

UNIVERSIDADE CATÓLICA PORTUGUESA

COMPOSIÇÃO DE SISTEMAS MUSICAIS INTERACTIVOS

(COMPOSING INTERACTIVE MUSIC SYSTEMS)

Tese apresentada à Universidade Católica Portuguesa

para obtenção do grau de Doutor em Ciência e Tecnologia das Artes,

especialidade em Informática Musical

por

Miguel Marques Cardoso

ESCOLA DAS ARTES

 Março 2015

UNIVERSIDADE CATÓLICA PORTUGUESA

COMPOSIÇÃO DE SISTEMAS MUSICAIS INTERACTIVOS

(COMPOSING INTERACTIVE MUSIC SYSTEMS)

Tese apresentada à Universidade Católica Portuguesa

para obtenção do grau de Doutor em Ciência e Tecnologia das Artes,

especialidade em Informática Musical

Por Miguel Marques Cardoso

Sob orientação de António de Sousa Dias e Luís Gustavo Martins

This work was developed with the financial aid of

the Fundação para a Ciência e Tecnologia (FCT),

under the Programa Operacional Potencial Humano

 (SFRH / BD / 62236 / 2009)

Acknowledgements

My family,

Daniela for these years of inestimable perseverance, patience, and incentive;

My mother;

Advisors António de Sousa Dias and Luis Gustavo Martins for guidance and confidence;

Luisa Ribas, without whose invaluable help, advice and collaboration this work could

not have been completed;

José Aguirre, Andrés Ortiz, Raimon Mirada, Daniel Aguilar, Carlos Diego and all the

Bestiario team for their support and allowing my absence for such a long period of time;

Ricardo Guerreiro, Santiago Ortiz, Tiago Henriques, Mónica Nogueira, Pedro Rodrigues,

José Luis Ferreira, Victor Almeida, for the friendship and sharing insight;

Paulo Ferreira Lopes for the provided opportunities;

All the SuperCollider community for their determination in sharing knowledge.

(blank page)

Abstract

This work proposes a contribute to the understanding of computer-based interactive

music practices, in order to establish methodologies that can provide a more transparent,

flexible and dynamic process in related compositional activity.

This research is developed by examining and articulating complementary perspectives

on the intersection of computer music with interaction. We begin by researching on models,

materials, techniques and concepts that can contribute to this practice, attempting to

understand the affordances and constraints that the computational medium provides. We then

study how interaction has contributed to the contemporary context of interactive music

practices by reshaping the relationship between the composer, the performer, the audience

and the environment. In order to further scrutinize the potential of computer-based interactive

music, we investigate new programming paradigms and how they can yield a more adequate

context for artistic practices such as music. Complementing these explorations, we implement

a computational framework, suggesting an alternate approach to interactive music practices.

Keywords: Computer Music, Interaction, Computation, Music System, Composition, Improvisation

(blank page)

Resumo

As novas abordagens aos meios digitais levaram à criação de técnicas e processos que

procuram solucionar as mais variadas tarefas na composição e performação. Neste contexto,

o uso de computadores para a prática musical não contribuiu apenas para a representação

complexa de processos musicais com um elevado grau de detalhe e repetibilidade nos

domínios da síntese e processamento de sinal em tempo real, para a composição algorítmica

ou análise musical. O exponencial crescimento da capacidade de armazenamento e da

velocidade de processamento dos computadores, tornou-os instrumentos viáveis para a

composição e performação, permitindo a extemporização de decisões musicais e a expansão

da performação para além dos limites fisiológicos humanos. Neste sentido, temos assistido a

um crescente desenvolvimento de aplicações dedicadas à performação musical, tais como o

Ableton Live1 ou o Reason2. Estas aplicações permitem a gravação, edição e reprodução de

som e a sua integração com uma grande diversidade de interfaces para o controlo e

parametrização de eventos musicais.

Encontramos, apesar de tudo, vários obstáculos ao tentar expandir o nosso potencial

criativo para o desenvolvimento de situações musicais interactivas. Em geral, ferramentas

como as acima mencionadas, condicionam o âmbito de decisão do compositor ao

proporcionar soluções generalistas e pré-determinadas, reduzindo as suas possibilidades a

uma mera selecção de processos e respectivos ajustes de parâmetros. Consequentemente,

estas ferramentas não só conduzem a um inconsciente tecnológico, ao ocultar os processos

que caracterizam a prática musical, mas também a uma escuta tecnológica, em que facilmente

se percepciona o software utilizado na criação das obras.

 A utilização de software programável, como o Max/MSP3, Pure Data4 ou

SuperCollider5 já permite um maior dinamismo, embora instigue modelos de interacção

1 https://www.ableton.com
2 http://www.propellerheads.se
3 http://cycling74.com
4 http://puredata.info
5 http://supercollider.sourceforge.net

específicos que se tornam relevantes compreender. Os fluxos de informação das linguagens

datafow assemelham-se à configuração de circuitos analógicos na música electrónica. Os

'instrumentos' das linguagens Music-N seguem o paradigma acústico, reforçando

consequentemente a distinção entre composição e performação; neste sentido, a composição

assume-se como a definição de possibilidades de interacção através da criação de estruturas,

instrumentos e interfaces, em que todas as decisões composicionais são tomadas a priori,

negligenciando o potencial expressivo das práticas de improvisação.

Na tentativa de colmatar estas limitações, consideramos as potencialidades de

expressão musical em tempo-real e as possibilidades comunicacionais que daí advêm,

reconhecendo que os meios computacionais estão ainda abertos a muitas opportunidades de

investigação. Neste sentido, o presente estudo procura contribuir para o alargamento do

conhecimento artístico e científico no âmbito da Informática Musical, mais concretamente no

que concerne a concepção e utilização de sistemas musicais interactivos, com o fim de

estabelecer metodologias que possam fornecer um processo composicional mais transparente,

flexível e dinâmico.

Pretendemos então desenvolver uma metodologia que permita uma prática

composicional mais adequada a este contexto, tornando os processos mais subjectivos,

dinâmicos e transparentes, no sentido de facilitar as relações que se estabelecem com o

computador, explorando ideias musicais de uma forma criativa, assim como melhorar o

discurso que pode ser estabelecido com outros músicos, o público e o meio ambiente.

Ao direccionar esta investigação para a intersecção entre música por intermédio do

computador e a interacção levantam-se questões importantes que serão abordadas no

desenvolvimento desta tese. A definição dos limites da composição no contexto da música

interactiva por computador é ambígua, dado que esta prática se encontra intimamente

relacionada com composição algorítmica ou com design sonoro por um lado, e por outro com

performação e improvisação. A identificação e compreensão de modelos, técnicas e conceitos

utilizados neste contexto tecnológico torna-se fundamental na definição da abrangência do

nosso estudo. Deste modo, questionamos as ferramentas que utilizamos, o modo como são

usadas e quais os objectivos que levaram à sua criação. Esta ideia também se estende à

natureza dos materiais utilizados, exigindo uma compreensão mais aprofundada do

computador como um medium, e das possíveis articulações que se estabelecem entre o

compositor, os resultados sonoros e respectivos processos musicais. A definição de obra

musical no contexto da música interactiva entende-se como uma acção ao invés de um

objecto, dada a sua natureza efémera. Esta característica aprofunda a sua relação com as

práticas de música improvisada.

Com o objectivo de desenvolver estratégias mais adequadas para criação de situações

interactivas por intermédio do computador são seguidas duas direcções de investigação

complementares. Em primeiro lugar, levanta-se a necessidade de fazer um levantamento

histórico sobre as práticas musicais interactivas no sentido de extrair os aspectos mais

significativos para a música contemporânea. Pretendemos deste modo identificar possíveis

soluções a desenvolver na componente prática da nossa investigação. Em segundo lugar,

passamos para a aplicação prática destas soluções, através de um trabalho musical que

permite a implementação e avaliação dessas hipóteses.

Reconhecendo a natureza transdisciplinar do nosso estudo, adoptamos uma

metodologia orientada para a acção (action-based research) tal como preconizado por

Coghlan e Brannick (2010). Deste modo, direccionamos a revisão literária para a

compreensão geral da música interactiva em busca de estratégias e modelos que possam

indiciar possíveis acções na nossa prática. Em seguida, prosseguimos com a nossa

investigação desenvolvendo uma análise teórica e metodológica em paralelo com uma

experimentação prática, em ciclos iterativos de acção, planeamento, implementação e

avaliação.

Fazer um levantamento das possíveis articulações que podem ser estabelecidas entre o

compositor e a sua obra permite identificar abordagens alternativas que têm sido levadas a cabo

para mediar ideias composicionais, com a expectativa de proporcionar uma compreensão mais

profunda da natureza do meio computacional. Desta forma, no primeiro capítulo, investigamos

diferentes direcções apontando para a exploração de novas sonoridades e para a delegação de

intenções musicais a meios mecânicos, performadores e audiência. Consagramos também neste

capítulo a nossa atenção à mudança de paradigma: das obras de formato fixo para obras que

tomam a noção de processo como foco central. Esta noção de processo, como o conjunto de

técnicas e estratégias mentais que levam à criação da obra musical, é de particular relevância

para o nosso estudo. Nesta perspectiva, abordamos diversas obras: desde as primeiras obras no

seio da música experimental de John Cage, aos compositores minimais como Steve Reich,

passando pelo trabalho desenvolvido por Karlheinz Stockhausen. Também relevantes, são as

possibilidades de interacção que se desenvolveram a partir da música electrónica, em que a

espontaneidade da performação é particularmente valorizada em prejuízo da forma, contexto

em que a Sonic Arts Union assumiu um papel preponderante.

No segundo capítulo, a investigação centra-se na natureza computacional e nas

estratégias que foram desenvolvidas no sentido de tomar partido do computador para a

prática musical. Partindo da máquina de Turing e do conceito de algoritmo, procuramos

também proporcionar um entendimento do funcionamento deste tipo de máquinas e das

estratégias que se adoptaram para formalizar processos musicais, dando origem à composição

assistida por computador. Deste modo, questionamos as ferramentas que utilizamos, o modo

como são usadas e quais os objectivos que levaram à sua criação. Esta ideia também se

estende à natureza dos materiais utilizados, exigindo uma compreensão mais aprofundada do

computador como um medium, e das possíveis articulações que se estabelecem entre o

compositor, os resultados sonoros e respectivos processos musicais.

No sentido de aprofundar as possibilidades de interacção que os computadores

proporcionam, no terceiro capítulo analisamos os sistemas musicais interactivos que se

desenvolveram a partir da década de 1970, com o intuito de sublinhar possíveis direcções

para a nossa prática musical. Procuramos não só identificar as técnicas e estratégias utilizadas

para a criação sonora em tempo-real mas também as possibilidades comunicacionais que daí

advêm.

No quarto capítulo abordamos os desenvolvimentos mais recentes das artes

computacionais no sentido de estabelecer uma nova perspectiva relativamente à prática

musical interactiva. Considerando o meio computacional do ponto de vista creativo, em

oposição à ideia do computador como uma mera ferramenta, assumimos a programação

interactiva como um potencial promissor para a prática musical interactiva.

Esta investigação é sustentada por uma prática musical interactiva que se desenvolve

através da criação de Thr44, um framework computacional através do qual procuramos

proporcionar um contexto mais dinâmico, flexível e transparente para a criação de sistemas

musicais interactivos. Em Thr44, relacionamos abordagens à programação interactiva,

nomeadamente o live-coding, com o desenvolvimento prévio de um conjunto de objectos e

comportamentos que podem ser articulados durante a performação. Estratégias e paradigmas,

como por exemplo, a programação baseada em protótipos podem ser usados e modificados

dinamicamente (on-the-fly) facilitando a prototipagem de ideias, assim como o incremento de

decisões composicionais no âmbito da performação.

Procuramos com esta investigação contribuir para a discussão sobre a música

interactiva baseada no computador com o objectivo de proporcionar uma compreensão mais

profunda destas práticas, dos seus desenvolvimento e das relações que se estabelecem com as

ciências e as tecnologias, no contexto da música contemporânea. Nesta perspectiva,

propomos uma alternativa às práticas dominantes, que não só afirmam a nossa impotência

para interferir com a evolução tecnológica, mas também dificultam as potencialidades

criativas que daí podem advir. Consequentemente, procuramos não apenas contribuir com

uma reflexão teórica sobre estas práticas, mas também disponibilizamos o sistema

computacional desenvolvido, de modo a promover a discussão e experimentação em torno

das práticas musicais interactivas.

Palavras-chave: Informática musical, Interacção, Computação, Sistema Musical,

Composição, Improvisação

(blank page)

Table of Contents

INTRODUCTION .. 1	

Purpose .. 2	

Strategy .. 3	

Significance ... 5	

Overview .. 5	

1	 TOWARDS INTERACTIVE MUSIC .. 7	

1.1	 Early Procedures .. 8	

1.2	 Formal approaches to Composition .. 11	

1.3	 Material approaches to Composition .. 13	
1.3.1	 Musique Concrète ... 15	
1.3.2	 Elektronische Musik ... 17	

1.4	 Process-based composition ... 18	
1.4.1	 Autonomous music ... 18	

Chance Procedures ... 19	
Stochastics .. 20	

1.4.2	 Heteronomous works .. 22	
Open systems ... 22	
Possibilities for interaction ... 22	

1.5	 Live Electronic Music ... 24	

2	 MEDIATION WITH COMPUTERS: COMPUTABLE MUSIC 29	

2.1	 On Computable Music ... 30	

2.2	 Abstraction made Concrete ... 36	
2.2.1	 Standard synthesis ... 36	
2.2.2	 Beyond standard synthesis .. 38	

2.3	 Sound Machines .. 40	

3	 INTERACTIVE MUSIC SYSTEMS .. 47	
3.1	 'Interactive Composing' ... 48	

3.2	 Interplay with computers ... 50	

3.3	 Intelligent Music Systems ... 53	
3.3.1	 'Creative Machines' ... 54	
3.3.2	 Artificial Performer ... 55	

3.4	 Computers as Instruments ... 57	

3.5	 Interactive Music Systems and Emergence .. 61	
3.5.1	 On Emergence ... 61	
3.5.2	 Composing Musical Interactions .. 63	

4	 MEDIATION WITH COMPUTERS: CODE CULTURE 67	

4.1	 Computation as production ... 67	

4.2	 Computation as Creative Medium .. 70	

4.3	 Interactive Programming ... 72	

4.4	 Rethinking Code ... 76	

5	 THR44: AN APPROACH TO INTERACTIVE MUSIC 83	

5.1	 Possibilities for Composing Interactive Music Systems .. 83	

5.2	 A personal perspective ... 85	

5.3	 Composing Interactive Music Systems ... 87	

5.4	 Objectives and Criteria .. 88	

5.5	 Musical Activity .. 90	
5.5.1	 Variable Laptop Orchestra .. 90	
5.5.2	 Reinold Friedl Ensemble .. 93	
5.5.3	 2+n .. 94	

5.6	 The Thr44 Framework ... 97	
5.6.1	 Overview ... 97	
5.6.2	 Considerations on implementation technologies .. 98	
5.6.3	 System architecture ... 99	
5.6.4	 The Thr44 Implementation ... 100	

Main Structure .. 100	
Odef .. 101	
SCPad ... 105	
Networks .. 111	
PetriNet .. 113	
PetriNet BasicBuilder .. 115	
Particle System ... 116	
Boids .. 118	
Sound Utilities .. 119	
BufferList ... 119	
ContinuousBuffer ... 120	
BufferUtils ... 120	
GrainEnv .. 121	

5.7	 Summary ... 122	

CONCLUSION ... 125	

BIBLIOGRAPHY ... 131	

CITED WORKS ... 143	

APPENDIX ... 147	

Appendix 1: Research Results ... 148	

Appendix 2: Media Content .. 150	

Table of Figures

Fig. 1 Arca Musarithmica .. 10	
Fig. 2 John Cage, Variations II, 1961 ... 24	
Fig. 3 John Cage, David Tudor and Gordon Mumma performing Variations V .. 25	
Fig. 4 Hiller, Lejaren; Isaacson, Leonard, «Illiac Suite» Quartet No. 4 for strings, 1957 33	
Fig. 5 Stochastic Music excerpt, Rewritten in Fortran IV ... 34	
Fig. 6 UPIC (Unite Polyagogique Informatique du CEMAMu) by Iannis Xenakis, 1977-1994 42	
Fig. 7 SSSP (Structured Sound Synthesis Project) by William Buxton, 1978 .. 43	
Fig. 8 Joel Chadabe performing Solo at the New Music New York Festival, The Kitchen, 1979 48	
Fig. 9 The League of Automatic Composers .. 51	
Fig. 10 The Hands, by Michel Waisvisz (1984) ... 58	
Fig. 11 Representation of FIS generated waveforms (5th, 7th and 100th iteration) 64	
Fig. 12 Texture visual programming language by Alex McLean ... 75	
Fig. 13 winning entry in the 1998 ‘International Obfuscated C Code Contest’ (IOCCC), a flight

simulator written by banks .. 77	
Fig. 14 Example of a session using Quoth, by Craig Latta ... 78	
Fig. 15 Transfronteiras .. 91	
Fig. 16 Variable Laptop Orchestra and Carlos Zingaro .. 92	
Fig. 17 By executing these two lines of code in SuperCollider, the SinOsc would no longer be

accessible to control, except by directly querying the server, or restarting the environment. 101	
Fig. 18 TouchOSC by Robert Fischer (2009) ... 106	
Fig. 19 SCPad! (2013) ... 107	
Fig. 20 An example of the interface that would be generated (carrier, modulator and modulator

depth) ... 108	
Fig. 21 Diagram of SCPad! Interface organisation ... 109	
Fig. 22 Illustration of the implemented controls: circularSlider, circularRange, ScatterXY,

ScatterRadial, circularSelectSlider, slider, play ... 110	
Fig. 23 Graphical representation of a Thr44Network .. 112	
Fig. 24 PN consumption and production of tokens. .. 113	
Fig. 25 Resulting representation of a PN .. 116	
Fig. 26 Implemented grain envelope functions: Expodec, rexpodec, expon, welch, hanning,

gaussian, blackman, sinc8, sinc16, sinc23, rect, pulse .. 121	

(blank page)

1

INTRODUCTION

Computers are ubiquitous in all features of our culture and society, mediating every

aspect in our lives, with a vital role on communications, economy, politics, social and artistic

activities. From a compositional perspective, computers continuously expand the possibilities

for the creation and manipulation of sound. These machines and their affordances provide

many advantages, allowing complex representations of musical processes with a high level of

detail and repeatability, in the domains of real-time audio synthesis and signal processing,

algorithmic composition, score representation and musical analysis. Their ever-increasing

capabilities in processing speed and storage have made them viable instruments for live

electronic music by allowing the extemporisation of compositional decisions and the

extension of performance attributes beyond human physiological limits.

Due to this potential, live electronic music has become a common practice and music

industries have taken advantage of it by continuously developing and releasing a wide variety

of products. Advanced software such as Ableton Live6, Logic7 or Reason8 allow real-time

recording, editing and playback of musical material, and facilitate the integration of a wide

variety of control devices to trigger events and control digital synthesis, filtering and

processing parameters, making the creation of sound easier than ever.

Within the context of interactive music, however, one finds many obstacles while

attempting to extend one’s creative capacity and accessing new experiences (Ryan, n.d.n.d.).

By performing with these tools, one seems constrained to a limited scope of action, reduced

to a mere selection and adjustment of parameters within ‘pre-composed’ tools. The general

6 https://www.ableton.com
7 http://www.apple.com/logic-pro
8 http://www.propellerheads.se

2

purpose solutions that this kind of software provides not only lead to a technological

unconsciousness9 but also one is capable of identifying the software that is being used.

This situation is not improved by merely using more programmable software, such as

Max/MSP10, Pure Data11 or SuperCollider;12 as we will see, in spite of the fact that these

tools allow more flexibility, they still prescribe models of interaction, namely the dataflow

patching logic or the ‘acoustic model’. The latter, for instance, reinforces the separation of

composition from performance. In this view, composition is regarded as making provision for

interaction, as the creation of a sound machine, preparing structures, instruments and

interfaces, where as all the decisions to be carried out in performance are made beforehand,

neglecting the communicative potential of real-time musical expression.

Purpose

As the focus of this work turns towards the dynamic unfolding of sound and further

explorations of communicational possibilities, we recognise that the computational media is

still rather recent and open to many directions, as of yet to be investigated.

Therefore, this research is developed around the possibilities of computer-based

interactive music practice in order to access how it can be a more subjective, dynamic and

transparent process. This work seeks to improve the relationships that are established with the

computer not only as a means to mediate and creatively explore musical ideas, but also to

improve the discourse that can be established with other musicians, the audience and the

environment.

Researching at the intersection of computer music and interaction withholds a variety

of questions.

9 Wishart refers to a ‘culture of neophilia’ (Wishart, 2009).
10 http://cycling74.com
11 http://puredata.info
12 http://supercollider.sourceforge.net

3

One direction of enquiry is the understanding of which models, techniques and

concepts are fundamental in this technological context. This obliges the questioning of what

tools we use, how they are used, and the purpose for which they were created. This also

concerns the nature of the materials used, requiring a deeper understanding of the computer

as a medium, and the possible articulations between the composer and the sounds and

processes one relates to.

Another direction is the definition of a musical work, given the ephemeral nature of

interactive music, which strongly links to improvised music practices. The notion of work

inherits a certain operational openness, a certain liveliness that implies regarding this practice

as activity rather than an artefact. Furthermore, in this context, it becomes difficult to define

the boundaries of composition itself as, at one end, it encompasses algorithmic composition

and sound design, and at the other, it relates to performance and improvisation.

Strategy

In order to investigate the possibilities of computer-based interactive systems, in

search of more adequate approaches to our practice, we find the necessity of following two

complementary research paths. Not only do we need to survey the developments of

interactive music creation throughout history and extract the significant aspects that can

contribute to contemporary music, but also, we must formulate, experiment and develop on

possible solutions that can be suitable for our practice. Therefore, we find the need to develop

a computational work where we can implement and evaluate these hypotheses, making this

research practice oriented, adopting an action-based methodology (Coghlan & Brannick,

2010), guided by the above mentioned directions, due to the trans-disciplinary nature of our

study.

Accordingly, we begin this research by seeking a general understanding of interactive

music by surveying the topic in an exploratory manner in search of approaches and models

that can direct us towards possible actions for our practice. We then proceed our research by

concurrently developing theoretical and methodological analysis and empirical

experimentation, in iterative cycles of action, planning, implementation and evaluation.

4

We begin by surveying the possible articulations that can be established between the

composer and his work. Questioning the fact that a diversity of commercial software

enclosures its inner processes, we attempt to identify alternate approaches that have been

carried out to mediate compositional ideas, with the expectancy to provide a deeper

understanding of the nature of the computational medium.

 One aspect that interests us is the impact of technological and scientific developments

in musical practice. This not only allowed the exploration of new sounds, namely the advent

of recording and reproducing sound, but also the delegation of compositional decisions to

mechanical devices, through the creation of automata.

In view of this, the notion of process is of particular relevance for our study. Such

notion in music is often associated to the experimental practices by John Cage, the minimal

composers such as Steve Reich or the compositional work by Karlheinz Stockhausen.

We are also concerned with the possibilities for interaction that evolved from the live

electronic music practice carried out by the Sonic Arts Union, for instance, in which

performance spontaneity is valued over form.

To complement this enquiry path, we look into the computer from a technical

perspective and attempt to understand how it operates. From the Turing Machine and the

concept of algorithm, we analyse the strategies that composers carried out in order to

formalise musical ideas in this medium.

Turning back to the prospects of interaction we investigate the dedicated

computational tools that have been created since the 1970s in order to outline possible

directions for our musical practice. We are particularly concerned with improving the

dynamic unfolding of sounds so it is not a mere execution of prior compositional creation.

We not only intend to underpin technical aspects, but we are also concerned with the

potential of discourse they afford.

Improving interactive music practice is only possible through action, through planning

and implementing ideas that can return some satisfying result within our musical activity.

Therefore, complementing the above mentioned explorations we engage in a compositional

activity by developing tools that can enhance the relationships that are established with the

computer not only as a means to mediate and creatively explore musical ideas, but also to

5

improve the discourse that can be established with other musicians, the audience and the

environment.

Significance

This research aims to contribute to the discussion on interactive music, namely the

techniques, tools and materials that are used, in order to provide a deeper understanding of

these practices.

We promote a growing awareness of how electronic music practices have historically

evolved and re-appropriated knowledge from a diversity of fields in ways that significantly

affected the contemporary music context.

In this perspective, we propose alternatives to the dominating discourses, which not

only assert our powerlessness to interfere with technological developments, but also hinder

the creative potentialities that may evolve from them.

Consequently, we not only provide a theoretical ground for such practices, but also

advance an implementation of a computational system that is open to further discussion and

experimentation.

Overview

The first chapter is dedicated to an overview of distinct approaches that composers

have carried out in order to mediate musical ideas and create musical works. We attempt to

outline the most significant events and paradigms that contributed to the emergence of

interactive music. We investigate the efforts into the exploration of new sounds and the

delegation of musical intentions to mechanical devices, performers and the audience. We also

dedicate our concerns to the shift from fixed-form works to ones that emphasize the notion of

process as their core subject.

6

In chapter two, we focus on the nature of computers and the strategies that were

carried out in order to take advantage of these machines for musical practice. From Turing's

blueprint of a computer, and the concept of algorithm, we not only provide an understanding

of the inner workings of these symbolic operators, addressing the emergence of computer-

assisted composition, but also emphasize the notion of the computer as a fully realised

machine, capable of generating sound from an abstract description.

An overview on computer-based interactive music practice is presented in chapter

three, revealing the most significant events and paradigms that characterize it. Concerned

with the communicative potential computers provide, we briefly examine distinct approaches

to this practice, attempting to provide a wider perspective on the concept of interaction within

this context.

In the fourth chapter, we outline recent developments in computer-based arts and

attempt to develop a distinct view on interactive music practice. Reconsidering the

computational medium from an aesthetic perspective, in opposition to the notion of computer

as a tool, we look into the prospects of live coding and identify interactive programming as a

promising potential for interactive music practice.

The final chapter is dedicated to the description of the computational system we have

developed as a result of this research. We present the context in which it was created, and the

criteria that guided its implementation. Afterwards, we present a detailed description of some

of the most significant components that constitute it, finalizing with an evaluation of the

work.

We finally conclude this work with final considerations on the topic of composing

interactive music systems, and drawing possibilities for future research.

7

1 TOWARDS INTERACTIVE MUSIC

Concepts and ideas related to the emergence of technology-mediated interactive music

are underpinned by establishing the relationship between music, science and technology. We

are particularly interested in the interdependence between sound, procedures and technology

and their contribute to the performance oriented practices that are found today.

In this perspective, we approach the early developments of procedural music

identifying some of the techniques that are still present in computer music practice, such as

combinatorics and chance procedures and the first attempts to automate and mechanize

compositional ideas. Then we will analyse the early approaches into the articulation of

sounds that were pioneered by Luigi Russolo and Edgard Varèse, extending the palette of

sounds throught mechanical devices, and opening the way to the establishment of electro-

acoustic music, such as the Musique Concréte by Pierre Schaeffer and the Elektronische

Musik in Cologne. Afterwards, we will explore how the experiments on indeterminism led to

the delegation of compositional decisions to devices and performers, prefiguring interactive

music approaches.

8

1.1 Early Procedures

As far back as in Classical Antiquity music has been associated with the sciences and

regarded as the purest form of expression.13 The arithmetic principle of Pythagoras, which

related pitch to the length of strings, evolved towards an aesthetic philosophy that closely

linked art, science and nature. Although no writings remain from Ancient Greek culture, its

theories arrived to our days through the Quadrivium, credited to Cassiodorus (6th Century),

which was taught until the Renaissance period, and comprised Music, along with Geometry,

Arithmetic and Astronomy, the four subjects of mathematical science, as they all dealt with

"abstract quantity". In this context music is susceptible to be treated formally and

procedurally, like mathematics.

One of the earliest procedural examples of music composition can be traced back to

the 9th Century in Europe. The Organum is described as a method for improvising a second

voice of a Gregorian chant through parallel intervals (Essl, 2007:109). Also, in the 11th

Century, Guido d'Arezzo presented in Micrologus a method for creating musical phrases

from religious hymns (Miranda, 2002:VI). By assigning a set of notes of a scale to each

vowel of the text, one could generate a series of possible phrases to develop a music

composition (Palisca, 2001).

Other examples that emerged in the late Middle Ages are the canon, sets of formal

rules for the generation of voices by derivation of an initial voice. One of such examples is

the isorhythm technique, credited to Philippe de Vitry, that allowed the coupling of phrases to

serially repeating rhythmic patterns. Towards the Enlightment Age, the usage of these

approaches became more usual. Musical Acrostics, which relate to Arezzo's method, were

widely in the Western tradition, namely J.S.Bach's Art of the Fugue, Ludwig van Beethoven’s

Opus 59, Robert Schumann's Abegg Variations, among others. This method consists of

13 As Flusser refers, "at highly inspired moments [the Greeks] spoke of musike kay mathematike
techne as the means of attaining wisdom" (Flusser, 2011:29).

9

encoding words, usually the composer's name, into musical phrases by relating text

characters to notes. These examples already suggest how the mere execution of rule-based

techniques can yeld relevant and diversified results for music composition.

The employment of chance operations can be found in compositional techniques from

the Enlightment Age, such as Musikalisches Würfelspiel credited to W.A.Mozart, and Einfall

einin doppelten Contrapunct in der Octave von sechs Tacten zu machen ohne die Regeln

davon zu wissen14 (1758) by C.P.E. Bach. The compositions’ notation to be performed would

be created by iteratively mapping the outcome of throwing dice, or spinners, to several

possible musical material from tables of musical figures (Loy, 1989:298). The notion of

developing formal systems or devices for cognitive reasoning was already evident in the

Enlightment Age, although their artistic relevance was questioned. Chance games were very

appreciated, in spite of being regarded as mere entertainment, since composition was viewed

as a practice that can only be achievable by human intellect. On a 19th Century edition of

Arezzo's Micrologus, for instance, Hermesdorff justifies such methods as "help provided for

the incompetent beginner" (Loy, 1989:298), revealing a derided view on the usage of

procedural methods. Nevertheless, such constructions not only evidence the possibility of

devices that mediate compositional thought, but also connect to the work of John Cage and

Iannis Xenakis who extensively explored probabilistic methods.

As early as the 17th Century, the attempt to register compositional procedures on

media begins to emerge, and many processing machines and devices were created, long

before the invention of mechanical computers. Athanasius Kircher's Musurgia Universalis,

cited as the precursor of computer-generated music (Cramer, 2005:106) describes the design

of one such attempt. The Arca Musarithmica (Fig. 1) is a "collection of pre-composed

musical, poetic, and rhetorical patterns from where it was possible to create variable,

harmonic compositions" (Carvalhais, 2010:107). This conception is based on the work of

Ramon Lull, a 13th Century Catalan monk who claimed to have had a divine revelation of a

formal system for composing and deriving philosophical-theological statements (Cramer,

2005).

14 A method for making six bars of double counterpoint at the octave without knowing the rules.

10

Fig. 1 Arca Musarithmica (Zielinski, 2006:146)

Probably influenced by kabbalistic thinking, as expressed in Sefer Yatzirah (Book of

Creation), the Circles of Lull were oracles that consisted of several rotating paper discs with

inscribed symbols that allowed combinatorial operations between distinct sets of materials

(Essl, 2007:110). Cramer refers to Quirinus Kuhlmann's published correspondence with

Kircher, where the former found in the combinatorics of Lull a key to unlock the secret of the

tree of life. We notice in Kuhlmann the suggestion of some sort of artificial life, a delicate

subject for their religious context. For this reason, and alerting to the risk of heresy, Kircher

suggested a strictly technical perspective on the possibilities of combinatorics.

A major attempt to create a mechanized non-human computer is credited to Charles

Babbage, who conceived the Analytical Engine, in 1837. Babbage also theorized on a similar

machine for music composition, as described by Ada Lovelace:

 [The Engine's] operating mechanism might act upon other things besides number,

were objects found whose mutual fundamental relations could be expressed by those

of the abstract science of operations…. Supposing, for instance, that the fundamental

relations of pitched sound in the signs of harmony and of musical composition were

susceptible of such expression and adaptations, the engine might compose elaborate

and scientific pieces of music of any degree of complexity or extent.

(Lovelace qtd. in Mathews & Pierce, 1989:318)

11

Programmable music-machines began to appear in the following years, such as carillons,

music-boxes and mechanical organs. The player-piano, for instance, could play by itself patterns that

were perfurated in paper rolls. In fact, these devices were the precursors of recording technologies and

composers such as Percy Grainger15 and Colon Nancarrow explored their potential for the realisation

of works that extended far beyond human capabilities.

1.2 Formal approaches to Composition

The turn of the XXth Century encompassed a series of deep scientific and cultural

changes that were expressed on the structuring of art forms. The formalization and

mechanization of processes gained strength with the new scientific discoveries made.

Prior laws of physics, as formulated in a traditional way, describe an idealized stable

world of closed, single, fixed hierarchy of "preordained orders" (Eco, 1989:13). The

developments brought by Albert Einstein, Henry Poincaré and Werner Heisenberg introduced

new formulations that adopt a view of the world as a complex, dynamic and

multidimensional system, deeply influencing compositional practice. Einstein's Theory of

Relativity emphasizes that the laws of physics can only be established with respect to an

observer; the Uncertainty Principle, by Heisenberg, describes the impossibility of

simultaneously determining position and velocity of certain particles; in turn, Poincaré

discovers processes that are extremely sensitive to initial conditions, where changing them

produces an exponential change. As Friedman and Donley point out, since the Renaissance

there had never been so many artists aware of the developments of other fields of knowledge,

in particular, the fields of science. This transdisciplinarity opened up a vast scope of

unexplored possibilities within artistic practice (Friedman & Donley, 1985:2). The influence

of these scientific discoveries, as Chadabe argues, brought an opening up of ideas in early

XXth Century compositional practice, namely, the music from Claude Debussy, Igor

Stravinsky or Charles Ives that already presented complex combinations and

superimpositions of rhythms and melodies in a multiplicity of new combinations (Chadabe,

1997:22). Describing how Ives attempted to represent an interest in uncontrolled, naturally

15 Hugill (2007:20) provides details on Percy Grainger’ s work.

12

occurring events in Symphony No.4 (1916), Perkins describes how science contributed to a

redefinition of the composer’s role in this period:

 “The role of the composer is in a sense more passive than that of a romantic

composer: once set in motion, the music has its own life and the composer is a listener

like any other. Calling this music experimental is quite precisely correct: like a scientist

setting up an experiment, the experimental composer sets up the conditions that define

the piece, and is interested in hearing what actually happens with it.” (Perkins, 2002)

 These new scientific logics can also be regarded in the rigorous application of

algorithmic procedures for music composition found in the twelve-tone formalism, developed

by Arnold Schoenberg in the 1920s. As an attempt to redefine compositional practice, his

approach was regarded as revolutionary as Einstein's Relativity theory was for physics and

mathematics. His notion of "beauty" is closely related to the ability to comprehend musical

form. "Music is not merely another kind of amusement but a […] thinker's representation of

ideas [that] must correspond to the laws of human logic" (1975:220) Schoenberg rejected the

use of tonality or any intervals that reminded tonality to avoid perceived attractions of a

melodic trajectory to the tonic and thus proposed a formal method for composition where all

pitches are equally relevant. This set of procedures consists in the use of all the twelve notes

of the chromatic scale in a consistent pattern defined as a row, set, or series, where no note

would appear more than once. Formal techniques to operate with such sets would be used,

such as the inversion, retrograde, retrograde-inversion and transposition.

The rigorous application of logic in musical creation was also advocated by Joseph

Schillinger, who was a mathematician. He asserted that "Analysis of aesthetic form requires

mathematical techniques, and the synthesis of forms […] requires the technique of

engineering". He refuted all previous art theory characterizing it as a mere "imitation of

appearances" that failed in the analysis and synthesis of art", and proposes a method of

"creation from principles", suggesting the complete formalization16 not only of artistic

technique, but also of creativity.

16 In the following chapter we will discuss David Hilbert's interest in the complete formalization of
mathematical axioms, and how this concept evolved towards the invention of the computer's
blueprint: the Turing machine.

13

Another approach towards the redefinition of compositional theory is developed by

Messiaen, who, as Xenakis argues, "took a great step in systematizing the abstraction of all

variables of instrumental music" (Xenakis, 1992:5). Instead of removing the tonal function of

chords, Messiaen superimposes a diversity of functions creating a multi-modal music.

1.3 Material approaches to Composition

As previously regarded, the beginning of the XXth Century documents a general

dissatisfaction with the direction of traditional music, from which new approaches to musical

form emerge.

In such context, a new approach that evolved was to regard sound material as a

semantic unit for music composition. Timbre, traditionally treated as an inherited property

from a given orchestration set, or at the most, "a matter of colourisation of musical structure"

(Thoresen, 2007), finds new possibilities with the technological developments of that period,

such as the advent of sound recording and the development of electronic instruments.

The recording of sounds was made possible with Thomas Edison's experimental

inscriptions of vibrations on wax, tinfoil or lead cylinders (Holmes, 2008:33) in 1870, and

subsequent proliferation of mechanical recorders and playback machines17. The potential to

reproduce sound through technological means brought a perspective of autonomy to

compositional practice that had always been subjected to an indirect mediated practice of

notating a work to only later be materialized by performers. Composers such as Ferrucio

Busoni, Luigi Russolo or Edgard Varèse had realized that machines could be a means to fulfil

compositional practice in an almost unmediated way. Their pioneering work created the

conditions for the emergence of Musique Concréte and Elektronische Musik and subsequent

developments that we inherit in today's compositional practice.

17 In 1977, Edison invented the first commercially available microphone. In the same year he invented
the phonograph, although Charles Cros came up with the same idea independently. In 1887, Emile
Berliner patented the gramophone, using flat discs rather than cylinders (Hugill, 2007:14).

14

Ferrucio Busoni is cited as one of the first composers to consider technology as a

means to develop musical ideas (Holmes, 2008:12). On Sketch of a New Aesthetic of Music,

Ferruccio Busoni wrote "Music was born free; and to win freedom is its destiny" (Busoni,

1911), foreseeing the potential of machines for new directions in musical practice,

influencing Varèse and the artists that became known as the Futurists.

While Busoni found in machines an opportunity to expand musical ideas, Luigi

Russolo found the possibility of new sounds. In 1913, Russolo proclaimed the birth of a new

art form through his manifesto The Art of Noise. Russolo proposed that "new music could be

based on turning the noises of the world into music" (Cascone, 2000) and that instruments

should be replaced by machines, providing an enriched sonic diversity.

The variety of noises is infinite. If today, when we have perhaps a thousand different

machines, we can distinguish a thousand different noises, tomorrow, as new machines

multiply, we will be able to distinguish ten, twenty, or thirty thousand different noises,

not merely in a simply imitative way, but to combine them according to our

imagination. (Russolo qtd. in Cascone, 2000)

For Russolo, noise is musical and can be organized musically. He categorized the

distinct sounds generated by the noise constructions (intunarumori) he developed with Ugo

Piatti. Focused on the inner properties of noises, "he provided descriptive names, such as

'exploders', 'roarers', 'croakers', 'thunderers', 'bursters', 'cracklers', 'buzzers', and 'scrapers'

(Cascone, 2000) foreseeing Raymond Schafer's sound classification (Schafer, 1979).

Edgard Varèse also demarked himself from the note tradition reiterating that

composers continue clung to traditions that are nothing but limitations to compositional

possibilities. Varèse describes his music as "organized sound", reinforcing the notion that he

is "a worker in rhythms, frequencies, and intensities" (Varèse & Wen-chung, 1966:18). It is

important to note that though he refers to parameters such as frequencies and intensities, for

Varèse, the "raw material" of his work is 'sound'. His compositional work develops from the

organization of timbre and rhythm. Like the futurists, he was also interested in enriching the

musical alphabet by extending the scope of sonic possibilities, though he criticises their

approach to be an imitation of "superficial and boring" sounds of urban life, advocating that

"a new world of unsuspected sounds" could be developed. One must consider, nonetheless,

15

Risset's argument that the idea of novelty of sounds is a question of perception, and that

quickly they become ordinary18.

Varèse is particularly relevant as he was one of the first composers to conceptualize

the implications of mechanized means for composition and performance. Describing music as

an art-science, he considers the instruments immediacy in relation to the composer's thought,

and anticipates the advantages of technological developments to help the composer realize

what had never before been possible. With such machinery, the ideas of the composer would

"no longer be desecrated by adaptation or performance as all the past classics were" (Holmes,

2008:5); one would be able to obtain any number of cycles, any subdivision of them,

omission or fraction of them – all these in a given unit of measure or time that is humanly

impossible to attain (Varèse & Wen-chung, 1966:13). Varèse had to wait many years before

he found the means to develop his compositional ideas. His only tape music, Poéme

electronique (1958) was created a few years before his death.

1.3.1 Musique Concrète

Developing on precedent considerations of using machines for musical expression,

Pierre Schaeffer's Musique Concréte evolved from his experiments with radiophonic

equipment, and represents an operational change in composing music by direct manipulation

of sound through the recording medium.

The use of recording media as a productive tool, such as the gramophone, had already

been considered, namely by Apollinaire (Battier, 2007), by Lázlo Moholy-Nagy who along

with Oskar Fishchnger and Paul Arma physically manipulated records to generate new sonic

material (Manning, 2003), by experimental filmmaker Walter Ruttmann, who created

Weekend, a sound collage on an optical soundtrack in 1930, by Hindemith and Torch (1935)

and by John Cage for his composition Imaginary Landscape nº1 (1939).

However, Schaeffer's interest was in the actual possibility of composing with sound.

As Pierre Henry notes, the focus was on "‘plastifying’ music, of rendering it plastic like

sculpture", formulating "a new mental framework of composing" (Pierre Henry qtd. in

18 Personal presentation at Universidade Católica do Porto 2008/09/10.

16

James, 1981:79)19. While researching on the possibilities of Musique Concrète, Schaeffer

introduced the notion of the 'sound object', which he developed in subsequent years, resulting

in the publication of Traité des Objets Musicaux (Schaeffer, 1966). Regarding this work,

Michel Chion exposes that the motivations that led to the notion of the 'sound object' were

due to the discoveries made by early experiences carried out with the gramophone and the

recognition of the status of recorded sounds, as dissociated from their cause, hence,

acousmatic (Chion, 1983).

Schaeffer recognizes the multiple possibilities of describing sound. At one end the

scientific manner, where sound is characterized by its acoustic and mathematical properties,

or the aesthetic manner, where it is characterized for its psychosocial characteristics 20, and

the composer’s subjective formulations of value. For Schaeffer, phenomenological studies

could not explain the richness of how humans perceive sound, requiring a music theory to

sustain this practice. As Collins reminds us, a complete understanding of human perception is

a worthy aim for the cognitive science of music (Collins, 2006:8). As such, Schaeffer

proposed “reduced listening” as a framework to operate with sounds. His reduced listening

consists of understanding sound as a signifier on its own, reduced to its intrinsic attributes, its

materiality, its substance. The experience of sound transcends the object itself and enables a

unique formalization over sound material. Thus, the 'sound object' is “the meeting point of an

acoustic action and a listening intention" (Schaeffer, 1966).

The theoretical work developed by Schaeffer echoes through time in a diversity of

readings and interpretations, such as the work on Spectromorphology by Dennis Smalley

(Smalley, 1994), or the appropriations of the 'sound object' in computational media by

William Buxton (Buxton, Reeves, Baecker, & Mezei, 1978) and Horaccio Vaggione (Budón,

2000; Vaggione, 1991)21. His work reminds us that technology does not define what is

perceptually important in music.

19 See also Guide to Sound Objects (Chion, 1983:77).
20 An empiric approach that values sounds as they are.
21 See also L'Object Sonore: Situation, Évaluation et Potentialités (Dias, 2005).

17

1.3.2 Elektronische Musik

A distinct approach was carried out by Werner Meyer-Eppler, Robert Beyer, and

Herbert Eimert in WDR Studios, known as Elektronische Musik. Their purpose was to extend

the serialist tradition by synthesizing music with electronic devices that could easily be

mapped to parameters such as pitch and amplitude, and extended to the control of timbre,

dynamics, and densities.

In the first years of WDR, the sonic possibilities of the equipment were very limited,

consisting of a single sine wave generator, a white noise generator and a Monochord. In the

course of a few years, due to the collaboration with composers such as Koenig, Stockhausen,

Pousseur, among others the WDR Studios offered a wide variety of devices to generate rich

sounds.

Risset makes a clear distinction between Musique Concrète and Elektronische Musik by

stating that the former, taking Russolo's direction, incorporated sounds of all kinds, offering a

richness of sound constrained by the rudimentary means to control it. The latter, in

contradistinction, offered means at the cost of 'simple and dull sounds' (Risset 1976).

Nonetheless, the incompatibility between Musique Concréte and Elektronische Musik

remained, pointing to limitations within machines to incorporate certain compositional

principles, which we will resume later (cf. Ch.2.2.2).

Studios like WDR, GRM expanded throughout the world, promoting the

establishment of electronic and electroacoustic music practice and providing a context to

support compositional practice. The relation between composers and scientific researchers

not only enabled the development of new tools and theories, such as Musique Concréte and

Elektronische Musik, but also created an interdisciplinary context that allowed the continuous

research and experimentation of musical practice. Many researchers working in these studios,

such as Abraham Moles, Jacques Poullin, Werner Meyer-Eppler or Fritz Enkel, facilitated

composers with the most recent scientific studies. As such, quantum theory developments,

18

system theory and cybernetics22 became known and appropriated, enabling musical

developments in years to come, namely the process-based approaches by John Cage and

Iannis Xenakis that we will hereafter discuss.

1.4 Process-based composition

From the mid 1950s, the influence of science in compositional practice becomes more

evident, particularly concerning the means to structure music works. Instead of composing

"finished works" by directly manipulating the musical materials, following a structure or any

other predefined constraints, the focus turns to composing dynamic processes. These

processes are the composition per se, a system that, when enacted, results in a multiplicity of

possible outcomes of the music work, determined by rules or delegated to performance

through the action of human agents, devices or the environment.

The shift from structure-based to process-based composition introduces the possibility

of interaction and provides us with a diversity of approaches that are relevant to our study.

1.4.1 Autonomous music

The development of process-based works entirely determined by probabilistic rules

was pioneered by John Cage and Iannis Xenakis in the mid 1950s. Although the final

outcome is presented as a fixed and finished work, indeterminism played a defining role in

the act of composing. Their works not only are examples of how compositional practice may

be formalized in order to be carried out by computers, anticipating algorithmic composition,

but also of the diversity of directions that can be taken by introducing elements that are

extraneous to musical practice.

22 Norbert Wiener's theory of Cybernetics (Wiener, 1948) grew out of interdisciplinary meetings that
took place between 1944 and 1953, known as the Macy Conferences. Wiener proposed a model for
integrating machines into our sensory experiences and creative processes. The existing automata,
coupled to the outside world, were equipped with sensing devices, and the equivalent of a nervous
system from living systems. Wiener recognized the negative feedback loops for the regulation of
behaviour that were characteristic to both living systems and machines and conceived their
integration through the transfer of information from the one to the other.

19

Chance Procedures

Music of Changes (1950-51) from John Cage was the first work wholly generated by

chance operations (Cage 1973:57). Resorting to a chart system with 8x8 cells which

corresponded to the I-Ching hexagram. Cage described sounds systematically arranged in

charts and used the I-Ching to locate them. His compositional procedures developed into

using multiple charts, defining components of sound allowing situations that were not

preconceived. Each event was created through the usage of three charts for sound, durations,

and dynamics, assuring that Cage would not impose his own intentions on the final form that

made up the Music of Changes. The sound charts contained sound complexes that were

intentionally created, and chance-determined manipulation of durations and dynamics.

Whereas Xenakis employed random operations in order to gain control over the

musical structure, Cage's work attempted the opposite and questioned the status of the author

by attempting to remove the composer from making decisions, and instead, delegating them

to chance. His view was criticized by Pierre Boulez, who believed in the active role for

composition and rejected the widespread usage of chance and loss of the opportunity to

control events.

"The most elementary form of the transmutation of chance would lie in the adoption of

a philosophy tinged with Orientalism that masks a basic weakness in compositional

technique; it would be a protection against the asphyxia of invention the individual

does not feel responsible for his work, but merely throws himself by unadmitted

weakness, by confusion, and for temporary assuagement into puerile magic."

(Boulez, Noakes, & Jacobs, 1964)

His point of view by defining such approach as 'chance through inadvertence', as an

absence of control through "impotence", and by further characterizing 'chance by automatism'

as a "sterile search for combinative devices, into an aggressive refusal of arbitrariness"

(Boulez et al., 1964).

However, for this work, Cage's intentions were to remove the authoritarian role of the

composer through chance, liberating sound from its referent.

20

"The music of Changes is an object more inhuman than human, since chance

operations brought it into being. The fact that these things that constitute it, though

only sounds have come together to control a human being, the performer, gives the

work the alarming aspect of a Frankenstein monster. The situation is of course

characteristic of Western Music, the masterpieces of which are its most frightening

examples, which then concerned with humane communication only move over from

Frankenstein monster to Dictator."

(Cage, 1968:36)

Nevertheless, as Robinson points out, Cage regretted the fact that in Music of Changes

he did not take chance beyond the "sphere of the compositing phase" (Robinson, Bois, Kotz,

& Joseph, 2009:90), a direction we'll further discuss in this chapter.

Stochastics

Contrary to Cage's intentions to liberate the composer through chance, Xenakis's aim

is to control it. Xenakis believed that serialism was not a proper alternative to tonal music.

By assigning equal relevance to all pitches serialists removed causality and remained with a

complexity where one hears "nothing but a mass of notes in various registers [,] … an

irrational and fortuous dispersion of sounds over the extent of the whole spectrum" (Xenakis,

1992:8). Stochastics, used by science to explain the complexities of natural phenomenon,

were regarded by Xenakis as the adequate tools to control the orchestral sounds of a musical

work, rather than the "linear polyphony" used by serialism. The stochastic methods from

Iannis Xenakis emerged as an aesthetic that integrates mathematics, logic and sciences into a

theory for music composition.

In order to develop his theory, Xenakis needed to devise "the minimum of logical

constraints necessary for the construction of a musical process", for which he resorted to the

usage of algebra. Sonic events were abstracted through vectors, which can have as many

dimensions as the amount of parameters to model. Such formulation enabled him to create nth

order vector spaces (1992:155) where each axis would be mapped to a parameter. The scores

for Metastasis (1955) and Pithoprakta (1954) are graphs where the drawn lines represent the

evolution of pitch through time. Rather than discrete pitches, Xenakis uses long glissandi to

obtain "sonic spaces of continuous evolution".

21

Xenakis proceeded with the development of rules to control sonic events. For

Pithoprakta he used the kinetic theory of gases to determine the velocity of each particle,

represented as the slope of each line ("temperature"). The average mean of all velocities was

distributed according to Bernoulli’s Law of Large Numbers.

The compositional process of Achorripsis (1957) is similar, although for this work

every musical element is stochastically determined using Poisson's formula – the overall

form, durations, dynamics and pitch.23

Taking advantage of mechanical devices, such as a tape recorder, Xenakis worked at

GRM, developing electroacoustic works like ConcretPH (1958), Diamorphoses (1957-58),

Orient-Occident (1960) and Bohor (1962). Xenakis was not interested in Schaeffer's research

agenda, but rather in developing his compositional theory (Harley, 2004:20).

Xenakis adopted Dennis Gabor’s sound quanta theory (Gabor, 1947) to represent

acoustic signals. Rather than regarding sound as a function of time (waveform) or sum of

functions with rigorously defined frequencies, as defined by Fourier, Gabor conceived that

"any sound can be decomposed into a family of functions obtained by time and frequency

shifts of a single gaussian particle"(Roads, 2004:57). Xenakis describes "all sound is an

integration of grains, of elementary sonic particles, of sonic quanta." Continuous sonic

variation is conceived as an assemblage of a large number of grains disposed in time. These

grains can be described in terms of duration, frequency and dynamics.

For ConcretPH, Xenakis recorded on tape sounds of burning material. Then, very
short chunks were extracted and isolated into single creaks. These segments had the duration
of hundredths or thousandths of a second. This material was then assembled to create distinct
textures that were then used to form the work.

23 Iannis Xenakis’ process is thoroughly described in Formalized Music (Xenakis, 1992:29-38).
Further analysis are provided by Linda Arsenault (Arsenault, 2002) and by Agostino Di Scipio (Di
Scipio, 1998).

22

1.4.2 Heteronomous works

Open systems

So far we have discussed the exploration of indeterminism as devised by mathematics,

where the outcome of a musical work is expectable within the scope of the possibilities

defined by the composer.

The emergence of unforeseen situations can be achieved through the exploration of

media serendipity by incorporating uncontrollable aspects of a specific medium as

compositional material. Imaginary Landscape nº4 (1951) and 4'33 (1952), by John Cage, are

examples of such approach. The unpredictable sounds of broadcasting radio stations are the

raw material for Imaginary Landscape nº4, a piece conceived of 12 radio receivers, operated

by 24 performers (2 for each radio) with detailed instructions for each to modulate their

volume and tuning. The score of 4’33” does not contain any note to be performed. Rather,

the sounds made by the audience and surrounding environment are the content of this work,

inviting the audience to experience the rich sonic environment that surrounds the

performance. Cage's statement – "There's no such thing as silence" – refers to his experience

in an anechoic chamber which allowed him to become aware of other less perceptible sounds,

such as the sound of the nerve's systematic operation or blood's circulation (Cage, 1968:8).

This work can be interpreted as an attempt to create a situation of awareness of the rich sonic

environment that surrounds the performance.

Possibilities for interaction

Possibilities for the performers to interact with the musical work became evident in

the late 1950s with the works of european composers such as Karlheinz Stockhausen, Pierre

Boulez or Henri Pousseur. These works are cited by Umberto Eco, who proposes the term

‘open work’ in order to describe the then emergent approach to deliberately leave a certain

autonomy of choice to the performer, as components of a construction kit, in which the works

‘are brought to their conclusion by the performer at the same time as he experiences them on

an aesthetic plane’ (Eco, 1989:169).

In KlavierStück XI (1956) by Karlheinz Stockhausen, the score contains nineteen

sections that the performer can successively choose to perform, and provides a set of rules:

At the end of each section there is a tempo, agogic or dynamics instruction to be carried out

23

in the following section that the performer chooses; in the second iteration of a section, the

octave indications notated must be played; the third repetition of a section results in the end

of the performance.

In a similar direction, in Pierre Boulez's Third Sonata for Piano (1958), the first
section consists of ten scored sections that the performer can rearrange.

Another significant work cited by Eco is Henri Pousseur's electronic composition
Scambi (1957). This work is unusual in the tape-music medium because it is explicitly meant
to be assembled in different ways before listening. Pousseur describes this work "not so much
a musical composition [but] a field of possibilities" (Pousseur qdt. in Eco, 1989:1-2). It
consists of sixteen sections, where each can be linked to two, allowing superpositions,
presenting a rich example of the usage of combinatorics.

Eco’s work offered a significant conceptual ground, and was an inspiration for the
exploration of indeterminate and procedural approaches to music. As theorized by Eco, a
work of art gains “aesthetic validity” with the possibility of having a multitude of
perspectives from a single work In the works cited by Eco, however, very narrow
possibilities are given to the performers, merely being allowed to define the sequence of
events through combinatorics.

Expanding further on the potential of combinatorics, as found in 'open works', and on
possibilities for interaction in a performative context, we can refer to Duel (1958), a
composition by Iannis Xenakis that takes the form of a conflict between two opposing
orchestras. For such, Xenakis created probabilistic tables that correlate "direct sonic
operations [from each of the conductors that result in] payments one conductor gives the
other" (Xenakis 1992:112). Game theory is applied to these probability tables in order to
guarantee a zero-sum game24. This work also illustrates how interaction emerges from
procedurality through the definition of game rules intended to be carried out during a
performance.

As we have previously regarded, John Cage had also been exploring these
possibilities, having proposed a wide diversity of approaches, such as the delegation of
compositional decisions to chance or technological serendipity. Means to interact with
performers can be found in the Variations (1958-1967) series. Variations II (1961), for

24 The losses (or gains) of an orchestra coincide with the gains (or losses) of the other.

24

instance, is rather a composition kit than a score, and consists of eleven transparent sheets
(six having drawings of straight lines and five of points). The sheets are to be superimposed
freely and perpendiculars to the lines must be dropped, containing the points. The length of
these perpendiculars represents the value of each parameter of sound. A single use of all
sheets yields thirty determinations.

Fig. 2 John Cage, Variations II, 1961

1.5 Live Electronic Music

In the late 1950s John Cage and David Tudor started experimenting on electroacoustic

music for Cunningham's Dance Company (Fig. 3), realising the need to improve the relations

between sound and movement. Their experiments led to the creation of Cartridge Music

(1960), one of Cage’s earliest attempts to produce live electronic music. Similarly to

Variations II, Its score consists of a series of transparent sheets on which patterns are drawn.

The performer must superimpose the sheets and work out their time structure by observing

the ways in which the lines intersect. The sounds are to be generated using cartridges from

record players, manipulating them freely with other objects, only being constrained by the

score's time structure.

25

Fig. 3 John Cage, David Tudor and Gordon Mumma performing Variations V (Robinson, 2009:256).

 For Cage, the idea of live electronic music was not viewed as a mere technological

improvement, in which electronic sounds could be generated at the moment of performance,

without resourcing to pre-recorded material, leveraging electronics to traditional instruments.

Rather, music was regarded as an ‘affirmation of life’, reiterating the possibility for a more

experimental direction in music.

And what is the purpose of writing music? One is, of course, not dealing with purposes

but dealing with sounds. Or the answer must take the form of paradox: a purposeful

purposelessness or a purposeless play. This play, however, is an affirmation of life – not

an attempt to bring order out of chaos nor to suggest improvements in creation, but

simply a way of waking up to the very life we're living, which is so excellent once one

gets one's mind and one's desires out of its way and lets it act of its own accord.

(Cage, 1968:12)

 The work developed by Cage and Tudor was deeply influential to Robert Ashley,

Gordon Mumma, David Behrman and Alvin Lucier who also collaborated in the Cunningham

Dance Company and later formed the Sonic Arts Union (1966-1976), exploring live

electronics. As Behrman points out, their interest evolved towards doing pieces “in which

established techniques were thrown away and the nature of sound was dealt with from

scratch” (Holmes, 2008:376).

An example of such direction is Alvin Lucier’s I Am Sitting in a Room (1969), a

performance that explores the environment’s acoustic resonance, in which Lucier himself

26

narrates a text that is iteratively recorded and played back into the room until only a static

drone can be heard.

Gordon Mumma has become a fundamental reference to interactive music practice for

having adopted cybernetics ideas from Wiener (1948)22. Adopting the term cybersonics

(Mumma, 1967) his compositional work consists of developing analog self-regulating circuits

to interact with in performance. The ‘affirmation of life’ that is advocated by Cage, is

interpreted as a complex of interactions, as found in Wiener’s conceptualization of ‘living

systems’.

For Hornpipe (1967), Mumma modified a French horn and built a complex setting of

vertical pipes and microphones to capture resonances at different frequencies, connected to a

sound modifying circuit. The performer's task is to take advantage of the system's feedback

loops and attempt to control it by balancing and unbalancing at different states (Mumma,

1967).

His ‘cybersonics’ approach to composition implies the development of electronics as a

fundamental part of his work, shifting from the composition of sounds to the composition of

artefacts that enable the creation of sounds.

My decisions about electronic procedures, circuitry, and configurations are strongly

influenced by the requirements of my profession as a music maker. This is one reason

why I consider that my designing and building of circuits is really "composing." I am

simply employing electronic technology in the achievement of my art.

(Mumma 1967)

27

Having surveyed the specificity of operational modes in music composition, we have

established the relationship between music, science and technology, and how this

interdisciplinary practice contributed to the development of new approaches to mediate

musical ideas and to the enhanced potential to explore new sounds.

From classical antiquity to the mid 1950s experiments carried out by John Cage, from

combinatorics to ‘stochastics’, a diversity of concepts that relate to contemporary computer-

based music practice have been underlined.

It is significant to note that the emergence of procedural practice in music composition

is not exclusive to the use of computers but rather a subjective diversity that is inherently

musical. In fact, these approaches emerged as an attempt to understand the complexities of

natural phenomena and rendering them into music. Subsequently, this search contributed to

the development of processes for automation, drawing a path towards today’s computer-

based algorithmic composition.

Another fundamental idea is related to the invention of devices for the creation of new

sounds, configuring the possibility to generate sounds and enabling the expansion of the

composer’s palette. We have identified issues related to the apparent incompatibility between

formal and material approaches to composition, a subject that we will tackle in the next

chapter.

Finally, we have observed how possibilities for interaction have evolved from

procedurality, making the separation between composing and performing less evident in

interactive music practices.

28

(blank page)

29

2 MEDIATION WITH COMPUTERS:

COMPUTABLE MUSIC

 In the previous chapter, we have regarded some of the most significant processes used

in musical composition. A diversity of works by composers, such as Iannis Xenakis or John

Cage, evolved towards the definition of rules and constraints, the attempt to mechanize,

automate and delegate musical ideas through the definition of musical procedures.

In this chapter we will observe how these principles were applied to computers,

attempting to provide a deeper understanding of the developments that influence today's

music practice, and in search of the limitations and possibilities they enable.

The most significant issue these pioneers had to deal with was how to incorporate and

extend compositional tools and concepts with such logical machines.

We will begin by regarding formal aspects of computation, such as the Turing

Machine in an attempt to understand the parallels that can be drawn between composing and

programming, developing on the notion of musical works that take the form of computer

programs with prescribed musical algorithms. Afterwards we will tackle on the developments

on sound synthesis and the diversity of strategies carried out in order to make the computer

become a concrete sound machine, offering the composer autonomy to execute (perform) his

musical creations.

We will end this chapter with some considerations on interaction that, through the

1960s and 1970s, revealed possibilities for computers to be used in performance.

30

2.1 On Computable Music

The most significant property of the computer is that it can perform any task that can

be defined for any formal system to do. It is a General Purpose Logical Machine. In

one sense a computer can do anything. However, that statement begs the question of

how we define whatever it is we want the computer to do. The computer can do

anything provided that we can define precisely how it should be done.

(Edmonds, 2009:113)

The use of computers for music composition emerged in the late 1950s with the

experiments by Lejaren Hiller and Leonard Isacson, Rudolf Zaripov among others (Ariza,

2005:36; Loy, 1989:47; Roads, 1999:830). Pioneering algorithmic composition, their

experiments progressed as attempts to formalize musical concepts by means that could be

carried out by computers in order to return a score of note parameters to be performed by

instrumental musicians.

 Methods for the generation of musical material were already very well known, such

as combinatorics and chance procedures, however the notion of prescribing compositional

ideas into a machine involved many uncertainties – from a minimal set of mathematical and

logical operations, these composers had to define and program complete musical works,

contributing to an understanding of contemporary computer-based practice. The concept of

programming music, as of writing algorithms, inherits Alan Turing’s conception of the

Turing Machine
25

, the blueprint of actual mechanical computers as available today.

25 The Turing Machine was developed by Alan Turing on his paper On Computable Numbers (Turing,
1936). In this period, the term "computer" was widely known as a job title of a person who carried
out calculations in order to answer mathematical questions (Hayles, 2005), and a machine that
could perform such calculations was required. The context of the Second Great War required high
amounts of complex calculations related to design and use of weapons, deciphering messages or
other engineering needs.

A general problem of mathematics was to mechanically validate axioms. David Hilbert wanted to
solve this issue and support mathematics with solid and complete principles, eradicating theoretical
uncertainties. His objectives, known as the Entscheidungsproblem (decision problem) were
questioned by Gödel, Turing and Church who argued that logic cannot completely prove all
mathematical theorems.

31

The Incompleteness Theorem by Gödel refuted such logical inference, arguing that no axiom can
mechanically be evaluated as it would recursively require to prove the validity of its principle
axioms ad infinitum, therefore, the system would be either incomplete or false (Hofstadter, 1979).
Turing replied to this particular issue questioning whether any specific mathematical problem could
be solved mechanically, i.e. computable. His work introduced the ∝-machine, later known as
Turing Machine (TM), a new model for non-human computing that served as a blueprint for the
electronic digital computer.

The TM is a concept of a device for symbolic manipulation that consists of a 'store', an unlimited
memory capacity, obtained in the form of an infinite tape (the metaphor for paper), an executive
unit that operates on the 'store', according to a table of behaviours that specified in the tape, and a
'control', that guarantees that the operations where correctly performed (Turing, 1950).

On Computable Numbers, Turing limits his theory’s numbers to a considerable subset of them, which
he termed computable numbers. Such limitation can primarily be justified by the fact that the
human memory is necessarily limited too. An infinite number of signs made up of a finite alphabet
that, as we all know, can be reduced down to zero and one, has since then banished the endlessness
of numbers. Hoffstaedter’s description of Zeno’s paradox (Hofstadter, 1979:39-47) elucidates this
aspect of mathematics.

The tape is divided by cells that take a binary value (any finite number or symbol can be represented
as a sequence of ones and zeros, a simplification of language to on’s and off’s). The 'executive
unit' running over the tape can move backwards and forward, and read, write or erase symbols
accordingly to the specified operations, changing the machine's state in discrete steps. Turing
introduced the notion of logic to perform symbolic processing as part of the machine. The
computer is described as a state machine that, in discrete steps, would be transformed from one
state to another. It can sequentially take each cell of the symbol, perform a Boolean operation in a
one-to-one relation, and write the result as another symbol.

 This process characterizes how a computer is operated with machine language instructions (opcodes):
We call the number of a computer specific operation, stored in the computer's central processing
unit (CPU) to operate on data stored at a specific address in memory. In order to facilitate the act of
programming, computer engineers developed Assembler, a program that allows translating these
commands and data structures memory addresses into words (JUMP, READ, STORE). Afterwards,
high-level compilers of programming languages were developed, in order to allow the separation
from machine specific code instructions, and have universal commands for operations execution.

Theoretically, the TM provides us with a set of abstractions that are universal, such as the Boolean
operations that can be performed with information, making computers physical characteristics
irrelevant for programming, but in fact, the first machines had their own specific opcodes that
impossibilitated transference of code among machines. Also, as Carvalhais points out, TM is
conceived with an infinite tape, which in actual computers does not occur. The computer has a
limited storage capacity (Carvalhais, 2010:87).

32

Informally, an algorithm is any well-defined computational procedure that takes some

value, or set of values, as input and produces some value, or set of values, as output.

An algorithm is thus a sequence of computational steps that transform the input into

the output.

We can also view an algorithm as a tool for solving a well-specified computational

problem. The statement of the problem specifies in general terms the desired

input/output relationship.

(Leiserson, Rivest, Stein, & Cormen, 2009)

Attempting to determine whether a computer could be used for musical composition,

Lejaren Hiller and Leonard Isaacson have taken a series of experiments on modelling

compositional choices, as a set of rules, onto it. Using the Illiac computer from the University

of Illinois (Fig. 4) they implemented composition procedures, such as polyphony and

counterpoint rules. Influenced by Claude Shannon's work on Information Theory26 (Shannon,

1948), they also explored procedures based on statistics, such as Markov chains.

From a wide variety of musical material, they reduced compositional practice to

algorithmic operations of analysis on the probabilities of notes to occur in musical phrases,

generating new musical material that maintains the original genre and style. This method,

known as Monte Carlo27 is one of the most successful methods used for algorithmic

composition.

26 Shannon defines information as a probability function with no dimensions, no materiality, and no
necessary connection with meaning. Information is regarded as a representation of choice from
among a range of possibilities (Hayles, 2008:18), a quantity measured by the probability of certain
events to occur. The concern, for information theory, is not the semantics of a message, but rather
the potential for using a machine in order to logically operate within a set of established rules.
These concepts are not synonymous. Information theory removed semantics from communication
in order to be able to operate with it. Also, Shannon limited his theory to ergodic systems, music
being one of the included types of communication (Ariza, 2005:40).

27 A thorough description of the Monte Carlo method is provided in Buxton (1977).

33

Fig. 4 Hiller, Lejaren; Isaacson, Leonard, «Illiac Suite» Quartet No. 4 for strings, 1957

© Hiller, Lejaren; Isaacson, Leonard

 As a result of these experiments Hiller and Isaacson presented ILLIAC Suite29 (1956),

credited to be the first piece of music composed by a digital computer. Hiller and Baker

further expanded the techniques that were used in this composition and developed the MUsic

SImulator-Interpreter for COMpositional Procedures (MUSICOMP) system (Ariza,

2005:44)30.

Hiller also worked with John Cage, expanding this system by employing subroutines

for number selection based on the I-Ching31 and on Mozart’s Musikalisches Würfelspiel. This

collaboration resulted in the creation of HPSCHD (1969), a composition that employed seven

harpsichords, fifty-one computer generated tapes, eight slide projectors, and seven film

projectors.

Around the same period, Iannis Xenakis was exploring stochastic techniques (cf.

Ch.1.4). As early as 1962, Xenakis developed the Stochastic Music Program (SMP), a score-

29 Also known as String Quartet No. 4.
30 Ariza (2011) provides a historical background on Hiller and Isaacson’s work, and also the work

from David Caplin, Dietrich Prinz, and Harriet Padberg, which was developed in the same period.
31 We had previously discussed the usage of the I-Ching by John Cage (cf. Ch1.4.1).

34

computing program where he implemented stochastic distributions, written in Fortran on an

IBM mainframe (Xenakis, 1992:144).

Xenakis describes the advantages of using computers in musical composition as of

becoming some sort of pilot. Freed from long hours of laborious calculations, the composer

can devote himself to the general problems that the new music form poses. For Xenakis, the

program's source is an objective manifestation of the composition's form, and even suggests

the possibility of dispatching the work to any distant point on earth, to be explored by other

"composer pilot", anticipating today's open-source culture.

Fig. 5 Stochastic Music excerpt, Rewritten in Fortran IV (Xenakis, 1992:146)

However, reading Xenakis ST source code (Fig.5), implemented in Fortran IV,
provides a good perception of the difficulties of composing with programming languages.
Procedural programming consisted in linearly writing step-by-step instructions on what to do
with data stored in a central structure. From an analytical perspective, it becomes difficult to
perceive an overall compositional intention.

With the aim of testing serial music compositional rules with computers, in 1964,

Gottfried Koenig began Project 1 (PR1). His program allowed him to feed into the computer

parameters such as instrument selection, time, pitch, registers and dynamics, which when

executed would generate a score.

35

Koenig characterizes computer composition as 'the formulation of sets of rules with

the aid of a computer with a view to working out musical contexts' (Koenig, 1991). The

program embodies a "strategy and the compositional idea behind it". It is important to remark

that Koenig described programming as computer composition, as a subjective practice, as it is

highly related to the composers’ own understanding of music.

He asserts that composers "are in general inadequately prepared to use a composing

program" (Koenig, 1975) because of their lack of capacity for thinking abstractly and self-

analysis. The difficulties of programming led him to consider that it would be easier to

modify the resulting text produced by the program than correcting the rules and re-writing the

program.

The above cases expose a required logical thinking for the conception of correct

algorithms and data structures that take the form of computer music programs. The computer

operates as a powerful calculating device in the service of music.

The compositional efforts carried out by Hiller and Isaacson, Xenakis and Koenig are

described by Horacio Vaggione as Turing Music (Solomos, 2005). The emergence of

computer-aided algorithmic composition (CAAC), in which the composer takes Turing's

formulation of the computer as a powerful symbolic operator to model music information

from sets of rules represents an economy of means, allowing the composer to delegate to the

machine certain 'laborious' aspects of his work, dedicating his time to compositional

concerns. The usage of computers does not represent any significant change in the

operational models that are carried out, not even in the intrinsic properties of music elements.

The final outcome of these works remains as a set of parameters to be printed out in order to

create a score to be performed.

36

2.2 Abstraction made Concrete

Beyond computers' potential to carry out symbolic operations for the creation and

transformation of musical parameters, by the 1950s, they also became capable of generating

sound. The significance of such capability lies in the fact that notation itself has become self-

sufficient for the emergence of sound; computers have become capable of materializing

instructions from abstraction into actual sounds. As Berio and others describe, they have

enabled the "composition of sounds themselves" (Risset 1985).

 The first experiments in sound generation preceded algorithmic composition. Geoff Hill

programmed popular melodies on the CSIRAC computer (Doornbusch, 2004). Nonetheless,

the most significant work was carried out by Max Mathews and his colleagues at Bell

Laboratories. In 1957, as a demonstration of the Music I program, they presented an entirely

generated monophonic étude called The Silver Scale (1957), composed by Newman Guttman.

This program allowed the generation of an equilateral triangular waveform to which pitch,

amplitude and duration could be specified for each note (Roads & Mathews 1980). In the

following years Mathews were fundamental for the research on sound synthesis, developing

the most widely used approaches today.

2.2.1 Standard synthesis

On "The Digital Composer as a Musical Instrument", Mathews describes the

possibilities opened up by digital-to-analog converters (DAC), with which streams of

numbers generated by computers could be directly converted to sound waves, and

consequently any perceivable sound could be produced (Mathews, 1963). According to

Mathews, the two fundamental problems in sound synthesis were the vast amount of data

needed to specify a pressure function, and the need for a simple, powerful language in which

to describe a complex sequence of sounds (Mathews, Miller, Moore, Pierce, & Risset,

1969:34).

Attempting to solve these issues, Mathews developed Music III (1959) which

implemented the concept of unit generators (UGens) for sound synthesis and signal

processing. These building blocks consisted of algorithmic functions that output signals

controlled by their parametric inputs (Roads 1999:787), such as oscillators, filters or

mathematical operators. The UGens could be interconnected in order to generate more

37

complex signals. This modular approach avoided having to write each and every single

sample used in the work (Pope, 1993:25) and represented the potential to "have virtually an

unlimited amount of equipment" (Howe, 2009). In order to program a musical work, the

composer would have to write an 'orchestra', describing the instruments as UGen connection

descriptions, and then a 'score' or 'note list’, with the data to control instruments' parameters

and start times.

Such ‘top-down’ approach to specify sounds resembles acoustic models for

composition facilitating composers’ transition to computer music. The generality of audio

programming languages accessible today – such as CSound, SuperCollider or Chuck – are

regarded as descendants of Music-N and remain faithful to this concept.

Throughout the 1960s, computers were not attractive to the majority of composers,

however they permitted a faster and more efficient study of complex sounds, in particular

within the field of psychoacoustics.

One of the first researchers to work with these new digital tools was Jean Claude

Risset, who found an opportunity to research on the incompatibility between the nature of

sound material and its form. As Risset points out (1976), the richness of musique concréte

was constrained by the rudimentary means to control it, and Elekronische, in opposition,

offered means at the cost of 'simple and dull sounds'. Computers could offer the best of both

approaches by providing means to create and to control rich sounds. Risset began

experimenting on additive synthesis32, discovering important timbral properties of sound,

such as the importance of inharmonic spectra and the role of their amplitude envelope (Risset

1976). Such discoveries enabled Risset to develop an understanding of sound by combining

acoustics, sound synthesis and psychoacoustics that allowed the creation of works such as

Inharmonique (1977) or Mutations (1969).

The potential of Mathew's UGens is verifiable by John Chowning's discovery of the

musical possibilities of Frequency Modulation (FM). Just like Risset, Chowning was strongly

influenced by Mathews' 1963 paper, in particular by the statement declaring computers'

"unlimited" sonic possibilities. Chowning began playing with the combination of oscillators

32 A synthesis technique derived from the Fourier Theorem which consists of describing complex
sounds as a sum of sinusoidal components diferenciated by their phase, amplitude and frequency.

38

and developed Frequency Modulation synthesis. Such approach enabled the creation of very

rich sounds using limited resources, in opposition to additive synthesis. His discovery

attracted Yamaha, that bought the FM patent and, in 1983, implemented a ‘real-time’ version

in the DX7, which is regarded as one of the most successful synthesizers in history (Serafin,

2007).

2.2.2 Beyond standard synthesis

Max Mathews approach to sound synthesis developed on a rather technical

perspective. Constrained by computer's limited resources Mathews provided a high-level

language for composers to be able to take advantage of such techniques. Still today, computer

music conforms these acoustic or mathematical models, making a distinction between the

"instrument", a model to describe the "sound material", and the "score", to describe musical

structure. (Di Scipio, 2003)

Di Scipio argues that "one of the most relevant challenges of today's computer music

implies a profound re-working of the modus operandi just described, and inevitably results in

a different perspective concerning the relation of material to form, of sound to structure" (Di

Scipio, 2003). Such perspective, more concerned with composing the sound, can be found in

the "non-standard synthesis" (Holtzman 1979) methods pioneered by Iannis Xenakis,

Gottfried-Michael Koenig and Herbert Brün. The synthesis results from the manipulation of

individual digital samples through compositional processes, laying out the foundations for

microsound (Roads 2004).

The Sound Synthesis Program (SSP) was conceived by Gottfried Michael Koenig as

early as 1972 and finished by Paul Berg in 1977. The program allowed the composer to

construct individual elements of waveforms and large-scale composition structures from its

microstructure. Using amplitude and time-value points, the waveforms were assembled using

selection principles inherited from his program PR2 such as randomness, groups, sequence,

ratios and tendencies. By using such principles, the creation of standard waveforms such as

sine, triangle, ramp, square waves was difficult to produce. (Luque 2006, Doornbusch 2009)

39

Regarding SSP, in a 1978 interview, Koenig said:

My intention was to go away from the classical instrumental definitions of sound in

terms of loudness, pitch and duration and so on, because then you could refer to

musical elements which are not necessarily the elements of the language of today. To

explore a new field of sound possibilities I thought it best to close the classical

descriptions of sound and open up an experimental field in which you would really

have to start again.

(Koenig qtd. in Roads 1978)

Sawdust, by Herbert Brün, was also conceived as a program for compositional

structuring of waveforms. The composer can specify small fragments of waveforms that are

linked, merged and mingled for generating new timbres. Brün has taken a serial approach by

constantly mapping waveform lengths to tempered pitch scales, even producing twelve-tone

rows and chords for the organization of waveforms (Döbereiner, 2010:28).

Dynamic Stochastic Synthesis by Iannis Xenakis is described on “New Proposals in

Microsound Structure” (Xenakis, 1992:242) and, similarly to the techniques developed by

Brün and Koenig, consists of generating waveforms from duration and amplitude values

using processes conceived by the composer. Xenakis recognized the importance of the

variations in amplitude and frequency of even the simplest orchestral sounds (1992:244) and

instead of generating complex sounds by juxtaposing finite elements, as devised for instance

in Analogique B and Concret PH, they are constructed with continuous stochastic variations

of the sound pressure directly. Xenakis illustrates such variations as a "particle capriciously

moving around equilibrium positions along the pressure ordinate in a non-deterministic way,

recurring to the use of 'random walk' " (1992:246) and proposes a diversity of methods for

stochastic microsound synthesis.33

 The POD (POisson Distribution) programs have been developed by Barry Truax since

1972, at the Institute of Sonology at Utrecht. POD generates a series of events within the

33 Xenakis description of these methods (Xenalis 1992:246-247) can be complemented by Sergio
Luque (Luque 2006).

40

bounds of tendency masks using the Poisson distribution34. As Truax asserts, “sound and

structure become increasingly inseperable” (Truax 2000:119).

2.3 Sound Machines

Developing from Turing’s conception of the computer, composers have been capable

of modelling compositional ideas, developing techniques that proved their value for

supporting a creative activity such as music creation, far beyond the expectations on these

devices.

The difficulties of programming, derived from early mainframe machines, were

progressively resolved with the maturation and standardization of the computer. Layers of

abstraction from machine language were continuously created. From Assembly to higher-

level languages, such as ALGOL or Pascal, general-purpose programming languages

increasingly allowed more plasticity to develop concepts such as the ones required by music,

introducing new structures and procedures38.

 Allied to the potential of algorithmic composition, the possibilities of sound synthesis,

pioneered by Mathews, provided a new perspective on the computer as a complete sound

machine: a device that enabled the description and generation of sound.

 In fact, programming languages for synthesis, such as Music-N, offered high degree of

flexibility (Roads, 1999:818), in particular since the 1980s due to the development of faster

computer processors39 A fundamental achievement was the development of the C40 language,

which allowed portability among distinct machines, exponentiating software development. In

34 See also the already described work on Xenakis' Dynamic Stochastic Synthesis (cf. Ch.2.2.2).
38 The basic data models provided (Strings and Numbers) were extended by enabling the construction

of structures; Fortran, for instance, already permitted Arrays (lists of structures). Also, new
procedures were permitted, such as routine nesting.

39 A survey on sound synthesis is provided by Smith (1991).
40 The C Language was developed by Dennis Ritchie at Bell Labs, reelased in 1972.

41

the following years, a diversity of programming languages were created, with particular

relevance to Common Lisp Music (CLM)41, Cmix42 and CSound43.

Starting in the late 1960s, research on human-computer interaction enabled a shift of

concerns from formal aspects of computation towards new means to relate with the computer.

While many composers found themselves at ease with the logics of programming languages,

explorations on new devices and interfaces began to emerge, attempting to provide the

computer with an interacting body, as found in acoustic and electronic instruments.

 Pioneering such direction, Mathews and Richard Moore developed the GROOVE

(Generated Real-time Operations on Voltage-Controlled Equipment) program (Mathews &

Moore, 1970). In this period, computers did not have sufficient speed for the generation of

sound in real-time44 but they were already capable of converting digital signals to analog

voltage and vice-versa. This enabled the development of hybrid systems, in which the

computer could send and receive voltages to control analog synthesizers in real-time

(Mathews, 1963). It is relevant to note that the research developed at Bell Labs also

contributed to the development of analog synthesizers; as Risset asserts45, Mathews’ modular

approach to Ugens was adopted by the synthesizers built by Robert Moog, Don Buchla or

Pedro Ketoff.

 The GROOVE program enabled the creation, storage and edition of 'functions of time'

to output control to voltage-controllable devices such as synthesizers. Such functions could

41 CLM is a sound synthesis language that descends from the MUSIC-N family. It was developed in
the late 1980s by Bill Schottstaedt at Stanford University. This language is particularly useful to
define hierarchical musical due to LisP's recursive nature. A more recent LisP-based programming
language is Nyquist, created by Roger Dannenberg (Wang, 2008).

42 Cmix, by Paul Lansky, is a C library that facilitates signal processing and sound manipulation
routines, unified by a well-defined API. A score could be specified in the Cmix scoring language,
called MINC (which stands for “MINC Is Not C!”). MINC’s syntax resembled that of C and
proved to be one of the most powerful scoring tools of the era, due to its support for control
structures (such as loops). Cmix is still distributed and widely used today, primarily in the form of
RTCmix (the RT stands for real-time) (Wang, 2008).

43 Barry Vercoe's CSound developed from a Music11 version and rewritten in C, was released in 1986
as a shareware. (Manning, 2009:88).

44 Howe describes the length of time it took to produce the sound and the reduced bandwidth
permitted for its realisation (10kHz mono) (Howe, 2009).

45 Personal presentation at Universidade Católica do Porto 2008/09/10.

42

be mapped to real-time input controls such as knobs, keyboard keys or buttons. They could

also be defined as coordinates of points along with the type of interpolation (step or ramp).

Complex functions could be achieved by combining other functions through arithmetic

operations. This system’s interaction logic resembles current programming environments

such as SuperCollider, notwithstanding its processing power.

The usage of computers for controlling dedicated synthesis systems, in similarity to

the GROOVE program, had become a common practice. The Sal-Mar Construction (1970),

for instance, was a hybrid analog-digital machine for composition; it was controlled by

touch-sensitive switches connected to various modular devices and the output could be sent

to any of its twenty-four loudspeakers (Harley, 2009:115). Gottfried Koenig connected his

PR1 to analog sound synthesis, having composed Terminus II (1966/67) and the Funktionen

Series (1967-1969) with this method.

Fig. 6 UPIC (Unite Polyagogique Informatique du CEMAMu) by Iannis Xenakis, 1977-1994

Iannis Xenakis also connected SMP to analog systems and, between 1977 and 1994,

developed the UPIC (Unite Polyagogique Informatique du CEMAMu). It allows the user to

create a composition by tracing lines on a graphic pad with an electromagnetic pencil. The

sound is generated with table-lookup synthesis, mapping the drawn sample amplitude to the

frequency by which a wavetable sample is read (Di Scipio, 1998). Mycenae Alpha (1978) was

the first composition to be entirely realized on this system.

43

Fig. 7 SSSP (Structured Sound Synthesis Project) by William Buxton, 1978

Interested in developing a highly interactive environment for computer aided

composition of music, William Buxton developed SSSP (Structured Sound Synthesis

Project). His research led to the creation of score-editing tools (Fig.7) that set the paradigm

for today’s music editing software.

Buxton considered that most systems gravitated between a note-by-note approach, as

we have regarded with Mathews acoustic model, and those which dealt with the score as a

single entity, such as the "non-standard synthesis" approaches that were carried out by

Xenakis. These two extremes, according to Buxton, could be regarded as instances of the

same thing, and therefore he attempted to provide a structure that would facilitate the

implementation of different high-level external representations of a repertoire of timbres, and

the exploration of their multi-dimensional attributes.

Buxton's approach makes an interpretation of Schaeffer's Sound Object encompassed

within the computational domain, relating the notion of "object" in a striking resemblance to

Alan Kay46 and his Object Oriented Programming paradigm47. As Buxton describes, an

46 In the 1960s, artificial intelligence research began developing implementation methods for
developing programs with higher complexity and intelligence. One of such methods is Object
Oriented Programming (OOP), pioneered by the language Simula (1966), developed by Ole-Johan
Dahl and Kristen Nygaardand later adopted by Alan Kay. Influenced by the biological-machinic
symbiosis proposed by the field of Cybernetics, Kay developed his language Smalltalk, being a
fundamental reference for the early developments of human-computer interaction. Buxton
developed a similar approach, drawn from Ivan Sutherland's work on Sketchpad (1963).

44

object is "a named set of attributes which will result in sounds having different pitches,

durations, and amplitudes to be perceived as having the same timbre [,] simply providing a

conceptual framework in which the composer can view his activities" (Buxton et al., 1978).

The compositional work would therefore evolve by defining isolated components that could

encapsulate a heterogeneous variety of techniques, such as FM synthesis, additive synthesis,

waveshaping, fixed-waveform synthesis and VOSIM, and then use them and relate them

within higher level objects, constituting a network of interrelated objects. The advantage of

such approach lies in the fact that once an object is defined, one does not need to be

concerned with its inner logic (black-boxing). This object-oriented approach is evident in the

graphical interfaces of the dataflow programming languages Max (1988) by Miller Puckette,

or Kyma (1987) by Carla Scalleti.

47 Object Oriented Programming (OOP) is a paradigm that uses objects and their relations to create
programs. Traditional programming paradigms, such as functional, constraints or logical, separated
algorithmic processes from data, stored in a centralized structure. In OOP, objects are abstractions
(classes, in general) that contain data (variables) and the procedures (methods) that can occur.
Programming consists of defining these "objects as its fundamental logical building blocks"
(Booch, 1998:35) and describing the relations that need to be set among them, creating an
organized network. Classes are all hierarchically united via inheritance relationships. The relevance
of this approach consists of enabling programmers to stop thinking in terms of writing for the
abstract machine – Turing's conception of algorithmic – and rather consider programming as an act
of modelling real-world concepts. A class mediates a real-world entity and enclosures the possible
actions that can take place with it. Programming then, becomes creating taxonomies, hierarchy
structures and possibilities for intervention. Alan Kay refers to OOP as a "successful attempt to
qualitatively improve the efficiency of modelling the ever more complex systems and user
relationships made possible by the silicon explosion" (Kay, 1993:3). As Robinson points out, OOP
became a significant technology, in particular with the programming language C++, enabling the
general development of software for desktop computers, such as the music domain applications we
afford today.

45

The first era of computer music is defined by experiments that were carried out in

order to access how computers could be used for music creation, resulting in the development

of software for algorithmic composition and sound synthesis.

The work by Hiller and Isaacson illustrates how a diversity of compositional concepts

could be formalized and inscribed into computers. Inheriting Turing’s concept of computer, a

diversity of procedures were implemented. From simple permutations and chance procedures

towards Markov chains their work laid out the foundations of algorithmic composition,

further developed by composers such as Xenakis, Brün or Koenig.

Also, a significant aspect for computer music is concerning the possibility to generate

sound, as pioneered by Max Mathews in the Music-N music software. We have regarded

how, from an abstract description written in a programming language, computers were

capable of generating and performing concrete sounds; programming languages can be

regarded as particular scores, fully prescribing musical works, providing a high degree of

autonomy and a rich diversity of sounds at one’s disposal.

As computers became fully capable sonic machines, explorations on means to interact

with these machines began to emerge. The presented systems, although for real-time, were

not conceived for performance, given their dimensions and maintenance requirements, but

rather for equipping studios with the intention of improving the composer's interaction with

their materials. The concept of taking a dialogic approach with computer-based software was

already present in these systems, by allowing the creation of works that could be composed

by playing with devices, coordinating a series of parameterizations that were recorded into

the program. Nevertheless, the role of computers in the context of interaction remains to be

addressed, which we’ll look into in the following chapter.

46

(blank page)

47

3 INTERACTIVE MUSIC SYSTEMS

The possibility of interacting with computational tools in performance was brought to

the forefront with the exponential development of personal computers, linked to the

development of programming languages that facilitated algorithmic composition and the

generation of sound, either through synthesis or sampling techniques.

Interaction has always been a natural extension to music practice, in particular within

the improvisational practices potentiated by the afro-american Jazz tradition. Also, the

influential work by John Cage already suggested a diversity of possibilities for interaction,

opening way to a new generation of composers, such as George Mumma, Robert Ashley,

Alvin Lucier, who developed analog circuits for real-time sound generation.

In this chapter we will overview a diversity of approaches to the creation and usage of

interactive music systems. As Jordá mentions, it seems difficult to cover all this diversity and

multidimensionality of such computational tools. Various taxonomies have been described

elsewhere (Drummond, 2009; Jordá, 2005; Pressing, 1987; Rowe, 1993; Spiegel, 1992;

Winkler, 2001), however they do little in order to provide an understanding of how these

systems actually work and the potential they hold for future developments. Therefore, we

attempt to underpin particularities, subjective directions that have been carried out that can

contribute to the understanding of the diverse possibilities for interactive music practice.

48

3.1 'Interactive Composing'

Joel Chadabe, one of the pioneers on the development of interactive music systems,

has been exploring the possibilities of human-computer interaction since the late 1960s.

Having used large-scale commercial synthesizers for studio-design (Chadabe, 1967), his

work has progressively evolved towards processes by which the many features of a

synthesizer could be managed during live performance.

In 1981, Chadabe proposed the term "interactive composing" to describe a

"performance process wherein a performer shares control of the music by interacting with an

instrument that in itself generates new material" (Chadabe, 1984). As Chadabe states:

"I do not compose pieces, but rather activities, defining a 'piece' as a construction with

a beginning and end that exists independent of its listeners and within its own

boundaries of time. An 'activity' unfolds because of the way people perform; and

consequently, an activity happens in the time of living; and art comes closer to life."

(Chadabe, 2001:¶1)

Fig. 8 Joel Chadabe performing Solo at the New Music New York Festival, The Kitchen, 1979

© Joel Chadabe

Although one of the first demonstrations using computers for performance was carried

out by Peter Zinoview and his associates from Interactive Music Studios in 1968 (Roads

1999:685), Solo (1978) (Fig.8) is credited as the first performance carried out with a

49

completely digital system. It was an algorithmic composition that reacted to gestures captured

by two modified Theremin antennas connected to a Synclavier52. The composition took its

form in each performance as the result of a mutually influential process between the

performer and the instrument being played. Partially controlling the work with the computer,

the result contained surprising as well as predictable elements. Chadabe describes it as

"conversing with a clever friend who was never boring but always responsive"; as

"conversing with a musical instrument that seemed to have its own interesting personality."

(Chadabe, 1997)

I pointed out that the compositional algorithm in my composition Solo (1978) seemed

to make musical decisions independent of my actions as a performer, that I had to

react to it at the same time that it reacted to my gestures, and that the term "interactive

composing" meant that the composition took its form in each performance as the result

of a mutually influential process between myself and the instrument I was playing.

(Chadabe, 2009)

Adopting the cybersonics ideas previously explored by Mumma (cf. Ch.1.5), Chadabe

was concerned with the complexities that emerges from opening the system to human

interaction in a performative context.

At this time, however, with interactive media fast becoming a normal part of our culture,

these computer-aided performance models may be seen in a new light. From the

composer's point of view, at the same time that computer-aided performance provides

opportunities for new ways to address the public, it challenges traditional notions as to

the skills required for performance. It also challenges the very basis of what we think of

as a musical composition.

(Chadabe, 2009)

52 One of the first commercially available digital synthesizers, developed by Jon Appleton in 1977.

50

3.2 Interplay with computers

The arrival of the first microcomputers, in the 1970s, opened the ground for a new

generation of composers to develop new approaches to interaction through the usage of these

machines. In a context where tweaking cheap electronics was a common practice, computers

represented a big conceptual change for music composition, and consequently, new

opportunities.

Analog circuits were a real-time action-reaction medium, enabling the simultaneous

development of separate circuits that could be activated by switching and routing signals. The

qualities of rhythm, harmony, melody and form were abandoned in favour of spontaneity,

based on the modification of non-pitched aspects of sound such as the shape of an envelope,

timbre, rhythm, filtering, effects (echo, delay, ring modulation, etc.), amplitude and duration

(Holmes, 2008:280).

"You turned it on, flipped a switch, and it just happened in parallel with whatever else

was going on: another circuit, a circuit affecting another circuit, a musician playing

along, a voltage-controlled device modifying the output of the circuit, and so forth. It

was solid state in the conceptual as well as circuitry sense"

(Holmes, 2008:280).

Computers, however, offered many advantages because of their ability to be

configured dynamically, to read and store music information with precision and repeatability,

without the need to solder wires. These advantages encouraged composers to learn

programming languages such as Forth53 or Turtle Logo54 in order to develop music systems

to be used in performance.

 One of such composers is David Behrman, who was exploring means to interact with

computers and analog circuits. On the Other Ocean (1978), is an improvisational work for

Flute, Bassoon and electronics, in which Behrman developed a system that consisted of pitch-

sensing circuits connected to a Kim-I microcomputer that controlled a hand-made analog

53 An imperative language created by Charles Moore in 1970.
54 An educational programming language created by Bolt, Beranek and Newman in 1967.

51

synthesizer. This system would generate long harmonic tones that resulted from the sounds of

two musicians, affecting their improvising performance. Eigenfeld points out that the result

was less "radical" than Chadabe's, in the sense that the musicians were playing equal

tempered, tonal harmonies that were extended by the synthesizer (Eigenfeldt, 2007).

Fig. 9 The League of Automatic Composers

© The League of Automatic Composers

 In the same period, Jim Horton conceived the possibility of building a "silicon

orchestra" of microcomputers linked together into an interactive network. In 1978 he joined

John Bischoff and Rich Gold and formed the League of Automatic Composers (Fig. 9). This

was the first microcomputer orchestra and the first network band in history. The

compositional process of its members consisted of each one developing autonomous sections

that would produce their own sound, either by controlling analog synthesizers or generating

signals. These sections would then be adapted to the band's setting. Each would define some

parameters to be externally controlled by other computers, and also, by sending data to

control others. And finally, these sections would be played simultaneously, becoming

interacting 'subcompositions'. As Brown and Birchoff assert, connecting the computers, and

having them share information, not only unified the distinct "subcompositions" but also

added a sense of autonomous direction, of independence of the machines (Brown & Bischof,

2005:381).

In the early performances, they would leave the machines performing unattended and

would listen along with the audience, but later, they started interacting directly with the

machines, prefiguring today’s live-coding practices. Although no details are provided,

52

Bischoff describes the distinctly improvisational character to many of these works, "as the

music was always different in its detail. Mathematical theories of melody, experimental

tuning systems, artificial-intelligence algorithms, improvisational instrument design, and

interactive performance were a few of the areas explored in these solo works" (2005:381).

 The Hub ensemble grew from the League of Automatic Music Composers and

continued exploring the expressive potential of interactive networks. It was formed in 1986

and included members Mark Trayle, Phil Stone, Scot Gresham-Lancaster, John Bischoff,

Chris Brown, and Tim Perkins. In this ensemble, the communications had a distinct

configuration as they used a microcomputer as a mailbox, thus the name The Hub, posting the

data used to control each individual system. Any player could then retrieve the posted data

and use it.

 Bischof and Brown define The Hub as "the sound of individual musical intelligences

connected by network architectures"(Brown & Bischof ,2005:384). A composition by The

Hub would be defined by the inclusion of the specification of the modes of interaction to be

carried out, the types of information to be shared and the means of sharing it among the

members.

 Mark Trayle's Simple Degradation (1987), for instance, consisted of one conductor

generating waveforms simulating the response of plucked strings and then sharing it through

the network for the other performers to use it for amplitude modulation. The performers were

free to define all remaining properties of the output signal; Stone's Borrowing and Stealing

(1989) consisted in sharing melodic riffs which could be "transformed in any of a multitude

of ways, and replayed" (Brown & Bischof, 2005:385). The resulting riff would be returned to

the hub. In Vague Notions of Lost Textures (1987) Gresham-Lancaster conceived a chat

system, by allowing the writing of text messages among members in the hub. Many of these

experiments have been revisited by live coding practices today55.

This pioneering work is characterized by the limited resources composers had at their

disposal (microcomputers and hand-made electronic circuits), nevertheless, they displayed a

55 A critical approach to programming in the context of performative oriented practices is presented in
Ward, Rohrhuber, Olofsson, & McLean (2004).

53

diversity of approaches to interaction with computers, performers and the audience, being

still influential in today's music practice.

The presented developments represent a conceptual change regarding the use of

computers in music practices as they are opened to the context of performance, differing from

their pure logical (disembodied) ancestors. They are dynamically oriented, involved in

networking with other machines as well as interacting with humans.

3.3 Intelligent Music Systems

Research on human-computer interaction and artificial intelligence provided new

concepts that contributed to the development of programming languages, such as C++56, and

paradigms, such as the already discussed Object Oriented Programming. These

developments contributed to the generalization of music software for desktop computers,

such as the Music Mouse (1986), an intelligent instrument that attempted to facilitate the

creation of electronic music in real-time, developed by Laurie Spiegel at Bell Laboratories.

Another example is M (1986), an interactive composing system based on Markov chains

published by Intelligent Music, a company that was created by Joel Chadabe (Zicarelli,

1987).

In this context, an interest in the creation of interactive music systems that could

afford a higher complexity and intelligence emerged. These systems are computer intensive,

and in the 1980s, they could only be developed in research centres such as Institut de

Recherche et Coordination Acoustique / Musique (IRCAM)57 or the STudio for Electro-

Instrumental Music (STEIM)58. These research institutions continued to expand the scope of

possibilities for compositional practice, allowing the development of resources, knowledge

56 C++ (C with classes) was developed by Bjarne Stroustrup in 1979, extending the C language with
high-level features for program organization.

57 http://www.ircam.fr/
58 http://steim.org/

54

and technologies for music creation that only became affordable for composers in the

following decade.

3.3.1 'Creative Machines'

One of the most significant examples of interactive music systems for music

performance is George Lewis' Voyager, an "interactive musical environment" that analyses

the performance of human improvisers in real-time to develop an automatic composition. Its

developments began in 198659, at STEIM and continued until 1995 (Panken & Lewis, 2009).

A major concern in Lewis’ work is to "de-instrumentalize" the computer, treating it

not as an instrument, but as an independent improviser with personality of "his own". For

such, the computer system is devised in order to create a vast number of processes, an

orchestra "without necessarily involving a central authority". It cannot be controlled but

rather influenced through a dialogic discourse and its responses are not predictable, raging

"from complete communion to utter indifference". The output is purely generative, with the

exception of stored elemental material, such as scales and durations.

George Lewis uses probabilities to select from tables of stored melodic and rhythmic

material, and these probabilities are again modified by the successions actually played out.

Instead of asking about the value placed (by whom?) on artworks made by computers,

Voyager continually refers to human expression. Rather than asking if computers can

be creative and intelligent—those qualities, again, that we seek in our mates, or at least

in a good blind date—Voyager asks us where our own creativity and intelligence

might lie—not “How do we create intelligence?” but “How do we find it?” Ultimately,

the subject of Voyager is not technology or computers at all, but musicality itself.

(Lewis, 2000)

Lewis provides scarce details on the technical implementation of Voyager, being more

concerned with the cultural and aesthetic aspects that surround his work. On "Too Many

59 According to Jordá, Lewis' program Chamber Music for Humans and Nonhumans, developed at
IRCAM in 1982 evolved into Voyager (2005:68).

55

Notes", Lewis states that "interactivity has gradually become a metonym for information

retrieval rather than dialogue", regretting the rapid development of standardized modes of

human-computer interaction instead of exploring the possibilities computers enable for a

musical discourse (Lewis, 2000).

 As previously considered by George Mumma, Joel Chadabe, among others, Lewis

asserts that the development of a musical system is a compositional act by itself. This

position helps us to understand at what point programs like Voyager are not universal, but

instead represent the particular ideas of their creators.

3.3.2 Artificial Performer

Another proposal for an Interactive Music System such as Voyager is Robert Rowe's

Cypher. His work has become a widely recognized reference for its detailed documentation

and systematisation, discussed in detail in his books (Rowe, 1993, 2001).

Interactive computer music systems are those whose behaviour changes in response to

musical input. Such responsiveness allows these systems to participate in live

performances of both notated and improvised music

(Rowe, 1993:1)

The architecture of Cypher is derived from Marvin Minsky’s Society of Minds (1988).

Minsky's theory develops towards the possibility of artificial intelligence by regarding the

mind as a society of agents with circumscribed abilities. According to Minsky, cognition can

be modelled by assembling autonomous agents, "any part or process of the mind that by itself

is simple enough to understand", into "agencies" without regard to what each of its parts does

by itself, constituting a higher-level system. (Minsky, 1988:326)

As such, Rowe formulates that interactive music systems are situated systems of

autonomous agents that continuously interact with the outside world. They “receive

information from sensors, perform calculations based on that information, and send

commands to synthesizers or other sound processors (effectors) in response” (Rowe,

1993:258).

56

His compositional work consists of providing musicianship to such systems by

programming musical concepts that allow the machine to recognize and act upon human

musical activity, becoming an artificial autonomous player. Rowe followed the premises of

artificial intelligence in an attempt to provide enough information to the computer so that it

can be a partner in performing. Cypher is described as an expert system60 that generates a

solution using a knowledge representation system: collections of condition-action pairs.

In his work we identify an interest in providing the computer with musicianship, in

close relation to AI research, in order to create an artificial performer. It is important to note

that Rowe claims that:

No necessary isomorphism to human cognitive processes is being emulated [.] There is

no claim that these systems are intelligent, creative composers, but rather, the

implementation of certain processes, the delegation of compositional ideas in the form of

code

(Rowe, 2001:237).

The definition of interactive systems, provided by Rowe, is restricted to systems

"which posses the ability to ‘listen’" (Jordá, 2005:79). Although machine listening61

represents an important possibility, it "is not the essence of what we should understand by

interactive music system" (Jordá, 2005:80).

One must also note that the technologies that were being used deeply restrict the

creative and aesthetic possibilities of musical practice. Both Voyager and Cypher are systems

that develop on the ability to listen to the performance of improvising musicians using audio-

to-MIDI62 converters, in order to inform the computer about the material that is being

60 A computer system that emulates the decision-making ability of a human.
61 Computational techniques that extract features from sound emulating human listening capabilities.
62 In 1983, upon a common standard agreement between commercial manufacturers, MIDI (Musical

Instrument Digital Interface) was developed. This standard facilitated the vendor-independent
usage of distinct devices, such as synthesizers, samplers and controllers to communicate within a
common protocol. It offered simple and inexpensive means to extend the possibilities for music
instrument networking (Loy & Abbott, 1985).

57

performed63. As Wishart asserts, such technology restricts sound properties to a note-based

paradigm fostering preconceptions about electronic music that endures to present days

(Wishart, 1996).

An example of such constraints can be found in the practice of the Hub. Their

members changed their custom communications protocol to MIDI, attempting to make their

processes more accessible to other musicians. This protocol deeply changed the role of

communications. Custom format messages such as waveforms or texts were not possible, and

instead of each member accessing data from the hub, they would send private midi messages

to other members. Waxlips (1991) by Perkins "was an attempt to find the simplest Hub piece

possible". The rules were that each player would only send and receive requests to play one

note.

Upon receiving the request, each should play the note requested, and then transform

the note in some fixed way to a different note, and send it out to someone else. The

transformation can follow any rule the player wants, with the one limitation that within

any one section of the piece, the same rule must be followed (so that any particular

message input will always cause the same new message output)

(Brown & Bischof, 2005:387).

3.4 Computers as Instruments

Contrasting with the view of computers as autonomous intelligent systems, the notion

of using the computer as a musical instrument became more evident in the early 1990s64. The

possibilities to process sound in real-time attracted many composers who were interested in

the potential of the computer for improvisational practices, establishing a strong link to free

63 (Rowe:12), for instance, describes on a variety of techniques for higher precision detection of pitch
and gesture control.

64 Related to this perspective, we have already discussed the work by Max Mathews in previous
chapters. Also, throughout the 1980s, software such as the Music Mouse by Laurie Spiegel or M by
Joel Chadabe had been developed.

58

jazz and European free improvisation, as carried out by composers such as Lawrence

Casserley, Tim Perkins, Joel Ryan, Richard Barrett, Paul Obermayer, among others.

As Perkins asserts, clever algorithms don't guarantee the perceptually important

aspects of the music (Perkins, 2009:163). In view of this, many composers directed their

concerns towards the actual physical properties of sound and the means to control them. As

such, the focus turned to the use of the computer as a sound-generating device, and the

development of interfaces to control them in real-time.

STEIM is particularly relevant in this field, promoting a human-focused approach to

technology and asserting that it has to be tailored to the individual. The Hands (1984) by

Michel Waisvisz (Fig.10) is an iconic example of an interface that enables a rich sonic

control while providing a visual reference of the activity that is being carried out during the

performance.

Fig. 10 The Hands, by Michel Waisvisz (1984)

The technology developed by IRCAM, such as the Max family environments, has

become one of the dominant computer music interactive environments65 for facilitating the

creation of musical instruments (patches) and its easiness to connect external devices.

65 The first version of Max (originally called Patcher) was implemented by Miller Puckette (1988) as
a graphical application for routing and controlling external synthesizers in real-time. It has
undergone through a series of versions to control IRCAM's DSP hardware (Max/FTS "faster than
sound"). It was first used to control 4X synthesizer, and in 1992, IRCAM made it available as the
Signal Processing Workstation (ISPW), a system that contained modules for pitch-tracking sound,
reverberation, pitch-shifting, harmonization, modulation, sampling, filtering and spacialization.
(Rowe:89). The Max software was released to the public in 1991 by Opcode Systems. In 1996,
Puckette released PureData as an open source environment that enabled synthesis and signal
processing in real-time. Its signal processing capabilities were implemented into Max as an add-on,
called MSP (Max Signal processing or Miller S Puckette), released in 1996.

59

A significant example of this approach can be found in the work developed by

Casserley, who since the 1970s, had designed several prototypes for electronic instruments

and vastly collaborated with saxophonist Evan Parker. On A digital signal processing

instrument for improvised music (1998), Casserley discusses the concepts and design of his

computer processing system, initially developed at IRCAM with the IPSW, presenting

detailed specification and providing diagrams and patches.

 The metaphor of the computer as an instrument that has infinite sounds poses its

difficulties. A fundamental concern is related to the lack of gestural affordances by

computers. This issue is twofold: on the one hand it concerns the perception of causality

regarding produced sound; the computer does not have a ‘body’ that one can actually

perceive as it is being acted upon. Performing with traditional instruments encompasses a

visual component that evidences an effort, a virtuosity with every note that is played.

The laptop musician broadcasts sounds from a virtual non-place; the performance

feigns the effect of presence and authenticity where none really exists. The cultural

artefact produced by the laptop musician is then misread as "counterfeit," leaving the

audience unable to attach value to the experience. The laptop performer, perhaps

unknowingly, has appropriated the practice of acousmatic music and transplanted its

issues.

(Cascone, 2000)

On the other hand, it relates to the need to enhance a more intricate relation between

the composer and his work. As Dean asserts, the computer's standard interfaces, like the

mouse and the keyboard, don't allow the multiple and overlapping possibilities for interaction

that composers desire (Dean, 2009). Also, Paine argues that it is critical to research into new

instruments that facilitate the subtlety and nuance that traditional istruments provide.

These environments' data flow model (dataflow programming) inherit the approaches of analog
circuits and allow users to create blocks of code, known as patches, by graphically adding boxes
(that represent signal generators and processors, operators, graphical controls interfaces) connected
by wires.
The composer creates instruments by manipulating patches in real-time, feeling that he is not
programming at all. Puckette refers that the notion of patching GUIs was influenced by the Oedit
system (1987) by Richard Steiger and Roger Hale (Puckette, 2002).

60

The argument is that acoustic instruments “provide a set of affordances that have

facilitated modes of engagement that extend to profound ‘embodiment relations’ that

encourage expression on a highly abstract but simultaneously visceral and rewarding basis”

(Paine, 2009). An interest in an enactive view of perception (Varela, 1991)66 emerges,

emphasizing the role of sensory-motor engagement in musical practice (Magnusson, 2009;

Paine, 2009; Wessel, 2005). As developed by Varela, the mind is necessarily embodied and

the cognitive function makes no distinction between perception and action.

This direction however, attempts to extend traditional music practice, deriding other

aspects that the computational media provide, such as the ones explored by The League of

Automatic Composers, for instance.

In fact, the core of computational media is a symbolic system that that establishes a

hermeneutic relation with the world. In this sense, music only exists to the extent that it has

been described to the machine to the upmost detail. Musical interfaces, such as MIDI

controllers, keyboards, among others are mere mapping decisions.

Battier and Schnell propose the term “composed instrument” (Schnell & Battier,

2002), highlighting the fact that computers are as much an instrument as they are a score, as

they can carry a vast amount compositional material to a performance. This dualistic

perspective of the computer places it in a unique situation for music practice.

 At present, although research institutions like STEIM continue dedicated to the

investigation of gestural interfaces (Ryan, n.d.n.d.), research on this field has become much

more decentralized. Many proposals can be found represented in the New Interfaces for

Musical Expression conference series (NIME), and in recent years, ubiquitous computing has

deeply contributed to interactive practices by providing diverse mobile and sensing devices

that facilitate their exploration for music practice.

66 "We propose the term enactive to emphasize the growing conviction that cognition is not the
representation of a pregiven world by a pregiven mind but is rather the enactment of a world and a
mind on the basis of a history of the variety of actions that a being in the world performs" (Varela,
1991:9).

61

3.5 Interactive Music Systems and Emergence

I think it is technically possible and musically desirable to achieve a

broader understanding, if not a reformulation, of what is meant by

‘interaction’.

(Di Scipio, 2003)

Interaction is often regarded as an activity that places the performer in a direct relation

with the machine, as a "man/machine interrelationship" (Di Scipio, 2003) where the role of

the performer is of crucial importance for the outcome of the musical work. In such

interrelation, the performer sends control data to a computational system that, through

algorithms, outputs a result, i.e. generates sound. The design of these systems assumes a

feedback loop between the output sound and the performer, establishing a relation that,

without the latter, would result in the halting of the system.

A distinct conception of interaction is drawn by Agostino Di Scipio and Jonathan

Impett. These composers take advantage of complex systems’ theory by exploring the

musical possibilities of emergent behaviours.

3.5.1 On Emergence

A musical composition constitutes an emergence because it is not reducible to its parts

or elements or even to the operations that were realized during its composition.

Therefore we can neglect here the word "Causality". […] The musical work will

constitute itself as an emergence (a singularity), and not as a simple globality, since it

manifests itself not as that which constitutes the product from the parts of a whole, or

even as the epiphenomenon of its components, but as simply as that what it is, without

any reduction.

(Vaggione & Soulez, 2005:55)

62

From a mathematical perspective, there are certain behaviours from which we cannot

derive an analytical67 answer to a problem and from which it is impossible to predict "how

things tend to go” (Galanter, 2003:7), therefore, the necessity of differentiated approaches.

Systems theory is a model that explains emergent behaviours that result from the

interrelations of its components. Derived from Bertallanfy’s general systems theory (GST)

and cybernetics’ study on self-organization and reproduction (in particular, the work by Von

Neuman), systems can be defined as a network or set of interacting agents or components,

from which patterns emerge.

In this context, the notion of emergence refers to properties generated from the

interactions of the system’s components, and are not constituents of the components

themselves, and eventually instantiate a new functionality on the system (Hayles, 2008:243).

Cellular Automata (CA)68 are the most widely known procedures to explain the notion of

emergence, given the complex results that are achieved from its basic rules.

The term 'complex' stresses the fact that until the pattern that generates a certain result

is now known, the resulting behaviour seems erratic and complex, rather posing a problem of

cognition. In fact, very 'simplex' things are required to create complex behaviours and

computer music has taken advantage of this.

As for aesthetics, the difficulty lies in getting valuable results. A complete formal

implementation, as appealing as it might seem, does not "guarantee that such algorithms

applied to music are going to make musical or aesthetic sense" (Davis, 2010) , which might

67 Classical mechanics, for instance, provide methods that, given some properties of an object, we can
determine with extreme accuracy the evolution of states of that object, through time. That object’s
behaviour is linear and deterministic, and the laws of classical mechanics provide an analytical
solution.

68 CA were conceived by Stanislaw Ulam and John von Neumann in an effort to study the process of
reproduction and growths of form. Originally implemented on computer by von Neumann as part
of his research on self-replication and reproduction, CA became known in the 1970s with
Conway’s Game of Life. It consists of a grid of square cells, where each of which takes a boolean
value (either it is alive or dead). The rules are very simple: any alive cell that has less that two
neighbours, dies of isolation; if it has two or three neighbours, survives; and if it has more than
three neighbours, dies for overpopulation; any dead cell that has three neighbours becomes alive,
by reproduction. From this basic set of rules, many patterns (species) emerge, such as the glider,
the spaceship, the pulsar, the beehive, the blinker, among many others.

63

explain the lack of diversified examples for music practice. Nonetheless, many approaches

have proven worthy to apply, such as the application of cellular automata by Iannis Xenakis

(Hoffmann, 2010), fractals by Horaccio Vaggione (Risset, 2005), nonlinear functions by Di

Scipio, genetic algorithms (Brown, 2004) or L-systems (Manousakis, 2009).

3.5.2 Composing Musical Interactions

I think it is technically possible and musically desirable to achieve a

broader understanding, if not a reformulation, of what is meant by

‘interaction’.

(Di Scipio, 2003)

A conception of interaction proposed by Agostino Di Scipio is described as a shift

from "interactive music composing to composing musical interactions"(Di Scipio, 2002). His

approach developed from the idea that mathematical methods, such as the ones found in

chaos theory69, could allow him to develop an holistic approach to music composition, in

which the macro-level articulation of musical structures ("composing with sounds") and the

micro-level timbral properties of sound ("composing the sounds") could emerge as the result

of a compositional process (Di Scipio, 2001). As we have already regarded, this separation

between form and material, or composing 'with' and 'the' sounds is a concern that continues

open to discussion, partly due to acoustic compositional model continued with standard

synthesis70.

As such, in collaboration with Ignazio Prignano, Di Scipio devised functional iteration

synthesis (FIS), which represents a "non-standard" synthesis method with similarities to the

ones developed by Brün, Koenig and Xenakis in the 1970s.71

69 Originating from Henry Pointcaré’s studies in 1880, chaos theory offers a diversity of processes
that display chaotic behaviour. These are difficult to predict over time and are highly sensitive to
initial conditions, although they are deterministic, following a strict sequence of cause and effect
(Galanter, 2003:6).

70 See Chapter 2, where standard and non-standard synthesis is discussed. See also (Di Scipio, 1994).
71 The connection between Xenakis and Di Scipio, regarding granular synthesis and cybernetics is

developed by Solomos (2006).

64

Fig. 11 Representation of FIS generated waveforms (5th, 7th and 100th iteration) (Di Scipio, 2001)

This method takes advantage of the mathematics of "chaos theory"72 as its internal

sound-generating engine, and consists of recursively applying the result of a sound function n

times73 (Fig. 11). The use of iterated nonlinear functions enabled him to generate a wide

variety of sounds from a very limited number of parameters, ranging from very smooth

curves to very intricate oscillations, with dense spectrum, eventually reaching noise. The

sensitivity to initial conditions of these functions allowed him not only to generate audio

samples, but also the musical structure itself, for it’s unfolding in real-time.

These functions were extensively used by Di Scipio for the creation of "Sound &

Fury" (1995-1998), a series of five works where each explored a different approach to the

same process, such as tape pieces, live computer music concert pieces and sound

installations.

72 Or the study of nonlinear factors which cause simple systems to exhibit complex behaviour.
73 A detailed description of FIS is provided by Di Scipio (2001, 2010).

65

 Di Scipio's explorations led to the recognition that the possibilities for interaction

do not lie in the human agent, by means of controlling the machine-generated events in real-

time, but rather in the process of "iteration" itself. His compositional works consists of

conceiving algorithms that are capable of autonomously responding to external stimulus,

setting them to interact with each other. Therefore, Di Scipio proposes the term “composing

the interaction”.

This is a substantial move from interactive music composing to composing musical

interactions, and perhaps more precisely it should be described as a shift from creating

wanted sounds via interactive means, towards creating wanted interactions having

audible traces. In the latter case, one designs, implements and maintains a network of

connected components whose emergent behaviour in sound, one calls music.

(Di Scipio, 2003)

This approach is particularly evident on Audible Eco-Systemic Interface (AESI)

project. Evoking the cybernetic approaches carried out by Mumma and Lucier (cf. Ch. 1.5),

Di Scipio explores the concept of 'ecosystem'74 and creates a network of independent and

autonomous agents linked among themselves by a number of dependency rules, from which

behaviour is not strictly determined, but rather emerges from ongoing interaction. A

particularity of such 'ecosystem' is that sound is the interface through which the components

interact, by extracting features and low-rate control signals.

The notion that a computer reacts to a performer’s action is replaced with a permanent

contact, in sound, between computer and the environment (room or else). The

computer acts upon the environment, observes the latter’s response, and adapts itself,

re-orienting the sequence of its internal states based on the data collected.

(Di Scipio, 2003)

Similarly to Di Scipio, Jonathan Impett also explores the possibilities of emergence in

musical practice. Impett defines music as a dynamical complex of interacting situated

embodied behaviours. These behaviours may be physical or virtual, composed or emergent.

All interact in the same space by a process of mutual modelling, redescription, and emergent

restructuring (Impett, 2001).

74 As found in the General Systems Theory by von Bertalanffy or in the Cybernetics' negative
feedback loop by Norbert Wiener.

66

Impett's Meta-Trumpet system consists of an instrument, fitted with physical sensors,

which, similarly to Lewis' Voyager, uses a pitch to MIDI converter, and a computational

system that processes incoming data and generates musical material. According to Impett, the

aim of the system is to extend the inherent aspects of performing the trumpet to become

material for algorithmic composition and the means of direct control of such system (Impett,

1994).

In this chapter we have overviewed a diversity of approaches to interactive music

systems, attempting to provide a general understanding of this subject, identifying the major

trends and its more paradigmatic intervenients. As computers ceased to be closed procedural

devices and became connected to the real world, composers recognized the potential of

sharing control them in a performative context.

A general trend has been the provision of musicianship to the computer so it can

autonomously generate and play musical material in a performance. Adopting concepts from

artificial intelligence, the computer has become a creative entity that adopts the metaphor of

an autonomous performer or intelligent instrument.

Another trend concerns the improvement of the computer as an instrument, in which

the development of interfaces becomes critical.

Our concerns were directed towards individual particularities that could offer new

directions for our own practice, and therefore we attempted to underpin subjective directions

and proposals that have been realised. In this view, intervenients such as the Hub or the

League of Automatic Composers offer an enriching perspective, focusing more on the

uniqueness of the computational medium and creatively exploring it beyond the established

musical discourse. This perspective is also adopted by composers such as Agostino Di Scipio.

Critically questioning the understanding of interaction as limited to a man / machine

relationship, Di Scipio explores the notion of ecosystem and emergence, expanding his work

to interrelations between software components, the environment and the audience.

Interested in such perspective, in the next chapter we will explore with more detail

aspects that relate to the computational medium and its defining characteristics.

67

4 MEDIATION WITH COMPUTERS:

CODE CULTURE

This chapter was partially published (Cardoso, 2013).

The role of computers in the arts has progressively moved away from technological

issues towards social, aesthetic, political or humanist concerns. In the context of computer

music, the efficiency and quality of signal processing, the representation of data structures, or

the constraints in human computer interaction, progressively gave way to questions related to

the creative and expressive potential of computers for artistic creation.

In this chapter we investigate diverse approaches to computation within musical

practice and relate them to what is characterized as an ongoing computational shift from

traditional approaches, using rule-based algorithms to interaction (Vaggione, 2001), in an

attempt to get a clarifying perspective of how computation can be regarded in the context of

computer-based interactive music.

4.1 Computation as production

The idea of computation as production corresponds to a view of software development

that can be considered as mainly instrumental, that is, devised as a tool, helping us to do what

it needs efficiently, as means to a specific end. This view implies an a priori conception of a

function, use or purpose that prescribes specific principles, rules and tasks.

68

The development of software such as Ableton Live75, Reaktor76, Reason77, or dataflow

programming environments like Max/MSP78 or Pure Data79 are examples of successful

applications widely used for interactive music practice that deeply facilitate musical creation.

The synergies between Ableton Live and Max/MSP, for instance, have merged into a highly

developed system, where the former's mixing and sequence playback, and parametric control

through elaborate graphical interfaces, is extended to the latter's algorithmic composition

potential and programmable filtering and processing capabilities. The domination of

commercial market, with seldom exceptions within research and technology institutions or

academic research, makes these technologies an "ubiquitous cultural presence that largely

define[s] the nature of the music being produced" (Dunn, 1992:61).

In such context, programming languages are regarded as a relatively straightforward

“instrumentalization” (Feenberg, 1991), first and foremost as tools for building efficient

applications (Rohrhuber & Campo, 2009). This productive frame of computation evolved

from the early 1970s research on human-computer interaction80, concerned with developing

means to make computers useful for general public use, creating friendly environments and

promoting goal oriented applications. On Remediation, Bolter and Grusin develop the idea

that scientists and technologists considered they were making computers more “transparent”

and more “natural” (Bolter & Grusin, 2000:32). By doing so, they established the paradigm

for today’s computer usage in which software is presented as virtual version of real-world

objects, not only in behaviour but also in visual resemblance and interaction paradigms. As

Penny explains, "transparent" means that the analogy on which the software is created is

foregrounded (typewriter, drawing table, piano, etc.), and the computation is hidden (Penny,

2005:55). The user forgets that one is using a computer, intuitively engaging with the

75 https://www.ableton.com
76 http://www.native-instruments.com
77 http://www.propellerheads.se
78 http://cycling74.com
79 http://puredata.info
80 The new machines that were beginning to be commercialized in the 1970s would only be successful

if usable. Douglas Engelbart invented the mouse, and Alan Kay with the Xerox/PARC team,
developed graphical user interfaces that allowed the replacement of the textual command-line
interface for objects in the computer screen. The known as ‘windows’ interfaces could be
manipulated with a pointing device, like Engelbart’s mouse.

69

software's resemblance to the original object it remediates. One can execute the available

commands, but the computational engine is hidden in a ‘black-box’.

This concept of remediation is applicable to programming environments such as the

Music-N family or dataflow. The separation of the score from the synthesis engine in Music-

N programming languages is a structural imposition that mediates the acoustic81 paradigm,

for which "non-standard" synthesis can represent a counter-example. The dataflow

programming languages, like Max/MSP or Pure Data, are graphical interfaces that, down to a

certain level, open the computational engine, enabling the construction of patches from a set

of objects to be connected82. Nonetheless, the structure of the engine itself is not open (Smith

& Wakefield, 2009b). Creating patches, rather than actual programming, resembles the logic

of operating with analog electronics, by treating sound as an undifferentiated stream of data

that travels through a circuit to be set.

Computer software whose interface is designed in this manner frees the user’s

attention for domain-related activities. Rather than having to think in terms of the

system s/he is using, the user can remain focused on domain-related concepts, thus

freeing attention for domain-centered activities. The user forgets that s/he is using a

computer, with its large array of I/O requirements—all of the complexity is under the

hood, so to speak. The computer, as such, effectively disappears in its use.

(Hamman, 2002)

As such, software imposes an interaction mode restricted by the available commands

and structures, making this transparency a possible constraint for creative expression. By

adopting software that entails pre-defined solutions to a series of problems, the composer

accepts the tools as they are given and appropriates them in his compositional activity. As

Herbert Simon observes, "solving a problem simply means representing it so as to make the

solution transparent” (Simon, 1996:132). 83 Accordingly, there is the belief that technology is

81 See discussion in Chapter 2.2, regarding Mathews' UGens.
82 Smith and Wakefield recognise that this modular flexibility is the condition upon which dataflow

languages draw, by starting up on a blank canvas with open-ended possibilities to connect and
encapsulate modules (W. Smith & Wakefield, 2009b).

83 Even today’s lower-level programming languages, like C++, are developed in integrated
development environments (IDE) with many affordances, such as code editors, debugging tools,
build automation tools, dynamic documentation and helpers.

70

‘neutral’ (Veak, 2000),that it provides the most efficient solution to a problem that is

“technical” and that it improves over time, where each new released version of software

solely introduces more and better functionalities.84

As a consequence, there is the idea that composers do not need to understand

technology’s inner workings. In this sense, Trevor Wishart alerts us to the fact that the

easiness to generate satisfying sounds can lead to a culture of ‘neophilia’; meaning that,

artists cease to explore the medium due to the market’s cycle of constant introduction of new

products (making past ones obsolete) in order to open up selling opportunities (Wishart,

2009). Even more critical, and directed to the computer itself, is Friedrich Kittler, who argues

that some elementary functions that are essential for the computer to work are recorded in the

hardware, being inaccessible to exploration under the argument of safety (Kittler, 1995). This

already represents a domestication of computers, enclosing its creative potential.

This view of computation as production tends towards a model of interaction with

software that has proven efficient and fruitful, as evidenced by the vast and diversified offer

of products in the market. However, we can also identify trends that attempt to provide a

more adequate support to artistic practices that, beyond a mere productive frame, promote an

exploratory approach to computation as a creative medium.

4.2 Computation as Creative Medium

An expanded understanding of computation in the context of artistic practice is

evidenced through a renewed interest in the potential of programming languages. Since the

late 1990s, artists engage in programming activity, motivated by experimenting approaches

that are not available in commercial tools. New environments were created, such as

SuperCollider85 (McCartney, 1996, 2002), Processing86, openFrameworks87, or ChucK88.

84 The notion of legacy support.
85 http://supercollider.sourceforge.net
86 https://processing.org
87 http://www.openframeworks.cc

71

Most of these were developed by artists with computational knowledge, motivated to support

their own work (McLean, 2011:116)

These approaches bring to the fore an understanding that by making code's inner

entities and structures accessible to the artist, an expressive potential is opened-up and

common or preconceived schemas are avoided. These structures function as a flexible and

abstract modular kit from which composition specific material is constructed.

Programming ceases to be regarded as a technical activity, with ends to the creation of

user applications (Rohrhuber & Campo, 2009), but rather an environment to explore

creatively, directed towards the prototyping of ideas, developing artworks, performing music,

creating artefacts for a diversity of uses and contexts. The act of programming becomes a

way to explore the possibilities at hand, to gain a better understanding of the problem itself,

through the prototyping of ideas in a familiar environment. As such, the design-then-do

production logic89 is replaced by dialogic approaches90.

In this context, the work is developed with no a priori planning, and each step of the

programming activity is evaluated before proceeding to the next, in a feedback loop acting

and reacting to the perceived.

While establishing the relation between this dialogic mode of programming and other

artistic practices, we can recall the experiments with painting carried out by Kandinsky and

Klee, or even Pollock's action-painting. Sherry Turkle uses the term 'bricoleur' as a metaphor

to describe this dialogic practice:

88 http://chuck.cs.princeton.edu
89 This approach consists of "working within a rule-driven system that can be mastered in a top-down,

divide-and-conquer strategy, as taught in the Harvard programming course" (Turkle & Papert,
1990:136).

90 The term dialogic is used in reference to the regulatory feedback loop that occurs between human
and machine, as defined by cybernetics (Wiener, 1948).

72

The bricoleur resembles the painter who stands back between brushstrokes, looks at

the canvas, and only after this contemplation, decides what to do next. Bricoleurs use a

mastery of associations and interactions. For planners, mistakes are missteps;

bricoleurs use a navigation of mid-course corrections. For planners, a program is an

instrument for premeditated control; bricoleurs have goals but set out to realize them

in the spirit of a collaborative venture with the machine. For planners, getting a

program to work is like “saying one’s piece”; for bricoleurs, it is more like a

conversation than a monologue.

(Turkle & Papert, 1990)

So far, we have outlined two distinct modes of relating to computation. On the one

hand, a production oriented practice, in which one engages the programming activity with a

very defined idea of the problem at hand, and of the desired output. On the other hand,

through an experimental approach, uncertainty becomes a desirable characteristic and the

computational medium is used as a fundamental part of the creative process, in a closer

affinity to artistic creation.

4.3 Interactive Programming

We would begin by writing an initial algorithm that captures a rough

imagination, a conjecture of how the sound could be characterized.

Then we would modify this description until it became, possibly in a

surprising moment, a sudden realization of something that evokes a

memory of that particular sound. The surprising moment is not so much

the result of a random coincidence, but of the way in which program-

text, synthesis process, sound and perception interact.

(Rohrhuber et al., 2007)

The exploratory approaches to computation that we have described are strengthened

by the resurgence of interactive programming environments, opening up the possibility of

writing and compiling parts of a program in real-time, while it is executing, hence replacing

the traditional production steps of writing, then compiling, and finally using the software.

73

This approach became viable by using "just-in-time" (JIT) compilation,91 an

implementation technique that can be found as early as the 1960s. Languages like Smalltalk

(Kay, 1993), Self, Basic, LISP or FORTRAN used JIT compilation as a means to improve the

time and space efficiency of programs, although it was regarded as completely unnecessary,

given the context in which languages were used. For music practice, however, the relation to

time is particularly relevant. By removing the compiling time, i.e. the temporal delimitation

between development and action, one is able to change not only the parameters of the music

program, but the program itself, at runtime. Such changes bring a new and desired situation

for electronic music, in which the description of sound, or notation, is immediately perceived

as sound. This is particularly relevant for performance as it opens up new expressive

possibilities, being no longer constrained to merely setting parameters of a preconceived

program. Another fundamental change is related to the fact that the computer's state (stored

properties and methods) is maintained when new parts of the program are executed, since

there is no necessity to restart it and reset the program to its original state.

Extending the capacity of a program to be redefined at run-time embodies a shift away

from the notion of computer as a bounded tool for a bounded task toward the notion of

an always-on workspace or environment. Run-time augmentation is thus relevant to

composition in general, since radically decreasing the latency and maximizing the

overlap between action and perception may increase interactive fluidity and reduce

conceptual load.

(W. Smith & Wakefield, 2009a)

The use of interactive programming environments for music practice dates back to the

early 1980s, among composers who wanted a means to facilitate the rapid realization of

musical ideas, in "a dialogic creative process emblematic of an improviser’s way of working"

(Lewis, 2000). The programming language Forth92 was attractive to these composers, and

became the most widely used language for interactive music. Tim Perkins, for instance,

describes that the rehearsals of The Hub involved the continuous modification of their code in

real-time, without shutting down the musical network interaction, although code would be

stable for performances (Tim Perkins qtd. in Rohrhuber, Collins, McLean, & Ward, 2003).

91 For a brief history of just-in-time computation see (Aycock, 2003).
92 Forth is a real-time programming language developed by Chuck Moore, in the 1970s, with the

intent to allow more direct user and machine interaction. See http://www.forth.org/.

74

The first documented live-coding experiment, was carried out by Ron Kuivila in 1985,

using his Formula93 programming language (Collins, 2011). This interactive approach is also

present in the data-flow programming environments, enabling the switching between edit and

use modes in the construction of patches.

In the beginning of the Century, live coding practices re-emerged, taking advantage of

interactive programming approaches for the development of live computer music and visual

performance, by writing live algorithmic compositions, while using code as a conversational

medium (Rohrhuber et al., 2003; Ward et al., 2004)94.

 As Rohrhuber points out, in spite of the many antecedents, the appearance of live

coding was not self-evident at first. In the implementation of SuperCollider for instance,

James McCartney95 "decided to keep the 'interpreter' running during sound synthesis without

mentioning it in the release notes" (Rohrhuber & Campo, 2009). Nonetheless, interactive

programming practices in the musical context became more consequent as computers became

faster and more capable of generating sound in real-time.

One of the earliest examples of such practice is the PowerBooks UnPlugged96

ensemble, created in 2003. They use laptops as complete musical instruments, limited by

their default configuration. Built-in speakers are used to output sound and wireless

connection is used to share algorithms and distribute sounds over any other computer that is

accessible in the network, creating a differentiated spatialization situation. They also take

advantage of the computer's autonomy to move through the performance space, mingling

with the audience. The Just-in-Time library (2011), for SuperCollider, was developed by

Rohrhuber in order to improve the ongoing interaction with the computational model of

93 A programming language based on Forth
94 See TOPLAP (The [Temporary | Transnational | Terrestrial | Transdimensional] Organisation for

the [Promotion | Proliferation | Permanence|Purity] of Live [Algorithm | Audio | Art | Artistic]
Programming).

95 The author of SuperCollider.
96 See http://pbup.net/s/. PowerBooks UnPlugged is formed by Julian Rohrhuber, Alberto de Campo,

Echo Ho, Hannes Hoelzl, Jan-Kees van Kampen and Renate Wieser.

75

sound. Also, this multi-user live coding practice led to the creation of the Republic system for

sharing and modifying codelets97 through the network.

Another early example is the Slub98, a collective that "shared a desire to make music

and enthusiasm for programming, and resolved to combine them" (McLean, 2011:138). Since

2000 they have developed their own software for performance, considering themselves

programmers who make music. Examples of the software they have developed are

Feedback.pl (McLean, 2004) , a live coding environment that self-modifies its own source

code in order to maintain the state of the program in the process of compilation; Tidal, a

language designed for live coding of musical patterns (McLean, 2011:79); Texture (Fig. 12),

a visual programming language based upon the Tidal language (2011:107); or Griffiths'

game-like live coding environments for music, such as Al-Jazeri (Collins, 2011).

Fig. 12 Texture visual programming language by Alex McLean

97 Rohrhuber & Campo use the to describe little synthesis programs (Rohrhuber & Campo, 2009). See
also Hofstadter's definition (Hofstadter, 1995:105).

98 Formed by Adrian Ward, Alex McLean and later joined by Dave Griffiths.

76

4.4 Rethinking Code

"All writing is 'right': it is a gesture of setting up and ordering […]

ideas"

(Flusser, 2011:6)

The understanding that humans become a fundamental part of the computational

environment, as established with interactive programming, suggests an understanding of code

that does not coadunate with the traditional conception of computation by algorithms but,

rather, as part of language in general, opening the domain of programming to considerations

within social sciences. The emergent field of software studies, for instance, attempts to

address code beyond its mere functional dimension, recognizing its social, political and

aesthetic dimensions (Berry, 2011; Fishwick, 2006; Marino, 2006)

In the context of software art we find a diversity of explorations of aesthetic features

of code. Perl poetry99, for instance, is primarily directed towards human interpretation,

although written with code. Obfuscated code100 develops on indecipherable source code that

is expected to run in some sort of surprising way (Fig. 13).

99 For details on the Perl language and its afinities to latural language see Cox & Ward (2008)
100 Regarding aesthetic explorations of code of see (Montfort, 2008)

77

Fig. 13 winning entry in the 1998 ‘International Obfuscated C Code Contest’ (IOCCC), a flight simulator

written by banks

Other examples can be found in the creation of weird or esoteric programming

languages101 such as INTERCAL102, in which, for a certain proportion of statement lines of

the code, one has to be polite and include terms such as 'PLEASE DO' in order for the

program to execute.

The Quoth103 (Fig. 14) music environment, by Craig Latta, uses natural language

commands to describe and manipulate objects, recalling Joseph Weizenbaum's Eliza (1966).

101 http://esolangs.org/wiki/Timeline_of_esoteric_programming_languages
102 INTERCAL (Compiler Language With No Pronounceable Acronym) was developed by Donald

Woods and James Lyon in 1972.
103 http://netjam.org/quoth

78

 - "Where am I?"

 "You're in the library," replies the note.

 - "Play 4 times."

 "You lost me at '4'," replies the note.

 - "I want to teach you to 'play 4 times'."

 "Great! Welcome to my mind," replies the note.

Fig. 14 Example of a session using Quoth, by Craig Latta

These examples illustrate the potential of regarding code from a linguistic perspective,

reinforcing the notion of code as something subjective and malleable, plastic.104

To whom are these people writing? For they are not writing past a conclusion to

another human being. Rather they write with and for the apparatuses. […] It is another

writing, in need of another name: programming.

(Flusser, 2011)

On the one hand, the simplification of language to binary codes simulates the structure

of our nervous system. The Boolean algebra converted to voltage streams of ons and offs

represents nerve synapses on an artificial body that can be extended by connecting

peripherals, such as sound cards, displays and control devices. On the other hand, the Turing

Machine (Turing, 1950) is the minimal construct that allows us to consider code as a an

abstraction away from the machine that forces a start-from-zero into most basic mathematical

and logical if-then propositions (Mcwilliams, 2009).

From machine language to assembly and over layers of bootstrapped compilers, we

end up with computers that are capable of manipulating symbols. Instead of looking at

computers as programmable tools, in which we operate with their symbols in order to

instruct, we can regard them as structural elements of language, that, just like words,

constitute the materials to project ideas. In this sense, code is not just a medium. It offers the

104 Regarding code from a linguistic perspective, see also (Berry, 2011; Cramer, 2005; McLean, 2011;
Wardrip-fruin, 2006)

79

possibility for these ideas to materialize into action: they are 'executable

statements' (Cramer, 2005).

From this viewpoint, programming can be regarded as a peculiar kind of writing,

directed towards both human and machines, as if it was a conversational act in the everyday

sense.

The live-coding practice of the PowerBooks Unplugged ensemble illustrates this idea

of coding as a conversational activity. By broadcasting codelets through the network of

computers, performers and machines are both indispensable for interpreting, transforming

and executing those texts in order to create music.

A relevant aspect within interactive programming is that we are not merely creating

artifacts, but rather maintaining a discourse with a computer system. Starting with the default

objects and functions provided by the programming language, we progressively extend our

scope of action, describing new entities, with new properties and methods, and creating

worlds with their own rules105.

As early as 1979, Terry Winograd had already recognised that computers are not

primarily used for problem solving, but are instead “components in complex systems”

(1979). On “Understanding Computers and Cognition" (1986), Winograd and Flores further

describe computers as designed in language and equipment for language, consolidating the

link between programming and the issues of knowledge representation undertaken by

cognitive science.

[Computers] will not just reflect our understanding of language, but will at the same

time create new possibilities for the speaking and listening that we do-for creating

ourselves in language (Winograd & Flores, 1986:102)

They argue that we get a very distinct perspective on computers by regarding them as

plastic structured entities that are shaped by interaction, and by considering that the

programmer and his medium form an inseparable complex that can be regarded as

105 Such perspective can be understood by the notion of 'language game', developed by Ludwig
Wittgenstein on Philosophical Investigations (Wittgenstein, 1958), where language is viewed as a
cultural activity characterized as the act of explaining the meaning of a symbol through action, by
pointing to real-world situations (Wittgenstein, 1958).

80

autopoietic (Winograd & Flores, 1986:102).This term is adopted by Humberto Maturana and

Francisco Varela (1980), for describing as a quality of living systems, in the sense that they

are not only self-organized but also autopoietic, or self-making, informationally closed and

self-referential, where knowledge cannot be transmitted from the environment, but rather

constructed by the system itself, taking place by variation-and-selection or trial-and-error.106

We therefore identify a renewed interest in considering the act of programming as a

natural extension of cognitive processes, emphasizing the notion that the programmer

conceives a certain reality or world by using the computer to mediate his thought, by

designing processes, structures, possibilities for action – thus programming as an act of self-

reflection and self-making.

This view holds great similarities to the requirements of realtime interactive

composition.

The program must easily adapt to the composer's dynamic decision-making; it must be

regarded as a mechanism with which to interact, not a mathematical abstraction which can be

fully characterized in terms of its results. Also, as Rohrhuber and Campo asssert, by

performing with code one finds limitations on the available time for typing and on the

cognitive complexity of algorithms; Also, the system must be efficient in order to allow

realtime evaluation of such code, and be capable of handling errors gracefully (Rohrhuber &

Campo, 2009).

106 For a summary on cybernetics see also (Heylighen & Joslyn, 2001).

81

Winograd and Flores' remarks have been taken into consideration, as we can regard

with the renewed interest in Prototype-Based Programming107 and with the emergence of new

generation programming languages such as Perl, Python, Ruby or Javascript.

At present, a broader view of computation that takes into consideration the social,

aesthetic significance of computers is becoming more evident in a wide variety of fields.

The concerns are less in building software applications and turn essentially to the

exploration of artifacts “that act, that move, that work” (Brooks, 1987). The recognition of

interaction in computation is also the source of ontological concerns in computer science, as

presented by Goldin and Wegner in Interactive Computation (Goldin & Wegner, 2007;

Goldin, Wegner, & Smolka, 2006).

107 Attempting to support the notion of computers as complex interactive systems, Winograd
proposed the application of the concept of prototype (Hofstadter, 1979:358; Wang, 2008;
Winograd, 1979:397; Winograd & Flores, 1986:115) in programming languages, implemented by
Henry Lieberman (see also Harkins, 2011; Lieberman, 1982) for his Act1 programming language.
OOP inheritance (Every instance of a class shares a common behaviour implementation) is
criticized under the argument that, since instances exist, there is no need for the class / instance
duality. Instead of using classes, one uses prototypes. With classes, the defined behaviours are only
valid within its instances, as a closed system. In order to extend its behaviour one would resort to
inheritance, extending the class from which the object would have to be instantiated.
With prototypes, by creating a new object, the concepts of behaviours are cloned as default, taking
advantage of the general knowledge encoded the original one. The advantage is that these objects
can still reuse concepts from others. However, through delegation, an object can borrow concepts
from an external one. Therefore, each object becomes a dynamic and subjective unique entity.
Prototypes change the ontological relation with programming allowing a more dynamic discourse
between the programmer and his software.
Also, due to the fact that the objects are dynamic entities, methods always accept unknown entities
as their arguments and try to operate with them. If the method fails to perform the operation, it
usually returns an error without halting the system. With prototypes this is not assumed as a
programmer’s error, a fault within the program, but rather a trial and error approach in the
discourse between entities of a system.

82

 These compositional instances, to reiterate, are not envisaged here in the frame of the

traditional approach to algorithmic (automatic) composition: they are instead seen in

the light of the ongoing paradigm shift from algorithms to interaction, where the

general-purpose computer is regarded as one component of complex systems

(Winograd 1979), and where the composer, being another component of these

complex systems, is imbedded in a network within which he or she can act, design,

and experience concrete tools and (meaningful) musical situations.

(Vaggione, 2001)

Computer music does not need to be reduced to established general-domain

approaches. Acknowledging the constraints of viewing programming languages as mere tools

for the production of artifacts, with a preconceived use or purpose, a distinct perspective can

be explored by regarding computation as an expressive medium to engage in a creative

activity.

The exploration of new directions and territories that are being carried out, attest that

the act of programming as a cultural activity, where code is regarded as something aesthetic,

subjective, linguistic, dialogic, conversational, as an extension to knowledge representation.

In these terms, we are given the possibility to integrate how machines “act and perceive into

our own sensory experiences and creative processes”, where becoming machine becoming

human “will eventually look less like a hybrid and more like a united whole” (Chayka, 2012),

a promising potential for computer music practice.

83

5 THR44: AN APPROACH TO INTERACTIVE MUSIC

Music before everything else,

and, to that end, prefer the uneven

more vague and more soluble in air

and nothing in it that is heavy or still.

(Verlaine's Art Poétique, late 19th Century in Eco, 1989)

In this section, we present the musical outcomes and the software (Thr44) that resulted

from this research. The purpose of this work consisted in discovering methodologies that

could contribute to the improvement of interactive music practices. We begin by addressing

some aspects regarding the context of its creation, such as personal considerations and

circumstantial factors, and by defining the objectives and criteria that guided our work. We

will then proceed by presenting the musical context within it was developed, and thereafter

we discuss the implementation details of Thr44, focused on the possibilities that it can

provide to interactive music practice. We will conclude this chapter with a summary on our

findings.

5.1 Possibilities for Composing Interactive Music Systems

In the previous chapters, we observed that the use of computers for music creation

offers a wide variety of possibilities for the representation of musical concepts, their sonic

expression and control. We have attempted to identify fundamental issues and prospects

related to the usage of computers, in particular within the context of interactive music

systems.

84

These systems are not conceived in view of traditional approaches to compositional

practice. Such approaches are directed towards the creation and interpretation of musical

works in a restrictive sense (Blum, 2001) that are fixed and finished. These systems can

rather be described as activities, as processes encoded in technologized musical environments

that are to be carried out during their presentation, resulting in one particular expression

among a vast field of possibilities. These works are variables, defining a framework for

action (Ribas, 2011).

The activity of composition has changed from the production of works to the

construction of technologised musical environments in which music happens, and that

emphasise music as a situated and interactive occasion rather than something that lends

itself necessarily to repeatability and mediated reproduction. […The] focus of creative

work is shifted from the production of reproducible sounding works to the construction

of objects and environments in which music, or sonic art, is facilitated.

(Green, 2006)

 Barry Truax, in 1976, described distinct levels at which the composer can operate

with interactive music systems (Truax, 1976).108 Within this context, musical creation can be

described as an activity that extends towards a multi-disciplinary practice that entails a

diversity of modes by which one relates to the computer.

One of such modes is related to the creation of low-level entities and structures that

enable the computer to operate with musical concepts: meta-composing. As we have

previously discussed, the recognition that the choice of software deeply determines the

aesthetic possibilities of artistic creation has led to an increasing interest from artists into the

development of their own systems. This tendency is evidenced by the growing amount of

open-source interactive music environments and respective libraries that have emerged in the

past decade. In this perspective, we reiterate the relevance of programming languages as a

defining aspect of the creative process within music practice.

108 The following levels are described by Truax (1976): at the sonic level, one specifies the structures
and models that allow the creation of acoustic material; at the syntactic level, one composes with
the sounds, articulating the relations between the sonic material; at the semantic level one evaluates
the well-formedness of those structures; finally, at the pragmatic level one interacts with the
system, registering the user behaviour.

85

A second mode lies in the creation of actual sonic entities, taking advantage of

previously created structures in order to describe the sound material (‘composing the sound’)

and its musical articulation (‘composing with sound’), i.e. this mode consists of developing

the means by which musical material is worked, in order to develop overall musical form

taking smaller units and components. Such work relates to sound design (synthesis and signal

processing) and algorithmic composition.

A third mode is directed towards the development of strategies for interacting with

these sonic complexes, which ranges between two contrasting approaches. At one end, drawn

from a procedural dimension of music, one can develop generative processes to be used in

performance, resorting to Markov chains, graphs, genetic algorithms, non-linear functions or

any other strategies that permit sonic activity. At the other end, one can use the computer as a

virtual instrument and impose a direct control of sound. In this view, human-computer

interaction (HCI) provides us with a diversity of models that facilitate such relations.

A last mode is the moment of presentation of the work. At this level, the compositional

activity can be intertwined with performance, open to distinct communicational possibilities

and the exploration of values such as spontaneity or expressiveness.

These distinct modes support the idea that composing computer-based interactive

music must be regarded as a multi-disciplinary practice that opens up a vast field of possible

directions to investigate.

In the next sections we will proceed with this research by drawing the paths we

consider more significant for the improvement of our practice in the context of interactive

music.

5.2 A personal perspective

The technical and compositional decisions that are made are strongly biased by

personal and aesthetic attributes that must, therefore, be exposed. Our musical interests are

placed within the context of experimental electronic and electroacoustic music, with an

emphasis on improvisation. In fact, the musical creations we have developed prior to this

86

study consisted of performing with laptop computer, using Max/MSP to process the sound of

other performers, or integrating and playing double bass to generate our own material.

Concerning the aesthetic nature of sonic material, we are interested in the spectral and

textural qualities of sound, its varieties of motion and fluctuations in time, its possibilities for

timbric manipulation, being less concerned with the "note paradigm", in which pitch and

amplitude are regarded as primary parameters (Boulez, 1987). As we will notice in the

following sections, the sonic materials and processes that are privileged in our work are

linked to microsound and develop from sampling acoustic instruments, or generating small

synthesis fragments of noise, pulses, frequency and amplitude modulation synthesis, applying

granular synthesis, and recursively processing the generated and sampled material.

Another aspect that informs this work is the recognition of its acousmatic character, in

the sense that, in our performative work, we do not make an effort to expose the sources or

causes of sonic events through visual or action cues. Rather, they can sonically remain

mysterious and ambiguous, subjected to the auditory perception of the audience. As Smalley

asserts, sonic events can be perceived as surrogates of such cues, relating to a range of

exeriences outside the context of the work, whether explicit, implicit or remote from reality

(Smalley, 1997).

Additionally, and framed within an improvisational context, the confrontation of our

decision-making with a complex dynamic of extraneous constraints and affordances is

critical. A fundamental aspect lies in the possible relationships that can be established with

other musicians, which in the majority of situations encompasses their aesthetic choices,

instruments, techniques and conceptions, sometimes only known in the act of live

performance.

Another aspect is related to the resources and conditions that are inherent to the place

where the performance occurs. Libraries, galleries, universities, cultural associations, bars,

among others, impose physical and acoustic constraints to the performance outcome.

And finally, one needs to consider the social and cultural context, in particular the

discourse that is intended with the audience – the communicational character of this discourse

can be prior outlined, but it is the relation that evolves in situ that becomes critical for the

development of this work.

87

These aspects offer an enriching opportunity for those who are interested in the

possibilities of computer music in the context of experimental and improvisatory practices.

5.3 Composing Interactive Music Systems

In the previous chapters, we have surveyed the possibilities offered by computers for

music creation, recognising that one of the promising approaches to interactive music lies in

the actual creation of computational systems themselves. In this view, rather than using

existing general-purpose tools, and recognizing that software is highly determinant for the

aesthetic, artistic, musical outcome, we assert that by dwelling with programming languages

we can develop a more subjective music practice.

Regarding the creation of interactive music systems, a common approach lies in a

two-step development where the design of the system is planned beforehand, i.e. composed,

and then performed with a fixed set of parameters or controls. Such approach draws a

separation between thought and action where composition is viewed as making provision for

the interactions that can be carried out in performance (cf. Ch.4.1).

A distinct approach has been recognized in the practices of live-coding, established as

the research of the potentialities of algorithms as a means to express mental ideas

(cf. Ch. 4.2), as a conversational medium, avoiding "safety nets" of previously written

snippets of code. These practices have taken advantage of interactive programming and JIT

compilation. The ability to change a program while it runs, and not only its parameters

values, enables the composer to establish a less mediated relation with the program itself. The

programming language becomes part of the performance activity itself, the main interface.

This approach enables the expansion and flexibility of decision-making process in the

context of live performance, however one must be cautious about its constraints. Recalling

the arguments provided by Rohrhuber, in the act of writing code during performance one is

limited to the time available for typing and by the cognitive complexity of the algorithm

being written, as well as its consequences as it is interpreted by the computer (Rohrhuber &

Campo, 2009).

88

Instead of assuming one of these opposing approaches, one would rather gather the

strongest points from each. In this perspective, one can consider that by developing a

computational framework, one would be able to continuously formalize and mediate

compositional ideas. Such system does not need to be timely constrained within the moment

of performance. Interactive programming paradigms enable us to develop a continuous

dialogue with a growing computational system, whether in a work exposition or in a studio-

like setting. We believe that such direction would allow a more dynamic and flexible context,

not only expanding the possibilities of decision-making in performance, but also taking

advantage of the complexity of generative approaches and of the expressiveness of physical

or graphical user interfaces, that require long development cycles to be tested and

implemented.

5.4 Objectives and Criteria

Based on the observations in the preceding sections, our objective is oriented towards

the creation of sonic works, or activities, that result from the development and use of the

computational medium. The purpose of this work is to design and experiment diverse

possibilities in order to assess how one can compose interactive music. In particular, by

testing what strategies and concepts enable one to improve compositional practice in an

interactive context. By improvement we mean facilitating the musical decision-making

process in a diversity of contexts such as a performance, installation or studio composition;

that is to say, to be able to engage in a creative process, expanding one’s inner concerns,

without being limited to pre-defined compositional strategies imposed by pre-existing

software.

89

 In order to fulfil such objective the following criteria have been taken into account:

Versatility

By versatility we mean easiness in the description of compositional ideas. The system

must have a representational potential that, on one hand, does not impose preconceived

models (for instance, limiting sound description to the use of Unit Generators), and on the

other hand, facilitates the expression of musical ideas. From this perspective, the system must

provide a variety of components (high and low level), and their usage must have as little

accidental complexity as possible, so one is not concerned, for instance, with memory

pointers or disk addresses, but rather with the musical possibilities that can arise from

interacting with those components.

Transparency

One must not only be capable of describing and executing processes, but also be able

to recover and perceive them; to understand their notation, their inner structure, behavior and

interconnectivity.

Flexibility

Directly related to versatility and transparency, flexibility expresses the system’s

susceptibility to modification or adaptation. Taking into account our aesthetic context and the

diversity of situations that can emerge in our practice, it is required that the system has the

ability to adapt with the minimum possible effort and time. It must be flexible, enabling one

to dynamically create, edit, and maintain it.

Expressiveness

We privilege interaction in order to extend compositional decisions to the act of

performance, assuming that the ability to convey intentions or emotions is of particular

relevance. We are not only concerned with the description of musical ideas, but also with the

means to communicate them.

We assume the subjective nature of the present work, and therefore, there is no

intention in presenting it as an application or a tool per se. Rather, the objectives of our work

are to identify and experiment strategies that could improve our own compositional practice,

90

and therefore we are more interested in evaluating the application of these strategies in our

own musical practice. As such, criteria of efficiency, general usability or pedagogy are not

considered of relevance. Nevertheless, this work is publicly available and we have

extensively used it, allowing us to assess the correspondence to the criteria designated in this

section.

As discussed in the introduction of this study, we have adopted an action-based

methodology and therefore the musical activity we engaged in provided the grounds and

evaluation context from which we iteratively defined future objectives to carry on with our

research.

5.5 Musical Activity

We succinctly describe the ideas and principles we have developed in our musical

activity as we assume they will provide some insight on the implemented framework and its

principles.

5.5.1 Variable Laptop Orchestra

The first performances that were carried out within the context of this research were as

a member of the Variable Laptop Orchestra (VLO) from CITAR109 (Centro de Investigação

em Ciência e Tecnologia das Artes), a laptop ensemble constituted by the members of this

study’s research programme110. Its main goal was to create an ecletic environment for CITAR

researchers to experiment and confront their ideas. This collective was very diversified in

terms of their approaches to music practice and backgrounds, raging from experimental and

improvisation-based musicians to composers more concerned with written pieces.

109. http://artes.ucp.pt/citar/
110 André Rangel, Joana Gomes, João Cordeiro, Miguel Cardoso, Pedro Patrício, Ricardo Guerreiro,

José Luis Ferreira and Vitor Joaquim.

91

Fig. 15 Transfronteiras

One of the first evident trends was the possibility to work beyond the context of

improvisation. In this perspective we have collaborated with José Luis Ferreira on a musical

piece titled Limits / Capacities (2008), having performed at “Isto não é um concerto”, an

event that was produced by Paulo Ferreira Lopes at Centro Cultural de Belén111. We have

also performed at “Transfronteiras”, in CulturGest112 (Fig.15), an event that was produced by

José Julio Lopes and Orchestrutópica113, in which we collaborated with Paulo Ferreira Lopes

on his composition De Profundis (2006).

For such events, our role was to explore electronic sounds over scored instrumental

sections. Although we were improvising, we had already a defined notion of what the

instruments were going to play, allowing some advanced planning. Also, the collaboration

with the composers permitted some insight on the concepts, techniques and aesthetic

concerns they manifest, providing some sense of direction.

111 http://www.ccb.pt
112 http://www.culturgest.pt
113 http://www.orchestrutopica.eu

92

We were interested in exploring signal processing techniques and in developing means

to empower the acoustic instruments by extending their sound beyond their natural limits, a

direction that was ideal for these pieces. In our actions, we created low frequency melodic

phrasing, excited the harmonics of the acoustic instruments or sustained the notes far beyond

the instrument’s capacity; In more tense sections we multiplied the instruments sounds,

creating voicings that would imitate their source’s original articulation and then dissolve in

conformity with the note’s resolution.

VLO had also the opportunity to perform with Carlos Zíngaro at the Black & White

Festival, held at Universidade Católica Portuguesa. A recording of this event is provided in

the accompanying media device (cf. Appendix 2).

Fig. 16 Variable Laptop Orchestra and Carlos Zingaro

For this event, the formation of VLO consisted of six laptop performers processing

Carlos Zingaro’s violin sound. The signals from these laptops was then mixed by José Luis

Ferreira. Also, visuals were created by Joana Gomes.

A key aspect for this performance consisted in the constant switching between

predominant laptop performers who where continuously exploring distinct approaches for the

generation of sonic material. The resulting form of the work evolved from the layering of

autonomous blocks that progressively found protagonism and dispersed due to Ferreira

93

Lopes’ work on the mixer. The conversational character between performers is reinforced by

their disposition on stage (Fig. 16), being all capable of seeing each other.

Within our intervention, we continued to work on signal-processing techniques. We

would create multiple hybrid voices or low-pitch drones by capturing and repeating the

phrasing of the violin, for instance, changing its pitch a fifth or an octave above or below, or

sustain certain notes. Another approach was to diffuse masses of sounds in order to create the

perception of movement from the violin towards the audience, or creating action-response

situations with the violin, triggering short energetic gestures of processed violin sounds.

5.5.2 Reinold Friedl Ensemble

Invited by Granular, and integrated in the Metasonic cycle, we had the opportunity to

participate on a three-day creative residence taught by Reinhold Friedl that resumed with a

performance as a member of Reinhold Friedl Ensemble114, carried out at Goethe Institut.

This collaboration was significant for our research given Friedl’s manifest interest on

spectral, textured, timbre-based sounds115 and the means by which he explores them through

performance. Such interests can be perceived in his proposals as artistic director of

Zeitktratzer, having collaborated with Carlsten Nicolai on Zeitkratzer Electronics (2008), or

with Lou Reed on Metal Machine Music (2007). Also, he proposed Xenakis Alive (2007)

which implies an aesthetic link to Iannis Xenakis’ stochastics and electronic music. On Inside

Piano (2011), for instance, a vast spectrum of sounds that give form to the musical work

emerge as Frield explores extended techniques for the piano, implying a plasticity and

richness that we are interesting in pursuing in our musical practice.

 Throughout the residence, Friedl proposed a series of actions that deeply relate to

improvisation pratices, such as imitation games, reinforcing the need to respond to certain

114 The performance was carried out with Reinhold Friedl on “inside piano” and direction, Ulrich
Mitzlaff and Miguel Mira on cello, Hernâni Faustino on DoubleBass, Pedro Lopes and Miguel
Cardoso on electronics.

115 We refer to timbre-based as oposed to note-based (cf. Ch. 2.2.2).

94

stimulus with very well defined gestures. For instance, he would define that a certain piano

pattern should be rythmically repeated by the ensemble by only varying the timbre or

dynamics, which could generate aesthetically relevant bursts or masses of sound. By this

period, our research had already provided a diversity of methods for the creation of a rich

palette of sonic materials, however, our ability to act fast and dynamically in performance

was constrained by the need of sampling other musicians’ sounds and by the lack of control

of sonic events, given the limited set of interfaces we afforded.

 A key aspect relating to the computer’s instrumentality and autonomy was underlined,

leading to the exploration of two complementary directions. At one end, we began to create

sound through sound synthesis processes, and, at the other, we started to investigate

possibilities for richer performance control, which led to the development of SCPad!, an iOS

software that will be discussed later in this chapter (cf. Ch 5.6).

5.5.3 2+n

2+n is a duo we have created with Ricardo Guerreiro in order to explore common

interests within interactive music practice. We were both concerned with the expressive

potential of computers for music practice in a live context, as carried out by the late 1970s

laptop bands such as The Hub or by the recent live-coding scene, as carried out by Julian

Rohrhuber and Alberto de Campo on PowerBooks Unplugged. In these lines of action, we

began this project by attempting to establish a musical discourse between performers and

with the audience through the exclusive use of our laptops, using an interactive programming

language to generate and control sonic processes. Each of us developed our software

autonomously, but our laptops were connected in order to share the generated sound, its

respective source code116 and the software’s internal active parameters. We also conceived of

opening the duo to external collaboration (thus, the n variable in the project’s name) and have

already had the pleasure to perform with Gustavo Costa, Henrique Fernandes, António Jorge

Gonçalves and Joana Fernandes Gomes.

The most significant change in relation to previous musical activities, lied in the fact

that by constraining the project to the exclusive use of laptops, performing without pre-

116 The fact that both members of 2+n use SuperCollider facilitates the sharing of computational
resources.

95

recorded samples, we were enforced to describe and control all sounds algorithmically,

resourcing to sound synthesis, which posed a challenge regarding the means to create

aesthetically expressive and relevant sounds.

This concern has led our practice towards the exploration of microsound. The

possibility to consider sound as an aggregation of masses of particles that can be

algorithmicaly shaped offers a great malleability, a great plasticity for the generation of

sounds that can range from rythmic patterns to dense continuous tones or textures with rich

timbre. In previous chapters we have already regarded a diversity of programs that follow this

approach by operating in the domain of the sample, namely Sawdust by Herbert Brün, SSP by

Goedfried Koenig or ST by Iannis Xenakis (cf. Ch2.2.2). Also, research on microsound has

been carried out by Curtis Roads (2004), Alberto de Campo (2011), Carlos Caires (2006),

Agostino Di Scipio, Horaccio Vaggione (Solomos, 2007) among others. Musical works such

as Volt Air (2001-2003) by Roads, or 24 Variations (2001) by Vaggione illustrate the

aesthetic possibilities of such direction.

Our initial effort consisted in generating a variety of waveforms and envelopes that

would serve as our compositional material. Rather than using pre-recorded samples for the

creation of grains, the source material consisted of a diversity of synthesis algorithms. We

employed common techniques such as subtractive, additive or cross synthesis, frequency and

amplitude modulation or physical modelling. Also, we also wrote sound functions to

prescribe grain envelopes such as square, pulse or sinc (cf. Ch. 5.6.4 GrainEnv).

A diversity of material was created by algorithmically manipulating grains, mapping

their source waveforms to synthesis algorithms and adjusting their shape, duration, envelope,

filtering and spacialization117. Adopting an interactive programming approach (cf. Ch.4.3)

and taking advantage of the Odef object we have implemented (cf. Ch.5.6.4), we created

instruments and scores, employed computational procedures such as iterations, recursions,

and biased randomness to generate phrasings. The microsound processes described by Roads,

such as glisson, grainlet, trainlet or pulsar synthesis provided an enriching starting point. The

resulting material, such as little crackle, creaks and fry sounds, or short glissando sequences,

can be perceived in the first minutes of n=0 (cf. Appendix 2).

117 Although the provided recordings are in stereo, all our work is developed using ambisonics, taking
advantage of BFormat UGens for SuperCollider developed by Josh Parmenter.

96

As soon as we established a formal algorithmic control of our compositional material,

we started to explore means to dynamically interact with it in performance. Vaggione argues

that algorithmic approaches to microsound pose a compositional problem on “how to

generate true singular events, and how to articulate them in the larger sets without losing the

sense (and control) of these singulatiries” (Roads, 2005). For Vaggione, direct intervention

on sonic material is fundamental, making it incompatible with algorithmic approaches. In his

compositional practice he rather employs the term micromontage, being described as that of

a pointillistic painter. The development of SCPad! (cf. Ch.5.6.4) has enabled us to address

this issue by enabling the simultaneous manipulation of a vast amount of parameters from

various objects. Although we don’t control each grain individually, our approach is a

compromise between Vaggione’s pointillistic approach and overall algorithmic control. We

can control a complex grain cloud, defining tendency values for grain’s density, amplitude,

frequency, waveforms and envelopes, among others. We can simultaneously trigger diverse

routines that can generate morphologies, singularities, that are perceived in differentiated

ways. In fact, Reynold Friedl was a fundamental reference for the development of SCPad!.

Such interface allows an optimal control and fast switching of sonic material, enabling the

creation of multiple layers of structures of sound at different levels.

As we became autonomous in the generation of sound, we turned to the processing

techniques that had developed for VLO and began to iteratively process our own musical

material, being able to create unique feedback loops. Such actions can be heard at 13:00

minutes and onward of n=0 (cf. Appendix 2).

 We also began to develop strategies that allowed the creation of situations in which

the material could be autonomously generated but over which, if desired, one could claim

back its immediate control. Adopting Xenakis’ understanding of sound parameters as sets of

vectors in a multidimensional space we developed graphical representations of particle

systems, simulating behaviour by applying physical forces such as attractors and repulsors,

that we then mapped to sonic parameters. We have also explored the usage of networks for

the creation of non-linear situations by mapping to networks’ nodes a series of parameters.

Details of such work will be presented in this chapter (cf. Ch 5.6.4).

 As implied by the exposed material, our musical practice evolves from a reductionist

view of sound as the perception of air waves that reach our ears. Emiting those waves we find

voltage variations of an electronic device that operates in analogy with numeric streams

97

emmited from a computer. In this view, our practice develops from the mathemacial

definition of time-value functions that are aggregated, intertwinned, recorded, added, divided

or multiplied until converted into sound. They are assigned a vector and subjected to forces

that imprint behaviour, becoming part of a complex stream of other sounds utterly controlled

by us.

Having exposed some of the ideas and principles that we have developed in our

musical activity we expect to have provided some lines that can facilitate the comprehension

of the concepts that were implemented in the Thr44 framework.

5.6 The Thr44 Framework

5.6.1 Overview

Thr44 is an experimental framework that abides to the criteria and objectives

described above in order to contribute to the development of methodological and operative

strategies for interactive music practice. The difficulties in fulfilling these criteria are not so

much related to the generation of musical material itself, but rather to the means to articulate,

organize, integrate, relate and expand musical ideas within a dynamic context such as a

musical performance, attempting to improve its improvisational and expressive potential.

Such possibilities encompass a set of concepts and principles that attempt to integrate

sound design, human-computer interaction, algorithmic composition and performance into a

single activity, defined as the composition of an interactive music system.

We consider that by following an interactive programming paradigm, and by

incorporating existing models such as prototype-based programming and its delegation

mechanisms, we can take advantage of their potential for dynamically structuring and

organizing modular components and behaviours. Such components can then be combined and

used, increasing our decision-making in a musical performance.

98

Rather that a closed and static program that is conceived in order to provide every

conceivable solution to interactive composition, Thr44 is a framework that offers a package

of computational objects and enables the continuous work on its components at various

levels, not only facilitating the prototyping of musical ideas, but also their continuous

incorporation into a growing environment, as a cumulative open work.

5.6.2 Considerations on implementation technologies

The real-time implementation of the classes presented in the Thr44 package was

developed on SuperCollider118 (SC), an interactive programming language for music

composition (McCartney, 2002). There are many other language environments – namely

Chuck119 (Wang, 2008), Common Music120, Nyquist (Dannenberg, 1993) or Kyma121 – but SC

is free, open-source, and supported by a vast research community. SC provides many

necessary audio and scheduling primitives and allows diverse programming approaches

(functional, imperative, object-oriented, prototype-based, among other). It also implements

many high-level abstractions (dynamically typed, single-inheritance, event dispatch, garbage-

collected). Since SC source is open, it can easily be changed or extended. Server UGens, for

instance, can be developed in C (Kernighan & Ritchie, 1988). In this sense, a relevant project

is Faust122, a functional programming language developed by Yann Orlarey that was

specifically designed for real-time signal processing and synthesis and that allows the

development of UGens for SC.

118 http://supercollider.sourceforge.net
119 See http://chuck.cs.princeton.edu
120 See http://commonmusic.sourceforge.net
121 See http://www.symbolicsound.com
122 http://faust.grame.fr

99

SCPad! was developed on C++ (Stroustrup, 2008), using the iOS123 SDK124 and

openFrameworks125, an open-source toolkit for creative coding. It contains a wide variety of

libraries in a single package that can be used for Windows, Macintosh, Linux, Android and

iOS operating systems. It facilitates graphical representation and provides communication

support for a variety of devices, such as webcams and physical computing (for example,

Arduino126). It also supports many communication protocols (Open Sound Control, sockets

and other web services) and data model formats (JSON, XML).

Although some technical details of our work are related to such technologies, we

consider that the overall principles and approaches taken in our study remain valid for other

technologies. In fact, and as opportunely referred, many of our implementation options were

influenced from approaches taken from other programming environments and contexts.

5.6.3 System architecture

The Thr44 framework is integrated in the existing architecture of SuperCollider (SC).

SC consists of two separate applications, of which the Server is a clean and efficient

real-time synthesis engine, and the Client provides a language interpreter, where algorithmic

composition is developed. These two applications communicate through network messages

using Open Sound Control (OSC) (Wright, 2005). Multiple instances of Servers and Clients

can be used simultaneously.

Within the SC Client, one can either develop classes, that are required to be compiled,

and thus, to restart the interpreter, or develop scripts that can manually be interpreted at

runtime.

123 It is of significance to note the deep technological changes that are currently happening, in
particular on what it concerns tablets with multi-touch technologies. In 2010, Apple released iPad
targeting the need for a device to read books in digital formats. Surely, it opens new possibilities to
access multi-touch technology for creative musical expression, but this device restricts the
development and distribution of software to its developer platforms and languages (app Store). The
new products launched in recent years open the scope of technological choices. As an example, we
can refer Android OS, used in a variety of tablets, or Microsoft Surface.

124 https://developer.apple.com/ios8/
125 http://www.openframeworks.cc
126 http://www.arduino.cc

100

The real-time implementation of the Thr44 framework consists essentially of

SuperCollider classes. In the next section we present the way in which they are organised.

The SCPad! application is built using the model-view-controller (MVC) paradigm. It

consists of a general controller that sends and receives data from SC and is responsible for

creating and destroying the distinct required graphical user interfaces. It communicates with

SC through OSC, using JSON and XML formatted strings.

5.6.4 The Thr44 Implementation

In this section we discuss some of the implementation details of Thr44, attempting to

provide an understanding of the strategies and approaches that have been carried out. The

diverse possibilities that this work permits cannot be fully addressed, however, we attempt to

provide the key features that can contribute to the improvement of interactive music practice.

 Its source code is accessible at:

 https://github.com/Thr44

A full description of its objects is available at:

 http://www.344server.org/phD/docs/Help/Thr44.html

Also, a version of these resources has been forked and is available at the

accompanying media storage device (cf. Appendix 2).

Main Structure
The Thr44 framework is organized as follows:

Core – Containing the major objects that are fundamental for the usage of the

framework, such as the Odef object.

Components – Consisting of structural objects developed in order to enhance our

compositional practice. Among these components we find interaction related components,

such as the SCPad, mathematical abstractions like the Network dataModels classes, and

other utilities such as the Buffer related classes.

101

 Interaction: SCPad

 dataModels: Thr44Network, PetriNet, Thr44ParticleSystem

 utilities: GrainEnv, BufferList, BufferUtils, ContinuousBuffer, Recorder

Other – Additional classes and scripts that result from performing with the system,

such as instrument descriptions, configurations, among others.

Odef

One of the main points of this project is the development of strategies for increasing

versatility, transparency and flexibility in the description and articulation of distinct

components of the system. This concern has led us to the study of object-oriented

programming; in particular, to the recognition that the prototype-based paradigm, often

associated to interpreted languages, could provide us with a viable solution for improving the

structuring and organisation of musical material.

Concerning performance, in which the decision-making timeframe is of critical

importance, one requires strategies to facilitate the relationship with the system, exposing its

state and possibilities for action, constituted by a diversity of heterogeneous objects, their

functions and variables. Performing with programming languages entails a series of

operational difficulties, such as the need to create a mental map of the constituents and of the

state of the system. Additionally, a common issue in musical performance lies in the loss of a

reference to an active sonic entity, being unable to control or stop it, and forcing one to restart

the program. Similarly frequent, but less critical, is the need to read-through our code in

search of an entity’s name, or of a forgotten value.

 a={SinOsc.ar (220, 0.2)}.play;
 a=nil;

Fig. 17 By executing these two lines of code in SuperCollider, the SinOsc would no longer be accessible to

control, except by directly querying the server, or restarting the environment.

In order to address these issues, we have developed Odef, an entity that works as a

wrapper to a multitude of distinct entities.

102

 Odef (\name, {
 arguments
 function body
 });

A first example, implementing FM synthesis:

 Odef (\FM, {
 arg carrier=400, mod=20, modDepth=100;
 Out.ar (0, SinOsc.ar (carrier + SinOsc.ar (mod, 0, modDepth)));
 });

 Odef (\FM).play;

 Odef (\FM).set (\carrier, 2, \mod, 1000, \modDepth, 1000);

As such,

 (i) We can declare any type of process, ranging from a mathematical operation to a

sonic process:

Odef (\sinDown, {
 arg gain=1;
 25.do{
 arg i;
 {
 var sound, env;
 env=EnvGen.kr (Env.perc (0.01, (4096/44100)/ (28.1-i)),

 doneAction:2);
 sound=SinOsc.ar (9000- (110* (i+20)), 0, 1)*env;
 Out.ar (0, sound);
 }.play;
 0.05.wait;
 }); // A Task iterating 25 times;

 Odef (\addition, {
 arg n0=1, n1=2;
 n0+n1;
 }); // A mathematical operation as example of a generic function;

 Odef (\oscil, {
 arg freq=440;
 Out.ar (0, SinOsc.ar (freq));
}); // A sinusoudal oscillator;

103

 (ii) The Odef entity functions as an abstraction that allows differentiated procedures

to share common methods: play, stop, set, get. The set and get methods allow the changing

and accessing of the parameters that are declared as arguments:

 Odef (\oscil).play; //start oscillator;
 Odef (\oscil).get (\freq); //return 440;
 Odef (\oscil).set (\freq, 880); //change its frequency;
 Odef (\oscil).stop; //stop the oscillator;

 Odef (\addition).play; //returns 11

 (iii) The function body is not closured so that we can access any variable from the

global scope of the environment:

 //variables from global scope:
 q= ();
 q.a=3;
 q.b=1;
 ~staticValue=4;

 //creating an addition function, where its internal variables
 read the global scope:
 Odef (\ addition, {
 ~staticValue+q.a+q.b;
 });

 Odef (\addition).play; //returns 8

 q.a=10;
 Odef (\addition).play; //returns 15

 (iv) All Odef instances that were declared can be accessed. In performance, for

instance, one can easily find the general constituents of the system that are being used at the

time.

 Odef.all;
 //returns an Object with all the Odefs e.g. ('oscil': an Odef)

104

 (v) We can introspect each Odef:

 Odef (\oscil).asCompileString //returns
 Odef (\oscil, {
 arg freq=440;
 Out.ar (0, SinOsc.ar (freq));
 });
 Odef (\oscil).key //returns oscil;
 Odef (\oscil).argNames //returns [freq];
 Odef (\oscil).argValues // returns [440];
 Odef (\oscil).objectType //returns "soundFunction";

This approach is not only useful for recovering the contents of the object, but also to

be accessed by other computational entities that can question the unknown object and behave

appropriately. An example object that takes advantage of such method is SCPad, which will

later be described.

 (vi) Odef also implements SuperCollider event system, providing a means to listen to

specific actions, such as for instance, the moment when a sound process finishes playing.

odef.addDependant ({
 arg odef, status;
 if (status=='stopped', {

 … do something

 });
});

 (Vii) In order to generate multiple copies of the Odef, we have implemented the

following methods:

clone: This method creates a new independent Odef. Its internal contents can be

modified without affecting the original entity.

 Odef (\oscil).clone (\clonedObject)

105

 getInstance: This method creates a new instance that is mapped to the original one.

If the parent Odef is changed, its child instances will inherit its properties. This method is

useful for the creation and manipulation of multiple instances of a single Odef.

 Odef (\oscil).getInstance (\instance0)

The development of Odef evolved from Alberto de Campo's insight, providing

knowledge for understanding the possibilities of interactive programming and, particularly,

the implementation details of JITLib (Rohrhuber & Campo, 2011).

 A full and detailed description of Odef can be found in the accompanying media device.

SCPad

An environment like SuperCollider provides many ways to work with external data,

enabling communication between a diversity of interfaces such as Human Interface Devices

(HID) or graphical user interfaces (GUI) and protocols, namely Musical Instrument Digital

Interfaces (MIDI), Open Sound Control (OSC), among others.127 However, the question is

not so much of a technical nature (on the means to send and receive data), but rather oriented

towards the means to relate the interfaces with the sound generating software with a

minimum effort and maximum expressiveness.

A general approach to such interfaces encompasses a separation between the

programmed sound engine and the interface itself. The interface is static and unidirectional,

solely capable of sending its current state; it requires the performer to provide information on

the appropriate mappings that can be established between these entities in order to control

sound. Recent applications for mobile devices, such as Robert Fischer's TouchOSC (2009)

(Fig. 18) can be framed within this view.

127 (Kersten, Baalman, & Bovermann, 2011) provides a more detailed description of the
communication protocols that are implemented in SuperCollider.

106

Fig. 18 TouchOSC by Robert Fischer (2009)

As previously discussed (cf. Ch. 3.4), another approach is evidenced by the interest in

the creation of expressive intelligent instruments, or composed instruments (Magnusson,

2009; Schnell & Battier, 2002). In this view, the interface already provides compositional

decisions, namely arpeggios, rhythms, scales, among others, blurring the distinction between

system design, composition and performance, as Magnusson points out (2009).

The potential of ubiquitous computing is that virtually every device can become a

compositional tool, allowing the appropriation of technology that was not originally intended

for a certain purpose. As an example, there is a growing interest in the development of

musical interfaces for mobile devices due to their multi-touch technology, their processing

power and communication capabilities. We can take advantage of such devices in order to

develop dynamic interfaces that are capable of adapting themselves to external changes on-

the-fly and generate appropriate controls. A flat screen does not provide the proprioceptic

response one would desire, however such direction allows us to have a dynamic interface in

which one can control a vast amount of parameters simultaneously.

SCPad! is a software package that dynamically generates graphical user interfaces

(GUI) on an iPad, conforming to its multi-touch technology. It consists of a SuperCollider

class that enables seamless communication between our framework and the iOS program.

Rather than statically mapping controls to sonic processes the have previously been defined,

as one does with TouchOsc, this interface dynamically reflects the objects and properties that

one instantiates on SuperCollider.

107

Fig. 19 SCPad! (2013)

As previously described, the Odef is an object that enclosures compositional internal

logics and functions as a generic interface128 for common methods, such as play, stop, or set.

SCPad is built on the Odef object in order to seamlessly listen to its available instances, and

respective arguments, in order to dynamically generate the appropriate graphic control.

128 The term interface refers to as a programming language entity that serves as an abstract
specification of methods to be implemented.

108

An example of Frequency Modulation Odef, with carrier, modulator and modulator

depth as parameters, and its respective GUI (Fig. 20):

~scPad=SCPad ("192.168.1.92");

Odef (\FM, {
 arg carrier=400, mod=20, modDepth=100;
 Out.ar (0, SinOsc.ar (carrier + SinOsc.ar (mod, 0, modDepth)));
});

Odef (\FM).clear; //removes the Odef

Fig. 20 An example of the interface that would be generated (carrier, modulator and modulator depth)

109

Fig. 21 Diagram of SCPad! Interface organisation

The SCPad! interface is divided into two major sections:

The Odefs section (1) contains a set of buttons that represent Odef instances. These

can either be defined as triggers, that run process when tapped, or as selectors, which toggle

the appropriate parameters representation. In order to access the graphic control of the

parameters of trigger Odefs one can press-and-hold the buttons.

The parameter group section (2) displays the group of graphic controls that are

mapped to the Odef parameters.

In order to establish the connection to SuperCollider, it also contains a settings panel (3).

While SCPad has already some predefined controller configurations, one can always

override that information and assign specific controllers to Odef. In Fig.22, we illustrate a set

of controllers we have already implemented.

110

Fig. 22 Illustration of the implemented controls: circularSlider, circularRange, ScatterXY, ScatterRadial,

circularSelectSlider, slider, play

Continuing with the example of FM synthesis Odef, we present how GUI contros

could be manually defined:

//Example of an Odef to use with SCPad:
 (
Odef (\FM, {
 arg carrier=400, mod=20, modDepth=100;
 Out.ar (0, SinOsc.ar (carrier + SinOsc.ar (mod, 0, modDepth)));
});

//definition of controls:
Odef (\FM).addControl ("circularSlider", [\freq]);
Odef (\FM).addControl ("ScatterXY", [\mod ,\modDepth, \play]);
Odef (\FM).addControl ("Play", [\play]);
)

//Definition of control method:
Odef (\FM).setControlMethod (\select);

In order to specify the range and curve of the controller that is expected to be mapped

onto the Odef’s parameters, a ControlSpec129 can be used, enabling a diversity of numeric

translations (linear, exponential, sine, among others).

ControlSpec.specs[\azimuth] = ControlSpec (-pi, pi, \pan, 0.001, 1, units: "");

ControlSpec.specs[\rho] = ControlSpec (0, 8, \linear, 0.001, 1, units: "");

Although parameters can generally be defined as numeric values, Lists of objects,

such as Buffers, can also be used. In this example, we specify a set of grains130 to be used in

an Odef and a circular selector as its controller. The -> has been adopted in order to be able

129 ControlSpec is an input specification object, native to the SuperCollider Language.
130 The GrainEnv object is an utility object that we will later describe, consisting of a library of sound

functions.

111

to specify a default value within a list of possible values that need to be represented in the

GUI control.

Odef(\scatter, {
 arg envbuf=[GrainEnv.sinc16Env]->

[GrainEnv.sinc8Env, GrainEnv.sinc16Env, GrainEnv.sinc32Env, GrainEnv.exponEnv];
…
});
Odef(\scatter).addControl ("circularSelectSlider", [\envbuf]);

SCPad! source code can be retrieved online131 or at the accompanying media device

(cf. Appendix 2). A compiled version has been submitted to Apple's App Store132.

Networks

This research is focused on the development of strategies that can increase the

compositional decision-making in contexts such as performance, where one finds limitations

such as the cognitive complexity of algorithms or the available time for typing. To this end,

we have implemented a series of abstract mathematical classes for networks and physics that

enable the creation of complex situations such as the below documented PetriNet and Boids.

Networks, or graphs, are mathematical structures that are used to model relations

between Objects. Networks are constituted by collections of nodes and by collections of

edges (or relations) that connect pairs of nodes. The relevance of such structures consist in

the possibility to model complex topologies, allowing the exploration of non-linear

generative processes such as Markov chains or stochastics. Thr44Network.sc was created to

model graphs as a means to explore complex and non-linear situations for musical

performance and composition.

131 https://github.com/Thr44/SCPad/
132 https://itunes.apple.com/tr/app/scpad!/

112

The following example illustrates how to create a network of 75 nodes, randomly

interconnected, and its resulting graphical representation (Fig. 23). From this abstract

structure, one can map a series of sound processes or parameters, and navigate through its

nodes, opening the possibility for generating non-linear sonic narratives.

~network=Thr44Network.new ();
~node=Thr44Node.new (~network.getNewNodeID ());
~network.addNode (~node);
75.do ({
 |i|
 ~node=Thr44Node.new (~network.getNewNodeID ());
 ~randomNode=~network.nodeList[(~network.nodeList.size-1).rand];
 ~relation=Thr44Relation(~node,~randomNode,~network.getNewRelationID());
 ~network.addNode (~node);
 ~network.addRelation (~relation);
 });
~network.log ();
~network.gui;

Fig. 23 Graphical representation of a Thr44Network

113

PetriNet

The implementation of PetriNets (PN) models (Petri & Reisig, 2008) in our work

evolved from a collaboration with Ricardo Guerreiro and António Rito Silva. Guerreiro's

interest in network models for musical performance and composition133 led to the

conceptualization of an application of PN for live computer mediated electroacoustic music.

We have implemented their concept in Supercollider, which allowed the further development

of the network structures presented above.

This work was presented in SuperCollider's Symposium 2012 and its creative potential

was explored in 2+n (Cardoso, M., Guerreiro, R.).

A PN is a graph that consists of two types of nodes (transitions and places), that are

connected by directed relations. It functions by adding tokens to places, and when all the

inputs of the transition have enough tokens to satisfy arcs weight, the transition is triggered.

The input tokens are consumed and tokens are produced in the output places (Fig. 24).

Fig. 24 PN consumption and production of tokens.

When a PetriNet class is instantiated a new PN graph is dynamically created using a

random procedure. This procedure ensures the creation of a correct PN graph comprising a

certain number of places and transitions, bounded by a defined minimum and maximum, and

connected with a given connectivity index.

133 See Guerreiro discussion (Guerreiro, 2015:121).

114

//create petrinet:

p=PetriNet (numPlaces:6, numTransitions: 8, connectivityIndex: 0.2);
//present graphical interface:
p.gui;

Each transition of the PN is associated to an external object that, by default, is

randomly selected from a List. The objects of this assigned List share a common interface

(Odefs).

// define some sound processes:
 (
Odef (\resonz, {
 var sound, env, trig;
 env=EnvGen.kr (Env.sine (12, 0.2), doneAction:2);
 sound=Resonz.ar (Pulse.ar (Rand (30,90), 0.5), rrand (100, 10000), rrand

(0.1, 1))*env;
});

Odef (\sines, {
{
 SinOsc.ar (rrand (200,3200))}.dup * EnvGen.kr (Env.sine (12, 0.2),
doneAction:2);
});

Odef (\saws, {
{
 Saw.ar (rrand (1600,3200))}.dup * EnvGen.kr (Env.new ([0.0001, 0.01, 0.3,

rrand (0.001,0.01), 0.0001], [rrand (6,12), rrand (0.1,1), 0.001, rrand
(6,12)],'exponential'), doneAction:2);

});

b = Buffer.read (s, Platform.resourceDir +"/sounds/a11wlk01.wav", bufnum:1);

Odef (\grainy,
{
 var bufnum = 1, trate, trigger, dur, env, out;
 trate = LFNoise0.kr (LFNoise1.kr (0.3).range (0.1,1)).range (0.1,21);
 dur = 0.1 / trate;
 trigger = Impulse.kr (trate);
 env = EnvGen.kr (Env.linen (3, Rand (6, 18), 3, 1.0), doneAction:2);
 out = TGrains.ar (2, trigger, bufnum, Rand (1.0,3.0), LFDNoise1.kr

(0.1).range (0,BufDur.kr (bufnum)), dur, TRand.kr (-0.99,0.99,trigger), 0.5, 2);
 Out.ar (0, out*env);
});
)

// make these objects available to our PN
~list=[Odef (\resonz), Odef (\sines), Odef (\saws), Odef (\grainy)];
p.addOdefs (~list);

//starting network flow:
p.play();

115

 When a transition is fired it launches its related object that is set for a period of time.

When the timeout occurs, the process is deallocated, and the PN transition finishes its

execution creating tokens in its outbound places. To allow this behavior we have extended

the classical PN model with a time factor that seems to be fundamental, for our musical

purposes, in dealing with the potential coexistence of multiple sound strata that our parameter

controls.

//set a waitTime of silence after each sound process finishes:

p.waitTime({rrand(2.4,7.5)});
Also, one is able to interact with the PN, by adding or removing tokens.
p.getPlaceFromId(6).addTokens(1);
p.getPlaceFromId(8).removeTokens(1);

Furthermore, our PN version randomly selects its initial state, i.e. the place from

where it starts, and may not have a final state, thus allowing a non-linear cyclic network flow.

A video of the presented example is provided (cf. Appendix 2).

PetriNet BasicBuilder

In order to facilitate the construction of PN, we have also implemented a BasicBuilder

with methods such as insertSequence, insertLoop, fork, join, and closePath. The following

example illustrates the creation of a PN using the basic builder.

(
 var petri, result, builder, endPlace, numPlaces;
 petri=PetriNet ();
 builder=PetriNetBasicBuilder (petri);
 numPlaces=3;

 result=builder.buildSequence (numPlaces);
 endPlace=result.endPlace;
 petri.initPlace=result.initialPlace;
 result=builder.insertSequence (numPlaces, petri.initPlace);
 petri.initPlace=result.initialPlace;
 builder.addLoop (numPlaces, endPlace);

 petri.log ();
 petri.gui ();
)

116

Fig. 25 Resulting representation of a PN

As the network flows rely on the consumption and production of tokens, deadlock and

starvation situations can be detected, making PNs critical for the analysis of concurrent

entities’ behaviours. However, from our musical perspective, such dependency led to

difficulties in finding adequate models, making it unsuitable for our purposes. Nonetheless,

this research allowed the implementation of enhancements to the Network classes, namely the

methods for modelling these structures or the strategies to map their nodes and relations to

sonic entities.

Particle System

The implementation of networks as an abstraction for modelling a diversity of

structures suggests the creation of ecosystem behaviours such as collisions, springs,

explosions, flocking birds, among others, that could be mapped to sonic entities in order to

control their parameters autonomously. As such, we have implemented Thr44ParticleSystem,

a class that manages particles and allows setting forces to these entities. In the example

below, we use the network created in the previous section as a topology to create particles

and forces among them.

117

~pS=Thr44ParticleSystem.new ();
~network.relationList.do{
 arg relation;
 var dist=50;
 ~pS.addSpring (relation.getNode0 (), relation.getNode1 (), 0.6, dist);
};

~pS.fillMatrixWithRepulsors (0.4, 100);
~pS.calculateParticles ();
~pS.gui

In order to create new forces, one can extend the Thr44PForce and implement the

appropriate calculations.

Thr44PFFoorrcceeNNaammee : Thr44PForce{

 *new{
 arg ……aarrgguummeennttss;
 ^super.new (node0, ……aarrgguummeennttss).init (node0, ……aarrgguummeennttss);
 }
 init{
 arg node0, ……aarrgguummeennttss;
 this.node0=node0;
 ……AAssssiiggnn vvaarriiaabbllee vvaalluueess ffrroomm aarrgguummeennttss
 ^this;
 }
 calculate{
 ppeerrffoorrmm rreeqquuiirreedd ccaallccuullaattiioonnss oonn nnooddeess ppoossiittiioonn aanndd
aacccceelleettaattiioonn:: vvxx,, vvyy,, vvzz,, aaxx,, aayy,, aazz

 }
}

These forces can then be assigned to Thr44ParticleSystem:

 ~pS.addForce (nnooddee00, nnooddee11, ……aarrgguummeennttss);

118

One can map these nodes to other objects by injecting a function to the nodes, that will

be executed by calculateParticles ():

~network.nodeList.do{
 arg node, i;
 node.applyAction ({
 arg element;
 element.postln; //prints out a Thr44Node
 });
};
~pS.calculateParticles ();

Boids

In the following example we present an experiment for sound spatialization using the

boids algorithm.134 As described by Craig Reynolds, boids is a model for coordinated

movement among particles that simulates the behaviour of flocks of birds, or schools of fish.

Such model is often cited as an example of principles of artificial life and emergence. This

example serves to illustrate how this work facilitates the creation of generative behaviours in

order to control some aspects of sound; in this case we apply the boids implementation to

ambisonics saw generator instances:

Odef (\saw, {
 arg frq=100, rho=0.3, azimuth=pi, elevation=0;
 #w,x,y,z = BFEncode1.ar (Saw.ar (frq, mul:LFDNoise3.ar (0.3)*LFDNoise3.ar

(0.3)), azimuth, elevation, rho, 0.1);
 BFDecode1.ar (w, x, y, z, [-0.5pi, 0.5pi]);
});
b=Thr44Boids.new;
b.applyAction={
 |boid, odef|
 var rho, azimuth, pos;
 pos=RealVector[boid.pos[0]-200, boid.pos[1]-200, 0];
 rho=pos.norm/200;
 if (rho.isNaN, {
 rho=0;
 pos=RealVector[-1000, -1000, 0];
 });
 azimuth=pos.angle (RealVector[0, 1, 0]);
 if (pos[0]*pos[1]<1, {
 azimuth=azimuth+ (2*pi);
 });
 odef.set (\rho, rho, \azimuth, azimuth); //we apply position to the Odef
};

134 See http://www.red3d.com/cwr/boids/

119

20.do ({
 |i|
 var odef;
 odef=Odef (\saw).clone ("saw"++i); //we clone the original Odef 20 times
 odef.set (\frq, rand (100)+20);
 b.addOdef (odef);
 odef.play;
});

b.gui;

Sound Utilities

Early stages of our work were essentially oriented towards improvisational strategies,

which led us to recognize the need for the creation of objects for real-time audio sampling

and manipulation. These would allow a more expressive dialogue with other musicians and

their sonic material on significant moments of their performance.

Instead of operating with incoming sound as a continuous stream as if it were analog

audio flowing through connected boxes that apply direct transformations and output the

signal, one can rather treat sound as a database of discrete segments of particular

morphologies.

BufferList

BufferList facilitates the creation and organization of collections of buffers by

applying filters, keywords or other procedures, making them easily accessible by any other

process of the system.

 BufferList.new(); //singleton, always returns the same BufferList
 BufferList.new().gui; //creates a GUI of the list

 BufferList.new().addBuffer (nnaammee, bbuuffffeerr,, [[kkeeyywwoorrddss]]);

 BufferList.new().getBufferAt (iinnddeexx);

 BufferList.new().getBuffersWithKeyword (kkeeyywwoorrdd);

120

b.addBuffer ("ok", Buffer.new (), ["teste", "other"])
b.addBuffer ("ok2", Buffer.new (), ["teste", "other2"])

b.getBuffersWithKeyword ("other")

BufferList.new().getBufferWithName (nnaammee);
BufferList.new().getSelectedBuffer (); //returns the buffer that was
selected in the GUI

BufferList.new ().removeBufferAt (nnaammee, bbuuffffeerr);

ContinuousBuffer

One of the first strategies to achieve an expressive dialogue with other musicians, and

their sonic material, on significant moments of their performance consisted in the creation of

a recorder from which, at any moment, we can extract samples of a passed event. This

represents a perceptual shift on the act of sampling from an action that attempts to capture

upcoming events towards an action that retrieves significant passed events that can be

immediately used.

ContinuousBuffer records audio on two phased buffers and enables us to retrieve

segments from them. These samples could be immediately used as material for algorithmic

procedures.

~contBuf=ContinuousBuffer.new ();
~contBuf.setCurrentInput (0);
~contBuf.startSnapshotBuffer (20, true);//will store the last 20 seconds of

audio

b=~contBuf.getSnapshot (2); //returns a Buffer with the last 2 seconds

recorded
b.plot;
~bufUtils=BufferUtils.playBuffer (b);

BufferUtils

This class contains higher-level methods to operate with sound files.

BufferUtils.writeToFile (bbuuffffeerr, ffiilleeNNaammee);
BufferUtils.playBuffer (oouutt,, bbuuffffeerr,, rraattee:: 11,, lloooopp:: 00,, sseerrvveerr);
BufferUtils.toMono (bbuuffffeerr);

121

GrainEnv

This class contains a series of grain functions that have been used for granular

synthesis and waveshaping.

Fig. 26 Implemented grain envelope functions: Expodec, rexpodec, expon, welch, hanning, gaussian,

blackman, sinc8, sinc16, sinc23, rect, pulse

122

5.7 Summary

The Thr44 framework was developed in order to design and experiment on approaches

that can contribute to the improvement of the relations between the composer and his work,

in the context of interactive music practice.

This work was developed under the assumption that one could develop a more

subjective and dynamic context for music creation by engaging in a computational practice

and by relating interactive programming approaches, such as live-coding, with the

beforehand development of a set of objects and behaviours that could be articulated in during

a performance. Strategies and paradigms, like for instance prototype-based programming,

would allow us to create such entities as modular components to be used and modified on-

the-fly, facilitating not only the prototyping of ideas but also improving the scope of

compositional decisions that could be made in a performance.

We have established a set of criteria that guided the development of this work,

identified as versatility (the easiness for the description of ideas), transparency (related to the

perception and cognition of the system), flexibility (the system’s susceptibility of change and

adaptation) and expressiveness (the ability to convey intentions or emotions; to

communicate).

Regarding versatility, we have to recognise that such criteria is more related to the

choice of the musical environment that is to be used rather than to the actual development of

the framework itself. The choice of SuperCollider deeply facilitated the implementation of

this work, however, as we progressed with its development and use, we found limitations in

its IDE (integrated development environment), such as its limited abilities for code hinting

and completion. Also, SuperCollider’s library is class-based, raising difficulties in the

organisation of the system’s data structures in the context of real-time, interactive music

(cf. Ch. 4). As a consequence, a particular issue that relates to the implementation of Odef lies

in the fact that we have created a language interpreter that still requires further testing and

development in order to become a stable entity. These issues still affect the versatility of our

work, opening possibilities for future work.

123

Considering the requirement of transparency, we have just begun to understand the

advantages of interactive programming and to draw the significant aspects that it can

contribute to interactive music practices. As an example, the use of reflexive mechanisms

(the ability to ask the system for the identification of its variables and functions) enables one

to access and perceive every process running in the system improving the discourse that can

be established with the computer. Such approach has been frequently used in this work, in

particular within the implementation of the Odef. We are not only able to inspect the existing

Odef instances for their statuses, available parameters or source code, but also locate and

identify them at any moment (by calling the all method one can get an index of every

available Odef).

The efforts towards flexibility can be evidenced by the articulation that has been

established between the Odef and the Networks’ and Particles’ structures. At one end, the

Odef enables the description, modification and execution of processes in real-time, enclosing

it in an ever-accessible placeholder. On the other end, the Networks’ and Particles’ classes

allow the creation of complex generative processes that are not adequate to implement in the

context of a performance, but can easily be accessed, modelled and mapped to the dynamic

sonic entities enclosured in Odef instances to control their behaviour. In this chapter we have

provided some examples that illustrate this approach, such as the work developed with

PetriNets.

Attempting to improve on the expressive potential of this work, we have developed

the SCPad! as an extension of the Odef. Instead of mapping sonic processes to graphic user

interfaces (GUI), a task that is usually carried out manually, the SCPad! dynamically creates

and modifies its GUIs by constantly listening to the instances of Odef that one has

instantiated. A similar approach could be carried out to improve gesture in direct relation

with live-coding. In the same sense, other intelligent systems can be developed to assist other

aspects of compositional practice in performance.

Concerning the limitations of this work, the implemented objects pertain to a personal

aesthetic that others may find too narrowing for their own practice. However, all the materials

that have been developed are open source and can be accessed on Github, a platform that

favours collaborative software development, which facilitates our work’s appropriation and

further development.

124

Addressing the technologies that we have used, SuperCollider continues to be our

choice of language for real-time implementation, however we long for a language that fully

implements the prototype-based paradigm and for an IDE that can provide better coding

support, namely code-completion and hinting. Also, an interesting improvement would

consist of finding the means to write 'white-box' unit generators, controlling sounds at the

level of the sample at run-time, without resourcing from an outside language135. As for the

development of SCPad! we would favour the use of Objective-C, which would not only

facilitate the application’s maintenance, but also take full advantage of iOS SDK.

We have designed a computational framework for music practice that certainly

presents an interaction logic of its own. Our compositional strategy develops on a heuristic

search for interesting code snippets for sound and behaviour that cumulate through a

continuous discourse with the computer. From language we create sonic entities that are set

in a particular ecosystem, subjected to our own physical laws; we create interfaces that enable

us to interact with these entities through actions that range from overall tendency values to

each sonic element’s detailed description.

Recalling Truax’s levels136 at which the composer can operate with interactive music

systems, this work enabled a vast scope of action that we’ll certainly carry on pursuing.

Although we consider this framework to be a personal creative work, our aim is that it can

contribute to the discussion of computer-based interactive music practices. The learning

experience that involved the creation of Thr44 is beyond the discussed implementation

details and therefore its source code has been made publicly available137.

135 Such as the C programming language used for the UGen implementation in SuperCollider.
136 Cf. footnote 108, page 84.
137 https://github.com/Thr44/

125

CONCLUSION

I dream of instruments obedient to my thought and which with their

contribution of a whole new world of unsuspected sounds, will lend

themselves to the exigencies of my inner rhythm.

(Varèse, 1917, qtd. in Holmes, 2008:3)

This work proposed an investigation on computer-based music creation, in particular

within the context of interactive music. Our goal was practice oriented, directed towards the

establishment of a methodological framework that could facilitate our compositional activity.

As computers become more pervasive, a diversity of tools proliferate, making sonic

creation seem easier than ever. At present, very little knowledge of sound theory is required

to create a satisfying aural experience. However, if one is attempting to extend one’s creative

capacity and access differentiated experiences with interactive music, these tools reinforce

prescribed models and solutions by making their inner processes opaque and inaccessible.

Rather than a producer, one feels like a consumer of an interactive work.

In this perspective, this work evolved as a contribute to the research on computer-

based interactive music by attempting to identify and experiment on new methodologies that

could improve compositional practice to be a more subjective, dynamic and transparent

process.

Our objectives were pursued by following an action-based methodology, and

therefore, this work was driven by the creation of musical projects by means of developing

and using an interactive music system. Such direction implies a questioning of the models,

techniques and concepts that are fundamental within this context in order to identify trends

that can contribute to the improvement of computer-based interactive music practice.

126

Acknowledging that computer music inherits conceptualizations that emerged long

before the advent of mechanical computers, we began by surveying the relationship between

music, science and technology.

A particular aspect concerns the formalization of processes, often regarded as some

technical matters exclusive to the domain of computer science. We have identified a diversity

of approaches that employed combinatorics and chance procedures aiming to facilitate the

generation of sonic material. Also, the intention of delegating compositional ideas to

mechanical devices was already present in the middle ages, naturally progressing towards the

creation of music-machines and the conceptualization of automata for composition. The

influence of science is particularly evident since the turn of the 20th Century as composers

have become more aware of surrounding phenomena and attempted to materialize them into

musical works. The romantic view of the composer as a genious creating masterpieces,

addressing values of harmony, equilibrium and stability, is abandoned in favor of scientific

logics, as pursued by Schenberg, Schillinger or Messiaen. This perspective is also present in

the formal approaches to composition that were carried out by Iannis Xenakis, who employed

stochastics for the control of complex masses of sound particles, or by John Cage, whose

efforts were directed towards the awareness of everyday sounds as an enriching manifestation

of life.

Another aspect that contributed to the redefinition of compositional practice is

reflected in the exploration of technological means to register and reproduce sounds. Whereas

previously constrained to the manipulation of symbols that mediated sonic events that would

later manifest in a performance, this new direction opened the possibility to operate directly

on sonic material, enabling the autonomy of compositional practice and the expansion of the

long established set of orchestral sounds to a new repertoire of timbres.

Such technological changes enforced a reconceptualization of the nature of musical

materials. The attributes of the note, such as tone, duration and amplitude, and the

organization strategies that were characteristic in a tradicional musical score lost their

primacy in favor of the complexities of timbre. In fact, the incompatibility between form

(composing with sound) and material (composing the sound) prevailed in subsequent years,

particularly with Pierre Schaeffer’s notion of Sound Object in opposition to Elektronische

Musik.

127

 Turning towards the computational medium, we regarded how these machines

contributed to a reaffirmation of formal approaches that had previously been carried out. The

exploration of computers as symbolic operators not only represented an economy of means,

freeing the composer from laborious work, but also empowered their scope of action,

enabling the development of complex formulations such as the implementation of Markov

chains or Stochastics.

Exploring the possibilities for computers to generate sound, we have identified distinct

formulations such as the mathematical approach to sound as a function of pressure variation

(Mathews et al., 1969), sound as concatenation of grains (Gabor, 1947) or psychoacoustic

approaches (Risset, 2003; Smalley, 1997) that contributed to a deeper understanding of

sound.

The use of computers enabled a unique situation, that from the abstraction of

programming languages one can generate concrete sound, allowing the confluence of the

description and the actual sound in the same entity, partially eliminating the separation

between form and material. From algorithmic composition to sound design, we regarded how

the incorporation of computers in musical practice enabled the development of computational

tools capable of generating complete works.

Directed towards the topic of interaction, we regarded how the exploration of the

negative feedback loops proposed by cybernetics (Wiener, 1948) represented a paradigmatic

shift to the means by which music is conceived. The recognition of an interactive design

cycle in composition, rather than a singular one-way determination, opens way to a diversity

of approaches to interaction. As computers found their way onto the stage, a diversity of

approaches emerged. In this perspective, we have regarded a diversity of proposals in which

the computational medium takes the form of an artificial performer, an intelligent instrument

or an autonomous ecosystem. We draw attention to the pioneering experiments that were

carried out in the early 1970s by the League of Automatic Music Composers as they were

fundamental in the exploration of communicational aspects between computers and human

performers, and to the ecosystemic approaches to interaction that were realised by Agostino

Di Scipio that reinforced the need to explore a deeper relationship with the audience and the

environment.

128

In search of more adequate models for music practice and further exploring the

possibilities for interaction with the computational medium, we have looked into recent

trends in programming languages. Paradigms such as just-in-time programming open up the

possibility to change a program while it runs whereas prototype-based programming brings

forth the idea of computation as an extension of our mind, as the reflection of our own

reasoning process. Allied to this perspective, the materials that are used in our work are

language itself, an abstraction from which one describes concepts that materialize into music.

Driving this research, we have engaged in the creation of a musical work, from which

the Thr44 framework was devised. This work has enabled us to provide a deeper

understanding of computational media and its use for interactive music practice. We have

identified a field of possibilities within interactive programming and the principles of object-

oriented composition that allowed the design and implementation of a computational system

that was created and experimented while creating a musical project.

129

The title of this study – Composing Interactive Music Systems – attempts to reflect a

perspective in which the development of a system for music practice is in itself a

compositional act, not only emphasizing the relevance of the computational media in this

activity, but also questioning the notion of composition itself.

In this perspective, the role of the composer blends with the performer, the developed

work can rather be understood as an activity. Interaction emerges as a by-product of

procedurality; the composer does not compose the music, but rather the interactions and

interdependencies that manifest themselves as sound – an heuristic model where

compositional decisions are made through an iterative cycle of implementing and testing

musical ideas. In this perspective, the composer creates the possibility for action that can be

enacted in a continuum between composing and performing.

This point of view places programming languages at the core of our activity. By

describing procedures to be carried out by the machine to execute, code extends towards

algorithmic composition, signal processing or interaction design. In this sense, computer

music encompasses a vast trans-disciplinary scope of activities into a single one.

We are not regarding the computer as a means to an end, nor as a mere productive tool

that provides a wide variety of applications and devices to ease musical creation, and

consequently assuming the affordances and constraints it prescribes. Instead, we reiterate the

idea that one can relate to the computer by considering it as a medium for creative

exploration (cf. Ch.4.2), as an extension of our mind, enabling their integration into our own

sensory system.

All these things head in the same direction, towards a despecification of the

instruments, materials and apparatuses specific to different arts, a convergence on a

same idea and practice of art as a way of occupying place where relations between

bodies, images spaces and times are redistributed.

 (Jacques Rancière qtd. in Stockburger, 2012)

130

With the presented work, we hope to have contributed to the discussion on interactive

music, in particular to the relationships that are established with the computer in order to

improve the discourse that can be established with other musicians, the audience and the

environment. We not only attempted to provide a theoretical ground for such practices, but

also advanced an implementation of a computational system – the Thr44 framework - that

proposes some alternatives to the dominating practices.

Deriving from the limitiations of the Thr44 framework, the implemented work can still

undertake a diversity of improvements, although we consider that, according to the set

objectives, we achieved satisfying results. As such, it is our intention to continue researching

on the development of musical environments for interactive music practices.

We limited this study to sonic phenomena in a performative context, and have not

explored other contexts related to sound art, namely physical computing or visualisation.

Although we recognize the potential of audio-visuality in interactive practices, and have

collaborated with visual performers in our performances, it is a direction we intend to address

in future research.

Finally, we were essentially concerned with the development of strategies to facilitate

our compositional practice, and therefore the musical outputs were relatively limited. Having

found an adequate methodology for our practice we can now focus on extending that work by

increasing our performative activity.

Art, and above all, music has a fundamental function, which is to catalyze the

sublimation that it can bring about through all means of expression. It must aim

through fixations which are landmarks to draw towards a total exaltation in which the

individual mingles, losing his consciousness in a truth immediate, rare, enormous, and

perfect. If a work of art succeeds in this undertaking even for a single moment, it

attains its goal.

(Xenakis, 1992)

131

BIBLIOGRAPHY

Ariza, Christopher. (2005). An Open Design for Computer-Aided Algorithmic Music
Composition: athenaCL. (PhD), New York University.

Ariza, Christopher. (2011). Two Pioneering Projects from the Early History of Computer-
Aided Algorithmic Composition. Computer Music Journal, 35, pp. 40-56.

Arsenault, Linda. (2002). Iannis Xenakis's Achorripsis: The Matrix Game. Computer Music
Journal, 26(1).

Aycock, John. (2003). A brief history of just-in-time. ACM Computing Surveys, 35(2).

Battier, Marc. (2007). What the GRM brought to music: from musique concrète to
acousmatic music. Organised Sound, 12(3).

Berry, David. (2011). The Philosophy of Software: Code and Mediation in the Digital Age.
Basingstoke: Palgrave Macmillan.

Blum, Stephen. (2001). Composition. The New Grove Dictionary of Music and Musicians:
Oxford University Press.

Bolter, David Jay, & Grusin, Richard. (2000). Remediation, Understanding New Media.
Cambridge, Massachusetts: The MIT Press.

Booch, Grady. (1998). Object Oriented Analysis and Design with Application (2nd ed.).
Santa Clara, California: Addison-Wesley.

Boulez, Pierre. (1987). Timbre and Composition. Contemporary Music Review, 2.

Boulez, Pierre, Noakes, David, & Jacobs, Paul. (1964). Alea. Perspectives of new music, 3,
pp. 42-53.

Brooks, Frederick P. (1987). No Silver Bullet: Essence and Accidents of Software
Engineering. IEEE computer, pp. 1-14.

Brown, Andrew R. (2004). An aesthetic comparison of rule-based and genetic algorithms for
generating melodies. Organised Sound, 9, pp. 191-197.

132

Brown, Chris, & Bischof, John. (2005). Computer Network Music Bands: a history of the
League of Automatic Music Composers and The Hub. In A. Chandler & N. Neumar
(Eds.), At a Distance: Precursors to Art and Activism on the Internet. Cambridge,
Massachusetts: The MIT Press.

Budón, Osvaldo. (2000). Composing with Objects, Networks, and Time Scales: An Interview
with Horacio Vaggione. Computer Music Journal, 24(3), pp. 9 - 22.

Busoni, Ferruccio. (1911). Sketch of a new esthetic of music.

Buxton, William. (1977). A Composer's Introduction to Computer Music. Interface, 6.

Buxton, William, Reeves, William, Baecker, Ronald, & Mezei, Leslie. (1978). The Use of
Hierarchy and Instance in a Data Structure for Computer Music. Computer Music
Journal, 2, pp. 10-20.

Cage, John. (1968). Silence: Lectures and Writings by John Cage: Wesleyan University
Press.

Caires, Carlos. (2006). Algorithmes de composition: Exemples d’outils informatiques de
génération et manipulation du matériau musical. Universite Paris VIII Paris.

Cardoso, Miguel. (2013). Mediation with Computers in Music Practice. In M. Carvalhais &
P. Tudela (Eds.), Mono #2 Cochlear Poetics: Writings on Music and Sound Arts.
Porto: i2ADS / FBAUP, pp. 121-135.

Carvalhais, Miguel. (2010). Towards a Model for Artificial Aesthetics: Contributions to the
Study of Creative Practices in Procedural and Computational Systems. (PhD),
Faculdade de Belas Artes da Universidade do Porto.

Cascone, Kim. (2000). The Aesthetics of Failure: 'Post-digital' Tendencies in Computer
Music. Computer Music Journal, 24(4), pp. 12-18.

Casserley, Lawrence. (1998). A digital signal processing instrument for improvised music.
Journal of Electroacoustic Music, 11, pp. 1-10.

Chadabe, Joel. (1984). Interactive Composing: An Overview. Computer Music Journal, 8(1).

Chadabe, Joel. (1997). Electric Sound: The Past and Promise of Electronic Music. New
Jersey: Prentice-Hall.

Chadabe, Joel. (2001). A Statement...
Retrieved 27/07/2013, from http://www.chadabe.com/statement.html

Chadabe, Joel. (2009). The performer is us. Contemporary Music Review, pp. 37-41.

Chayka, Kyle. (2012). The New Aesthetic: Going Native. Retrieved 10-09-2013, from
http://thecreatorsproject.vice.com/blog/in-response-to-bruce-sterlings-essay-on-the-
new-aesthetic

Chion, Michel. (1983). Guide des Objets Sonores: Pierre Schaeffer et la recherche musicale.
Paris: Éditions Buchet/Chastel.

133

Coghlan, David, & Brannick, Teresa. (2010). Doing Action Research in Your Own
Organization. London: Sage Publications, Ltd.

Collins, Nick. (2006). Towards Autonomous Agents for Live Computer Music: Realtime
Machine Listening and Interactive Music Systems. (PhD), University of Cambridge.

Collins, Nick. (2011). Live Coding of Consequence. Leonardo, 44(3).

Cox, Geoff, & Ward, Adrian. (2008). Perl. In M. Fuller (Ed.), Software Studies. Cambridge,
Massachusetts: The MIT Press.

Cramer, Florian. (2005). Words made Flesh: Code, Culture, Imagination. (PhD), Piet Zwart
Institute Rotterdam, Netherlands.

Dannenberg, Roger. (1993). A Brief Survey of Music Representation Issues, Techniques, and
Systems. Computer Music Journal, 17(3), pp. 20-30.

Davis, Tom. (2010). Complexity as Process: Complexity-inspired approaches to composition.
Organised Sound, 15, pp. 137-146.

de Campo, Alberto. (2011). Microsound. In S. Wilson, D. Cottle & N. Collins (Eds.), The
SuperCollider Book. Cambridge, Massachusetts: The MIT Press, pp. 463-504.

Dean, Roger. (2009). Envisaging Improvisation in Future Computer Music. In R. Dean (Ed.),
The Oxford Handbook of Computer Music. New York: Oxford University Press, pp.
133-147.

Di Scipio, Agostino. (1994). Formal Processes of Timbre Composition Challenging the
Dualistic Paradigm of Computer Music. Paper presented at the ICMC Inte'l Computer
Music Conference, Helsinki.

Di Scipio, Agostino. (1998). Compositional Models in Xenakis's Electroacoustic Music.
Perspectives of New Music, 36(2), pp. 201-243.

Di Scipio, Agostino. (2001). Iterated Nonlinear Functions as a Sound-Generating Engine.
Leonardo, 34(3), pp. 249-254.

Di Scipio, Agostino. (2002). Systems of Embers, Dust and Clouds: Observations after
Xenakis and Brün. Computer Music Journal, 26, pp. 22-32.

Di Scipio, Agostino. (2003). ‘Sound is the interface’: from interactive to ecosystemic signal
processing. Organised Sound, 8, pp. 269-277.

Di Scipio, Agostino. (2010). The Synthesis of Environmental Sound Textures by Iterated
Nonlinear Functions, and its Ecological Relevance to Perceptual Modeling. Journal of
New Music Research, pp. 37-41.

Dias, António Sousa. (2005). L'Object Sonore: Situation, Évaluation et Potentialités. (PhD),
Université Paris 8

Döbereiner, Luc. (2010). Model and Material, Composing sound and the Construction of
Compositional Models. (Master's), Institute of Sonology, The Hague.

134

Doornbusch, Paul. (2004). Computer Sound Synthesis in 1951: The Music of CSIRAC.
Computer Music Journal, 28(1).

Drummond, Jon. (2009). Understanding Interactive Systems. Organised Sound, 14.

Dunn, David (Ed.). (1992). Pioneers of Electronic Art. Linz: Ars Electronica.

Eco, Umberto. (1989). The Open Work: Harvard University Press.

Edmonds, Ernest. (2009). On New Constructs in Art: Structure, Time, Correspondences and
Interaction. Paper presented at the Electronic Visualisation and the Arts, London.

Eigenfeldt, Arne. (2007). Real-time Composition or Computer Improvisation? A composer's
search for intelligent tools in interactive computer music. Proceedings of the
Electronic Music Studies.

Essl, Karlheinz. (2007). Algorithmic Composition. In N. Collins & J. d'Escriván (Eds.),
Cambridge Companion to Electronic Music. Cambridge, New York: Cambridge
University Press.

Feenberg, Andrew. (1991). Critical Theory of Technology. New York: Oxford University
Press.

Fishwick, Paul A (Ed.). (2006). Aesthetic Computing. Cambridge, Massachusetts: The MIT
Press.

Flusser, Vilém. (2011). Does Writting Have a Future? Minneapolis: University of Minnesota
Press.

Friedman, Alan, & Donley, Carol. (1985). Einstein as Myth and Muse: Cambridge University
Press.

Gabor, D. (1947). Theory of Communication. The Journal of the Institution Of Electrical
Engineers, 93, pp. 429-457.

Galanter, Philip. (2003). What is Generative Art ? Complexity Theory as a Context for Art
Theory. 6th Generative Art Conference.

Goldin, Dina, & Wegner, Peter. (2007). The Interactive Nature of Computing: Refuting the
Strong Church-Turing Thesis. Minds and Machines, 18, pp. 1-26.

Goldin, Dina, Wegner, Peter, & Smolka, Scott. (2006). Interactive Computation: The New
Paradigm. Berlin: Springer-Verlag.

Green, Owen. (2006). More than 'Just a Hammer': Critical Techniques in Electroacoustic
Practice. SoundAsArt. Aberdeen.

Guerreiro, Ricardo. (2015). Redes Mediadas por Computador na Composição e Performação
de Situações Musicais Interactivas. (PhD), Universidade Católica do Porto.

Hamman, Michael. (2002). From technical to technological: The imperative of technology in
experimental music composition. Perspectives of New Music, 40(1).

135

Harkins, James. (2011). High-Level Structures for Live Performance: dewdrop_lib and
chucklib. In S. Wilson, D. Cottle & N. Collins (Eds.), The SuperCollider Book.
Cambridge, Massachusetts: The MIT Press.

Harley, James. (2004). Xenakis: His Life in Music: Routledge Press.

Harley, James. (2009). Computational Approaches to Composition of Notated Instrumental
Music: Xenakis and the Other Pioneers. In R. Dean (Ed.), The Oxford Handbook of
Computer Music. New York: Oxford University Press, pp. 109-147.

Hayles, Katherine. (2005). My Mother was a Computer: Digital Subjects and Literary Texts:
University of Chicago Press.

Hayles, Katherine. (2008). How we became posthuman: virtual bodies in cybernetics,
literature, and informatics. Chicago: The University of Chicago Press.

Heylighen, Francis, & Joslyn, Cliff. (2001). Cybernetics and Second-Order Cybernetics. In
R. Meyers (Ed.), Encyclopedia of Physical Science & Technology (3rd ed.). New
York: Academic Press.

Hoffmann, Peter. (2010). Towards an "Automated Art '': Algorithmic Processes in Xenakis'
Compositions. Contemporary Music Review, pp. 37-41.

Hofstadter, Douglas. (1979). Gödel, Escher, Bach: An Eternal Golden Braid. New York:
Basic Books.

Hofstadter, Douglas. (1995). Fluid Concepts & Creative Analogies: Computer Models of the
Fundamental Mechanisms of Thought. New York: Basic Books.

Holmes, Thom. (2008). Electronic and Experimental Music: Technology, Music, and Culture
(3rd ed.): Routledge.

Holtzman, Steve. (1979). An Automated Digital Sound Synthesis Instrument. Computer
Music Journal, 3(2), pp. 53-61.

Howe, Hubert. (2009). My Experiences with Max Mathews in the Early Days of Computer
Music. Computer Music Journal, 33(3), pp. 41–44.

Hugill, Andrew. (2007). The origins of electronic music. In N. Collins & J. d'Escriván (Eds.),
Cambridge Companion to Electronic Music. Cambridge, New York: Cambridge
University Press.

Impett, Jonathan. (1994). A Meta-trumpet(er). ICMC Proceedings.

Impett, Jonathan. (2001). Interaction, simulation and invention: a model for interactive
music. Proceedings of the workshop on artificial life models for musical applications.
Cosenza.

James, Richard Schmidt. (1981). Expansion of sound resources in France, 1913-1940, and its
relationship to electronic music. University of Michigan.

136

Jordá, Sergi. (2005). Digital Lutherie, Crafting musical computers for new musics’
performance and improvisation. (PhD), Universitat Pompeu Fabra, Barcelona.

Kay, Alan. (1993). The Early History of Smalltalk. ACM SIGPLAN Notices, 28(3).

Kernighan, Brian, & Ritchie, Dennis. (1988). The C Programming Language (2nd ed.):
Prentice Hall, Inc.

Kersten, Stefan, Baalman, Marije, & Bovermann, Till. (2011). Ins and Outs: SuperCollider
and External Devices. In S. Wilson, D. Cottle & N. Collins (Eds.), The SuperCollider
Book. Cambridge, Massachusetts: The MIT Press.

Kittler, Friedrich. (1995). There is No Software.
Retrieved 10-09-2013, from http://www.ctheory.net/articles.aspx?id=74

Koenig, Gottfried Michael. (1975). My Experiences with Programmed Music.
Retrieved 10-09-2013, from http://www.koenigproject.nl

Koenig, Gottfried Michael. (1991). Working With " Project 1 ". My Experiences with
Computer Composition. Journal of New Music Research, pp. 1-4.

Leiserson, Charles, Rivest, Ronald, Stein, Clifford, & Cormen, Thomas. (2009). Introduction
to Algorithms (3rd ed.). Cambridge, Massachusetts: The MIT Press.

Lewis, George. (2000). Too Many Notes: Computers, Complexity and Culture in Voyager.
Leonardo Music Journal, 10.

Lieberman, Henry. (1982). Machine Tongues IX: Object-Oriented Programming. Computer
Music Journal, 6(3).

Loy, Gareth. (1989). Composing with Computers – A Survey of Some Compositional
Formalisms and Music Programming Languages. In M. Mathews & J. Pierce (Eds.),
Current Directions in Computer Music Research. Cambridge, Massachusetts: The
MIT Press.

Loy, Gareth, & Abbott, Curtis. (1985). Programming languages for computer music
synthesis, performance, and composition. ACM Computing Surveys, 17, pp. 235-265.

Magnusson, Thor. (2009). Of Epistemic Tools: musical instruments as cognitive extensions.
Organised Sound, 14.

Manning, Peter. (2003). The influence of recording technologies on the early development of
electroacoustic music. Leonardo Music Journal, 13.

Manning, Peter. (2009). Sound Synthesis using Computers. In R. Dean (Ed.), The Oxford
Handbook of Computer Music. New York, pp. 85-105.

Manousakis, Stelios. (2009). Non-Standard Sound Synthesis with L-Systems. Leonardo, 19.

Marino, Mark C. (2006). Critical Code Studies. Retrieved 10-09-2013,
from http://www.electronicbookreview.com/thread/electropoetics/codology

137

Mathews, Max. (1963). The Digital Composer as a Musical Instrument. Science, 142(11).

Mathews, Max, Miller, Joan, Moore, Roger, Pierce, John, & Risset, Jean Claude. (1969). The
Technology of Computer Nusic. Cambridge, Massachusetts: The MIT Press.

Mathews, Max, & Moore, Roger. (1970). GROOVE A Program to Compose, Store, and Edit
Functions of Time. Communications of the ACM, 13(12), pp. 715-721.

Mathews, Max, & Pierce, John (Eds.). (1989). Current Directions in Computer Music
Research. Cambridge, Massachusetts: The MIT Press.

Maturana, Humberto, & Varela, Francisco. (1980). Autopoiesis and Cognition: The
Realization of the Living. Dordrecht, Holland: Reidel Publishing.

McCartney, James. (1996). SuperCollider: a new real time synthesis language. Proceedings
of the 1996 International Computer Music Conference: International Computer Music
Association.

McCartney, James. (2002). Rethinking the computer music language: Supercollider.
Computer Music Journal, 26(4), pp. 61-68.

McLean, Alex. (2004). Hacking Perl in Nightclubs. Retrieved 10-09-2013,
from http://www.perl.com/pub/2004/08/31/livecode.html

McLean, Alex. (2011). Artist-Programmers and Programming Languages for the Arts.
(PhD), University of London.

Mcwilliams, Chandler B. (2009). The Other Software. Paper presented at the Digital Arts and
Culture Conference, California.

Minsky, Marvin. (1988). Society of Mind. New York: Simon & Schuster, Inc.

Miranda, Eduardo. (2002). Composing Music with Computers: Focal Press.

Montfort, Nick. (2008). Obfuscated Code. In M. Fuller (Ed.), Software Studies. Cambridge,
Massachusetts: The MIT Press.

Mumma, Gordon. (1967). Creative Aspects of Live-Performance Electronic Music
Technology. pp. 12-13.

Paine, Garth. (2009). Gesture and Morphology in Laptop Music Performance. In R. Dean
(Ed.), The Oxford Handbook of Computer Music. New York: Oxford University
Press, pp. 214-232.

Palisca, Claude. (2001). Guido of Arezzo [Aretinus]. The New Grove Dictionary of Music
and Musicians: Oxford University Press.

Panken, Ted, & Lewis, George. (2009). In Conversation with George Lewis.
Retrieved 27-07-2013, from http://www.jazz.com/features-and-
interviews/2009/12/11/in-conversation-with-george-lewis

138

Penny, Simon (Ed.). (2005). Critical Issues in Electronic Media. New York: State University
of New York Press.

Perkins, Tim. (2002). Complexity and Emergence in the American Experimental Music
Tradition. Santa Fe Institute.

Perkins, Tim. (2009). Some Notes on my Electronic Improvisation Practice. In R. Dean (Ed.),
The Oxford Handbook of Computer Music. New York: Oxford University Press, pp.
161-165.

Petri, Carl, & Reisig, Wolfgang. (2008). Petri net. Scholarpedia. 3, Retrieved 10-09-2013,
from http://www.scholarpedia.org/article/Petri_net

Pope, Stephen. (1993). Machine Tongues XV: Three Packages for Software Sound Synthesis.
Computer Music Journal, 17(2).

Pressing, Jeff. (1987). Improvisation: Methods and Models. In J. Sloboda (Ed.), Generative
processes in Music: Oxford University Press.

Puckette, Miller. (1988). "The Patcher". Paper presented at the International Computer Music
Conference, San Francisco.

Puckette, Miller. (2002). Max at Seventeen. Computer Music Journal, 26, pp. 31-43.

Ribas, Luísa. (2011). The Nature of Sound-image Relations in Digital Interactive Systems.
(PhD), Faculdade de Belas Artes do Porto.

Risset, Jean Claude. (2003). The Perception of Musical Sound. Computer music: Why,
pp. 1-12.

Risset, Jean-Claude. (1976). Computer Music, Why?

Risset, Jean-Claude. (2005). Horacio Vaggione: Toward a Syntax of Sound. Contemporary
Music Review, 24(4/5).

Risset, Jean–Claude. (1985). Digital techniques and sound structure in music.
In C. Roads (Ed.), Composers and the Computer. Madison: A-R Editions.

Roads, Curtis. (1999). The Computer Music Tutorial. Cambridge, Massachusetts: The MIT
Press.

Roads, Curtis. (2004). Microsound. Cambridge, Massachusetts: The MIT Press.

Roads, Curtis. (2005). The Art of Articulation: The Electroacoustic Music of Horacio
Vaggione. Contemporary Music Review, 24(4/5).

Roads, Curtis, & Mathews, Max. (1980). Interview with Max Mathews. Computer Music
Journal, 4(4), pp. 15-22.

Robinson, Julia (Ed.). (2009). The Anarchy of Silence. John Cage and Experimental Art.
Barcelona: Museu d'Art Contemporani de Barcelona.

139

Robinson, Julia, Bois, Yve-Alain, Kotz, Liz, & Joseph, Branden. (2009). The Anarchy of
Silence. John Cage and Experimental Art. Barcelona: Museu d'Art Contemporani de
Barcelona.

Rohrhuber, Julian, & Campo, Alberto de. (2009). Improvising Formalisation - Conversational
Programming and Live Coding. In G. Assayag & A. Gerzso (Eds.), New
Computational Paradigms for Computer Music: Delatour France / Ircam-Centre
Pompidou.

Rohrhuber, Julian, & Campo, Alberto de. (2011). Just-in-Time Programming. In S. Wilson,
D. Cottle & N. Collins (Eds.), The SuperCollider Book. Cambridge, Massachusetts:
The MIT Press.

Rohrhuber, Julian, Collins, Nick, McLean, Alex, & Ward, Adrian. (2003). Live coding in
laptop performance. Organised Sound, 8(3), pp. 321-330.

Rohrhuber, Julian, de Campo, Alberto , Wieser, Renate, van Kampen, Jan-Kees , Ho, Echo ,
& Hölzl, Hannes (2007). Purloined Letters and Distributed Persons. Paper presented
at the Music in the Global Village Conference, Budapest.

Rowe, Robert. (1993). Interactive Music Systems: Machine Listening and Composing.
Cambridge, Massachusetts: The MIT Press.

Rowe, Robert. (2001). Machine Musicianship. Cambridge, Massachusetts: The MIT Press.

Ryan, Joel. (n.d.). As If ByMagic. Retrieved 20-11-2011,
from http://jr.home.xs4all.nl/MusicInstDesign.htm

Schaeffer, Pierre. (1966). Traité des Objets Musicaux. Editions du Seuil. Paris. France.

Schafer, Raymond Murray. (1979). Le paysage sonore. Toute l’histoire de notre
environnement sonore a travers les âges.

Schnell, Norbert, & Battier, Marc. (2002). Introducing Composed Instruments , Technical
and Musicological Implications. Proceedings of the 2002 Conference on New
Instruments for Musical Expression (NIME-02). Dublin.

Schoenberg, Arnold. (1975). Style and Idea: Selected Writings of Arnold Schoenberg (L.
Stein Ed.): University of California Press.

Serafin, Stefania. (2007). Computer generation and manipulation of sounds. In N. Collins &
J. d'Escriván (Eds.), The Cambridge Companion to Electronic Music. Cambridge:
Cambridge University Press.

Shannon, Claude. (1948). A mathematical theory of communication.

Simon, Herbert. (1996). The Sciences of the Artificial (3rd ed.). Cambridge, Massachusetts:
The MIT Press.

Smalley, Denis. (1994). Defining timbre — Refining timbre. Contemporary Music Review,
10(2), pp. 35-48.

140

Smalley, Denis. (1997). Spectromorphology: explaining sound-shapes. Organised Sound, 2,
pp. 107-126.

Smith, Julius O. (1991). Viewpoints on the History of Digital Synthesis. Paper presented at
the International Computer Music Conference, Montreal.

Smith, Wesley, & Wakefield, Graham. (2009a). Augmenting Computer Music With Just-in-
Time Compilation. Computer.

Smith, Wesley, & Wakefield, Graham. (2009b). Computational Composition and Creativity.
Paper presented at the Media Arts Science and Technology Conference, Santa
Barbara.

Solomos, Makis. (2005). An Introduction to Horacio Vaggione's Musical and Theoretical
Thought. Contemporary Music Review, 24(4/5).

Solomos, Makis. (2006). The granular connection (Xenakis , Vaggione , Di Scipio …).

Solomos, Makis. (2007). Espaces Composables, Essais sur la Musique et la Pensée Musicale
d' Horacio Vaggione

Spiegel, Laurie. (1992). An Alternative to a Standard Taxonomy for Electronic and Computer
Instruments. Computer Music Journal, 16.

Stockburger, Axel. (2012). Post-Media Conditioning. Paper presented at the Emoção
Art.ficial 6.0 Symposion, São Paulo, Brasil.

Stroustrup, Bjarne. (2008). The C++ Programming Language (3rd ed.): Addison-Wesley.

Thoresen, Lasse. (2007). Spectromorphological analysis of sound objects: an adaptation of
Pierre Schaeffer's typomorphology. Organised Sound, 12(2), p. 129.

Truax, Barry. (1976). For Otto Laske: A Communicational Approach to Computer Sound
Programs. Journal of Music Theory, 20(2), pp. 227-300.

Turing, Alan. (1936). On Computable Numbers, with an Application to the Entscheidungs
Problem. Proceedings of the London mathematical society.

Turing, Alan. (1950). Computing Machinery and Intelligence. In N. Wardrip-Fruin & N.
Montfort (Eds.), The New Media Reader. Cambridge, Massachusetts: The MIT Press.

Turkle, Sherry, & Papert, Seymour. (1990). Epistemological Pluralism: Styles and Voices
within the Computer Culture. Signs: Journal of Women in Culture and Society, 16(1).

Vaggione, Horacio. (1991). A Note on Object-based Composition. Interface, 20.

Vaggione, Horacio. (2001). Some Ontological Remarks about Music Composition Processes.
Computer Music Journal, 25(1), pp. 54-61.

Vaggione, Horacio, & Soulez, Antonia. (2005). Composing, Listening. Contemporary Music
Review, 24(4/5).

141

Varela, Francisco. (1991). The Embodied Mind. Cambridge, Massachusetts: The MIT Press.

Varèse, Edgard, & Wen-chung, C. (1966). The Liberation of Sound. Perspectives of new
music, 5(1), pp. 11-19.

Veak, Tyler. (2000). Whose Technology? Whose Modernity? Questioning Feenberg's
Questioning Technology. Science, Technology & Human Values, 25(2), pp. 226-237.

Wang, Ge. (2008). The ChucK Audio Programming Language “ A Strongly-timed and On-
the-fly Environ / mentality ”. (PhD), University of Princeton.

Ward, Adrian, Rohrhuber, Julian, Olofsson, Frederik, & McLean, Alex. (2004). Live
algorithm programming and a temporary organisation for its promotion. Retrieved
27-07-2013, from http://www.toplap-org

Wardrip-fruin, Noah. (2006). Expressive Processing: On Process-Intensive Literature and
Digital Media. (PhD), Brown University.

Wessel, David. (2005). An Enactive Approach to Computer Music Performance. pp. 93-98.

Wiener, Norbert. (1948). Cybernetics; or control and communication in the animal and the
machine. Cambridge, Massachusetts: The MIT Press.

Winkler, Todd. (2001). Composing Interactive Music: Techniques and Ideas using Max.
Cambridge, Massachusetts: The MIT Press.

Winograd, Terry. (1979). Beyond programming languages. Communications of the ACM,
22(7), pp. 391-401.

Winograd, Terry, & Flores, Fernando. (1986). Understanding computers and cognition.
Norwood, Nova Jersey: Ablex Publishing Corporation.

Wishart, Trevor. (1996). On Sonic Art (S. Emmerson Ed.). Amsterdam, Netherlands:
Harwood Academic Publishers.

Wishart, Trevor. (2009). Computer Music: Some Reflections. In R. Dean (Ed.), The Oxford
Handbook of Computer Music. New York: Oxford University Press, pp. 151-160.

Wittgenstein, Ludwig. (1958). Philosophical Investigations (2nd ed.). Oxford: Basil
Blackwell Ltd.

Wright, Mathew. (2005). Open Sound Control: an enabling technology for musical
networking. Organised Sound, 10(3).

Xenakis, Iannis. (1992). Formalized Music, Thought and Mathematics in Composition:
Pendragon Press.

Zicarelli, David. (1987). M and Jam Factory. Computer Music Journal, 11(4).

Zielinski, Siegfried. (2006). Deep Time of the Media. Cambridge, Massachusetts: MIT Press.

142

143

CITED WORKS

Bach, Carl. (1758). Einfall einin doppelten Contrapunct in der Octave von sechs Tacten zu

machen ohne die Regeln davon zu wissen.

Bach, Johann S. (1742-1746). Art of the Fugue. BWV 1080.

Beethoven, Ludvig. (1806). String Quartet No.7, Op.59 nº1.

Behrman, David. (1978). On the Other Ocean. Lovely Music. LCD 1041

Boulez, Pierre. (1958). Third Sonata for Piano. Pierre Boulez and the Piano. Paris: Cybele

Records CYBELE 004

Brün, Herbert. (1976-1981). Sawdust.

Buxton, William. (1978). SSSP. Structured Sound Synthesis Project.

Cage, John. (1950-51). Music of Changes. Hat Hut Records ART 133

Cage, John. (1951). Imaginary Landscape nº4.

Cage, John. (1952). 4’33.

Cage, John. (1958-1967). Variations II.

Cage, John. (1958-1967). Variations IV. Los Angeles: Everest 3230

Cage, John. (1960). Cartridge Music.

Cage, John. (1969). HPSCHD.

144

Chadabe, Joel. (1978). Solo. From the Kitchen Archives. New York: Orange Mountain

Music OMM-0015.

Chadabe, Joel. (1987). M. Cycling’74. Accessed 12-10-2014, from

https://cycling74.com/products/m/

Gresham-Lancaster, Scot. (1987). Vague Notions of Lost Textures.

Guttman, Newman. (1957). The Silver Scale.

Hiller, Lejaren; Isaacson, Leonard. (1957). “Illiac Suite” Quartet nº 4 for strings.

Impett, Jonathan. (2001). Meta-Trumpet.

Ives, Charles. (1916). Symphony nº4.

Koenig, Gottfried. (1964). Project 1. Accessed 12-10-2014, from

http://www.koenigproject.nl/

Koenig, Gottfried.(1966-1967). Terminus II. Amsterdam: Haast Records BVHaast 9001/2.

Koenig, Gottfried. (1967-1969). Funktion Grau. Amsterdam: Haast Records BVHaast 9001/2.

Koenig, Gottfried. (1978). Sound Synthesis Program. Accessed 12-10-2014, from

http://www.koenigproject.nl/

Lewis, George. (1986-1995). Voyager.

Lucier, Alvin. (1969). I Am Sitting in a Room.

Magnusson, Thor; David Bausola and Enrike Hurtado. (2005-). IXI audio soſtware. Accessed

18-02-2015, from http://www.ixi-software.net/content/software.html

Mark Trayle. (1987). Simple Degradation. The Hub. Boundary Layer. New York: Tzadik TZ

8050-3.

Mathews, Max, & Moore, Roger. (1970). GROOVE.

145

McLean, Alex. (2004). Feedback.pl. Accessed 18-02-2015, from

http://www.perl.com/pub/2004/08/

31/livecode.html

McLean, Alex. (2004). Texture. Accessed 18-02-2015, from https://github.com/yaxu/

McLean, Alex. (2004). Tidal. Accessed 18-02-2015, from http://tidal.lurk.org/

Mozart, Wolfgang. (1787). Musikalisches Würfelspiel.

Mumma, George. (1967). Hornpipe. Live-Electronic Music. New York: Tzadik TZ 7074.

Perkins , Tim. (1991).Waxlips. The Hub. Boundary Layer. New York: Tzadik TZ 8050-3.

Pousseur, Henri. (1957). Scambi.

Puckette , Miller. (1988). Max. Cycling’74. Accessed 12-10-2014, from

https://cycling74.com/

Risset, Jean-Claude. (1969). Mutations. Paris: INA_GRM. INA 1003.

Risset, Jean-Claude. (1977). Inharmonique. Paris: INA_GRM. INA 1003.

Roads, Curtis. (2001-2003). Volt Air. Point Line Cloude. San Francisco: Asphodel.

ASP 3000.

Rowe, Robert. (1993) Cypher. Interactive Music Systems: Machine Listening and

Composing. Cambridge, Massachusetts: The MIT Press.

Scalleti, Carla. (1987). Kyma. Accessed 20-02-2015, from http://kyma.symbolicsound.com/

Schumann, Robert. (1829). Abegg Variations.

Spiegel, Laurie. (1986). Music Mouse. Accessed 20-02-2015, from

http://retiary.org/ls/programs.html

Stockhausen, Karlheinz. (1956). KlavierStück XI.

Stone, Phil. (1989). Borrowing and Stealing. The Hub. Boundary Layer. New York: Tzadik

TZ 8050-3.

146

Truax, Barry. (1972). POD. POisson Distribution.

Vaggione , Horacio. (2001). 24 Variations. Contemporary Music Review, 24(4/5).

Varèse, Edgard (1958). Poéme electronique. OHM+: The Early Gurus of Electronic Music:

1948-1980. Ellipsis Arts CD3690.

Weizenbaum, Joseph. (1966). Eliza.

Xenakis, Iannis. (1954). Pithoprakta. Paris: Le Chant Du Monde LDC 278368.

Xenakis, Iannis. (1955). Metastasis. Paris: Le Chant Du Monde LDC 278368.

Xenakis, Iannis. (1957). Achorripsis. Orchestral Works Vol. 5. Timpani 1C1113.

Xenakis, Iannis. (1957-1958). Diamorphoses. Electronic Music. EMF CD 003.

Xenakis, Iannis. (1958). Duel.

Xenakis, Iannis. (1958). ConcretPH. Electronic Music. EMF CD 003.

Xenakis, Iannis. (1960). Orient-Occident. Electronic Music. EMF CD 003.

Xenakis, Iannis. (1962). Bohor. Electronic Music. EMF CD 003.

Xenakis, Iannis. (1962). Stochastic Music Program.

Xenakis, Iannis. (1977-1994). UPIC. Unité Polyagogique Informatique du CEMAMu.

147

APPENDIX

148

Appendix 1: Research Results

Software

SCPad!, iOS Application available at http://itunes.apple.com/tr/app/scpad!/id521113570

Thr44 Framework, available at https://github.com/Thr44

Works

Variable Laptop Orchestra from CITAR (Cardoso, M. et al.), Zíngaro, C., (music) in

Festival Black & White, Universidade Católica Portuguesa - Escola das Artes, Porto, April

2009

Variable Laptop Orchestra from CITAR (Cardoso, M. et al.) (music) (De) Criando... à

sombra de Oliveira in Festival Black & White, Universidade Católica Portuguesa - Escola

das Artes, Porto, April 2009.

Variable Laptop Orchestra from CITAR (Cardoso, M. et al.), Orquestrutópica, (music

for) Luis Ferreira, J., "Limits, Capacities", Isto não é um Concerto, Centro Cultural de Belém,

Lisbon, January 2009.

Variable Laptop Orchestra from CITAR (Cardoso, M. et al.), Orquestrutópica, (music

for) Júlio Lopes, J., Ferreira Lopes, et al., Transfronteiras, Culturgest, Lisbon, September

2009.

Reinhold Friedl Ensemble (Cardoso, M. et al), Friedl, Reinhold (música) in Festival

Metasonic, Goëthe Instituit, Lisbon, April 2010.

2+n (Cardoso, M., Guerreiro, R.) (música), Gonçalves, A., (imagem) in Granular na

Arthobler - Arthobler, Ler Devagar, Lisbon, September 2010

Cardoso, M., Guerreiro, R., Lopes, P. (music for) Ruttmann W. Berlin, Die Sinfonie

der Großstad - Göethe Institut, Lisbon, September 2010

149

2+n (Cardoso, M., Guerreiro, R.) (música), Gomes, J., (imagem) in Ciclo Vinte e Sete

Sentidos, Granular – Culturgest, Lisbon, June 2011

2+n (Cardoso, M., Guerreiro, R.); Fernandes, H.; Costa, G. (música), in

MicroVolumes 2.2, Sonoscopia, Porto, December 2009

2+n (Cardoso, M., Guerreiro, R.) (música), in RadiaLx 2012, Festival de Arte Radio,

Flausina, Lisbon, June 2012

Activities

Cardoso, M., “Visualização Dinâmica de Informação”, Ciclo de Conferências: Design

de Informação, Faculdade de Belas Artes, Lisbon, May 2011

Cardoso, M., “Interaction and Complexity in Information Visualization”, Colóquio

Internacional: Image in Science and Art, Fundação Calouste Gulbenkian, Lisbon, February 2011

Cardoso, M., Guerreiro, R., Silva, A., “PetriNet.sc, a PetriNet based class for

SuperCollider”, SuperCollider Symposium 2012, Queen Mary University, London, April

2012

150

Appendix 2: Media Content

audio

/audio/Live at Back & White Festival, Porto 2009.mp3
Recording of performance by Variable Laptop Orchestra and Carlos Zíngaro at Festival Black &
White, Universidade Católica Portuguesa - Escola das Artes, Porto, 2009

/audio/MicroVolumes 2.2.wav
Recording of performance by Miguel Cardoso and Ricardo Guerreiro (2+n) with Gustavo Costa and
Henrique Fernandes at Sonoscopia, Porto, December 2009

/audio/n=0.aif

Demo session by Miguel Cardoso and Ricardo Guerreiro (2+n), Lisbon, March 2012

software

SCPad! 1.0

/source/SCPad/SCPad/

The source code of the published version of SCPad!

Thr44 C Library

/source/SCPad/Thr44-C-Lib/

Sources of a resource library, developed in C++.

/documentation/Thr44-C-Lib-doc/index.html

Generated documentation of the Thr44 C Library.

Thr44 Framework Supercollider classes

/sources/Thr44-SC-quark/

Sources of the Thr44 class library for SuperCollider.

/documentation/Thr44SCquark/Thr44.html

Documentation of the Thr44 class library for SuperCollider.

151

video samples

/software/video samples/scpadDemo.mov

An example of SCPad! dynamically generating GUIs, as Odef snippets are executed in SuperCollider.

/software/video samples/petriExample.mov

A demonstration video of the use of PetriNets.

/software/video samples/boidsSpacializationExample.mov

A basic example of mapping between Thr44Node and Odef instances.

publications

/MiguelCardoso_phD.pdf

A full version of this dissertation.

152

(blank page)

