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Abstract

We forecast stock market returns by applying, within a Ferreira and Santa-Clara (2011) sum-of-the-

parts framework, a frequency decomposition of several predictors of stock returns. The method delivers

statistically and economically signi�cant improvements over historical mean forecasts, with monthly out-

of-sample R2 of 3.27% and annual utility gains of 403 basis points. The strong performance of this method

comes from its ability to isolate the frequencies of the predictors with the highest predictive power from the

noisy parts, and from the fact that the frequency-decomposed predictors carry complementary informa-

tion that captures both the long-term trend and the higher frequency movements of stock market returns.
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1 Introduction

Predicting stock market returns has a long tradition in �nance. A reliable forecast of stock market returns is

a crucial input for the computation of the cost of capital and, therefore, for the investment process in general.

It is hardly surprising then that stock return predictability has stimulated an immense literature and remains

a very active research topic, as recent papers by Pettenuzzo, Timmermann and Valkanov (2014), Bollerslev,

Todorov and Xu (2015), Huang et al. (2015) and Rapach, Ringgenberg and Zhou (2016) con�rm. This paper

contributes to this literature by using a method that allows to e�ciently exploit the information resulting

from the frequency decomposition of several potential predictors of stock market returns.

Our work builds on the Ferreira and Santa-Clara (2011) sum-of-the-parts (SOP) method for forecasting stock

market returns. Conceptually, the SOP method consists in decomposing the stock market return into three

components, which are �rst forecasted separately and then added in order to obtain the forecast of the

stock market return. The SOP method improves the forecast accuracy (as compared to the historical mean

benchmark) because it exploits the di�erent time series persistence of the stock market returns components.

Our proposed method provides an alternative way of forecasting those three components. Namely, we directly

use (some of) the frequency-decomposed time series of a set of popular predictors from the literature. The

frequency decomposition is implemented through a discrete wavelet transform multiresolution analysis, which

is gaining popularity as a tool for econometric analysis (see e.g. Galagedera and Maharaj, 2008, Xue, Gencay

and Fagan, 2013 and the references in section 2.2). In a nutshell, the method consists in decomposing a time

series into n orthogonal time series components, each capturing the oscillations of the original variable within

a speci�c frequency interval. Lower frequencies represent the long-term dynamics of the original time series,

while the higher frequencies capture the short-term dynamics. As the n frequency-decomposed components

are orthogonal, by adding them back together the original time series is recovered. We refer to our method

as the SOPWAV method, as it consists in applying, within a SOP method for stock market returns forecasts,

a wavelet decomposition approach (WAV). The SOPWAV method, by explicitly decomposing the di�erent

predictors of stock returns into their frequency time-series components, allows to identify the best predictors

and to exclude the noisy parts. In other words, it only retains the components that have the greatest

predictive power. This leads to expressive statistically and economically forecasting improvements.

As a preview of the results, �gure 1 shows, for the full out-of-sample period considered in this paper, the

realized S&P 500 index log return (black solid line) together with the forecasts based on the historical mean

(HM) of returns (black dashed line) and the SOPWAV method (blue solid line). The out-of-sample forecast
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from the SOPWAV method clearly tracks the dynamics of stock market returns more closely than the HM

forecast. Indeed, the correlation between the SOPWAV forecast and the realized S&P 500 index return is

0.25, while it is almost zero between the HM forecast and the realized return. The strength of the wavelet

decomposition, which is at the core of the SOPWAV method, is that it permits the capture of both the low-

frequency dynamics of stock market returns (long-run trend) as the HM does, and part of the higher-frequency

movements of the stock market that are not captured by the HM.

Using the HM as a benchmark, the monthly out-of-sample R2 for the SOPWAV method is 3.27% for the

full out-of-sample period (January 1950 to December 2015). When examining the economic signi�cance of

the SOPWAV predictive performance through an asset allocation analysis, we �nd that a mean-variance

investor who allocates her wealth between equities and risk-free bills enjoys signi�cant utility gains from

using a SOPWAV-based trading strategy. Speci�cally, the rate of return that an investor would be willing

to accept instead of holding the risky portfolio is 403 basis points. Furthermore, the annualized Sharpe ratio

of the strategy based on the SOPWAV method is 0.65, which is about 1.8 times the Sharpe ratio generated

by the HM-based strategy. These results are robust to the introduction of transaction costs, di�erent sets of

portfolio constraints and di�erent out-of-sample forecasting periods.

The rest of the paper is structured as follows. Section 2 reviews the two strands of literature on which our

work builds and places our contribution. Section 3 presents the data and the methodology. We introduce

the two blocks of the SOPWAV method: the original SOP method and the discrete wavelet decomposition

of the predictors. The out-of-sample forecasting procedure and asset allocation analysis are also described.

Sections 4 and 5 present the out-of-sample and asset allocation results, respectively. Section 6 concludes.

2 Literature review

This paper draws on two strands of literature. The �rst deals with the out-of-sample stock return predictabil-

ity using standard time series tools. The second involves the application of wavelet methods to economic and

�nance topics. In the next two sections, we provide a brief overview of these two strands of literature and we

place the contribution of this paper with respect to both.
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2.1 Forecasting stock returns

As evidenced in the reviews of Rapach and Zhou (2013) and Harvey, Liu and Zhu (2016), the literature on

predicting stock returns and equity premium is vast. Several studies discuss the in-sample predictability

using predictors such as the treasury bill rate, dividend yield, dividend-price ratio, term spread, equity

market volatility or the consumption-wealth ratio. This is the case for the US stock market (see e.g. Fama

and Schwert, 1977, Campbell, 1987, Ferson and Harvey, 1991, Lettau and Ludvigson, 2001, Cochrane, 2008,

Goyal and Welch, 2008 and Pastor and Stambaugh, 2009), as well as for other stock markets (see e.g.

Cutler, Poterba and Summers, 1991, Harvey, 1991, Bekaert and Hodrick, 1992, Ferson and Harvey, 1993,

Ang and Bekaert, 2007 and Hjalmarsson, 2010). However, Goyal and Welch (2008) note how poorly the

abovementioned predictors perform out-of-sample up to 2008. As predictive models require out-of-sample

validation, and given this poor out-of-sample performance, researchers have then turned their attention to

improving the out-of-sample forecastability of stock returns. In particular, the literature after Goyal and

Welch (2008) has followed two main strategies.

The �rst strategy focuses on developing and testing new predictors. For instance, Bollerslev, Tauchen and

Zhou (2009) test the variance risk premium, Cooper and Priestley (2009, 2013) use the output gap and the

world business cycle, Rapach, Strauss and Zhou (2013) document the relevance of lagged US market returns

for the out-of-sample predictability of stock returns of other industrialized countries, Li, Ng and Swaminathan

(2013) study the aggregate implied cost of capital, Neely et al. (2014) study the relevance of some technical

indicators (complementary predictors to the traditional set of variables), Huang et al. (2015) propose a new

investor sentiment index, Moller and Rangvid (2015) study di�erent macroeconomic variables by focusing

on their fourth-quarter growth rate and Rapach, Ringgenberg and Zhou (2016) construct an aggregate short

interest position indicator.

The second strategy focuses on improving existing forecasting methods. For example, Ludvigson and Ng

(2007) and Kelly and Pruitt (2013) propose using dynamic factor analysis for large data sets to summarize a

large amount of information by few estimated factors, Rapach, Strauss and Zhou (2010) suggest combining

individual forecasts from di�erent predictors, Ferreira and Santa-Clara (2011) introduce the SOP method,

Dangl and Halling (2012) evaluate predictive regressions that explicitly consider the time-variation of coe�-

cients, Pettenuzzo, Timmermann and Valkanov (2014) propose an approach to impose economic constraints

on forecasts of the equity premium, Bollerslev, Todorov and Xu (2015) decompose the predictor (the vari-

ance risk premium) into a jump and a di�usion component, and Baetje and Menkho� (2016) examine the
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time-instability of the standard set of economic and technical indicators.

We place our contribution in both strands of research, as the frequency decomposition of the predictors is not

only a methodological contribution per se, but it also represents an expansion of the set of possible predictors,

as each frequency of each predictor can be understood and potentially used as a new predictor.

2.2 Wavelets applications in economics and �nance

Wavelets are a signal processing technique developed to overcome some of the limitations of traditional

frequency domain methods (i.e. spectral analysis and Fourier transforms). The advantage of wavelets

methodology is that it overcomes the weaknesses of traditional frequency domain tools while providing a

more complete decomposition of the original time series. Unlike Fourier analysis, wavelets are de�ned over

a �nite support/window in the time domain, with the size of the window resized automatically according

to the frequency of interest. In essence, using a short window allows to isolate the high frequency features

of the time series, while looking at the same signal with a large window reveals the low frequency features.

Hence, by varying the size of the time window, it is possible to capture simultaneously both time-varying

and frequency-varying features of the time series. Wavelets are thus extremely useful when the time series

have structural breaks or jumps, as well as with non-stationary time series.

Crowley (2007) and Aguiar-Conraria and Soares (2014) provide excellent reviews of economic and �nance

applications of wavelets.1 The pioneering works in these �elds are Ramsey and Lampart (1998a,b), in which

wavelets are used to study the relationship between macroeconomic variables (consumption versus income

and money supply versus income, respectively). More recently, wavelets methods have been applied to test

for the (in-sample) frequency dependence between two (or more) variables (Kim and In, 2005, Gencay, Selcuk

and Whitcher, 2005, Gallegati et al., 2011 and Gallegati and Ramsey, 2013), and to study the comovements

and lead-lag relationship between variables at di�erent frequencies (Rua and Nunes, 2009, Rua, 2010, Aguiar-

Conraria and Soares, 2011 and Aguiar-Conraria, Martins and Soares, 2012). A relatively unexplored area of

research is the application of wavelet methods for forecasting purposes. A notable exception is Rua (2011),

who proposes a wavelet approach for factor-augmented forecasting of GDP growth and �nds that signi�cant

predictive short-run improvements can be achieved by using wavelets (in combination with factor-augmented

models).

1 Wavelet methods have long been popular in many �elds, including astronomy, engineering, geology, medicine, meteorology
and physics.
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In this paper, we demonstrate the statistical and economic advantages of applying wavelet decomposition in

the context of forecasting stock market returns.

3 Data and methodology

We focus on the out-of-sample (OOS) predictability of monthly stock returns, proxied by the S&P500 index

total return. We use monthly data from January 1927 to December 2015 for a set of potential predictors from

Ferreira and Santa-Clara (2011). Speci�cally, we use the dividend-price ratio, the growth rate of dividends,

the book-to-market ratio, the default return spread, the default yield spread, the dividend-payout ratio, the

earnings-price ratio, the in�ation rate, the long-term government bond return, the long-term government

bond yield, the net equity expansion, the return on equity, the stock variance, the term spread and the

treasury bill rate. Appendix 1 provides a brief description of the predictors.

Our methodology to forecast stock market returns builds on two blocks: the SOP method proposed by

Ferreira and Santa-Clara (2011) and the discrete wavelet transform decomposition of the di�erent predictors.

We describe these blocks in sections 3.1 and 3.2, respectively. The OOS procedure and asset allocation

analysis are described in sections 3.3 and 3.4, respectively.

3.1 The sum-of-the-parts method: decomposition of the stock market return

Ferreira and Santa-Clara (2011) propose the SOP method for forecasting stock market returns. Conceptu-

ally, this consists in decomposing the stock market return into various components that are �rst forecasted

separately and then added together to obtain the stock market return forecast.

The stock market total return from time t to time t+1, Rt+1, can be decomposed into capital gains, CGt+1,

and dividend yield, DYt+1:

1 +Rt+1 = 1 + CGt+1 +DYt+1 =
Pt+1

Pt
+
Dt+1

Pt
, (1)

where Pt+1 is the stock price at time t+1 and Dt+1 is the dividend per share paid between time t and t+1.

Each component in equation (1) is then further decomposed.
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Capital gains can be rewritten as

1 + CGt+1 =
Pt+1

Pt
=
Pt+1/Dt+1

Pt/Dt

Dt+1

Dt
=
Mt+1

Mt

Dt+1

Dt
=

= (1 +GMt+1) (1 +GDt+1) , (2)

where Mt+1 = Pt+1/Dt+1 is the price-dividend multiple, GMt+1 is the price-dividend multiple growth rate,

and GDt+1 is the dividend growth rate. At this point, the SOP method o�ers �exibility as to choice of the

variable to be included in equation (2). For instance, instead of using the price-dividend multiple, other price

multiples such as price-earnings, price-to-book or price-to-sales may be used. Analytically, in equation (2)

one would just need to replace the growth rate of dividends by the growth rate of the denominator in the

multiple used (earnings, book value of equity or sales). Ferreira and Santa-Clara (2011) obtain similar results

using the price-earnings multiple or the price-dividend multiple. Here, we use the price-dividend multiple

because it o�ers a clear forecasting advantage with the proposed method compared to the price-earnings

multiple. This is mainly due to the huge earnings swing between 2008 and 2009, while dividends posted a

much smoother behavior during that period.2

The dividend yield can be rewritten as:

DYt+1 =
Dt+1

Pt
=
Dt+1

Pt+1

Pt+1

Pt
= DPt+1 (1 +GMt+1) (1 +GDt+1) , (3)

where the dividend-price ratio DPt+1 = Dt+1/Pt+1 di�ers from the dividend yield because of the contempo-

raneous timing of the dividend with respect to price.

Substituting equations (2) and (3) in (1), the total stock market return can then be rewritten as

1 +Rt+1 = (1 +GMt+1) (1 +GDt+1) +DPt+1 (1 +GMt+1) (1 +GDt+1)

= (1 +DPt+1) (1 +GDt+1) (1 +GMt+1) , (4)

that is, stock market return is the product of the dividend-price ratio, the growth rates of dividends and of

the price-dividend ratio. Finally, by taking the logs on both sides of equation (4), the log stock return is

given by the sum of the dividend-price ratio, the growth in dividends and the growth in the price-dividend

2 Note that this large swing in earnings does not a�ect the results in Ferreira and Santa-Clara (2011) as their dataset ends
in 2007.
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multiple:

rt+1 = log(1 +Rt+1) = dpt+1 + gdt+1 + gmt+1 , (5)

where lowercase variables denote log rates.

3.2 Maximal Overlap Discrete Wavelet Transform MultiResolution Analysis

Wavelets tools allow for a decomposition of a given time series into di�erent time series, each associated with

a di�erent time scale or frequency band. This decomposition process is known as multiresolution analysis

(MRA). In a nutshell, by applying a maximal overlap discrete wavelet transform multiresolution analysis

(MODWT MRA), a time series yt can be decomposed as:

yt = y (D1)t + ...+ y (DJ)t + y (SJ)t , (6)

where the y (Dj)t, j = 1, 2, . . . , J are the wavelet details and y (SJ)t is the wavelet smooth. The original time

series is thus decomposed into orthogonal components (y (D1)t to y (DJ)t and y (SJ)t), called crystals, each

de�ned in the time domain and representing the �uctuation of the original time series in a speci�c frequency

band. In particular, for small j, the j wavelet details represent the higher frequency characteristics of the

time series (i.e. its short-term dynamics) and, as j increases, the j wavelet details represent lower frequencies

movements of the series. The wavelet smooth captures the lowest frequency dynamics (i.e. its long-term

behavior or trend).3

Given the availability of long data series, we apply a J = 7 levels MRA. Thus, the wavelet decomposition

delivers eight orthogonal crystals: seven wavelet details (y (D1)t to y (D7)t) and a wavelet smooth (y (S7)t).

Since we employ monthly data in our analysis, the �rst detail level y (D1)t captures oscillations between 2

and 4 months, the second detail level y (D2)t captures oscillations between 4 and 8 months, while detail levels

y (D3)t, y (D4)t, y (D5)t, y (D6)t and y (D7)t capture oscillations with a period of 8-16, 16-32, 32-64, 64-128

and 128-256 months, respectively. Finally, the smooth component y (S7)t captures oscillations with a period

longer than 256 months (21.3 years).4

3 A detailed analysis of wavelet methods can be found in Appendix 2 and in Percival and Walden (2000).
4 All the simulations were run using the WMTSA Wavelet Toolkit for Matlab, which is available at

http://www.atmos.washington.edu/~wmtsa/. Here, we perform the MODWT MRA using the Haar wavelet �lter (as in e.g.

Manchaldore, Palit and Soloviev, 2010 and Malagon, Moreno and Rodriguez, 2015) with re�ecting boundary conditions. As the
wavelet family may in�uence the results, we also run the simulations using the Daubechies wavelet �lter with the �lter length
L = 4 (as in Barunik and Vacha, 2015) and the Coi�et wavelet �lter with the �lter length L = 6 (as done by Galagedera and
Maharaj, 2008). Our results are robust to changes in the wavelet family. As regards the choice of J, the number of observations
dictates the maximum number of frequency bands that can be used. In particular, if N is the number of observations in the
in-sample period, then J has to satisfy the constraint N ≥ 2J .
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As an example, �gure 2 plots the time series of the (log) stock market return (top graph) and its MODWT

MRA decomposition (remaining graphs). Overall, the frequency-decomposed time series exhibit signi�cantly

di�erent dynamics that are not visible from the original time series as all these di�erent frequencies are in

practice aggregated. As expected, the lower the frequency, the smoother the resulting �ltered time series.

3.3 Out-of-sample forecasts

One-step-ahead OOS forecasts of stock market returns are generated using a sequence of expanding windows.

We use an initial sample (January 1927 to December 1949) to make the �rst one-step-ahead OOS forecast.

The sample is then increased by one observation and a new one-step-ahead OOS forecast is produced. We

proceed in this way until the end of the sample, thus obtaining a sequence of 792 one-step-ahead OOS

forecasts. The full OOS period spans the period from January 1950 to December 2015.

3.3.1 Forecast evaluation

We evaluate the forecast performance of the SOPWAV method in terms of the Campbell and Thompson

(2008) OOS R-square
(
R2

OS

)
. The R2

OS statistic measures the proportional reduction in the mean squared

forecast error (MSFE) for the predictive method relative to the historical sample mean and is given by

R2
OS = 1−

∑T−1
s=s0

(rs+1 − µ̂s)
2∑T−1

s=s0
(rs+1 − rs)2

, (7)

where µ̂s is the stock return forecast for s+1 from the SOPWAV method (see section 3.3.3), rs is the historical

mean of stock market returns up to time s, rs+1 is the realized stock market return in s+1, T is the total

number of observations in the sample and s0 is the number of observations in the initial sample. As standard

in the literature, we choose the HM as the benchmark model. According to (7), a positive (negative) value

of R2
OS indicates that the SOPWAV method outperforms (underperforms) the HM in terms of MSFE.

As in Ferreira and Santa-Clara (2011), we evaluate the statistical signi�cance of the results using theMSFE-F

statistic proposed by McCracken (2007).5 The MSFE-F statistic tests for the equality of the MSFE of the

HM and the SOPWAV method forecasts as follows:

MSFE − F = (T − s0)

[∑T−1
s=s0

(rs+1 − rs)2 −
∑T−1

s=s0
(rs+1 − µ̂s)

2∑T−1
s=s0

(rs+1 − µ̂s)
2

]
.

5 We thank Michael McCracken for providing us additional tables of critical values in order to evaluate the statistical
signi�cance of the R2

OS .

9



3.3.2 Forecasting with the SOP method

To forecast stock market returns, the SOP method forecasts separately each component of the stock market

return as derived in equation (5). Let µ̂s denote the expected stock market return at time s for period s+1,

then forecasting with the SOP method implies that

Esrs+1 = µ̂s = µ̂dp
s + µ̂gd

s + µ̂gm
s . (8)

The expected stock market return is the sum of the forecasts of three components: the expected dividend-

price ratio (µ̂dp
s ), the expected dividend growth (µ̂gd

s ) and the expected price-dividend multiple growth (µ̂gm
s ).

The equivalent of equation (8) in Ferreira and Santa-Clara (2011) (their equation 12) re�ects the use of the

earnings growth (instead of dividend growth). To forecast the expected dividend-price ratio µ̂dp
s , Ferreira and

Santa-Clara (2011) assume that dp follows a random walk such that the expected dividend-price ratio equals

the current dividend-price ratio. As regards the expected earnings growth µ̂ge
s , Ferreira and Santa-Clara

(2011) assume that it is captured by the 20-year moving average of the growth in earnings up to time s.

This is consistent with the view that earnings growth has a low-frequency predictable component. Finally,

the expected multiple growth (price-earnings multiple in their case) is assumed to be zero in the simplest

version of the SOP. In its extended version, it is predicted using bivariate regressions on a set of predictors

from Goyal and Welch (2008).6

3.3.3 Forecasting with the SOPWAV method

We adopt a similar SOP approach to forecast stock market returns as given by equation (8). However, to

forecast each component of the expected stock market return, we directly use the frequency-decomposed time

series of the dividend-price ratio, of dividend growth and of a set of predictors from Ferreira and Santa-Clara

(2011). In particular, we want to �nd and use the crystals of dp and gd that best forecast µ̂dp
s and µ̂gd

s ,

respectively, as well as the set of crystals among the other predictors that best forecast µ̂gm
s .

We begin our analysis by �rst applying the MODWT MRA decomposition to the time series of all predictors.

Overall, we decompose 15 time series into J = 7 levels, so the total number of crystals that can be used as

potential predictors is 15 × (7 + 1) = 120. We note that the amount of information we are using is exactly

the same as in the standard time series analysis. This is because the obtained crystals for each predictor

6 See Ferreira and Santa-Clara (2011, tables 2 and 3) for details.
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are orthogonal, i.e. there is no overlap between them (so that their sum gives exactly the original time

series of the corresponding predictor). Furthermore, as the MODWT MRA, at any given point in time, uses

information of neighboring data points (both past and future), we recompute the crystals at each iteration

of the OOS forecasting process to make sure that we only use current and past information when making the

forecasts. Hence, our proposed SOPWAV method does not su�er from a look-ahead bias.

To make the forecast with the SOPWAV method, we assume that the time-s SOPWAV stock return forecast

for period s+1 is the sum of the time-s observations of some crystals. In particular, the forecasting equation

speci�cation of the SOPWAV method is given by

µ̂s =

NC∑
i=1

crystali,s , (9)

where NC is the number of crystals that maximize the R2
OS (for the entire OOS period) and crystali, i =

1, . . . , NC are the crystals selected.

In principle, we would like to search for the combination of crystals (among the 120 available) that delivers the

highest possible R2
OS . However, as this is computationally too intensive (given the large number of possible

combinations of predictors), we implement the following sequential scheme selection. In the �rst step, we

search for the crystal that gives the highest possible R2
OS . We then save it and remove it from the list of

possible predictors to use in the next step. In the second step, we sum the chosen crystal with all the other

(119) crystals � chosen one at a time � and select the combination of crystals (the �rst one plus one among

the remaining 119) that delivers the highest R2
OS . We save these two crystals and repeat the same procedure

until we use all the 120 crystals. As we show in section 4, the resulting R2
OS function is an inverted U-shaped

function of the number of crystals used. We can thus identify the (number of) crystals that maximize the

R2
OS . Beyond that point, adding more crystals leads to a deterioration of the forecasting performance as the

information provided by these additional predictors adds noise to the forecast.7

3.4 Asset allocation analysis

To quantify the economic value of the SOPWAV method from an asset allocation perspective, we follow,

among others, Kandel and Stambaugh (1996), Campbell and Thompson (2008) and Rapach, Ringgenberg

7 As a robustness exercise, we estimate by OLS, for each crystal, an AR(1) process, e.g. dp (S7)t = α̂ + β̂dp (S7)t−1. We

then make its one-step-ahead forecast as Etdp (S7)t+1 = α̂+ β̂dp (S7)t, and use the results to compute µ̂s (while our procedure

implicitly assumes that α̂ = 0 and β̂ = 1). Results are similar and available upon request.
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and Zhou (2016), and consider a mean-variance investor who dynamically allocates her wealth between

equities and risk-free bills. The asset allocation decision is made at the end of month s, and the optimal

share allocated to equities during month s+1 is given by

ws =
1

γ

µ̂s − rfs+1

σ̂2
s+1

, (10)

where rfs+1 denotes the risk-free return from time s to s+ 1 (i.e. the market rate, which is known at time

s), γ is the investor's relative risk aversion coe�cient, µ̂s is the SOPWAV predicted stock market return at

time s for period s+1, and σ̂2
s+1 is the forecast of the variance of the excess return (di�erence between the

stock market return and the risk-free return). As in Rapach, Ringgenberg and Zhou (2016), we assume a

relative risk aversion coe�cient of three, use a ten-year moving window of past excess returns to estimate the

variance forecast and impose portfolio constraints by restricting the weights ws to lie between -0.5 and 1.5.

These constraints introduce realistic limits on the possibilities of short selling and leveraging the portfolio.8

The portfolio return at time s+1, rps+1, is given by rps+1 = wsrs+1 + (1− ws) rfs+1. We �rst evaluate the

average utility (or certainty equivalent return, CER) of an investor that uses the allocation rule (10). The

CER is given by CER = rp− 0.5γσ2
rp, where rp and σ

2
rp are the sample mean and variance of the portfolio

return, respectively. We then report the average utility gain, which is de�ned as the di�erence between the

CER for an investor that uses the SOPWAV method to forecast stock returns and the CER for an investor

who uses the HM forecasting strategy. The CER gain is annualized and can be interpreted as the annual

management fee that an investor would be willing to pay to be exposed to a trading strategy based on the

SOPWAV method instead of one based on the HM forecast (Rapach, Ringgenberg and Zhou, 2016). We also

compute the average monthly turnover (the percentage of wealth traded each month) and report the relative

average turnover, calculated as the average monthly turnover of the SOPWAV-based portfolio divided by

the average monthly turnover of the HM-based portfolio. Finally, we introduce transaction costs into the

analysis, calculated using the monthly turnover measures and assuming a proportional cost of 50 basis points

per transaction (as in e.g. Balduzzi and Lynch, 1999 and Huang et al., 2015).

8 We obtain similar results using values from 1 to 5 for the relative risk aversion coe�cient (as in Huang et al., 2015), and
a �ve-year moving window of past excess returns or all available data up to time s (as in Huang et al., 2015 and Ferreira and
Santa-Clara, 2011, respectively) to estimate the variance forecast.
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4 Out-of-sample forecasting results

As �gure 1 shows, the OOS forecast of the SOPWAV method follows the dynamics of e�ective stock market

returns much more closely than the HM forecast. We use the R2
OS statistic to evaluate the statistical

performance of the SOPWAV method.

Figure 3 shows the R2
OS as a function of the number of crystals used. With only one crystal, the R2

OS is

negative, so the HM still outperforms the SOPWAV method. However, the R2
OS becomes positive if at least

two crystals are included in the forecast exercise. The maximum monthly R2
OS attainable with the SOPWAV

method is 6.18% using 24 crystals.9 Moreover, the R2
OS is an inverted U-shaped function of the number

of crystals used as predictors. From a statistical point of view, this means that there are forecasting gains

from using more crystals as predictors, but those gains are decreasing and at some point become negative.

Convenience also dictates keeping the number of predictive variables as low as possible in the absence of

any clear economic (not just statistical) justi�cation for incorporating more variables. For these reasons, our

proposed baseline SOPWAV method only uses the 4 most important crystals. These yield a monthly R2
OS of

3.27%. Despite the di�erence of 2.9% between the R2
OS with 24 crystals and with 4 crystals, in section 5 we

show that the economic gains of using 24 crystals are not signi�cantly larger than those using 4 crystals. In

the subsequent analysis, we still report the results of the SOPWAV method with 24 crystals ( SOPWAV+)

to document the maximum attainable performance with the SOPWAV method.

The 4 most important crystals are the smooth wavelet of the dividend-price ratio (dp (S7)), the smooth

wavelet of dividends growth (gd (S7)), the second wavelet detail of the return on equity (roe (D2)) and the

�fth wavelet detail of the long-term bond return (ltr (D5)). Remarkably, even without imposing any speci�c

crystal (or set of crystals), two of the most important crystals turn out to be related with dp and gd, which

are the two key variables in the SOP method. Furthermore, and similarly to Ferreira and Santa-Clara (2011),

we �nd that the low-frequency component of gd is quite important in forecasting stock returns.10

The baseline SOPWAV method forecast at time s for the stock market return at time s+1 is therefore given

by

µ̂s = µ̂dp
s + µ̂gd

s + [µ̂gm
s ] = dp (S7)s + gd (S7)s + [roe (D2)s + ltr (D5)s] , (11)

9 See Appendix 3 for the list of crystals.
10 The combination of 4 crystals (among the 8 millions possible combinations) that delivers the highest R2

OS (R2
OS = 3.29%)

is dp (S7), gd (S7), roe (D3) and ltr (D5), which is very similar to the combination obtained under the adopted sequential scheme
selection.
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that is, we forecast i) the expected dividend-price ratio µ̂dp
s and expected dividends growth µ̂gd

s using the lowest

frequency components of the dividend-price ratio (dp (S7)) and dividends growth (gd (S7)), respectively, and

ii) the price-dividends multiple growth µ̂gm
s using a high frequency of the return on equity (roe (D2)) and a

medium frequency of the long-term government bond return (ltr (D5)).

Table 1 and �gure 4 present the summary statistics of the 4 predictors of the baseline SOPWAV method

and their time series dynamics, respectively. From the correlation coe�cients (panel B of table 1), it is clear

that these predictors carry complementary information for the OOS forecast. Except for the pair gd (S7)

and dp (S7), the correlation coe�cients are indeed around zero or slightly negative. Moreover, the graphs

in �gure 4 suggest that the predictors gd (S7) and dp (S7) capture the long-term movements of the stock

market returns, while roe (D2) and ltr (D5) capture the higher frequencies of the stock returns dynamics.

The wavelet decomposition thus enables the SOPWAV method to capture both the low-frequency dynamics

of the stock market returns (as the HM) and some of the higher frequency turbulence that characterizes the

dynamics of stock market returns.

Table 2 presents the statistical results of the forecasting performance of the SOPWAV method versus the HM,

for the entire OOS period (second column) and for di�erent subsamples (columns 3 to 5), corresponding to

the Great In�ation period (1950:01-1983:12), the Great Moderation period (1984:01-2006:12) and the Global

Financial Crisis period and its aftermath (2007:01-2015:12).11 Several results stand out. First, for the full

OOS period, the positive and statistically signi�cant R2
OS of 3.27% indicates that the SOPWAV method

outperforms the HM benchmark. Second, the superior performance of the SOPWAV method is robust

throughout the sample period, i.e. the R2
OSs for all subsamples are always positive, statistically signi�cant

and range from 2.48% to 4.15%. Moreover, the R2
OSs for the Great In�ation and the Global Financial Crisis

periods are higher than for the Great Moderation period, which is consistent with the �ndings in the literature

that return predictability is higher in subsamples with deep recessions (see e.g. Henkel, Martin and Nardari,

2011, Huang et al., 2015 and Rapach, Ringgenberg and Zhou, 2016). Third, when comparing the R2
OSs of the

SOPWAV and the SOPWAV+ methods, it is clear that the statistical performance improves substantially by

using more (24) crystals, with the improvement most apparent in the last subsample. However, as we show

in the next section, these statistical gains are not economically so expressive.

11 McConnell and Perez-Quiros (2000) document a structural decline in the volatility of real US GDP growth in the �rst
quarter of 1984. This supports the break of the time windows for our �rst two subsamples.
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5 Asset allocation

In the previous section, we demonstrated that the SOPWAV method delivers statistically signi�cant forecast-

ing gains. We now quantify the economic value of the SOPWAV method for stock return forecasting from

an asset allocation perspective.

Columns 2 through 4 in table 3 report the results of the CER analysis. The baseline SOPWAV method clearly

outperforms the HM benchmark. For the full OOS period (panel A), the annualized CER gain for an investor

who trades using the baseline SOPWAV method is 403 basis points (before transaction costs). Following a

trading strategy based on the baseline SOPWAV method implies trading, on average, about seven times more

than using a trading strategy based on the HM forecast. Nonetheless, net of transaction costs, the CER gain

still stands at 282 basis points. Looking at the subsample periods (panels B, C and D), the CER gains tend

to increase over time (334 basis points in the Great In�ation period rising to 406 basis points during the

Great Moderation period and to 652 basis points during the Global Financial Crisis period). Except for the

last OOS period, the CER gains obtained with the SOPWAV+ method do not seem to be noticeably higher

(and are actually lower in some cases) than the CER gains with the baseline SOPWAV method. So, although

the R2
OS of the SOPWAV+ method is higher than the baseline SOPWAV R2

OS , the economic advantage of

using more variables (24 rather than 4) is quite modest.

We also compute the Sharpe ratio (SR) of the portfolio, i.e. the mean portfolio return in excess of the

risk-free rate divided by the standard deviation of the excess portfolio return. Annualized Sharpe ratios are

reported in columns 5 to 8 in table 3. We report the absolute value of the SOPWAV SR, as well as the ratio

between the SOPWAV SR and the HM SR (before and after transaction costs). These results further con�rm

that the SOPWAV method clearly outperforms the HM benchmark. For the full OOS period (panel A), the

annualized SRs of the strategy based on the baseline SOPWAV method are 0.65 and 0.54 before and after

transaction costs, respectively. This compares with SRs of 0.35 and 0.32 for the strategy based on the HM,

respectively (not reported in the table). While the SOPWAV's superior performance stands for all subsample

periods (panels B, C and D), it is particularly evident during the Great Moderation and Global Financial

Crisis periods, when the SRs delivered by the baseline SOPWAV strategy are 3.2 and 2.3 times larger than

those of the HM, respectively. As with the CER gains analysis, the only period when the SOPWAV+ clearly

outperforms the baseline SOPWAV in terms of SR is during and after the Global Financial Crisis.

So far we have assumed that transaction costs are 50 basis points per transaction, which is generally considered

to be a relatively high number. In fact, according to Balduzzi and Lynch (1999), 50 basis points might be a
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realistic value for an investor who trades in individual stocks directly, while a value of 2 basis points might

be appropriate for an investor who trades futures contracts on the S&P500 index. We thus evaluate the

sensitivity of our results when transaction costs are reduced up to 0 basis points. Figure 5 illustrates the

sensitivity of the CER gains (left graph) and the SRs (right graph) with respect to transaction costs, for the

full OOS period and for three scenarios involving portfolio constraints: the baseline case (−0.5 ≤ w ≤ 1.5),

a scenario with no short sales (0 ≤ w ≤ 1.5, as in Neely et al., 2014 and Huang et al., 2015) and one

with no restrictions on weights (as in Ferreira and Santa-Clara, 2011). As expected, given a set of portfolio

constraints, the lower the transaction costs, the higher the CER gains and the SRs. More importantly, the

e�ective portfolio constraints to which the investor is exposed to play a major role. In fact, regardless of the

magnitude of the transaction costs, the scenario where there are no portfolio constraints (blue lines) always

dominates the scenario where constrained leverage and short selling is allowed (black lines), which in turn

dominates the scenario where short selling is not allowed (red lines).

Finally, �gure 6 provides, for the full OOS period, a dynamic perspective of the portfolio and cumulative

wealth for an investor using the SOPWAV method or the HM forecast. Panel A presents the equity weights

for the SOPWAV and HM portfolios. In the baseline scenario, the equity weight is constrained to lie between

-0.5 and 1.5 (black solid line for the SOPWAV method and black dashed line for the HM), while the blue line

represents the equity weight for an investor using the SOPWAV method without portfolio constraints. The

�rst result that stands out is the substantially di�erent dynamics of the equity exposure between the SOPWAV

portfolios and the HM portfolio. The SOPWAV method implies signi�cant and frequent changes in equity

weights, whereas under the HM portfolio, the equity exposure changes much more smoothly. Interestingly,

during the two recessions in the 2000s, the equity exposure of the HM portfolio tracks a slightly upward trend,

while for the SOPWAV method the equity exposure is strongly reduced at the beginning of the recessions

(including short selling) and the average exposure during the recession period is lower than in the HM

portfolio.

The second notable result from panel A is that the constraints on the weights (−0.5 ≤ w ≤ 1.5) are strongly

binding for the SOPWAV portfolio, yet they are almost irrelevant for the HM portfolio. Limits on leveraging

the portfolio are particularly e�ective during almost the entire 1950s, immediately before the 2000 recession

and after the 2008 recession. Limits on short selling are particularly binding during the mid-1970s recession,

around the 1987 crash, and during and after both recessions in the 2000s. In fact, in these speci�c periods,

the unconstrained SOPWAV method implies levels of short selling and leverage sometimes exceeding 500%.

This seems somewhat unrealistic as regards its implementation, and supports our decision to impose weight
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constraints in the baseline scenario.

Panel B in �gure 6 shows the log cumulative wealth for an investor with the HM portfolio (black dashed line)

and with the SOPWAV portfolio when the equity weights are constrained to lie between -0.5 and 1.5 (black

solid line), when short selling is not possible (red line) and when there are no equity holdings constraints (blue

line). In the simulation, we assume that the investor begins with $1 and reinvests all proceeds. Comparing

the HM and the baseline SOPWAV portfolios (black lines), there is a continuous divergence of the cumulative

wealth of the investors under these alternative portfolios that clearly favors the SOPWAV approach. The

much higher rotation of the SOPWAV portfolio, as illustrated in panel A, re�ects an enhanced market timing

of this strategy. The divergence on the cumulative wealth between the two portfolios is particularly strong

during the 1950s and since the early 2000s. During the 1950s, the SOPWAV portfolio bene�ts from a leveraged

exposure to the equity market, while during the 2000s the HM-based portfolio is negatively a�ected by two

severe drawdowns (the �rst occurring around the recession at the beginning of the 2000s and the second

during the 2008-2009 crisis). The cumulative wealth of the investor with an HM-based strategy, in fact, only

returns to the level of the early 2000s in 2014. In contrast, an investor adopting a SOPWAV-based strategy

quickly recovers from the (smaller) drawdowns su�ered during the 2000s recessions and bene�ts from a strong

upward trend in her wealth until the end of the sample period.

This �gure complements the results from �gure 5 on the economic impact of portfolio constraints. In partic-

ular, the cumulative wealth of an investor trading with the SOPWAV method with no constraints (blue line)

is clearly higher than for cases where some constraints are imposed (black and red lines). The possibility of

freely leveraging the portfolio enables a signi�cant increase in cumulative wealth during the 1950s. The same

happens during and after the two recessions in the 2000s, when leveraging and shorting freely bring signi�cant

wealth gains. This �gure also shows that there is only a small negative wealth impact from impeding short

selling as compared to a scenario of limited short selling.

6 Concluding remarks

This paper proposes a new method for forecasting stock market returns (SOPWAV) that is easy to implement

and parameter free (i.e. no parameters to calibrate or estimate). The method involves, within the Ferreira

and Santa-Clara (2011) sum-of-the-parts framework of stock return forecasts, a wavelet decomposition of

several predictors of stock market returns. We forecast out-of-sample stock market returns (S&P500 index)

for the period running from January 1950 to December 2015, as well as for subsamples corresponding to
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the periods of the Great In�ation, the Great Moderation and the Global Financial Crisis. No matter which

sample period is used, the SOPWAV method delivers statistically and economically signi�cant gains for

investors that clearly outperform the Historical Mean (HM) benchmark. The results are also robust to the

introduction of transaction costs and di�erent sets of portfolio constraints.

The strong performance of the SOPWAV method is mainly due to two reasons. First, the use of wavelet

decomposition makes it possible to isolate the frequencies of the predictors that have the greatest predictive

power from the noisier parts. Second, the frequency-decomposed predictors carry complementary information

for the forecasting exercise that captures both the long-term trend and the higher frequency movements of

stock market returns. As a result, the SOPWAV method anticipates well the future dynamics of stock market

returns.
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Panel A: Univariate statistics

Return Standard
predictors Mean Median deviation Min Max Skewness Kurtosis AR(1)
dp (S7) 0.29 0.28 0.10 0.13 0.49 0.22 2.15 1.00
gd (S7) 0.47 0.47 0.18 0.13 1.08 0.41 3.31 1.00
roe (D2) 0.00 0.02 0.36 -2.78 3.31 0.23 30.65 0.70
ltr (D5) 0.00 -0.02 0.40 -1.36 1.46 -0.01 3.85 0.90

r 0.88 1.20 4.17 -24.25 15.51 -0.65 5.43 0.05

Panel B: Correlations

Return
predictors dp (S7) gd (S7) roe (D2) ltr (D5) r
dp (S7) 1.00
gd (S7) 0.55 1.00
roe (D2) 0.00 -0.12 1.00
ltr (D5) 0.02 0.01 -0.17 1.00

r 0.09 0.05 0.11 0.10 1.00

Table 1: Stock market return predictors
Panel A reports the mean, median, standard deviation, minimum, maximum, skewness, kurtosis, and �rst-order
autocorrelation coe�cient of the predictors of stocks market returns as given by equation (11). dp (S7) is the wavelet
smooth of the dividend-price ratio, gd (S7) is the wavelet smooth of the dividend growth, roe (D2) is the second wavelet
detail of the return on equity, ltr (D5) is the �fth wavelet detail of the long-term government bond return and r is the
stock market return. Panel B reports the correlations between the predictors and between each predictor and stock
market returns. The J = 7 level wavelet decomposition of each potential predictor implies their decomposition into
eight orthogonal crystals, i.e. seven wavelet details (D1, D2, . . . , D7) representing the higher-frequency characteristics
of the predictor, and a wavelet smooth (S7) that captures the low-frequency dynamics of the predictor. See section
3.2 and Appendix 2 for technical details on wavelet decomposition. The sample period runs from 1950:01 to 2015:12,
monthly frequency.

Sample period
Method 1950:01 1950:01 1984:01 2007:01

2015:12 1983:12 2006:12 2015:12

SOPWAV 3.27*** 3.60*** 2.48*** 4.15***
SOPWAV+ 6.18*** 6.78*** 2.47*** 12.79***

Table 2: Out-of-sample R-squares
(
R2

OS

)
This table reports the out-of-sample R-squares (in percentages) for stock market return forecasts at monthly (nonover-
lapping) frequencies from the baseline SOPWAVmethod speci�cation (equation (11)) and from the SOPWAV+ method
speci�cation (equation (9)) using the 24 crystals listed in Appendix 3. The out-of-sample R-squares

(
R2

OS

)
measures

the proportional reduction in the mean squared forecast error for the predictive method relative to the forecast based
on the historical mean (HM). The one-month-ahead out-of-sample forecast of stock market return is generated using
a sequence of expanding windows. The sample period is from 1927:01 to 2015:12. The full out-of-sample forecasting
period runs from 1950:01 to 2015:12, with R2

OS reported in the second column. The R2
OS for three out-of-sample fore-

casting subperiods are reported in the remaining columns. Asterisks denote signi�cance of the out-of-sample MSFE-F

statistic of McCracken (2007). *** denotes signi�cance at the 1% level.
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CER Relative CER SR
Method gain (%) average gain (%) no costs cost = 50 bps

no costs turnover cost = 50 bps absolute relative absolute relative

Panel A. Sample period: 1950:01-2015:12

SOPWAV 4.03 6.7 2.82 0.65 1.8 0.54 1.7
SOPWAV+ 4.68 8.7 3.02 0.67 1.9 0.54 1.7

Panel B. Sample period: 1950:01-1983:12

SOPWAV 3.34 4.3 2.44 0.67 1.3 0.59 1.2
SOPWAV+ 3.94 7.2 2.22 0.70 1.4 0.56 1.2

Panel C. Sample period: 1984:01-2006:12

SOPWAV 4.06 10.6 2.56 0.56 3.2 0.42 2.7
SOPWAV+ 3.59 11.5 1.94 0.51 2.9 0.37 2.4

Panel D. Sample period: 2007:01-2015:12

SOPWAV 6.52 14.5 4.90 0.73 2.3 0.62 2.1
SOPWAV+ 10.21 13.2 8.74 0.94 3.0 0.85 2.8

Table 3: Out-of-sample CER gains and Sharpe ratios
The second column reports the annualized certainty equivalent return (CER) percentage gain for an investor allocating
her wealth between equities and risk-free bills according to the rule (10), using stock return forecasts from the baseline
SOPWAV speci�cation (equation (11)) and from the SOPWAV+ speci�cation using the 24 crystals listed in Appendix
3. The third column shows the relative average turnover, calculated as the average monthly turnover of the SOPWAV
and SOPWAV+ -based portfolios divided by the average monthly turnover of the HM-based portfolio. The fourth
column reports the CER gain after transaction costs. Columns 5 to 8 give the annualized Sharpe ratios (SR). Columns
5 and 7 present the absolute SR without and with transactions costs, respectively. Columns 6 and 8 present the ratio
of the SR using the SOPWAV (or the SOPWAV+) method and the SR using forecasts based on the HM without and
with transactions costs, respectively. The investor is assumed to have a relative risk aversion coe�cient of three and
the equity weight in the portfolio is constrained to lie between -0.5 and 1.5. Transaction costs are calculated using the
monthly turnover measures and assume a proportional cost equal to 50 basis points per transaction. Panel A reports
the results for the full out-of-sample period (1950:01 to 2015:12) and panels B, C and D report the results for three
out-of-sample forecasting subperiods.
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Figure 1: Realized and predicted stock market returns
The black solid line corresponds to the (log) realized stock market return as proxied by the (log) S&P 500 index
return. The blue line plots the one-month ahead out-of-sample predictive regression forecast for the stock market
return based on the SOPWAV method. The black dashed line represents the one-month-ahead out-of-sample stock
market return forecast based on the historical mean (HM) of returns. The sample period runs from 1950:01 to 2015:12,
monthly frequency.
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Figure 2: Stock market return, time series and MODWT MRA decomposition
The time series of the (log) stock market return as proxied by the S&P 500 index returns is presented in the top
graph. The eight orthogonal crystals in which the stock market return time series is decomposed are presented in
the remaining graphs. The J = 7 levels wavelet decomposition leads to seven wavelet details (D1, D2, . . . , D7),
representing the higher-frequency characteristics of the series, as well as a wavelet smooth (S7) that captures the low-
frequency dynamics of the series. See section 3.2 and Appendix 2 for technical details on the wavelet decomposition.
The sample period runs from 1927:01 to 2015:12, monthly frequency.
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Figure 3: Out-of-sample R-squares of the SOPWAV method versus the HM
This �gure reports the out-of-sample R-squares (in percentage) for stock market returns forecasts at monthly (non-
overlapping) frequencies from the SOPWAV method (equation (9)) using an increasing number of crystals obtained
from the wavelet decomposition of the set of 15 predictors considered (described in Appendix 1). The out-of-sample
R-squares measures the proportional reduction in the mean squared forecast error for the predictive SOPWAV method
relative to the forecast based on the historical mean (HM). The J = 7 levels wavelet decomposition of each of the 15
predictors considered implies their decomposition into eight orthogonal crystals, i.e. 120 crystals. See section 3.2 and
Appendix 2 for technical details on wavelet decomposition. The out-of-sample period runs from 1950:01 to 2015:12,
monthly frequency.
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Figure 4: Stock market return predictors dynamics
This �gure plots the time series of the 4 predictors used in the baseline SOPWAVmethod (equation (11)), for the period
1950:01 to 2015:12, monthly frequency. dp (S7) is the wavelet smooth of the dividend-price ratio, gd (S7) the wavelet
smooth of dividend growth, roe (D2) the second wavelet detail of return on equity and ltr (D5) is the �fth wavelet detail
of long-term government bond return. The J = 7 levels wavelet decomposition of each potential predictor considered
implies their decomposition into eight orthogonal crystals, i.e. seven wavelet details (D1, D2, . . . , D7) representing
the higher-frequency characteristics of the predictor, as well as a wavelet smooth (S7) that captures the low-frequency
dynamics of the predictor. See section 3.2 and Appendix 2 for technical details on wavelet decomposition.
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Figure 5: Out-of-sample CER gains and Sharpe ratios - sensitivity analysis
The left and right panels show the annualized certainty equivalent return (CER) percentage gain and the annualized
Sharpe ratio (SR) for an investor allocating her wealth between equities and risk-free bills according to the rule (10),
using stock return forecasts from the baseline SOPWAV speci�cation (equation (11)). The investor is assumed to
have a relative risk aversion coe�cient of three. The CER gains and the SR are computed for (i) di�erent levels
of transaction costs, calculated using monthly turnover measures and assuming a proportional cost from 0 to 50
basis points per transaction, and (ii) di�erent constraints on equity weights (10), with the blue line representing no
restriction, the black line weights constrained to between -0.5 to 1.5, and a red line with weights between 0 and 1.5
(no short sales). The sample period runs from 1950:01 to 2015:12, monthly frequency.
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Panel A. Equity weights

Panel B. Log cumulative wealth

Figure 6: Equity weights and log cumulative wealth
Panel A plots the dynamics of the equity weight for a mean-variance investor allocating her wealth each month between
equities and risk-free bills according to the rule (10), using stock return forecasts based on the SOPWAV speci�cation
(equation (11)) and the HM benchmark. The baseline scenario is the equity weight constrained to lie between -0.5 and
1.5 (black line for SOPWAV and dashed black line for HM). The blue line represents the equity weight for the investor
using the SOPWAV method without portfolio constraints. Panel B delineates the corresponding log cumulative wealth
for the investor, assuming she begins with $1 and reinvests all proceeds. The red line represents the log cumulative
wealth for the investor using the SOPWAV method with no short sales (equity weight constrained to be between 0 and
1.5). Gray bars denote NBER-dated recessions. The investor is assumed to have a relative risk aversion coe�cient of
three. Transaction costs are calculated using the monthly turnover measures and assuming a proportional cost equal
to 50 basis points per transaction. The sample period runs from 1950:01 to 2015:12, monthly frequency.
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Appendix 1. De�nition of predictors of stock market returns

• Book-to-market (BM): ratio of book value to market value for the Dow Jones Industrial Average.

• Default return spread (DFR): di�erence between long-term corporate bond and long-term bond returns.

• Default yield spread (DFY): di�erence between BAA- and AAA-rated corporate bond yields.

• Dividend-payout ratio (DE): di�erence between the log of dividends (12-month moving sums of divi-

dends paid on the S&P 500) and the log of earnings (12-month moving sums of earnings on the S&P

500).

• Dividend-price ratio (DP): di�erence between the log of dividends (12-month moving sums of dividends

paid on S&P 500) and the log of prices (S&P 500 index price).

• Dividend growth (GD): monthly growth rate of dividends paid on the S&P 500.

• Earnings-price ratio (EP): di�erence between the log of earnings (12-month moving sums of earnings

on the S&P 500) and the log of prices (S&P 500 index price).

• In�ation rate (INFL): growth in the consumer price index with a one-month lag.

• Long-term return (LTR): long-term government bond return.

• Long-term yield (LTY): long-term government bond yield.

• Net equity expansion (NTIS): ratio of 12-month moving sums of net issues by NYSE-listed stocks to

NYSE market capitalization.

• Return on equity (ROE): ratio of 12-month moving sums of earnings to book value of equity for the

S&P 500.

• Stock variance (SVAR): sum of squared daily stock market returns on the S&P 500.12

• Term spread (TMS): di�erence between the long-term government bond yield and the T-bill.

• Treasury bill rate (TBL): three-month Treasury bill rate.

12 We �nd very similar results using the excess stock return volatility (computed using a 12-month moving standard deviation
estimator), as suggested by Mele (2007), instead of the SVAR.
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Appendix 2. A brief introduction to the discrete wavelet transform (DWT)

A wavelet is a function of �nite length that oscillates around a time axis and loses power as it moves away

from the center. The term wavelet originates from the admissibility condition, which requires the mother

wavelet to be of �nite support (small) and of oscillatory (wavy) behavior. Hence, a small wave, or wavelet.

The DWT allows decomposition of a time series into its constituent multiresolution components. High-

frequency components re�ect the short-term behavior of the variable, whereas the low-frequency component

captures its long-term dynamics. There are two kinds of wavelets: father wavelets, φ, that capture the

smooth and low-frequency part of the series, and mother wavelets, ψ, that capture the detail and high-

frequency components of the series:

∫
φtdt = 1 and

∫
ψtdt = 0 .

Given a time series yt, with the number of observations equal to N, its orthogonal wavelet approximation is

de�ned by

yt =
∑
k

s
J,k
φ

J,k,t +
∑
k

d
J,k
ψ

J,k,t +
∑
k

d
J−1,k

ψ
J−1,k,t + · · ·+

∑
k

d
1,k
ψ

1,k,t , (12)

with J representing the number of multi-resolution levels (or frequencies) and k ranging between one and

the number of coe�cients in the corresponding component. The maximum number of frequencies that can

be considered in the analysis is determined by the number of observations, with N ≥ 2J .

In equation (12), there are two families of inputs: the approximating wavelet functions φ
J,k,t and ψ

j,k,t,

and the wavelet transform coe�cients s
J,k
, d

J,k
, d

J−1,k
, . . . , d

1,k
. The approximating wavelet functions are

generated from the father φ and mother ψ wavelets through scaling and translation in the following way:

φ
J,k,t = 2−J/2φ

(
t− 2Jk

2J

)
,

ψ
j,k,t = 2−j/2ψ

(
t− 2jk

2j

)
, j = 1, 2, . . . J .

The wavelet transform coe�cients represent the contribution of the respective wavelet function to the signal
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and are given by

s
J,k

=

∫
ytφJ,k,tdt,

d
j,k

=

∫
ytψj,k,tdt j = 1, 2, . . . , J .

Those wavelet transform coe�cients are obtained using the DWT method, which maps the vector y =

(y1, y2, . . . , yN ) ′ to a vector of N wavelet coe�cients that includes the smooth coe�cients sJ,k and the

detail coe�cients dj,k. The DWT method thus maps the original time series yt in the time domain to a

representation in the time-frequency domain (y1,t, y2,t, . . . , yN,t) ′. Equation (12) can therefore be rewritten

as:

yt = SJ,t +DJ,t +DJ−1,t + . . .+D1,t , (13)

where SJ,t =
∑

k sJ,kφJ,k,t is the wavelet smooth and Dj,t =
∑

k dj,k
ψ

j,k,t for j = 1, 2, . . . , J are the J

wavelet details. A J-level wavelet decomposition of the variable yt thus consists of J wavelet details, which

represent the higher-frequency characteristics of yt, and the wavelet smooth that captures the low-frequency

dynamics. Equation (13) represents the time-frequency decomposition of yt and is the wavelet multiresolution

decomposition, i.e. the original series yt, exclusively de�ned in the time domain, is decomposed in orthogonal

components (or crystals), SJ,t, DJ,t, DJ−1,t, . . . , D1,t, each de�ned in the time domain and each representing

the �uctuation of the original time series in a speci�c frequency band.
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Appendix 3. List of crystals that maximize the R2
OS

The crystals that maximize the R2
OS for the full forecasting period (1950:01 to 2015:12) of the SOPWAV

method versus the historical mean benchmark are the following:

Variable Crystals

default return spread D4, D5, D6, D7

default yield spread D1, D4, D5

dividend-price ratio S7, D1, D2, D3, D5, D6

growth dividend S7

in�ation rate D1, D2, D3

long-term bond return D4, D5, D6

long-term bond yield D3

return on equity D2

term spread D1, D7

34


