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a b s t r a c t

Heavy metals in urban soils may impose a threat to public health and may negatively affect urban tree
viability. Vegetation spectroscopy techniques applied to bio-indicators bring new opportunities to
characterize heavy metal contamination, without being constrained by laborious soil sampling and lab-
based sample processing. Here we used Tilia tomentosa trees, sampled across three European cities, as
bio-indicators i) to investigate the impacts of elevated concentrations of cadmium (Cd) and lead (Pb) on
leaf mass per area (LMA), total chlorophyll content (Chl), chlorophyll a to b ratio (Chla:Chlb) and the
maximal PSII photochemical efficiency (Fv/Fm); and ii) to evaluate the feasibility of detecting Cd and Pb
contamination using leaf reflectance spectra. For the latter, we used a partial-least-squares discriminant
analysis (PLS-DA) to train spectral-based models for the classification of Cd and/or Pb contamination. We
show that elevated soil Pb concentrations induced a significant decrease in the LMA and Chla:Chlb, with
no decrease in Chl. We did not observe pronounced reductions of Fv/Fm due to Cd and Pb contamination.
Elevated Cd and Pb concentrations induced contrasting spectral changes in the red-edge (690e740 nm)
region, which might be associated with the proportional changes in leaf pigments. PLS-DA models
allowed for the classifications of Cd and Pb contamination, with a classification accuracy of 86%
(Kappa¼ 0.48) and 83% (Kappa¼ 0.66), respectively. PLS-DA models also allowed for the detection of a
collective elevation of soil Cd and Pb, with an accuracy of 66% (Kappa¼ 0.49). This study demonstrates
the potential of using reflectance spectroscopy for biomonitoring of heavy metal contamination in urban
soils.

© 2018 Elsevier Ltd. All rights reserved.
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1. Introduction

Soil contamination is a widely spread problem across Europe
(European Commission, 2006). Among the most frequent soil pol-
lutants are heavy metals such as arsenic (As), cadmium (Cd),
chromium (Cr), copper (Cu), mercury (Hg), lead (Pb), zinc (Zn),
antimony (Sb), cobalt (Co) and nickel (Ni), which accumulate on the
soil surface and transfer to deeper soil layers where they can
infiltrate into the groundwater (Vince et al., 2014). Plants growing
on heavy metal polluted soils passively take up heavy metals,
jeopardizing their growth and negatively affecting other organisms
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feeding on the plants (Panagos et al., 2013; T�oth et al., 2016).
Furthermore, elevated concentrations of these heavy metals in
agricultural or urban soils endanger food safety and public health
(Poggio et al., 2009; T�oth et al., 2016).

Urban soils typically contain elevated concentrations of Cd, Cu,
Zn and Pb, originating from anthropogenic activities such as traffic
and industrial emissions (Gallagher et al., 2008; Li et al., 2001;
Poggio et al., 2009; Pourkhabbaz et al., 2010; Vince et al., 2014). Cd
and Pb are the most common heavy metals resulting from road
traffic, which is attributed to the historical use of Pb as a gasoline
additive (Kovarik, 2005) and Cd accumulation which is mainly due
to abrasion of tires (Andersson et al., 2010; Vince et al., 2014). Cd
and Pb are toxic for plants, animals and humans (Pandit et al., 2010;
Poggio et al., 2009). Cd accumulates in human body and can cause
nephropathy, pulmonary lesions and lung cancer after long period
of exposure (Poggio et al., 2009). Pb increases blood pressure and
damages liver, kidney and fertility, and most severely it reduces
brain functioning and induces hyperactivity and hearing loss in
children (Poggio et al., 2009). Therefore, it is vital to detect elevated
concentrations of Cd and Pb in urban soils.

Measuring heavy metals is typically based on the collection of
soil or road dust samples, which is labor intensive and costly,
especially when monitoring heavy metal contamination at larger
spatial scales (Wei and Yang, 2010). In European countries, the
estimated total annual cost related to monitoring and remediating
soil contaminants is 17.3 billion euros (European Commission,
2006), and around 81% of the expenditures is spent on remedia-
tion measures (Liedekerke et al., 2014). Consequently, only up to
15% is available to be spent on site investigations (Liedekerke et al.,
2014), implying that there is a need for more cost-effective inves-
tigation methods to evaluate spatial and temporal heterogeneity of
soil pollution. Soil near-infrared (NIR) spectroscopy has been
applied for the detection of heavy metals at relatively low cost.
However, this method requires intensive soil sampling (Pandit
et al., 2010; Shi et al., 2014). Therefore, a spatially explicit charac-
terization of heavy metal contamination at large scales is con-
strained by the capacity of sampling and sample processing,
especially in urban areas characterized by sealed soil surfaces and
highly heterogeneous land-use types.

Bio-indicators are living organisms that can be used to assess
the quality of the environment (Holt and Miller, 2010; Parmar et al.,
2016). Urban vegetation can be used as bio-indicators for moni-
toring air and soil pollution (Ho, 1990; Khavanin Zadeh et al., 2013;
Sawidis et al., 2011). Plants concentrate metal elements in their
above ground parts, which are indicative of elevated soil heavy
metal concentrations. Furthermore, heavy metals can inhibit plant
growth (Giulia et al., 2013; Horler et al., 1980), and decrease chlo-
rophyll content and biomass productivity (Gallagher et al., 2008;
Manios et al., 2003). Cd and Pb often limit plant growth by altering
leaf internal structures (Giulia et al., 2013; Pourkhabbaz et al.,
2010). For instance, Cd can reduce cell wall extensibility and rela-
tivewater content (Barcel�o and Poschenrieder,1990). Pb can reduce
not only the leaf expansion but also the total chlorophyll content
and efficiency of PSll electron transport (Kastori et al., 1998).
Overall, heavy metal toxicity causes multiple direct and indirect
effects on various physiological functions and on themorphology of
plants (Barcel�o and Poschenrieder, 1990), reflected in changes of
leaf functional traits.

Metal induced morphological and physiological changes can
further alter vegetation absorbance and reflectance characteristics
(Horler et al., 1980). Typically, heavy metal contamination induces
most notable changes in the visible and NIR spectral regions, and
thus reflectance spectroscopy holds great promise for evaluating
the impact of heavy metal contamination on vegetation (Clevers
et al., 2004; Kooistra et al., 2004, 2003; Rosso et al., 2005). By
applying reflectance spectroscopy to monitoring candidate bio-
indicators located at multiple sites in urban areas, researchers
have been able to detect polluted sites (Khavanin Zadeh et al.,
2013). Previous studies have investigated the effect of individual
metals on vegetation spectral responses, e.g., canopy reflectance in
response to manipulated pot-soil Cd changes (Rosso et al., 2005).
However, different metals may induce similar or contrasting
spectral responses (Amer et al., 2017; Horler et al., 1980; Manios
et al., 2003). Some studies have focused on spectral response in
specific spectral bands such as the red-edge region (690e740 nm),
which has been used to estimate plant chlorophyll variations under
stress due to heavy metals (Clevers et al., 2004; Rosso et al., 2005).
The red-edge position (REP) is defined as the position generating
the maximum slope (inflection point) of the reflectance spectra (or
maximum first derivative reflectance) in the red-edge region
(Clevers et al., 2004; Horler et al., 1983), and has been found to be
negatively related to soil Pb concentration (Clevers et al., 2004;
Kooistra et al., 2004). Overall, associating soil heavy metal pollution
with a range of plant functional and reflectance characteristics
provides a cost-effective method for assessing heavy metal pollu-
tion. However, there is still a lack of vegetation reflectance spec-
troscopy studies that bio-monitor Cd and Pb contamination across a
variety of urban environments, especially for monitoring contam-
ination due to multiple metals.

Herewe tested Tilia tomentosa as a bio-indicator for elevated soil
Cd and Pb concentrations. Selecting 187 study trees cross three
European cities (Leuven, Porto and Strasbourg), our objectives
were: i) to assess the impacts of elevated concentrations of Cd and
Pb on leaf mass per area (LMA), total chlorophyll content (Chl),
chlorophyll a to b ratio (Chla:Chlb) and the maximal PSII photo-
chemical efficiency (Fv/Fm); and ii) to investigate the feasibility of
using leaf reflectance spectroscopy and partial-least-squares
discriminant analysis for biomonitoring soil Cd and Pb
contamination.

2. Materials and methods

2.1. Sampling of leaf and soil and heavy metal measurements

We conducted soil and leaf sampling in summer 2017 and
randomly selected 19 sites and 187 T. tomentosa trees across three
medium sized cities (Leuven (Belgium): n¼ 64; Porto (Portugal),
n¼ 67; Strasbourg (France): n¼ 56). We randomly selected trees
for sampling, and the trunk diameter ranged 5e130 cm. For each
tree, we sampled the top soils (0e10 cm) at three random locations
surrounding the trunk, and the three locations are mixed for metal
measurements. We sampled 15 leaves at three random positions in
each tree and stored the leaf samples in a cool box with ice. We
performed soil sampling once, while leaf sampling was performed
multiple times throughout the growing season for a subset of trees
in Leuven and Strasbourg.

Heavy metal concentrations in the soil were measured by
digesting 50mg of dried and sieved soil with 7.5ml concentrated
hydrochloric acid and 2.5ml concentrated nitric acid. The digested
solution was diluted to 10ml and measured with ICP-OES. For
quality control of soil metal analysis, an internal soil standard was
run parallel with the soil samples, which deviated less than 5% of
the known composition. In this study, we focused on Cd and Pb, as
these were the heavy metals that reached the toxicity thresholds
(Table 1).

2.2. Identification of contamination based on soil heavy metal
thresholds

Soil heavymetal contamination levels were identified based on



Table 1
Measured soil heavy metal content and the threshold values for classification of
contamination. Cd and Pbwere themajor contaminates in this study, and Pbwas the
only metal that reached the highline and thus Pb contamination was classified into
three sub-classes. Bold font highlights the metals which had a significant number of
observations reaching the toxicity thresholds.

Metal Range (mg/kg) Threshold (mg/kg) Number of observations (n)

Class 0 Class 1/Pb 1 Pb 2 Pb 3

Cd 0e3.9 1 294 39
Pb* 0e2170.8 60 132 201/180 17 4
Co 0e15.9 20 333 0
Cr 0e120.9 100 327 6
Cu 0e159.1 100 330 3
Ni 0e76.8 50 331 2
Zn 10e265.8 200 329 4

*, Pb contamination sub-levels:1) Low contamination (60 � Pb < 200 mg/kg); 2)
Medium contamination (200 � Pb < 750 mg/kg); 3) High contamination
(Pb � 750 mg/kg).
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published threshold standards (T�oth et al., 2016) released by the
Ministry of the Environment, Finland (MEF, 2007). We grouped
the samples into two classes - non-contaminated and contami-
nated, subjected to individual metals (Table 1). Soil samples and
corresponding leaf spectral observations (Section 2.3) were
grouped into four classes according to Pb contamination following
the MEF standard (MEF, 2007). The four classes included class
0 being non-contaminated (Pb < 60mg/kg), class 1 of low
contamination (60� Pb < 200mg/kg), class 2 of medium
contamination (200� Pb < 750mg/kg) and class 3 of high
contamination (Pb� 750mg/kg).

We also defined four contamination classes subjected to both Cd
and Pb contamination by re-grouping of the Cd and Pb binary
classes (Table S1), i.e., four CdxPb classes including the non-
contaminated (class 0), Cd contaminated only (class 1), Pb
contaminated only (class 2) as well as when both Cd and Pb are
over the thresholds (class 3).
2.3. Leaf reflectance and functional traits

Leaf reflectance was measured using an ASD FieldSpec 3 spec-
troradiometer (ASD Inc., Longmont, CO, USA) connected to a Plant
Probe and Leaf Clip Assembly (ASD Inc., Longmont, CO, USA). It
allows for reflectance measurement in a spectral range of
350e2500 nm with a band width of 1 nm. Next, we measured the
leaf maximal PSII photochemical efficiency (Fv/Fm, ratio of the
variable fluorescence to the maximal fluorescence) using a chlo-
rophyll fluorescence meter (Handy PEA, Hansatech Instruments
Ltd., Pentney, UK), combined with a leaf clip that allows for dark
adaption (25min). Then, we measured the leaf area using a flatbed
scanner, followed by oven dry for 3 days, allowing to determine leaf
mass per area (LMA). In total, aggregated per tree and sampling
time, collected leave samples allowed for further statistical analysis
on a sample size of 333 for reflectance and functional traits. The 333
observations of reflectance spectra and functional traits were
grouped into their contamination classes subjected to the soil
heavy metal contamination classes as defined in Section 2.2.

A random subset of the leaf samples (n¼ 53) were used to
determine the total chlorophyll (Chl) and carotenoid (Car) content.
Leaf round discs with a diameter of 28.6mm were punched from
the leaf samples using a paper punch. Chla, Chlb and Car were
extracted with a mortar and pestle in 80% acetone and their con-
centrations determined by measuring the solution absorbance (A)
at wavelengths 470, 646.8 and 663.2 nm using a UV-VIS spectro-
photometer (Shimadzu 1650 PC, Kyoto, Japan) according to Eqs.
(1)e(3) (Lichtenthaler, 1987).
Chla ¼ 12:25*A663:2 � 2:79*A646:8 (1)

Chlb ¼ 21:50*A646:8 � 5:10*A663:2 (2)

Car ¼ 1000*A470 � 1:82*Chla� 85:02*Chlb
198

(3)

For quality control of chlorophyll analysis, we performed par-
allel measurements in 12 samples, and the average standard error
was lower than 5%.
2.4. Spectral and statistical analysis

To highlight the metal-induced spectral variations, we calcu-
lated the reflectance relative differences between group means for
the contaminated and non-contaminated classes subjected to Cd
and Pb contamination. We also applied first derivatives to the
reflectance, focusing mainly on the red-edge region, to derive the
red-edge inflection point (REIP) and evaluate the metal induced
red-edge shifts (Clevers et al., 2004).

Partial least squares (PLS) regression is a multivariate method
for relating two data matrices, X and Y, i.e., explanatory and
response matrices, by extracting latent variables (components) to
model the variations of both matrices (Wold et al., 2001). The PLS
regression can reduce high dimensional data (e.g. hyperspectral) to
a small number of latent variables which serve as newpredictors on
which the response variable is regressed (Rosipal and Kr€amer,
2006). Partial least squares discriminant analysis (PLS-DA) is a
variant used when the response variable is categorical. We used
PLS-DA for the classification of metal contamination classes. PLS-
DA models were applied to four types of data, (i) the original
reflectance spectral, and three pre-processed spectral data
including (i) first derivative (ii), standard normal variate (SNV) and
(iii) continuum removal (CR) precede applying the PLS-DA models.
PLS-DA model calibration was first initiated on the entire dataset
for the full spectrum with 10 components. The initial model was
trained using a 10-fold cross-validation with 99 times of permu-
tations, allowing for determination of the optimal number of
components and the spectral bands yielding a variable importance
in projection (VIP)� 0.8.

For an independent validation, the entire dataset was randomly
split into the training and test subsets, with a sample size being 2/3
(n¼ 215) and 1/3 (n¼ 118) of the total observations (n¼ 333),
respectively. The VIP �0.8 spectral bands were then used to train
and test models on the two subsets, respectively.

PLS-DA Model classification accuracy was evaluated using the
overall accuracy (Eq. (4)) and kappa coefficient (Eq. (5)), as well as
for assessing the classification for individual classes using the
producer's (Eq. (7)) and user's accuracies (Eq. (8)),

Accuracy ¼ ðTP þ TNÞ=ðTP þ TN þ FP þ FNÞ (4)

Kappa ¼ pa � pe
1� pe

(5)

pe ¼ ðTN þ FPÞ � ðTN þ FNÞ þ ðFN þ TPÞ � ðFP þ TPÞ
ðTP þ TN þ FP þ FNÞ2 (6)

Producer Accuracy ¼ TP=ðTP þ FPÞ (7)

User Accuracy ¼ TP=ðTP þ FNÞ (8)

where the letters T and F denote true and false, respectively, and P
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and N denote positive and negative, respectively, pa is the actual
agreement (identical to accuracy), whereas pe is the expected
agreement by chance (random accuracy) that can be calculated as
Eq. (6).

We used linear mixed models to test whether elevated soil
heavy metals affect the leaf functional traits. We defined the metal
contamination classes, i.e., binary or multi-class, as the fixed effect
factor and defined city and sampling site as random effect factors in
the mixed models. All analyses were performed in the R pro-
gramming environment (R Core Team, 2016). The R package ‘lme4’
(Bates et al., 2015) was used for running the mixed models, and the
package ‘lsmeans’ (Lenth, 2016) was used for post-hoc analysis of
pairwise comparisons between the contaminated classes based on
Tukey's test. PLS-DA was implemented using the package ‘mixO-
mics’ (Rohart et al., 2017).

3. Results and discussion

3.1. Heavy metal effects on leaf functional traits

Elevated Pb and Cd concentrations had a significant effect on
LMA of T. tomentosa trees (Table 2). Soil Cd contamination did not
induce significant changes in LMA (Fig. 1a), whereas Pb contami-
nation significantly decreased LMA (Fig. 1b). Generally, Cd and Pb
stress leads to damages to chloroplasts and thylakoid membranes
in plants (Shen et al., 2016; Wu et al., 2014), which often causes
reduced leaf growth such as small leaf size and small stomata (Shi
and Cai, 2009), as well as thin cuticles of leaf surfaces (Pourkhabbaz
et al., 2010). Therefore, elevated Pb concentrations could have
reduced leaf thickness and thus decreased LMA. Cd also induces
changes in leaf structural properties, while Cd concentrations
measured in this study might still be below the threshold that in-
duces significant inhibition of leaf expansion.

Elevated soil Pb induced significant changes in leaf total Chl
content, Chla to Chlb ratio (Chla:Chlb) and Fv/Fm, whereas Cd and
other metals did not yield significant changes (Table 2). Decrease in
leaf Chl content is often associated with photoinhibition and
reduction of the photosynthetic capacity (Shen et al., 2016).
Chla:Chlb decreased significantly along with the increase in soil Pb
concentration (Fig. 2), suggesting that Chla was more suppressed
compared to Chlb (Nie et al., 2016). Similarly, a significant reduction
of Chla:Chlb has been found in Torreya grandis (Shen et al., 2016)
and Typha latifolia plants (Manios et al., 2003) treated with a high
Table 2
Results of mixed models for testing the effect of soil heavy metals on leaf functional trait
Chla:Chlb ratio. Modeled random effects were city and sites. Chlorophyll data were only a
contamination. Bold font highlights the statistical significance of each test (p< 0.05).

Mixed Model

Trait Metal F-value

LMA Cd 1.11
Cr 6.68
Cu 0.16
Ni 0.23
Pb 67.08
Zn 0.70

Fv/Fm Cd 0.02
Cr 0.01
Cu 0.01
Ni 0.08
Pb 5.84
Zn 0.08

Chl Cd 2.31
Pb 6.78

Chla:Chlb Cd 0.45
Pb 23.58
concentration of Cd and Pb, suggesting increases in chlorophyll
hydrolysis due to the toxic effect (Manios et al., 2003). Results may
differ for different plant species, for instance in a greenhouse
environment, Horler et al. (1980) observed a significant decrease of
Chla:Chlb in pea leaves due to elevated Cd concentrations, but no
changes following elevated Pb (Horler et al., 1980).

Cd and Pb contamination induced a decrease in Fv/Fm (Fig. 3a
and b), whereas Fv/Fm appeared to be not sensitive to low-level Pb
contamination (Fig. 3d), suggesting that Cd and Pb stress may
induce photosynthesis inhibition. Similarly, Cd was found to affect
Fv/Fm in the wetland plant species Salicornia virginica (Rosso et al.,
2005) and in the turf grass species Festuca arundinacea Schreb
(Huang et al., 2017). Generally, the observed decrease in Fv/Fm in
plants subjected to Cd/Pb stress is associated with the photo-
inhibition of PSII, as a result of the overproduction of reactive ox-
ygen species (ROS) (Huang et al., 2017; Shen et al., 2016). However,
a significant decrease in Fv/Fmmay not always be observable if Cd/
Pb concentration does not exceed a high threshold (Huang et al.,
2017; Shen et al., 2016). Giulia et al. (2013) found that a high soil
Pb concentration did not decrease Fv/Fm in Q. ilex plants, and they
argued that these metals may not significantly alter functionality of
the photosynthetic apparatus. Similarly, Shi and Cai (2009) re-
ported that Fv/Fm was not affected in peanut plants treated with a
high concentration of Cd. Therefore, the effect of heavy metals on
Fv/Fmmight depend largely onmetal type, concentration and plant
species.

Mixed models for multi-class CdxPb and Pb contamination
showedmuchmore pronounced effects on LMA and Chla:Chlb than
on Fv/Fm and leaf total Chl content (Table 3), which suggests that
heavy metals induced more structural changes and proportional
changes in leaf biochemicals than the quantity changes of indi-
vidual components. An increase in leaf total Chl content and Fv/Fm
was observed at a relative low-level Pb or Cd� Pb contamination
(Table 3), suggesting that heavy metals impose complicated effects
on photosynthesis and that Cd and Pb may increase the PSII
quantum yield within a certain range of low concentrations
(Ouyang et al., 2012; Shen et al., 2016).

The effect of soil heavy metals on leaves or the content of heavy
metal accumulation in the leaves might be related to the age of
trees (Doganlar et al., 2012). To test whether tree age difference
affect the observed effects of Cd and Pb on leaf functional traits in
this study, we used trunk diameter as a proxy of tree age and added
it as an additional random factor in themixed models (Table S2 and
s, including the leaf mass per area (LMA), Fv/Fm, total chlorophyll content (Chl) and
vailable for a subset of the samples, where only Cd and Pb reached the thresholds of

Tukey's Test Class 0e1

P-value Estimate P-value

0.292 0.249 0.292
0.010 �1.319 0.010
0.691 0.284 0.691
0.632 0.425 0.632
<0.001 1.284 <0.001
0.404 0.521 0.404
0.901 �0.0013 0.901
0.905 0.0027 0.905
0.911 0.0034 0.911
0.772 �0.0109 0.772
0.016 �0.0162 0.016
0.784 �0.0074 0.784
0.138 18.091 0.138
0.013 �9.238 0.013
0.509 0.181 0.509
<0.001 0.331 <0.001



Fig. 1. Boxplots with the leaf mass per area (LMA) differences between the binary classes (0¼ non-contaminated, 1¼ contaminated) of (a) Cd and (b) Pb contamination, as well as
among multiple classes of (c) Cd� Pb and (d) Pb contamination. Significance levels are indicated according to the post-hoc Tukey's test of the applied mixed models.
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Table S3). Results suggest that the observed effects of Cd and Pb on
T. tomentosa leaves was not significantly influenced by tree age.

3.2. Reflectance and first derivatives in response to heavy metals

Elevated soil Cd concentrations yielded relatively large varia-
tions in leaf reflectance centered at the 500, 680 and 720 nm bands
(Fig. 4a), whereas elevated Pb yielded large variations at the 550
and 700 nm bands (Fig. 4b). In the red-edge region, Cd had a large
effect on reflectance at the red-edge center (~720 nm), whereas Pb
had a large effect on reflectance ranging from the red absorption to
the beginning of the red-edge bands (680e700 nm). Over the full
spectrum, soil Pb contamination induced larger variations (±10%,
Fig. 4b) compared to Cd contamination (±5%) (Fig. 4a), whichmight
be attributed to the fact that Pb contaminationwas severer than Cd
in this study. Cd concentration was slightly higher than the
threshold (1mg/kg), but was much lower than the ‘low guideline’
of contamination level (10mg/kg) at which ecological or health
risks present (T�oth et al., 2016).

The decrease in the NIR region (750e1400 nm) was associated
with elevated Cd and Pb concentrations. This might be attributed
partly to the decreased LMA because contaminated trees often have
a much thinner outer epidermal layer and thus thinner leaves
(Pourkhabbaz et al., 2010), although the effect of Cd on LMA
observed in this study was marginal (Fig. 1). Metal-induced de-
creases in leaf NIR reflectance might be associated mainly with the
changes in leaf internal structural properties which decrease the
internal light scattering and increase the transmittance of leaves
(Horler et al., 1980; Kumar et al., 2001).
The first derivative reflectance in the visible-to-NIR bands

showed two major peaks centered at 530 and 720 nm (Fig. S1). In
the red-edge spectral region, Cd contamination induced a shift of
absorbance features towards the shorter wavelengths (Fig. S1a). In
contrast, Pb contamination induced a red-edge shift to the longer
wavelengths (Fig. S1b). In addition to the red-edge bands, Pb
contamination also yielded large variations in the first derivative
reflectance at the green bands, suggesting a more pronounced
change of the overall shape of reflectance (cf. Fig. 4). As shown in
the first derivative reflectance, Pb contamination also induced a
shift in the green edges (both sides of the green peak) compared to
Cd contamination. This might explain the observed decrease in the
Chla:Chlb ratio (Fig. 2), since absorption at the green edge bands is
related to Chlb variations (Kumar et al., 2001).

The extracted REIP showed contrasting changes in the Cd and Pb
contaminated trees, with decreasing and increasing trends,
respectively (Fig. S2), which confirms the contrasting effects of Cd
and Pb contamination on the red-edge reflectance. Heavy-metal
induced REIP changes, or red-edge shifts, have been found to
depend to some degree on plant species and sampling sites
(Kooistra et al., 2004). Normally, a decreased REIP can be observed
when plant stress induces a reduction in leaf total Chl content
(Horler et al., 1983). However, here we did not observe obvious Chl
reduction associated with Cd or Pb contamination. Therefore, the
REIP variations observed here were more likely associated with the
proportional changes in the Chla:Chlb ratio, in combination with
changes in leaf structures.



Fig. 2. Boxplots with the leaf chlorophyll a to b ratio (Chla:Chlb) differences between the binary classes (0¼ non-contaminated, 1¼ contaminated) of (a) Cd and (b) Pb contam-
ination, as well as among multiple classes for (c) Cd� Pb and (d) Pb contamination. Significance levels are indicated according to the post-hoc Tukey's test of the applied mixed
models.
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3.3. PLS-DA model calibration for binary and multi-class
classifications

In the binary classifications, the PLS-DA calibration models for
Cd-contamination classification yielded a total accuracy of
84.1e86.5% (kappa¼ 0.46e0.49, Table S4). PLS-DA models for Pb
contamination yielded a total accuracy of 72.7e77.8%
(kappa¼ 0.46e0.57). For the multi-class classification of CdxPb-
mixed contamination, PLS-DA models yielded a total accuracy of
43.2e66.1% (kappa¼ 0.24e0.49, Table S4). PLS-DA models for the
multi-class classification of Pb yielded a total accuracy of
52.0e64.0% (kappa¼ 0.29e0.43). The best classifications for indi-
vidual metals are illustrated in confusion-matrix plots (Fig. 5).

The best model for Cd correctly classified the Cd class 0 with a
producer and use accuracy of 86% and 97%, respectively, and were
77% and 43% for the Cd class 1 (Fig. 5a). The producer and use ac-
curacy for the Pb class 0 were 88% and 67%, respectively, and 77%
and 90% for the Pb class 1 (Fig. 5b). The best model for Cd� Pb
yielded a relatively lowuser accuracy in predicting the classes 1 and
3 (Fig. 5c), which however, accounts for a very small proportion of
the total observations. The best model for multi-class Pb contami-
nation yielded a relatively high producer accuracy for the classes
0 and 3 (Fig. 5d), with 80% and 100%, respectively. In contrast, the
model yielded a higher user accuracy for the classes 0 and 1 than
for the classes 2 and 3. The low user accuracy for the Pb classes 2
and 3 was mainly due to the small sample size of high Pb con-
centrations, which consists of only 17 and 4 observations for the
classes 2 and 3, respectively.
Overall, the high producer accuracy, paired with relatively low

user accuracy for a relatively high metal concentration was rather
encouraging, since our models slightly tended to overestimate the
observed contamination rather than underestimate the elevated
contamination. This implies a high probability of detecting the
elevated concentrations of soil heavy metals.
3.4. PLS-DA model validation using full spectrum and VIP-bands

Compared to model calibration accuracies, model validation
based on the full spectrum produced comparable accuracies
(Table S5). In binary classifications, models for Pb contamination
yielded higher kappa coefficients than the models for Cd contam-
ination. In multi-class classifications, model validation showed
improved total accuracies and kappa coefficients (Table S5), sug-
gesting the potential of using calibrated PLS-DA models for
detecting elevated soil Cd and Pb concentrations.

Validation of models trained with the VIP (�0.8) bands showed
slightly improved kappa values and total accuracies compared to
the full use of bands (Table S5). The importance of individual
spectral bands in the classification is indicated by the VIP scores for
individual metals (Fig. 6). Cd contamination yielded relatively high
VIP scores at the red-edge (730 nm) and SWIR bands (1300 nm,
1650 nm) compared to Pb contamination, suggesting unique
spectral responses to elevated soil Cd in these bands (Fig. 6). Pb
contamination yielded higher VIP scores at the green (530 nm) and



Fig. 3. Boxplots show the chlorophyll fluorescence Fv/Fm differences between the binary classes (0¼ non-contaminated, 1¼ contaminated) of (a) Cd and (b) Pb contamination, as
well as among multi-class classifications of (c) Cd� Pb and (d) Pb contamination. Significance levels are indicated according to the post-hoc Tukey's test of the applied mixed
models.

Table 3
Mixed models for testing the effect of multi-level Cd� Pb and Pb contamination on leaf functional traits, including the leaf mass per area (LMA), Fv/Fm, total chlorophyll
content (Chl) and Chla:Chlb ratio. The modeled random effects are city and site. Chlorophyll data were only available for a subset of the samples, where only Cd and Pb reached
the threshold of contamination. Bold font highlights the statistical significance of each test (p< 0.05).

Mixed model Tukey's Test

Class 0e1 Class 0 - 2 Class 0 - 3 Class 1 - 2 Class 1 - 3 Class 2e3

Trait Metal F-value P-value estimate p estimate p estimate p estimate p estimate p estimate P

LMA Cd� Pb 23.74 <0.001 0.025 1.000 1.256 <0.001 1.722 <0.001 1.231 0.006 1.698 0.001 0.466 0.246
Pb 26.29 <0.001 1.21 <0.001 1.831 <0.001 2.444 <0.001 0.621 0.104 1.234 0.104 0.613 0.731

Fv/fm Cd� Pb 2.42 0.066 �0.0211 0.661 �0.0184 0.044 �0.0143 0.713 0.0028 0.999 0.0069 0.987 0.0041 0.987
Pb 2.00 0.113 �0.0168 0.070 �0.0109 0.863 �0.0106 0.980 0.0059 0.971 0.0062 0.996 0.0003 1.000

Chl Cd� Pb 5.86 0.006 �10.275 0.014 12.558 0.495 22.834 0.108
Pb 6.40 0.004 �8.108 0.057 �32.96 0.012 �24.852 0.070

Chla:Chlb Cd� Pb 11.47 <0.001 0.332 <0.001 0.319 0.319 �0.012 0.998
Pb 12.01 <0.001 0.323 <0.001 0.495 0.072 0.172 0.709
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the beginning of red-edge (700 nm), suggesting that Pb contami-
nation induced more pronounced responses in the visible bands.
For the binary classifications, VIP-based PLS-DA models yielded
higher accuracies for Pb-contamination classification
(kappa¼ 0.66) than for Cd (kappa¼ 0.39, Table S5). For multi-class
classifications, the VIP-based PLS-DA models yielded comparable
accuracies by using a much less amount of bands compared to the
use of full spectral bands.

Model validation results showed that selecting a set of influ-
ential bands (VIP� 0.8) allowed for maintaining classification ac-
curacy and improving model-use and computational efficiencies.
Within a limited number of observations, by randomly dividing
independent training and testing subsets of observations, our re-
sults suggest that spectrally calibrated PLS-DA models have great
potential of applying to future scenarios for monitoring heavy
metals.

3.5. Comparison between reflectance pre-processing methods

The kappa coefficient is a balanced measure compared to the
use of the producer-, user- and total accuracies, especially when the
observations in difference classes are highly imbalanced such as in



Fig. 4. Leaf mean reflectance of the contaminated (1) and non-contaminated (0) trees subjected to (a) Cd and (b) Pb, and their reflectance relative difference ((X1-X0)/X0) between
the contaminated and non-contaminated leaves.
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this study. Hence, we evaluated the three spectra-preprocessing
methods according to the kappa values. Model calibration and
validation both showed that the first derivatives yielded the highest
kappa values compared to the use of the original and SNV reflec-
tance data (Table S4 and Table S5).

Using a different number of components might induce some
degree of variation in model accuracies, although we used the
cross-validation (CV) procedure. In addition to the CV-optimized
number of components, model calibration and validation were
repeated by using a fixed number of components (Table S6,
Table S7 and Table S8). Results showed that the first derivative
reflectance yielded the highest kappa coefficients, followed by the
CR reflectance and the original reflectance (Fig. S3). The SNV
reflectance did not yield improvement compared to the original
reflectance data, suggesting that the SNV process maymask subtle
spectral responses subjected to individual metals. Overall, PLS-DA
models based on the first derivative reflectance produced the best
classifications, which also suggests that heavy metals have
induced complicated effects on leaf biochemical and structural
properties that lead to light absorption changes/shifts over the full
spectrum.

First derivative spectra of leaves have been proven to be effec-
tive in eliminating background signals and for resolving over-
lapping spectral features (Demetriades-Shah et al., 1990), which is
useful to detect plant stresses or estimate pigment changes
(Rundquist et al., 1996; Smith et al., 2004). Also, first derivative
reflectance has better discrimination power compared to the
original reflectance by characterizing the rate of change of reflec-
tance with respect to wavelengths (Bao et al., 2013; Lassalle et al.,
2018; Smith et al., 2004). Typically, derivative analysis may facili-
tate the detection of changes that might be masked in the original
spectra by the presence of plant intrinsic co-variations (Horler et al.,
1983). For instance, derivative spectra in the visible region may
enable to detect subtle changes in leaf pigment balance associated
with physiological disorders or vegetation types (Bandaru et al.,
2016; Demetriades-Shah et al., 1990; Pu, 2011).

Derivative analysis can be particularly useful for remotely bio-
monitoring heavy metal using reflectance spectra measured from
above the vegetation canopy (Wang et al., 2018). Canopy spectra
first derivatives eliminate the additive noises (baseline shifts)
induced by illumination instability, canopy structural or soil back-
ground influences (Demetriades-Shah et al., 1990; Gnyp et al., 2014;
Kochubey and Kazantsev, 2012; Pu, 2011), thereby improving the
accuracy for quantification of canopy biochemical or physiological
changes (Jin andWang, 2016; O’Connell et al., 2014). Moreover, PLS
modeling further facilitates the use of features of the full derivative
spectrum for the characterization of vegetation undergoing
changes or stresses.

Apparently, PLS-DA models for Pb-contamination classifications
exclusively produced higher kappa values than for Cd



Fig. 5. Predicted versus observed classes for (a) Cd binary classification, (b) Pb binary classification, (c) Cd� Pb classification and (d) Pb multi-class classification. Here the first
derivative reflectance data were used for (a), (b) and (c), the original reflectance were used for (d). Numbers indicate the confusion matrix of classification.

Fig. 6. The variable importance in projection (VIP) scores for the spectral-based PLS-DA models for binary classification for Cd and Pb contamination, and for multi-class classi-
fication of Pb and CdxPb contamination. VIP �0.8 highlights the spectral bands contributing significantly to the PLS-DA models.
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contamination classifications, across different cases of spectra-
preprocessing methods, model calibration (Fig. S3a) and valida-
tion (Fig. S3b), as well as when using a subset of VIP-bands
(Fig. S3c). This can be attributed to the data imbalance between
the Cd- and Pb-contamination levels, which, however, shows a
great promise of the proposed approach for spectroscopic detection
of elevated soil heavy metals, given that a diverse set of observa-
tions are used for model calibration.
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4. Conclusions

This study used T. Tomentosa trees growing in three European
cities as bio-indicators of soil heavy metal contamination, and
evaluated whether tree spectra responses were able to reflect the
elevatedmetal concentrations. Results showed that elevated soil Cd
and Pb concentrations led to decrease in the leaf mass per area
(LMA) and the chlorophyll a to b ratio (Chla:Chlb), while no sig-
nificant reduction in leaf total chlorophyll (Chl) and the maximal
PSII photochemical efficiency (Fv/Fm). Soil Pb contamination was
severer and showed more pronounced effect on LMA, Fv/Fm, Chl
and Chla:Chlb than did the Cd contamination in the studied sites.

Cd and Pb contamination induced specific changes in leaf
reflectance and the reflectance first derivatives, particularly in the
red-edge spectral region. Partial least squares discriminant analysis
(PLS-DA) models calibrated using leaf reflectance showed promise
for detecting soil Cd and Pb contamination in urban areas. PLS-DA
models based on reflectance first derivatives allowed for the best
classification of Cd and Pb contamination. This study shows that
elevated soil heavy metals can be monitored by measuring leaf
spectra of trees. This holds great potential for mapping urban heavy
metal contamination by measuring urban vegetation using high-
resolution spectrometers onboard airborne or drone platforms.
Future work should investigate whether our findings can be
extrapolated to broader scales by using canopy level reflectance
data and a diverse set of plant species as bio-indicators. Multi-
temporal investigations of the quantitative relationships between
the practical content of heavy metals in leaves and reflectance
spectroscopic measures are also needed to understand metal
translocation from soil to vegetation and for dynamic bio-
monitoring of heavy metal contamination.

Declarations of interest

None.

Acknowledgements

This research was funded through the 2015e2016 BiodivERsA
COFUND call for research proposals, with the national funders
BELSPO (BE), FWO (BE), and FCT (PT) through the project UID/
Multi/50016/2013. We thank Remi Chevalier, the greenery service
of the Cities of Leuven, Porto (Câmara Municipal do Porto) and
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