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Convexity in semi-metric spaces, decision theory 

and consumer theory 

 

Abstract 

Convexity is a concept usually developed in vector spaces. However since the seventies 

of the 20th century, convexity is also study in metric spaces in general. In this paper we 

develop a theory of convexity - including convex real functions - in semi-metric spaces 

and we suggest some possible applications in Economics and Decision Theory. 

 

 

 

João Ferreira do Amaral1 

November 2017 

 

Introduction 

Mathematics in several of its fields of research formalizes and quantifies certain 

functions of the mind. One of those functions is the differentiation function between 

two objects that is, between two elements of a given set.  

If it is possible to distinguish two elements x and y of a given set E and quantify for 

each pair of distinct elements the degree of the differentiation this means that we 

have defined a semi-metric which is a real function define on the set E x E. In the case 

where the function differentiates the elements of the set according to their position in 

space we have a distance between the elements of the set and a semi-metric that is a 

                                                           
1 UECE - Research Unity on Complexity and Economics and REM - Research in Economics and 

Mathematics,  ISEG - School of Economics and Management, University of Lisbon. UECE is supported 

by Fundação para a Ciência e a Tecnologia, Lisbon. 
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metric. As it’s well known many other operations of differentiation and not only the 

differentiation in space have characteristics of a distance and can be quantified using a 

metric.  

The objective of the present paper is the study the property of convexity on sets where 

a semi-metric is defined that is on a semi-metric space. 

Convexity of sets or functions was traditionally studied in vector spaces, therefore as 

an algebraic property. However since the seventies of the last century there is growing 

interest in the topological features of convexity, generalizing the concept of convexity 

to metric spaces even if they aren’t vector spaces. 

In that vein Takahashi  (Takahashi, 1970) defined a convex metric space as a metric 

space (E,d) where a convex structure is defined that is, a function  W from  [0, 1] to E 

defined for all the pairs  x, y of E and every  real number λ (0 ≤λ ≤ 1)) verifying 

 d(u, W(x, y, λ)) ≤ λd(u, x)+(l-λ)d(u, y)  for all the  u of E. 

This definition has been useful for obtaining some generalizations of fixed point 

theorems (see Agarwal et al 2009 and Abdelhakim, 2016).  

We define in this paper convexity for more general spaces, the semi-metric spaces.  

Our analysis is more general that the one of Takahashi, not only because the space 

itself is a semi-metric one and not a metric space but also because the condition 

equivalent to the  convex structure demands quasi-convexity and not convexity.  

On the other hand we define the concept of convex function for semi-metric spaces. 

The benefit of considering semi-metric spaces instead of metric ones is easily seen 

when we feel the necessity of quantify the differentiation between two elements of a 

given set but we don’t see any reason to suppose that the properties of the 

differentiation function are the properties of a metric. 

As is well known the specific property of a metric is the so-called triangular inequality, 

that is, being d(x,y) the value of the differentiation function between x and y of a given 

set E we have the following property. 
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 (Triangular inequality). For every x, y, and z of the set E we have 

d(x,y) ≤ d(x,z) + d(z,y)    

This type of differentiation functions was introduced in mathematics for solving 

problems of Physics associated with space locations and the possibility of access to one 

point from another. As distance between two points was considered to be the shortest 

trajectory that gives access from one of these points to the other, the differentiation 

function necessarily verifies the triangular inequality 

But this is not the case in other type o problems, v.g. in what concerns economic and 

general decision problems that we exemplify in the conclusions of the present paper 

where the appropriate differentiation function to use is not a metric. 

In section 1 we define semi-metric spaces and the property of convexity both for 

spaces and for functions in these spaces. In section 2 we apply the concept of 

convexity to set functions, generalising definitions and results first obtained in 1971 

(Albuquerque et al, 1969)2 and also in 1982 (Amaral, 1982). We end the paper with a 

section of conclusions where a possible application to Economics is mentioned. 

 

 

 

1. Semi-metric spaces and convexity 

 

 

1.1 Semi-metric 

The concepts of semi-metric and semi-metric spaces were first developed both by 

Fréchet and by Karl Menger in the first decades of the XX th century (Wilson 1931, 

Sims 1962). 

                                                           
2 The official date of the review was 1969 but the real date of publication was 1971. 
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Let E be a set and f a real function defined in the set  E2 ≡ E x E that verifies the 

following properties: 

1- To each pair (x y) de E2 corresponds one and only one real number f(x,y) ≥ 0 

2-  f(x,y) = f(y,x) for every x and y of E 

3- f(x,y) = 0 if and only if x = y 

Every function f: E2 → R that verifies these properties is a semi-metric and the pair (E, f) 

is a semi-metric space, (sms). Note that contrary to the usual definition of space we 

don’t impose ex-ante any topological conditions.  

 

Remarks 

1. Some authors, instead of semi-metric space when no topological conditions are 

imposed ex-ante call E a semi-metric set.  We don’t see the need for such a 

terminological distinction. Later on we go back to topology in a sms.  

2. Obviously a semi-metric that verifies the triangular inequality is a metric. To define 

convexity we don’t need a metric. A semi-metric will do. 

3. The term semi-metric is not universally used (see for example Deza et al, 2009, p.3) 

where the term used is symmetric. 

 

Definition (segment). Let (E,f) be a  sms. Let x e y be elements of E. Segment of 

extremities x and y is the set S(x,y) of all the z of E such that 

z ∈ S(x,y) if and only if f(x,y) = f(x,z) + f(z,y) 

  

Remark 

Obviously, given property 2 above we have, S(x,y) = S(y,x) 
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Definition (length). The length of S(x,y) is the number f(x,y) 

Defintion (non-hollow). A segment S(x,y) is non-hollow if and only if S(x,y) –{x,y}≠ Ø 

 

1.2 Basic correspondence of a sms 

For each sms we can define a correspondence – that we call the basic correspondence 

– which can be useful for characterizing the sms. The correspondence is defined as 

follows: 

ϕ:  E2 → 2E    such that   ϕ (x,y) is the set of all the z of E such that f(x,y) > f(x,z) + f(z,y). 

It is easy to see that: 

-  for any sms (E,f) end every x,y of E , ϕ (x,x) = Ø , x, y ∉ ϕ (x,y)   and ϕ (x,y) = ϕ (y,x) 

- if f is a metric, for all the (x,y), ϕ (x,y) = Ø 

- For all the segments S(x,y),     S(x,y) ∩ ϕ (x,y) = Ø 

- If  z ∈ ϕ (x,y), then  x  ∉ ϕ (z,y) and  y ∉ ϕ (x,z), 

- If we define the real function H(x,y,z) such that H (x,y.z) = 0 if  z ∉ ϕ (x,y) and   

   H (x,y,z) = 1 if  z ∈ ϕ (x,y) we have H (x,y,z) + H (x,z,y) + H (z,y,x) ≤ 1. 

 

Definition (sms bounded (strictly bounded) from above). A sms (E,f) is bounded (strictly 

bounded) from above if sup {f(x,y)}  is finite  (there is a pair (x*,y*) of E such that 

f(x*,y*) = max {f(x,y)}) for all the pairs (x,y) of E2. 

We have the following result for basic correspondences. 

Theorem 1. If (E,f) is strictly bounded from above, that is f(x*,y*) = max {f(x,y)}, if 

2f(x*,z) < f(x*,y*) and 2f(y*,z) < f(x*,y*) for all the z ≠ x*,y* then the maximum (in the 

sense of the relation of inclusion between sets) of the sets ϕ (x,y) is  
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ϕ (x*,y*) = E - {x*, y*}. 

Proof: 

Immediate 

Example 

Consider E ={x, y  z} with d(x,z) = 1, d(y,z) =2, d(x,y) = 5. Obviously the maximum set is 

ϕ (x,y) ={z} = E- {x, y}. On the other hand, ϕ (x,z) = ϕ (z,y) = Ø. 

Definition (sms bounded (strictly bounded) from below). A sms (E,f) is bounded (strictly  

bounded) from below if inf {f(x, y)}) > 0  (there is a pair (x**,y**) of E2, x**≠ y** such 

that f(x**,y**) = min {f(x, y)}) for all the x≠y of E. 

Theorem 2 If (E,f) is a sms strictly bounded from below, then there is at least one  

ϕ (x,y), x≠y such that ϕ (x,y) = Ø  

Proof: 

Immediate 

We can find also some results about the sub-set of E where  f(x,y) is a metric. The 

following is one of those results. 

Theorem 3. Let (E, f) be a sms. If it exists a non-empty set E*⊂ E such that   there is a 

positive number a such that  2a ≥ f(x,y) ≥ a for every pair (x,y) of E* 2,  x≠y, then f is a 

metric on E*. 

Proof 

Suppose that for a given pair (x,y) of E* there is a  z of E* z ≠ y , x such that  

f(x, y) > f(x, z) + f(z, y). 

By  the  assumption of the theorem f(x,z) ≥ a and f(z,y) ≥ a so that  

f(x, y) > a + a which is impossible since by assumption 2a ≥ f(x,y). 

Corollary. In such a set E* every non-hollow segment has length 2a. 
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Proof. 

Consider a non-hollow segment S(x,y) and z any element of the segment, z≠ x,y. 

We have f(x,y) = f(x,z) + f(z,y) ≥ 2a so that  f(x,y) = 2a. 

Corollary. Suppose that E* is such that for all the pairs of E*2,  

 inf{f(x,y)} > 0, sup{f(x,y)} ≤ 2inf{f(x,y)}. Then f is a metric on E*. 

Proof. 

Immediate 

Corollary . In such a set every non-hollow segment has the length 2inf{f(x,y)}.  

Proof. 

Immediate.  

Remark (an indicator for the approximation to being a metric): 

If for a given finite set E with n elements, we consider the set T of all the pairs (x,y)  

x ≠ y of E  such that ϕ (x,y) = Ø the ratio R =  #T/(n2 –n) , where # stands for “cardinal” 

gives an indication of how close the semi-metric f is of a metric. If R = 1, f is a metric. 

The lower the value of R (it cannot reach the value 0 since a finite set f is strictly 

bounded from below, see theorem 2) the farther is f of being a metric. 

If E is infinite but with measure m(E) finite we can take R = m(T)/m(E). If R =1 , f is a 

metric or m(E-T) = 0.  If T is not measurable we can take an approximation, that is we 

can take two measurable sets S, U such that S ⊂ T ⊂ U and put m(T) = [m(S)+m(U)]/2. 

Example 

Some cases of relation of the value of R to different semi-metrics f, for the same set E, 

are easily found. 

For instance if p > 1 the semi- metric fp has a value of R not larger that the R of the 

semi-metric f (for the same set E). 
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To see this consider any z ,element of ϕf
 (x,y). 

We have f(x,y) > f(x,z)+f(z,y) so that f(x,y)p > f(x,z)p + f(z,y)p  and ϕf
p (x,y), obtained with 

the semi-metric fp,  is such that ϕf
 (x,y) ⊂ ϕf

p (x,y) where ϕf
 (x,y) is the set obtained 

with the semi-metric f. Therefore it’s not possible to have  ϕf
p (x,y) = Ø  

when ϕf
 (x,y)≠ Ø.  

Example of a semi-metric defined on the circle 

Consider a circle C ⊂  R2 and its circumference S. 

Consider the sms space (C,f) with f defined as follows: 

If  x ∈ C- S            f(x,y) for all the y of C  is the familiar Euclidean distance  

If   x , y ∈ S         f(x,y) is the length of the minor arc  with extremities x and y 

It is easy to verify that f is not a distance and that: 

If  x , y ∈ S  ϕ (x,y)  ≠ Ø , ϕ (x,y) ⊂  C- S  

If x or y belong to C-S,  ϕ (x,y)  = Ø.  

In this case R = 1 since (C-S)-D ⊂ T ⊂ C  (D≡{(x,x)}) and  m [(C-S)-D] = m(C) where m is 

the standard measure. 

 

1.3 Almost full and full spaces  

One interesting property that a sms may have is that all its segments are non-hollow, 

that is for every x and y, S(x,y) –{x,y}≠ Ø. 

A space that verifies this condition is sometimes called a convex space. In order to 

clear distinguish the concept from the concept of convexity in Takahashi instead of 

convex sms we call such a space an almost-full sms (afsms).  

Example 
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The R line endowed with the semi-metric f(x,y) = (x-y)2 is not almost full. It corresponds 

even to a more extreme situation: there is no segment S(x,y) such that S(x,y) –{x,y}≠ Ø. 

However this is not the case for the semi-metric f(x,y) = (x1 – y1)2 + (x2 - y2)2 for R2. 

It is easy to prove the following theorem. 

Theorem 4. A afsms does not verify the conditions of theorem 3 and its corollaries. 

Proof 

In spaces that verify the conditions of the theorem all the non-hollow segments have 

the same length. However this is not possible for a afsms. 

This result is in fact a consequence of the following theorem. 

Theorem 5. If (E,f) is s  afsms , then inf {f(x,y)} = 0 for (x,y) of E2 

Proof. 

Suppose that inf {f(x,y)} = h > 0  and choose a segment S(x,y) with length a. Since S(x,y) 

is non-hollow there is at least a z1 belonging to the segment. If f(x, z1) < h the proof is 

complete. If not we have  f(z1,y) ≤ a-h.  

There is then a non-hollow segment S(z1,y) with length ≤ a-h. Choose z2 belonging to 

S(z1,y). 

If f(z1,z2) < h the proof stops. If not we have f(z2,y) ≤ (a-h) - h  = a-2h. Repeating the 

process N times where N = intg [(a-h)/h] +13 we have f(zN,y) < h or f(zN,y) ≤ 0, both a 

contradiction and the theorem is proved. 

 

The fact that a given space is a afsms may depend not only on the characteristics of 

the set E but also on the properties of the semi-metric f. For instance, a finite set 

cannot have all the segments almost full. On the other hand a metric such that  

f(x,y) = 1 for every x and y, such that x≠y, has no almost full segment in every set 

where it is defined.   

                                                           
3 The function intg(X) for any real number X means the highest integer  ≤  X 
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Note also that an infinite countable set may be almost full. Such is the case of the 

rational numbers set Q with the metric f(p,q) = |p - q|. For all the infinite countable 

sets since they are equivalent to Q  is possible to find  a metric that makes the space 

(E, f) a afsms. 

In what follows we seldom require that a sms is almost full. Later on we will need the 

following stronger concept of full sms. 

 

Definition (full semi-metric space). A sms (E,f) is a full sms if and only if, for every x and 

y of E, and for every real number α ∈ (0, f(x,y)] there is a z ∈ S(x,y) such that  f(x,z) = α 

As there are possibly several z,w. … belonging to S(x,y) such that f(x,z) = f(x, w) =... = α 

we define the concept of full sub-segment of S(x,y). 

Definition (sub-segment). A sub-segment S*(x,y) of a segment S(x,y) in a full sms is a 

set S*(x,y) of elements z such that f(x,y) = f(x,z) + f(z,y), S*(x,y) ⊂ S(x, y) and for every 

real number α ∈ (0, f(x,y)] there is one and only one z ∈ S*(x,y) such that  f(x,z) = α 

A different but related concept to full sms is the concept of generalized linear space 

(gls). 

Definition (generalised linear space). A sms (E,f) is a gls if and only if E* = E where E* is 

the set of all the elements z of E such that there are x, y ≠ z such that z ∈ S(x, y). 

The following condition the property-H that will be used later on guarantees that the 

space is a gls. 

Property H.  (E,f) verifies property H if and only if for every x and y of the space and for 

every real number a > f(x,y) there exists  z of E and a segment S(x,z) such that y ∈ S(x, z) 

and f(x,z) = a 

Remark 

Of course a full gls that verifies property H is not bounded from above and not 

bounded from bellow. 
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When a afsms is a metric space we may prove the following theorem 

Theorem 6. Let  S(x,y) be a segment and z an element of S(x,y). 

Then  S(x,z) ∪ S(z,y) ⊂ S(x,y). 

Proof. 

Let u be an element of S(x,z) (a similar proof for S(z,y)) 

Then 

d(x,z) = d(x,u) + d(u,z) 

We have also d(x,y) = d(x,z) + d(z,y) 

So that  

d(x,y) = d(x,u) + d(u,z) +d(z,y) 

But by the triangular inequality 

d(u,y) ≤ d(u,z) + d(z,y)  So that 

d(x,y) ≥ d(x,u) + d(u,y) 

Which is possible only when u belongs to S(x,y), as we wanted to prove. 

 

Remarks 

1. It could be expected that in a metric space if u and v are elements of a segment 

S(x.y) we always have S(u,v) ⊂ S(x,y). 

However that is not the case as the following counter-example shows. 

Let  x, y, u and v elements of S(x,y) and z an element of S(u,v), with the following values 

for the respective distances 

d(x,y) = 10;  d(x,u) = 2; d(u,y) = 8 
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d(u,z) = 3;    d(v,z) = 4 ; d(u,v) = 7 

d(x,v) = 7;    d(v,y) = 3 ; d(x,z) = 4 

d(y,z) = 7 

Obviously z belongs to S(u,v) but not to S(x,y).  

2. Although Theorem 6 is true for metric spaces is not necessarily so for other sms. 

 

We can now define now the concept of a convex subset of a sms.  

Definition (convex set). Let K ⊂ E. K is a convex set of the sms (E,f) if and only if for 

every x and y of K we have S(x,y) ⊂ K. 

Remarks 

1. By the precedent counter-example we see that not all the segments are convex sets. 

2. Convention. By convention, the empty set Ø and singletons are considered convex. 

3. The whole set E is convex. 

 

Theorem 7. The intersection of convex sets is a convex set 

Proof: immediate 

Remark.  

Theorem 7 allows us to define the convex hull of any set K ⊂ E as being the set C(K) 

that is the intersection of all the convex sets that contain K. 

Theorem 8. Consider an afsms (E,f). If E* ⊂ E is convex then inf {f(x,y)} = 0  for  

(x,y) ∈  E*2, x≠y. 

Proof. 

Suppose the contrary, that is  inf{f(x,y)} = ε > 0 for (x,y) ∈  E*2, x≠y. 
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For ε > λ > 0  there exits (x*, y*) of E*2 such that f(x*, y*) ≤ ε + λ. Since E is an afsms 

there is z such that f(x*,z) + f(z, y*) ≤ ε +λ. That means that  

f(x*,z) or f(z, y*) ≤  (ε +λ)/2 <  ε  so that z ∉ E* and E* is not convex. 

Corollary. A non-empty finite set of an afsms is never convex unless it is a singleton. 

Proof 

Immediate 

 

Remark. This corollary shows that in order to study convexity on a finite set we must 

extend it to its convex hull. 

 

Definition (open ball and closed ball). Let x be an element of E and r a non-negative 

real number. Open (closed) ball with centre at x and radius r is the set N(x,r) (N*(x,r))   

of all the z of E such that f(x,z) < r  (f(x,y) ≤ r). 

 

Remark. Of course, if r=0, N(x,0) = Ø  and  N*(x,0)= {x} 

An important fact concerning open balls is established by the following theorem 

Theorem 9 . For each pair (x,y) of E2
 where (E,f) is a semi-metric space we have 

ϕ (x,y) ⊂ [N(x, f(x,y)) ∩ N(y, f(x,y))] – S(x,y) 

Proof. 

The proof is straightforward. 

We have, for z of ϕ (x,y) 

f(x,y) > f(x,z) + f(z,y) so that f(x,z) , f(z,y)  <  f(x,y) so that z belongs to N(x, f(x,y))  

and N(y, f(x,y)). 
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Since z ∉ S(x,y) we have  

ϕ (x,y) ⊂ [N(x, f(x,y))∩ N(y, f(x,y))] – S(x,y) as we had to prove. 

Remark 

As x and y ∉ N(x, f(x,y))∩ N(y, f(x,y))],  S(x.y) -  {x,y} ⊂ [N(x, f(x,y))∩ N(y, f(x,y))]  and  

ϕ (x,y) ∩  S(x,y) = Ø  we can put this result in the form 

ϕ (x,y) ꓴ S(x,y) ⊂ N(x, f(x,y))∩ N(y, f(x,y))] ꓴ {x,y} 

 

 Definition (quasi-convex semi-metric). A semi-metric f is quasi-convex if and only if for 

every x, y and z of E we have 

f(w,z) ≤ max {f(x,z), f(y,z)} for every w ∈ S(x,y) 

It is important to ensure that the concept of quasi-convex semi-metric is compatible 

with other characteristics of the sms. We have the following condition that is a 

necessary condition for the existence of a quasi-convex semi-metric: 

Theorem 10. It is a necessary condition for the a given semi-metric to be quasi-convex 

that there are no distinct x,y,z, w of E such that w∈ S(x,y)  and x, y∈ ϕ (z,w). 

Proof 

Suppose that there are distinct x,y,z,w such that w∈ S(x,y)  and x, y ∈  ϕ (z,w). 

We have f(w,z) > f(w,x) + f(x,z) and  f(w,z) > f(w,y) + f(y,z) so that f(w,z) > max {f(x,z), 

f(y,z)} which contradicts the definition of quasi-convexity. 

 

Theorem 11. A closed ball N*(x,r) of a afsms (E,f) is a convex set if and only if the semi-

metrics f is quasi-convex   

Proof: 
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The condition is sufficient 

Let f be quasi convex and let r be a positive real number, x any element of E and y and 

z any elements of the ball N*(x,r). Consider S(y,z) and any one w of S(y,z). Then we 

have f(w,x) ≤ max {f(x,y), f(x,z)} ≤ r so that w belongs to  N*(x, r). 

The condition is necessary 

We assume that for every z of E and for every non-negative r the ball N*(z, r) is a 

convex set so that for any x, y and z of E, the ball N(z, r*), where r* = max {f(x,z), f(y,z)} 

is convex. Therefore S(x,y) ⊂ N(z, r*) so that for every w of S(x,y),  

f(w,z) ≤ r* = max {f(x,z), f(y,z)} and the semi-metric is quasi-convex. 

 

With a similar reasoning we can prove 

Theorem 12. It is a sufficient condition for every open ball N(x,r) of the sms (E,f) to be 

convex that f is a quasi-convex semi-metric. 

 

Remark. It is easy to see that for an open ball the condition is not necessary. 

 

Using theorems 8, 11 and 12 we obtain the following result. 

Theorem 13. If (E,f) is an afsms and f is quasi-metric then every N*(x,r) and every N(x,r) 

that aren’t singletons,  are such that inf {f(w,y)} =0 for  w ≠ y  (w,y)∈ N*(x,r) or N(x,r) .  

 

1.4 Analysis on sms-K spaces 

Although topology is not the main focus of this paper it is useful to develop some 

topological considerations in order to get a better understanding of the usefulness of 

the concept of sms for the study of convexity. 
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Similarly to the case of metric spaces we can associate for every point of afsms a family 

of neighbourhoods that is the family of all the open balls with centre at that point. 

However contrary to metric spaces where an open ball is an open set in a sms this is 

not necessarily the case . 

With this attribution of neighbourhoods we can define the concept of limit of a 

sequence in a sms. 

 

Definition (limit of a sequence). Consider a sequence of elements xn of a semi-metric 

space (E,f). The sequence converges to x, if for any δ > 0 there is a n* such that for all 

the n > n* we have f(xn ,x) < δ. 

 

A sequence with a limit is called a convergent sequence. However, in order to have an 

operative concept of limit it is necessary to guarantee its uniqueness. Such guarantee 

exists for every metric space but nor for every semi-metric space. A specific case of 

semi-metric space such that the uniqueness of limit is verified is the following K-sms. 

 

Definition (K-sms). A semi-metric space is a K-semi-metric space if and only it verifies 

the following condition:    

f(x,y) ≤ K[f(x,z) + f(z,y)]  

for a given K ≥ 1, where K = inf {M: f(x,y) ≤ M[f(x,z) + f(z,y)]} 

 and for every x, y and z of the space. 

Remarks 

1. K-spaces are also called quasi-metric or near-metric spaces (Deza et al 2009, p. 6). It 

is also said that they corresponds to the K-relaxation of the triangular inequality. Of 

course the case  K =1 corresponds to semi-metric spaces that are metric spaces. 
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2. A simple example of a 2-sms is the space (E,f) where f(x,y) ≡ d2(x,y) and d is a 

distance. 

Some simple and already known results for K-sms follow. 

 

Theorem 14. Consider two points x and y, with x ≠ y in a K-sms. There exist two 

neighbourhoods, that is two open balls and Nx e Ny with centres respectively at x and y 

such that Nx  and Ny  are disjoint. 

Proof: 

  f(x,y) with  x ≠ y, is positive and consider the real number r = f(x,y)/2K. 

Let z be an element of N(x,r). 

We have 

2Kr = f(x,y) ≤ K[f(x,z) + f(z,y)] = Kf(x,z)+ Kf(z,y) < Kr + Kf(z,y) 

So that 

r < f(z,y)  .  

That is if z belongs to the ball with centre at x and radius r it does not belong to the ball 

with centre at y and radius r. Therefore we have two disjoint balls as we had to prove. 

With this theorem we can prove the uniqueness of the limit. 

 

Theorem 15. In a K-sms for every convergent sequence its limit is unique. 

Proof 

Let {xn} be a sequence with two limits, x and y, x ≠ y. 

Consider two disjoint Nx and Ny that by the previous theorem exist. 

Then by definition of limit for a certain n* and for all the n > n*  we have xn ∈ Nx. And 

for a certain n**, and for all the  n > n** we have xn ∈ Ny. 
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That is for all the n > max (n*, n**) we have all the terms of the sequence belonging to 

both balls, which is not possible. Therefore the limit is unique. 

When a sms is such that for each convergent sequence the limit is unique, we can 

define continuity for the respective semi-metric. 

Definition (accumulation point). Consider a sms (E,f) such that any convergent 

sequence has a unique limit. Given a set A ⊂  E , z is an accumulation point of A if and 

only if z is the limit of a sequence {zn} of elements of A. 

Definition (closed set). Let A’ be the set of all the accumulation points of A. Then A is a 

closed set if and only if A´⊂ A. 

Remark 

Obviously by the definition a set with no accumulation points is closed. 

Definition (continuity). The semi-metric f of the space (E,f) is continuous if for each 

sequence {yn} such that {yn}→y we have for all the x of E, f(x,y) = lim n→∞ f(x,yn). 

Remarks 

The semi-metric of the example of 1.2 p. 7 is not continuous. 

A simple example of a continuous semi-metric is the semi-metric f ≡ dp  where d is a 

metric (therefore is continuous) and p is any non-negative number. 

Theorem 16. If the semi-metric f of the space (E,f) such that any convergent sequence 

has a unique limit is continuous then for each pair (x,y) of E2 the set ϕ (x,y) ꓴ S(x,y) is 

closed. 

Proof. 

Suppose that there is a sequence {zn} such that {zn}→ z with  zn  ∈ ϕ (x,y) ꓴ S(x,y) 

converging to z (if not ϕ (x,y) ꓴ S(x,y) has no accumulation points and therefore is 

closed).  

We have for each n  f(x, y) ≥ f(x, zn) + f(zn, y), so that, f being continuous 
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f(x, y) ≥ lim n→∞  f(x, zn) + lim n→∞  f(zn, y) = f(x, z) + f(z, y), which means that  

z  ∈ ϕ (x,y) ꓴ S(x,y) and the set is closed.  

 

 

The condition K also provides the necessary framework for the definition of a limit of a 

function for sms. 

  

              Definition (limit of a function). Let F : A → B be a function that to each element of   

             A ⊂ E associates an element of B ⊂ G where (E, f) and (G, f*) are two sms.  We say that 

b is the limit  of F at the  point a of A if and only if for each δ > 0 there exists an ε >0 

such that for every x of A such that  0 < f(x,a) < ε  we have f*(F(x), b) <  δ. 

 The limit is represented by limx=a F(x) = b 

 

Based on this definition we can prove the uniqueness of limits of functions defined on 

sms. 

 

Theorem 17. (uniqueness of the limit of a function).Under the conditions of the 

previous definition if the sms (G, f*) is a K-sms then the limit is unique. 

Proof: 

Suppose we had two distinct limits b and b*. Then f*(b, b*) > 0 and for very real 

number δ/2K  , ε and ε* would exist such that  for x and x* verifying  0 < f (x,a) < ε  and  

0 < f (x*,a) < ε*, we would have respectively   

f*(F(x), b) <  δ/2K and f*(F(x*), b*) <  δ/2K.  

For the smallest of the ε, we can choose x = x* verifying both inequalities  
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f*(F(x), b) <  δ/2K and f*(F(x), b*) <  δ/2K 

But as  (G, f* ) is a K-sms we would have 

f*(b, b*) ≤ K [f*(F(x), b)  + f*(F(x), b*)] < δ, for every positive  δ  which implies   

f*(b, b*) = 0 and we have a contradiction. 

 

As for metric spaces we can define the concept of a complete sms. For that purpose 

we have to define the concept of a Cauchy sequence in a similar way as for metric 

spaces (the study of Cauchy sequences in a special kind of sms different from K-sms 

was developed by Burke (1972)).  

 

Definition (Cauchy sequence).A sequence {xn}  of elements of the sms (E,f) is a Cauchy 

sequence if and only if for every δ > 0 there is a natural number  p such that for all  n, 

n* not smaller then  p we have f(xn, xn*) < δ. 

 

As it is easy to see in the case of a K-sms every convergent sequence is a Cauchy 

sequence because being x the limit of the sequence for every δ > 0,  we have a p such 

that for  n ≥ p we have f(xn ,x) <δ/2K . Being the space a K-sms, for n and n* not smaller 

then p we have 

f(xn, xn*) ≤ K [f(xn, x)+ f(x, xn*)]< K [δ/2K + δ/2K ] = δ. 

However not all the Cauchy sequences are convergent.  

 

Definition (complete K-sms). A K-sms is complete if and only if every Cauchy sequence 

is convergent. 

 

For obtaining a complete K-sms the following theorem may be useful. 
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Theorem 18. Let (E, f ) be a K-sms such that f(x,y) ≡ h(d(x,y)) where h is a real function, 

strictly increasing and such that h(0) = 0 and d is a metric. It is necessary and sufficient 

for (E, f) to be complete that the metric space (E, d) is complete. 

Proof: 

Necessity. 

Let (E,f ) be a complete K-sms and {xn} any  Cauchy sequence of (E,d). Then for every δ 

> 0, for the number h-1 (δ), there exists p such that for  n, n*≥ p we have 

d(xn, xn*) < h-1 (δ) so that  

f(xn, xn*) = h(d(xn, xn*)) < δ  and the sequence is a Cauchy sequence in the space (E,f). 

Being this space a complete space the sequence has a limit. Let x be that limit. Then for 

every  δ > 0 and h(δ) there exists N such that , for  n > N, we have f(xn, x) < h(δ). 

Therefore 

d(xn, x) =  h-1[f(xn, x)] < δ and  x is the  limit of the sequence in (E,d). 

Sufficiency. 

Consider a Cauchy sequence of elements of (E,f). 

For every  δ > 0 and the corresponding number  h (δ), exists p such that for  n,n*≥ p we 

have 

f(xn, xn*) < h (δ), so that 

d(xn, xn*) = h-1 (xn, xn*) < δ and the sequence is a Cauchy sequence in the space (E,d). 

Being this space complete the sequence has a limit. Let x be that limit. Then for every δ 

> 0 and h-1 (δ) there exists N such that for n > N, we have d(xn, x) < h-1(δ). Therefore 

f(xn,x) =  h[d(xn, x)] < δ and x is é limit of the sequence in the space (E,f) 

The following corollary is also immediate. 
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Corollary. Under the conditions of the previous theorem the sequence {xn} converges to 

x in the space (E,f) if and only if converges to  x in the space (E,d)  

 

We can find sms that are not K-sms where we can prove the uniqueness limit of a 

convergent sequence. Consider the following theorem. 

 

Theorem 19. Under the conditions of theorem 18 concerning the real function h and 

even if the space (E,f) is not a K-sms the space (E,f) is such that every convergent 

sequence has one limit only. 

Proof: 

Suppose that there was a sequence that had two limits in space (E,f). Then as those 

limits are limits of the sequence in the space (E,d) there would be a sequence with two 

limits in a metric space which is impossible. 

 

Having defined the concept of limit of a function we can now move to continuity. 

Definition (continuous function). A function F defined as in theorem 17 (and the 

respective definition) - where (G,f*) is a K-sms  - is continuous at point a if F(a) exists 

and limx=a F(x)= F(a). 

Theorem 20. If F(x) is a continuous function at a of A then for every sequence {xn} of 

elements of A converging to a, the sequence {F(xn)}converges to F(a) 

Proof 

Let δ > 0. Then as the function is continuous at a there exists ε such that for all the x of 

A such  

0 < f(x, a) < ε we have f*(F(x), F(a)) < δ. 

As {xn} converges to a there is a n* such that for n > n* we have f(xn,a) < ε so that  



 

23 

 

f*(F(xn), F(a)) < δ, and  {F(xn)} converges to  F(a).  

 

We can define a Lipschitz condition. 

Definition (Lipschitz condition). Let F : A → B be a function  that to each element of   

A ⊂ E associates an element of B ⊂ G where (E ,f) and (G, f*) are two sms. We say that 

the function F verifies the Lipschitz condition if and only if or every x and y of A there 

exists a real number  

L > 0 (independent of x and y) such that  

f*(F(x), F(y)) ≤ L f(x, y) 

Remark 

Of course a function defined in two (E,f) and (G,f*) K-sms that verifies the Lipschitz 

condition  is  continuous in all the points of its domain. To see is enough to choose for 

each δ in the definition of limit a number  ε = δ/L . 

 

 

As for metric spaces we can prove for K-sms a Banach fixed point theorem relative to 

mappings that are contractions. However we need a more strong condition. Instead of 

the contraction constant L verifying 0 < L < 1 we need the double inequality 0 < KL <1. 

When K = 1, that is when the K-sms is a metric space we obtain the original condition 

of the Banach fixed point theorem. Of course, as should be expected, 0 < KL <1 is a 

much stronger condition than 0 < L <1. 

 

 

1.5 Convex functions in full K-sms  

Let (E, f) be  a full sms  and S*(x,y) a sub-segment of the segment S(x,y). 
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Definition (convex function). A real function F defined on a convex set A⊂ E is a convex 

function if and only if for every  x, y  of A , for every sub-segment S*(x,y) and for every  z 

of S*(x,y) we have 

F(z) ≤ [f(y,z)/f(x,y)]F(x) + [f(x,z)/f(x,y)]F(y) 

Or under another form 

 [F(z)- F(x)]/f(x,z) ≤ [F(y)- F(x)]/f(x,y) 

Remark.  

A convex function is a strictly convex one when we have  

F(z) < [f(y,z)/f(x,y)]F(x) + [f(x,z)/f(x,y)]F(y) (z≠ x, y). 

 

 The importance of convex functions relates frequently with the concept of local 

minimum.  

 

Definition (local minimum). Let F be a function defined on a set A of a full sms. F(x*), 

with x* of A, is a local minimum of F if and only if there is a N(x*, r*) such that  

F(x*) = min {F(x)} for all the  x∈ A∩ N(x*, r*) 

 

Theorem 21. A convex function F defined on A, convex subset of a full sms (E,f),  can’t 

have two different local minima in A. 

Proof 

Suppose that there were two (local) minimizing x* e x** in A such that F(x**) < F(x*). 

Consider the open ball N(x*, r*) where F(x*) is a minimum. Let us form the sub-

segment S*(x*, x**). The sub-segment is contained in A because A is convex. Since E is 

full there is  
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y ∈ S*(x*, x**) , y ≠ x** such that 0 < f(x*, y) < r*. Then, as F is convex and  

F(x**) < F(x*) we have F(y) < F(x*), where y ∈ A∩ N(x*, r*), which contradicts the 

definition of local minimum. 

If the sms is full and F is convex in the strict sense we have the following theorem. 

 

Theorem 22. If (E,f) is a full sms and F a strictly convex function defined on the convex 

set A⊂ E, then there are no two different points x* and x** of A such that 

F(x*) = F(x**) = min{F(x)} for all the x of  A. 

Proof.  

If there is no minimum the theorem is proved.  

Suppose now that there were two points x* and x** of A such that F(x*) = F(x**) = 

min{F(x)} 

Since the sms is full and A convex there is a y ∈ A different from x* and x** such that  

y ∈ S*(x*, x**). As F is strictly convex, F(y) < F(x*) = F(x**), which is a contradiction. 

 

A useful concept that will be needed is the next remark is the concept of compatibility 

between two semi-metrics. 

Definition (compatibility of semi-metrics). Two semi-metrics, f1 and f2 , defined on the 

same set E  are compatible if and only if, for each x of E and ε > 0,  there are ε*, ε**  > 

0 such that 

N2 (x, ε*) ⊂ N1 (x, ε) and  N1 (x, ε**) ⊂ N2 (x, ε) 

Where Ni stands for open ball in the space (E, fi) . 
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Theorem 23. If x* is a local minimum of the function F defined on A, subset of the sms 

(E,f) then x* is a local minimum of F in A for every sms (E,g) that is full and such that g 

is compatible with f. 

Proof: 

Immediate from the definition of local minimum. 

 

Important remark 

Convexity is a relative property of a function defined on a convex set A vis a vis the 

metric or semi-metric that is chosen. But global maxima and minima of a real function 

in A are not relative to semi-metrics, that is they don´t change with the semi-metric. 

That means that we can study global maxima and minima of a real function using 

different alternative semi-metrics provided in most cases that the corresponding 

spaces are full and the set A is convex with all the semi-metrics used. An interesting 

case is one where the function is strictly convex or concave according to the semi-

metric chosen. 

For instance, a real function defined on the whole set E that is strictly convex when we 

chose a specific semi-metric and strictly concave when we chose another one has at 

most one global maximizing element x* and one global minimizing element x** (of 

course the proofs of the theorems for concavity follow the same lines of convexity).   

The exigence of compatibility between alternative semi-metrics may be needed for 

other studies like local maxima or minima. 

 

Another important characteristic of convex functions has to do with the concept of 

radial derivative. We consider a K-sms because we need to ensure the uniqueness of a 

limit. 

Let F be a real function continuous defined on a convex set A of a full K-sms. 
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Definition (radial derivative). F has a radial derivative along the sub-segment S*(x,y) ⊂ 

A at the point x if and only if there exists the limit lim [F(zn)-F(x)]/f(zn,x), for a sequence 

{zn} n= 1,… of elements  zn converging to x , such that the  zn  belong to the sub-segment 

S(*x,zn-1),  where z0 = y.  

 

Theorem 24.  Any convex function defined on a convex set A of a full K-sms has a radial 

derivative (finite or infinite) along some sub-segment of A at each point of A. 

Proof: 

Let  S*(x,y) be a sub-segment and F  convex with x and y belonging to A. Since A is 

convex  S*(x,y) ⊂ A 

 Let z1 be an element of the segment different from x and y (which exists since the sms 

is full). 

F is convex so that 

[F(z1) - F(x)]/f(x,z1) ≤ [F(y)- F(x)]/f(x,y). 

Consider now z2 belonging to S*(x,z1) and not coincident with x and z1. As  x and z1 

belong to A and A is convex, S*(x,z1) ⊂ A, so that we have 

[F(z2) - F(x)]/f(x,z2) ≤ [F(z1)- F(x)]/f(x,z1). 

As the sms is full it is possible to form a sequence {zn} of elements of S*(x,zn-1) where F 

is convex converging to x. As the sequence [F(zn+1) - F(x)]/f(x,zn+1) ≤ [F(zn)- F(x)]/f(x,zn) is 

non-increasing monotonous it is convergent to a finite limit or to -∞ .  

 

 

It is time now to look at an important specific case: semi-metric and families of sets. 
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2. An important application: spaces of sets 

 

2.1 semi-metrics on families of sets 

 

Consider a set E and the family 2E of subsets of E and let П be a family of sets such that 

П ⊂ 2E . 

Let Ƌ(П) be the smallest ring that contains  П. 

Let μ be a real function defined on Ƌ(П) satisfying the following properties : 

1  μ (X) ≥ 0; μ (X)=0 if and only if X= Ø 

2   μ is additive, that is if X and Y are disjoint,  μ (X ∪ Y) = μ(X) + μ(Y) 

With these two properties is easy to show that if X ⊂ Y, we have μ (Y) ≥ μ (X) and if X ⊂ 

Y, X ≠Y, we have μ (Y) > μ (X). 

For each pair of sets  X, Y of Ƌ(П) define f such that 

f (X,Y) ≡  μ (X -Y) +  μ (Y-X) 

It is easy to see that  (Ƌ(П) ,f) is a sms.  

 

Theorem 25. If μ is additive then    

S(E,F) ={G ∈ Ƌ(П) : E∩F ⊂ G ⊂ E∪ F} 

Proof: 

 G ∈ Ƌ(П ) belongs to S(E,F) if and only if 

μ (E -F) +  μ (F-E) =  μ (E -G) +  μ (G-E) + μ (F -G) +  μ (G-E) 

As μ is additive we can write 
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μ (E) +  μ (F) -2 μ(E∩F) = μ (E) +  μ (G) -2 μ(E∩G) + μ (F) +  μ (G) -2 μ(F∩G) 

and also 

μ (E∩G) +  μ (F∩G) =  μ (G∩ (E ∪ F)) +  μ (E∩ F∩G) 

Combining the two equalities we get  

μ (G) +  μ (E∩F)= μ (G∩ (E ∪ F)) +  μ (E∩ F∩G) 

But as  

μ (G) ≥ μ (G∩ (E ∪ F))  and 

μ (E∩F) ≥ μ (G∩E∩F) 

We obtain necessarily  

E∩F ⊂ G ⊂ E ∪ F 

As we had to prove. 

Remark. 

 If E⊂F (which is the case we consider in the next theorem), the segment is the family 

of all the sets G of Ƌ(П)  such that  E⊂ G ⊂ F. In previous papers  (Albuquerque et al 

1968 and Amaral 2000) we defined a convex family of sets as a family P such that for 

every two sets E and F of P with E⊂F , we have for all the  G such that  E⊂ G ⊂ F, G∈P. 

The present definition of convex family that has to do with segments, although not 

very far from the previous one, seems to be more fruitful.  

 

2.2 Convex supremum Weierstrass functions 

We can now proceed to study the convexity of set functions. One important case is the 

case of the Weierstrass functions that is the real function WF(X) defined for a bounded 

function F  

WF(X) ≡ sup {F(x)}, x of X. 
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In the following we relate the convexity of functions of point to convexity of set 

functions. 

Note that the family of sets that we consider is simpler than Ƌ(П ) . That is why we 

don’t need conditions 1 and 2 to be verified by the function μ that we use in the 

following specific question.  We a full K-sms of sets but we need a further condition, 

condition-H a kind of “Archimedean” property-H already mentioned at the beginning 

of the present paper. 

Before that consider a sms (E , f) and let x and y be two points of E. Let Nxa be the 

family of all closed balls N*(x,a) such that 0 ≤ a ≤ f(x,y). 

If we define for each  N*(x,a), the real set function μ such that 

 μ (N*(x,a)) ≡ a,   then (Nxa, f1) is a full sms endowed with the semi-metric 

f1 (N*(x,a), N*(x,b)) = |a-b|,   a , b ≤ f(x,y)  

The segments of Nxa with extremities in Nxa  are  S(N*(x,a), N*(x,b)) ={Gc: Gc = N* (x,c) 

with a ≤ c ≤ b }, if b ≥ a and therefore  Nxa  is a convex family. This is a simpler case that 

the previous one, since there is no need to consider the smallest ring that contains Nxa.   

Let us now restate the above mentioned property H. 

 

Property H.  (E,f) verifies property H if and only if for every x and y of the space and for 

every real number a > f(x,y) there exists  z of E and a segment S(x,z) such that y ∈ S(x, z) 

and f(x,z) = a 

With this property we can prove the following theorem which is a generalization of a 

theorem in Amaral (1982) that was proved for the Euclidean distance in Rn. 

Theorem 26. Let (E,f) be a full sms and F a bounded, real, strictly convex function 

defined on a convex set A ⊂ E . We suppose that there is at least a pair (x,y) of A2 such 

that N*(x, f(x,y)) ⊂ A. For every (x,y) of  A2 that verifies this relation let  N*(x a) be a 

closed ball with radius a  with 0 ≤ a ≤ f(x,y) and Nxa the family of all of sets N*(x a),  
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0 ≤ a ≤ f(x,y)  endowed with the semi-metric f1 (N*(x a) , N*(x b)) ≡ |a-b|. Then the set 

function WF  defined on Nxa  is convex.  

Proof 

First we show that for every N*(x,a)  and for every w belonging to N(x,a) we have  

WF(N*(x,a)) >  F(w). 

Suppose that WF(N*(x,a)) = F(u) with f(x, u) = a* < a. Since property H is verified we 

can form the sub-segment S*(x,z) - where F is convex - with u belonging to the sub-

segment and f(x,z) = a. As F is strictly convex we can write (for u ≠ x, z) 

F(u) <  [f(u,z)/f(x,z)]F(x) + [f(x,u)/f(x,z)]F(z),  

Which is not possible since F(u) = WF(N*(x,a)) .  

Then for every w belonging to N(x,a) we have WF(N*(x,a)) > F(w) so that either 

WF(N*(x,a)) = sup {F(w)} for all the  w of N(x,a) or WF(N*(x,a)) = sup {F(u)} for all the u 

of N*(x,a)  such that f(x,u) = a (and since property H is verified there is at least one u 

verifying this equality). This conclusion that was drawn for number a  is valid also for 

any a*< a, that is either WF(N*(x,a*)) = sup{F(w)} for all the w of N(x,a*) or 

WF(N*(x,a*))= sup{F(u)} for all the  u of N*(x,a) such that f(x,u) = a*. 

On the other hand, as was seen above  

F(u) < [f(u,z)/f(x,z)]F(x) + [f(x,u)/f(x,z)]F(z) 

for every u of the sub-segment S*(x,z) with  0 < f(u,x) < a and  z such that f(x,z) = a. 

Then as z belongs to N*(x,a) and F(x) ≡ WF(N*(x,0)) we have 

1) F(u) < [f(u,z)/f(x,z)] WF(N*(x,0))  + [f(x,u)/f(x,z)] WF(N*(x,a)) 

Since property-H is verified, for each u such that 0 < f(u,x) < a we can find a z such that 

f(x,z) = a and such that u belongs to the sub-segment S*(x,z) .Therefore this inequality 

1) is valid for all the u such that 0 < f(u,x) < a , so that it is valid for any u  such that 

f(x,u) = a* for every 0 < a*< a.  
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Let us return to the two possibilities: either WF(N*(x,a*)) = sup{F(w)} for all the w of 

N(x,a*) or WF(N*(x,a*))= sup{F(u)} for all the  u such that f(x,u) = a*.  

Consider the first possibility. Let ε > 0 be as small as you wish. Then there exists w of 

N(x,a*)  such that f(x,w) < a* and  F(w) > WF(N*(x,a*)) – ε. 

Using property H let us form the sub-segment S*(x,w*) where w belongs to the sub-

segment and f(x,w*) = a*. As F is strictly convex we have  F(w) < F(w*) or F(w) < F(x).  

If F(w) < F(w*), based on 1) above and noting that a* = f1(N*(x,a*),N*(x,0)),  

a = f1(N*(x,a),N*(x,0)) and  a-a* = f1(N*(x,a),N*(x,a*)), we have 

WF(N*(x,a*)) – ε < F(w)< F(w*) < [(a-a*)/a]WF(N*(x,0)) + (a*/a)WF(N*(x,a)) 

Making ε converge to 0  we get 

2) WF(N*(x,a*)) ≤  [(a-a*)/a]WF(N*(x,0)) + (a*/a)WF(N*(x,a)) 

If F(w) < F(x), making  ε converge to 0 we get  WF(N*(x,a*)) = F(x) and the inequality 2) 

is still valid, since  by the definition of function WF,  F(x) ≡ WF{x} ≡ WF(N*(x,0)) ≤ 

WF(N*(x,a)). 

Consider now the second possibility that is, WF(N*(x,a*))= sup{F(u)} for all the  u such 

that f(x,u) = a* . We get immediately from 1) that 

WF(N*(x,a*)) ≤  [(a-a*)/a]WF(N*(x,0)) + (a*/a)WF(N*(x,a)) 

and the theorem is proved. 

Corollary The limit Lima*→0  [ WF(A∩N*(x,a*)) - WF(A∩N*(x,0))] /a* ≡ WF’(A∩N*(x,0)) ≡ 

WF’({x})  ≥ 0 exists 

Proof. 

 Immediate, since we have from 2 and the definition of WF the double inequality  

0  ≤  [ WF(N*(x,a*)) - WF(N*(x,0))] / a* ≤ [ WF(N*(x,a)) - WF(N*(x,0))] / a 

for a*< a. 
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Since [ WF(N*(x,a*)) - WF(N*(x,0))]/a* is a non-decreasing real function of a*  the limit 

 Lima*→0  [ WF(N*(x,a*)) - WF(N*(x,0))] /a* ≡ WF’(N*(x,0)) ≡ WF’({x})  ≥ 0 exists. 

 

Remark on minimax decision criterion 

This corollary may be useful in certain problems of decision theory, for instance when  

minimax criteria of decision are involved. 

Suppose for instance that F(x,m) is a loss function for a given decision-maker. If F is 

convex and for each x the respective value depends on the value of a parameter m 

that the decision-maker can control we can write for small values of a the expression 

of the variation of the value of the loss relative to the value of the present situation, 

F(x,m*),  as 

ΔWf ((N*(x,0),m)  ≡ [ WF((N*(x,a),m) – F(x,m)] + [F(x,m)-F(x,m*)] ≈ a.WF’(N*(x,0),m) + 

[F(x,m)-F(x,m*)]. 

If the decision-maker has the criterion of minimizing the highest potential increase of 

loss starting from the present level of loss F(x) he chooses the value m, m** such that  

WF’(N*(x,0),m**) = min (m) {WF’(N*(x,0),m))}  

 

3. Conclusions. Decision theory, economic theory, convexity and sms 

The results collected above show that important theorems about convexity can be 

proved for semi-metric spaces where the triangular inequality is eliminated (or K-

relaxed). 

Defining a semi-metric is frequently an adequate procedure to help a decision process. 

Suppose for instance that in a macroeconomic policy framework the government 

intends to reach a situation S from the present situation T. As is frequently the case the 

political cost of a policy option is higher when the difference between the present 

situation and the intended one is larger. Most people don’t like change. So a prudent 
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policy would prefer to reach S from an intermediate situation U. That is T→U→S will 

minimize the political costs provided that electors quantify the difference between T 

and S, f(T,S) as larger than the sum f(T,U) + f(U,S), which is quite possible in subjective 

evaluations. 

Another example, similar to the previous one, is the differentiation of possible 

alternative bundles of goods by a consumer. If X, Y and Z are three vectors with n 

components measured in the same unities, each component i being a quantity of good 

i the distance between the bundles can be calculated using the Euclidean metric in Rn. 

However the metric may not correspond to the way the consumer quantifies the 

difference between alternatives of consumption that, on the contrary, may well violate 

the triangular inequality. 

For instance, it is usually assumed in consumer theory that there is for each consumer 

a utility function that is concave (or quasi-concave) relatively to the Euclidean metric. 

Actually the reasons for assuming this are convincing. Perhaps concavity relative to 

another semi-metric (the one that really differentiates alternatives) could be a better 

choice. 

It is possible for instance to consider the utility  u(A) that the consumer gates from 

obtaining the alternative A and suppose that u is a concave function that is 

[u(A) - u(B)]/f(B,A) ≥ [u(B*)- u(B))]/f(B,B*)  where f(B,B*) = f(B, A) + f(A,B*) and A, B, B* 

are the characteristics that differentiate the alternatives, those characteristics not 

necessarily being the vectors of the quantities of each good consumed as in traditional 

consumer theory. 

Convexity (and concavity) are crucial concepts for decision theory and economic 

theory. That is why is so important to study them in spaces sms. We think this may 

reveal itself as a promising new field of research.  
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