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Abstract
Modelling the Joint Behaviour of Interest Rates and Foreign Exchange Rates

by Thomas Dirks

Exposures to interest rate term structures in different currencies and their respective exchange
rates are a challenge for risk management. In this paper we address this problem by extending
the arbitrage-free Nelson Siegel model, an affine term structure model, to a multi-currency
setting integrating exchange rate dynamics to allow forecasting of interest and exchange rates.
We review the current state of research in term structure modelling and establish reasoning for
using a three-factor model on interbank interest rates. Consequently, we provide the theoretical
background for the dynamics of the state variables and the dependence of the exchange rate on
the market risk premium. Moreover, to test the model empirically we establish an estimation
framework using a Kalman filter. We show empirical results for different extensions of the
arbitrage-free Nelson Siegel model. It is apparent that the forecasting performance is highly
sensitive to the robustness of the estimation process.

A exposição a diversas estruturas de taxas de juros em moedas diferentes e a sua respectiva taxa
de câmbio é um desafio para a gestão de risco. Nesta tese, este problema é analisado usando
uma extensão do modelo de Nelson-Siegel sem arbitragem. Este modelo assume linearidade das
taxas de juros e é extendido de forma a integrar as taxas de juros e a respectiva taxa de câmbio
permitindo não só a previsão de taxas de juro como também da taxa de câmbio. Primeiro, a
partir de uma revisão de literatura alargada, estabelecemos que se deve usar um modelo com
três factores nas taxas de juro interbancárias. Consequentemente, nós definimos o contexto
teórico para as dinâmicas das variáveis de estado e a dependência da taxa de câmbio no prémio
de risco de mercado. Adicionalmente, um filtro de Kalman é utilizado para testar o modelo. Os
resultados são apresentados para diferentes extensões do modelo Nelson-Siegel. Concluímos
que a previsão depende da robustez do processo de estimação.
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Chapter 1

Introduction

In this thesis we analyse the behaviour of yields across different maturities, condensed in the
yield curve, over time for multiple currencies and the implied relationship to their respective
exchange rates. The objective is to identify a model that captures said joint dynamics sufficiently
in order to allow forecasting of both interest rates and foreign exchange rates. This can provide
an instrument to gauge risks in fixed income instruments with a multi-currency exposure.

The motivation for this thesis stems from the exposure of financial institutions, sovereign
governments and supranational organisations to interest rate and currency risk. An example of
significant exposure for sovereign governments are the loans given by the International Mon-
etary Fund (IMF) under the Extended Fund Facility (EFF) agreement. Within the Euro zone,
currently Greece, Portugal and Cyprus are borrowers under such an agreement (International
Monetary Fund, 2018).

The particular nature of IMF loans makes their risk management challenging. Obligations
to the IMF are in its international reserve asset called Special Drawing Rights (SDR) which
is essentially an artificial currency. An SDR represents a claim on a basket of five currencies,
currently consisting of US-Dollar, Euro, Pound Sterling, Japanese Yen and Chinese Renminbi.
The interest rate for these obligations is tied to reference rates in said currencies as well, result-
ing in a diverse exposure for the borrower. As of 30 April 2018 the outstanding amount under
the EFF agreement in SDR for Greece, Portugal and Cyprus were SDR 9.04 bn., SDR 3.86 bn.
and SDR 0.57 bn. respectively. The approximate equivalent value in US-Dollars were $13.00
bn., $5.6 and $0.82 bn.1

Obligations issued in foreign currencies are another possible application of the model as
often their repayment is dependant on cash flows in a different currency. According to the
European Central Bank (2018) approximately 14.53% of all debt securities outstanding within
the Euro area as of March 2018 are in foreign currencies, which amounts to 2,433 bn. Euro. An
example here is the $4.5 billion fixed coupon bond issued by Portugal in 2014 which marked the

11 SDR = US$1.43806 as of 30 April 2018 (International Monetary Fund, 2018)
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country’s return to the capital markets. IGCP, the Portuguese Treasury and Debt Management
Agency, is in charge of hedging this risk using a range of derivatives.

In order to facilitate risk management, we apply an existing term structure model to this
specific case and extend and adapt it to enable us to forecast short-term interest rate and foreign
exchange rate movements. Primarily for institutions and sovereigns with significant expose
to SDR this can be a useful tool to gauge the hedging requirements. First, we provide some
theoretical background of term structure models and the definitions for the market price of risk,
from which changes in foreign exchange rates can be deducted in chapter 2. In chapter 3 we
provide reasoning for the model selection and adapt it to our specific case. Through principal
component analysis we are able to see why three-factor models are useful to describe the term
structure. We then extend the model to a multi-currency environment, taking into account
foreign exchange rates and discuss the estimation framework using a Kalman filter.

Our results are presented in chapter 4 for several implementations of the model. First we
estimate a two-currency model without incorporating foreign exchange rates. For robustness
we estimate all models for different currency pairings, always considering the Euro as the do-
mestic currency. We then move on to incorporating foreign exchange rates, which requires
some changes in our estimation procedure. Finally, the model is extended to include four major
currencies and their respective exchange rates.

We show that existing term structure models can be extended to capture multiple term struc-
ture and their respective exchange rates. While it is straightforward to achieve good in-sample
fit, forecasting interest and exchange rates proves to be more difficult. It becomes apparent
that the estimation of the model is the major challenge in term structure modelling with a large
number of parameters.
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Chapter 2

Literature Review

Interest rate modelling is a well-established topic in financial research. Piazzesi (2010) iden-
tifies four key reasons to study the dynamics of bond yields through term structure models:
forecasting, monetary policy, debt policy as well as pricing and hedging of interest rate deriva-
tives. The most widely adapted classes of term structure models are the affine term structure
model (ATSM), the Nelson Siegel model and the quadratic term structure model (QTSM), with
the ATSM class being the most popular and considered state-of-the-art (Ahn, Dittmar, & Gal-
lant, 2002).

2.1 Evolution of Short Rate Models

First approaches to term structure models were taken with short-rate models, e.g. simple factor
models as described by Vasicek (1977). The Vasicek model describes the instantaneous short
rate as an Ornstein-Uhlenbeck process that is Gaussian and mean reverting with fixed parame-
ters. As it allowed for negative interest rates, which had not been observed in the market at this
time, Cox, Ingersoll, and Ross (1985) introduced another one factor model which avoided the
issue, but has since fallen out of favour with practitioners as negative interest rates became real-
ity after the financial crisis. According to Brigo and Mercurio (2006) these time-homogeneous
models were the most successful due to their analytical tractability. They can be seen as the first
affine term structure models (Piazzesi, 2010), which we discuss in more detail later on. Hull
and White (1990) extended the Vasicek model by making the Vasicek parameter θ a determin-
istic, time-varying variable in order to allow for a better fit to the market-implied term structure.
We refer to Brigo and Mercurio (2006) and Nawalkha, Beliaeva, and Soto (2007) who cover
popular short rate models in great detail.
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2.2 Affine Term Structure Models

Affine models are a class of term structure models, in which yields are simply an affine function
of the latent state variables, which makes them particularly popular in research. They were
introduced by Duffie and Kan (1996) and classified by Dai and Singleton (2000). Piazzesi
(2010), who we refer to for a detailed introduction, defines the τ-period yield in an affine term
structure model as an affine function on some state vector Xt

y(τ) = A(τ)+B(τ)′Xt

where A and B depend on the period τ . In recent literature the terms "completely affine" and
"essentially affine" have sprung up to differentiate between the definitions of the data-generating
processes, specifically the market price of risk (Duffee, 2002). The famous Vasicek and Cox-
Ingersoll-Ross models are examples of one-factor affine models, as they only depend on the
short rate. The close relations of bond yields in the cross-section become apparent through
cross-equation restrictions, which are reflected in the construction of A and B. As non-linear
functions they can therefore not simply be estimated using ordinary least squares (OLS). The
downside of the implementation of no-arbitrage is, as Piazzesi (2010) points out, the signif-
icantly more coding work and higher computational complexity. Furthermore, an internally
consistent model does not necessarily perform better empirically (Diebold & Rudebusch, 2013)
potentially caused by the high number of parameters. Diebold and Rudebusch (2013) point out
that as a result statistically insignificant parameters are often set to zero without an underlying
theoretical reasoning.

2.3 The Nelson-Siegel Class of Term Structure Models

The parametric model proposed by Nelson and Siegel (1987) is a well-known model for fitting
the cross-section of yields to market data to obtain a smooth curve. They introduce a "simple,
parsimonious model that is flexible enough to represent the range of shapes generally associated
with yield curves: monotonic, humped, and S shaped" (p. 473). In the Nelson-Siegel model,
the continuously compounded yield with maturity τ is given by

y(τ) = β0 +

(
1− e−λτ

λτ

)
β1 +

(
1− e−λτ

λτ
− e−λτ

)
β2
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The three factors β0, β1 and β2, are commonly referred to as level, slope and curvature of the
yield curve. The λ parameter scales how quickly the slope and curvature components approach
zero in the limit, i.e. how rapidly the yield curve asymptotically approaches β0 for longer
maturities.

Svensson (1994) later extended the three-factor Nelson-Siegel model by a fourth term to al-
low for the representation of an even wider range of yield curves. A survey by the Bank for In-
ternational Settlements (2005) suggests that this extension, known as extended Nelson-Siegel or
(Nelson-Siegel-)Svensson model, is established among practitioners, especially central banks.

While the aforementioned Nelson Siegel model and the extension by Svensson only describe
the cross-section of interest rates at a given point in time, Diebold and Li (2006) aim to make
the factors time-dependent in order to establish accurate out-of-sample forecasts in a dynamic
Nelson Siegel model. Their model does not enforce no-arbitrage principles. They add that
parsimonious models often exhibit superior forecasting performance.

Christensen, Diebold, and Rudebusch (2011) essentially close the gap between the parsimo-
nious dynamic Nelson-Siegel model and the more theoretically rigorous affine term structure
models. They place the dynamic Nelson-Siegel model in the affine context as defined in the
Duffie and Kan (1996) framework and find that a specific model of the Duffie-Kan class can
be derived that has identical factor loadings as seen in the dynamic Nelson Siegel model. They
show that under the affine framework, given a filtered probability space (Ω,F ,(Ft),P) under
the customary conditions (cf. Øksendal, 2003; Williams, 1991), zero-coupon bond yields can
be written as

yt(τ) = X1
t +

1− e−λτ

λτ
X2

t +

[
1− e−λτ

λτ
− e−λτ

]
X3

t − A(τ)
τ

, τ = T − t (2.1)

The term A(τ)
τ

stems from placing the model in the affine setting and is called "yield-adjustment
term". It is not time-dependent, but only affected by the maturity and the choice of parameters
for the state variable dynamics.

Christensen et al. (2011) assume an essentially affine specification of the market risk pre-
mium following Duffee (2002), which allows for flexible specification of the dynamics un-
der the physical measure while keeping risk-neutral dynamics identical. They present both an
independent- and correlated-factor Arbitrage-Free Nelson Siegel (AFNS) model, which differ
in the construction of the parameter matrices under the physical measure. In their empirical
evaluation they find that while the correlated-factor model exhibits superior in-sample fit, the
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independent-factor model has better forecasting abilities. It also outperforms the Dynamic Nel-
son Siegel (DNS) model as presented by Diebold and Li (2006).
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Chapter 3

Data and Methodology

In this chapter we present the data used for empirical valuation of the model. Some data pre-
processing is necessary to obtain the zero-coupon bond rates we use in the model. We provide
justification for our model selection using principal component analysis and empirical proxies
for the factors of the Nelson Siegel model. Lastly we explain the theoretical foundation for our
model and its implementation in detail. All computations are conducted using Python. Python
provides a wide arrange of libraries that facilitate a high speed of development. The most
important libraries for our research are QuantLib for Python, Numpy and Pandas.

3.1 Data

For the purpose of this thesis we use Interbank Offered Rates (IBOR) to gauge the current state
of yields for each currency, although SDR interest rates are linked to sovereign bonds. Due to
the use of interbank rates as a reference for all kinds of fixed income instruments from floating
rate notes to derivatives, their importance, especially in hedging interest rate risks, cannot be
overstated. Furthermore, the EURIBOR and its respective swap curve provide us with a single
yield curve for the entire Euro. Using treasury/government bond yields would leave us with
either having to choose a single country’s bonds or artificially constructing one covering all
Euro zone members.

As mentioned in the introduction, the Portuguese government has significant exposure to
foreign currencies, which is managed by the Portuguese Treasury and Debt Management Agency.
In this dissertation we focus on the major currencies, i.e. Euro (EUR), US-Dollar (USD), Pound
Sterling (GBP) and Japanese Yen (JPY). The currencies were the most traded as of April 2016
according to a survey by the Bank for International Settlements (2016). For these currencies,
the following rates have been obtained:

Euro EURIBOR and Euro swap curve
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US-Dollar ICE LIBOR USD and US-Dollar swap curve
Japanese Yen ICE LIBOR JPY and Yen swap curve
Pound Sterling ICE LIBOR GBP and Pound Sterling swap curve

Since the admission of the Chinese Renminbi (CNY) to the Internation Monetary Funds
Special Drawing Rights currency basket an exposure to this currency also exists. Due to lim-
ited data availability (the CNY HIBOR has only been established in 2013) this thesis does not
consider this exposure.

IBORs are zero-coupon bond rates with maturities up to one year. The remainder of the
yield curve must be inferred from the swap curves. Here we use a bootstrapping approach
to obtain the missing zero-coupon bond yields and also adjust for different conventions in the
swap contracts (e.g. day count conventions) to produce homogeneous data for the following
analysis.1 The tenors used for bootstrapping the zero-coupon bond rates are

IBOR 1, 2, 3, 6 and 12 months
IRS rates 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25 and 30 years

We have obtained monthly data for interbank rates, swap rates and foreign exchange rates
for a time frame between August 2011 and January 2018 from Bloomberg. All data has been
cross-checked with Thomson Reuters Eikon.

Figure 3.1 shows the evolution of the bootstrapped interest rates for Euro, US-Dollar, Pound
Sterling and Japanese Yen for our data window. The Western currencies exhibit some com-
mon patterns. Leading up to the financial crisis the spreads between short- and long-term are
significantly compressed for the Euro and US-Dollar. The GBP LIBOR yield curve starts to
invert from 2005, the US LIBOR curve temporarily inverts leading up to the financial crisis
and the EURIBOR curve shortly before the Lehman collapse. All three curves show a signifi-
cant decline of short-term rates after the Lehman collapse due to the intervention of sovereign
governments and central banks. The JPY LIBOR does not feature such a significant drop in
absolute terms as yields in Yen have been at a low level for an extended time. Post-crisis all
currencies show low volatility of short-term rates, the only significant changes being increase
of the EURIBOR during the Euro zone crisis and the temporary inversion of the Yen curve in
2017.

1In the present multicurve interest rate environment bootstrapping zero-coupon rates swaps is technically out-
dated. For our purposes we assume it to be a sufficient approximation. More details on this topic can be found in
Mercurio (2010).
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FIGURE 3.1: Bootstrapped zero-coupon bond yields for the selected currencies;
maturities are 6 months, 5, 10 and 30 years; financial crisis marked in grey
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3.2 Principal Component Analysis

The widely-adopted Nelson Siegel describes the shape of the yield curve through three factors
with clear financial and macroeconomic implications: level, slope and curvature. As we have
presented, Christensen et al. (2011) present an arbitrage-free Nelson Siegel model as a specific
case of the Duffie-Kan class of affine models with identical factor loadings.

To provide support for the choice of this model and its factors we conduct a Principal Com-
ponent Analysis (PCA) on the gathered interest rate data in order to compare the results with
standard empirical proxies for the three factors of Nelson-Siegel models. PCA is a method for
dimension-reduction of correlated data by transforming them into a smaller number of uncor-
related principal components or factors that describe as much of the variation as possible. For
a more detailed explanation of PCA we refer to Jolliffe (2002). The attribution of the first three
factors as level, slope and curvature was established empirically by Litterman and Scheinkman
(1991). The proxies for these factors are determined according to Diebold, Rudebusch, and
Boragan Aruoba (2006).

Lt =
1
3
(yt(3)+ yt(24)+ yt(120))

St = yt(3)− yt(120)

Ct = 2 · yt(24)− yt(3)− yt(120)

where yt(m) represents the m months maturity yield.
In a principal component analysis conducted on the local interbank rates for each currency

described in section 3.1 we find that three factors explain between 98.54% and 99.77% of the
variation in each individual IBOR curve. Furthermore, the local empirical proxies are mostly
correlated with the individual PCA factors. Hence it appears that the assumption of a three-
factor model to describe the term structure is justified and that these three factors can be identi-
fied as level, slope and curvature.

In addition to the local PCA conducted, we analyse if we can establish a similar clear struc-
ture in global interbank rate data. Here we can observe that three factors already explain 94.46%
of our data’s variation (cf. table 3.4).

In order to provide some further insights into the behaviour of the proxies across currencies,
we compute the correlation matrices. For the level proxy (cf. table 3.1), as defined before, we
see that they generally show high correlation with the highest being between EUR and GBP
with ρ = 0.94 and lowest between USD and JPY with ρ = 0.68. This establishes that the level
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EUR USD JPY GBP
EUR 1.00 0.81 0.80 0.94
USD 0.81 1.00 0.68 0.89
JPY 0.80 0.68 1.00 0.72
GBP 0.94 0.89 0.72 1.00

TABLE 3.1: Correlation matrix for the level proxies

factors of the term structures across currencies are highly intertwined. From economic intuition
this is reasonable as the level factor embeds expectations of economic activity and future short-
term rates which are unlikely to diverge between major economies over a longer time horizon.

The correlation weakens for the slope proxies, foremost for pairings with the Japanese Yen
(cf. table 3.2). Among the remaining currencies, correlations remain high. We therefore con-
clude that the behaviour of the slope factor is different between the major Western currencies
and the Yen. This is possibly attributable to different central bank policies which affect the short
end of the yield curve and therefore change the slope factor.

EUR USD JPY GBP
EUR 1.00 0.76 0.26 0.78
USD 0.76 1.00 0.14 0.65
JPY 0.26 0.14 1.00 -0.16
GBP 0.78 0.65 -0.16 1.00

TABLE 3.2: Correlation matrix for the slope proxies

In the correlation matrix for the curvature proxies (cf. table 3.3) we can observe a similar
picture as for the slope proxy, although with overall lower correlations. The Yen again shows
the lowest correlation with the remaining currencies.

EUR USD JPY GBP
EUR 1.00 0.64 0.38 0.65
USD 0.64 1.00 0.38 0.52
JPY 0.38 0.38 1.00 -0.09
GBP 0.65 0.52 -0.09 1.00

TABLE 3.3: Correlation matrix for the curvature proxies

Finally, we look at the correlations between the PCA factors and the proxies (cf. table 3.4).
The first factor shows high correlation with all proxies, the least correlated being the Yen. We
can conclude that changes in the (global) level factors therefore also result in changes in the each
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EUR USD JPY GBP Var.

PCA Factor 1 0.97 0.88 0.78 0.97 79.35%
PCA Factor 2 0.41 0.59 0.72 -0.02 8.88%
PCA Factor 3 -0.35 -0.43 0.36 -0.68 6.23%

Cum. Var. explained 94.46%

TABLE 3.4: Correlations between PCA factors and proxies, the last column rep-
resents the variance explained by the PCA factors

local level factor, which is also shown in figure 3.2. For the other two PCA factors, formerly
identified as slope and curvature, the effects are much less pronounced. The slope and curvature
proxies for Euro, US-Dollar and Pound Sterling seem be only correlated with either the second
or third PCA factors. This leads to the conclusion that the second and third latent global PCA
factors do not precisely capture the changes in the local proxies for slope and curvature. We
come back to these results in section 3.3.

The arbitrage-free Nelson Siegel model is based on the three factors: level, slope and cur-
vature. The analysis shows that three factors are sufficient to explain a high percentage of the
variation within the interest rate data which provides support the use of a Nelson Siegel class
model. Empirical proxies for the level factor are highly correlated among the major currencies.
Furthermore, they show high correlation with the first PCA factor. The level can therefore be
assumed to be a global factor in our model, which we discuss in more detail in the following
chapter.

FIGURE 3.2: First PCA factor and level proxies for each currency over time

3.3 The Arbitrage-Free Nelson Siegel Model

After establishing the intuition about the three factor that drive the yield curve through PCA
in section 3.2 we now move on to implementing an independent-factor arbitrage-free Nelson
Siegel model for our specific case. Even though it is simpler in the structure of its parameters,



Chapter 3. Data and Methodology 13

Christensen et al. (2011) show that the independent-factor model has superior forecasting per-
formance in comparison to the correlated-factor model. In addition it exhibits less complexity
and we expect a simpler estimation process. Some changes need to be made to the model as
presented by Christensen et al. (2011) as their model only describes a single term structure. We
aim to adapt the model enabling it to caption the dynamics of both interest rates and foreign
exchange rates in multiple currencies. We start out with a two-currency structure without tak-
ing into account foreign exchange rates, then implementing exchange rate dynamics and finally
provide to means to model four currencies including their foreign exchange rates.

3.3.1 Model Implementation

In equation 2.1 we see the definition of zero-coupon bonds in the AFNS according to Chris-
tensen et al. (2011). To model several term structures at once we need to estimate this for
all currencies’ term structures. The state variables Xt = (X1

t ,X
2
t ,X

3
t ) are described under the

risk-neutral measure Q by the following SDEs (cf. Christensen et al., 2011)⎛⎜⎝dX1
t

dX2
t

dX3
t

⎞⎟⎠=

⎛⎜⎝0 0 0
0 λ −λ

0 0 λ

⎞⎟⎠
⎡⎢⎣
⎛⎜⎝θ

Q
1

θ
Q
2

θ
Q
3

⎞⎟⎠−

⎛⎜⎝X1
t

X2
t

X3
t

⎞⎟⎠
⎤⎥⎦ dt +Σ

⎛⎜⎝dW 1,Q
t

dW 2,Q
t

dW 3,Q
t

⎞⎟⎠ λ > 0 (3.1)

The essentially affine definition of the market price of risk as in equation (3.2) allows for flex-
ibility in the construction of the parameters under the physical measure while keeping affine
dynamics. Duffee (2002) assumes that the market price of risk has the form

Γt = γ0 + γ1Xt (3.2)

An independent-factor AFNS assumes the following dynamics (with λ > 0) under the physical
measure⎛⎜⎝dX1

t

dX2
t

dX3
t

⎞⎟⎠=

⎛⎜⎝κP
11 0 0
0 κP

22 0
0 0 κP

33

⎞⎟⎠
⎡⎢⎣
⎛⎜⎝θ P

1

θ P
2

θ P
3

⎞⎟⎠−

⎛⎜⎝X1
t

X2
t

X3
t

⎞⎟⎠
⎤⎥⎦ dt +

⎛⎜⎝σ11 0 0
0 σ22 0
0 0 σ33

⎞⎟⎠
⎛⎜⎝dW 1

t

dW 2
t

dW 3
t

⎞⎟⎠ (3.3)

The SDEs shown in equation 3.3 are Gaussian Ornstein-Uhlenbeck processes. In these, the
first parameter (KP) can be interpreted as the mean reversion rate, the second (θ P) as the mean
reversion level. The Σ parameter controls the diffusion of the stochastic process.
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As we established in section 3.2 we observe that in our data the first global PCA factor,
identified as the level, is highly correlated with the proxies for all the currencies. Hence, we as-
sume a global level factor X1

t in our joint model. Our reasoning for this assumption is twofold:
first and foremost, this provides us with a mean to capture the mutual term structure dynamics
across currencies and secondly it facilitates the estimation process by decreasing the dimen-
sionality of the optimisation problem. As we show in table 3.4 the global PCA factors 2 and 3,
identified as slope and curvature, do not capture the changes in the proxies sufficiently across
all currencies, therefore we decide to define these aslocal factors, implying independent factor
dynamics for each currency. In these equations the global parameters and state variables are
distinguished from the local ones by the subscript g for global, d for domestic and f for foreign.
In the multi-currency model, each foreign currency is driven by a set of SDEs in the form of
equation 3.5.

Under this specification the SDEs for our case in an independent-factor AFNS under the
P-measure become (for the domestic currency)⎛⎜⎝dX1,g

t

dX2,d
t

dX3,d
t

⎞⎟⎠=

⎛⎜⎝κ
P,g
11 0 0
0 κ

P,d
22 0

0 0 κ
P,d
33

⎞⎟⎠
⎡⎢⎣
⎛⎜⎝θ

P,g
1

θ
P,d
2

θ
P,d
3

⎞⎟⎠−

⎛⎜⎝X1,g
t

X2,d
t

X3,d
t

⎞⎟⎠
⎤⎥⎦ dt +

⎛⎜⎝σ
g
11 0 0
0 σd

22 0
0 0 σd

33

⎞⎟⎠
⎛⎜⎝dW 1,g

t

dW 2,d
t

dW 3,d
t

⎞⎟⎠
(3.4)

and for the foreign currency⎛⎜⎝dX1,g
t

dX2, f
t

dX3, f
t

⎞⎟⎠=

⎛⎜⎝κ
P,g
11 0 0
0 κ

P, f
22 0

0 0 κ
P, f
33

⎞⎟⎠
⎡⎢⎣
⎛⎜⎝θ

P,g
1

θ
P, f
2

θ
P, f
3

⎞⎟⎠−

⎛⎜⎝X1,g
t

X2, f
t

X3, f
t

⎞⎟⎠
⎤⎥⎦ dt +

⎛⎜⎝σ
g
11 0 0
0 σ

f
22 0

0 0 σ
f

33

⎞⎟⎠
⎛⎜⎝dW 1,g

t

dW 2, f
t

dW 3, f
t

⎞⎟⎠
(3.5)

Christensen et al. (2011) derive the yield-adjustment term, which we introduce in equa-
tion 2.1, for both the correlated and independent-factor AFNS in analytical form. For an
independent-factor AFNS model the yield-adjustment term A(t,T )

T−t has the form

A(t,T )
T − t

= σ
2
11
(T − t)2

6
+σ

2
22

[
1

2λ 2 −
1

λ 3
1− e−λ (T−t)

T − t
+

1
4λ 3

1− e−2λ (T−t)

T − t

]
+σ

2
33

[
1

2λ 2 +
1

λ 2 e−λ (T−t)− 1
4λ

(T − t)e−2λ (T−t)− 3
4λ 2 e−2λ (T−t)

− 2
λ 3

1− e−λ (T−t)

T − t
+

5
8λ 3

1− e−2λ (T−t)

T − t

]
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3.3.2 Modelling Foreign Exchange Rates

In order to extend our model to foreign exchange rates we have to understand what drives
exchange rate dynamics. The main relevant concepts to look at here are the pricing kernel (also
known as stochastic discount factor) and the market price of risk. The market price of risk
Γt , that we introduced in equation 3.2 reflects the change of drift between the risk-neutral and
physical probability measure under the Girsanov theorem. A detailed review of the Girsanov
theorem is beyond the scope of this thesis, for further reference we recommend Steele (2001)
and Øksendal (2003).

According to Backus, Foresi, and Telmar (2001) pricing kernels are "stochastic processes
governing the prices of state-contingent claims", that satisfy

1 = Et(Mt+1Rt+1)

where m is the pricing kernel and Rt+1 represents the return on an asset between t and t + 1.
A pricing kernel must exist in a complete market that prohibits arbitrage opportunities, which
is related to the existence of an equivalent martingale measure under the absence of arbitrage
as established by Harrison and Kreps (1979). For the purpose of this thesis, we assume the
following specification of the pricing kernel (cf. Egorov, Li, & Ng, 2011)

dMt

Mt
=−rt dt −Γ

′
t dWt (3.6)

We define St as the domestic currency spot price of one unit of foreign currency and call St+1/St

the depreciation rate of said domestic currency. Backus et al. (2001) define the relationship
between exchange rates and pricing kernels as

M f
t+1

Md
t+1

=
St+1

St
(3.7)

Under the application of Itô’s Lemma we can obtain the SDE governing the exchange rate
dynamics from equations 3.6 and 3.7.

dSt

St
=
[
(rd

t − r f
t )+Γ

d′
t (Γd

t −Γ
f
t )
]

dt +(Γd
t −Γ

f
t )

′ dWt (3.8)

Analysing equation 3.8 we observe that the exchange rate dynamics are governed by the interest
rate differential between the domestic and foreign instantaneous interest rate and the quadratic
differential of the market price of risk. Equation 2.1 implies that the instantaneous interest rate
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is the sum of the first two state variables, i.e. rt = X1
t +X2

t . Following Duffee (2002) we assume

Γt = γ
0 + γ

1Xt

dXt = KQ(θ Q −Xt)dt +ΣdW Q
t

Through change of measure under the Girsanov theorem

dW Q = dW P +Γt

KQ(θ Q −Xt)dt +Σ
(

dW P
t +Γt dt

)
= KP(θ P −Xt)dt +ΣdW P

t

KQ(θ Q −Xt)dt +ΣdW P
t +ΣΓt dt = KP(θ P −Xt)dt +ΣdW P

t

KQ(θ Q −Xt)dt +ΣΓt dt = KP(θ P −Xt)dt

KQ
θ

Q −KQXt +Σ(γ0 + γ
1Xt) = KP(θ P −Xt)

KQ
θ

Q −KQXt +Σγ
0 +Σγ

1Xt = KP(θ P −Xt)

−(KQ −Σγ
1)Xt +KQ

θ
Q +Σγ

0 = KP(θ P −Xt)(
KQ −Σγ

1
)(KQθ Q +Σγ0

KQ −Σγ1 −Xt

)
= KP(θ P −Xt)

This implies that parameters for the market price of risk (cf. equation 3.2) γ0 and γ1 are

KP = KQ −Σγ
1

γ
1 = Σ

−1(KQ −KP)

and imposing θ Q = 0, which is equivalent to fixing the mean levels of the state variables (cf.
Christensen et al., 2011)

θ
P = (KP)−1 (KQ

θ
Q +Σγ

0)

θ
P = (KP)−1

Σγ
0

γ
0 = Σ

−1 KP
θ

P

3.3.3 Estimation Framework

We continue with describing the estimation process for the two and four currency implementa-
tions of the model presented beforehand. We conduct a maximum likelihood estimation using a
Kalman filter to determine the parameters following the approach of Christensen et al. (2011).
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The exchange rate calibration requires the use of an extended Kalman filter due to the non-
linear properties of the exchange rate dynamics. The number of parameters to be estimated is
20 for the two-currency model and 34 for the multi-currency model. The conditional mean and
covariance matrix in the AFNS model have the following closed-form solution

EP[XT |Ft ] = (I− exp(−KP
∆t))θ P + exp(−KP

∆t)Xt ∆t = T − t

V P[XT |Ft ] =
∫

∆t

0
e−KPs

ΣΣ
′e−(KP)′s ds

The state transition equation has the form

Xt = (I− exp(−KP
∆t))θ P + exp(−KP

∆t)Xt +ηt ∆t = ti − ti+1

Based on the equation 2.1 the AFNS measurement equation yt = A+BXt + εt for each separate
currency is

⎛⎜⎜⎜⎜⎝
yt(τ1)

yt(τ2)
...

yt(τN)

⎞⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1−e−λτ1
λτ1

1−e−λτ1
λτ1

− e−λτ1

1 1−e−λτ2
λτ2

1−e−λτ2
λτ2

− e−λτ2

...
...

...

1 1−e−λτN
λτN

1−e−λτN
λτN

− e−λτN

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎝X1

t

X2
t

X3
t

⎞⎟⎠−

⎛⎜⎜⎜⎜⎜⎜⎜⎝

A(τ1)

τ2
1

A(τ2)

τ2
2
...

A(τN)

τ2
N

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎝
εt(τ1)

εt(τ2)
...

εt(τN)

⎞⎟⎟⎟⎟⎠

Here we denote the vector containing the yield-adjustment term as A and the factor loadings
matrix as B. Both are dependent on the model parameters, which we denote as ψ . N indicates
the number of observations. The transition and measurement error are diagonal matrices with
the variance Q and H

ηt ∼N (0, Q)

εt ∼N (0, H)

Q =
∫

∆t

0
e−KPs

ΣΣ
′e−(KP)′s ds

H = diag(σ2
ε (τ1), . . . ,σ

2
ε (τN))

We initialise the state vector with

E[Xt |F0] = θ
P var[Xt |F0] =

∫ inf

0
e−KPs

ΣΣ
′e−(KP)′s ds



Chapter 3. Data and Methodology 18

The prediction step is

EP[Xt |Ft−1] = Φ
X ,0
t (ψ)+Φ

X ,1
t (ψ)Xt−1

var[Xt |Ft−1] = Φ
X ,1
t (ψ)var[Xt−1]Φ

X ,1
t (ψ)′+Qt(ψ)

where

Φ
X ,0
t (ψ) = (I− exp(−KP

∆t))θ P

Φ
X ,1
t (ψ) = exp(−KP

∆t)

The state vector is then updated according to

Xt = EP[Xt |Ft ] = EP[Xt |Ft−1]+var[Xt |Ft−1]B(ψ)′F−1
t vt

var[Xt ] = cov(vt) = B(ψ)var[Xt |Ft−1]B(ψ)′+H(ψ)

where

vt = yt −E[yt |Ft−1] = yt −A(ψ)−B(ψ)EP[Xt |Ft−1]

Ft = cov(vt) = B(ψ)var[Xt |Ft−1]B(ψ)′+H(ψ)

The Gaussian log likelihood for a given set of parameters ψ is

log l(y;ψ) =−N
2

log(2π)− 1
2

T

∑
t=1

[
log |Ft |−

1
2

v′tF
−1

t vt

]
(3.9)

The extended Kalman filter is required incorporate the exchange rates into the estimation.
As we pointed out previously the exchange rate dynamics are a quadratic function of the market
price of risk for each currency and therefore of the state variables Xd

t and X f
t . The extended

Kalman filter uses a first order Taylor series expansion around the prediction point to linearise
the measurement equation. Assuming the same measurement error as for the interest rates εt ,
the measurement equation for the exchange rates is

∆St

St−1
= Φ(Xt)+ εt
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We consider a discretisation of the continuous time exchange rate dynamics to approximate the
percentage change

EP
[

∆St

St

⏐⏐⏐⏐Ft

]
= Φ(EP[Xt |Ft ]) = EP

[
(rd

t+1 − r f
t+1)+Γ

d′
t+1(Γ

d
t+1 −Γ

f
t+1)

⏐⏐⏐Ft

]
∆t

The measurement equation therefore becomes

∆St

St−1
=
[
(rd

t − r f
t )+Γ

d′
t (Γd

t −Γ
f
t )
]

∆t + εt ∆St = St −St−1

The first order Taylor series expansion takes the form

Φ(Xt) = Φ(EP[Xt |Ft−1])+
∂Φ(Xt)

∂Xt

⏐⏐⏐⏐
EP[Xt |Ft−1]

(Xt −EP[Xt |Ft−1]) (3.10)

(3.11)

By rearranging our linear approximation of Φ(Xt) in equation 3.10 we find that

AFX(ψ) = Φ(EP[Xt |Ft−1])+
∂Φ(Xt)

∂Xt

⏐⏐⏐⏐
EP[Xt |Ft−1]

EP[Xt |Ft−1])

BFX(ψ) =
∂Φ(Xt)

∂Xt

⏐⏐⏐⏐
EP[Xt |Ft−1]

where

∂Φ(Xt)

∂Xt
=

∂

∂Xt

[
(rd

t − r f
t )+Γ

d′
t (Γd

t −Γ
f
t )
]

∆t

=
∂

∂Xt

[
(X2,d

t −X2, f
t )+(γd

0 )
′(γd

0 − γ
f

0 )+(γd
0 )

′
γ

d
1 Xd

t − (γd
0 )

′
γ

f
1 X f

t )

+(Xd
t )

′(γd
1 )

′(γd
0 − γ

f
0 )+(Xd

t )
′(γd

1 )
′
γ

d
1 Xd

t − (Xd
t )

′(γd
1 )

′
γ

f
1 X f

t

]
∆t

=
[
(γd

1 )
′
γ

d
0 − (γ

f
1 )

′
γ

d
0 +(γd

1 )
′(γd

0 − γ
f

0 )+(γ1d)′γd
1 Xd +(γd

1 )
′
γ1dXd

t

−(γd
1 )

′
γ

f
1 X f

t − (γ
f

1 )
′
γ

d
1 X f

t

]
∆t

With these results we can use the Kalman filter as described before by combing the terms factor
loadings matrices B and BFX and the (yield-)adjustment terms A and AFX . Moreover the vector
vt has to be extended to incorporate ∆St/St−1.

Unlike Christensen et al. (2011), who use a Nelder-Mead simplex algorithm, we numerically
maximize our likelihood function using a particle swarm optimization algorithm as outlined by
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Kennedy and Eberhart (1995). We find that in our extended model with a higher number of
parameters this is computationally more efficient. An in-depth study of deployable algorithms
for the given optimization problem is beyond the scope of this thesis.
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Chapter 4

Results

In the following chapter we present our results given the data described in section 3.1 and our
estimation framework given in section 3.3.3. We progressively extend the model starting with
a plain two-currency AFNS model, then extending it to foreign exchange rates and lastly to
a four-currency model. In order to evaluate forecasting performance of the models we use
a backtesting approach. For the two-currency models we estimate the model quarterly and
compare the forecasts to the real rates. Our forecasting horizon are 1, 3, 6 and 12 months. Due
to the time-consuming estimation process, the multi-currency model is only estimated annually.
For both cases the minimum training window for the model is limited to 5 years.

FIGURE 4.1: In-Sample fit for a two-currency (EUR/USD) AFNS model. Three
maturities are shown: 3 months, 2 years and 10 years.
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As we presented in section 3.1 we use bootstrapped zero-coupon bond interbank rates as the
underlying data of our model. A crucial point from our perspective is the choice of maturities
among the variety of rates available that we use to calibrate the model. For the purpose of this
thesis the maturities we select are 1, 2, 3, 6 and 12 months as well as the 5, 10 and 25 year
rates. Our intuition for overweighting short-term rates stems from the assumption that they
are a stronger driver of foreign exchange spot rates. The trade-off is a potentially decreasing
ability of the model to capture they dynamics of the long end of the yield curve. Limiting our
choice of maturities reduces the computational burden in the estimation process. With higher
computational capacities an extension of the fit of the model to a wider array of maturities is
feasible.

4.1 Two-Currency AFNS

First, we take a look at the most simple extension of the original arbitrage-free Nelson Siegel
model: an extension to two currencies. As introduced in chapter 3 we will assume a global level
factor and local slope and curvature factors. We show in-sample fit of the model estimated as
laid out in section 3.3.3 and then we evaluate forecasting performance.

Figure 4.1 shows in-sample fit for a two-currency model for three different maturities and
compares them to the bootstrapped zero-coupon bond rates based on actual data. As we can
observe, we obtain good in-sample performance of the model for the EUR/USD currency pair-
ing. Table 4.1 shows and residual means and root-mean-square errors (RMSE) for a range on
maturities. The RMSE is noticeably smaller for short-term maturities, which is in line with the
choice of maturities to calibrate the model. As we chose to overweight short-term maturities for
the estimation, we expect to see a better fit here. It is evident that the model is able to capture
the abrupt changes of the short-term interest rates during the financial crisis of 2008 while at
the same time replicating the following period of stable, low interest rates.

We conduct the same estimation process for the EUR/JPY and EUR/GBP for robustness and
find similar results. The results are consistent with the in-sample fitting errors shown by Chris-
tensen et al. (2011). As expected our RMSEs are slightly higher, which is reasonable due to
their estimation just capturing a single term structure. It has to be noted that a direct comparison
is difficult due the different data used by them and can only serve as a mere guideline.

We investigate the out-of-sample forecasting performance of the two-currency AFNS em-
pirically find that the root-mean-square forecasting errors (RMSFE) are significantly larger than
the RMSE we observe in-sample. Table 4.2 shows the RMSFE for the EUR/USD pairing. As
expected we see that the forecasting error increases for longer forecasting horizons. Curiously
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Euro US-Dollar

Maturity Mean RMSE Mean RMSE

1 -0.78 2.76 0.01 2.54
2 -2.54 4.50 -1.98 4.15
3 1.50 4.02 1.82 4.51
6 1.97 4.47 0.73 3.67

12 0.48 2.78 -0.33 2.45
24 -9.41 13.76 -13.17 18.68
36 -16.95 39.29 -16.13 45.82
48 -22.23 43.80 -19.57 45.35
60 -25.61 45.39 -20.98 42.34
72 -26.99 45.12 -20.52 38.34
84 -26.86 43.60 -18.84 34.42
96 -25.53 41.38 -16.42 31.19

108 -23.33 38.74 -13.23 28.32
120 -20.41 36.03 -9.11 26.07
144 -12.38 31.80 1.52 24.57
180 1.18 31.35 18.39 31.60
240 24.91 42.34 47.60 55.46
300 51.85 62.83 80.29 86.82

TABLE 4.1: Summary statistics for in-sample model fit. Maturities are in months;
residual means and root-mean-square errors are in basis points. Maturities used

to fit the model are printed in bold.

this is especially pronounced for the rates up to one year, which were overweighted in the esti-
mation. Among the mid- to long-term maturities the errors increase significantly less for longer
forecasting horizons. We obtain similar results for EUR/GBP and EUR/JPY, indicating that this
is a general issue of the estimation process.

The one-month ahead forecast shown in figure 4.2 show that the forecasts are overall fairly
close to the actual rates but are at single dates significantly off. For the Euro IBOR rates the
model manages to forecast the sharp decline in short-term interest rates during the financial
crisis. The forecasted direction of change is only correct in about half or less of the forecasts.

For the six-month ahead forecast in figure 4.3 we can observe the higher error as reflected in
the RMSFE. The forecasts constantly overestimate the magnitude of changes, which becomes
specifically apparent in the very stable interest rate environment of the short-term rates after the
financial crisis.

The root-mean-square forecasting error results for our model are a magnitude higher than
what Christensen et al. (2011) find for a single currency. For their data they show RMSFEs in
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FIGURE 4.2: Interest rate forecasts with a forecasting horizon of h = 1 month
conducted quarterly. The figure shows the 6 month and 10 year zero-coupon bond
yields for Euro. The coloured dots indicate weather the direction of change is

forecasted correctly.

a range between around 60 and 160 bps for a twelve-month ahead forecast. While they find
their errors decreasing for longer maturities, for our data we find the RMSFE to be lowest in
a maturity range of 5-15 years as displayed in table 4.2. The differing choice of maturities
may contribute to the different distribution of RMSFEs across maturities between our and their
results.

4.2 Two-Currency AFNS with Exchange Rates

As our focus is forecasting the joint behaviour of interest rates and foreign exchange rates,
we now move on to an extended model including foreign exchange rates as described in sec-
tion 3.3.2. We mainly limit the presentation of results to forecasting errors.

Table 4.4 shows the interest rate forecasting error for the model extended to capture the
exchange rate dynamics. As previously in the interest-rate-only two-currency model we find
increasing errors for longer forecasting horizons. Across maturities the errors are lowest for
maturities between 5 and 15 years. Comparing the results to the interest-rate-only model we
present in the previous section we find that the changes are mixed. For short-term maturities
we find that results worsen slightly for Euro interest rate one- and three-month ahead forecasts,
while for the longer horizons and especially the US-Dollar they are better. For maturities be-
tween one year and ten years the forecasts mostly improve and for the long end of the curve
they worsen significantly.
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FIGURE 4.3: Interest rate forecasts with a forecasting horizon of h = 6 month
conducted quarterly. The figure shows the 6 month and 10 year zero-coupon bond

yields for Euro.

Euro US-Dollar

h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12

1 35.34 91.36 171.78 291.23 99.46 131.59 189.12 280.23
2 35.72 91.34 170.54 288.31 101.53 132.76 188.48 277.01
3 32.05 85.47 164.20 281.22 97.31 124.40 179.61 269.45
6 29.74 81.03 156.90 269.20 98.81 123.10 173.68 257.78
12 27.25 75.41 145.61 249.21 97.19 118.55 162.53 236.41
24 32.00 71.71 133.95 226.69 100.73 116.89 151.93 212.19
36 57.62 85.31 135.03 213.11 104.23 116.69 148.47 200.36
48 60.20 83.78 129.10 200.96 92.80 103.54 133.56 182.78
60 59.65 80.82 123.23 190.62 80.36 90.51 120.40 169.35
72 57.16 76.98 117.39 181.80 68.90 78.97 109.84 159.62
84 53.62 72.83 112.18 174.33 59.58 70.05 102.21 153.42
96 49.81 69.13 107.66 168.35 53.14 64.34 97.75 150.08

108 46.40 66.18 104.16 163.72 49.44 61.50 95.63 148.66
120 44.06 64.36 101.97 160.55 48.65 61.27 95.48 148.77
144 43.95 64.86 100.62 157.32 53.98 67.26 99.78 152.22
180 54.12 73.77 105.83 159.06 70.56 84.09 112.82 162.26
240 79.48 96.88 123.52 171.16 105.47 118.34 142.04 186.10
300 110.51 126.42 148.79 190.71 146.27 158.73 178.74 217.93

TABLE 4.2: RMSFEs for out-of-sample interest rate forecasting. Maturities are in
months; root-mean-square forecasting errors are in basis points. Maturities used

to fit the model are printed in bold.
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h EUR/USD EUR/JPY EUR/GBP

1 0.0350 0.0398 0.0228
3 0.1018 0.1402 0.0539
6 0.2214 0.4373 0.1459
12 0.4550 1.0639 0.3773

TABLE 4.3: Exchange rate RMSFEs for out-of-sample forecasting. Forecasting
horizons are in months; root-mean-square forecasting errors are in Euro.

The extended model allows to forecast foreign exchange rates as well. In a similar pattern
to the interest rate forecasts the forecasting error rises for longer forecasting horizons. Table 4.3
displays forecasting error for exchange rates. Here each currency pairing is estimated sepa-
rately. The forecasting errors are the highest for the Euro/Yen pairing, the best estimation is for
the Euro and Pound pairing.

FIGURE 4.4: USD/EUR exchange rate forecasts with a forecasting horizons of 1,
3, 6 and 12 months conducted quarterly.
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Figure 4.4 plots exchange rate forecasts and actual exchange rates for the US-Dollar and
Euro currency pairing for different forecasting horizons. While for the one-month ahead fore-
cast the forecasted rates still generally reflect the evolution of the market rates, the forecasts for
longer horizons are much dispersed. One estimation especially stands out as an strong outlier,
indicating that the estimation process for this forecasting date fails to find a good estimator for
the parameters of the state variables. In the exchange rate dynamics this especially stands out
due to the quadratic market price of risk term. This makes the exchange rate dynamics espe-
cially sensible to subpar estimations of the parameters, which enter the conditional expectation
of the state variables. The forecasts for the EUR/GBP and EUR/JPY currency pairings display
similar extreme outliers.

Euro US-Dollar

h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12

1 98.40 134.15 180.23 261.01 77.35 111.70 158.85 243.56
2 92.76 129.93 176.87 257.67 71.78 108.52 156.89 241.38
3 81.76 120.27 169.07 250.45 62.13 97.59 148.27 235.78
6 65.60 106.52 157.58 237.81 46.85 86.69 140.41 228.60
12 45.02 90.06 142.82 216.87 29.44 74.25 128.29 214.82
24 33.19 77.33 128.36 193.24 28.11 72.39 120.22 196.22
36 37.84 70.39 119.78 175.52 41.84 84.68 130.80 190.30
48 36.71 65.14 112.58 165.04 43.51 83.07 125.96 178.56
60 36.14 61.25 107.30 157.03 43.34 80.04 120.89 168.27
72 35.37 58.54 103.27 151.08 42.34 76.68 116.41 160.18
84 34.69 56.73 100.69 146.87 41.88 74.25 113.53 154.44
96 34.46 56.29 99.57 144.88 42.38 73.22 112.40 151.12

108 35.38 57.48 100.03 144.48 43.95 73.52 112.66 149.89
120 38.05 60.39 102.01 145.70 46.63 75.34 114.36 150.56
144 48.99 71.49 110.45 153.45 57.31 83.77 122.04 157.30
180 76.04 98.01 132.99 174.36 82.76 106.88 142.99 178.31
240 135.46 156.63 188.02 227.39 145.44 167.98 200.28 237.03
300 213.27 234.01 263.59 301.92 232.54 254.55 284.26 322.54

TABLE 4.4: RMSFEs for out-of-sample forecasting of interest rates in two-
currency extended model with foreign exchange rates. Maturities are in months;
root-mean-square forecasting errors are in basis points. Maturities used to fit the

model are printed in bold.

The difficulty to find a good estimate is reflected in the results of the likelihood function as
laid out in equation (3.9). Due to the extending window we expect a linear increase of the log
likelihood given the same fit for the increasing number of observations. In practice we find the
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likelihood of the estimations highly volatile, which leads to the conclusion that the optimization
of the estimated parameters is not sufficient.

4.3 Multi-Currency AFNS with Exchange Rates

Lastly, we apply the extended AFNS to a four-currency setting. As the estimation process for
the larger amount of data is significantly more time-consuming we only evaluate the model
annually. Again we only show forecasting results.

Table 4.6 provides root-mean-square forecasting errors for the joint model for all currencies.
Here we limit our focus to one- and six-month ahead forecasting horizons for the interest rates.
The errors for the joint multi-currency model do not exhibit a clear pattern, except being sub-
stantially high for the longest maturities (25 years). For almost all currencies and forecasting
horizons the errors tend to be lowest for maturities around 10 years. Generally, the forecasting
errors are about the same or lower for the six-month ahead forecasts compared to the one-month
horizon. This is unlike the results we present previously for the two-currency models, where
RMSFEs mostly increased for longer forecasting horizons.

A comparison of the results with table 4.4 suggests that an extension of the model to more
currencies does not necessarily harm the quality of the forecasts as RMSFEs for the six-month
ahead forecasts are lower and mostly in the same range for one-month ahead forecasts. We
have to note that with respect to the smaller amount of forecasts conducted for the multi-
currency model we cannot infer a general better forecasting performance in comparison to the
two-currency model.

h EUR/USD EUR/JPY EUR/GBP

1 0.0382 0.0487 0.0402
3 0.1370 0.1291 0.1218
6 0.2083 0.1808 0.2128
12 0.2574 0.2495 0.2818

TABLE 4.5: Exchange rate RMSFEs for out-of-sample forecasting. Forecasting
horizons are in months; root-mean-square forecasting errors are in Euro.

Table 4.5 provides root-mean-square forecasting errors for the exchange rates between the
currencies. It shows that forecasting errors are approximately in the same range for all cur-
rency pairings, suggesting there are no currency-specific features that would significantly lower
forecasting performance. For all exchange rates the errors increase for longer forecasting hori-
zons. Comparing the results to the two-currency model in table 4.3 we observe that for the
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shorter forecasting horizons the RMSFEs are in the same range, while actually being lower for
longer horizons. This could be due to unobservable interrelations between the currency pairings
captured by the model. We need to restate the limited amount of forecasts conducted for the
multi-currency model, which does not provide enough data to validate this claim.

FIGURE 4.5: Exchange rate forecasts with a forecasting horizon of h = 3 months
conducted annually.

Figure 4.5 plots three-month ahead FX forecasts for all currency pairings. The plot shows a
similar picture to what we see for the two-currency model’s exchange rate forecast in Figure 4.4.
While the forecasted exchange rate is mostly in the range of the actual rate there are strong
outliers in all currency pairings. As they happen at the same forecasting dates for all exchange
rates, we deduct that this is likely due to an estimation issue.
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EUR USD JPY GBP

h=1 h=6 h=1 h=6 h=1 h=6 h=1 h=6

1 110.30 92.79 129.73 152.19 160.22 189.38 140.57 155.26
2 100.71 86.74 121.48 146.08 156.05 185.81 129.15 147.05
3 97.37 84.69 114.60 141.85 152.46 178.76 123.15 143.87
6 79.98 76.56 104.20 133.11 149.98 172.75 104.63 132.08
12 53.85 64.57 109.20 125.69 162.35 173.08 92.52 123.62
24 35.54 57.88 140.54 125.75 202.12 191.77 102.01 123.14
36 55.79 52.96 161.72 131.65 224.61 198.86 121.98 126.58
48 62.99 54.57 154.44 125.56 232.05 200.19 124.24 128.45
60 62.32 52.84 140.87 115.09 231.79 196.66 120.13 126.15
72 55.95 51.81 124.60 104.77 226.66 189.53 113.53 123.52
84 47.11 54.68 108.28 97.38 218.44 180.54 107.39 121.90
96 39.93 63.68 93.51 93.91 208.31 170.75 103.15 122.59

108 39.88 78.11 81.26 94.65 197.36 161.27 102.32 126.38
120 49.35 96.19 71.90 99.13 186.56 153.30 104.97 132.99
144 86.09 139.91 67.14 117.30 168.24 143.46 120.18 154.03
180 155.66 212.65 92.49 155.90 154.00 149.07 157.43 195.82
240 282.11 339.89 168.17 235.19 179.45 205.00 235.77 278.43
300 417.20 475.97 264.37 331.45 253.75 293.99 332.10 377.82

TABLE 4.6: RMSFEs for out-of-sample interest rate forecasting. Maturities are in
months; root-mean-square forecasting errors are in basis points. Maturities used

to fit the model are printed in bold.
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Chapter 5

Conclusion

The purpose of this thesis has been to establish a framework that allows forecasting of in-
terest and exchange rates for multiple currencies in a joint model. The necessity for such a
model arises due to the complex exposures of institutions to multiple sources of interest rate
and foreign exchange risk, which are highly correlated across currencies and therefore must be
modelled jointly. The Nelson Siegel class of term structure models, whose factors are level,
slope and curvature, is popular among practitioners and researchers due to the clear financial
and macroeconomic interpretation of its factors.

Our empirical analysis is based on interbank rates and spot exchange rates for four major
currencies: Euro, US-Dollar, Japanese Yen and Pound Sterling. Interbank rates play a signifi-
cant role in fixed income markets, especially for hedging through derivatives. We establish sup-
port for three-factor models, such as the Nelson Siegel class of term structure models through
principal component analysis, which we conduct on a local basis for each separate currency and
globally for all rates across currencies. On the whole, the results of the PCA and the correlations
between the empirical proxies for level, slope and curvature lead us to assume a global level fac-
tor and local slope and curvature factors. This allows our model to exhibit similar correlations
across term structures as observed empirically.

We therefore extend the independent-factor arbitrage-free Nelson Siegel model, which is a
specific case of affine model in the Duffie-Kan framework exhibiting the Nelson Siegel factor
loadings, to a multi-currency setting including exchange rate dynamics and provide an esti-
mation framework. In the arbitrage-free Nelson Siegel model, the state variable dynamics are
assumed to follow Ornstein–Uhlenbeck processes, which are Gaussian and mean reverting. In
the independent-factor AFNS that we choose here, the factor dynamics under the physical mea-
sure are independent of each other. The market price of risk, which represents the change of
drift between the risk-neutral and the physical measure under the Girsanov theorem, is assumed
to be an essentially affine function on the state variables. This allows to put some constraints
on the parameters of the market price of risk, which in turn is a parameter of the exchange
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rate dynamics. The estimation framework is based on a Kalman filter which provides us with a
maximum likelihood estimate, which is maximised using particle swarm optimisation.

Overall the empirical results show that while good in-sample performance is readily achiev-
able, the performance of out-of-sample forecasts varies substantially. We show results for three
different extensions of the arbitrage-free Nelson Siegel model. An extension to two currencies
is the simplest case, which is then extended to incorporate foreign exchange rates and finally
placed in a four-currency setting. For the two-currency model we check robustness by sepa-
rately estimating the models for all foreign currencies in combination with the Euro.

With the exception of the multi-currency model forecasting errors increase for longer fore-
casting horizons. In the multi-currency model we obtain similar results for both the one-month
ahead and six-month ahead forecast. However, these findings cannot be taken as evidence for a
similar forecasting ability for both forecasting horizons as the amount of forecasts conducted is
to small.

In all models the root-mean-square forecasting errors are the highest on the long end of
yield curve for a maturity of 25 years. Furthermore, we observe higher root-mean-square errors
for the short-term maturities up to one year, although these are used to estimate the model
parameters. This can be a possible effect of overfitting.

Plotting the forecasts over time shows that the forecasting errors are significantly influenced
by extreme outliers, which are especially pronounced for exchange rate forecasts. In these cases,
it is likely that the estimation process fails to find a good estimate of the model parameters,
which in turn drive the conditional expectations of the state variables. While the arbitrage-free
Nelson Siegel model is a parsimonious model for a single term structure, the complexity of
a joint model increases considerably. The increased degrees of freedom lead to difficulty in
finding a global maximum of the likelihood. The outliers are likely caused by the estimation
process finding at a local maximum with economically insensitive model parameters.

The overall results indicate that a starting point to improve forecasting performance is the
robustness of the estimation process. We see three approaches to improve this: choice of a
different optimisation algorithm, running a more rigorous and time-consuming estimation pro-
cess and improving computational efficiency. While the Kalman filter is a proven algorithm for
parameter estimation, the methodology of the maximisation algorithm for the likelihood esti-
mation has been beyond the scope of this thesis and is an extensive research topic itself. The
parameter estimation process implemented in Python for the multi-currency model already has
already required around 100 hours of runtime on a conventional computer. Therefore, we sug-
gest on improving computational efficiency first. Ceteris paribus we expect significant runtime
reduction under an implementation optimised for multi-core systems or in a compiled language.
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