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The inversion of the spatial lag operator in binary choice models: fast

computation and a closed formula approximationI
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Abstract

This paper presents a new method to approximate the inverse of the spatial lag operator matrix,

used in the estimation of a spatial lag model with a binary dependent variable. The method is

based on an approximation of the high order terms of the inverse series expansion. The proposed

method is also applied to approximate other complex matrix operations and closed formulas for

the elements of the approximated matrices are deduced. The approximated matrices are used in

the gradients of a variant of Klier and McMillen's full GMM estimator, allowing to reduce the

overall computational complexity of the estimation procedure. Monte Carlo experiments show

that the new estimator performs well in terms of bias and root mean square error and exhibits a

minimum trade-o� between time and unbiasedness within a class of spatial GMM estimators. The

new estimator is also applied to the analysis of competitiveness in the Metropolitan Statistical

Areas of the United States of America. A new de�nition of binary competitiveness is proposed.

Estimation of the spatial dependence parameter and the environmental e�ects are addressed as

central issues.

Keywords: Matrix approximation, matrix factorization, Spatial binary choice models, Spatial

lag operator inverse, Spatial nonlinear models

1. Introduction

Spatial binary choice models deal with dichotomous dependent variables that re�ect the in-

troduction of spatial dependence in choice outcomes. In fact, since pro�t maximizing or utility

maximizing agents are able to interact in space, the observed choice of a given agent can be de-

termined by the observed choices of neighboring agents. Hence, due to the nature of this decision,
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the dependent variable can only take two possible values (say 0 and 1). Many applications can be

found using such dependent variables, across distinct research areas. Examples are: the choice on

participating in environmental policies (Murdoch et al., 2003, Beron et al., 2003), the adoption of

new technologies in agriculture (Case, 1992, Holloway et al., 2002, Wollni and Andersson, 2014),

the implementation of state income taxes (Beron and Vijverberg, 2004, Fiva and Rattsø, 2007),

the location choice (Miyamoto et al., 2004, Klier and McMillen, 2008), the decision to (re)open

a business (Holloway and Lapar, 2007, LeSage et al., 2011) or the existence of high crime rates

(McMillen, 1992).

Besides the interest on the e�ects of the explanatory variables over the binary dependent

variable, measuring the strength of the spatial dependence is crucial. However, the estimation of

spatial binary choice models is known to be complex and computationally burdensome, specially for

large data sets (Anselin, 2007). In order to deal with the estimation of spatial binary choice models,

several methods have been proposed. These methods can be grouped into three main families of

estimators: Maximum Likelihood (ML) based methods � the EM algorithm (McMillen, 1992), the

RIS simulator (Beron and Vijverberg, 2004), partial ML estimation based on pairwise correlations

(Bhat, 2011, Wang et al., 2013), the GHK simulator (Pace and LeSage, 2016) and the Mendel-Elston

approximation (Martinetti and Geniaux, 2017) �, Bayesian based methods � the Gibbs sampler

(LeSage, 2000) and Markov Chains Monte Carlo (Smith and LeSage, 2004) � and Generalized

Method of Moments (GMM) estimators (Pinkse and Slade, 1998, Klier and McMillen, 2008). On

one hand, Maximum Likelihood methods and Bayesian methods are, in general, computationally

burdensome for moderate and large data sets, once they rely on assumptions about the CDF

for the conditional distribution of the errors, resulting in the computation (or simulation) of a

high dimensional integral. Even if the methods of Beron and Vijverberg (2004), Pace and LeSage

(2016) or Martinetti and Geniaux (2017) are used to approximate the high dimensional integral,

the estimation can still be time demanding and computationally infeasible, specially if the spatial

units are in�uenced by many neighbors. On the other hand, under the GMM approach, the

distributional assumptions can be relaxed, only requiring the correct speci�cation of the moment

conditions. The major drawback of the GMM approach is related to the N -dimensional matrix

operations, that are also computationally infeasible for moderate and large samples. In practice,

the literature is particularly scarce in terms of new methods that can accurately tackle estimation

under a large sample framework.

In this paper, the estimation problem of spatial binary choice models is addressed by an ap-

proximation method that allows to reduce the computational complexity of N -dimensional matrix

operations, in the context of GMM. The new approximation method explores the eigenstructure

characteristics of normalized spatial weights matrices and the limiting properties of their high or-

der powers. Focusing on spatial lag models with a binary dependent variable, the most complex

matrix operation, the spatial lag operator inverse, is approximated by a sum of known matrices
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and by a simple matrix-vector product. The approximation of the spatial lag operator inverse is

applied to the gradients of the iterative GMM procedure of Klier and McMillen (2008), allowing to

approximate other matrix operations, as well. The overall computational time and computational

complexity of the estimation is drastically reduced. Moreover, a closed formula for the elements of

the approximated spatial lag operator inverse matrix and for the elements of the covariance matrix

is available.

The remainder of this paper is organized as follows. In section 2, the speci�cation and estimation

of spatial lag models with a binary dependent variable is reviewed. The new method to approximate

the spatial lag operator inverse is presented in section 3 and used in the gradients of the iterative

GMM procedure of Klier and McMillen (2008) in section 4. In section 5, a set of Monte Carlo

experiments are conducted to address the statistical properties and the computational ability of the

new approximation-based GMM estimator, which is also compared to other two GMM estimators

frequently used in the literature. In section 6, the adequacy of the previous GMM estimators

to real data is assessed and compared using an empirical application on the competitiveness in

the U.S. Metropolitan Statistical Areas. Finally, section 7 concludes. The results of the Monte

Carlo experiments are summarized in appendix A, while the estimation results of the empirical

application are shown in appendix B.

2. Spatially lagged latent dependent variable model for binary outcomes

A spatial binary choice model can be derived based on the following spatially lagged latent

variable speci�cation:

Y ∗i = α
∑
i 6=j

wi,jY
∗
j + Xiβ + ξi, i = 1, 2, . . . , N (1)

where Y ∗i is a general dependent variable (possibly not observable) for the unit i and N denotes

the total number of spatial units. The coe�cients wi,j are known non-negative scalars that refer

to the spatial weights of unit j on unit i, with j 6= i and j = 1, 2, . . . , N . By convention, wi,i = 0,

for all i. The scalar parameter α is the spatial lag parameter. The 1 ×K vector Xi includes the

observations for a set of K exogenous explanatory variables and a constant, for the unit i. The

K × 1 vector β is the corresponding vector of regression parameters. The disturbance term, ξi, is

an i.i.d. random error for the unit i.

Stacking over the cross-sectional units, the spatial lag model can be written in matrix form and

rearranged as a reduced form for the dependent variable:

Y∗ = αWY∗ + Xβ + ξ = (I− αW)
−1

Xβ + ε (2)

where Y∗ = [Y ∗1 , Y
∗
2 , . . . , Y

∗
N ]

ᵀ
and X = [Xᵀ

1 ,X
ᵀ
2 , . . . ,X

ᵀ
N ]

ᵀ
. The error is now ε = (I− αW)

−1
ξ,

where (I− αW)
−1

is the spatial lag operator inverse and ξ = [ξ1, ξ2, . . . , ξN ]
ᵀ
. The matrix I is

3



the N ×N identity matrix and the matrix W is the N ×N spatial weights matrix, with generic

element wi,j . It is assumed that the row and column sums of W are uniformly bounded in absolute

value and that |α| is also bounded. For a non-normalized W, the parameter space of α is set to

−1/|λ|max < α < 1/|λ|max, where |λ|max is the largest absolute eigenvalue of W. For the case

where W is normalized in such a way that the rows, columns or both rows and columns sum up

to one, Kelejian and Robinson (1995) suggest to set the parameter space of α to −1 < α < 1,

similar to time-series frameworks. In addition, the matrix (I− αW) is non-singular for all α in

the parameter space.

If Y ∗i is observable, the conditional expectation is given by E (Y ∗i |X,W) = X#

iβ, where X#

i

is the ith row of the matrix product (I− αW)
−1

X, and equation (2) de�nes a linear spatial lag

model. Here, however, Y ∗i is not observable. The observed dependent variable is Yi, a function of

particular characteristics of Y ∗i , such as Yi = 1 if Y ∗i ≥ 0 and Yi = 0 if Y ∗i < 0 and Yi is a binary

dependent variable. The conditional expectation of a spatial lag model when Y ∗i is not observable

and Yi is a binary dependent variable is given by:

E (Yi |X,W) = P (Yi = 1 |X,W) = P (Y ∗i > 0 |X,W)

= P
(
X#

iβ + εi > 0
∣∣X,W)

= P
(
εi > −X#

iβ
∣∣X,W)

= 1− P
(
εi ≤ −X#

iβ
∣∣X,W)

= G

(
X#

iβ

σi

)
, i = 1, 2, . . . , N

(3)

where G (η) is a function that takes on values in the interval 0 < G (η) < 1, for all η ∈ R, and it

is twice continuously di�erentiable, for all η ∈ R as well. Usually G (η) is called the link function

and η is called the index. It is further assumed that G (η) is known1 and given by the cumulative

distribution function (CDF) of ξi conditional on (X,W). The parameter σi is the square root of

the conditional variance of εi, for each i, obtained from the diagonal elements of the conditional

covariance matrix of ε:

Var (ε |X,W) = [(I− αW)
ᵀ

(I− αW)]
−1

Var (ξ |X,W) = Σ (4)

Under this framework, the conditional variance of ξ is �xed, to ensure identi�cation. Further,

σ2
i > 0, for all i, and the row and column sums of (I− αW)

−1
are uniformly bounded in absolute

value. This guarantees that σ2
i is also �nite.

In most of the applications using binary response models, the conditional distribution of ξi is

assumed to be the standard Normal distribution, G (η) = Φ (η), or the standard Logistic distribu-

tion, G (η) = Λ (η). This implies that Var (ξi |X,W) = 1, and Var (ξi |X,W) = π2/3, for all i,

respectively. In both cases, the probability distribution functions (PDFs) of the link functions are

1Generally the link function, G (η), is unknown and can be estimated by nonparametric and semiparametric

methods, see Härdle et al. (2004) and Horowitz (2009) for details.
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symmetric about zero and 1−G (−η) = G (η), but this is not generally the case for other possible

links2. Under these assumptions, the spatial lag model with a binary dependent variable follows

as:

Yi = G

(
X#

iβ

σi

)
+ ui, i = 1, 2, . . . , N (5)

where ui di�ers from εi because ui = Yi − E (Yi |X,W) and εi = Y ∗i − E (Y ∗i |X,W). Hence, ui

is a discrete random variable assuming only two values, 1−G (·) and −G (·).

With regard to estimation, is it addressed by a GMM approach based on the works of Pinkse

and Slade (1998) and Klier and McMillen (2008). The �rst author uses GMM to estimate a

Probit with spatially lagged errors, assuming that the o�-diagonal information of the conditional

covariance matrix of ε is neglegible. The second author uses GMM to estimate a spatial lag Logit,

considering the full dependence structure of the data, and show how this procedure can be applied

to the estimation of models with spatially lagged errors as well. The moment condition considered

by the former authors follows as:

E (Zᵀu∗) = 0 (6)

where Z is the N × (K + p) matrix of instruments, with p the number of additional instruments

other than the K explanatory variables. Following Kelejian and Prucha (1998), Z = [X WX].

The N × 1 vector u∗ are the �generalized residuals� vector (Gourieroux et al., 1987):

u∗,i =

[
Yi −G

(
X#

iβ

σi

)]
g

(
X#

iβ

σi

)
G

(
X#

iβ

σi

)[
1−G

(
X#

iβ

σi

)] , i = 1, 2, . . . , N (7)

where the function g (·) is the �rst derivative of G (·) w.r.t. the index. The GMM estimates of the

parameter vector, Θ = (β, α)
ᵀ
, are obtained by minimizing the objective function:

Q (β, α) = uᵀ
∗ZΞZᵀu∗ (8)

where Ξ is a (K + p)× (K + p) symmetric positive de�nite matrix. Following Klier and McMillen

(2008), Ξ is set to (ZᵀZ)
−1
. This way, the GMM estimator reduces to nonlinear two stages

least squares (N2SLS). However, as the objective function in (8) does not have a closed formula,

an iterative procedure is required to obtain the parameter estimates. The following steps are

considered:

1. Assume initial values for the parameter vector Θ = (β, α)
ᵀ
, Θ(0), and compute the gradients

evaluated at the initial values Γ
(0)
i = (∂u∗,i/∂Θ)|Θ=Θ(0) , i = 1, 2, . . . , N .

2See, for example, the complementary log-log and the Weibull links.
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2. Regress Γ(0) on Z, in a similar fashion to (linear) 2SLS. Obtain Γ̂
(0)
.

3. Construct new estimates as Θ(1) = Θ(0) +

[(
Γ̂
(0)
)ᵀ (

Γ̂
(0)
)]−1 (

Γ̂
(0)
)ᵀ

u
(0)
∗ , where u

(0)
∗ are

the generalized residuals evaluated at the estimates of step 0.

4. Repeat steps 1. to 3., using the estimates from the last iteration, until the algorithm con-

verges.

The estimated asymptotic variance of the (iterative) GMM estimator is:

̂
Avar

(
Θ̂
)

=
(
Γ̂
ᵀ
Γ̂
)−1 [ N∑

i=1

û2i Γ̂
ᵀ
i Γ̂i

](
Γ̂
ᵀ
Γ̂
)−1

(9)

The individual gradients for each parameter are:

(Γβ)i =
∂u∗,i
∂βᵀ = −u∗,i

g
′
(

X#

iβ

σi

)
g

(
X#

iβ

σi

) − u∗,i
 X#

i

σi
, i = 1, 2, . . . , N (10)

and

(Γα)i =
∂u∗,i
∂βᵀ = −u∗,i

g
′
(

X#

iβ

σi

)
g

(
X#

iβ

σi

) − u∗,i
[ 1

σi

(
Hiβ −

X#

iβ

2σ2
i

Υii

)]
, i = 1, 2, . . . , N (11)

where g′ (·) is the �rst derivative of the function g (·) w.r.t. the index, Hi is the ith row of the

matrix product (I− αW)
−1

WX# and Υii is the ith element of the diagonal of the matrix:

Υ = (I− αW)
−1
{

W (I− αW)
−1

+
[
W (I− αW)

−1
]ᵀ}[

(I− αW)
−1
]ᵀ

= (I− αW)
−1

W (I− αW)
−1
[
(I− αW)

−1
]ᵀ

+

+
{

(I− αW)
−1

W (I− αW)
−1
[
(I− αW)

−1
]ᵀ}ᵀ

= [Var (ξ |X,W)]
−2 × [(FΣ) + (FΣ)

ᵀ
]

(12)

where the matrix F is equal to (I− αW)
−1

W and the matrix Σ is the conditional variance of ε.

The closed forms for the gradients help to accelerate the optimization process. However, there

is a computational problem, because (I− αW)
−1

has to be computed on each iteration. To solve

this issue, Klier and McMillen (2008) also suggests a linearized variant of the full GMM estimator,

which consists in a linearization of the model around α = 0. This choice is obvious, once no matrices

need to be inverted and none of the gradients are equal to zero. In addition, σi =
√

Var (ξi |X,W),

for all i, and X#

i = Xi. Under this approach, the estimation procedure is rather simple. The initial

estimates of the regression parameters, β(0), can be obtained by standard Probit or standard Logit,

because the gradients no longer depend on α. Next, regress u
(0)
∗ +(Γβ)

ᵀ
β(0) on Γβ and Γα and the
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corresponding coe�cients are the estimated values of β and α. The estimated asymptotic variance

of the Linearized GMM estimator is:

̂
Avar

(
Θ̂
)

=

(
N∑
i=1

û2i

)(
Γ̂
ᵀ
Γ̂
)−1

(13)

As the Linearized GMM only requires a single iteration to obtain estimates for the param-

eter vector, it outstands all estimation methods in terms of computational time. However, this

method only provides good estimates for the spatial lag parameter if the true α is less than 0.5.

Then, a middle-ground approach that allows the approximation of the computationally demanding

matrix operations by simpler operations, may yield better results for all admissible values of α.

In particular, the approximation of the most complex matrix operation, the spatial lag operator

inverse, (I− αW)
−1
, may help to reduce the overall computational burden of the iterative GMM

procedure, while not penalizing consistency. The details of the new approximation method are

presented in the sections that follow.

3. Approximation of the spatial lag operator inverse

With regard to the approximation of the spatial lag operator inverse, it is usual to consider the

series expansion of the inverse:

(I− αW)
−1

= I + αW + α2W2 + α3W3 + . . . =

∞∑
h=0

αhWh (14)

which converges absolutely for all α in the parameter space. Several authors (LeSage and Pace,

2009, Arbia, 2014, Elhorst, 2014, to name a few) suggest to approximate (I− αW)
−1

by considering

a �nite lower-order series. However, this approximation implies that there are as many matrix

operations as the number of powers of W considered. Also, the approximate functional form of the

elements of (I− αW)
−1

is complicated. Alternatively, if the powers h ≥ 2 of W are approximated

by a particular matrix, the computational complexity of this inverse can be drastically reduced

and the approximate functional form can be simpli�ed as well.

Let W be an N × N non-negative spatial weights matrix with both row and column sums

uniformly bounded in absolute value. Assuming that W is row normalized and diagonalizable, the

eigendecomposition is available and the series expansion of the spatial lag operator inverse can be

written as:

(I− αW)
−1

= I + αW + α2W2 + α3W3 + . . .

= I + αVΛV−1 + α2
(
VΛV−1

)2
+ α3

(
VΛV−1

)3
+ . . .

= I + αVΛV−1 + α2VΛ2V−1 + α3VΛ3V−1 + . . .

= V (I− αΛ)
−1

V−1

(15)
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where Λ is an N×N diagonal matrix whose diagonal elements are the corresponding eigenvalues of

W. The matrix V is an N×N matrix whose ith column corresponds to the eigenvector associated

with the ith eigenvalue of W. By de�nition, the largest absolute eigenvalue of W, |λ|max, is equal

to one. Then, as h→∞:

Λ∞ = lim
h→∞

Λh = lim
h→∞

diag
(
1h, λh2 , λ

h
3 . . . , λ

h
N

)
= diag (1, 0, 0, . . . , 0) (16)

once the eigenvalues λ2, λ3 . . . , λN are, in absolute value, less than one. In addition, |λ|max is

assumed to have algebraic multiplicity equal to one3.

Replacing the powers h ≥ 2 of Λ by Λ∞ yields:

(I− αW)
−1 ≈ V

(
I + αΛ +

α2

1− α
Λ∞

)
V−1

= I + αW +
α2

1− α
W∞

= I + αW +
α2

1− α
col (V)1 row

(
V−1

)
1

(17)

where W∞ is the �long run� matrix, col (V)1 is the �rst column of V and row
(
V−1

)
1
is the �rst

row of V−1. By de�nition, the largest eigenvector of W associated with its largest eigenvalue is

equal to the N × 1 vector of ones, ι, so col (V)1 = ι. But, to obtain row
(
V−1

)
1
, an additional

problem is posed, because the entire linear system has to be solved. Nevertheless, row
(
V−1

)
1

can be identi�ed without additional computational burden if W is a function of a matrix with

orthogonal eigenvectors.

Let W0 be an initial N ×N spatial weights matrix with non-zero row sums (every spatial unit

has neighbors) and let DR be an N × N diagonal matrix whose diagonal elements are the row

sums of W0. Since the row sums of W0 are di�erent from zero, DR is invertible. Let W be such

that W = D−1R W0, then W is row normalized. Now, consider the transformation D
1/2
R WD

−1/2
R ,

hence:

D
1/2
R WD

−1/2
R = D

1/2
R D−1R W0D

−1/2
R = D

−1/2
R W0D

−1/2
R = Wsim (18)

is similar to W. This implies that all eigenvalues of W and Wsim are equal and their eigenvec-

tors are related. For a symmetric Wsim, both Wsim and W can be decomposed into orthog-

onal eigenvectors. For the case where Wsim is not symmetric, a �symmetrization� procedure is

required, such that the decomposition into orthogonal eigenvectors is available. Because W is

always non-symmetric and the similarity transformation has no impact on symmetry, it is the W0

that determines whether Wsim is or it is not symmetric. The outcomes of these two scenarios are

discussed in detail in the following subsections.

3For the case where the algebraic multiplicity of |λ|max is greater than one and W is not block diagonal, Λ∞

can still be given by (16), but at a cost of computational accuracy.
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3.1. Case 1: symmetric W0

For a symmetric W0, the matrix Wsim is also symmetric and its eigendecomposition is given

by VsimΛVᵀ
sim, where Vsim is the eigenvectors matrix of Wsim. Rewrite Wsim as a function of

W and eigendecompose both matrices. This follows as:

Wsim = D
1/2
R WD

−1/2
R ⇔ VsimΛVᵀ

sim = D
1/2
R VΛV−1D

−1/2
R (19)

Because Wsim is similar to W, the matrix Λ is equal in both sides of the equation. Then,

the eigenvectors of both matrices are related as Vsim = D
1/2
R V and Vᵀ

sim = V−1D
−1/2
R . But,

Vᵀ
sim =

(
D

1/2
R V

)ᵀ
= VᵀD

1/2
R . Replacing Vsim in equation (19) by the previous equalities, yields:

VsimΛVᵀ
sim = D

1/2
R VΛV−1D

−1/2
R ⇔ D

1/2
R VΛVᵀD

1/2
R = D

1/2
R VΛV−1D

−1/2
R

⇔ D
−1/2
R

(
D

1/2
R VΛVᵀD

1/2
R

)
D

1/2
R = W

(20)

and in the �long run�:

W∞ =
1

‖D1/2
R col (V)1‖2‖col (V)

ᵀ
1 D

1/2
R ‖2

×D
−1/2
R

(
D

1/2
R col (V)1 col (V)

ᵀ
1 D

1/2
R

)
D

1/2
R

=
1[√(

d
1/2
R,1

)2
+
(
d
1/2
R,2

)2
+ . . .+

(
d
1/2
R,N

)2]2 × ιιᵀDR =

[
N∑
i=1

dR,i

]−1
JDR

(21)

where dR,i is the sum of the ith row of W0 and J is the N × N matrix of ones. The �long run�

matrix, W∞, is rescaled by the sum of all rows of W0 because W has an implicit decomposition

into orthogonal eigenvectors. There are two major advantages related to the expression of W∞.

Firstly, the matrix product JDR can be simpli�ed to a, less demanding, matrix-vector product,

because DR is a diagonal matrix. Secondly, each element of the matrix W∞ have an exact closed

formula given by:

w∞i,j =

[
N∑
i=1

dR,i

]−1
× dR,j (22)

This exact closed formula implies that the rows of W∞ are all equal. In addition, the ith element

of each row vector of W∞ is given by the sum of the ith row of W0, that is row (W∞)i =

(dR,1, dR,2, . . . , dR,N ), for all i.

Using (21) in the expression for the approximation of (I− αW)
−1

yields:

(I− αW)
−1 ≈ I + αW +

α2

1− α

[
N∑
i=1

dR,i

]−1
JDR (23)

9



which still converges absolutely for all α in the parameter space, because the expression for W∞ is

exact. In addition, an approximate closed formula is also available for each element of (I− αW)
−1
:

[
(I− αW)

−1
]
i,j
≈ 1i=j + α× wi,j +

α2

1− α
×

[
N∑
i=1

dR,i

]−1
× dR,j (24)

where 1i=j is the indicator function that is equal to one if i = j and equal to zero if i 6= j, for

all i, j = 1, 2, . . . , N . The quality of this approximation is improved as fast as the powers of the

eigenvalues λ2, λ3, . . . , λN converge to zero. In fact, this is related to the approximation method

proposed by Gri�th (2000), for linear models.

The validity of these results also apply to a column normalized W and to a doubly stochastic W.

For the �rst case, the results hold for Wᵀ, because it is row stochastic. For the second case, once

W0 is symmetric, the doubly stochastic W is also symmetric, hence it can be straightforwardly

decomposed into orthogonal eigenvectors and W∞ = (1/n) J.

3.2. Case 2: non-symmetric W0

For the case where W0 is non-symmetric, the previous result for W∞ is not valid. To see this,

rewrite Wsim as a function of W and eigendecompose both matrices:

Wsim = D
1/2
R WD

−1/2
R ⇔ VsimΛV−1sim = D

1/2
R VΛV−1D

−1/2
R (25)

where Vsim = D
1/2
R V and V−1sim = V−1D

−1/2
R . Since the eigenvectors of Wsim are no longer or-

thogonal, V−1sim 6= Vᵀ
sim. Therefore, to approximate (I− αW)

−1
without additional computational

burden, it is crucial to obtain an expression for V−1sim based on a symmetric matrix.

Let W∗
0 be the �symmetrized� variant of W0, such that all non-zero elements of W0 are equal

above and below the main diagonal, for all i, j = 1, 2, . . . , N and i 6= j. In other words, W∗
0 is

constructed such that if unit j is a neighbor of unit i, then unit i is also a neighbor of unit j with

equal weight. This follows as:

W∗
0 = W0 −

1

2

{
W0 −Wᵀ

0 −
[
(W0 −Wᵀ

0 )
◦2
]◦ 1

2

}
= W0 + A (26)

where A is the N × N �symmetrization� matrix. The operators �◦2� and �◦ 12 � are element-wise

operations that correspond to the Hadamard square and to the Hadamard square root, respectively.

As in the previous case, a row normalized matrix and a symmetric similar matrix can be de�ned,

based on W∗
0. The row normalized matrix is equal to W∗ = D−1R∗W∗

0, where DR∗ is a N × N

invertible diagonal matrix whose diagonal elements are the row sums of W∗
0. The symmetric

similar matrix is given by W∗
sim = D

−1/2
R∗ W∗

0D
−1/2
R∗ .

Assume that A is close to the null matrix, 0. Then it is straightforward that W∗
0 ≈ W0.

In other words, if the degree of non-symmetry is small, then W0 is well approximated by W∗
0.

Under this assumption, the eigenvectors of Wsim can be written as an approximation of orthogonal

10



eigenvectors. To see this, rewrite W∗
sim as a function of Wsim and eigendecompose both matrices.

This yields:

D
−1/2
R∗ W∗

0D
−1/2
R∗ ≈ D

−1/2
R∗ W0D

−1/2
R∗ ⇔

⇔W∗
sim ≈ D

−1/2
R∗ D

1/2
R D

−1/2
R W0D

−1/2
R D

1/2
R D

−1/2
R∗ ⇔

⇔W∗
sim ≈ D

−1/2
R∗ D

1/2
R WsimD

1/2
R D

−1/2
R∗ ⇔

⇔ V∗simΛ∗ (V∗sim)
ᵀ ≈ D

−1/2
R∗ D

1/2
R VsimΛV−1simD

1/2
R D

−1/2
R∗

(27)

where Λ∗ is the N×N diagonal matrix whose diagonal elements are the corresponding eigenvalues

of W∗
sim. The matrix V∗sim is an N ×N matrix whose ith column corresponds to the eigenvector

associated with the ith eigenvalue of W∗
sim. Note that the eigenvalues matrices Λ∗ and Λ are

not equal, but because W∗
sim and Wsim are similar to the corresponding row normalized matrices

and, as before, assuming that the largest absolute eigenvalue of both matrices have algebraic

multiplicity equal to one, in the �long run�, limh→∞ (Λ∗)
h

= limh→∞Λh = diag (1, 0, 0, . . . , 0).

Therefore, the �rst eigenvectors of W∗
sim and Wsim are approximately related as col (V∗sim)1 ≈

D
−1/2
R∗ D

1/2
R col (Vsim)1 and col (V∗sim)

ᵀ
1 ≈ row

(
V−1sim

)
1
D

1/2
R D

−1/2
R∗ .

In addition, because W∗
sim is similar to a row normalized matrix, W∗, the �rst eigenvector of

W∗
sim can also be written as a function of a vector of ones. Hence, consider the corresponding

eigendecomposition of W∗
sim and W∗. This yields:

W∗
sim = D

1/2
R∗ W∗D

−1/2
R∗ ⇔ V∗simΛ∗ (V∗sim)

ᵀ
= D

1/2
R∗ V∗Λ∗ (V∗)

−1
D
−1/2
R∗ (28)

with the eigenvectors related as V∗sim = D
1/2
R∗ V∗ and (V∗sim)

ᵀ
= (V∗)

−1
D
−1/2
R∗ . But, (V∗sim)

ᵀ
=

(V∗)
ᵀ

D
1/2
R∗ . Therefore, in the �long run�, col (V∗sim)

ᵀ
1 = ιᵀD

1/2
R∗ but also col (V∗sim)

ᵀ
1 ≈ row

(
V−1sim

)
1
D

1/2
R D

−1/2
R∗ .

By equating these two results, row
(
V−1sim

)
1
can be expressed as:

ιᵀD
1/2
R∗ ≈ row

(
V−1sim

)
1
D

1/2
R D

−1/2
R∗ ⇔ row

(
V−1sim

)
1
≈
(
ιᵀD

1/2
R∗

)
D

1/2
R∗ D

−1/2
R (29)

Using this approximation in the �long run� variant of equation (25) gives:

VsimΛ∞V−1sim = D
1/2
R VΛ∞V−1D

−1/2
R ⇔

⇔ col (Vsim)1 row
(
V−1sim

)
1

= D
1/2
R col (V)1 row

(
V−1

)
1
D
−1/2
R ⇔

⇔ 1

‖D1/2
R ι‖2‖ιᵀD

1/2
R∗ ‖2

×D
−1/2
R

(
D

1/2
R ι

)(
ιᵀD

1/2
R∗

)
D

1/2
R∗ D

−1/2
R D

1/2
R ≈W∞ ⇔

⇔

[
N∑
i=1

dR,i

]−1/2 [ N∑
i=1

d∗R,i

]−1/2
× JDR∗ ≈W∞

(30)

where d∗R,i is the sum of the ith row of W∗
0. Here, once again, the �long run� matrix, W∞,

is rescaled by the geometric mean of the sum of all rows of W0 and W∗
0 because W has an
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implicit decomposition into orthogonal eigenvectors. Furthermore, the matrix product JDR∗ can

be simpli�ed to a matrix-vector product, because DR∗ is a diagonal matrix. The remaining results

related to the closed formula of the elements of W∞ and to the approximation of (I− αW)
−1

are

similar to those from the previous subsection.

4. Estimation under low computational complexity

As mentioned earlier, the estimation of a spatial lag model with a binary dependent variable

is a prodigious computational task for moderate and large sample sizes. In the context of GMM,

the major computational drawback is related to the inversion of the spatial lag operator. However,

this computational issue can be addressed by the approximation method discussed in the previous

section, where the spatial lag operator inverse is approximated by a sum of known matrices and

a simple matrix-vector product. Hence, using this approximation, the computational time and

computational complexity of an estimation procedure can be signi�cantly reduced.

Here, estimation is addressed by a variant of the iterative GMM estimator of Klier and McMillen

(2008) and the approximated variant of the spatial lag operator inverse is used in the individual

gradients of the iterative procedure (see equations 10 and 11). Under this approach, it is no longer

required to compute (I− αW)
−1

on each iteration. However, the computation of the gradients

still pose additional computational constraints, once they rely on matrix operations, other than

the matrix inverse, whose computational complexity can be equal to that of the matrix inverse. To

see this, consider the matrix Υ, from the individual gradient of α, where (I− αW)
−1

is replaced

by the approximation of the spatial lag operator inverse:

Υ = [Var (ξ |X,W)]
−2 × [(FΣ) + (FΣ)

ᵀ
]

≈
(

I + αW +
α2

1− α
W∞

)
W

(
I + αW +

α2

1− α
W∞

)(
I + αW +

α2

1− α
W∞

)ᵀ

+[(
I + αW +

α2

1− α
W∞

)
W

(
I + αW +

α2

1− α
W∞

)(
I + αW +

α2

1− α
W∞

)ᵀ]ᵀ (31)

This choice is obvious, once this matrix stands out as the most elaborate matrix to be computed.

Nevertheless, it can be decomposed into two other matrices, F and Σ. This way, the computation-

ally complex operations can be addressed case by case and approximated by simpler matrix-vector

operations and/or element-wise operations.

The approximated expression for the matrix F is given by:

F ≈
(

I + αW +
α2

1− α
W∞

)
W = W + αW2 +

α2

1− α
W∞ ≈W +

α

1− α
W∞ (32)

where W2 is approximated by W∞, consistent with the approach regarding the approximation of

the spatial lag operator inverse.
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For the matrix Σ, the approximated expression is given by:

Σ ≈ Var (ξ |X,W)

(
I + αW +

α2

1− α
W∞

)(
I + αW +

α2

1− α
W∞

)ᵀ

= Var (ξ |X,W)

{
I + α (W + Wᵀ) +

α2

1− α
[W∞ + (W∞)

ᵀ
] + α2WWᵀ

+
α3

1− α
[W (W∞)

ᵀ
+ W∞Wᵀ] +

(
α2

1− α

)2

W∞ (W∞)
ᵀ

}

≈ Var (ξ |X,W)

{
I + α (W + Wᵀ) +

α2

1− α
[W∞ + (W∞)

ᵀ
] + α2W∞

+
α3

1− α
(
[col (W (W∞)

ᵀ
)1 ι

ᵀ] + [col (W (W∞)
ᵀ
)1 ι

ᵀ]
ᵀ)

+

 α4

(1− α)
2

N∑
j=1

(
w∞1,j

)2J



(33)

where WWᵀ is approximated by W∞, in the same manner that W2. In fact, WWᵀ can be

approximated by W2, even if W is non-symmetric. As for the matrix products W (W∞)
ᵀ
and

W∞ (W∞)
ᵀ
, they are simpli�ed to, less demanding, matrix-vector products, once the row vectors

of W∞ are all equal. The �rst matrix product is equal to the matrix expansion of the �rst column

vector of W (W∞)
ᵀ
, that is col (W (W∞)

ᵀ
)1 ι

ᵀ. The second matrix product is equal to the N×N

matrix of ones, J, multiplied by a scalar constant given by the sum squared elements of the �rst

row of W∞.

Furthermore, a closed formula is also available for the elements of the approximated variant of

the conditional covariance matrix, Σ. In particular, the closed formula for the diagonal elements

is:

σ2
i ≈ Var (ξi |X,W)

1 +
α2 (3− α)

1− α
w∞i,i +

2α3

1− α

N∑
j=1

wi,jw
∞
1,j +

(
α2

1− α

)2 N∑
j=1

(
w∞1,j

)2 (34)

for all i = 1, 2, . . . , N . Consequently, the rescaled regressors, X#

i /σi, and related quantities are

easier to obtain.

Finally, since only the diagonal elements of Υ are required for the computation of the individual

gradient of α, the approximated expression for the matrix Υ is given by the Hadamard product

between matrix F and matrix Σ. This yields:

diag (Υ) = 2× [Var (ξi |X,W)]
2 × diag (FΣ)

= 2× [Var (ξi |X,W)]
−2 × diag

 N∑
j=1

(F ◦Σᵀ)i,j

 (35)

where �◦� is the Hadamard product operator. The approximated expressions for the individual

gradients of α and β follow directly from the previous results.
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5. Monte Carlo analysis

In this section, a set of Monte Carlo experiments are presented. The proposed iterative GMM es-

timator with approximated gradients (iGMMa) is compared to the estimators of Klier and McMillen

(2008) � the iterative GMM estimator (iGMM) and the linearized GMM estimator (LGMM) �, in

terms of bias and root mean square errors properties for small and large samples, as well as the

computational time required for convergence. A variety of simulation designs are considered, with

particular concern on the adequacy of these estimators to large sample frameworks.

5.1. Simulation design

The latent variable model considered in the simulations follows as:

Y∗ = (I− αW)
−1

(β0ι+ β1X) + ε (36)

with ε = (I− αW)
−1
ξ. The explanatory variable, X, is randomly drawn, for each unit, from a

U (−3, 3) distribution and the error ξ is randomly drawn, for each unit, from a N (0, 1) distribution.

Following McMillen (1995), under this sampling design, the simulated model tends to produce

better predictions, once the variance of X is much larger than the variance of ξ.

Now, because Y ∗i is not observable, the observed dependent variable, Yi is constructed as Yi = 1

if Y ∗i ≥ 0 and Yi = 0 if Y ∗i < 0, for all i. Under this setup, the model for Yi is a spatial lag Probit

model:

Yi = Φ

(
β0x

#

1i

σi
+
β1x

#

2i

σi

)
+ ui, i = 1, 2, . . . , N (37)

where x#

1i is the ith row of the matrix product (I− αW)
−1
ι and x#

2i is the ith row of the matrix

product (I− αW)
−1

X. The scalar elements σi are the square root diagonal elements of the

conditional covariance matrix of ε, equal to [(I− αW)
ᵀ

(I− αW)]
−1
.

The setting for the working spatial weights matrix, W, consists in two stages. In the �rst stage,

the N spatial units are randomly allocated on a regular lattice and an initial spatial weights matrix,

W0, is generated, based on a nearest neighbor structure. In the second stage, W is obtained from

the row normalization of W0. Furthermore, the number of nearest neighbors is not �xed. The

number of nearest neighbors is given by δN , where δ is the matrix density (the complement of

sparsity), the proportion of non-zero elements in W. This way, the large sample properties can be

addressed according to the spatial statistics de�nitions of increasing-domain asymptotics and in�ll

asymptotics (Cressie, 2015). The former corresponds to a sampling scenario where new spatial

units are added to the edges of the lattice, but the number of neighbors, for each spatial unit,

remains the same as N → ∞. The latter corresponds to a scenario where new observations are

added between the existing ones and a bounded area tends to get denser, hence δ → 1 as N →∞

(Anselin, 2007).
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For the Monte Carlo experiments, the number of spatial units, N , vary over the set {100, 1000, 2000}.

The spatial lag parameter takes on values α ∈ {0, 0.2, 0.5, 0.8}, whereas the regression parameters

are held �xed at β0 = 0 and β1 = 1. The matrix of instruments considered for the three GMM

estimators (iGMMa, iGMM and LGMM) is Z = [X WX], following Kelejian and Prucha (1998).

The matrix density coe�cient, δ, vary over the restricted set {0.01, 0.1, 0.2}, due to a consistency

condition introduced by Lee (2004), where the number of neighbors for each spatial unit cannot

diverge to in�nity at a rate equal or faster than the rate of the sample size (Elhorst, 2014). This

yields a total of 108 experiments. For each experiment, 500 replications are used. The experiments

are performed in a computer working in a quad-core Intel based processor with 3.2 GHz and 8

gigabytes of RAM, operating in a 64-bit system.

For each GMM estimator, the estimates of the regression parameters, β̂0, β̂1 and α̂ are reported,

as well as the number of iterations and the computational time. For each set of experiments and

estimator, the parameter estimates are summarized by the mean and root mean squared error

(RMSE), while the computational indicators are summarized by the mean. The calculations are

performed using McMillen's R package McSpatial.

5.2. Results

The results of the Monte Carlo experiments are presented in appendix A. In Table .1, the

results are summarized for the case where the true value of α = 0. Similarly, the remaining results

are summarized in Table .2, Table .3 and Table .4, for the cases where the true value of α = 0.2,

α = 0.5 and α = 0.8, respectively.

In general, regarding the estimation of α, the iterative GMM estimators (iGMMa and iGMM)

perform reasonably well, while the linearized GMM estimator exhibits an upward bias for α = 0.8,

consistent with the results of Klier and McMillen (2008). Similarly, the iterative GMM estimators

produce extremely accurate estimates for β0 and β1, while the linearized GMM estimator appears to

be missing the point, specially in terms of the ability to estimate β1. The small sample performance

of the three GMM estimators is quite cumbersome, particularly when the density of the spatial

weights matrix, δ, is equal to 0.2. Also, for δ = 0.2, the estimates for α exhibit a persistent

downward bias, even for N = 2000. This unveils the severe weaknesses of the spatial estimators

under in�ll asymptotics, as demonstrated by Lahiri (1996) and, more recently, by Lee (2004).

Still, consistency can be achieved under increasing domain asymptotics. In fact, for a moderate δ

(δ = 0.1), the proposed iGMMa estimator appears to outperform the remaining two in terms of

bias, as N becomes larger.

The RMSEs of β0 and β1 steadily decrease, for a �xed δ, as N grows. However, when N is

�xed and δ is growing, the RMSEs of β0 and β1 steadily increase, which illustrates, once again,

how the estimates can be distorted under in�ll asymptotics. With regard to the RMSE of α, it

also increases as both δ and N are increasing, as well.
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In terms of the computational ability of the three estimators, all of them experience an increase

in the overall computational time, as N grows and the spatial weights matrix becomes denser.

Moreover, depending on the value of α, the estimators may struggle to converge. In particular, as

α approaches unity, the inverse of the spatial lag operator is near singularity and the computation

of the gradients becomes troublesome, once they start to diverge. Nevertheless, the simulation

results shows that the iGMMa estimator can reduce the overall computational time of a spatial

Probit estimation by about 8 times, when compared to the iGMM estimator. Even though the

iGMMa estimator requires 1 or 2 iterations more, on average, to converge, it clearly does better

than the iGMM estimator. In addition, while being practically impossible to overcome the speed of

the linearized GMM estimator, the potential of iGMMa estimator is proven in terms of estimation

accuracy amongst the three GMM estimators, even for values of α close to unity.

6. Empirical application

In this section, an empirical application on the competitiveness in the U.S. Metropolitan Sta-

tistical Areas is presented to assess and compare the adequacy of the previous GMM estimators

to real data.

Nowadays, the promotion of competitiveness is one of the main concerns for policy makers.

Nevertheless, a clear de�nition for competitiveness is far from being consensual. In the words of

Porter (1990), competitiveness is more than bilateral comparisons, it is related to the ability of the

industries to innovate. Fagerberg (1988) de�nes competitiveness as the growth in relative unit labor

costs (the cost of labour per units of output) and, eight years later, the same author considers that

competitiveness can be addressed by the growth of GDP per capita or the change in research and

development as a percentage of GDP (Fagerberg, 1996). More recently, in a report from the World

Economic Forum, Schwab and Sala-i Martin (2010) de�ned 12 pillars for competitiveness, based

on institutional background, physical infrastructures, macroeconomic environment, e�ciency and

innovation. Hence, in a broad sense, competitiveness can be considered as a measure of economic

performance. Furthermore, the e�ects of promoting economic performance cannot be dissociated

from environmental impacts. In fact, Porter et al. (2015) points out that while promoting e�cient

energy infrastructures and a low-carbon transition, the competitiveness may also improve. In Eco-

nomics theory, these e�ects are addressed by the Environmental Kuznets Curve (EKC) hypothesis,

originated by the works of Grossman and Krueger (1991), Sha�k and Bandyopadhyay (1992) and

Panayotou (1993). The EKC hypothesis states that there is an inverted �U� shaped relationship

between environmental degradation and economic growth. Though economic performance is a

wider concept than economic growth, the work of Porter et al. (2015) establishes the evidence

that competitiveness may be a�ected by environmental quality, leading to an inversion of the EKC

hypothesis. However, empirically, this relationship is yet to be tested. Most of the applications

focus on the analysis of competitiveness and environmental quality as separate subjects and only
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few works consider this analysis under a spatial framework � Rice et al. (2006) and Dudensing and

Barkley (2010) on the spatial spillovers of regional competitiveness and Millimet et al. (2003) and

Rupasingha et al. (2004) on the shape of EKC hypothesis and the spatial spillovers of emitting

air pollutants �. In addition, none of the previous works estimate a spatial model with binary

dependent variables.

In this application, the competitiveness in the U.S. MSAs is addressed using combined socioeco-

nomic data and environmental data, collected from the U.S. Bureau of Economic Analysis (BEA)

and the U.S. Environmental Protection Agency (EPA), respectively. The data set contains infor-

mation on the GDP, labor costs, price index, dividends, total employment and population, as well

as, information on the annualized Air Quality Index (AQI) and on three of the most representative

pollutants � ground-level ozone (O3), particle pollutants (PM2.5) and nitrogen dioxide (NO2) � .

The MSAs included in this analysis are the continental MSAs that continuously report information

for the previous variables, between 2001 and 2012 (N = 3756).

As mentioned earlier, there are numerous ways to de�ne competitiveness. Hence, it is di�cult to

provide a clear interpretation or to have a precise unit of measurement. In practice, competitiveness

can be considered a latent variable. Nevertheless, since there are so many proxies to measure

competitiveness, they can be used as criteria for a new indicator. In fact, a binary competitiveness

indicator can be derived such that a given MSA is considered to be competitive if, simultaneously,

(1) its employment-to-population ratio is greater than or equal than the employment-to-population

ratio in the combined area of the excluded MSAs and non-MSAs; (2) its GDP per capita is greater

than or equal than this the GDP per capita in the combined area of the excluded MSAs and

non-MSAs; (3) its Unit Labor Costs (the cost of labor per unit of output) are greater than or equal

than the Unit Labor Costs in the combined area of the excluded MSAs and non-MSAs or the Unit

Capital Costs (the cost of capital per unit of output) are greater than or equal than the Unit Labor

Costs in the combined area of the excluded MSAs and non-MSAs, depending on whether the labor

intensity ratio (the cost of labor to the cost of capital) is greater than or less than 1, respectively.

The descriptive statistics of variables included in this analysis are presented in Table .5. Con-

sidering the binary competitiveness indicator (Y ), about 20% of the MSAs are labeled compet-

itive. The variables AQImin and AQImax are, respectively, the minimum and maximum annual

values observed for the AQI, and, as expected, AQImin exhibits a low variability pattern, contrar-

ily to AQImax, that is in�uenced by the existence of severe outliers. The variables % days O3,

% days PM2.5 and % days NO2 represent, on average, a total of about 90% of days, in a year, that

the observed value of the daily AQI was determined by the concentration levels of the respective

pollutants.

A spatial lag Probit is applied to the pooled sample of MSAs in order to study the e�ects of

the environmental quality indicators over the binary competitiveness and to address the intensity

of spatial dependence. The spatial weights matrix W is considered to be block-diagonal and
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given by a binary radial matrix with a distance threshold equal to 1, according to the pattern

of proximity displayed in Figure .1 by the included MSAs. Under this setting, only the closest

MSAs are considered to be neighbors, in order to avoid spurious interactions. The matrix of

instruments is, once again, given by Z = [X WX]. Estimation results for each of the three GMM

estimators (iGMMa, iGMM and LGMM) were obtained using McMillen's R package McSpatial4

and are shown in Table .6. The sign, magnitude and statistical signi�cance of the estimates are

coherent for the iterative GMM estimators, as opposed to the linearized GMM estimator. Even

though the Probit speci�cation is the same for the three estimators, the linearized GMM estimator

appears to be missing the point. Not surprisingly, the spatial lag parameter is the most unstable

estimate, ranging from α̂ = 0.276 to α̂ = 0.578. Still, the positive sign and statistical signi�cance

indicates that there is a positive moderate spatial e�ect of the neighboring areas over probability of

a given MSA to be competitive. Furthermore, the signs for the estimates of AQImin and AQImax

are particularly interesting. A unitary change in low values of the AQI has a positive impact over

the probability of a given MSA to be competitive, contrarily to unitary changes in high values of

the AQI. This follows along the lines of Porter et al. (2015), where the adoption of cleaner-energy

and a lower-carbon transition may lead to a �win-win path�, such that environmental quality comes

at a �cost� of promoting new competitive areas. The global validity of these results is con�rmed

by the Hansen test, even though it is severely distorted for the linearized GMM estimator, due the

misleading estimate of α.

The percentage of observations that are correctly predicted can be used as a measure for the

overall adequacy of the GMM estimators. The iGMMa estimator correctly predicts 52.8% of the

observations, compared to 45.4% for the iGMM estimator and 18.2% for the Linearized GMM

estimator. Hence, the proposed iGMMa estimator performs better than the benchmark estimator

(iGMM), in terms of predictive power.

In terms of computational performance, the iGMMa estimator largely outruns the iGMM esti-

mator, only requiring 16 iterations to converge, compared to the 51 needed by the iGMM estimator

to converge. Once again, the iGMMa estimator proves to be a feasible and an adequate alternative

to estimate spatial binary choice models.

7. Conclusion

In this paper the estimation of spatial binary choice models was addresed. These models be-

came particularly popular in applications that dealt with spatially correlated dependent variables

re�ecting a dichotomous phenomena. Examples of such dependent variables are: the implementa-

tion of a policy, the decision between two opposing alternatives or a binary status related to an

unobserved variable. Under this framework, the observed outcome of given unit is determined by

4The programs used are available upon request.
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the observed outcomes of neighboring units. Hence if spatial dependence is deliberately omitted

from the estimation, the resulting estimates are likely to be inconsistent (McMillen, 1992). How-

ever, the estimation of spatial binary choice models is known to be a prodigious computational task.

Either because it is required to compute a high dimensional integral or it is required to compute

complex N dimensional matrix operations. To solve the issue of high dimensional integration, sev-

eral approximation methods were proposed (Beron and Vijverberg, 2004, Pace and LeSage, 2016,

Martinetti and Geniaux, 2017), but the computational di�culties remained, specially for highly

connected spatial data. As for the complex N dimensional matrix operations issue, the solution

involved a linearization of the model around an initial value of the spatial parameter, such that

these matrix operations could be avoided (Klier and McMillen, 2008), but consistency turned out

to be a major concern.

Focusing on spatially lagged models with a binary dependent variable, a simple and intuitive

method to approximate the complex N dimensional matrix operations was presented. Speci�cally,

the most complex matrix operation, the spatial lag operator inverse, was approximated by a sum

of known matrices and a simple matrix-vector product, based on the eigenstructure characteristics

of normalized spatial weights matrices and the limiting properties of their high order powers. The

approximated variant of the spatial lag operator inverse was then applied to the gradients of the

iterative GMM procedure of Klier and McMillen (2008), allowing to simplify the computation of

the gradients and to reduce the overall computational complexity of the estimation procedure.

In addition, the approximation method allowed to obtain closed formulas for the elements of the

approximated matrices.

In a Monte Carlo analysis, the small and large sample properties and the computational ability

of the new estimator � the iterative GMM with approximated gradients (iGMMa) �, were assessed

and compared to the GMM estimators of Klier and McMillen (2008) � the iterative GMM (iGMM)

and the linearized GMM (LGMM) �. The results showed that both iGMMa and iGMM estimators

performed well in terms of estimation of the parameters, accurately recovering their true value,

as opposed to LGMM. The iGMMa estimator outperformed the iGMM estimator in terms of

computational time, specially when N was large. Surprisingly, the iGMMa proved to be extremely

valuable for the case where the true value of the spatial lag parameter was close to unity, with a

moderate number of neighbors in the spatial weights matrix, only exhibiting a small downward

bias for the estimate of the spatial lag parameter. These results were con�rmed in an empirical

application on the competitiveness in the U.S. Metropolitan Statistical Areas, where the iGMMa

estimator outperformed the remaining two GMM estimators in terms of predictive power and the

computational ability of handling large data sets.

As a consequence of the impressive performance of the proposed iGMMa estimator, imme-

diate extensions are available, specially for models with spatially lagged errors and for models

with further lags of the dependent variable, as well as for spatial models with discrete and cen-
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sored variables. In addition, the approximated variant of the spatial lag operator inverse can be

straightforwardly applied to spatial linear models, addressing, in particular, the computation of

the log-determinant.

All the functions used in this paper and the proposed approximation method can be easily

implemented using McMillen's R package McSpatial.
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Appendix A

Table .1: Performance of the iterative GMM estimator with approximated gradients compared to other GMM estimators for the spatial
Probit model with α = 0

δ 0.01 0.1 0.2
N iGMMa iGMM LGMM iGMMa iGMM LGMM iGMMa iGMM LGMM

100 α̂ 0.001 0.001 0.001 0.083 0.040 0.060 0.132 0.065 0.096
(0.110 ) (0.109 ) (0.081 ) (0.331 ) (0.280 ) (0.236 ) (0.413 ) (0.340 ) (0.288 )

β̂0 −0.017 −0.018 −0.008 −0.008 −0.008 −0.004 −0.002 0.002 0.001
(0.200 ) (0.200 ) (0.131 ) (0.217 ) (0.210 ) (0.149 ) (0.411 ) (0.202 ) (0.157 )

β̂1 1.097 1.103 0.642 1.104 1.106 0.631 1.093 1.083 0.617
(0.222 ) (0.226 ) (0.386 ) (0.241 ) (0.238 ) (0.393 ) (0.214 ) (0.208 ) (0.404 )

Time:
Loop 0.088 0.079 0.108 0.105 0.113 0.102
#iter 6 6 6 6 7 6
Total 0.577 0.532 0.058 0.781 0.700 0.052 0.853 0.686 0.054

1000 α̂ −0.003 −0.009 0.001 0.084 0.028 0.003 0.143 0.064 −0.003
(0.110 ) (0.110 ) (0.073 ) (0.338 ) (0.283 ) (0.250 ) (0.417 ) (0.337 ) (0.409 )

β̂0 −0.003 −0.003 0.000 0.004 0.003 0.002 0.003 0.003 0.000
(0.063 ) (0.063 ) (0.036 ) (0.063 ) (0.061 ) (0.051 ) (0.071 ) (0.062 ) (0.068 )

β̂1 1.009 1.010 0.547 1.010 1.009 0.547 1.010 1.007 0.547
(0.056 ) (0.057 ) (0.454 ) (0.056 ) (0.056 ) (0.454 ) (0.056 ) (0.053 ) (0.454 )

Time:
Loop 1.640 3.755 1.413 4.622 1.475 6.530
#iter 6 6 7 6 7 6
Total 9.934 22.586 0.057 9.597 27.765 0.061 10.253 39.221 0.070

2000 α̂ 0.000 −0.006 −0.002 0.084 0.032 0.004 0.121 −0.194 −0.012
(0.104 ) (0.105 ) (0.076 ) (0.321 ) (0.271 ) (0.243 ) (0.398 ) (0.735 ) (0.434 )

β̂0 −0.001 −0.001 0.000 −0.001 −0.001 −0.002 −0.003 −0.002 0.000
(0.044 ) (0.043 ) (0.025 ) (0.043 ) (0.042 ) (0.033 ) (0.048 ) (0.065 ) (0.054 )

β̂1 1.003 1.003 0.541 1.003 1.003 0.541 1.007 1.007 0.542
(0.038 ) (0.038 ) (0.459 ) (0.038 ) (0.038 ) (0.459 ) (0.041 ) (0.041 ) (0.458 )

Time:
Loop 6.069 25.667 5.945 27.860 4.441 41.777
#iter 6 6 7 6 7 6
Total 36.531 154.046 0.055 39.643 167.207 0.100 30.749 251.474 0.150

NOTE: Numbers in brackets are root mean square errors (RMSE). Computational time in seconds. True values of the
regressions parameters �xed at β0 = 0 and β1 = 1.
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Table .2: Performance of the iterative GMM estimator with approximated gradients compared to other GMM estimators for the spatial
Probit model with α = 0.2

δ 0.01 0.1 0.2
N iGMMa iGMM LGMM iGMMa iGMM LGMM iGMMa iGMM LGMM

100 α̂ 0.200 0.193 0.142 0.211 0.137 0.144 0.223 0.135 0.151
(0.116 ) (0.108 ) (0.102 ) (0.349 ) (0.286 ) (0.251 ) (0.399 ) (0.337 ) (0.287 )

β̂0 −0.018 −0.018 −0.009 −0.015 −0.013 −0.010 −0.015 −0.011 −0.001
(0.185 ) (0.189 ) (0.116 ) (0.213 ) (0.206 ) (0.150 ) (0.240 ) (0.211 ) (0.161 )

β̂1 1.079 1.115 0.681 1.118 1.110 0.647 1.104 1.084 0.619
(0.232 ) (0.257 ) (0.357 ) (0.234 ) (0.247 ) (0.385 ) (0.236 ) (0.218 ) (0.402 )

Time:
Loop 0.108 0.083 0.114 0.109 0.109 0.105
#iter 6 6 7 6 7 6
Total 0.703 0.547 0.056 0.833 0.724 0.045 0.834 0.697 0.049

1000 α̂ 0.223 0.193 0.148 0.243 0.148 0.151 0.251 0.142 0.174
(0.116 ) (0.091 ) (0.091 ) (0.347 ) (0.273 ) (0.273 ) (0.428 ) (0.340 ) (0.417 )

β̂0 0.000 0.000 0.000 0.000 0.000 −0.003 0.005 0.003 0.002
(0.053 ) (0.053 ) (0.026 ) (0.058 ) (0.057 ) (0.049 ) (0.069 ) (0.065 ) (0.072 )

β̂1 1.009 1.010 0.547 1.010 1.009 0.547 1.010 1.007 0.547
(0.057 ) (0.058 ) (0.447 ) (0.053 ) (0.053 ) (0.454 ) (0.055 ) (0.059 ) (0.454 )

Time:
Loop 1.511 3.449 1.408 4.975 1.477 6.578
#iter 6 6 7 6 7 6
Total 9.196 20.724 0.057 9.650 29.917 0.052 10.516 39.557 0.061

2000 α̂ 0.225 0.191 0.153 0.273 0.173 0.139 0.220 0.030 0.190
(0.118 ) (0.090 ) (0.093 ) (0.343 ) (0.262 ) (0.263 ) (0.426 ) (0.668 ) (0.429 )

β̂0 −0.001 0.000 −0.001 0.002 0.002 0.001 0.004 −0.002 0.001
(0.037 ) (0.037 ) (0.019 ) (0.043 ) (0.040 ) (0.037 ) (0.056 ) (0.065 ) (0.052 )

β̂1 1.001 1.002 0.549 1.007 1.006 0.543 1.007 1.011 0.543
(0.038 ) (0.038 ) (0.452 ) (0.038 ) (0.038 ) (0.458 ) (0.038 ) (0.079 ) (0.457 )

Time:
Loop 5.535 24.863 5.418 34.427 4.449 41.755
#iter 6 6 7 6 7 6
Total 33.733 149.220 0.064 37.795 206.701 0.095 31.544 252.729 0.134

NOTE: Numbers in brackets are root mean square errors (RMSE). Computational time in seconds. True values of the
regressions parameters �xed at β0 = 0 and β1 = 1.
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Table .3: Performance of the iterative GMM estimator with approximated gradients compared to other GMM estimators for the spatial
Probit model with α = 0.5

δ 0.01 0.1 0.2
N iGMMa iGMM LGMM iGMMa iGMM LGMM iGMMa iGMM LGMM

100 α̂ 0.508 0.459 0.360 0.506 0.344 0.334 0.375 0.255 0.253
(0.098 ) (0.084 ) (0.158 ) (0.322 ) (0.277 ) (0.287 ) (0.397 ) (0.396 ) (0.376 )

β̂0 0.002 0.002 0.003 −0.016 −0.010 −0.007 −0.021 −0.024 −0.006
(0.166 ) (0.178 ) (0.100 ) (0.265 ) (0.240 ) (0.184 ) (0.283 ) (0.259 ) (0.207 )

β̂1 0.905 1.075 0.653 1.146 1.105 0.670 1.094 1.080 0.620
(0.213 ) (0.265 ) (0.365 ) (0.312 ) (0.258 ) (0.368 ) (0.219 ) (0.219 ) (0.401 )

Time:
Loop 0.115 0.081 0.108 0.105 0.117 0.102
#iter 7 6 7 6 7 6
Total 0.930 0.556 0.047 0.858 0.698 0.049 0.917 0.686 0.050

1000 α̂ 0.713 0.492 0.481 0.521 0.349 0.500 0.434 0.280 0.488
(0.242 ) (0.057 ) (0.088 ) (0.289 ) (0.249 ) (0.298 ) (0.384 ) (0.358 ) (0.432 )

β̂0 0.003 0.002 0.001 −0.007 −0.007 0.000 −0.001 −0.001 −0.003
(0.047 ) (0.042 ) (0.062 ) (0.066 ) (0.063 ) (0.111 ) (0.075 ) (0.074 ) (0.132 )

β̂1 0.988 1.008 0.614 1.013 1.009 0.558 1.015 1.008 0.552
(0.061 ) (0.060 ) (0.388 ) (0.059 ) (0.055 ) (0.444 ) (0.065 ) (0.058 ) (0.449 )

Time:
Loop 1.400 3.663 1.429 4.545 1.474 6.850
#iter 7 6 7 6 7 6
Total 10.566 21.944 0.058 10.674 27.340 0.068 10.887 41.240 0.059

2000 α̂ 0.726 0.489 0.496 0.553 0.381 0.502 0.436 0.375 0.465
(0.250 ) (0.054 ) (0.084 ) (0.284 ) (0.226 ) (0.292 ) (0.411 ) (0.624 ) (0.458 )

β̂0 0.001 0.001 0.002 −0.001 −0.001 0.000 −0.004 −0.001 0.003
(0.033 ) (0.030 ) (0.051 ) (0.043 ) (0.041 ) (0.077 ) (0.051 ) (0.084 ) (0.087 )

β̂1 0.994 1.004 0.586 1.007 1.004 0.548 1.006 1.027 0.546
(0.042 ) (0.041 ) (0.415 ) (0.042 ) (0.039 ) (0.453 ) (0.057 ) (0.111 ) (0.454 )

Time:
Loop 5.834 25.038 4.852 35.765 4.475 41.923
#iter 8 6 7 6 7 6
Total 46.646 150.268 0.079 36.788 215.525 0.094 33.050 260.884 0.123

NOTE: Numbers in brackets are root mean square errors (RMSE). Computational time in seconds. True values of the
regressions parameters �xed at β0 = 0 and β1 = 1.
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Table .4: Performance of the iterative GMM estimator with approximated gradients compared to other GMM estimators for the spatial
Probit model with α = 0.8

δ 0.01 0.1 0.2
N iGMMa iGMM LGMM iGMMa iGMM LGMM iGMMa iGMM LGMM

100 α̂ 0.661 0.576 0.464 0.582 0.413 0.398 0.367 0.259 0.234
(0.259 ) (0.246 ) (0.358 ) (0.388 ) (0.463 ) (0.470 ) (0.586 ) (0.622 ) (0.645 )

β̂0 0.163 0.149 0.010 −0.001 −0.017 0.027 0.041 0.029 0.006
(0.257 ) (0.249 ) (0.070 ) (0.529 ) (0.469 ) (0.295 ) (0.812 ) (0.711 ) (0.464 )

β̂1 0.551 0.736 0.420 0.940 0.911 0.581 1.020 1.019 0.595
(0.473 ) (0.320 ) (0.583 ) (0.228 ) (0.223 ) (0.444 ) (0.195 ) (0.226 ) (0.423 )

Time:
Loop 0.123 0.097 0.108 0.108 0.118 0.107
#iter 8 6 8 6 7 6
Total 1.102 0.689 0.039 0.893 0.718 0.045 0.953 0.734 0.051

1000 α̂ 1.266 0.711 1.246 0.660 0.406 1.278 0.458 0.302 1.258
(0.467 ) (0.091 ) (0.459 ) (0.401 ) (0.484 ) (0.668 ) (0.566 ) (0.607 ) (0.809 )

β̂0 0.009 0.013 −0.049 −0.004 −0.007 −0.079 0.007 0.011 0.009
(0.037 ) (0.031 ) (0.170 ) (0.162 ) (0.155 ) (0.578 ) (0.204 ) (0.193 ) (0.618 )

β̂1 0.793 0.894 0.593 0.997 0.985 0.594 1.003 1.003 0.577
(0.211 ) (0.115 ) (0.408 ) (0.075 ) (0.060 ) (0.409 ) (0.055 ) (0.063 ) (0.425 )

Time:
Loop 1.431 3.453 1.450 4.554 1.468 6.845
#iter 9 6 8 6 7 6
Total 12.912 21.321 0.054 12.034 27.726 0.067 10.947 41.646 0.060

2000 α̂ 1.862 0.721 1.271 0.729 0.606 1.341 0.558 0.624 1.190
(1.071 ) (0.080 ) (0.479 ) (0.313 ) (0.299 ) (0.687 ) (0.553 ) (0.691 ) (0.858 )

β̂0 0.017 0.007 0.050 −0.012 −0.002 −0.070 −0.001 −0.035 0.069
(0.040 ) (0.038 ) (0.155 ) (0.129 ) (0.068 ) (0.477 ) (0.154 ) (0.203 ) (0.449 )

β̂1 0.858 0.950 0.637 0.996 1.102 0.573 1.006 1.061 0.556
(0.148 ) (0.056 ) (0.364 ) (0.037 ) (0.451 ) (0.428 ) (0.047 ) (0.169 ) (0.445 )

Time:
Loop 6.099 16.914 4.384 47.335 5.088 47.882
#iter 13 7 8 7 7 6
Total 81.116 122.998 0.070 35.781 319.595 0.094 38.483 294.524 0.123

NOTE: Numbers in brackets are root mean square errors (RMSE). Computational time in seconds. True values of the
regressions parameters �xed at β0 = 0 and β1 = 1.
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Appendix B

Table .5: Descriptive statistics for the variables included in the empirical application on competitiveness

Y AQImin AQImax % days O3 % days PM2.5 % days NO2

Mean 0.202 0.124 1.422 0.422 0.432 0.035
Std. Dev. 0.401 0.080 0.908 0.290 0.294 0.073
Min 0.000 0.000 0.380 0.000 0.000 0.000
Q1 0.000 0.060 1.090 0.215 0.191 0.000
Median 0.000 0.110 1.330 0.385 0.398 0.000
Q3 0.000 0.170 1.600 0.649 0.648 0.033
Max 1.000 0.430 22.120 1.000 1.000 0.653

N 3,756 3,756 3,756 3,756 3,756 3,756

Figure .1: Centroids of the U.S. Metropolitan Statistical Areas included in the empirical application on competi-
tiveness
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Table .6: Spatial lag Probit estimation results for the empirical
application on competitiveness

Dependent variable:

Y

(iGMMa) (iGMM) (LGMM)

Intercept −0.535∗ −0.568∗∗∗ −0.389∗∗

(0.279 ) (0.168 ) (0.158 )

AQImin 1.629∗∗∗ 1.783∗∗∗ 0.939∗∗∗

(0.308 ) (0.344 ) (0.305 )

AQImax −0.118∗∗ −0.137∗∗ 0.017
(0.059 ) (0.066 ) (0.059 )

% days O3 −0.156 −0.161 −0.156
(0.120 ) (0.132 ) (0.125 )

% days PM2.5 0.052 0.049 −0.063
(0.118 ) (0.131 ) (0.128 )

% days NO2 0.150 0.220 −0.090
(0.306 ) (0.323 ) (0.326 )

Spatial Lag 0.578∗∗ 0.422∗∗ 0.276∗∗∗

(0.278 ) (0.175 ) (0.075 )

Observations 3,756 3,756 3,756
# Iterations 16 51
Hansen's J test 5.224 5.375 37.991
(p-value) (0.485 ) (0.503 ) (1.000 )

NOTE: Standard errors in parentheses. Signi�cance at
the 1%, 5% and 10% levels indicated by ∗∗∗, ∗∗ and ∗,
respectively.
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