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Abstract 

BACKGROUND: The aim of this work was to determine the most favorable 

conditions for the production of xylooligosaccharides (XOS) from Brazilian Syrah 

grape pomace. Chemical processes were performed using a rotatable central composite 
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design, where the concentration of sulfuric acid or concentration of sodium hydroxide 

and grape pomace flour: solvent mass ratio were the dependent variables. Enzymatic 

production was also evaluated using xylanase produced by Aspergillus niger 3T5B8 and 

Viscozyme® enzymatic commercial cocktail.  

RESULTS: Chemical extraction allowed to recover 21.8 to 74.6% and 5.2 to 

96.3% of total XOS for acid and alkaline processes, respectively. Enzymatic production 

using xylanase extracted up to 88.68 ± 0.12% of total XOS and up to 84.09 ± 2.40% 

with Viscozyme®. 

CONCLUSION: The present study demonstrated different feasible methods to 

produce high added value molecules, the xylooligosaccharides, from Syrah grape 

pomace flour, valorizing this major by-product. The use of enzymatic cocktails 

demonstrated to be an alternative to the conventional methods, allowing to obtain an 

eco-friendly and sustainable grape pomace extract. 

 

Keywords: biomass; grape pomace; xylooligosaccharides; enzymatic production, 

xylanase   
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1. Introduction  

Grapes are one of the most cultivated fruit crops worldwide, around 67 million 

tons annually, from which more than 70% is intended to wine industry that generates up 

to 20% of wasted biomass in the form of grape skin, seeds, stems and residual pulp, 

known as grape pomace [1-3].  Syrah is a vigorous grape variety with a spreading 

growth habit and a tendency to produce long, trailing shoots. Growth can be excessive 

on deep, fertile soils and with high-vigor rootstocks. A versatile variety, Syrah is well 

adapted to a wide range of vinicultural temperature regions, winery uses, and wine 

styles [4]. 

As a lignocellulosic feedstock, grape pomace is mainly constituted by 

polysaccharides, arranged as hemicellulose and cellulose cross-linked to lignin, but 

there are also other components such as proteins, fat and ash [5, 6]. Grape pomace is 

reported to be rich in high added value compounds such as non-digestive 

polysaccharides that constitute the dietary fiber, structural proteins and phenolic 

compounds [6, 7].  

More recently, the use of different solvents and enzymes to partially hydrolyze the 

polysaccharides into oligosaccharides is in evidence due to their diverse application and 

market evaluation. The composition and the structure of xylooligosaccharides (XOS) 

depend on the source and the production process [8, 9]. XOS can be prepared from 

different vegetal sources, such as from xylan rich agricultural residues by 

autohydrolysis process, which does not eliminate undesirable components such as 

soluble lignin and monosaccharides, generates oligosaccharides with a high degree of 

polymerization and it requires extensive purification processes [8]. Alternatively, as an 

improvement from the method, acid or alkaline solvents or enzymes can be added 

aiming better results in terms of oligosaccharides recovery [10]. Enzymatic hydrolysis 
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is attractive because it does not produce undesirable byproducts, results in lower 

production of monosaccharides and its hydrolytic action is specific for each biochemical 

group present in the biomass [11]. Extraction of XOS is improved by endoxylanases 

with less or no amount of β-xylosidase activity. While endoxylanases form XOS from 

xylan, β-xylosidase degrades XOS to xylose [11-13].  

Recently, extraction of XOS from lignocellulosic feedstocks using alternative 

methods has become very common. Acidic and enzymatic extractions were applied to 

obtain XOS from tobacco stalk, corn cob and wastewaters of viscose fiber mills 

[8,14,15]. Enzymatic extractions using xylanases have been the most common method 

to extract XOS from widely different biomasses such as corn cob, sugarcane bagasse, 

oil palm fronds, cotton stalk, sunflower stalk, wheat straw or rice hull [13,16-18]. 

Nevertheless, there are no works referring to XOS production using grape pomace.       

Therefore, the aim of this work was to valorize a major agricultural by-product 

through the extraction of XOS from the Brazilian Syrah grape pomace by the use of 

different methods, namely chemical and enzymatic hydrolysis. 

 

2. Experimental 

2.1. Raw Material  

Syrah grape pomace (Vitis vinifera L. cv. Syrah) from red sparkling production, 

harvested in January 2016, was provided by Ouro Verde Winery (Miolo Wine Group), 

located at Vale do São Francisco, Bahia, Brazil. The pomace was oven-dried at 45 ºC 

for 24 hours and the flour was obtained by milling and sieving the dried pomace in a 

Bonina 0.25 df depulper (Itametal, Itabuna, Bahia, Brazil). Since the seeds already have 

a well-established technological route for recovery of grape seed oil, which is a well-
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established value-added ingredient, they were retained in the sieve and the pomace flour 

was packed under vacuum and stored in a desiccator, at room temperature, until use. 

Pomace flour was analyzed, in triplicate, for moisture content, ash, protein and 

total dietary fibre through AOAC methods [19-21], and for fat content through AOCS 

method [22]. Determination of cellulose and hemicellulose content was carried out 

according to NREL methodology [23].  

 

2.2. Chemical production of XOS 

Chemical production of XOS were performed in an autoclave at 120 ºC for 90 

minutes, using 5 g of pomace flour. Sulfuric acid (acid extraction) or sodium hydroxide 

(alkaline extraction) were used as solvents at different concentrations. After cooling at 

room temperature, samples were filtered under vacuum with Whatman filter paper No. 

1.  

The best parameters of acid and alkaline extractions were determined by response 

surface methodology, according to a 2
2
 central composite design, using the XOS extract 

yield as response. Two factors were analyzed as independent variables: S: L ratio (X1) 

and concentration of sulfuric acid or sodium hydroxide (X2), being evaluated in five 

levels, according to Tables 1 and 2.  The following polynomial equation was fitted to 

data: 

y = β0 + β1x1 + β2x2 + β11x1
2
 + β22x2

2 
+ β12x1x2 (1) 

Where βn are constant regression coefficients, y is the response (XOS yield), and 

x1 and x2 are the coded independent variables (S:L ratio and H2SO4 or NaOH 

concentration, respectively). 

After the definition of the best production conditions, the kinetics of chemical 

extraction was determined for 120 minutes. 
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2.3. Enzymatic production of XOS 

Enzymatic extractions were performed as alternative to chemical treatment, using 

an enzymatic cocktail with xylanase activity, produced at our lab, and commercial 

Viscozyme® L cellulolytic enzyme mixture from Novozymes (Bagsvaerd, Denmark).  

 

 2.3.1. Xylanase production 

Aspergillus niger 3T5B8 conidia, stored in sterile soil at -18 °C, were transferred 

for agar medium and incubated at 32 °C  for 7 days. Conidia were then removed with 20 

mL of sterilized Tween 80 0.3% and 1 mL of spore suspension was transferred for 

inoculation in 4.6 g of corn cob enriched with 6 mL of aqueous solution containing: 

22.8 µL of KHPO4 20% (w/w), 0.118 mg ZnSO4, 0.138 mg Fe2(SO4)3, 0.3 µg MnSO4, 

0.0015 µL H2SO4 95% and 336 mg peptone, and finally incubated at 32°C for 5 days. 

The initial moisture content, determined gravimetrically, was adjusted to 60%. All 

liquid added to the flask was taken into consideration for calculating the moisture 

content. 

Solid state fermentation was conducted in columns, using wheat bran as substrate. 

Briefly, 100 g of substrate were supplemented with 60 mL of (NH4)2SO4 0.91% in HCl 

0.1 N, sterilized and conidia were inoculated at final concentration of 10
7
 spores/ g. 

Inoculated media was transferred to the fermentation columns, which were incubated in 

a fermentation bath at 32 °C with adjusted aeration.  

To extract the enzyme, fermented matter was mixed with citrate buffer (0.05 M, 

pH 4.8) at a solid/liquid ratio of 1 g initial dry substrate/ 2.5 ml buffer. The mixture was 

incubated at 32 °C for 60 min. Subsequently, solids were separated from the extract by 

centrifugation at 13.500×g for 15 min. The supernatant was filtered through Whatman 
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No. 1 filter paper to obtain a clear extract and assayed for xylanase activity by the 

method of Gomes et al. with slight modifications [24]. 

 

2.3.2 Determination of enzyme activity  

The release of reducing sugars in 30 min at 50 °C, pH 5.0 (0.2 M sodium acetate 

buffer) was measured as xylose equivalents using dinitrosalysilic acid method, using 

1% birchwood xylan solution as substrate [24,25]. The method was performed in 

triplicate. One unit of xylanase activity (U) is defined as the amount of enzyme 

liberating 1 µmol of xylose/min, under assay condition. 

 

2.3.3. Production of XOS 

Enzymatic production of XOS was performed with the enzymatic cocktail 

obtained in 2.3.2 section and with Viscozyme®, with final xylanase activities of 10 and 

100 UI/ g each, following the method described by Sabiha-Hanim et al. (2011) and 

Goméz-García et al. (2012) [17,26]. Briefly, the enzyme mix was diluted in sodium 

acetate 0.2 M buffer, in the desired enzymatic activity, and added to 100 mg of grape 

pomace at S:L ratio of 1:18. The pH was adjusted to 5.0 and incubated at 40 °C with 

shaking at 200 rpm for up to 6 h. The reaction was stopped by heating the test tubes to 

100 °C for 5 min and the supernatant was filtered through Whatman No. 1 filter paper to 

obtain a clear extract.  

 

2.4. Determination of total reducing sugars  

Reducing sugars were analyzed through Dinitrosalicylic Acid (DNS) method [25]. 

DNS was added to 200 mL of NaOH 2N solution with a final concentration of 50 g/ L, 
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homogenized and then 500 mL of Rochelle salt 0.6 g/ mL were added. The mixture was 

heated at 40 ºC and diluted to final volume of 1000 mL. 

2.5. Quantification of monomeric and oligomer sugars: High Performance Liquid 

Chromatography (HPLC)  

Prior HPLC analysis, the acidic and alkaline extracts were neutralized with 

sodium hydroxide 20 M or sulfuric acid 0.01 M, respectively, and all samples were re-

filtered with Millipore Millex syringe filter 0.22 µm. Identification and quantification of 

xylan-derived sugars (xylose, xylobiose, xylotriose, xylotetraose and xylopentose) were 

performed in Waters 600 HPLC equipped with Refractive Index Detector at 45 ºC 

(Waters Corporation, Milford, MA, USA), with an Agilent Carbohydrate 5 µm (4.6 x 

250 mm) column at 30 ºC (Agilent, Santa Clara, USA), and based on the isocratic 

method described by Macrae [27]: the mobile phase was established by acetonitrile 70% 

with a flow rate of 1 mL/ min. Compounds were identified by the comparison to the 

retention times of pure standards, as for xylose and xylobiose (Sigma, St. Louis, USA), 

and xylotriose, xylotetraose,  xylopentose, and xylohexaose (Megazymes, Wicklow, 

Ireland), and quantified through external standard calibration. 

 

Percentage of XOS extraction yield was determined using equation (2). 

 

(2) Production of XOS (%) = Concentration of XOS (g/ 100 g)/ Total xylan in grape 

pomace flour (9.61 g/ 100 g) x 100 

 

2.6. Statistical analysis 

Statistical analysis was performed with IBM SPSS statistic program v 23.0 

(Illinois, USA), using t-student test for independent samples and analysis of variance 
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(ANOVA) with Bonferroni post hoc test. Differences were considered to be significant 

at a level of p < 0.05. For the central composite design, the analysis of variance 

(ANOVA), test for the lack of fit, determination of the regression coefficients and the 

generation of surface responses were carried out using the Statistica 7.0 software 

(StatSoft, Tulsa, USA).  

 

3. Results and Discussion 

 

3.1. Characterization of Syrah grape pomace flour 

Syrah grape pomace was oven-dried at 45 ºC for 24 hours and seeds were 

separated from the grape pomace during the milling and sieving processes to obtain a 

flour with a particle size inferior than 300 µm, which was further analyzed for moisture 

content (95.9 g/ kg), ash (38.0 g/ kg), total protein (38.5 g/ kg), fat (13.4 g/ kg), sugars 

(543.0 g/ kg) and dietary fiber (271.2 g/ kg).  

Structural carbohydrates were determined through acidic hydrolysis [23], and 

revealed high contents of glucose and xylose (119.5 and 84.6 g/ kg of pomace, 

respectively), a low concentration of arabinose (5.8 g/ kg of pomace) and no traces of 

mannose or galactose. As a lignocellulosic feedstock, grape pomace was also analyzed, 

through the NREL method [23], for its cellulose, hemicellulose and lignin content 

which were 132.7, 102.6 and 307.7 g/ kg, respectively. Grape pomace is usually rich in 

different classes of polysaccharides, and consists of 30% of neutral polysaccharides, 

including glucan, xylan, galactan, and mannans, depending on the grape variety [28, 

29]. It also comprises ca. 20% of acidic polysaccharides, such as rhamnogalacturonans, 

arabinogalactans and pectins [28]. Due to the absence of mannose and galactose in the 

monosaccharide profile, and to the insignificant concentration of arabinose all the 
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observed xylose was considered to be related to the xylan’s structure. Therewith, total 

xylan was determined based on xylose concentration and adjusted, corresponding to 

96.1 g/ kg of pomace. 

The carbohydrates profile is in accordance with the results reported by Zheng et 

al. [30] for red grape pomace (cellulose 14.5 wt % and hemicellulose 10.3 wt %), but 

lower than the values reported by Mendes et al. [31] for Touriga Nacional (cellulose 

20.8% and hemicellulose 12.5%). The protein content is in accordance with different 

pomace varieties such as Cabernet Sauvignon (31 g/ kg), Callet (27 g/ kg), Manto 

Negro (32 g/ kg), Merlot (38 g/ kg) and Syrah (33 g/ kg) [27]. Fat content in grape 

pomace is mainly provenient from seeds oil. In this study, once the seeds were 

separated from the pomace using a depulper, a low fat composition was found, in 

accordance with previously reported data [6]. Dietary fiber and carbohydrate content 

had higher values than the other macromolecules, as expected for a vegetal matrix.  

 

3.2 Chemical production of XOS  

Total sugars present in the extracts obtained by chemical extraction varied from 

174.4 to 825.7 g/ kg of pomace flour for acid extraction and from 96.8 to 361.2 g/ kg of 

pomace for alkaline extraction. Regarding XOS production, the extraction yields ranged 

from 21.83% to 74.58% for acid treatment and from 5.15 to 96.28% for alkaline 

treatment, as shown in Table 3. Strong acids, such as sulfuric acid used in the 

experiment, allow higher degree of polysaccharide hydrolysis and therefore, more 

simple sugars are produced. However, this hydrolysis is dependent on the acid 

concentration, which explains the high variable concentration of sugars present in the 

acid extracts when compared to the alkaline extracts. 
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These results are in accordance with the results obtained by Chapla et al. [11], 

who reported that dilute alkali extraction method was the most suitable method for the 

production of xylan from raw corncobs. Alkali causes the swelling of lignocellulosic 

feedstocks, leading to a decrease in the degree of polymerization and crystallinity, 

separation of structural linkages between lignin and carbohydrates, and final disruption 

of lignin, helping to achieve a simple recovery of xylan from lignocellulosic feedstocks 

[32,33]. Dilute acid method extracted relatively less amount of xylan when compared to 

alkaline process. 

Table 4 shows the regression coefficients for the coded polynomial equations, the 

F values and the determination coefficients (R
2
). Some non-significant terms were 

eliminated and the resulting equations were tested for adequacy and fitness by the 

analysis of variance (ANOVA). The fitted models were suitable, showing significant 

regression, low residual values, no lack of fit and satisfactory determination 

coefficients. 

According to Figure 1, mass ratio between pomace flour (solute) and solvent was 

the parameter with the highest impact on the XOS production yield, for both acid and 

alkaline extractions. The use of higher volumes of solvent involves higher mass transfer 

gradient, resulting in higher production of XOS. In the case of alkaline extraction, XOS 

production showed a linear behavior and, thus, the axial points were not used in the 

model. In contrast, the acid extraction showed a significant curvature and therefore, in 

this case, the axial points were considered. 

Acid concentration showed a slight effect on XOS production (Figure 1a), while 

the increase of NaOH concentration led to the increase on the amount of recovered 

XOS, which can be a result from the more intense hydrolysis. This result could be 

explained by the concentration range of NaOH used in the alkaline hydrolysis (0.2 – 
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9.8%, w/v), which was higher than the concentration range of H2SO4 used for acid 

hydrolysis (0.1 – 4.9%, w/v), resulting in more pronounced effects on the XOS 

production.  The results from acid hydrolysis are in accordance with the results obtained 

by Akpinar and co-workers, who produced higher amounts of XOS with lower 

concentrations of H2SO4 (0.125 and 0.250 mol/L) than with 0.5 mol/L H2SO4 [8]. The 

results obtained by Sun and colleagues, who extracted XOS from perennial shrub using 

alkaline solvent, KOH, are in accordance with our results, as they produced more XOS 

when using higher concentrations of alkali [34].   

Modelling and analyzing the surface response for XOS recovery allowed to 

conclude that the most adequate operational conditions was achieved with NaOH at 

concentration of 8.4% and a flour: solvent ratio of 1:18, with a yield of 96.28% for total 

extraction of XOS.  

The specific extraction of each XOS is shown in Figure 2. Chemical extraction 

only allowed the production of xylotetraose (X4) and xylopentaose (X5) from the 

pomace flour and an overlook to the results indicates that both methods extracted a 

majority of X4 and X5. In the acid extraction, trials 7, 8 and 9 (trial 9 corresponding to 

the average of extractions of XOS in the central point) had a significantly higher (p < 

0.05) extraction of X4, indicating that a middling mass ratio (1:14 in these cases) may be 

useful to control the degree of hydrolysis of xylan. On the other hand, trials 1 to 4 

produced more X5 but no significant differences were found between them, except for 

trial 2, which significantly produced more X4 (p < 0.05). Alkaline extraction presented a 

more heterogeneous XOS recovery: trials 2, 4, 8 and 9 produced more X5, while trial 6 

extracted more X4 (p < 0.05). 

Although it is known that degree of polymerization of XOS affects their prebiotic 

effect, to be studied in the near future it is not so well studied how specific strains 
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degrade and use XOS as carbon source. Efficient degradation of XOS by bacteria 

requires different enzymes, including β-xylosidase, α-glucuronidase, α-L-arabinosidase, 

or acetyl xylan esterase, thus degradation of XOS vary between strains [35]. Gullón and 

co-workers studied the use of XOS by different Bifidobacteria and concluded that 

xylotriose was the most consumed, followed by xylobiose, xylotetraose and 

xylopentaose [36]. However, many authors use mixtures of XOS with different 

polymerization degrees (2 – 6) as carbon source for in vitro fermentations of 

Bifidobacteria [37,38]. Considering all these variables, the best extraction condition was 

considered the one that extracted more amount of total XOS and not a specific 

xylooligosaccharide.  

As all extractions were performed for 90 minutes, an additional kinetics assay was 

performed in the selected best extraction condition (8.4% NaOH and S:L ratio of 1:18), 

in order to analyze the influence of extraction time on XOS produce. Results are 

presented in Figure 3, which shows that XOS extraction continuously increased up to 90 

minutes and did not show significant increase after 120 minutes of extraction (p > 0.05).  

This means that the optimal time of extraction would be 90 minutes, as used in the 

factorial planning, and the best condition for XOS extraction was 8.4% NaOH and 1:8 

of S:L ratio. 

Although chemical treatments at high temperatures are efficient in breaking the 

ultrastructure of the cell wall, generating partial hydrolysates of polysaccharides, there 

are also undesirable reactions, such as the formation of monosaccharides that can easily 

originate toxic compounds like furfural and 5-hydroxymethylfurfural, requiring 

purification steps to remove them, and lately increasing the process costs [39,40]. Thus, 

another alternative for obtaining XOS from plant material is the enzymatic treatment. 

Enzymatic hydrolysis using endoxylanases, in turn, prevents formation of toxic 
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byproducts due to low temperature and high specificity, so it has been considered a 

good alternative for XOS produce [13,39,40]. 

 

3.3. Enzymatic extraction 

3.3.1 Production of xylanases and determination of enzymatic activity 

Production of XOS from various sources of xylan, such as sugarcane bagasse or 

cotton stalks, using commercial xylanases have been reported in different works 

[13,39]. However, fairly few attempts have been made for production of XOS using 

indigenously produced xylanases. In order to make the process cost effective and 

economic, xylanase used under the present study was produced with a low cost 

technique under optimized conditions using  wheat bran as a substrate under solid state 

fermentation, as  mentioned [24].  

Viscozyme® (Novozymes, Bagsvaerd, Denmark) is an enzymatic cocktail with 

(endo- 1, 3 (4)-) beta-glucanase, xylanase, cellulase and hemicellulase activities, 

produced by Aspergillus aculeatus. It was chosen as control for its hemicellulase and 

xylanase activities. Xylanase activity determined for the xylanase produced from A. 

niger 3T5B8 and for Viscozyme® were 28.77 ± 0.79 and 116.41 ± 4.27 IU/ mL, 

respectively. Data sheet of Viscozyme reports an activity of ca. 100 FBG/ g, which is in 

accordance with the results obtained. Although the produced enzyme is suitable for the 

extraction of XOS, it has a significantly lower xylanase activity than the enzymes 

produced by Chapla et al., 9200 ± 78.5 IU/ mL, who used Aspergillus foetidus MTCC 

4898 instead of A. niger and applied additional steps for enzyme purification, including 

ammonium sulfate precipitation and dialysis, achieving a pure enzyme with high 

xylanase activity but also with additional costs of production [16].  
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3.3.2. Enzymatic extraction 

Enzymatic extraction was performed using the produced xylanase from A. niger 3T5B8 

and Viscozyme®, with  enzyme load of 10 and 100 IU/g. Extraction times were 1, 2, 4, 

and 6 hours. Results of total extraction of XOS and xylose are presented in Figure 4.  

Extraction of XOS using the mixture of enzymes produced by A. niger 3T5B8 

with activity of 10 IU/g for 1 and 4 hours, allowed to extract from 22.20 ± 0.87 and 

51.52 ± 0.70 % of XOS, respectively. After 6 hours of extraction, the amount of xylose 

extracted (45.39 ± 6.25%) was much higher than the amount of XOS (14.09 ± 3.17%). 

The same mixture of enzymes with final concentration of 100 IU/g allowed to produce 

the maximum amount of XOS (88.68 ± 0.13%) after 4 hours of extraction, without 

producing xylose monomers.  The other extraction times allowed to produce from 13.00 

± 0.38 to 74.83 ± 3.89% of XOS. While the extraction of 4 and 6 hours produced no 

xylose monomers, the other extraction times produced higher amount of xylose, not 

being suitable for XOS extraction. 

The use of 10 IU/g of Viscozyme® had a slight produce of XOS within 1 and 2 

hours. Extraction at 4 hours allowed to produce 36.26 ± 0.13% of total XOS with 

minimal production of xylose. Extraction for 6 hours had superior extraction of XOS 

but also a superior production of xylose: 20.88% of sugar monomers. At last, the use of 

100 IU/g of Viscozyme® allowed to recover from 25.60 to 84.09 ± 2.40% of total XOS, 

without production of any xylose monomers. This data is in accordance with the results 

obtained by Akpinar and co-workers, who used a commercial xylanase (Veron 191 from 

A. niger, AB Enzymes, Germany) to extract XOS from cotton stalks, and produced ca. 

53% of total XOS [39]. However, these authors produced a majority of xylohexaose and 

xylopentaose instead of the xylotetraose recovered in this work (Table 5). 
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Although extractions with Viscozyme® produced more quantity of XOS (p = 

0.050), the use of our enzyme (condition of 100 IU/g for 4 hours) allowed to extract 

XOS with a minimum amount of xylose monomers. This capacity could be due to the 

substrate composition or due to other enzymatic activities associate with our enzymatic 

cocktail that were not analyzed (hemicellulolytic activity, for instance). Extractions 

performed with 100 IU/g of enzyme allowed to produce more quantity of XOS than 

extractions with 10 IU/g (p < 0.05), in accordance with the results obtained by Akpinar 

et al., who concluded that xylan hydrolysis yield increases with enzyme concentration 

as production of XOS using lower enzyme concentrations is too slow [39].  

The use of both enzymes for enzymatic treatment of grape pomace allowed to 

produce high amounts of xylotetraose but also some xylopentaose, depending on the 

quantity of enzyme used and time of incubation. Detailed data is show in table 5. 

In conclusion, enzymatic extractions proved to be as efficient as acid or alkali, 

without the need of using environmental unfriendly solvents, and should be used in the 

future for studies on bioactivities 

 

4. Conclusion 

The present study demonstrated different feasible methods to produce high added 

value molecules, the xylooligosaccharides, from Syrah grape pomace flour, as an 

alternative to valorize this major by-product.  

Enzymatic XOS production is affected by the enzyme type and enzyme loading: 

xylanases mixture produced by A. niger 3T5B8 at 100UI/ g was found to be the most 

suitable condition. The use of enzymatic cocktails demonstrated to be an alternative to 

the conventional methods, as they allowed to obtain similar yields of XOS, but within 

an eco-friendly and sustainable grape pomace extract. Also, in both chemical and 
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enzymatic extracts, produced XOS were mainly composed by xylotetraose and 

xylopentaose.  The biological activities of XOS, particularly their described biological 

activities with impact on gastrointestinal health, allow to conclude that these enzymatic 

grape pomace extracts can be a potential candidate to be used in the development of a 

new functional ingredient. The development of such product requires further studies on 

biological activities, specifically the demonstration of prebiotic activity and absence of 

toxicity. 
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Table 1 – Coded variables studied in the XOS produced by acid hydrolysis. 

Coded variables -1.41 -1.0 0 +1.0 +1.41 

S : L ratio 1 : 8 1 : 10 1 : 14 1 : 18 1 : 20 

H2SO4 concentration (%) 0.1 0.8 2.5 4.2 4.9 
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Table 2 – Coded variables studied in the XOS produced by alkaline hydrolysis. 

Coded variables -1.41 -1.0 0 +1.0 +1.41 

S : L ratio 1 : 8 1 : 10 1 : 14 1 : 18 1 : 20 

NaOH concentration (%) 0.2 1.6 5.0 8.4 9.8 
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Table 3. XOS produced (%) in the acid and alkaline extractions  

Acid hydrolysis Alkaline hydrolysis 

Trial S : L 

H2SO4 

conc. 

(%) 

XOS produced  

(%) 

Trial S : L 

NaOH 

conc. 

(%) 

XOS produced 

(%) 

1 1 : 10 0.8 49.49 1 1 : 10 1.6 21,12 

2 1 : 18 0.8 74.58 2 1: 18 1.6 89.95 

3 1 : 10 4.2 40.92 3 1 : 10 8.4 33.94 

4 1 : 18 4.2 60.10 4 1 : 18 8.4 96.28 

5 1 : 8 2.5 21.83 5 1 : 8 5.0 10.57 

6 1 : 20 2.5 48.49 6 1 : 20 5.0 58.60 

7 1 : 14 0.1 73.97 7 1 : 14 0.2 5.17 

8 1 : 14 4.9 65.14 8 1 : 14 9.8 73.76 

9 1 : 14 2.5 67.27 9 1 : 14 5.0 76.47 

10 1 : 14 2.5 66.73 10 1 : 14 5.0 78.22 

11 1 : 14 2.5 65.95 11 1 : 14 5.0 75.48 
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Table 4. Coded second-order regression coefficients for encapsulation efficiency and 

bulk density. 

Coefficient 

% XOS produced 

by acid hydrolysis 

% XOS produced by 

alkaline hydrolysis 

β0 66.63 72.47 

β 1 -4.45 13.36 

β 2 10.26 24.18 

β 11 2.47 -- 

β 22 -14.82 -- 

β 12 -1.48 -10.23 

R
2
 0.980 0.966 

F 48.76 28.67 
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Table 5. Content (g/ kg of grape pomace) of each xylooligosaccharide present in the 

enzymatic extracts of grape pomace 

 

3T5B8 Viscozyme 

10 UI/ g 100 UI/ g 10 UI/ g 100 UI/ g 

1 h X4 = 31.8 

X4 = 22.2 

X5 = 28.9 

- X4 = 49.2 

2 h X4 = 21.3 

X4 = 10.6 

X5 = 18.5 

- X4 = 80.8 

4 h X4 = 49.5 X4 = 85.2 

X4 = 34.8 

X5 = 0.1 

X4 = 71.9 

6 h X4 = 13.5 X4 = 71.9 

X4 = 55.9 

X5 = 0.7 

X4 = 55.3 
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Figure 1 – Surface response for extraction through conventional methods: A) acid and 

B) alkaline. 
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Figure 2 – Total extraction of each xylooligosaccharide (xylotetraose) ( ) and 

xylopentaose (  ) for both conventional treatments: A) acid extraction and B) alkaline 

extraction 
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Figure 3 – Kinetics of conventional extraction of XOS using NaOH. 
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Figure 4 – Enzymatic extraction of XOS (   ) and xylose (   ) from grape pomace, using 

a mixture of enzymes from A. niger with final activity of (A) 10 IU/g and (B) 100 IU/g, 

and commercial Viscozyme with final activity of (C) 10 IU/g and (D) 100 IU/g.  
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