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Abstract 

An implementation of enhanced versions of the classical Leaps and 

Bounds algorithm for variable selection is provided. Features of 

this implementation include: (i) The availability of general routines 

capable of handling many different statistical methodologies and 

comparison criteria. (ii) Routines designed for exact and heuristic 

searches. (iii) The possibility of dealing with problems with more 

variables than observations.  

The implementation is supplied in two different ways: i) as a C++ 

library with abstract classes that can be specialized to different 

problems and criteria. ii) as a console application ready to be 

applied to searches according to some of the most important 

comparison criteria proposed to date.  

The code of the C++ library and console application described 

here, can be freely obtained by sending an email to the author.   

  



 

  

 

1. Introduction 

A recurrent theme in applied statistics and data analysis is the selection, or comparison, 

of the subsets extracted from an initial pool of  p candidate variables. Traditional 

approaches to this problem use various comparison criteria to assess the relative merits of 

different subsets. However, as the number of alternative sets (= 2p-1) increases 

exponentially with the number of original variables, an exhaustive evaluation of all-

possible subsets quickly becomes infeasible and greedy strategies, such as stepwise 

methods, are often used in practice.  More sophisticated approaches based on general 

heuristics or meta-heuristics have also been proposed (e.g. Winkler and Gilli 2004) and are 

occasionally employed.  

In linear regression problems, exact algorithms capable of handling data sets with a 

moderate number of original variables are known since the nineteen seventies. One of the 

most successful of these algorithms is Furnival and Wilson’s Leaps and Bounds (1974) 

which, more than 30 years after its development, remains a global standard against with 

other proposals need to be compared.  Furthermore, the Leaps algorithm has two important, 

but less known, features that have not been yet exploited to its full potential: (i) Its basic 

search strategies can be adapted to a wide range o different statistical problems. (ii) For 

problems with a large number of variables, variants that relax strict optimality requirements 

lead to heuristics specialized to the variable selection problem.    

The purpose of this article is to present a flexible extended version of the Leaps 

algorithm that may be used in statistical problems where comparisons of variable subsets 



are warranted. This extended algorithm is provided, in the C++ code enclosed, as a library 

of search routines and general classes from which specializations to different problems can 

be derived. Furthermore, a console application that uses the library to perform subset 

searches according to different criteria for regression models, linear models with 

multivariate responses, discriminant analysis and exploratory data analysis problems, is 

also enclosed. Several other extensions and variants of the Leaps algorithm have been 

proposed before (e.g. McCabe 1975, Lawless and Singhal 1978, 1987a, 1987b, Hosmer et 

al. 1989, Duarte Silva 1998, 2001, 2002) however, none of them is as general, flexible and 

easily extendable as the one described here. 

The original Leaps algorithm assumes the absence of perfect colinearities in its input 

data and can lead to numerical stability problems if the data is almost collinear. For that 

reason it has been subject to some criticism. For instance, Miller (2002) remarks that, by 

relying on matrices derived from sums of squares, this algorithm tends to magnify any 

round-off cancellation errors that may occur. In contrast, methods that use triangular 

factorizations of the original data do not suffer from the same problem and are numerically 

more stable. Miller developed an implementation of his own, available as an R package (R 

Development Core Team 2008) named leaps, that uses the QR decomposition of the 

original data, has better numerical properties than the original algorithm, and can handle the 

not so uncommon situation when there are more potential variables than observations. 

However, this implementation sacrifices some of the speed of the original algorithm, 

notably by increasing its worst case time complexity from O(2p) to O(p3 2p). Other research 

has lead to exhaustive (Smith and Bremner, 1989) and branch and bound (Gatu and 

Kontoghiorghes, 2006) algorithms based on QR decompositions, with the same worst case 

time complexity as Furnival and Wilson’s original proposal. Algorithms based on different 



factorisations were also proposed (Kim 2000), but their numerical and computational 

properties are not well known.      

 The implementation described in this paper is based on the original proposal of 

Furnival and Wilson, but is capable of handling problems with more variables than 

observations, can be used as an exact search as well as an heuristic, and monitors the 

relative rounding error of the comparison criteria restricting the search to subsets where this 

error remains within controlled limits. This approach only ignores subsets with strong 

multicolinearity, which often should be avoided anyway because of their poor statistical 

properties.  Furthermore, whenever the algorithms do no perform a full analysis of all 

possible subsets, an warning message is issued.  

The remainder of the paper is structured as follows. The next section describes the 

Extended Leaps algorithmitic strategies. Section 3 presents the C++ library that implements 

these strategies and briefly describes a console application and an R package that use this 

library. Section 4 concludes the paper.   

The code of the C++ library and console application described here can be freely 

obtained by sending an email to psilva@porto.ucp.pt.    

 

2. Extended Leaps and Bounds Algorithms 

Assume that there are p candidate variables to enter a given statistical model or data 

analysis methodology. Denote the full set comprising all p candidates by S1 = {X1, X2, … , 

Xp} and the proper subsets of S1 by Sa ⊂ S1 (a = 2, 3, … , 2p – 1).  Further assume that a 

relevant criterion for subset comparisons, C(.), is known. Based on C(.), the analyst wants 

to identify a pool of “interesting” sets for further analysis.  Suppose that given known 



criterion values for the sets Sa and Sc  together with intermediate results stored in properly 

reserved memory locations, M(.), it is possible for the sets of the form Sb = Sa ∪ { Xu } and 

Sd = Sc \ { Xu } to compute the criterion values C(Sb) and C(Sd) with considerable less 

computational effort than it would be required if these values had to be evaluated from 

scratch.  If intermediate results related to Sb or Sd are to be used in the evaluation of C(.) for 

other subsets, then they also need to be updated and stored. The effort required for these 

updates is typically related to number of variables that are to be included or excluded from 

Sb or Sc in order to create sets derived from them. This effort will also be assumed to be 

smaller than the effort required to evaluate C(.) without prior information.  

Under these assumptions the computational effort to evaluate all C(.) can be minimized 

by repeatedly updating the criterion through a sequence of subset evaluations such that the 

average number of variables that in latter steps will be added or removed to each subset is 

kept as low as possible. One simple strategy to achieve this goal, originally proposed by 

Furnival (1971), is to sequence the evaluations by increasing order of the binary 

representation index: where δ(X∑
=

−=
p

i

i
ia XSI

1

1)()( δ i) = 1 if Xi ∈ Sa and δ(Xi) = 0 

otherwise. If p different memory locations M(1), M(2), … , M(p) are reserved in such way 

that M(p) stores the original data and M(u-1) stores intermediate results related to a subset 

that includes Xu but excludes X1 through Xu-1, then it can be shown that, when updating 

C(.) by adding a Xu to a previous set: (i) all necessary information can be retrieved from 

one of the available memory locations; (ii) only future updates based on adding variables 

X1 through Xu-1 will need the information stored in M(u-1); (iii) M(u-1) will need to be 

replaced only 2p-u-1 different times. Table1 exemplifies the sequence of criterion updates 



and memory management for the case where p=3. In this table, t represents the number of 

variables for which intermediate results need to be updated at each step. 

------------------- 
Table 1 about here 

------------------- 
 

The original algorithm addressed the linear regression model y = X β + ε using as 

comparison criterion the coefficient of determination  where RXyXXyX rRrRC 12(.) −== XX 

stands for the matrix of correlations amongst the regressors and ryX (rXy) for the row 

(column) vector of correlations between the regressors and the response1. When the 

variable Xu is added to the subset Sa leading to the subset Sb = Sa ∪ {Xu}, C(.) can be 

updated by the formula:  

u)(u,R
)(r

)C(S)C(S
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which requires only two multiplication-type and one addition-type floating point operations 

(from now on referred to as flops), provided that the partial correlations  

   ;   
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are known.  

In this case, the information required for evaluating C(.) in subsets derived from Sb 

consists on the (u2+u-2)/2 different elements of the matrix 
bbb S|SSR and vector 

bb SySr | associated with the variables X1 through Xu-1. These elements can be computed in  

                                                 
1 It is well known that the maximization of R2 is equivalent to the classical criterion of minimizing the sum of 
squared residuals. Sometimes the algorithm is presented in terms of the later criterion. 



(u2+3u-4)/2 multiplication and (u2+u-4)/2 addition flops. It follows that the total number of 

multiplication flops of the exhaustive search equals
2

3uu2
2p

1u
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as proven by Furnival and Wilson (1974), it is not possible to compute the coefficients of 

determination  (or the residual sums of squares) for all Sa with less multiplication flops. 

Therefore, this procedure has a time complexity of O(2p), a result that can be generalized 

for any problem where an update of C(.) and an memory M(.) associated with t = u-1 

different variables requires an effort of the order O(t2).  In effect, it can be easily proved by 

induction  that 

which implies 

that for a problem where an update requires a t

)3()2()2()3()(2 221

0
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2+b t+c flops, as p grows the average 

number of flops per subset approaches the constant 3a+b+c from below.  

For criteria that never improve with the removal of variables, further computational 

savings can be achieved by discarding at once all the proper subsets of the sets with poor 

criterion values. Trying to maximize all those savings, Furnival and Wilson devised a 

search strategy aimed at achieving simultaneously the following objectives:  

(i) Find the best subsets of each dimension in the earlier stages of the algorithm and use 

these sets to create bounds on the allowable values for C(.). (ii) Using the bounds found in 

(i) discard, without further computations, as many subsets as possible. (iii) Sequence the 

algorithm in such a way that an update involving t different variables never needs to be 

performed more than 2p-t-1 times.  

For this purpose the algorithm uses a double search tree. The first branch grows from 

the empty set adding single variables to previous nodes. The second branch grows the full 



set removing the same variables from previous sets. After each removal the resulting 

criterion value is compared against the current bounds in order to test if the new sub-tree 

can be immediately dropped out. To make this strategy effective the effect of removing the 

most promising variables from the largest subsets should be tested as soon as sharp bounds 

are available. With that goal in view, a depth first search of the forward branch and a one-

level breadth first then depth first of the backward branch are performed simultaneously 

with the variables sorted according to their expected impact on C(.). A simple but effective 

way of measuring this impact is to consider the changes in C(.) when each variable is in 

turn removed form the full S1 set2. Figure 1 shows a routine, in pseudo-code, that 

implements the full strategy when called recursively with initial arguments given by the 

memory with the initial data in the forward search as Fm0 the memory with the initial data 

in the backward search as Bm0, the variable with least expected impact on C(.) as Xf. and the 

remaining variables sorted from X2.to Xl.in decreasing order their perceived importance. 

Table 2 illustrates the sequence of subset evaluations for a problem with p = 4 variables.  

 
------------------- 

Figure 1 about here 
------------------- 

------------------- 
Table 2 about here 

------------------- 

In order to understand basic properties of the algorithm and the issues to be considered 

in its adaptation to different problems some comments are in order. 

                                                 
2 Funival and Wilson recommended that the ordering of X1,…, Xp should be updated periodically in function 
of the subsets being considered at each step. However, in my experience, for exact algorithms this potentially 
expensive procedure does not seem to lead to any noticeable improvement. 



Firstly, nothing in Figure 1 contains anything specifically related to linear regression 

and the whole procedure can be implemented in generic form, given some function(s) 

capable of updating the criteria and other information associated with each variable subset. 

That is the approach followed by the Extended Leaps library, described in the following 

section, which relays on the mechanism of C++ abstract classes to separate the basic 

algorithm from the details concerning particular statistical problems. Different types of 

analysis and criteria can be easily included by deriving concrete classes that implement the 

specifics of each criteria update. 

Secondly, the success of the Leaps algorithm depends critically on its two most 

distinctive features, one being the branch and bound strategy of pruning large parcels of the 

search tree after evaluating a few subsets, and the other the efficient sequencing scheme 

that allows each update to work with a small amount of data. To take full advantage of the 

algorithm both features should be present, but if for some problem or criteria one of them 

fails the algorithm can still take advantage of the other. For instances, the branch and bound 

strategy only requires a common monotonic property that can be applied regardless of the 

way the updating is performed. Furthermore, the sequencing of the algorithm is designed to 

combine the computational savings achieved by keeping t as low as possible, with an 

attempt to maximize the impact of pruning, by trying to find the best subsets of the largest 

dimensionalities as early as possible. This strategy works the best if, as originally intended, 

the algorithm proceeds until all subsets are explicitly or implicitly considered. However, 

since the subsets of lower dimensionalities are typically fully explored only in the latter 

stages of the search, when leaps is used as an heuristic being stopped after a reasonable 

amount of time, the original sequencing has an undesirable tendency of giving poor results 

for the smaller subsets. A more effective strategy in this case is to reverse the order of the 



variables and the strategies used for the forward and backward branches of the search, 

using a breath first then depth approach in the forward branch and a depth first approach in 

the backward branch. A routine that implements this strategy is presented and illustrated in 

Figure 2 and Table 3.  

------------------- 
Figure 2 about here 

------------------- 

------------------- 
Table 3 about here 

------------------- 

Thirdly, even for non-monotone criteria the computational savings obtained by the 

sequencing scheme can still be substantial. Furthermore if the branch and bound plan is 

dropped, a full two-way search does not have to be applied since the much simpler pure 

forward sequence illustrated in Table 1 will have similar performance. For some problems 

even if the comparison is monotone it may be preferable to give up branch and bound in 

order to guarantee numerical stability. That will be the case of a linear regression model 

with strong multicolinearitty in the full data set but not in important subsets that can be 

identified by a forward search. It should be noticed that even the case of perfect 

multicolinearity in the full set, for example if there are more original variables than 

observations, can be handled without difficulties by this approach.  However, when the 

algorithm is used as an heuristic, Furnival’s scheme may fail to identify reasonable subsets 

in the lower dimensionalities. Correcting this problem with pure forward search that 

achieve Furnival’s minimal computational effort does not seem as straightforward  as when 

a double search is employed. Specific strategies to address this problem are currently under 

investigation.  

 



3. Extended Leaps Implementations 

The Extended Leaps library is composed of a collection of C++ classes and functions 

that implement the basic leaps and bounds algorithms without making specific assumptions 

about the criteria used in the subset comparisons. At the heart of the library there are three 

functions: Forward_Search(), Leaps_Search() and Rev_Leaps_Search() that implement the 

search routines described in the previous section. These functions take as an argument an 

abstract class, named subsetdata, whose concrete specializations should specify the details 

concerning criteria updates for different problems and comparison criteria. In particular, 

specializations of the abstract member function of subsetdata named updateC() should 

implement criteria updates when single variables are added to or removed from a given 

subset. Likewise, specializations of updateM() should specify how to update the 

information required to evaluate further subsets. Additional abstract classes provide the 

basic structure for storing the data that may be required by updateC() and updateM(). 

A boolean argument (passed by reference) of updateC() and updateM(), named reliable, 

is provided in order to report if an estimate of the relative rounding errors remain below 

user-specified limits. To facilitate such a reliability check, the library includes a class 

named errmonitreal that keeps track of a first order estimate of an upper bound on the 

relative error of each computed real number according to: 

fl(  ± ) ≈ [x (1+δx̂ ŷ X) ± y (1+δY)] (1 + η) ≈ (x ± y) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

±
+

+ η
δδ

ŷx̂
|y||x| YX1

 fl(  * ) ≈ x (1+δx̂ ŷ X) * y (1+δY) (1 + η) ≈ (x * y) (1 + δX + δY + η) 

fl(  / ) ≈ [x (1+δx̂ ŷ X) / y (1+δY)] (1 + η) ≈ (x / y) (1 + δX + δY + η) 



Here, η represents the machine unit roundoff  and δX , δY the relative rounding errors of the 

computed real numbers  and .  x̂ ŷ

In order to use the library in the evaluation of variable subsets according to a new 

criterion, the programmer should first identify the data requirements for each update and 

specialize all the abstract classes accordingly. Then, she/he should provide a mechanism for 

reading the data and placing it in the appropriate data structures. Finally, the programmer 

should specify how to choose a particular search function and call the chosen function with 

the new specialization of subsetdata as an argument. For monotone criteria the search 

function will typically be Leaps_Search() or Rev_Leaps_Search(), with the former 

recommended when proven optimality is to be expected within a reasonable time an the 

later when the algorithm is to be used as an heuristic. However, when the comparison 

criterion can not be reliably computed in the full data set, or it is not monotone, the 

Forward_Search() routine should be employed.  

Two important specializations of subsetdata are provided within the library. The first 

one singleqfdata  evaluates criteria of the form C1(Sa) =  where and 

are a vector and a symmetric matrix that depend only on the variables included in S

aaa SS
T

S vMv 1−
aSv

aSM a. 

Particular cases of the C1(Sa) criterion include the coefficient of determination in linear 

regression, the sample Mahalanobis distance between group centroids in Discriminant 

Analysis problems (see Duarte Silva 1988, 2001) and the value of Wald statistic when 

testing the relevance of excluded variables in generalized linear models (see Lawless and 

Singhal 1978, 1987a). The second subsetdata specialization, named wilksdata, evaluates 

criteria of the form C2(Sa) =   where and are the determinants of 

two symmetric matrices that depend only on S

||/||
aa SS TE ||

aSE ||
aST

a. A criterion of this form is the value of 



Wilks statistic for testing linear hypothesis in multivariate Gaussian linear models, a 

criterion suggested by McCabe (1975) in the context of Discriminant Analysis. Other 

specializations of  subsetdata are provided outside the library with the console application 

that will be briefly described in following paragraphs. 

In the source code that accompanies this paper it is included the implementation of a 

console application, named ELeapsCons, that uses the Extended Leaps library to search for 

variable subsets in the context of Linear Regression, Multivariate Linear Models (including 

models for Canonical Correlation, Linear Discriminant Analysis and the analysis of 

MANOVA/MANCOVA effects) and exploratory Multivariate Analysis.   It is expected that 

future versions of ELeapsCons will also be able to address subset comparisons in 

Generalized Linear Models. Being a console application, ELeapsCons handles its input and 

output through text files. Command line arguments are used to specify several options such 

as the number of different subsets kept per dimensionality, the comparison criterion chosen, 

the minimal and maximal dimensionality searched, the time allowed for the search, etc. All 

these options come with default values needing to be invoked only when the user wants to 

override them. 

The original data processing of ELeapsCons resorts to several matrix operations and 

decompositions (spectral, singular value, ….) that should be provided by an external matrix 

system. In particular, the source code of ELeapsCons assumes that all the functions classes 

and operations defined in the file MatrixOp.h  are available. The sintax of MatrixOp.h is 

based on an open-source matrix system, NewMat, developed by Robert Davies (1994) and 

publicly available at http://www.robertnz.net. The simplest way to access the functionality 

specified in MatrixOp.h  is to precede the compilation of  ELeapsCons by the installation of 

the NewMat system. Alternatively what can use its favourite Matrix system, such has 



LINPACK, EISPACK or LAPACK,  as long as an interface that translates the functions 

defined in such system into the syntax specified in MatrixOp.h is previously developed. 

The Extended Leaps library itself does not relay on any specialized matrix operations and 

can be compiled on its own.    

A previous version of the Extended Leaps library is the basis of the exact search 

routines of  an subselect R package, named  subselect, which addresses the same problems 

and uses the same criteria as ELeapsCons. However, the exact searches of subselect employ 

only on the original Leaps and Bound ordering scheme and thus are recommended only for 

problems with well conditioned data where proven optimality can be achieved within a 

reasonable amount of time. Larger problems are addressed in subselect by heuristic routines 

based on simulated annealing, genetic and restricted search algorithms that were developed 

and implemented by Cadima, Cerdeira and Minhoto (2004).  Possible problems with 

perfect or almost perfect collinear data are always checked before hand in subselect. 

Furthermore, this package provides some pre-processing facilities to eliminate redundant 

variables until multicolinearity is no longer a relevant problem. 

 

4. Conclusions and Directions for Further Research 

Choosing one or several subsets from a large pool of candidate variables is one of 

oldest, most recurrent but still not yet fully resolved problems in many statistical and data 

analysis methodologies. The classical approach to this problem is to resort to some variant 

of, one-variable at the time, stepwise algorithms. Such algorithms although being subject to 

many well known shortcomings (see Miller 2002 and Huberty and Olejnik 2006 for 

discussions) remain popular amongst practitioners. 



In linear regression, algorithms capable of comparing all possible variable subsets for 

problems with a moderate number of variables are known since de ninety seventies. One of 

the best known of these algorithms is the classical Leaps and Bounds of Furnival and 

Wilson.  Leaps and Bound is best know for variable selection in the context of Linear 

Regression.  However, its basic ideas can be easily adapted to a wide range of statistical 

problems and data analysis methodologies.  Furthermore, although Leaps and Bounds was 

originally devised as an exact algorithm for problems with a moderate number of variables, 

it can be adapted in larger problems to work as an heuristic specifically designed for the 

problem of variable selection. Finally, problems with strong or perfect multicolinearity in 

the full data set can still be analysed by Leaps and Bounds adaptations that sequence the 

search in order avoids numerical problems. In particular, Leaps and Bounds routines are not 

restricted to problems with more observations than variables.  

This paper and its companion software make some important steps in the directions 

described above. By clearly separating all the specific algorithmic details from the 

particularities of each criterion and data analysis methodology, adaptations to different 

types of analysis are enhanced. The availability of different variants and sequencing 

schemes that respect the most distinctive Leaps and Bounds features but are designed for 

conditions where the original algorithm was unreliable or less effective, increases the range 

of problems that can be tackled by this approach.  

Much remains to be done. Firstly, the Reversed Leaps routine is just a first step in the 

development of search schemes that have good performance in problems where an exact 

search is not viable.  It is particularly important to search for schemes that have a good 

performance when the algorithm is used as an heuristic. One possibility is to use mixed 

strategies that combine pure forward passes with double searches in specific parcels of the 



search tree. Furthermore, while the use of frequent variable sorting, as initially suggested 

by Furnival and Wilson, does not seem to lead to any noticeable improvements in exact 

searches it may improve the results of heuristic versions of the algorithm. The performance 

of these strategies needs to be compared against that of the Reversed Leaps routine and 

other heuristics.  

Secondly, the problems for which Leaps and Bounds adaptations are currently available 

reflect to some extent the particular interests of the researchers that have been most active 

in this area. However, there are many other statistical problems that require variable 

selection and subset comparisons methodologies that may benefit form similar adaptations. 

Specializations of the classes and data structures presented in this paper will allow such 

adaptations to benefit from the current and future algorithmic developments of the ELeaps 

library.  

Finally, this paper has focused on the algorithmic optimization of comparison criteria 

and has ignored the related issues of bias selection and post-selection inference. It is known 

that data-based model selection invalidates some of the assumptions in which classical 

inference methodologies rely on and that traditional goodness of fit statistics may become 

too optimistic. Methods to assess and correct to effects of selection bias should be 

employed whenever a data driven variable selection methodology is applied. Resampling or 

cross-validation strategies that repeated the search for adequate subsets for each newly 

generated data (see, e.g., Le Roux, Stell and Louw 1997), are a relatively simple way to 

deal with the most serious consequences of this problem .  
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Table 1 

Furnival sequence for an exhaustive forward search (p = 3) 

 
     Intermediate Results 
 

Pivot 
Original 
Subset 

( Sa) 

New Subset 
( Sb ) 

Pivot 
Variable

(Xu) 

t Retrieve from 
Memory 

Save in 
Memory 

1 φ {X1} X1 0 M(3) None 
2 φ {X2} X2 1 M (3) M (1) 

3 {X2} {X1, X2} X1 0 M (1) None 

4 φ {X3} X3 2 M (3) M (2) 

5 {X3} {X1, X3} X1 0 M (2) None 

6 {X3} {X2, X3} X2 1 M (2) M (1) 

7 {X2, X3} {X1, X2, X3} X1 0 M (1) None 
 



Figure 1  Leaps and Bounds – Original Routine 

Leaps_Search(Initial Memories Fm0 , Bm0, First Variable Xf , Last Variable Xl) 
{ 
   Let Fm = Fm0 
   For (i = f to l – 1)  {   
        Get SF(i-f) and SB(0) intermediate results from memories Fm and Bm0  
        Let u = l – i + 1 
        Pivot SF(i-f) and SB(0) onto SF(i-f+1) and SB(i-f+1) by sweeping on variable Xu  
        Update Current_Bounds 
        If  (i < l - 1)  { 
             Save SF(i-f+1) and SB(i-f+1) intermediate results in memories Fu–2  and Bu– 2  
             Let  Prev_FMem(u-2) = Fm
             Let Fm = Fu – 2 
         } 
     } 
     If (l –f  > 1) For (i = 1 to l – f - 1) {  

Get SB(l-f-i) intermediate results from memory Bi  
If (SB(l-f-i) is better than Current_Bounds) Leaps_Search(Prev_FMem(i) ,Bi, Xf, Xi+1) 

    } 
} 



 Table 2 

Sequence for an original leaps search (p = 4) 

Forward Search Backward Search  
Pivots 

 
Xu

 
t  

Sa

 
Sb

 
Sc

 
Sd

1-2 X4 2 φ {X4} {X1,X2,X3,X4} {X1,X2,X3} 
3-4 X3 1 {X4} {X3, X4} {X1,X2,X3,X4} {X1,X2,X4} 

5-6 X2 0 {X3, X4} {X2, X3, X4} {X1,X2,X3,X4} {X1,X3,X4} 

7-8 X2 0 {X4} {X2, X4} {X1,X2,X4} {X1,X4} 

9-10 X3 1 φ {X3} {X1, X2, X3} {X1, X2} 

11-12 X2 0 {X3} {X2, X3} {X1, X2, X3} {X1, X3} 

13-14 X2 0 φ {X2} {X1, X2} {X1} 

 



Figure 2  Reversed Leaps and Bounds Routine 

Rev_Leaps_Search(Initial Memories Fm0 , Bm0, First Variable Xf , Last Variable Xl) 
{ 
   Let Bm = Bm0 
   For (i = f to l – 1)  {   
        Get SF(0) and SB(i-f) intermediate results from memories Fm0 and Bm  
        Pivot SF(0) and SB(i-f) onto SF(i-f+1) and SB(i-f+1) by sweeping on variable Xi  
        Update Current_Bounds 
        If  (i < l - 1)  { 
             Save SF(i-f+1) and SB(i-f+1) intermediate results in memories Fl – i – 1  and B l – i – 1  
             Let  Prev_BMem(l – i – 1) = Bm
             Let Bm = B l – i – 1 
         } 
     } 
     If (l –f  > 1) For (i = 1 to l – f - 1) {  

Get SB(l-f-i-1) intermediate results from memory Prev_BMem(i)  
If (SB(l-f-i-1) is better than Current_Bounds) 

Rev_Leaps_Search(Fi, Prev_BMem(i) , Xl-i , X1 ) 
    } 
} 



Table 3 

Sequence for a reverse leaps search (p = 4) 

Forward Search Backward Search  
Pivots 

 
Xu

 
t  

Sa

 
Sb

 
Sc

 
Sd

1-2 X1 2 φ {X1} {X1,X2,X3,X4} {X2,X3,X4} 
3-4 X2 1 φ {X2} { X2,X3,X4} { X3,X4} 

5-6 X3 0 φ {X3} { X3,X4} { X4} 

7-8 X3 0 {X2} {X2, X3} {X2,X3,X4} {X2,X4} 

9-10 X2 1 {X1} {X1, X2} {X1,X2,X3,X4} {X1,X3,X4} 

11-12 X3 0 {X1} {X1, X3} {X1, X3, X4} {X1, X4} 

13-14 X3 0 {X1, X2} {X1, X2, X3} {X1,X2,X3,X4} {X1,X2,X4} 
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