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Highlights: 

 

 Establishment of Green Analytical Chemistry strategies for water analysis  

 On-site extraction and analysis using thin film microextraction coupled to portable GC/MS  

 Development of in-bottle TFME approach for accurate and sensitive quantitation  

 Comsol modeling to simulate the boundary layer around the membrane  

 

Abstract  

The aim of the current study is the establishment of Green Analytical Chemistry strategies for water analysis 

by elimination/reduction of hazardous chemicals, energy consumption, and waste generation throughout 

the entire analytical workflow. The first approach introduced in this manuscript consists of addition of water 

to a sampling vessel that contains a thin film microextraction (TFME) device, followed by removal of the 

device after equilibration, and subsequent quantification of the extracted components by thermal desorption 
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GC/MS. In this approach, namely the in-bottle TFME approach, analyte-loss associated errors that stem 

from analyte adherence to glass surfaces and/or degradation are avoided as extraction occurs in situ, while 

analytes are isolated from a complex matrix that contains degradation agents (bacteria, oxidizing or 

reducing species, etc.). This procedure also circumvents the splitting of original samples into sub-samples. 

The second approach involves the use of portable TFME devices that facilitate on-site extraction of 

compounds, therefore eliminating the use of collection vessels, a factor known to potentially introduce 

errors into analysis. The herein described procedure involves attachment of the TFME device to drill 

accessories, analyte extraction via direct immersion into sampled site, and subsequent on-site instrumental 

analysis, which is carried out with the use of a portable GC/MS containing an appropriate thermal 

desorption interface, or alternatively, by transferring the membrane to the laboratory for bench-top GC/MS 

analysis. To facilitate a better understanding of the processes governing the developed approaches, 

modeling by COMSOL Multiphysics® software was performed. The findings of this study were applied 

for further method optimization, and the optimized developed methods were then applied for on-site surface 

water analyses. Finally, the greenness of the developed methods was evaluated with use of the eco-scale 

assessment, with obtained scores compared to that of the US EPA 8270 method.  

  

Keywords: Thin film microextraction, In-bottle TFME, On-site sampling, Portable GC/MS, On-site river 

monitoring 

 

1. Introduction 

Given the impact of pesticide residues on the environment and human health, several priority lists 

comprising maximum contaminant levels (MCLs) have been established by the US environmental 

protection agency (US EPA) and EU regulations [1–4] to monitor the quality of drinking, surface, and 

ground water. Today, several official techniques [2,3], including liquid-liquid extraction (LLE) and solid 

phase extraction (SPE), are available for determination of contaminants (e.g. pesticides and polycyclic 
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aromatic hydrocarbons, PAHs [2,3]) in water samples. As well known by analysts, losses of compounds 

during transfer of water samples from the sampling site to the laboratory are common sources of errors in 

many analytical procedures involving determination of compounds characterized by medium to high 

hydrophobicity. In such cases, compound loss may stem from the adsorption of target analytes to the surface 

of the sampling/collection bottle, and/or their degradation during transportation. LLE is currently one of 

the most popular techniques used in contract laboratories for analyses of water samples [2], since the 

method allows for accurate quantification of hydrophobic compounds in cases where extraction is 

performed in the original bottle. However, LLE is a time-consuming and tedious method that employs toxic 

solvents for extraction, a process which subsequently generates hazardous waste [2,5,6]. Aiming to reduce 

the use of organic solvents, SPE has also become established as a well-known official method for analysis 

of water samples in contract laboratories. However, losses of hydrophobic compounds during transportation 

to laboratories, requisite elution of samples through the cartridge, and often, the need to add a filtration step 

to facilitate removal of suspended particles are often cited as major drawbacks of this technique. To address 

the above challenges associated with application of traditional methods, microextraction methodologies 

such as solid phase microextraction (SPME), which replaces organic solvent with a solid phase, have been 

introduced as alternative approaches that move towards green sample preparation. SPME was developed in 

the early 1990s [7] as a promising and innovative solvent-free technique that eliminates the need for toxic 

solvent use while simplifying the workflow of extraction and analysis for a wide range of applications [8–

19]. Indeed, SPME has been demonstrated to provide similar accuracy and precision figures as those offered 

by the accredited method for water analysis [5,20]. Given the several features afforded by SPME, such as 

various available geometries [21–23], biocompatibility [9], and open-bed extraction, SPME-based 

technologies have enabled several new analytical applications (e.g. in-vivo and on-site extraction) that 

could not otherwise be carried out by application of LLE and SPE techniques [6,24–27]. However, SPME 

and SPE share a common limitation in regards to the analysis of hydrophobic compounds. While previous 

SPME-based studies have had some success in improving the accuracy of results for hydrophobic 

compounds [28,29], the development of environmentally friendlier, simplified, and more universal 
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methodologies that can be adopted for industrial applications and routine analyses is still highly demanded. 

Aiming to increase extraction efficiency without sacrificing extraction time, a new geometry of SPME, 

namely thin film microextraction (TFME), was introduced in 2003 by Bruheim et al. [30], using a pure 

polydimethylsiloxane (PDMS) sheet as extraction phase for semi volatiles extraction. Since then, several 

improvements to the TFME morphology, which have increased its robustness (i.e. coating the extraction 

phase on fabric substrate) [12,20] and extraction efficiency [31,32], have enabled expansion of its 

applicability towards a range of new analytical applications. Further, the possibilities presented by TFME 

have inspired the development of a range of different formats of SPME that  function very similarly in 

principle , such as fabric phase sorptive extraction  [33,34], and thin film extraction based on molecularly 

imprinted polymers on a glass substrate [35]. In terms of validation of optimal coating chemistry, recent 

studies have fully validated the use of membranes based on PDMS/divinylbenzene (DVB) ( both on a 

carbon fabric substrate [12] and self-supported [31]) for routine laboratory analysis, fully demonstrating 

TFME as a sensitive and rapid technique with performance comparable to traditional methods [20]. Herein, 

we moved toward development of on-site extraction/analysis strategies as a means to further reduce 

analytical errors as well as improve the greenness of the method. 

The goal of the current study encompasses the development of new green strategies to improve the accuracy 

of quantitation, particularly for hydrophobic compounds, by application of two new approaches utilizing 

in-bottle TFME and on-site TFME. Aiming to provide a procedure that allows for implementation of the 

entire analytical procedure on-field, a method based on drill-TFME for extraction of compounds from free 

flowing river water, followed by on-site portable GC/MS analysis was also designed. In addition,  

preliminary experiments were performed as part of this work to assess the feasibility of untargeted analysis 

via portable GC/MS following on-site sampling.  

 

2. Experimental Section 

2.1. Reagents and Materials  
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Pesticide mixtures, including triazines, organophosphorus pesticides (OPPs), and carbamates in acetonitrile 

(ACN), were purchased from AccuStandard (New Haven, CT, USA). Pure standards of chlorophenols, 

trifluralin, and methyl parathion were obtained from Sigma-Aldrich (Oakville, ON, Canada). Internal 

standards, including 3,5-dichlorophenol-d3, trifluralin-d14 and metolachlor-d6, were prepared from stock 

solutions sourced from CDN Isotopes (Pointe-Claire, QC, Canada). DVB particles (5 µm diameter) and 

high-density PLOT PDMS, used in the preparation of the membrane, were obtained from Supelco 

(Bellefonte, PA, U.S.A). Nanopure water was sourced from a Barnstead/Thermodyne Nanopure ultra-pure 

water system (Type 1 water grade) for method development. A mixture of standards at different 

concentrations was prepared in ACN by diluting stock solutions for preliminary experiments, method 

development, and preparation of calibration levels. Properties of the selected pesticides are provided in 

Table S1 of Supporting Information. 

  

2.2. Instrumentation  

Analysis of the targeted pesticides on bench-top instrumentation was performed by the Agilent GC 6890A 

instrument equipped with a thermal desorption unit (TDU) (GERSTEL, Mülheim an der Ruhr, GE), and 

hyphenated to a  5973C Series MS detector (Agilent Technologies, CA, U.S.A.) On-site GC-MS analysis 

was performed using a Tridion-9 portable GC-MS and a corresponding SPS-3 thermal desorption unit 

(Perkin Elmer, American Fork, Utah). Further details regarding chromatographic separation and SIM 

parameters are provided in section II of Supporting Information.  

TFME devices were prepared with the use of an Elcometer 4340 automatic film applicator (Elcometer Inc., 

Manchester, UK) in accordance with the bar coating procedure developed by Grandy et. al [12]. The 19-

gauge Tenax/Carboxen needle trap device (NTD) was purchased from the Torion Technology division of 

Perkin Elmer (American Fork, Utah). 

 

2.3. Design of the in-bottle TFME, Sampling Case, and Drill Accessories  
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Figure 1a shows the apparatus designed for the in-bottle TFME strategy.  The designed equipment consisted 

of a 1L bottle equipped with a Teflon home-built adaptor, which was employed to hold the membrane in 

the bottle through the use of a disposable fluorocarbon thread (Berkley fishing line). A PDMS/DVB thin 

film coated onto carbon mesh fabric was used for evaluation of the developed methods. The bottle was 

filled (1 L) with nanopure water for method development, while surface water was utilized in real sample 

analyses. The second employed strategy involved application of on-site TFME via deployment of a portable 

sampling case equipped with a drill to control the speed and time of agitation, and a head to hold the multi-

TFME devices. Compared to a commercial drill, the newly designed sampling case provides higher 

agitation rates (up to 4500 rpm) with controlled sampling times, and a longer battery lifetime that exceeds 

several hours, facilitating on-site extractions from river waters. Figure 1b shows the instrument set up used 

for on-site TFME, including the sampling case, multi-TFME holder, portable GC/MS, needle trap device 

(used to transfer analytes into the instrument), and standard gas generation vial (used to run QC).  

 

2.4. LLE-GC/MS Official Method and Split Samples  

One of the main goals of the current study was to demonstrate the feasibility of adopting SPME techniques 

as standard protocols in analytical laboratories for analysis of water samples [5,20]. To this end, the 

developed in-bottle TFME method was further validated by split blind analyses of surface water samples 

by TFME (at the University of Waterloo) and by LLE at Maxxam Analytics (Mississauga, ON). Surface 

water samples were collected from Grand River in Waterloo, ON, Canada. Samples fortified with the 

studied pesticides were split, coded, and submitted to Maxxam Analytics and the University of Waterloo. 

An accredited method (Standards Council of Canada) based on LLE and GC/MS was applied for analysis 

of samples at Maxxam Analytics. The reference method was based on US EPA method 8270, with some 

modifications (Further details can be found in our previous studies [5,20]). 

 

3. Results and Discussion 
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3.1. Development of Bottle Sampling TFME   

3.1.1. Extraction Time Profile  

The designed in-bottle TFME (Figure 1a) allows for extraction of compounds to begin taking place from 

the moment that the bottle is filled with water sample in the field. However, given the significant variations 

in time associated with the transportation of samples from site to laboratory, as well as the variations in 

waiting time for analysis between samples, it thus becomes necessary to carry out all experiments under 

the equilibrium regime so as to ensure accurate quantitation. Evaluation of extraction time profiles was 

carried out by spiking nanopure water with the selected compounds, ten pesticides from different classes 

and polarities, at a concentration of 100 ng L-1. Three internal standards, 3,5-DCP-d3, Trifluralin-d14, and 

Metolachlor-d6, were also added to the sample. The orbi-shaker was selected as apparatus to agitate the 

water sample in the 1L bottle at 200 rpm. Extraction time profiles were investigated from 30 min to 4 days, 

with results showing that the majority of the studied compounds reached equilibrium after 24 hours (Figure 

2a). To ensure equilibration of all compounds, a period of three days was selected as extraction time for 

further evaluation of the method.  

 

3.1.2. Method Validation  

Validation of the method was based on an industry standard validation protocol consisted of four steps: 

evaluation of method blank and carryover; limit of detection (LOD) and quantitation (LOQ); calibration 

curve and linear range; and finally, precision and accuracy of the method at different concentration levels.  

At first, a blank of the method was evaluated by analysis of nanopure water, using a PDMS/DVB thin film 

device under the previously selected conditions (i.e. 3 days as extraction time; agitation at 200 rpm, using 

orbi-shaker). Newly prepared TFME devices and clean bottles were used so as to ensure no carryover of 

compounds from previous experiments. The obtained results showed that most of the targeted pesticides 

were present in nanopure water at pg L-1 and low ng L-1 levels. In our previous study [20], nanopure water 

ACCEPTED M
ANUSCRIP

T



 8 

was identified as a “non-detect” for the selected pesticides due to the use of a smaller sample volume (30 

mL), as well as the shorter extraction time (30 min) selected for that application. However, in the current 

study, given the larger sample volume, 1L, and equilibrium time of extraction (3 days), significant 

enhancement in sensitivity was achieved. Table S3 of Supporting Information also shows total recoveries 

of the studied compounds via the developed in-bottle TFME method. Succinctly, the preconcentration 

capability of the developed TFME method under the selected parameters (large volumes of sample and 

equilibrium extraction), once coupled with the cryofocusing in the TDU/CIS system in splitless mode, 

allowed for a sensitive method able to detect ultra-trace amounts of the studied compounds. Several 

experiments were performed to confirm the blank of the method; further details are provided in section IV 

of Supporting Information.    

After evaluation of blank and noise levels, LOD and LOQ values were obtained, using an S/N of 3 and 10, 

respectively. As shown in Table 1, LOD and LOQ values in low ng L-1 were achieved by the in-bottle 

TFME method in 2-3 orders of magnitude higher sensitivity than that obtained by EPA method 8270, where 

limits of detection are based on the standard deviation of low level analyses (More detail of LOD and LOQ 

obtained by Maxxam Analytics can be found in our previous inter-laboratory study [5]). Successively, a 

calibration curve was obtained using weighted linear regression. Good linearity was achieved in the range 

of 3-1000 ng L-1, with R2 > 0.99 for most of the compounds. The accuracy and repeatability of the developed 

method were studied at two levels of concentration, with acceptable accuracy (in the range of 71-124 %) 

and repeatability (percent relative standard deviation, %RSD  between 1-21). Finally, the method was 

evaluated by split blind analyses of four surface water samples fortified with the selected pesticides. The 

bottle was completely filled with surface water samples, and quantitation was performed using the external 

calibration method. The pH of surface water samples was adjusted with phosphate buffer (pH ~ 5.5) to 

match the nanopure water calibration. For future studies, in cases where filling the bottle to full capacity 

(1L) might prove difficult, the amount of the sample can be calculated by weighting the bottle.   

Table 2 presents a comparison of the results obtained by both methods, showing distinctive features of the 

current study in terms of sensitivity and accuracy. The first feature is related to the high sensitivity of the 
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method, capable of quantitation of the selected compounds even at the low nanogram per liter level, while 

the LLE method was only able to quantify compounds mainly present at the microgram per liter level. 

While the method detection limit of the LLE procedure carried out as part of this study meets US EPA 

requirements, it is nonetheless always beneficial to push down LOQ levels to lower concentrations that 

allow the method to be more universally well received, as well as applied in simultaneous determinations 

of a wide range of compounds. Such a feature is particularly relevant for compounds characterized by MCLs 

lower than those established by the US EPA, as is the case for certain compounds under the established EU 

quality standards [1,2]. As Table 1 shows, the in-bottle TFME method is very sensitive, such that the upper 

limits of the calibration curves are 300, 500, and 1000 ppt for the compounds under study. For SW1, as the 

concentrations of a few compounds were above these upper limits and hence, no longer in the linear 

dynamic range, these concentrations could not be quantified, and are thus denoted as N/A in Table 2. The 

in-bottle TFME is effectively used for ultra-trace analysis and might be too sensitive to analyze sample 

concentrations in the ppb level.  

In the LLE technique, analytes need to be present in the medium in their neutral form due to the exhaustive 

calibration nature of this technique; as such, in order to extract pesticides that contain acidic, basic, and 

neutral (ABNs) compounds, three separate extractions need to be performed at different pH levels so as to 

match each condition. Addition of these extraction steps, however, makes the method cumbersome and 

time consuming, while the use of sodium hydroxide and hydrochloric acid adversely affect the greenness 

of the method. On the other hand, for TFME analysis, sample pH does not need to be adjusted as long as 

sensitivity is not an issue, as the method is based on microextraction calibration; as such, only the pH and 

temperature of the sample and calibration curve must be matched.  

Table 2 also depicts the appreciable accuracies attained in this study. As can be seen, accuracies higher than 

85 % (except for one point) were obtained for all studied compounds in surface water samples, even for 

triallate and trifluralin, which have log P values of 6.18 and 5.41, respectively. The high accuracies attained 

in this work certainly support the hypothesis that circumvention of the use of sub-samples (‘sub-sample’ 

denotes the transfer of sample from the original sampling bottle to a secondary vial/tube/bottle for 
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subsequent experiments), even in cases where compounds adsorb on the surface of the bottle, can greatly 

facilitate attainment of high accuracy in quantitation. Given that the same procedure was followed to both 

obtain the calibration curves and carry out analysis of real samples, the free concentrations of the 

compounds under study can then be assumed to be similar, leading to improved accuracy of quantitation. 

A comparison between the results obtained in the present study and findings from our previous study [5,20] 

also shows improvement in accuracy for hydrophobic compounds, from the range of 40-70 % to an 

acceptable range (i.e. ≥ 70 %). While the accuracy of the method for a few compounds was observed at 

150%, such figures can be corrected in future studies by selecting a deuterated internal standard for each 

compound to accurately correct instrumental fluctuations.  

 

3.2. On-Site TFME  

3.2.1. Optimization  

Prior to on-site deployment, the drill-TFME method was optimized in the laboratory with respect to 

influential parameters, such as the extraction time profile and the agitation rate of the drill. The agitation 

rate was the first parameter investigated, as it controls the thickness of the boundary layer, and affects the 

mass transfer of compounds to the coating. In the pre-equilibrium regime, improved sensitivity is expected 

to be achieved at higher agitation rates due to a decrease in the thickness of the boundary layer. Application 

of high agitation rates are beneficial for on-site extractions, since a short extraction is preferred due to 

practical limitations (e.g. lifetime of the battery, sampling difficulties related to the accessibility of the site 

and sample). In view of this, agitation rates in the range of 500-3000 rpm were investigated in 1L of 

nanopure water spiked with the target pesticides at 1 µg L-1. The highest sensitivity increases were observed 

for most compounds at 2000 rpm (Figure 2b).  

 An extraction time profile was then obtained using the optimized stir rate of 2000 rpm in 1L nanopure 

water spiked at 1 µg L-1. As shown in Figure 2c, after three hours, all spiked compounds were shown to 

reach equilibrium. However, as previously mentioned, a shorter extraction time needed to be selected so as 
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to simplify the on-site TFME procedure. Therefore, 10 minutes was selected as extraction time for further 

evaluation of the method.  

 

3.2.2. COMSOL-based Modeling 

It was anticipated that given the directional stream-line velocity of the sample around the membrane, one 

side of the membrane would have a thicker boundary layer, and therefore, lower extraction efficiency within 

the pre-equilibrium regime. COMSOL-based modeling was used to simulate the boundary layer around the 

membrane so as to gather a better understanding of the obtained results. Alam et al. have recently described 

a computational model that accounts for the analyte transport processes occurring during extraction by an 

SPME coating [36]. This model has been employed to estimate the diffusion boundary layer formed around 

the SPME membrane during the kinetic regime of extraction. As depicted in Figure S2 of Supporting 

Information, the model considered a two-dimensional segment of a sample-extractant system. Here, the 

flow field is assumed to be normal to the membrane, since the membranes (three and six assembled in the 

holders in the current study) orbit around an axis of fixed distance. The flow in the sample domain is 

governed by the Navier-Stokes equation and treated as steady state. The time-dependent partial differential 

equations for each of these physical processes were solved simultaneously according to the procedure 

mentioned in the associated literature [37]. In the sample matrix, chemicals are transported via convection 

and diffusion, while diffusion is the only transport process involved within the static boundary layer domain 

of the coating. Due to the concentration gradient at the sample-coating interface, mass fluxes are established 

across the interface. COMSOL Multiphysics 5.1, a finite element method (FEM) based software package, 

was utilized in this modeling and simulation study. The parameters used in the simulation are given in Table 

S5. As the boundary layer thickness around the membrane controls the mass transfer of analytes to the 

membrane, a decrease in this thickness results in an increase in the uptake (mass transfer) of analytes during 

the pre-equilibrium regime, as well as shorter equilibrium times. Figure 3a shows  COMSOL-based 

modeling visualization of the diffusion boundary layer around the membrane during the initial stage of 

sample extraction. The surface plot presented in Figure 3a shows the simulated concentration (ng/ml) 
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profile and the streamline representing the water velocity field around the membrane. The color bar 

represents the range of concentrations in and out of the diffusion layer that are present around the 

membrane. Results of this simulation support that the boundary thicknesses are different at both sides of 

the membrane; therefore, the extraction efficiency of one side of the membrane is expected to be higher in 

the pre-equilibrium regime (Fig. 3b). Therefore, by switching the rotational direction of the drill mid-

extraction, a higher extraction efficiency can be achieved.  

 

3.2.3. On-site sampling TFME and bench-top GC/MS analysis: 

The experiment was optimized based on the modeling simulation results to improve the extraction 

efficiency of the methods under similar conditions, which included a sample volume of  1L of nanopure 

water spiked at 1 µg L-1 and an agitation rate of 2000 rpm  (Figure 3c). On-site river sampling using a thin 

film equipped drill was conducted at an agitation rate of 2000 rpm for 10 minutes (5 minute for each side). 

Following conclusion of the sampling procedure, the deployed thin film devices were brought back to the 

laboratory for bench-top GC/MS analysis. 

Table S6 of Supporting Information shows the LOD and LOQ values of the drill-based TFME method (in 

the range of 20-300 ng L-1) using a 10 min extraction time and 2000 rpm agitation rate. Table 3 also 

compares the method detection limits of the in-bottle TFME, drill TFME, and US EPA 8270. Quantitation 

can be performed either by using an external calibration curve obtained under negligible depletion 

conditions or by obtaining the sampling rates of individual compounds [26,38]. It is worth mentioning that 

at negligible depletion conditions, the amount of analyte extracted is independent from the sample volume;  

therefore, the calibration curve obtained in-lab can be used for on-site analysis and quantitation from river 

waters [26]. Further information regarding quantitation using sampling rates is provided in section VII of 

Supporting Information.  

 

3.2.4. On-site sampling TFME and portable GC/MS analysis  
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The last approach developed as part of this work concerned on-site extraction and subsequent quantitation 

of compounds via portable GC/MS for rapid screening and monitoring of water samples, as an alternative 

to transporting extraction devices to a laboratory for instrumental analysis [39,40]. For on-site analysis, the 

stability and repeatability of the portable GC/MS instrument are critical parameters that need to be 

frequently monitored by running an extensive quality control (QC) protocol. Unlike benchtop 

instrumentation, battery operated, portable GC/MS instruments must be powered off after each use. As 

such, a reusable standard BTEX gas-generating vial held carefully at 35 oC with a portable block heater 

was used to monitor the status of the instrument in field [41,42]. In cases where the portable GC/MS was 

not directly equipped with the TDU unit, a secondary SPS-3 thermal desorption module was first used to 

transfer analytes from the TFME membranes to a needle trap device, which could then be directly 

introduced into the instrument [12]. All optimizations of the drill-TFME method were performed in a 

temperature controlled laboratory at 22.5 oC. It is also important to note that if external calibration is to be 

used for real on-site TFME experiments, the temperature of the sample matrix must match or be close to 

that of the external calibration experiment. Alternatively, the kinetic calibration [43] method, performed by 

loading internal standard on the coating, can be used to justify any temperature variations. However, the 

kinetic calibration can only be performed with a proper coating material that assure adsorption-desorption 

symmetry for analyte and internal standard, respectively.. 

Finally, analyses of real water samples along 4 sampling sites (2 affected and 2 low-impact) within the 

Grand River and Credit River (Ontario, Canada) were performed by three methods, including i) in-bottle 

TFME, ii) on-site TFME and bench-top GC/MS analysis, and iii) on-site TFME-portable GC/MS analysis. 

These sites included the small community of West Montrose (clean), downstream of multiple 

Kitchener/Waterloo golf courses (affected) within the Grand River, and both up and downstream of a 

covered dumpsite near the Forks of the Credit Provincial Park. River temperature was monitored using a 

thermometer and found to be relatively consistent between the four sites, ranging from 22 oC +/- 1oC for 

the Credit River sites, and 25ºC +/- 1oC for the Grand River sites. Therefore, in the current study, there were 

no considerable temperature variations between the external calibration curve and real samples. For 
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validation of the methods, one grab sample from each location was taken and submitted to Maxxam 

Analytics (Mississauga, ON).  

Real sample analysis revealed that the levels of the targeted pesticide compounds were well below the limits 

of detection of most of the methods being tested. This was further confirmed by the accredited method (US-

EPA 8270) performed by Maxxam Analytics. Although these results are great news in terms of the water 

quality of the tested rivers at the time of sampling, the results of this real-life application failed to yield 

much in terms of engaging in scientific comparison. Nonetheless, the more sensitive TFME bottle sampling 

method still enabled identification and quantitation of selected compounds. These levels were found to be 

19 and 3 ng L-1 for 2,4,6 TCP, trifluralin, and methyl-parathion on the Credit River dumpsite respectively, 

whereas 2,4,6 TCP, metholachlor, chlorpyrifos, and cyanazine were quantified at 9, 10, 11, 14 ng L-1 at the 

golf course site (Grand River), respectively. Many other compounds were detected using the TFME-bottle 

methodology but were at levels just under the method LOQ; these findings can be viewed in Tables S9 and 

S10. 

The toroidal ion trap of the portable GC-MS was run in full-scan mode (43-500 AMU), allowing for a 

determination of the repeatability of the method, which was carried out by defining the identity of a select 

few of the unknown compounds that were extracted. In fact, the ability to quickly determine whether or not 

a target compound is present in a sample remains one of the key advantages of portable instrumentation. 

As such, various non-target analytes were identified and selected based on their molecular functional group 

from extracts obtained from the affected sites of both river systems. These unknown features were 

preliminarily identified using the NIST mass spectral database (Figure 4), followed by tentative verification 

via a linear retention index (LRI) plot (Figure S.3), which was generated using a C7-C20 n-alkanes 

generating standard gas-generating vial. These results can be seen in Tables 4 and S10 for extracts obtained 

from the Credit River and Grand River sites, respectively. It was promising to see that RSD% levels (n=5) 

for all compounds tested were around the +/- 20% range. This repeatability was further supported by 

favorable control chart data (Figure S.4) set at 2 standard deviations of the mean, which was generated 

using the field portable BTEX standard gas-generating vial. To prepare this plot, 2 BTEX extractions were 
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performed onsite before and after every sampling (equaling 4 total extractions per site). Furthermore, 

previous works performed by Grandy et al. have demonstrated sub-ppb detection limits for similar 

pesticides, including 2,4 dichlorophenol, 2,4,6 TCP, phorate D10, fonofos, chlorpyrifos, and parathion with 

LOQ values of 100, 100, 100, 500, 500, 1000 ng L-1, respectively, which are in the same order of magnitude 

as those reported in the current study.10 The findings of this work certainly support application of the 

developed field portable analysis method as a quick and efficient solution to analytical tasks that require 

fast, on-site absence-presence determination of target analytes. 

3.3. Evaluation of Greenness of the Developed Methods  

Nowadays, the development of green techniques and strategies that have minimal impact on the 

environment plays a vital role in current, trending research in analytical chemistry.[44–47]  In this regard, 

it is widely acknowledged that in analytical chemistry, ‘green chemistry’ is understood to encompass both 

separation science and sample preparation [44]. In this sense, green analytical chemistry techniques are 

focused on the “3R” and “4S” approaches. The approaches are based on “Reduction, Replacement, and 

Recycling” of hazardous solvents and materials (3R) and introduction of “Specific method, Smaller 

dimensions, Simpler methods, and Statistics”(4S) [44]. In this respect, an ideal ‘green’ method would thus 

have to integrate several steps into one, and preferably eliminate waste generation by performing the entire 

extraction and analysis on-site (or at least enable on-site extraction, with associated transportation of only 

the extraction device to the laboratory, rather than samples). With this in mind, several evaluations 

concerning the eco-scale greenness of methods have been introduced in different research areas, including 

analytical chemistry [48]. Such evaluations consider all the steps required for analysis of samples, including 

sample collection, preservation, transportation, sample preparation, and analysis. Further, these evaluations 

are carried out by assigning penalty points based on the i) reagents used, ii) method, iii) energy 

consumption, and iv) waste production. In this regard, a main advantage of using SPME is that the 

extraction phase is constituted by a polymeric coating rather than a toxic organic solvent. While certain 

steps of the analysis workflow are inevitable (e.g. analysis by GC/MS, LC-MS/MS), penalty points can be 

reduced by eliminating the sampling step through employment of on-site extraction and analysis. An 
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evaluation of the greenness of the developed methods presented in this study, also including the standard 

US EPA 8270 method for comparison, is shown in Table 5. As can be seen, the TFME method is 

significantly greener as compared to the standard method (Eco scale 81 vs 57). While the TFME method 

incurs 5 penalty points for waste generation, significant differences exist between the TFME and LLE 

methods in terms of generation of waste. In TFME, the waste generated during sample preparation is only 

related to water samples that are spiked with an internal standard mixture. To eliminate this source of waste 

generation, addition of internal standard can be avoided as long as there are no fluctuations in the 

instrument. In cases where internal standard is not added to the sample, the eco-scale greenness of the 

TFME method increases to 94. When considering applications that enable employment of on-site extraction 

and analysis strategies, the eco-scale for SPME techniques further increases to 99, becoming one of the 

greenest approaches in analytical chemistry, owing to the elimination of both sampling (transportation in 

the case of portable GC/MS analysis) and waste generation. It should be emphasized that penalty points 

associated with the establishment of the calibration curve, including employment of standard solutions, 

solvent use, and waste production, were not considered for this evaluation of the greenness of the method 

[48]    

 

4. Conclusion   

The developed in-bottle TFME extraction methodology herein presented was demonstrated to be a 

promising approach for accurate quantitation of compounds that may otherwise be lost during transportation 

to the lab and/or during sample-to-vial transfers. The obtained results demonstrated improvements on 

accuracy for hydrophobic compoundsand  the sensitivity of the developed methods significantly 

outweighed previously reported methods, including the accredited US EPA method used for validation 

purposes in this study. Although the method was developed using thin film on fabric as the extractant, other 

geometries of SPME, such as fiber or stirrer (Twister) configurations, are currently being considered as 

future directions in this research. The attachment of TFME to a stirrer with extraction phase in future studies 
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( using a PDMS/DVB coating as an efficient extraction phase) should further allow for significantly 

decreased equilibrium times, as higher stirring rates can be conveniently applied.  It is important to ensure 

that extraction conditions, including temperature, are kept constant during calibration and throughout 

sample analysis. Also, the use of spikes of internal standard for calibration of complex water samples needs 

to be carried out appropriately so as to facilitate full dissolution of the spike. The second approach 

investigated in this study, namely on-site extraction TFME facilitated by a home-built, drill-based sampling 

device, opens new possibilities for rapid on-site screening and quantitation.  In this approach, the 

transportation of samples to the laboratory is eliminated, thus showcasing this method as the ultimate green 

chemistry approach. Further, in addition to enabling accurate quantification of labile compounds by 

eliminating losses of analytes related to transportation and/or adhesion to apparatus, the developed method 

facilitates immediate decision-making for users as analytical results can be attained on-site almost 

immediately following sampling and portable instrumental analysis. However, careful attention should be 

paid to on-site temperature variations, as well as in cases where complex samples are analyzed; in such 

circumstances, the use of an in-coating calibration method should be considered if good accuracy and 

precision are desired rather than just the gathering of screening information. 

 

 

Supporting Information 

The following information may be found under Supporting Information: properties of the studied 

compounds, instrumentation, total recovery of the studied pesticides by bottle sampling TFME, evaluation 

of blanks of the bottle sampling TFME method, optimization of influential parameters, COMSOL modeling 

and simulation, LODs and LOQs for the studied pesticides by drill sampling TFME, sensitivity of the 

developed methods and US EPA 8270, determination of sampling rate of compounds using drill sampling 

TFME,  surface water analyses by the developed methods and US EPA 8270, on-site water analysis using 

TFME-portable GC/MS, and control Chart Data for Portable GC/MS instrument. 
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Figure captions 

Fig. 1. Developed strategies based on a) In-bottle TFME, and  b) On-site TFME using drill accessories and a 

portable GC/MS instrument  

 

Fig. 2. a) Extraction time profile for in-bottle TFME strategy (1L of nanopure water spiked at 100 ng L-1); b) Agitation 

rate of drill TFME sampler (1L of nanopure water spiked at 1 µg L-1, extraction time of 20 minutes); c) Extraction 

time profile of drill-TFME approach (1L of nanopure water spiked at 1 µg L-1, agitation rate of 2000 rpm); 

PDMS/DVB thin films were run in a TDU-GC/MS instrument. 

 

Fig. 3. Numerical (a and b) and experimental (c) validation of the effect of flow on the uptake of compounds and the 

thickness of the boundary layer. a) Visualization of the diffusion boundary layer around the membrane during the 

initial stage of sample extraction by COMSOL modeling; b) Variation of equilibration time with respect to the 

selected surface of the membrane by COMSOL modeling; and c) Comparison of extraction efficiency of the 

membrane at two conditions (1L of nanopure water spiked at 1 µg L-1, agitation rate of 2000 rpm). 

 

Fig. 4.  Untargeted water analysis using TFME-portable GC/MS. Downstream of Credit dump site using completely 

on-site analytical methodology 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Table 1- In-bottle TFME Method validation data summary 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

  

Pesticides 
LOD 

ng L-1 

LOQ 

ng L-1 

LDR  

ng L-1 

R2 Slope Intercept 

Accuracy (%) RSD %  

30 

ng L-1 

300 

ng L-1 

30 

ng L-1 

300 

ng L-1 

Cyanazine 3 10 10-300 0.9983 0.007 - 0.003 96 73  6  17  

Methyl-parathion 30 100 100-1000 0.9907 0.011 - 0.354 NA 126  NA 6  

Alachlor 3 10 10-300 0.9982 0.014 - 0.018 91  96  21  6  

Metolachlor 1 3 3-300 0.9994 0.041 0.001 90  115  3  14  

2,4,6-TCP 3 10 10-1000 0.9993 0.041 - 0.170 93  101  7  7  

Diazinon 30 100 100-1000 0.9983 0.028 - 1.745 NA 112  NA 19  

2,3,4,6-TeCP 1 3 3-1000 0.9996 0.040 - 0.065 86  124  9  20  

Chlopropyrifos 4 10 10-500 0.9982 0.012 - 0.028 91  91  9  6  

Trifluralin 1 3 3-500 0.9997 0.023 - 0.025 93  110  3  1  

Triallate 1 3 3-500 0.9928 0.037 - 0.054 109  110  12  9  

ACCEPTED M
ANUSCRIP

T



 29 

 

 

  
Table 2- Split sample analyses of surface water samples by in-bottle TFME and US EPA 8270 methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
ND: Not detected 

N/A: Not applicable (analyte concentration in sample was higher than the upper level of calibration curve, and thus not in the 

linear dynamic range).  

 

 

 

 

  

Pesticides 

SW1 

(fortified at 900 
ng L-1) 

SW2 

(fortified at 190 
ng L-1) 

SW3 

(fortified at 62.5 
ng L-1) 

SW4 

(fortified at 300 
ng L-1) 

TFME LLE TFME LLE TFME LLE TFME LLE 

Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. 

Cyanazine N/A ND 210 ND 74 ND 257 ND 

Methyl-parathion 938 ND 326 ND NA ND 460 ND 

Alachlor NA 860 164 ND 49 ND 195 ND 

Metolachlor NA 880 182 ND 69 ND 239 ND 

2,4,6-TCP 931 620 191 ND 59 ND 307 ND 

Diazinon 1150 ND 248 ND NA ND 286 ND 

2,3,4,6-TeCP 936 750 183 ND 50 ND 340 ND 

Chlopropyrifos N/A ND 359 ND 80 ND 514 ND 

Trifluralin N/A ND 307 ND 76 ND 530 ND 

Triallate N/A ND 291 ND 70 ND 527 ND 
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Table 3- Comparison of method detection limit between in-bottle TFME, Drill-based TFME, and LLE (US EPA 

8270)  method for pesticides under study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
*   Results obtained using bench-top GC/MS instrument; based on S/N=10 

** Reporting limits (roughly equivalent to LOQ); further details can be found in a previous report [5] 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 
  

Analytes 

In-bottle 

TFME* 

 (ng L-1) 

Drill-based 

TFME* 

(ng L-1) 

LLE** 

(US EPA 

8270) 

(ng L-1) 

2,4,6-TCP 10 100 500 

2,3,4,6-TeCP 3 250 500 

Trifluralin 3 50 1000 

Diazinon 100 1000 1000 

Triallate 3 50 1000 

Methyl parathion 100 1000 1000 

Alachlor 10 100 500 

Metalachlor 3 250 500 

Chlorpyrifos 10 1000 1000 

Cyanazine 10 100 1000 
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Table 4– Selected unknown identifications downstream of Credit dump site, attained completely via on-site 

analytical methodology; not shown are another 6 aliphatic hydrocarbons, 2-alkyl-benzenes, 4 alcohols, 5 aldehydes, 

and 1 ester (n=5) 

Analyte RT (s) LRI(exp) LRI (lit) Average SD %RSD 

Benzene 19.1 N/D / 5464 1302 24 

Ethylbenzene 62.7 863 864 5585 878 16 

Benzaldhyde 76.5 966 965 4333 853 20 

p-Cymene 83.8 1026 1025 7724 1573 20 

Eucalyptol 85.3 1039 1035 4396 491 11 

Nonanal 92.6 1103 1108 22826 4471 20 

an alkylbenzene 144.0 1647 N/D 5634 737 13 

LRI(exp) experimental linear retention index 

LRI(lit)  linear retention index from literature 

%RSD percent relative standard deviation  
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Table 5- Evaluation of greenness of the developed methods and US EPA 8270 

 

Steps in analytical process 

Analytical method 

In-bottle TFME 
On-site TFME 

(Bench-top GC/MS) 

On-site TFME and 

on-site analysis 

(Portable GC/MS) 

LLE 

(US EPA 8270) 

Sample collection 
-  Sampling: 1 

- Transport: 1 
- Transport*: 1 - 

- Sampling: 1 

- Transport: 1 

Sample preparation 

- ACN (100 µL) 

(Internal standard): 4 

(0) 

- Isotopically labeled 

mixture: 4 (0) 

- Orbi-shaker: 1 

- Waste production: 5 

(0) 

- Sampling case(drill): 

1 
- Sampling case(drill): 1 

- Dichloromethane (50 ml  

2): 42 
- ACN (Internal standard):4 

- HCl: 4 

- NaOH: 2 
- Isotopically labeled 

mixture: 4 

- Vortex: 1 
- Tumbler: 2 

- Turbovap: 2 

- Occupational hazard: 1 
- Waste production: 10 

Analysis 
- GC/MS with auto 

sampler: 3 

- GC/MS with auto 

sampler: 3 

- Portable GC/MS: 0 

- Desorption chamber: 0 

- GC/MS with auto 

sampler: 3 

Penalty points (PP) 19 5 1 43 

Eco-scale, 100-PP** (Without IS) 81 (94)*** 95 99 57 (65)*** 

 

* Transport of the membrane (not the sample) after extraction  

**Penalty points associated with the calibration curve were not considered for evaluation of the greenness of the methods[48]  
*** The numbers in parentheses denote the Eco-scale of the method without addition of IS 
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