

DOCUMENTOS DE TRABALHO

WORKING PAPERS

ECONOMIA

ECONOMICS

Nº 01/2009

EXACT AND HEURISTIC ALGORITHMS FOR VARIABLE
SELECTION: EXTENDED LEAPS AND BOUNDS

A. Pedro Duarte Silva

Universidade Católica Portuguesa (Porto)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade Católica Portuguesa

https://core.ac.uk/display/161847486?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Exact and heuristic algorithms for variable selection: Extended Leaps and Bounds

A. Pedro Duarte Silva

Faculdade de Economia e Gestão

Universidade Católica Portuguesa at Porto

E-mail: psilva@porto.ucp.pt

Keywords: Variable Selection Algorithms; All-Subsets; Heuristics

Abstract

An implementation of enhanced versions of the classical Leaps and

Bounds algorithm for variable selection is provided. Features of

this implementation include: (i) The availability of general routines

capable of handling many different statistical methodologies and

comparison criteria. (ii) Routines designed for exact and heuristic

searches. (iii) The possibility of dealing with problems with more

variables than observations.

The implementation is supplied in two different ways: i) as a C++

library with abstract classes that can be specialized to different

problems and criteria. ii) as a console application ready to be

applied to searches according to some of the most important

comparison criteria proposed to date.

The code of the C++ library and console application described

here, can be freely obtained by sending an email to the author.

1. Introduction

A recurrent theme in applied statistics and data analysis is the selection, or comparison,

of the subsets extracted from an initial pool of p candidate variables. Traditional

approaches to this problem use various comparison criteria to assess the relative merits of

different subsets. However, as the number of alternative sets (= 2p-1) increases

exponentially with the number of original variables, an exhaustive evaluation of all-

possible subsets quickly becomes infeasible and greedy strategies, such as stepwise

methods, are often used in practice. More sophisticated approaches based on general

heuristics or meta-heuristics have also been proposed (e.g. Winkler and Gilli 2004) and are

occasionally employed.

In linear regression problems, exact algorithms capable of handling data sets with a

moderate number of original variables are known since the nineteen seventies. One of the

most successful of these algorithms is Furnival and Wilson’s Leaps and Bounds (1974)

which, more than 30 years after its development, remains a global standard against with

other proposals need to be compared. Furthermore, the Leaps algorithm has two important,

but less known, features that have not been yet exploited to its full potential: (i) Its basic

search strategies can be adapted to a wide range o different statistical problems. (ii) For

problems with a large number of variables, variants that relax strict optimality requirements

lead to heuristics specialized to the variable selection problem.

The purpose of this article is to present a flexible extended version of the Leaps

algorithm that may be used in statistical problems where comparisons of variable subsets

are warranted. This extended algorithm is provided, in the C++ code enclosed, as a library

of search routines and general classes from which specializations to different problems can

be derived. Furthermore, a console application that uses the library to perform subset

searches according to different criteria for regression models, linear models with

multivariate responses, discriminant analysis and exploratory data analysis problems, is

also enclosed. Several other extensions and variants of the Leaps algorithm have been

proposed before (e.g. McCabe 1975, Lawless and Singhal 1978, 1987a, 1987b, Hosmer et

al. 1989, Duarte Silva 1998, 2001, 2002) however, none of them is as general, flexible and

easily extendable as the one described here.

The original Leaps algorithm assumes the absence of perfect colinearities in its input

data and can lead to numerical stability problems if the data is almost collinear. For that

reason it has been subject to some criticism. For instance, Miller (2002) remarks that, by

relying on matrices derived from sums of squares, this algorithm tends to magnify any

round-off cancellation errors that may occur. In contrast, methods that use triangular

factorizations of the original data do not suffer from the same problem and are numerically

more stable. Miller developed an implementation of his own, available as an R package (R

Development Core Team 2008) named leaps, that uses the QR decomposition of the

original data, has better numerical properties than the original algorithm, and can handle the

not so uncommon situation when there are more potential variables than observations.

However, this implementation sacrifices some of the speed of the original algorithm,

notably by increasing its worst case time complexity from O(2p) to O(p3 2p). Other research

has lead to exhaustive (Smith and Bremner, 1989) and branch and bound (Gatu and

Kontoghiorghes, 2006) algorithms based on QR decompositions, with the same worst case

time complexity as Furnival and Wilson’s original proposal. Algorithms based on different

factorisations were also proposed (Kim 2000), but their numerical and computational

properties are not well known.

 The implementation described in this paper is based on the original proposal of

Furnival and Wilson, but is capable of handling problems with more variables than

observations, can be used as an exact search as well as an heuristic, and monitors the

relative rounding error of the comparison criteria restricting the search to subsets where this

error remains within controlled limits. This approach only ignores subsets with strong

multicolinearity, which often should be avoided anyway because of their poor statistical

properties. Furthermore, whenever the algorithms do no perform a full analysis of all

possible subsets, an warning message is issued.

The remainder of the paper is structured as follows. The next section describes the

Extended Leaps algorithmitic strategies. Section 3 presents the C++ library that implements

these strategies and briefly describes a console application and an R package that use this

library. Section 4 concludes the paper.

The code of the C++ library and console application described here can be freely

obtained by sending an email to psilva@porto.ucp.pt.

2. Extended Leaps and Bounds Algorithms

Assume that there are p candidate variables to enter a given statistical model or data

analysis methodology. Denote the full set comprising all p candidates by S1 = {X1, X2, … ,

Xp} and the proper subsets of S1 by Sa ⊂ S1 (a = 2, 3, … , 2p – 1). Further assume that a

relevant criterion for subset comparisons, C(.), is known. Based on C(.), the analyst wants

to identify a pool of “interesting” sets for further analysis. Suppose that given known

criterion values for the sets Sa and Sc together with intermediate results stored in properly

reserved memory locations, M(.), it is possible for the sets of the form Sb = Sa ∪ { Xu } and

Sd = Sc \ { Xu } to compute the criterion values C(Sb) and C(Sd) with considerable less

computational effort than it would be required if these values had to be evaluated from

scratch. If intermediate results related to Sb or Sd are to be used in the evaluation of C(.) for

other subsets, then they also need to be updated and stored. The effort required for these

updates is typically related to number of variables that are to be included or excluded from

Sb or Sc in order to create sets derived from them. This effort will also be assumed to be

smaller than the effort required to evaluate C(.) without prior information.

Under these assumptions the computational effort to evaluate all C(.) can be minimized

by repeatedly updating the criterion through a sequence of subset evaluations such that the

average number of variables that in latter steps will be added or removed to each subset is

kept as low as possible. One simple strategy to achieve this goal, originally proposed by

Furnival (1971), is to sequence the evaluations by increasing order of the binary

representation index: where δ(X∑
=

−=
p

i

i
ia XSI

1

1)()(δ i) = 1 if Xi ∈ Sa and δ(Xi) = 0

otherwise. If p different memory locations M(1), M(2), … , M(p) are reserved in such way

that M(p) stores the original data and M(u-1) stores intermediate results related to a subset

that includes Xu but excludes X1 through Xu-1, then it can be shown that, when updating

C(.) by adding a Xu to a previous set: (i) all necessary information can be retrieved from

one of the available memory locations; (ii) only future updates based on adding variables

X1 through Xu-1 will need the information stored in M(u-1); (iii) M(u-1) will need to be

replaced only 2p-u-1 different times. Table1 exemplifies the sequence of criterion updates

and memory management for the case where p=3. In this table, t represents the number of

variables for which intermediate results need to be updated at each step.

Table 1 about here

The original algorithm addressed the linear regression model y = X β + ε using as

comparison criterion the coefficient of determination where RXyXXyX rRrRC 12(.) −== XX

stands for the matrix of correlations amongst the regressors and ryX (rXy) for the row

(column) vector of correlations between the regressors and the response1. When the

variable Xu is added to the subset Sa leading to the subset Sb = Sa ∪ {Xu}, C(.) can be

updated by the formula:

u)(u,R
)(r

)C(S)C(S
aaa

au

S|SS

2
S|Xy

ab +=

which requires only two multiplication-type and one addition-type floating point operations

(from now on referred to as flops), provided that the partial correlations

 ;
uaaaauau XS

1
SSySyXS|yX RRrrr −−=

aaaaaaaaaaaa SS
1
SSSSSSS|SS RRRRR −−=

are known.

In this case, the information required for evaluating C(.) in subsets derived from Sb

consists on the (u2+u-2)/2 different elements of the matrix
bbb S|SSR and vector

bb SySr | associated with the variables X1 through Xu-1. These elements can be computed in

1 It is well known that the maximization of R2 is equivalent to the classical criterion of minimizing the sum of
squared residuals. Sometimes the algorithm is presented in terms of the later criterion.

(u2+3u-4)/2 multiplication and (u2+u-4)/2 addition flops. It follows that the total number of

multiplication flops of the exhaustive search equals
2

3uu2
2p

1u

up +∑
=

− = 6
2
7

2
126 2 −−− ppp and,

as proven by Furnival and Wilson (1974), it is not possible to compute the coefficients of

determination (or the residual sums of squares) for all Sa with less multiplication flops.

Therefore, this procedure has a time complexity of O(2p), a result that can be generalized

for any problem where an update of C(.) and an memory M(.) associated with t = u-1

different variables requires an effort of the order O(t2). In effect, it can be easily proved by

induction that

which implies

that for a problem where an update requires a t

)3()2()2()3()(2 221

0

1 cbapbapacbactbta pp

t

tp
++−+−−++=++∑

−

=

−−

2+b t+c flops, as p grows the average

number of flops per subset approaches the constant 3a+b+c from below.

For criteria that never improve with the removal of variables, further computational

savings can be achieved by discarding at once all the proper subsets of the sets with poor

criterion values. Trying to maximize all those savings, Furnival and Wilson devised a

search strategy aimed at achieving simultaneously the following objectives:

(i) Find the best subsets of each dimension in the earlier stages of the algorithm and use

these sets to create bounds on the allowable values for C(.). (ii) Using the bounds found in

(i) discard, without further computations, as many subsets as possible. (iii) Sequence the

algorithm in such a way that an update involving t different variables never needs to be

performed more than 2p-t-1 times.

For this purpose the algorithm uses a double search tree. The first branch grows from

the empty set adding single variables to previous nodes. The second branch grows the full

set removing the same variables from previous sets. After each removal the resulting

criterion value is compared against the current bounds in order to test if the new sub-tree

can be immediately dropped out. To make this strategy effective the effect of removing the

most promising variables from the largest subsets should be tested as soon as sharp bounds

are available. With that goal in view, a depth first search of the forward branch and a one-

level breadth first then depth first of the backward branch are performed simultaneously

with the variables sorted according to their expected impact on C(.). A simple but effective

way of measuring this impact is to consider the changes in C(.) when each variable is in

turn removed form the full S1 set2. Figure 1 shows a routine, in pseudo-code, that

implements the full strategy when called recursively with initial arguments given by the

memory with the initial data in the forward search as Fm0 the memory with the initial data

in the backward search as Bm0, the variable with least expected impact on C(.) as Xf. and the

remaining variables sorted from X2.to Xl.in decreasing order their perceived importance.

Table 2 illustrates the sequence of subset evaluations for a problem with p = 4 variables.

Figure 1 about here

Table 2 about here

In order to understand basic properties of the algorithm and the issues to be considered

in its adaptation to different problems some comments are in order.

2 Funival and Wilson recommended that the ordering of X1,…, Xp should be updated periodically in function
of the subsets being considered at each step. However, in my experience, for exact algorithms this potentially
expensive procedure does not seem to lead to any noticeable improvement.

Firstly, nothing in Figure 1 contains anything specifically related to linear regression

and the whole procedure can be implemented in generic form, given some function(s)

capable of updating the criteria and other information associated with each variable subset.

That is the approach followed by the Extended Leaps library, described in the following

section, which relays on the mechanism of C++ abstract classes to separate the basic

algorithm from the details concerning particular statistical problems. Different types of

analysis and criteria can be easily included by deriving concrete classes that implement the

specifics of each criteria update.

Secondly, the success of the Leaps algorithm depends critically on its two most

distinctive features, one being the branch and bound strategy of pruning large parcels of the

search tree after evaluating a few subsets, and the other the efficient sequencing scheme

that allows each update to work with a small amount of data. To take full advantage of the

algorithm both features should be present, but if for some problem or criteria one of them

fails the algorithm can still take advantage of the other. For instances, the branch and bound

strategy only requires a common monotonic property that can be applied regardless of the

way the updating is performed. Furthermore, the sequencing of the algorithm is designed to

combine the computational savings achieved by keeping t as low as possible, with an

attempt to maximize the impact of pruning, by trying to find the best subsets of the largest

dimensionalities as early as possible. This strategy works the best if, as originally intended,

the algorithm proceeds until all subsets are explicitly or implicitly considered. However,

since the subsets of lower dimensionalities are typically fully explored only in the latter

stages of the search, when leaps is used as an heuristic being stopped after a reasonable

amount of time, the original sequencing has an undesirable tendency of giving poor results

for the smaller subsets. A more effective strategy in this case is to reverse the order of the

variables and the strategies used for the forward and backward branches of the search,

using a breath first then depth approach in the forward branch and a depth first approach in

the backward branch. A routine that implements this strategy is presented and illustrated in

Figure 2 and Table 3.

Figure 2 about here

Table 3 about here

Thirdly, even for non-monotone criteria the computational savings obtained by the

sequencing scheme can still be substantial. Furthermore if the branch and bound plan is

dropped, a full two-way search does not have to be applied since the much simpler pure

forward sequence illustrated in Table 1 will have similar performance. For some problems

even if the comparison is monotone it may be preferable to give up branch and bound in

order to guarantee numerical stability. That will be the case of a linear regression model

with strong multicolinearitty in the full data set but not in important subsets that can be

identified by a forward search. It should be noticed that even the case of perfect

multicolinearity in the full set, for example if there are more original variables than

observations, can be handled without difficulties by this approach. However, when the

algorithm is used as an heuristic, Furnival’s scheme may fail to identify reasonable subsets

in the lower dimensionalities. Correcting this problem with pure forward search that

achieve Furnival’s minimal computational effort does not seem as straightforward as when

a double search is employed. Specific strategies to address this problem are currently under

investigation.

3. Extended Leaps Implementations

The Extended Leaps library is composed of a collection of C++ classes and functions

that implement the basic leaps and bounds algorithms without making specific assumptions

about the criteria used in the subset comparisons. At the heart of the library there are three

functions: Forward_Search(), Leaps_Search() and Rev_Leaps_Search() that implement the

search routines described in the previous section. These functions take as an argument an

abstract class, named subsetdata, whose concrete specializations should specify the details

concerning criteria updates for different problems and comparison criteria. In particular,

specializations of the abstract member function of subsetdata named updateC() should

implement criteria updates when single variables are added to or removed from a given

subset. Likewise, specializations of updateM() should specify how to update the

information required to evaluate further subsets. Additional abstract classes provide the

basic structure for storing the data that may be required by updateC() and updateM().

A boolean argument (passed by reference) of updateC() and updateM(), named reliable,

is provided in order to report if an estimate of the relative rounding errors remain below

user-specified limits. To facilitate such a reliability check, the library includes a class

named errmonitreal that keeps track of a first order estimate of an upper bound on the

relative error of each computed real number according to:

fl(±) ≈ [x (1+δx̂ ŷ X) ± y (1+δY)] (1 + η) ≈ (x ± y) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

±
+

+ η
δδ

ŷx̂
|y||x| YX1

 fl(*) ≈ x (1+δx̂ ŷ X) * y (1+δY) (1 + η) ≈ (x * y) (1 + δX + δY + η)

fl(/) ≈ [x (1+δx̂ ŷ X) / y (1+δY)] (1 + η) ≈ (x / y) (1 + δX + δY + η)

Here, η represents the machine unit roundoff and δX , δY the relative rounding errors of the

computed real numbers and . x̂ ŷ

In order to use the library in the evaluation of variable subsets according to a new

criterion, the programmer should first identify the data requirements for each update and

specialize all the abstract classes accordingly. Then, she/he should provide a mechanism for

reading the data and placing it in the appropriate data structures. Finally, the programmer

should specify how to choose a particular search function and call the chosen function with

the new specialization of subsetdata as an argument. For monotone criteria the search

function will typically be Leaps_Search() or Rev_Leaps_Search(), with the former

recommended when proven optimality is to be expected within a reasonable time an the

later when the algorithm is to be used as an heuristic. However, when the comparison

criterion can not be reliably computed in the full data set, or it is not monotone, the

Forward_Search() routine should be employed.

Two important specializations of subsetdata are provided within the library. The first

one singleqfdata evaluates criteria of the form C1(Sa) = where and

are a vector and a symmetric matrix that depend only on the variables included in S

aaa SS
T

S vMv 1−
aSv

aSM a.

Particular cases of the C1(Sa) criterion include the coefficient of determination in linear

regression, the sample Mahalanobis distance between group centroids in Discriminant

Analysis problems (see Duarte Silva 1988, 2001) and the value of Wald statistic when

testing the relevance of excluded variables in generalized linear models (see Lawless and

Singhal 1978, 1987a). The second subsetdata specialization, named wilksdata, evaluates

criteria of the form C2(Sa) = where and are the determinants of

two symmetric matrices that depend only on S

||/||
aa SS TE ||

aSE ||
aST

a. A criterion of this form is the value of

Wilks statistic for testing linear hypothesis in multivariate Gaussian linear models, a

criterion suggested by McCabe (1975) in the context of Discriminant Analysis. Other

specializations of subsetdata are provided outside the library with the console application

that will be briefly described in following paragraphs.

In the source code that accompanies this paper it is included the implementation of a

console application, named ELeapsCons, that uses the Extended Leaps library to search for

variable subsets in the context of Linear Regression, Multivariate Linear Models (including

models for Canonical Correlation, Linear Discriminant Analysis and the analysis of

MANOVA/MANCOVA effects) and exploratory Multivariate Analysis. It is expected that

future versions of ELeapsCons will also be able to address subset comparisons in

Generalized Linear Models. Being a console application, ELeapsCons handles its input and

output through text files. Command line arguments are used to specify several options such

as the number of different subsets kept per dimensionality, the comparison criterion chosen,

the minimal and maximal dimensionality searched, the time allowed for the search, etc. All

these options come with default values needing to be invoked only when the user wants to

override them.

The original data processing of ELeapsCons resorts to several matrix operations and

decompositions (spectral, singular value, ….) that should be provided by an external matrix

system. In particular, the source code of ELeapsCons assumes that all the functions classes

and operations defined in the file MatrixOp.h are available. The sintax of MatrixOp.h is

based on an open-source matrix system, NewMat, developed by Robert Davies (1994) and

publicly available at http://www.robertnz.net. The simplest way to access the functionality

specified in MatrixOp.h is to precede the compilation of ELeapsCons by the installation of

the NewMat system. Alternatively what can use its favourite Matrix system, such has

LINPACK, EISPACK or LAPACK, as long as an interface that translates the functions

defined in such system into the syntax specified in MatrixOp.h is previously developed.

The Extended Leaps library itself does not relay on any specialized matrix operations and

can be compiled on its own.

A previous version of the Extended Leaps library is the basis of the exact search

routines of an subselect R package, named subselect, which addresses the same problems

and uses the same criteria as ELeapsCons. However, the exact searches of subselect employ

only on the original Leaps and Bound ordering scheme and thus are recommended only for

problems with well conditioned data where proven optimality can be achieved within a

reasonable amount of time. Larger problems are addressed in subselect by heuristic routines

based on simulated annealing, genetic and restricted search algorithms that were developed

and implemented by Cadima, Cerdeira and Minhoto (2004). Possible problems with

perfect or almost perfect collinear data are always checked before hand in subselect.

Furthermore, this package provides some pre-processing facilities to eliminate redundant

variables until multicolinearity is no longer a relevant problem.

4. Conclusions and Directions for Further Research

Choosing one or several subsets from a large pool of candidate variables is one of

oldest, most recurrent but still not yet fully resolved problems in many statistical and data

analysis methodologies. The classical approach to this problem is to resort to some variant

of, one-variable at the time, stepwise algorithms. Such algorithms although being subject to

many well known shortcomings (see Miller 2002 and Huberty and Olejnik 2006 for

discussions) remain popular amongst practitioners.

In linear regression, algorithms capable of comparing all possible variable subsets for

problems with a moderate number of variables are known since de ninety seventies. One of

the best known of these algorithms is the classical Leaps and Bounds of Furnival and

Wilson. Leaps and Bound is best know for variable selection in the context of Linear

Regression. However, its basic ideas can be easily adapted to a wide range of statistical

problems and data analysis methodologies. Furthermore, although Leaps and Bounds was

originally devised as an exact algorithm for problems with a moderate number of variables,

it can be adapted in larger problems to work as an heuristic specifically designed for the

problem of variable selection. Finally, problems with strong or perfect multicolinearity in

the full data set can still be analysed by Leaps and Bounds adaptations that sequence the

search in order avoids numerical problems. In particular, Leaps and Bounds routines are not

restricted to problems with more observations than variables.

This paper and its companion software make some important steps in the directions

described above. By clearly separating all the specific algorithmic details from the

particularities of each criterion and data analysis methodology, adaptations to different

types of analysis are enhanced. The availability of different variants and sequencing

schemes that respect the most distinctive Leaps and Bounds features but are designed for

conditions where the original algorithm was unreliable or less effective, increases the range

of problems that can be tackled by this approach.

Much remains to be done. Firstly, the Reversed Leaps routine is just a first step in the

development of search schemes that have good performance in problems where an exact

search is not viable. It is particularly important to search for schemes that have a good

performance when the algorithm is used as an heuristic. One possibility is to use mixed

strategies that combine pure forward passes with double searches in specific parcels of the

search tree. Furthermore, while the use of frequent variable sorting, as initially suggested

by Furnival and Wilson, does not seem to lead to any noticeable improvements in exact

searches it may improve the results of heuristic versions of the algorithm. The performance

of these strategies needs to be compared against that of the Reversed Leaps routine and

other heuristics.

Secondly, the problems for which Leaps and Bounds adaptations are currently available

reflect to some extent the particular interests of the researchers that have been most active

in this area. However, there are many other statistical problems that require variable

selection and subset comparisons methodologies that may benefit form similar adaptations.

Specializations of the classes and data structures presented in this paper will allow such

adaptations to benefit from the current and future algorithmic developments of the ELeaps

library.

Finally, this paper has focused on the algorithmic optimization of comparison criteria

and has ignored the related issues of bias selection and post-selection inference. It is known

that data-based model selection invalidates some of the assumptions in which classical

inference methodologies rely on and that traditional goodness of fit statistics may become

too optimistic. Methods to assess and correct to effects of selection bias should be

employed whenever a data driven variable selection methodology is applied. Resampling or

cross-validation strategies that repeated the search for adequate subsets for each newly

generated data (see, e.g., Le Roux, Stell and Louw 1997), are a relatively simple way to

deal with the most serious consequences of this problem .

References

Cadima, J. Cerdeira, J.O. and Minhoto, M. 2004. Computational aspects of algorithms for

variable selection in the context of principal components. Computational Statistics and

Data Analysis, 47, 225-236.

Davies, R.B. 1994. Writing a matrix package in C++. In OON-SKI'94: The Second Annual

Object-Oriented Numerics Conference, 207-213. Rogue Wave Software, Corvallis.

Duarte Silva, A.P., 1998. A leaps and bounds algorithm for variable selection in two-group

discriminant analysis in “Advances in Data Science and Classification” (A. Rizzi, M. Vichi,

and H. Bock, Ed.) IFCS Springer, 227-232.

Duarte Silva, A.P. 2002. Discarding variables in a principal component analysis: algorithms

for all-subsets comparisons. Computational Statistics, 17, 251-271.

Duarte Silva, A.P. 2001. Efficient Variable Screening for Multivariate Analysis. Journal of

Multivariate Analysis, 76 (1), 35-62

Furnival, G.M. 1971. All possible regressions with less computation. Technometrics. 13,

403-408.

Furnival, G.M. and Wilson, R.W. 1974. Regressions by leaps and bounds. Technometrics.

16, 499-511.

Gatu, C. and Kontoghiorghes, C. 2006. Branch-and-Bound Algorithms for Computing the

Best-Subset Regression Models. Journal of Computational and Graphical Statistics. 15 (1),

139-156.

Hosmer, D.W. Jovanovic, B. and Lemeshow, S. 1989. Best subsets logistic regression.

Biometrics. 45, 1265-21270.

Huberty, C.J. and Olejnik, S. 2006. Applied MANOVA and Discriminant Analysis. 2nd

Edition. John Wiley. Hoboken, NJ.

Kim, S-S. 2000. All possible subset regressions using the triangular decomposition. Journal

of Statistical Computation and Simulation 65, 81-94.

Lawless, J.F. and Singhal, K. 1978. Efficient screening of nonnormal regression models.

Biometrics 34, 318-327.

Lawless, J.F. and Singhal, K. 1987a. ISMOD: An all-subsets regression program for

generalized models. I. Statistical and computational background. Computer Methods and

Programs in Biomedicine 24, 117-124.

Lawless, J.F. and Singhal, K. 1987b. ISMOD: An all-subsets regression program for

generalized models. II. Program guide and examples. Computer Methods and Programs in

Biomedicine 24, 125-134.

Le Roux, N.J. Stell, S.J. and Low, N. 1997. Variable selection and error rate estimation in

discriminant analysis. Journal of Statistical Computing and Simulation. 59, 195-219.

Miller, A.J. 2002. “Subset Selection in Regression”, 2nd Edition. Chapman and Hall.

McCabe, G.P. 1975. Computations for Variable Selection in Discriminant Analysis.

Technometrics. 17, 103-109.

R Development Core Team. 2008. R: A language and environment for statistical

computing. R Fondation for statistical computing. Vienna, Austria. ISBN 3-900051-070,

URL http://www.R-project.com

Smith, D.M. and Bremner, J.M. 1989. All possible subset regressions using the QR

decomposition. Computational Statistics and Data Analysis 7, 217-235.

Winker, P., Gilli, M. 2004. Application of optimization heuristics to estimation and

modelling problems, Computational Statistics and Data Analysis. 47, 211-223.

Table 1

Furnival sequence for an exhaustive forward search (p = 3)

 Intermediate Results

Pivot
Original
Subset

(Sa)

New Subset
(Sb)

Pivot
Variable

(Xu)

t Retrieve from
Memory

Save in
Memory

1 φ {X1} X1 0 M(3) None
2 φ {X2} X2 1 M (3) M (1)

3 {X2} {X1, X2} X1 0 M (1) None

4 φ {X3} X3 2 M (3) M (2)

5 {X3} {X1, X3} X1 0 M (2) None

6 {X3} {X2, X3} X2 1 M (2) M (1)

7 {X2, X3} {X1, X2, X3} X1 0 M (1) None

Figure 1 Leaps and Bounds – Original Routine

Leaps_Search(Initial Memories Fm0 , Bm0, First Variable Xf , Last Variable Xl)
{
 Let Fm = Fm0
 For (i = f to l – 1) {
 Get SF(i-f) and SB(0) intermediate results from memories Fm and Bm0
 Let u = l – i + 1
 Pivot SF(i-f) and SB(0) onto SF(i-f+1) and SB(i-f+1) by sweeping on variable Xu
 Update Current_Bounds
 If (i < l - 1) {
 Save SF(i-f+1) and SB(i-f+1) intermediate results in memories Fu–2 and Bu– 2
 Let Prev_FMem(u-2) = Fm
 Let Fm = Fu – 2
 }
 }
 If (l –f > 1) For (i = 1 to l – f - 1) {

Get SB(l-f-i) intermediate results from memory Bi
If (SB(l-f-i) is better than Current_Bounds) Leaps_Search(Prev_FMem(i) ,Bi, Xf, Xi+1)

 }
}

 Table 2

Sequence for an original leaps search (p = 4)

Forward Search Backward Search
Pivots

Xu

t

Sa

Sb

Sc

Sd

1-2 X4 2 φ {X4} {X1,X2,X3,X4} {X1,X2,X3}
3-4 X3 1 {X4} {X3, X4} {X1,X2,X3,X4} {X1,X2,X4}

5-6 X2 0 {X3, X4} {X2, X3, X4} {X1,X2,X3,X4} {X1,X3,X4}

7-8 X2 0 {X4} {X2, X4} {X1,X2,X4} {X1,X4}

9-10 X3 1 φ {X3} {X1, X2, X3} {X1, X2}

11-12 X2 0 {X3} {X2, X3} {X1, X2, X3} {X1, X3}

13-14 X2 0 φ {X2} {X1, X2} {X1}

Figure 2 Reversed Leaps and Bounds Routine

Rev_Leaps_Search(Initial Memories Fm0 , Bm0, First Variable Xf , Last Variable Xl)
{
 Let Bm = Bm0
 For (i = f to l – 1) {
 Get SF(0) and SB(i-f) intermediate results from memories Fm0 and Bm
 Pivot SF(0) and SB(i-f) onto SF(i-f+1) and SB(i-f+1) by sweeping on variable Xi
 Update Current_Bounds
 If (i < l - 1) {
 Save SF(i-f+1) and SB(i-f+1) intermediate results in memories Fl – i – 1 and B l – i – 1
 Let Prev_BMem(l – i – 1) = Bm
 Let Bm = B l – i – 1
 }
 }
 If (l –f > 1) For (i = 1 to l – f - 1) {

Get SB(l-f-i-1) intermediate results from memory Prev_BMem(i)
If (SB(l-f-i-1) is better than Current_Bounds)

Rev_Leaps_Search(Fi, Prev_BMem(i) , Xl-i , X1)
 }
}

Table 3

Sequence for a reverse leaps search (p = 4)

Forward Search Backward Search
Pivots

Xu

t

Sa

Sb

Sc

Sd

1-2 X1 2 φ {X1} {X1,X2,X3,X4} {X2,X3,X4}
3-4 X2 1 φ {X2} { X2,X3,X4} { X3,X4}

5-6 X3 0 φ {X3} { X3,X4} { X4}

7-8 X3 0 {X2} {X2, X3} {X2,X3,X4} {X2,X4}

9-10 X2 1 {X1} {X1, X2} {X1,X2,X3,X4} {X1,X3,X4}

11-12 X3 0 {X1} {X1, X3} {X1, X3, X4} {X1, X4}

13-14 X3 0 {X1, X2} {X1, X2, X3} {X1,X2,X3,X4} {X1,X2,X4}

	References
	Forward Search
	Backward Search
	Forward Search
	Backward Search

