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ABSTRACT 

This thesis implements the Maximization-Maximization (MM) algorithm proposed by 

Forte and Lovreta (2012), where in the first step the expected assets rate of return and the 

asset volatility are estimated applying the Maximum Likelihood technique. As the firm’s 

assets value is not observable, the observed equity values are treated as transformed data 

in order to derive the log-likelihood function. In a second step, the default barrier is 

estimated according to the interests of shareholders, corresponding to the optimal level 

considered for the firm to default, and as the one that maximizes their participation. Using 

a sample of fifty-five companies and a time period for the estimation of one year, our 

results prove that estimating the expected rate of return is hard and does not provide 

statistically significant results, as it is dependent and highly correlated to the observed 

equity values. The results for the five-year default probabilities computed were most of 

them equal to zero or too high. 

 

ABSTRACT PORTUGUESE 

Esta tese implementa o algoritmo Maximization-Maximization (MM) proposto por Forte 

e Lovreta (2012), em que no primeiro passo, o retorno esperado dos ativos e a volatilidade 

destes são estimados aplicando a técnica da Máxima Verosimilhança. Como o valor dos 

ativos da empresa não é observável, os valores do capital próprio são tratados como dados 

transformados de forma a derivar a função log-likelihood. Num segundo passo, a barreira 

de incumprimento é estimada de acordo com os interesses dos acionistas, correspondendo 

ao nível ótimo considerado para a empresa entrar em incumprimento, bem como àquela 

que maximiza a participação destes. Usando uma amostra de cinquenta e cinco empresas 

e um período de tempo de um ano para a estimação, os nossos resultados mostram que 

estimar a taxa de retorno esperado dos ativos é difícil e não fornece resultados 

estatisticamente significativos, por ser dependente e fortemente correlacionado com os 

valores do capital próprio. Os resultados das probabilidades de incumprimento a cinco 

anos calculadas foram na maioria igual a zero ou demasiado altas. 
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1. INTRODUCTION 

Structural credit risk models started with Merton (1974) where it is considered that a 

company financed by equity and debt, specifically a pure discount bond, is only able to 

fulfill with its financial obligations and repay debt in the case that at debt maturity, the 

assets market value is higher than the nominal debt value. Otherwise, assets are sold to 

pay to creditors and in that case, equity holders receive nothing. This model constituted a 

meaningful breakthrough in credit risk modelling due to a few core motives. First, they 

allow the computation of the probability of default (PD) and loss given default (LGD) of 

a company in a single setting. Second, they provide an economic explanation for the 

default event of companies, and in this setting, it means default occurs in the moment 

assets market value is lower than a certain level, denominated the default barrier. Third, 

these models can be calibrated using market data, meaning they are forward looking, 

which is undoubtedly an advantage when comparing to credit scoring models as the 

Altman’s Z-score or Logit models, that are based on backward looking information. 

Despite the initial enthusiasm around structural models, the first applications were in fact 

perceived as unsuccessful. Merton’s model usually generates low credit spreads and 

default probabilities tends to zero as debt maturity approaches, which is not 

unquestionably observable. Nevertheless, several models were then presented relaxing 

some of Merton’s initial assumptions, and one example of these model’s assumptions is 

related to the fact that default can only occur at debt maturity T if the total assets value is 

lower than debt’s. In particular, Black and Cox (1976) introduced the possibility of early 

default. Following Duan (1994), several papers were written emphasizing the weaknesses 

of the two main methods being used to estimate Merton’s model: the system of equations 

and the proxy method. Some other features were taken into consideration in an attempt 

to overcome some of the limitations related to the structural credit risk models. Forte and 

Lovreta (2012) considered the probability of a firm actually surviving along the time 

period. This adjustment on the model seems to be appropriate as it can indeed mirror a 

reality of a firm. However, considering the characteristics and advantages of using the 

structural credit risk models when compared to others, these are indeed more appropriate 

as they can be calibrated using market data, meaning they are forward looking. 

Disadvantages or features of these models can, however, limit the accuracy of their 

performance, leading then to corresponding unrealistic results. 
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Some of these papers favor the use of Maximum Likelihood (ML) to estimate the model 

parameters. Maximum Likelihood is a statistical method that basically consists in 

determining the parameter values that maximize the likelihood of the data processed 

being actually observed. In other words, given certain data, these parameter values will 

maximize the likelihood function. However, in the case of models based on early default 

where the barrier itself has to be estimated, estimating the default barrier through the 

Maximum Likelihood procedure becomes an issue, since it is unstable, as Forte and 

Lovreta (2012) demonstrate.  

The purpose of this dissertation is to implement the Maximization-Maximization (MM) 

algorithm suggested by Forte and Lovreta (2012). The latter breaks the model calibration 

in two steps. In the first step, the expected asset rate of return and the volatility of asset 

are estimated by applying the Maximum Likelihood technique, which is considered to 

have advantages when compared to other methods of parameters estimation. On the 

second step, the barrier level is estimated, according to the best interests of the 

shareholders as well as it corresponds to the level that maximizes equity holders claim. 

Once calibrated on a sample of fifty-five (55) non-financial European companies, the 

five-year probabilities of default are computed for all firms. The Maximization-

Maximization (MM) algorithm proposed by Forte and Lovreta (2012) is implemented 

using the R program. The code is provided in Appendix B.  

The remainder of this thesis is organized as follows. Section 2 analyses the literature on 

structural credit risk models as well as their limitations. Section 3 presents the structural 

credit risk model behind Forte and Lovreta (2012). Section 4 reviews the dataset used and 

explains the Maximization-Maximization algorithm. Section 5 describes and analyzes the 

results obtained from the model estimation. Finally, section 6 concludes. 
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2. LITERATURE REVIEW 

The main methodologies to measure default risk are the credit-scoring models, reduced-

form models and the structural models. Credit-scoring models basically use the 

company’s financial information and thus financial indicators as inputs, and in addition, 

each of these indicators has a weight associated which aims to reflect its relative ability 

to predict default. Moreover, the output generated corresponds to a numerical score which 

in its turn has associated a certain default probability. One of the most known scores 

applied to default risk is the Z-score, shaped by Edward Altman in 1968, and applied in 

the following way: the higher the score, the lower the likelihood of default occurring.  

Credit-scoring models are discussed by Altman and Saunders (1996), where they mention 

four approaches to develop these credit-scoring systems: the linear probability model, the 

logit model, the probit model and the discriminant analysis model, from which the two 

most used are logit and discriminant analyses. The logit model, for instance, considers 

accounting variables and assumes that default probability follows a logistic distribution. 

According to Altman and Saunders (1996), credit-scoring models have been criticized. 

The most impacting reasons they highlight are related to the linearity assumed in the 

variables when considering the linear discriminant analysis, which may not hold and 

therefore not being able to accurately predict default. Additionally, the fact that the 

models are accounting-based may result in a failure to include changes in the market 

conditions. Related to this, it must be emphasized that this methodology represents a 

significant disadvantage because these scores are backward-looking compared to the 

structural models, for instance, that are considered to be forward-looking.  

Nevertheless, one of the main conclusions of Reisz and Perlich (2007) is that accounting-

based measures, such as the Z-score, tend to present a better performance when compared 

to structural models if considering a timeframe of bankruptcy forecasts of one year. 

However, this performance decreases when the time horizon is greater. Therefore, these 

backward-looking measures are considered to be more relevant to predict default in a 

short-term basis, while forward-looking structural models are best suited to predict 

defaults for medium and long-terms. Altman and Saunders (1996) mention that other 

alternative models have been proposed in order to better predict default. 

Another methodology used to predict default is the reduced-form models. They are based 

in different assumptions regarding the information used when compared to the structural 
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models, as pointed out by Jarrow and Protter (2004). Their main conclusion regarding the 

information needed for these both types of models and the consequent prediction of 

default, relates to the information used. Whereas reduced-form models use less 

information and assume that the information available is the one the market can observe, 

it is assumed that structural models, on the other hand, usually access to continuous 

observations, specifically regarding the firm’s assets and liabilities. Nevertheless, for 

purposes of valuation and hedging of default risk, Jarrow and Protter (2004) remark that 

reduced-form models should be chosen. Besides that, these models have also been given 

support to be implemented since there is a consensus in the literature regarding the fact 

that the firm’s asset value is not continuously observable in time, according not only to 

Jarrow and Protter (2004), but also to other authors such as Ericsson and Reneby (2005). 

However, Andersan and Sundaresan (2000) indicate some of the limitations of reduced-

form models, being one of them the fact that they ignore the systematic risk in a portfolio 

of bonds.  

The third category of models that are able to predict default corresponds to the structural 

models, which have suffered changes, as proved by the literature. The first structural bond 

pricing model was introduced in 1973, designated as the Black-Scholes-Merton and 

known as Black-Scholes model. The Black-Scholes is an option pricing model used to 

calculate the value of derivatives. Altman and Saunders (1996) mention that in the BSM 

model, the probability of a firm going bankrupt depends not only on the market value of 

firm assets relative to its debt, but also on the volatility of the market asset’s value. such 

Black and Scholes (1973) indicate that some conditions of “perfect markets” are assumed, 

as the option (call or put) being European, meaning it can only be exercised at the 

maturity, and therefore default can only happen at that time; there are no dividends paid 

out; the risk-free rate is known and constant throughout time; the inexistence of 

transaction costs in the case of buying or selling the stock or the option; and finally, the 

fact that total returns follow a normal distribution.  

In the same setting, Merton (1974) indicates some assumptions that are considered to be 

simple and unrealistic. This model allows the use of BSM pricing formulas, and it is 

considered to be a structural model as it relates the asset structure with the default 

probability of the firm. One critical assumption in this model is that the firm issues only 

a single class of debt, specifically a zero-coupon bond, with a face value B payable at T, 

as previously mentioned regarding the BSM model. This is considered not to be a realistic 
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assumption as usually firms issue several bonds and assuming this, the default barrier will 

be determined considering only one liability. Sundaresan (2013) mentions that in case 

default happens, creditors take the assets of the firm. This idea is connected to the fact 

that Merton’s model considers that equity holders have a call option on the assets of the 

firm, meaning that if the assets value is higher than the debt value, then equity holders get 

the difference, otherwise they receive nothing. This model allows the computation of the 

probability of default (PD), as well as the recovery rate (RR), which provides the 

possibility to calculate the loss given default (LGD) measure, according to Sundaresan 

(2013). There is, however, a limitation this model faces that corresponds to the fact that 

the assets value is not observable, only the equity value is.  

Forte (2011) mentions that a reason for structural models still having disadvantages and 

thus resulting in poor performances, has to do with how the default barriers of companies 

are estimated. Several developments have been done throughout time in these regards. 

For instance, in order to explore and relax the assumption of Merton’s model (1974) 

previously mentioned related to the fact that default can only happen at maturity T, Black 

and Cox (1976) assumed that the firm could default at any time before debt matures, in 

an attempt to relax this assumption considered not to be realistic. It corresponded to one 

of the several extensions that the original structural credit risk model owns. This approach 

corresponds to the so-called first-passage-time and seems to be a more realistic 

assumption as usually firms issue several bonds to finance themselves, allowing default 

events to be more flexible. In the same study, it is analyzed the effect of considering safety 

covenants, which are described by Black and Cox (1976) as contractual provisions that, 

in case the firm is underperforming, give them the right to obligate the firm to declare 

bankruptcy, allowing them, in turn, to obtain the ownership of the assets. Since it can 

happen when the asset’s value of the firm falls below a certain level, this is a way for 

bondholders to be protected. Furthermore, they assume the firm pays a constant dividend 

to stockholders using this type of contract, in contrast with Merton’s model where, on its 

turn, it is assumed no dividends are paid out. Besides this, it is taken into consideration 

the junior (or subordinated) and senior debt, given that at maturity date, senior debtholders 

must have been paid prior to the junior ones.  

Black and Cox (1976) also demonstrate how can the default barrier be endogenously 

determined. However, and despite the fact that the model considers that the firm can 

default when the assets value becomes lower than a certain level, not providing only the 
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possibility to occur at maturity, which is already considered an advantage, it also has its 

disadvantages. One important limitation that is common to the Black-Scholes-Merton 

model corresponds to the idea that interest rates are constant, as already mentioned. This 

limitation is also present in Leland and Toft (1996), which corresponds to another 

extension of the Merton’s model. Nevertheless, after Merton (1974), there were attempts 

to overcome this restriction of the constant risk-free rate, as it is the example of Longstaff 

and Schwartz (1995) that allowed interest rates to be stochastic, applied in a first-passage-

time model proposed by Black and Cox (1976). 

Similar to Black and Cox (1976) that reveal there can be lower and upper boundaries 

given either exogenously through the contract specifications, or endogenously from an 

optimal decision problem, also Leland (1994) was a key contribution to Merton’s model 

extensions, as it presented the incorporation of taxes in a model and developed an 

endogenous default barrier. When the default boundary is generated endogenously, it 

allows the borrower, that can correspond to the shareholders of the company that is 

finances by equity and debt, to literally decide in which moment will the firm default. 

Leland (1994) also introduced bankruptcy costs, interpreted as liquidation costs. 

Similarly, Leland and Toft (1996)’s main conclusions consist on the fact that bankruptcy 

is declared under endogenous conditions and that it depends on the amount and maturity 

of debt, and also that the value of the assets that determine bankruptcy can be lower or 

higher compared to the value of debt. Another of their conclusions regarding the optimal 

leverage for a firm, indicates that this level depends crucially on the debt maturity, which 

is demonstrated to be significantly lower when the firm is financed by shorter term debt. 

Nonetheless, Leland and Toft (1996) assume that the company issues debt with the same 

principal, coupon and maturity. If one decides to define the default barrier exogenously, 

this could be done for instance by applying the KMV approach, which determines that 

the default point does not necessarily correspond to the moment when the firm’s assets 

are lower than the total debt, and that it is calculated considering the short-term debt and 

50% of the long-term debt of the firm.  

Besides the extensions that Merton’s model has caused, this KMV model also generated 

a fundamental impact in what concerns calculating the Expected Default Frequency 

(EDF), being one of its assumptions the normality of the asset returns. This approach 

changes the debt structure into a zero-coupon bond maturing in one year, just like Black 

and Scholes (1973) and Merton (1974). Expected Default Frequency is a forward-looking 
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measure of default probability that, according to Reisz and Perlich (2007), corresponds 

to the frequency that firms presenting the same Distance-to-Default, do indeed default. 

The Distance-to-Default is measured by the distance between the expected value of assets 

and the default point. Its calculation constitutes a great difference compared to Merton’s 

model regarding the computation of the probability of default. According to Crosbie and 

Bohn (2003), this measure corresponds to the number of standard deviations that the asset 

value is away from default, and to go from this to the default probability, historical default 

and bankruptcy frequencies are used. According to Reisz and Perlich (2007), in order to 

calculate the probability of default using the KMV model, a path of steps must be 

followed: firstly, the market value and volatility of the firm’s assets should be estimated; 

secondly, Distance-to-Default is measured; and finally, the default probability is 

calculated. Moody’s KMV model is one of the most used methods to calculate the 

Distance-to-Default measure. Besides, Sundaresan (2013) states that considering equity 

as a call option, dictated the success of the KMV model in terms of computing EDF’s.  

Jarrow and Turnbull (2000), for instance, compare the advantages and disadvantages of 

using the KMV model to estimate the probability of default. One of the strengths this 

model has is the fact that market information is incorporated on default probabilities when 

estimating the firm’s volatility and market values of assets using the market value of 

equity. This incorporation of information allows the model to be more reliable and 

updated, which according to Reisz and Perlich (2007) may lead to more accurate default 

predictions. Unfortunately, also this model has weaknesses that might put in danger the 

accuracy of these predictions, and that are pointed out by Jarrow and Turnbull (2000). 

One example is the fact that inputs such as the firm’s value, asset’s volatility and the 

expected return on the assets are not directly observed. Additionally, the use of historical 

data to calculate EDF is also perceived as a limitation since it is related to stationarity. 

This last assumption is hardly valid since there are changes in the economic cycle, hence, 

recessions and expansions provide different Distances-to-Default and therefore different 

default probabilities. Reisz and Perlich (2007) criticize this model as it implies default 

probabilities to be computed from historical data.  

The last methodology to calculate default risk corresponds to the structural credit risk 

models. Also, for these, there are some controversies regarding their performance. Forte 

and Lovreta (2012) explain the reason why structural models still might perform poorly. 

They mention that determinants as the asset value of the firm and its volatility not being 
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directly observable corresponds to a limitation that these models face to present improved 

performances in terms of estimation. Anderson and Sundaresan (2000) additionally 

conclude that these models have been difficult to be implemented successfully since they 

also face some limitations such as the need of getting extraordinary information in terms 

of data. Anderson and Sundaresan (2000) state that Merton’s model is not considered to 

be realistic measuring default risk when the default barrier is modelled exogenously. 

Tarashev (2005), on the other side, accomplishes that models based on defining default 

barrier exogenously, usually underestimate the default risk, and are influenced by three 

characteristics: the leverage ratio, the recovery rate and the risk-free rate. In the same 

paper, it is concluded that the best methodology in terms of the models’ performance 

corresponds to the endogenous default model settled by Leland and Toft (1996), where 

probabilities of default are considered to be approximated to the default rates. In the same 

line of reasoning, Andersan and Sundaresan (2000) indicate that endogenously 

determining the default barrier has improved the structural model’s performance in 

general, as well as Li and Wong (2008) demonstrate that endogenous default models do 

indeed present higher performances compared to exogenous models. In this setting, 

defining the moment when default can happen, if done endogenously, then the barrier 

will reflect an optimal decision inside the firm, as previously pointed out. Forte and 

Lovreta (2012) determine, through applying the Maximization-Maximization (MM) 

algorithm, the default barrier reflecting the best interests of shareholders, and thus 

obtaining an “endogenous” barrier that is obtained also with exogenous data. This default 

barrier corresponds to the optimal option that maximizes the equity holders’ participation. 

In what regards some of the characteristics and variables that are included when studying 

and estimating the default barrier, Andrade and Kaplan (1998), that studied the distress 

costs due to financial distress for a sample of thirty-one highly leveraged transactions 

(HLTs), estimated that the direct costs of financial distress are approximately of 3% of 

the asset value, and the distress costs in companies should be between 10% and 23% of 

the asset firm value. In what concerns the bond maturity to be considered, and following 

Stohs and Mauer (1996) who studied the determinants for debt maturity, they considered 

the relationship between the debt maturity and the bond rating provided to the firm. One 

of their conclusions is precisely the fact that firms that are attributed low or high bond 

ratings, usually have the lowest average debt maturity. Regarding firms that have a rating 

of AAA, which is the top credit rating of the scale that means bonds present the best 
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creditworthiness. This financial indicator is different according to the debt maturity each 

firm has. In their study, the credit rating levels were applied according to the period of 

1980-1989. For instance, a debt maturity of 2,34 was attributed to the AAA-rated firms. 
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3. THE STRUCTURAL MODEL OF FORTE (2011) 

Following Forte (2011), it is considered that a firm whose assets value, denoted by 𝑉𝑡, 

follows a continuous diffusion process given by: 

𝑑𝑉𝑡 = (𝜇 − 𝛿)𝑉𝑡𝑑𝑡 + 𝜎𝑉𝑡𝑑𝑧𝑡                     (1) 

where µ denotes the expected rate of return of the asset, σ corresponds to the asset return 

volatility, δ stands for the constant fraction of the assets that is sold to pay debtholders 

and shareholders, denominated as payout rate, and 𝑧𝑡 is defined as the standard Brownian 

motion process.  

Forte (2011) considers that the default event happens in the moment when the firm’s 

assets value 𝑉𝑡 equals 𝑉𝑏, corresponding to the critical point of default: 

𝑉𝑏 = 𝛽𝑃                               (2) 

where β is defined as a fraction of the total debt given by P that corresponds to the nominal 

value. Therefore, the default barrier, which is a crucial parameter in this estimation model, 

is considered to be an exogenously determined fraction of nominal debt. According to 

Leland and Toft (1996), in case default occurs, 𝑉𝑏 corresponds to the value of the assets 

that bondholders will receive.  

In this setting, one can state that the company is financed by both equity and debt, where 

the latter is finite, thus not perpetual, and also not rolled over. Besides this, it is assumed 

that the firm pays a constant coupon to the bondholders. The value of the company bonds 

is calculated via equation (3). To note that 𝑑𝑛 depends on both the asset’s firm value and 

bond’s maturity because it corresponds to a risky bond. 

       𝑑𝑛(𝑉𝑡, 𝜏𝑛) =
𝑐𝑛

𝑟
+ 𝑒−𝑟𝜏𝑛 [𝑝𝑛 −

𝑐𝑛

𝑟
] [1 − 𝐹𝑡(𝜏𝑛)] + [(1 − 𝛼)𝛽𝑝𝑛 −

𝑐𝑛

𝑟
] 𝐺𝑡(𝜏𝑛)         (3) 

where 𝑐𝑛 is the constant coupon, 𝑟 is the constant risk-free interest rate, 𝛼 corresponds to 

the default/financial distress costs, 𝜏𝑛 denotes the debt maturity of the firm, and 𝑝𝑛 the 

principal value of debt. Appendix A provides the expressions for 𝐹𝑡(𝜏𝑛) and 𝐺𝑡(𝜏𝑛). The 

following function (4) determines, according to the model, that total debt equals the sum 

of all the bonds value for each firm:  

𝐷(𝑉𝑡) = ∑ 𝑑𝑛(𝑉𝑡, 𝜏𝑛)𝑁
𝑛=1                       (4) 
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For simplification reasons, in this thesis it will be assumed that companies only have one 

bond in their capital structure, meaning this that n is equal to 1. Therefore, all the 

equations and computations will assume accordingly that there is only one maturity, one 

principal and one coupon paid for each firm, and thus τ_n= τ, p_n= P and c_n= c 

respectively. Note that the value of the nominal debt for each firm corresponds to the 

value of the first moment (t=1) of the time period considered for the estimation. The same 

applies also to the coupon values as a consequence of considering only one bond for each 

firm. Equation (3), that calculates the value of the company’s bond, assumes therefore 

that debt, maturity and coupon values are constant. 

The payout rate, given by δ, for each company, is calculated considering the average of 

the annual dividends paid in the last five years1 and the interest expenses paid in each 

moment of time t, divided by the sum of the nominal market capitalization and debt 

values, where the latter is a proxy for the asset value, which is not known ex-ante. In order 

to obtain one single value for the payout rate, it was computed the average of these values 

for the time period considered. 

Moreover, in order to calculate the equity value of the firm, the debt value is subtracted 

from the asset’s value as equation (5) demonstrates: 

𝑆𝑡 = 𝑔(𝑉𝑡) = 𝑉𝑡 − 𝐷(𝑉𝑡|𝛼 = 0)                        (5) 

Where the term D (V_t |α=0) is explained by the fact that in case of default occurring, the 

distribution of the asset value among the debtholders and distress costs are irrelevant on 

the equity holder’s perspective. Notice that the assets value 𝑉𝑡 equals the sum of the 

equity, debt value and bankruptcy costs considered for the firm. To elucidate also that 

𝑔(𝑉𝑡), which will be better explained later, is perceived as the function that transforms 

the observed equity values into the asset values. 

 

 

 

 

 

                                                           
1 Annual dividends for each firm were consulted on the correspondent Annual Reports. 
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4. DATASET AND THE MM ALGORITHM  

In the first part of this section, the dataset used to estimate the Forte (2011) model is 

described, and in the second part the Maximization-Maximization algorithm proposed by 

Forte and Lovreta (2012) is explained. In addition, it clarifies how is the model estimated 

in a two-step procedure. 

 

4.1. DATASET 

The sample considered in this dissertation corresponds to 55 non-financial European 

companies. These firms were selected considering the stock market indexes from France, 

Italy, Spain and Germany: CAC-40, MIB-40, IBEX-35 and DAX-30 correspondently. 

From the total of companies included in these indexes, some of them were excluded for 

a few reasons. First, similarly to Forte and Lovreta (2012), financial companies were left 

out as the application of structural models to these firms is usually more complex. Second, 

firms that presented significantly irregular amounts of dividends paid per year in the last 

years were similarly not included in order to accompany the line of reasoning of the model 

implemented which considers that the asset payout rate is constant. Furthermore, it is 

appropriate to have information about the expectation of this ratio in the long term. 

The following table summarizes the allocation among several economic sectors for the 

companies selected in the dataset. 

 

 Table 1- Information regarding the several sectors of the sample and the corresponding weights. 

 

Sector Number of companies Percentage

Utilities 7 13%

Energy 3 5%

Industrials 11 20%

Consumer Cyclicals 12 22%

Consumer Non-Cyclicals 6 11%

Technology 3 5%

Healthcare 5 9%

Basic Materials 5 9%

Telecommunications Services 3 5%

Sum 55 100%

Sector Allocation 
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For what can be observed, the sectors that presented the highest weights are “Consumer 

Cyclicals” and “Industrials”. 

For the time period considered, from 02-01-2015 to 31-12-2015, daily data regarding 

market capitalization, debt and interest expenses for all the four stock market indexes was 

taken out from Thomson Reuters. In line with the model that considers that the risk-free 

rate is constant, the risk-free interest rate considered here corresponds to the 10-year 

German government bond for the first day of the time period, 02-01-2015, which was 

0,313%. Distress costs, 𝛼, were considered to be 20% as it is a more conservative value 

according to the explanation given in section 2. Finally, debt maturity of bonds, τ, was 

assumed to be the same for all the firms for simplicity reasons, and it corresponded to 

3,312. All these data were used to proceed and implement the model estimation. The 

variable T is 52, corresponding to the daily data of the first day of the 52 weeks of the 

year considered.  

 

4.2. THE MM ALGORITHM 

The MM algorithm consists of two steps. The first step consists of finding the values of 

{𝜎, 𝜇} that maximize the Log-likelihood function, provided by equation (6), fixing β. To 

note that the value of β in this stage corresponds to its initial guess stated as β_0. The 

second and last step consists on estimating the β value that maximizes the shareholders’ 

participation, generating an updated value for this parameter.  

                                                           𝑀𝑎𝑥{𝜎,𝜇}𝐿(𝑉̂; 𝜎, 𝜇)                                              (6) 

The Maximum Likelihood of the first step of the algorithm is an estimation procedure. It 

provides the parameter values that make the observations of the sample the most probable 

to happen among the overall data set conditional on the assumed model. In our context, 

this translates to choosing the expected asset rate of return and asset volatility parameters 

that maximize the probability of observing the “observed” time series of equity values.  

In contrast to other methods, such as the method of moments, ML requires that one knows 

the density function behind the equity process. This is not known, though. One knows 

                                                           
2 This assumption was made because no data regarding the average debt maturity of the firms selected was 

available. It corresponds to the AA level bond rating according to Stohs and Mauer (1996)’s study, given 

in Table 4 of the paper. 
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however that equity is a function of the asset process, whose returns are normally 

distributed. Even though the asset process is not observed, there is a one-to-one 

relationship between the equity values S= {S_t; t=1,…, T} and asset values that allows 

the time series of equity market values to be extracted conditional on the parameters 𝜇, 𝜎 

and β.  

As explained, the asset values are implicit in the equity values. One can thus recover the 

asset values by computing the zeros of the difference between the observed equity value 

and the one given by the equity pricing function (Equation 5). The Newton-Raphson 

method was thus applied using the R function “uniroot”. This algorithm uses the first 

derivative of the function to find arguments that are gradually closer to the true zero of 

the function. 

This leads Forte and Lovreta (2012) to present the below equations (7) and (8): 

𝐿𝑠(𝑆; 𝜃) = 𝐿𝑣(𝑉̂; 𝜎, 𝜇) + ∑ ln [1 − 𝑒
(−

2

𝜎2∆𝑡
) ln(

𝑉̂𝑡−1
𝑉𝑏

) ln(
𝑉̂𝑡
𝑉𝑏

)
]𝑇

𝑡=2 − ln[𝑃𝑛𝑑(𝜎, 𝜇)] −

∑ ln |
𝜕𝑔(𝑉𝑡;𝜎)

𝜕𝑉𝑡
|𝑇
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where 

𝐿𝑣(𝑉̂; 𝜎, 𝜇) = − ∑ ln 𝑉̂𝑡 −
𝑇−1

2
 ln (2𝜋𝜎2𝑇

𝑡=2 ∆𝑡) −
1
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∗ ∑ [ln (

𝑉𝑡

𝑉𝑡−1
) − (𝜇 − 𝛿 −𝑇

𝑡=2

𝜎2

2
) ∆𝑡]             (8)  

Equation (8) results directly from assuming that asset returns are independent and 

normally distributed, taking logs over the product of T normal density functions. 

The second and third terms of equation (7) correspond to adjustments on the survival 

probability that the company faces during the time period considered. Yet, 𝑃𝑛𝑑(𝜎, 𝜇) 

given by equation (9) corresponds exactly to this survival probability. Duan et al. (2003) 

considered that taking into account the fact that the firm has survived is imperative when 

estimating a credit risk model. Otherwise, according to them, bias in the estimation might 

occur and one does not obtain accurate results if not considering this possibility that might 

correspond to a reality.  

𝑃𝑛𝑑(𝜎, 𝜇) = ɸ [
(𝜇−𝛿−

𝜎2

2
)(𝑇−1)∆𝑡−ln(

𝑉𝑏
𝑉̂1

)

𝜎√(𝑇−1)∆𝑡
] − 𝑒

(
2

𝜎2)(𝜇−𝛿−
𝜎2

2
) ln(

𝑉𝑏
𝑉̂1

)
ɸ [

(𝜇−𝛿−
𝜎2

2
)(𝑇−1)∆𝑡+ln(

𝑉𝑏
𝑉̂1

)

𝜎√(𝑇−1)∆𝑡
]       (9) 
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The last term of equation (7) is recognized as the Jacobian of the transformation of the 

variables and defined in Appendix A. 

In Equation (9), ɸ stands for the cumulative standard normal distribution function. To 

note that when the asset value is far from the default barrier, the probability of default 

(PD) is small or null. Similarly, when the value of the assets is close to 𝑉𝑏, this means 

that the probability of the firm defaulting is higher.  

The second step of the Maximization-Maximization algorithm is focused on estimating 

the optimal barrier of default for the firm. The central idea related to the estimation 

process used to determine the default barrier in Forte and Lovreta (2012) is based on the 

important fact that the firm determines its particular default policy, reflecting and 

representing the best interests of equity holders, maximizing their participation. 

Nevertheless, this only holds as long as it is represented by a constant default barrier and 

that this policy is mirrored in the observed equity prices. Besides, even though a barrier 

of default is not usually known, Forte (2011) considers it is. Furthermore, it is considered 

that the default barrier results from what is designated as the Optimal Default – Market 

Efficiency (ODME) assumption. In this second phase of the MM algorithm, the parameter 

values output {σ, μ} previously obtained will be considered. Therefore, when the final 𝛽 

value is determined, this means that it is consistent with the Optimal Default – Market 

Efficiency assumption of the model. This parameter is generated after some iterations and 

stops when convergence is achieved. 

While on one hand Forte (2011) allows the default barrier to be obtained from the equity 

prices, and thus estimating it from exogenous sources and further using it to obtain an 

endogenous barrier, Leland and Toft (1996) on the other hand obtained it endogenously 

considering the smooth-pasting condition. 

One conclusion from Forte (2011) regarding the Maximum Likelihood estimation 

procedure is that the estimation of the Beta parameter value is unstable when all three 

parameters are estimated using the Maximum Likelihood approach. In this case, the three 

parameters are not correctly estimated. These parameter estimation results don’t provide 

trustful predictions according to Figure 1 presented, that was taken from Forte and 

Lovreta (2012), as it demonstrates that the function often peaks at very high default-to-

debt ratios, which are economically less plausible, and becomes almost flat for those 

barrier values that are more reasonable economically. This leads Beta estimation to 
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present a significant level of dispersion. The two-step procedure designed by Forte and 

Lovreta (2012) is intended to avoid this. 

 

Figure 1- Figure from Forte and Lovreta (2012) that represents the behavior of the Log-Likelihood function 

considering Default-to-Debt ratio (β). 
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5. RESULTS 

In this section, we analyze and discuss the results obtained from the implementation of 

the Maximization-Maximization algorithm, such as the expected asset rate of return, the 

asset volatility and the critical point of default estimated. Furthermore, the default 

probabilities for a five-year period computed through the model are provided for the fifty-

five (55) companies selected for our dataset.  

 

5.1 PARAMETER ESTIMATES 

The parameter values obtained from the application of the Maximization-Maximization 

algorithm and the ones estimated by Forte and Lovreta (2012) are presented below in 

Table 2. Also, in Tables 3 and 43 the estimated parameter values obtained through the 

MM algorithm and the correspondent p-values are presented for each company. 

 

Table 2 - Comparison between the main descriptive statistics of the parameters obtained and the ones from Forte and 

Lovreta (2012). 

                                                           
3 These results were separated in two tables so the analysis could be lighter. 

Mean Median Std. Dev. Min. Max.

β 0,564 0,447 0,259 0,161 0,985

σ 0,121 0,111 0,045 0,054 0,268

μ 0,037 0,028 0,100 -0,175 0,299

MM algorithm Forte and Lovreta (2012)

β 0,811 0,816 0,085 0,476 0,971

σ 0,163 0,150 0,091 0,041 0,542

μ 0,024 0,024 0,070 -0,190 0,239

Descriptive statistics of parameter values
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Table 3 – Results obtained from the MM algorithm application for 28 of the 55 companies and the correspondent p-

values. 

 

β P-value σ P-value µ P-value

Enel SpA 0,541 NA 0,057 0,006 0,008 0,058

Terna Rete Elettrica Nazionale SpA 0,759 10,330 0,070 0,007 0,101 0,070

Eni SpA 0,373 23,040 0,121 0,012 -0,025 0,122

Snam SpA 0,518 5,475 0,093 0,009 0,101 0,094

Atlantia SpA 0,275 3,267 0,093 0,009 0,074 0,094

Leonardo SpA 0,571 9,644 0,072 0,007 0,097 0,073

Fiat Chrysler Automobiles NV 0,445 NA 0,100 0,010 -0,018 0,101

Luxottica Group SpA 0,360 0,000 0,205 0,020 0,247 0,207

Davide Campari Milano SpA 0,211 0,000 0,152 0,015 0,299 0,154

Buzzi Unicem SpA 0,440 2,710 0,141 0,014 0,217 0,142

Acciona SA 0,317 1,448 0,061 0,006 0,076 0,061

Iberdrola SA 0,495 NA 0,078 0,008 0,026 0,079

Gas Natural SDG SA 0,945 1,439 0,089 0,009 -0,059 0,090

Enagas SA 0,344 2,437 0,117 0,012 -0,035 0,118

Telefonica SA 0,902 1,977 0,093 0,009 -0,051 0,094

Ferrovial SA 0,356 4,024 0,072 0,007 0,068 0,073

International Consolidated Airlines G. 0,366 5,280 0,125 0,012 0,078 0,126

Abertis Infraestructuras SA 0,967 0,820 0,069 0,007 -0,054 0,070

Distribuidora Internacional de Alim. 0,903 2,060 0,169 0,017 -0,102 0,170

Amadeus IT Group SA 0,399 NA 0,163 0,016 0,071 0,165

Acerinox SA 0,253 2,127 0,191 0,019 -0,175 0,193

Engie SA 0,965 0,227 0,063 0,006 -0,076 0,064

Veolia Environnement SA 0,971 0,446 0,054 0,005 0,068 0,054

Orange SA 0,344 15,941 0,078 0,008 -0,005 0,079

Legrand SA 0,360 0,000 0,154 0,015 0,062 0,156

Safran SA 0,949 5,907 0,137 0,014 0,062 0,138

Schneider Electric SE 0,161 0,000 0,140 0,014 -0,139 0,141

Vinci SA 0,624 18,817 0,068 0,007 0,056 0,069

Parameter values and correspondent P-values
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Table 4 – Results obtained from the MM algorithm application for 27 of the 55 companies and the correspondent p-

values. 

 

In what the parameter values are concerned, Table 2 summarizes the main descriptive 

statistics considering the MM algorithm approach, enabling one to compare the results 

obtained in our algorithm with those found by Forte and Lovreta (2012).  

As one can observe, the parameter values obtained when performing the algorithm and 

the ones that Forte and Lovreta (2012) present, for the same approach (MM), do not differ 

much. For instance, the mean of the expected asset rate of return and the asset volatility 

parameter values from both estimations are in fact very alike. In what β is concerned, 

even though the mean of the values for this parameter (0,564) is lower compared to the 

one from the paper (0,811), our standard deviation for these values is higher (0,259) than 

β P-value σ P-value µ P-value

Peugeot SA 0,956 0,161 0,056 0,006 0,050 0,057

Valeo SA 0,396 5,905 0,168 0,017 0,116 0,170

Publicis Groupe SA 0,748 10,401 0,111 0,011 -0,038 0,112

Compagnie de Saint Gobain SA 0,247 3,007 0,101 0,010 0,003 0,102

LVMH Moet Hennessy Louis V. 0,932 14,050 0,183 0,018 -0,010 0,185

Danone SA 0,845 14,323 0,107 0,011 0,028 0,108

L'Oreal SA 0,360 0,000 0,190 0,019 0,012 0,192

Pernod Ricard SA 0,508 7,083 0,111 0,011 0,012 0,112

Capgemini SE 0,965 21,781 0,127 0,013 0,182 0,128

Essilor International SA 0,360 0,000 0,175 0,017 0,106 0,176

Sanofi SA 0,939 13,734 0,176 0,017 -0,048 0,177

Air Liquide SA 0,520 11,041 0,155 0,015 -0,062 0,157

Deutsche Telekom AG 0,445 NA 0,095 0,009 0,046 0,096

Deutsche Post AG 0,378 8,928 0,116 0,011 -0,082 0,117

Siemens AG 0,359 9,765 0,107 0,011 -0,089 0,108

Bayerische Motoren Werke AG 0,470 17,856 0,082 0,008 -0,013 0,083

Daimler AG 0,270 14,578 0,094 0,009 -0,007 0,095

Volkswagen AG 0,447 NA 0,103 0,010 -0,070 0,104

Continental AG 0,348 7,529 0,170 0,017 0,095 0,172

Adidas AG 0,972 9,587 0,142 0,014 0,239 0,144

Beiersdorf AG 0,780 NA 0,165 0,016 0,091 0,167

Infineon Technologies AG 0,908 14,561 0,268 0,027 0,278 0,271

Merck KGaA 0,985 NA 0,104 0,010 0,005 0,105

Fresenius SE & Co KGaA 0,440 9,301 0,119 0,012 0,152 0,120

Fresenius Medical Care AG&Co 0,496 6,049 0,147 0,015 0,081 0,148

BASF SE 0,415 10,182 0,140 0,014 -0,069 0,142

HeidelbergCement AG 0,414 4,298 0,099 0,010 0,063 0,100

Parameter values and correspondent P-values
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theirs (0,085). In addition, the highest value obtained for the parameter is very similar 

comparing to the one Forte and Lovreta (2012) obtained in the estimation process. 

Besides this, our results for this parameter values are in line with the conclusion obtained 

from the paper stating that, when considering the MM approach, default barrier is equal 

or lower to the nominal debt value since we haven’t obtained, in our estimation process, 

any value for β equal or higher than one. In addition, we can also verify that Forte and 

Lovreta (2012) obtained negative values for the expected asset rate of return, similarly to 

the ones obtained in this thesis. Therefore, one can conclude that in general the overall 

results are comparable.  

Tables 3 and 4 present the estimated values obtained in the algorithm for the fraction of 

default barrier (β), asset volatility and expected asset rate of return. These results seem to 

be reasonable in general terms as for instance in what regards the values estimated for the 

asset volatility. The highest value for this parameter corresponds to the one for Infineon 

Technologies AG company with 26,84%. In what the expected asset return rate parameter 

is concerned, one can see that there are some negative values obtained among the fifty-

five (55) companies. Regarding the β parameter results, these did vary between 0,161 and 

0,985. Both tables also present the p-value correspondent to each of the parameter values 

estimated. One can state that p-values for the asset volatility parameter demonstrate that 

these results are statistically significant since all of them are lower than 0,05. 

Nevertheless, for the expected asset rate of return the same conclusion cannot be made, 

since all firms present p-values that indicate the results obtained for this parameter are 

statistically insignificant. Regarding this parameter the high p-values observed were 

already expected. 

Related to the results just described, there is a relevant and appropriate note which is 

related to the fact that estimating the expected asset rate of return is considered to be 

extremely hard. Its estimation is influenced due to a few motives. The first one has to do 

with the fact that this parameter basically corresponds to the implicit asset return of the 

period estimated in the model, as shown in Figure 2 provided in Appendix C. Following 

to this, the expected asset return rate of the period is also sensitive and strongly correlated 

with the equity returns observed for the time period. This can be observed from Figures 

3 and 4, where specifically in Figure 4 there is evidence of a correlation coefficient R^2 

equal to 0,787. Additionally, Table 5 illustrates that in most cases, when the stock return 

is negative, this leads to negative values for the expected asset rate of return. In this thesis, 
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we can perceive as a limitation for the results obtained the fact that the estimation period 

considered is very short (one year). In conclusion, not only do the p-values correspondent 

to the expected asset rate of return obtained prove this estimation not to be trustful, and 

thus not accurate, but also these Figures do.  

 

Figure 3- The expected asset return provided by the MM algorithm and the equity return calculated for the period of 

time considered. 

 

Figure 4 -Correlation between the equity return on the period and the expected asset rate of return provided by the 

MM algorithm. 

 

In concluding terms, μ should be interpreted as the expected asset rate of return. The 

method, though, is considering the equity return on the period, which was not supposed. 
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This parameter should always be positive value and higher than the risk-free interest rate, 

which is something that is not observable in these results. This suggests that an alternative 

method, such as CAPM, should be used to estimate the expected asset rate of return. 

 

Table 5 – Expected asset rate of return and the stock return for all companies 
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5.2 PROBABILITIES OF DEFAULT 

The probabilities of default were computed using the parameter values obtained in the 

MM algorithm. Figure 5 provided in Appendix C presents the estimated five-year default 

probabilities for each firm.  

As one can see, most of them present values that are equal or extremely close to zero, and 

on the other side, a few of them have very high estimates for the probability of default for 

a five-year horizon. This is mainly due to the reasons already pointed out regarding the 

struggle on estimating the expected assets return rate, which will in turn influence the 

computation of this credit risk measure that is the default probability, since it is being 

applied the estimated parameter values obtained from the algorithm, including the 

expected assets rate of return. 

For those companies that present high values for the default probabilities computed, what 

is expected is that they present low Distance-to-Default (DD) values associated. In the 

same reasoning, for those that have low or null probabilities of default (PD), it is 

expectable that the Distance-to-Default measure is larger, meaning the company is far 

from the critical point of default. Gas Natural company is a good example to provide and 

to illustrate this, as the company presents a probability to defaulting in the next five years 

of 37,48%. Table 6 provides a summary of the results about Gas Natural. Tables 7 to 10 

in Appendix C contain the same information but for all the companies considered and 

Figure 6 presents the nominal value of debt for all companies. 

 

Table 6 – Analysis for the five-year Default Probability for Gas Natural 

Output/Company Gas Natural

5-year PD 0,375

δ 0,018

σ 0,089

µ -0,059

β 0,945

P 43446

V_b 41063

DD=ln(A/V_b)/(σ*sqrt(T)) 2,562

Normal Dist. (Inverse) 0,005

DD=(ln(A/V_b)+(µ-δ-((σ^2)/2))*5)/(σ*sqrt(T)) 0,518

Normal Dist. (Inverse) 0,302

Drift effect 0,297

Default Barrier effect 0,073

Analysis of the Probability of Default - Gas Natural
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It is worth mentioning though, before analyzing the information, that this estimation 

includes both the trajectory of the firm’s assets value along these years and therefore 

considering the likelihood of defaulting at any point in time, as well as the probability of 

defaulting at debt maturity. Given this principle, it is expected that this estimated value is 

higher than if only bearing in mind the possibility of defaulting at maturity. The first thing 

one can observe is that the expected asset rate of return for this firm is negative, 

corresponding to approximately -6%, and this can partially justify the probability of 

default obtained by the model.  

Secondly, one can calculate the Distance-to-Default4 ignoring the drift from equation (9)5 

as Sun et al. (2012) did. The option of ignoring the drift seems to be appropriate in this 

case since as already explained, when one estimates the expected asset rate of return, it 

does not provide confident results. This results in a Distance-to-Default equal to 2,562. If 

we evaluate the negative of the normal distribution of this value, we obtain 0,005. On the 

other side, if we compute the Distance-to-Default considering the drift that previously 

ignored, we obtain a smaller value, equal to 0,518. This on itself allows us to conclude 

that if considering the drift, the company is closer to the default point. When computing 

the negative of the normal distribution of that value, we obtain 0,302. This 30,2% 

corresponds to the default probability in the five-year horizon if the model did not 

consider a default barrier. Besides, when we analyze and subtract the value 0,302 to 0,375, 

the difference corresponds to the barrier effect (7,3%). It is important to note that the 

barrier effect is exponential to the expected asset rate of return parameter estimated. This 

results from the fact that, if everything remains the same, when a default barrier exists, it 

potentializes the increase of the default probabilities. The remaining difference until 

completing the 37,5% (Probability of Default) corresponds to the drift effect (26,7%6). 

When analyzing results for companies with high probabilities of default, one can observe 

results follow the same line of reasoning.  

In what regards the null default probabilities that were obtained for most companies of 

the sample, what we can conclude is that these results are highly influenced from the 

estimation of the expected asset return rate, as it was already justified and demonstrated. 

                                                           
4 This equation is given by: Ln(A_0/V_b)/ (𝜎*√5) 
5 The “drift” in this equation consists in the first part of the numeration, where the payout rate is subtracted 

to the asset rate of return.  
6 Obtained from the difference between the negative normal distributions of the Distance-to-Default (DD) 

considering and ignoring the drift 
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6. CONCLUSION 

The purpose of this thesis was first to estimate the expected asset rate of return and the 

asset volatility parameters through the application of the Maximum Likelihood technique. 

As the firm’s assets value are not usually known, Forte and Lovreta (2012) consider the 

observed equity values as transformed data, allowing then the ML estimation to derive 

the log-likelihood function using the already transformed equity values. In what the 

expected asset rate of return is concerned, the main conclusion one can take from this has 

to do with the struggle with its estimation process. The results obtained do not allow one 

to truly rely on them, due to several reasons that were previously illustrated. The first one 

is related to the p-values that were obtained upon the model estimation, which 

demonstrate that there is a large confidence interval for this parameter. Secondly, our 

estimates on the expected asset rate of return seem to be capturing the actual equity returns 

observed for the period under analysis. Ideally, this should not occur as the expected asset 

return parameter should be interpreted as the rate of return investors demand for buying 

the firm asset. Independently of the rate of return observed in any specific period, this 

parameter should correspond to the risk-free interest rate plus a positive risk premium. In 

what concerns the asset volatility, the same conclusion is not applicable, however. This 

estimated parameter presents lower p-values comparing to the ones obtained from the 

expected asset return, being all of them less than 0,05, which in this case allows one to 

conclude that these parameter results are statistically significant. 

In a second step, the default barrier of each firm was then computed taking into 

consideration the values for the parameters previously obtained. This default barrier is 

considered to be the optimal and according to the best interests of shareholders as it 

corresponds to the one that maximizes their equity participation. Forte and Lovreta (2012) 

concluded that this would be a more suitable method to estimate the default barrier 

because, as it is demonstrated in their study, when one estimates the three parameters 

simultaneously by Maximum Likelihood, it is difficult to accurately estimate the Default-

to-Debt ratio (β). Thus, performing this second maximization procedure for this 

parameter on the algorithm using the set of parameters previously estimated {σ, μ}, 

corresponds to the crucial innovation on their study.  

Regarding the five-year default probabilities computed using these parameter values, one 

can conclude that the results that were obtained are not accurate. Most of the default 
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probabilities obtained for the companies are in fact null. In these cases, this happened 

because this probability of default measure is influenced by the estimated expected rate 

of return on the assets. There were, however, a few firms that presented high default 

probabilities as for instance Gas Natural did. The results obtained for the default 

probabilities for these companies are a consequence first, of the fact that when a default 

barrier exists, it increases on itself the probability of default occurring, and can secondly 

be a result from the negative expected asset returns that was obtained for these companies, 

that is on its turn a consequence of the estimation process of the parameter. Besides this, 

the drift effect later calculated, ignoring the first passage time, is increased by the fact 

that one is considering and computing five-year default probabilities. This would not be 

expectable to happen if computing instead for one-year time horizon. 

In this thesis, for simplicity reasons, several assumptions were made. These assumptions 

correspond possibly to crucial limitations in what regards the performance of the model 

estimation and consequently on the results obtained. Some examples of these assumptions 

correspond to the nominal debt and coupon values that were considered to be constant in 

the time period considered. It was also assumed that each company had one single bond 

available, which does not also correspond to the reality of the companies as they usually 

issue several bonds in order to finance and raise capital. Another crucial constraint on this 

thesis was indeed the very short time period considered to proceed with the estimation. 

This fact has undoubtedly influenced negatively the results obtained for the expected asset 

return rate parameter values. Nonetheless, one does not know the exact time interval 

needed in order to obtain statistically significant values for this parameter. Therefore, in 

future research, it can be recommended that this data characteristic is considered upon the 

model estimation in order to obtain more accurate results. Besides this, there is one feature 

of the model considered by Forte and Lovreta (2012) that could also be a partial negative 

influence on the results obtained from the estimation process, which is related to the 

dividends distribution policy assumed for companies. In the model, it is only considered, 

in order to calculate the payout rate, the interest expenses and the dividends that were 

paid. In fact, it could also be considered the possibility of the company buying their own 

stock.   
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8. APPENDICES   

APPENDIX A 

𝐹𝑡(𝜏𝑛) = ɸ[ℎ1𝑡(𝜏𝑛)] + (
𝑉𝑡

𝑉𝑏
)

−2𝑎
ɸ[ℎ2𝑡(𝜏𝑛)]            (21) 

𝐺𝑡(𝜏𝑛) = (
𝑉𝑡

𝑉𝑏
)

−𝑎+𝑧
 ɸ[𝑞1𝑡(𝜏𝑛)] + (

𝑉𝑡

𝑉𝑏
)

−𝑎−𝑧
ɸ[𝑞2𝑡(𝜏𝑛)]          (22) 

𝑞1𝑡 =
−𝑏𝑡 − 𝑧𝜎2𝜏𝑛

𝜎√𝜏𝑛

 

𝑞2𝑡 =
−𝑏𝑡 + 𝑧𝜎2𝜏𝑛

𝜎√𝜏𝑛

 

ℎ1𝑡 =
−𝑏𝑡 − 𝑎𝜎2𝜏𝑛

𝜎√𝜏𝑛

 

ℎ2𝑡 =
−𝑏𝑡 + 𝑎𝜎2𝜏𝑛

𝜎√𝜏𝑛

 

𝑎 =
𝑟 − 𝛿 −

𝜎2

2
𝜎2

 

𝑏𝑡 = 𝑙𝑛 (
𝑉𝑡

𝑉𝑏
) 

𝑧 =
√(𝑎𝜎2) + 2𝑟𝜎2

𝜎2
 

𝜕𝑔(𝑉𝑡;𝜎)

𝜕𝑉𝑡
=

𝜕[𝑉𝑡−𝐷(𝑉𝑡|𝛼 = 0; 𝜎)]

𝜕𝑉𝑡
= 1 − ∑

𝜕𝑑𝑛(𝑉𝑡|𝛼 = 0; 𝜎)

𝜕𝑉𝑡

𝑁
𝑛=1           (23) 

𝜕𝑑𝑛(𝑉𝑡|𝛼 = 0; 𝜎)

𝜕𝑉𝑡
= −𝑒−𝑟𝜏𝑛 (𝑝𝑛 −

𝑐𝑛

𝑟
)

𝜕𝐹𝑡(𝜏𝑛)

𝜕𝑉𝑡
+ (𝛽𝑝𝑛 −

𝑐𝑛

𝑟
)

𝜕𝐺𝑡(𝜏𝑛)

𝜕𝑉𝑡
 

𝜕𝐹𝑡(𝜏𝑛)

𝜕𝑉𝑡
= 𝑓(ℎ1𝑡)

𝜕ℎ1𝑡

𝜕𝑉𝑡
− [

2𝑎

𝑉𝑏
(

𝑉𝑡

𝑉𝑏
)

−2𝑎−1

] ɸ(ℎ2𝑡) + (
𝑉𝑡

𝑉𝑏
)

−2𝑎

𝑓(ℎ2𝑡)
𝜕ℎ2𝑡

𝜕𝑉𝑡
 

𝜕𝐺𝑡(𝜏𝑛)

𝜕𝑉𝑡
= [

−𝑎+𝑧

𝑉𝑏
(

𝑉𝑡

𝑉𝑏
)

−𝑎+𝑧−1
] ɸ(𝑞1𝑡) + (

𝑉𝑡

𝑉𝑏
)

−𝑎+𝑧
𝑓(𝑞1𝑡)

𝜕𝑞1𝑡

𝜕𝑉𝑡
+ [

−𝑎−𝑧

𝑉𝑏
(

𝑉𝑡

𝑉𝑏
)

−𝑎−𝑧−1
] ɸ(𝑞2𝑡) +

(
𝑉𝑡

𝑉𝑏
)

−𝑎−𝑧
𝑓(𝑞2𝑡)

𝜕𝑞2𝑡

𝜕𝑉𝑡
  

𝜕ℎ1𝑡

𝜕𝑉𝑡
=

𝜕ℎ2𝑡

𝜕𝑉𝑡
=

𝜕𝑞1𝑡

𝜕𝑉𝑡
=

𝜕𝑞2𝑡

𝜕𝑉𝑡
= −

1

𝑉𝑡𝜎√𝜏𝑛
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APPENDIX B 

 

#Declare estimation period 

T<-52 

NumberFirms<-55 

 

EquityMatrix<-read_excel("C:/Users/claud_000/Desktop/Finance 

Master/TESE/DADOS.xlsx",sheet = "MarketCap") 

EquityMatrix<-as.matrix(EquityMatrix[1:T,2:(NumberFirms+1)]) 

NominalDebt<-read_excel("C:/Users/claud_000/Desktop/Finance 

Master/TESE/DADOS.xlsx",sheet = "NominalDebt") 

NominalDebt<-as.matrix(NominalDebt[1:T,2:(NumberFirms+1)]) 

 

OtherData<-read_excel("C:/Users/claud_000/Desktop/Finance 

Master/TESE/DADOS.xlsx",sheet = "OtherData") 

OtherData<-as.matrix(OtherData[1:6,2:(NumberFirms+1)]) 

 

Liab<-OtherData[3,] 

Coupon<-OtherData[2,] 

Payout<-OtherData[1,] 

Tau<-3.31 

Alpha<-0.2 

RF<-0.00313 

year<-1 

#Latent= 1 observation 

 

derivh_1t <- function(V_t, sigma, Tau) {(-1)/(sigma*V_t*sqrt(Tau))} 

 

derivh_2t <- function(V_t, sigma, Tau) {(-1)/(sigma*V_t*sqrt(Tau))} 

 

derivq_1t <- function(V_t, sigma, Tau) {(-1)/(sigma*V_t*sqrt(Tau))} 
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derivq_2t <- function(V_t, sigma, Tau) {(-1)/(sigma*V_t*sqrt(Tau))} 

 

derivF <- function(Latent, Beta, P, r, payout, sigma, Tau) { 

  (dnorm(h_1t(V_t=Latent, Beta, P, r, payout, sigma, Tau))*derivh_1t(V_t=Latent, 

sigma, Tau))+ 

    -((2*a(r, payout, sigma)/V_b(Beta, P))*((Latent/V_b(Beta, P))^(-2*a(r, payout, 

sigma)-1)))*pnorm(h_2t(V_t=Latent, Beta, P, r, payout, sigma, Tau))+ 

    (((Latent/V_b(Beta, P))^(-2*a(r, payout, sigma)))*dnorm(h_2t(V_t=Latent, Beta, P, 

r, payout, sigma, Tau))*derivh_2t(V_t=Latent, sigma, Tau)) 

} 

 

derivG <- function(Latent, Beta, P, r, payout, sigma, Tau) { 

  ((((-a(r, payout, sigma)+z(r, payout, sigma))/V_b(Beta, P))*((Latent/V_b(Beta, P))^(-

a(r, payout, sigma)+z(r, payout, sigma)-1)))*pnorm(q_1t(V_t=Latent, Beta, P, r, payout, 

sigma, Tau)))+ 

    +(((Latent/V_b(Beta, P))^(-a(r, payout, sigma)+z(r, payout, 

sigma)))*dnorm(q_1t(V_t=Latent, Beta, P, r, payout, sigma, 

Tau))*derivq_1t(V_t=Latent, sigma, Tau))+ 

    +((((-a(r, payout, sigma)-z(r, payout, sigma))/V_b(Beta, P))*((Latent/V_b(Beta, 

P))^(-a(r, payout, sigma)-z(r, payout, sigma)-1)))*pnorm(q_2t(V_t=Latent, Beta, P, r, 

payout, sigma, Tau)))+ 

    +(((Latent/V_b(Beta, P))^(-a(r, payout, sigma)-z(r, payout, 

sigma)))*dnorm(q_2t(V_t=Latent, Beta, P, r, payout, sigma, 

Tau))*derivq_2t(V_t=Latent, sigma, Tau)) 

} 

 

derivD <- function(Latent,c, Beta, P, r, payout, sigma, Tau) { 

  -exp(-r*Tau)*(P-c/r)*derivF(Latent, Beta, P, r, payout, sigma, Tau)+(Beta*P-

c/r)*derivG(Latent, Beta, P, r, payout, sigma, Tau) 

} 

 

derivS <- function(Latent,c, Beta, P, r, payout, sigma, Tau) { 

  (1-derivD(Latent,c, Beta, P, r, payout, sigma, Tau)) 

} 
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RecoverAsset<-function(Beta, sigma){ 

  AssetProxy<-1:T 

  for(i in 1:T){ 

    AssetProxy[i]<-Vfunction(Beta, sigma, TimeMoment=i)  

  } 

  return(AssetProxy) 

} 

 

Vfunction <- function(Beta, sigma, TimeMoment) { 

  uniroot(f = FindV, interval=c(EquityMatrix[TimeMoment, firm], 

EquityMatrix[TimeMoment, firm]+2*NominalDebt[TimeMoment, firm]), 

extendInt="downX", Beta, sigma, TimeMoment)$root 

} 

 

#x corresponds to the asset value 

FindV <- function(x, Beta, sigma, TimeMoment) { 

  EquityMatrix[TimeMoment, firm]-S_t(V_t=x, c=Coupon[firm], Beta=Beta, 

P=NominalDebt[TimeMoment,firm], r=RF, payout=Payout[firm], sigma=sigma, 

Tau=Tau) 

} 

#Assumption:Tau is constant and individual bonds won't be considered-> only one bond 

outstanding 

 

a <- function(r, payout, sigma) {(r-payout-((sigma^2)/2))/(sigma^2)} 

#r= risk-free rate 

#payout= fraction of the assets paid out to investors 

#sigma= volatility of assets return  

 

V_b <- function(Beta, P) {Beta*P} 

#P= nominal value of total debt issued= value of the bond; known input 

#Beta= fraction of P; estimated iteractivelly; should assume starting value 

#V_b= critical point when default occurs (endogenous result according to Forte 2011:  
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#stockholders consider to be the optimum value for declaring a company bankrupt) 

 

b_t <- function(V_t, Beta, P) { 

  log(V_t/V_b(Beta, P)) 

} 

#V_t= Vfunction= market value of total assets at any time t 

 

h_1t <- function(V_t, Beta, P, r, payout, sigma, Tau) { 

  (-b_t(V_t, Beta, P)-(a(r, payout, sigma)*Tau*sigma^2))/(sigma*sqrt(Tau)) 

} 

 

h_2t <- function(V_t, Beta, P, r, payout, sigma, Tau) { 

  (-b_t(V_t, Beta, P)+(a(r, payout, sigma)*Tau*sigma^2))/(sigma*sqrt(Tau)) 

} 

 

z <- function(r, payout, sigma) { 

  (sqrt(((a(r, payout, sigma)*sigma^2)^2)+(2*r*sigma^2)))/(sigma^2) 

} 

 

q_1t <- function(V_t, Beta, P, r, payout, sigma, Tau) { 

  (-b_t(V_t, Beta, P)-(z(r, payout, sigma)*Tau*(sigma^2)))/(sigma*sqrt(Tau)) 

} 

 

q_2t <- function(V_t, Beta, P, r, payout, sigma, Tau) { 

  (-b_t(V_t, Beta, P)+(z(r, payout, sigma)*Tau*(sigma^2)))/(sigma*sqrt(Tau)) 

} 

F_t <- function(V_t, Beta, P, r, payout, sigma, Tau) { 

  pnorm(h_1t(V_t, Beta, P, r, payout, sigma, Tau))+  

  +(pnorm(h_2t(V_t, Beta, P, r, payout, sigma, Tau))*((V_t/V_b(Beta,P))^(-2*a(r, 

payout, sigma)))) 

} 
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G_t <- function(V_t, Beta, P, r, payout, sigma, Tau) { 

  (pnorm(q_1t(V_t, Beta, P, r, payout, sigma, Tau))*((V_t/V_b(Beta, P))^(-a(r, payout, 

sigma)+z(r, payout, sigma))))+  

  +(pnorm(q_2t(V_t, Beta, P, r, payout, sigma, Tau))*((V_t/V_b(Beta, P))^(-a(r, payout, 

sigma)-z(r, payout, sigma)))) 

} 

 

D <- function(V_t, c,alpha, Beta, P, r, payout, sigma, Tau) { 

  (c/r)+exp(-r*Tau)*(P-c/r)*(1-F_t(V_t, Beta, P, r, payout, sigma, Tau))+  

    +((1-alpha)*Beta*P-c/r)*G_t(V_t, Beta, P, r, payout, sigma, Tau) 

} 

 

DebtValue <- function(V_t, c, alpha,Beta, P, r, payout, sigma, Tau) { 

  D(V_t, c, alpha,Beta, P, r, payout, sigma, Tau) 

} 

 

S_t <- function(V_t, c, Beta, P, r, payout, sigma, Tau) { 

  V_t-DebtValue(V_t, c, alpha=0,Beta, P, r, payout, sigma, Tau) 

} 

#S_t: equity values (observable data set) 

#LogLikelihoodfunction 

 

L_s <- function(Beta,sigma,miu) { 

  LatentProcess<-RecoverAsset(Beta, sigma) 

  return( 

    L_v(Latent=LatentProcess,sigma,miu)+ 

    +SumExpfunction(Latent=LatentProcess,Beta,sigma)+ 

    -(log(P_d(Latent=LatentProcess,Beta, sigma, miu)))+ 

    -SumlogS(Latent=LatentProcess,c=Coupon[firm],Beta=Beta, 

P=NominalDebt[year,firm], r=RF, payout=Payout[firm], sigma=sigma, Tau=Tau) 

  ) 
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} 

 

#Block 1 

L_v <- function(Latent,sigma,miu) { 

  deltaT=1/T 

  return( 

  -sum(log(Latent))-((T-1)/2)*log(2*pi*deltaT*sigma^2)-

((1/(2*deltaT*sigma^2))*SumLogfunction(Latent, sigma, miu)) 

  ) 

} 

 

#Auxiliary variable 

Aux<- 1:T 

 

SumLogfunction <- function(Latent, sigma, miu) { 

  deltaT=1/T 

  for (i in 2:T) { 

    Aux[i] <- ((log(Latent[i]/Latent[i-1]))-(miu-Payout[firm]-0.5*sigma^2)*deltaT)^2 

  } 

  return(sum(Aux[2:T])) 

} 

 

#Block 2 

 

SumExpfunction <- function(Latent,Beta,sigma) { 

  deltaT = 1/T 

  for (i in 2:T) { 

    Aux[i] <- log(1-(exp((-2/(deltaT*sigma^2))*(log(Latent[i-1]/V_b(Beta, 

NominalDebt[year,firm])))*(log(Latent[i]/V_b(Beta, NominalDebt[year,firm])))))) 

  } 

  return(sum(Aux[2:T])) 
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} 

 

#Block 3 

 

#survival probability 

Survival <- function(Latent,Beta, sigma, miu) { 

  deltaT = 1/T 

  return( 

  (pnorm((((miu-Payout[firm]-(sigma^2/2))*(T-1)*deltaT)-log(V_b(Beta, 

NominalDebt[year,firm])/Latent[1]))/ 

   (sigma*sqrt((T-1)*deltaT))))+ 

  -(pnorm((((miu-Payout[firm]-(sigma^2/2))*(T-1)*deltaT)+log(V_b(Beta, 

NominalDebt[year,firm])/Latent[1]))/ 

   (sigma*sqrt((T-1)*deltaT)))*exp((2/sigma^2)*(miu-Payout[firm]-

(sigma^2/2))*(log(V_b(Beta, NominalDebt[year,firm])/Latent[1])))) 

  ) 

} 

 

Survival_5y <- function(Latent,Beta, sigma, miu) { 

  deltaT = 1/T 

  (pnorm((((miu-Payout[firm]-(sigma^2/2))*(5*52)*deltaT)-log(V_b(Beta, 

NominalDebt[year,firm])/Latent[1]))/ 

  (sigma*sqrt((5*52)*deltaT))))+ 

  -(pnorm((((miu-Payout[firm]-(sigma^2/2))*(5*52)*deltaT)+log(V_b(Beta, 

NominalDebt[year,firm])/Latent[1]))/ 

  (sigma*sqrt((5*52)*deltaT)))*exp((2/sigma^2)*(miu-Payout[firm]-

(sigma^2/2))*(log(V_b(Beta, NominalDebt[year,firm])/Latent[1])))) 

} 

 

ProbabilityDefault5y <- function(Latent,Beta, sigma, miu) { 

  1- Survival_5y(Latent,Beta, sigma, miu) 

} 

 



41 
 

#Block 4 

 

SumlogS <- function(Latent,c, Beta, P, r, payout, sigma, Tau) { 

  for (i in 2:T) { 

    Aux[i] <- log(derivS(Latent[i],c, Beta, P, r, payout, sigma, Tau)) 

  } 

  return(sum(Aux[2:T])) 

} 

 

#Set MinusLogLikelihood 

 

LogL <- function(x,Beta) { 

  if(is.numeric(try(L_s(Beta,sigma=x[1],miu=x[2]),TRUE))) 

{return(L_s(Beta,sigma=x[1],miu=x[2]))} else {return(-10^10)} 

} 

 

MleMinusLogL <- function(sigma,miu,Beta) { 

  if(is.numeric(try(-L_s(Beta=Beta,sigma=sigma,miu=miu),TRUE))) {return(-

L_s(Beta=Beta,sigma=sigma,miu=miu))} else {return(10^10)} 

} 

results<-maxLik(logLik=LogL,start=c(0.2,0.1),Beta=0.3) 

#Algorithm 

Results<-array(dim=c(NumberFirms,3)) 

ResultsStandardErrors<-array(dim=c(NumberFirms,3)) 

 

for (FirmNumber in 1:NumberFirms){ 

firm<-FirmNumber 

MiuEstimate<-0.1 

SigmaEstimate<-0.2 

BetaEstimate<-0.1 

Error<-10^10 
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while(Error>0.01){ 

  OutputStep1<-maxLik(logLik=LogL,start=c(0.1,0.05),Beta=0.1) 

  MiuEstimate<-as.numeric(coef(OutputStep1)[2]) 

  print(MiuEstimate) 

  SigmaEstimate<-as.numeric(coef(OutputStep1)[1]) 

  print(SigmaEstimate) 

  OutputStep2<-mle2(minuslogl=MleMinusLogL, start=list(Beta=BetaEstimate), 

method='Brent', lower=0.1, upper=1.2, 

fixed=list(miu=MiuEstimate,sigma=SigmaEstimate)) 

  Error<-abs(as.numeric(coef(OutputStep2)[3])-BetaEstimate) 

  print(Error) 

  BetaEstimate<-as.numeric(coef(OutputStep2)[3]) 

} 

 

print(c(SigmaEstimate,MiuEstimate,BetaEstimate)) 

 

Results[FirmNumber,]<-c(SigmaEstimate,MiuEstimate,BetaEstimate) 

 

ResultsStandardErrors[FirmNumber,1:2]<-(summary(OutputStep1)$estimate)[,2] 

ResultsStandardErrors[FirmNumber,3]<- sqrt(vcov(OutputStep2)) 

} 
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APPENDIX C 

 

 

Figure 2- Correlation between the asset return of the period and estimated expected asset rate of return provided by 

the MM algorithm
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Table 7 – Analysis for the five-year Probability of Default 

 

 

Table 8 – Analysis for the five-year Probability of Default 

Output/Company Enel SpA Terna Rete Eni SpA Snam SpA Atlantia SpA Leonardo Fiat Chrysler Luxottica G. Davide C. Buzzi U. Acciona Iberdrola Gas Natural Enagas Telefonica Ferrovial

5-year PD 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,375 0,000 0,275 0,000

δ 0,000 0,000 0,001 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,027 0,013 0,018 0,015 0,017 0,013

σ 0,057 0,070 0,121 0,093 0,093 0,072 0,100 0,205 0,152 0,141 0,061 0,078 0,089 0,117 0,093 0,072

µ 0,008 0,101 -0,025 0,101 0,074 0,097 -0,018 0,247 0,299 0,217 0,076 0,026 -0,059 -0,035 -0,051 0,068

β 0,541 0,759 0,373 0,518 0,275 0,571 0,445 0,360 0,211 0,440 0,317 0,495 0,945 0,344 0,902 0,356

P 127924 11795 80131 17843 29932 23322 78888 3940 1911 2915 15699 71078 43446 6635 124256 23905

V_b 69241 8955 29854 9251 8227 13326 35084 1417 403 1283 4980 35171 41063 2284 112028 8514

DD 6,646 4,899 5,528 5,910 8,273 4,503 4,259 6,325 7,291 4,251 10,089 6,674 2,562 6,940 2,538 9,273

Normal Dist. (Inverse) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,005 0,000 0,006 0,000

DD_2 6,878 8,058 4,917 8,230 9,949 7,422 3,738 8,785 11,515 7,537 11,840 6,958 0,518 5,837 0,803 10,887

Normal Dist. (Inverse) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,302 0,000 0,211 0,000

Drift effect 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,297 0,000 0,205 0,000

Default Barrier effect 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,073 0,000 0,064 0,000

Output/Company International Abertis DistribuidoraAmadeus Acerinox Engie SA Veolia Env. Orange SA Legrand SA Safran SA Schneider El. Vinci SA Peugeot SA Valeo SA Publicis G. Compagnie de S.G.

5-year PD 0,000 0,325 0,267 0,000 0,005 0,673 0,000 0,000 0,000 0,001 0,000 0,000 0,006 0,000 0,003 0,000

δ 0,006 0,023 0,005 0,004 0,011 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

σ 0,125 0,069 0,169 0,163 0,191 0,063 0,054 0,078 0,154 0,137 0,140 0,068 0,056 0,168 0,111 0,101

µ 0,078 -0,054 -0,102 0,071 -0,175 -0,076 0,068 -0,005 0,062 0,062 -0,139 0,056 0,050 0,116 -0,038 0,003

β 0,366 0,967 0,903 0,399 0,253 0,965 0,971 0,344 0,360 0,949 0,161 0,624 0,956 0,396 0,748 0,247

P 24210 30232 3488 5185 3286 148393 38514 84509 4865 23453 27680 67260 72762 8922 16515 38586

V_b 8853 29248 3148 2068 831 143195 37386 29099 1750 22263 4465 41971 69581 3532 12356 9526

DD 5,344 3,185 2,448 6,566 5,067 2,506 2,102 8,470 6,854 2,565 8,772 5,620 1,277 4,435 3,840 8,331

Normal Dist. (Inverse) 0,000 0,001 0,007 0,000 0,000 0,006 0,018 0,000 0,000 0,005 0,000 0,000 0,101 0,000 0,000 0,000

DD_2 6,494 0,614 0,836 7,304 2,672 -0,260 4,865 8,222 7,573 3,420 6,387 7,386 3,200 5,789 2,942 8,281

Normal Dist. (Inverse) 0,000 0,270 0,202 0,000 0,004 0,602 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,002 0,000

Drift effect 0,000 0,269 0,194 0,000 0,004 0,596 -0,018 0,000 0,000 -0,005 0,000 0,000 -0,100 0,000 0,002 0,000

Default Barrier effect 0,000 0,056 0,066 0,000 0,001 0,071 0,000 0,000 0,000 0,001 0,000 0,000 0,005 0,000 0,001 0,000
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Table 9 – Analysis for the five-year Probability of Default 

 

Table 10 – Analysis for the five-year Probability of Default

Output/Company Louis VuittonDanone SA L'Oreal SA Pernod R. Capgemini SEEssilor Int. Sanofi Air Liquide Deutsche Tel. Deutsche Post Siemens BMW Daimler AG Volkswagen

5-year PD 0,000 0,000 0,000 0,000 0,000 0,000 0,016 0,000 0,000 0,000 0,000 0,000 0,000 0,002

δ 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,003 0,000 0,000 0,000

σ 0,183 0,107 0,190 0,111 0,127 0,175 0,176 0,155 0,095 0,116 0,107 0,082 0,094 0,103

µ -0,010 0,028 0,012 0,012 0,182 0,106 -0,048 -0,062 0,046 -0,082 -0,089 -0,013 -0,007 -0,070

β 0,932 0,845 0,360 0,508 0,965 0,360 0,939 0,520 0,445 0,378 0,359 0,470 0,270 0,447

P 40269 27812 11328 21899 7859 5252 53813 19888 129572 35210 93375 141525 172964 325205

V_b 37521 23488 4075 11123 7583 1889 50524 10337 57605 13302 33566 66467 46659 145502

DD 2,839 4,526 7,612 6,130 3,357 6,964 3,141 5,139 5,879 6,642 7,270 6,249 8,161 4,661

Normal Dist. (Inverse) 0,002 0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000

DD_2 2,510 4,990 7,538 6,253 6,429 8,125 2,335 4,063 6,849 4,928 5,233 5,782 7,884 3,025

Normal Dist. (Inverse) 0,006 0,000 0,000 0,000 0,000 0,000 0,010 0,000 0,000 0,000 0,000 0,000 0,000 0,001

Drift effect 0,004 0,000 0,000 0,000 0,000 0,000 0,009 0,000 0,000 0,000 0,000 0,000 0,000 0,001

Default Barrier effect -0,006 0,000 0,000 0,000 0,000 0,000 0,006 0,000 0,000 0,000 0,000 0,000 0,000 0,001

Output/Company Continental Adidas Beiersdorf Infineon Tech. Merck K Fresenius SE Fresenius M.C BASF HeidelbergCement

5-year PD 0,000 0,000 0,000 0,000 0,051 0,000 0,000 0,000 0,000

δ 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,000

σ 0,170 0,142 0,165 0,268 0,104 0,119 0,147 0,140 0,099

µ 0,095 0,239 0,091 0,278 0,005 0,152 0,081 -0,069 0,063

β 0,348 0,972 0,780 0,908 0,985 0,440 0,496 0,415 0,414

P 24479 8398 3306 2885 13468 33642 13898 51078 20206

V_b 8508 8165 2578 2619 13273 14799 6897 21182 8365

DD 5,359 3,181 6,001 2,896 2,805 5,318 5,085 5,717 6,245

Normal Dist. (Inverse) 0,000 0,001 0,000 0,002 0,003 0,000 0,000 0,000 0,000

DD_2 6,421 6,776 7,045 4,913 2,796 8,028 6,151 4,447 7,563

Normal Dist. (Inverse) 0,000 0,000 0,000 0,000 0,003 0,000 0,000 0,000 0,000

Drift effect 0,000 -0,001 0,000 -0,002 0,000 0,000 0,000 0,000 0,000

Default Barrier effect 0,000 0,000 0,000 0,000 0,049 0,000 0,000 0,000 0,000
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Figure 5- Five-year Default Probabilities  
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Figure 6- Nominal debt of companies 


