed to adjust. In Figure A1l of
the Appendix we show the sensitivities when only one of the three calibrated parameters
is fixed at a time. The results are very similar to those in Figure 3, implying that there
is only weak interdependence among \,,, 0 and g,,.

In the Appendix we also report pairwise conditional information gains and pairwise
conditional sensitivity values, where for each pair of parameters the conditioning is
on all remaining 37 parameters. The pairwise conditional gains (see Figure A2) show
how much information about a given parameter 6; is gained if another parameter 6, is
fixed, conditional on knowing all parameters except these two. There are some marked
differences, especially between the conditional and unconditional gains from fixing A,
(compare panel (c¢) in Figure 2 with panel (b) in Figure A2). Note that the gains
with respect to &, are very large both conditionally and unconditionally. However, the
conditional information gains with respect to ., 0;, pw, and o, are much larger than
the unconditional gains for those parameters. In contrast, the unconditional gains with
respect to [ and o, are significantly larger than the conditional ones.

These findings underscore the fact that in a multiparameter setting the effect of
calibration cannot be easily characterized using simple bivariate relationships between
individual calibrated and free parameters. Intuitively, one might expect that the effect
will be greater for parameters which in the model are functionally closely related to the
calibrated parameters. As the example in Section 2.4 reveals, in a bivariate setting strong
correlation between the scores 0¢(0)/06; and 0¢(0)/00;, which reflects similar functional
roles of 0; and 6;, would cause fixing one of the two parameters to have a large impact on
the conditional distribution of the other. With more than two parameters, the negative
of corr(00(0)/06;,00(0)/06;) represents the conditional correlation between §; and 6;,
given the remaining model parameters.” Differences between the conditional and the
marginal correlation structures can lead to very different conditional and unconditional
information gains, as in the case of the gains due to fixing A,. Consider Figure 4 where
we show two sets of parameters that are strongly related to A,. In particular, panel (a)
displays a conditional correlation network of all parameters connected with \,,, while
panel (b) shows a marginal correlation network of the parameters connected with \,.

In both cases we show only links between parameters whose correlation is greater or

"This follows from the fact that the covariance matrix of the scores is the precision matrix of the
asymptotic posterior distribution, and thus it encodes the conditional correlations between pairs of
parameters given the remaining parameters (see Cramér (1946)).
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equal to .4 in absolute value.® It can be seen that ., 0;, p,, and o, are strongly
conditionally correlated with both &, and A, as well as among each other. This explains
the large pairwise conditional information gains in panel (b) of Figure A2, where the
gains from fixing \,, are conditional on all other parameters, and in particular &, also
being fixed. At the same time, the marginal correlations between A, and those four
parameters are too week to show in the graph in panel (b). This is mainly due to the
fact that, because of their functional similarity in the model, A, and &, are very strongly
correlated both conditionally and unconditionally. As a result, fixing A\, while keeping
&, free provides very little information with respect to i, 07, pw, and o,,. On the other
hand, the marginal correlations of )\, with o, and § are strong, in spite of the very
weak conditional correlations. This implies that these two parameters benefit from fixing
A only indirectly — through other free parameters which are more closely linked to A,
and whose uncertainty is impacted directly as a result of fixing that parameter. In the
conditional case those parameters are already known and thus fixing A\, contributes little
(in the case of o.) or no (in the case of 3) additional information.

The differences between conditional and unconditional sensitivities can be explained
in a similar fashion. As can be seen by comparing Figures A3 and Al, the conditional
sensitivities tend to be significantly larger than the unconditional ones. This is because
in the conditional case only one parameter at a time is free to adjust so as to optimally
offset the effect of changing the value of a given calibrated parameter. In the case of
the unconditional sensitivities, all free parameters are allowed to move and thus the

magnitudes of the optimal adjustments tend to be smaller.

8We use truncation to make the graphs more readable. The full set of marginal and conditional
correlations can be found in Figure A8 in the Appendix.
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Figure 3: Sensitivity to changes in the calibrated parameters. Each panel shows the
effect of a one-standard-deviation increase in the respective parameter on the value of
each free parameter, in units of standard deviations.
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Table 3: Calibrated parameters, SGU (2012) model

parameter value
ap  Capital share 0.225
oy, Labor share 0.675
dp  Steady-state depreciation rate 0.025
£ Subjective discount factor 0.99
hss Steady-state hours 0.2
i Steady-state wage markup 1.15
n®  Steady-state gross growth rate of price of investment 0.9957
1Y Steady-state gross per capita GDP growth rate 1.0045
o Intertemporal elasticity of substitution 1
gy Steady-state share of government consumption in GDP 0.2

3.2 Schmitt-Grohé and Uribe (2012)

The Schmitt-Grohé and Uribe (2012) (hereafter SGU) model is a medium-scale closed-
economy real business cycle model augmented with real rigidities in consumption,
investment, capital utilization, and wage setting. The model has seven fundamental
shocks: to neutral productivity (stationary and non-stationary), to investment-specific
productivity (stationary and non-stationary), government spending, wage markups and
preferences. Each of the seven shocks is driven by three independent innovations, two
anticipated and one unanticipated. More precisely, the process governing shock z; is

given by
In(as/2) = poInar1 /o) + %L, + el + 03, (3.

where €i,t for j = 0,4,8 are independent standard normal random variables. The
anticipated innovations €5 , 4 and €5, ¢ are known to agents in periods t — 4 and t — 8,

respectively. Thus, they can be interpreted as news shocks.

The model has 45 parameters, 10 of which are calibrated. Those are: capital and labor
shares (o and ay,), steady-state depreciation rate (dg), subjective discount factor (/3),
steady-state hours (hs;), steady-state wage markup (u), steady-state growth rate of price
of investment (u®), steady-state gross per capita GDP growth rate (u¥), intertemporal
elasticity of substitution (o), and steady-state share of government consumption in GDP

(gy). The values of these parameters are listed in Table 3. The remaining 35 parameters
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are estimated using Bayesian methods and by maximum likelihood using US data on the
growth rates of output, consumption, investment, government expenditure, the relative
price of investment, total factor productivity, and hours worked. In our analysis we
use the maximum likelihood estimates reported in SGU and reproduced in Table 4.
Alternative results based on the median of the posterior distribution are presented in

the Appendix.

Checking the rank condition for identification shows that the steady-state hours
parameter hg, is not identified. Therefore, in our analysis we consider only the remaining
nine calibrated parameters. In addition, unlike SGU who use de-meaned data, we assume
that information from both the mean and the covariance structure of the seven observed
variables is used. This is important since most of the calibrated parameters are related
to the steady state of the model and information from the mean is important for their
identification.

Figure 5 presents the information gains from calibration. As in Section 3.1, we report
the gains from fixing all nine parameters (panel (a)), and the individual information
gains from fixing only one parameter at a time (panels (b) to (f)). We do not report
individual information gains from the calibration of oy, pu®, ©¥ and g, since they are
always less than 1%. The total information gains are less than 1% for 3 of the free
parameters, and exceed 10% in the case of 7 parameters. The largest gains are about
50% — with respect to the consumption habit parameter b, and between 35% and 42% for
the parameters of the investment adjustment cost (k), capacity utilization cost (d/d1),
and the unanticipated innovations to the stationary investment-specific productivity
shock (021). There are also relatively large information gains of around 15% with respect
to the Frisch elasticity of labor supply parameter (6), and the volatility parameters of
two of the innovations to the wage markup shock (o)) and ¢3,). Panels (b) to (f) of the
same figure help identify the main sources of the overall information gains. The bulk
of the information with respect to b comes from knowing the value of o, while g is the
most informative calibrated parameter with respect to k, d3/d1, JSI and 6. Fixing the
value of p contributes the most for reducing the uncertainty about 02 and JE, although
0o is the most informative parameter to calibrate with respect to aﬁ. The calibration of
[ improves the identification of k, O’SI, d2/61, and b, while that of «y, is only marginally
informative with respect to a few parameters, most notably b.

The results on sensitivity to calibration are presented in Figure 6. As before, we scale

the sensitivity measure so that the values represent the change, in terms of standard
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Table 4: Estimated parameters, SGU (2012) model

parameter value
0 Frisch elasticity of labor supply 5.39
v wealth elasticity of labor supply 0.00
K investment adjustment cost 25.07
d2/d1 capacity utilization cost 0.44
b habit in consumption 0.94
Pzg  smoothness of trend in government spending 0.74
Jon AR stationary neutral productivity 0.96
pue AR nonstationary investment-specific productivity 0.48
Pq AR governement spending 0.96
pu= AR nonstationary neutral productivity 0.77
Pu AR wage markup 0.98
pe AR preference 0.10
Pl AR stationary investment-specific productivity 0.21

=]

~ ~ 8 8 8 S} S} IS}

~

999999999999 99999999.09
OO RO 00Q AQ O 00 T ON 0N BN ON 0oV Bl OF 00R bl O 0k w1l

Q3
8y

std. dev. nonstationary investment-specific productivity 0  0.16
std. dev. nonstationary investment-specific productivity 4  0.20
std. dev. nonstationary investment-specific productivity 8  0.19

std. dev. nonstationary neutral productivity 0 0.45
std. dev. nonstationary neutral productivity 4 0.12
std. dev. nonstationary neutral productivity 8 0.12
std. dev. stationary investment-specific productivity 0 34.81
std. dev. stationary investment-specific productivity 4 11.99
std. dev. stationary investment-specific productivity 8 14.91
std. dev. stationary neutral productivity 0 0.62
std. dev. stationary neutral productivity 4 0.11
std. dev. stationary neutral productivity 8 0.11
std. dev. wage markup 0 1.51
std. dev. wage markup 4 3.93
std. dev. wage markup 8 3.20
std. dev. government spending 0 0.53
std. dev. governement spending 4 0.69
std. dev. governement spending 8 0.43
std. dev. preference 0 2.83
std. dev. preference 4 2.76
std. dev. preference 8 5.34
std. dev. measurement error in output 0.30

Note: Maximum likelihood estimates of Schmitt-Grohé and Uribe (2012)
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deviations of each free parameter, as a result of a one standard deviation increase in the
value of a given calibrated parameter. Again, we do not show sensitivity results with
respect to p¢, u¥ and g, as they are always smaller than 0.1 in absolute value. Similar to
the information gain results, the largest sensitivities are with respect to dy. In particular,
0, K, d5/61, and 021 all decrease by more than 0.5 standard deviations as a result of one
standard deviation increase in dy. In the case of d5/0; the sensitivity is more than 0.8
in absolute value. In addition, two parameters — b and 02 also show sensitivity greater

than 0.5 in absolute value — with respect to ¢ and pu, respectively.
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4 Conclusion

Estimation of structural macroeconomic models often assumes the complete knowledge
of some of their parameters. Whether or not this is a reasonable assumption to make is
perhaps an open question. However, it is important to bear in mind that, even when
it is well justified, calibration can have a substantial impact on the estimation results
stemming from parameter interdependence, which is common feature of macroeconomic
models. It is therefore appropriate that researchers who estimate such models mixing
calibration with estimation discuss not only the reasons for and methods of calibration,
but also the impact it may have on their results.

In this paper we propose two new measures that can be used to shed light on the
consequences of calibration. The first one shows how much information is introduced
with respect to each freely estimated parameter as a result of calibration of one or more
model parameters. The second measures the sensitivity of different parameter estimates
to perturbations in the values of the calibrated parameters. By design, our measures
capture the main ways in which calibration could influence estimation — by changing the
location and reducing the spread of the marginal posterior distributions of the estimated
parameters. Providing readers with information about these effects is important in
recognition of the fact that there may be disagreements among researchers both in terms
of whether certain parameters can reasonably be assumed to be known, and regarding
what their values should be.

The main advantage of our measures is that they are easy to interpret and simple to
compute without requiring additional estimation effort. This makes them straightforward
to incorporate into the standard estimation output reported in empirical DSGE studies.
At the same time, they also have the limitation of being local and hence valid only in
the neighborhood of the original calibration values and parameter estimates. Needless to
say, our measures are not appropriate to use as a substitute for a full-scale re-estimation

of a model under alternative calibration assumptions.
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A Appendix

A.1 Smets and Wouters (2007)

(a) sensitivity to & (b) sensitivity to Ag (c) sensitivity to g

-0.5 0.0 0.5 -0.5 0.0 0.5 -05 0.0 0.5
std std std

Figure A1l: Sensitivity to changes in the calibrated parameters. Each panel shows the
effect of a one-standard-deviation increase in the respective parameter on the value of
each free parameter, in units of standard deviations. Only one parameter is held fixed at
a time.
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Figure A2: Pairwise conditional information gains. The values show the reduction of
uncertainty about a parameter from knowing either the value of 9, A, or g,, and
conditinal on knowing all other parameters.
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Figure A3: Pairwise conditional sensitivities. The values shows the effect, in units of
standard deviations, of a one-standard-deviation increase in the value of 4, A, or g, on
the value of each free parameter, assuming all remaining parameters are known and

remain fixed.
29



Pua 04 01 02 02 02 02
[ m 0.1
7 m 01 01
3 03 04 [ 01 03 -oam 03 m 0103 020403 03 o1 01 01 02 m 02
s -0.2 01 03 0303 03 -01 02 02 03 0203
Iy 10 01 m —0,2
o 02 02 04 02 02 01 |04
¥ 01 030 03 0304 02 |04-03 01 02 01 040103 0104 02 -03
- 01 010y oslos ox o5 01 0101 o1 |08 01 02 -01 m
0. 01 0102 03 0204 Y04 01 o204 030804 o4 02 0102 01 03[ 02
A 02 E 10 m-o.a ﬁ-o.s 01 0204 02 03 04 0202 03 02 01
o 02 0403 02 02 o2 | 04 0302 01 m 05 03 |oa
Lo 0102 o1 01 0101 01 -o.4m
o m 01 01 01 02 02 -02 0302 0101 02 01 o.zm
" 02 m 03 -01 03 m-m
3 -o.zm 01 05 02 m 02 01 02 0301 03 0201 0301 03
o mm 0202 02 0.1 02 o5 o1 0102010201 01 02 02 0102 01
re 03 01 010201 02 -01-02 03 mw 01 0202 01 01 02 02
ray 01  -02 02 03 4).4@ 01 01 -01 03 [0y 03 0.1 03 01 01 04 02
ry 03 0102 03 03 01 03 o.3ﬂ 01 02 -02 01 01 01
P -01 0201 o201 [ ozl 01 -04 04
Pa 0101 02 01 02 m 02 05 02
o 02 41.4“ 03 m 01
Py 0101 01 04 02 01 03 02
oI 02 02 [ 03 o1 02 . 01 -02
o 01 01 02 03 |05 02 01
o 204 02 mm 01 03
P m 01 02 m 02 -03 02
4 o1 -1
o 02 03 03 03 03
o 01 -03 -03 02 m 0.1
o 0.1 02 01 03
o1 01 02 m 02 m 02 01
o, 03 01
o, H 04 -04 m 01 02 m 03
ow 04 m 03 02 01 -02 01 04
5 m 02 -03 0102 |04 03 0102 02 02 10 088
Ao m 02 02 |04 03 01 m 02 m 01 0402 o1 m 02 [y
9 0104 02 01 020303 04 01 02 01 01 01 01 05 o1 [N
Poa I T B Mo Mp a ¥ @ Oc XN @ tw &w by & O ToTay Ty p Pa Po Pg PI Pr Pp Pu vy Oa Oh Oy O Op Op Tu § Au Gy

Figure A4: Parameter correlations in the SW model. The lower triangle of the matrix
shows the conditional correlation coefficients between each pair of parameters. The

upper triangle shows the marginal correlation coefficients. The values are obtained from
the joint asymptotic posterior distribution of the parameters evaluated at the posterior
mean in SW. Correlation coefficients smaller than .1 in absolute value are not displayed.
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A.2 Schmitt-Grohé and Uribe (2012)

(a) sensitivity to ay, (b) sensitivity to do (c) sensitivity to B (d) sensitivity to p (e) sensitivity to o

a_ o Ay S
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Figure A5: Sensitivity to changes in the calibrated parameters. Each panel shows the
effect of a one-standard-deviation increase in the respective parameter on the value of
each free parameter, in units of standard deviations. Only one parameter is held fixed at
a time.
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Figure A8: Parameter correlations in the SGU model. The lower triangle of the

matrix shows the conditional correlation coefficients between each pair of parameters.
The upper triangle shows the marginal correlation coefficients. The values are obtained
from the joint asymptotic posterior distribution of the parameters evaluated at the MLE
in SW. Correlation coefficients smaller than .1 in absolute value are not displayed.
Off-diagonal values of -1 or 1 are due to rounding errors.
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