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Abstract

We study the long-run spatial distribution of industry using a multi-region core-
periphery model with quasi-linear log utility (Pflüger, 2004). We show that a dis-
tribution in which industry is evenly dispersed among some of the regions while
the other regions have no industry cannot be stable. A spatial distribution where
industry is evenly distributed among all regions except one can be stable, but only if
that region is significantly more industrialized than the other regions. When trade
costs decrease, the type of transition from dispersion to agglomeration depends on
the fraction of workers that are mobile. If this fraction is low, the transition from
dispersion to agglomeration is catastrophic once dispersion becomes unstable. If it is
high, there is a discontinuous jump to partial agglomeration in one region and then a
smooth transition until full agglomeration. Finally, we find that mobile workers be-
nefit from more agglomerated spatial distributions whereas immobile workers prefer
more dispersed distributions. The economy as a whole shows a tendency towards
over-agglomeration for intermediate levels of trade costs.
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1 Introduction

New Economic Geography (NEG) has been on the forefront in recent decades as an
economics subject that seeks to explain the spatial distribution of economic activity.
Many theoretical models have been built along the lines of the seminal Core-Periphery
(CP) model proposed by Krugman (1991), in which skilled labour mobility combined with
a general equilibrium framework under increasing returns, monopolistic competition and
transport costs contribute to explain how demand linkages and supply linkages interplay
to determine the geographical distribution of industry (Fujita et al., 1999; Ottaviano et
al., 2002; Forslid and Ottaviano, 2003; Pflüger, 2004).

Most of these models predict a catastrophic transition from an evenly dispersed dis-
tribution into agglomeration in a single region as trade costs fall below a critical level.
One exception is the Footloose Entrepreneur (FE) model with quasi-linear log utility (QL
model) proposed by Pflüger (2004), where the absence of income effects on regional de-
mand for manufactures, due to the assumption of a quasi-linear upper-tier utility function,
significantly simplifies the analysis. This model reverses the predictions of the seminal
CP model (Krugman, 1991) and of the original FE model (Forslid and Ottaviano, 2003),
according to which industry is either evenly dispersed between the two regions or fully
agglomerated in one region, and the transition between these two extreme distributions
is catastrophic. In the QL model, partial agglomeration can be stable, and agglomeration
is a smooth and gradual process.1

Although insightful, the lack of a multi-regional framework in the QL model potentially
overlooks complex interdependencies among different regions, which do not arise in the
2-region set-up (Fujita et al., 1999; Fujita and Mori, 2005; Tabuchi et al., 2005; Behrens
and Thisse, 2007; Fujita and Thisse, 2009; Behrens and Robert-Nicoud, 2011; Tabuchi,
2014). Moreover, the consideration of only two regions hinders empirical work because
the real world is heterogeneous and multi-regional (Bosker et al., 2010).

This motivates us to extend the QL model (Pflüger, 2004) to any finite number of
equidistant regions. The assumption of equidistant regions coupled with the removal of
income effects on the demand for manufactures allows us to obtain explicit expressions for
the indirect utilities of inter-regionally mobile workers and to fully characterize the sta-
bility of several kinds of spatial equilibria (one of which is novel) under general parameter
values.2 Moreover, we are able to study how the type of transition from dispersion to

1The influence of preferences on the long-run distribution of industry and on the type of transition
dynamics was widely discussed by Pflüger and Südekum (2008).

2This is an important departure from Tabuchi’s (2014) multi-regional analysis, which focuses on limit
cases for the trade costs.
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agglomeration, as trade costs decrease, depends on the global size of the inter-regionally
immobile (unskilled) workforce relative to the mobile (skilled) workforce.

Castro et al. (2012) and Gaspar et al. (2013) provided numerical evidence that, in the
3-region CP model and the 3-region FE model, a region without industry and two evenly
populated regions cannot be a stable outcome. We provide an analytical confirmation of
this result in the n-region QL model: at least one empty region paired with a symmetric
distribution of industry among the other regions cannot be a stable outcome.

A feature of the QL model is that interior asymmetric distributions of industry may
be stable. For simplicity, we focus on the one-dimensional subspace of n− 1 evenly pop-
ulated regions and one possibly asymmetric region.3 In this subspace, entrepreneurs face
two decisions: that of migrating between evenly populated regions; and that of migrating
between the asymmetric region and any of the evenly populated regions.4 For some para-
meter values, there is a stable equilibrium in which industry is partially agglomerated in
a single region and evenly dispersed among the other regions. By contrast, an equilibrium
where the asymmetric region has less industry than each of the other regions cannot be
stable.

We show that the QL model with n ≥ 3 exhibits a primary transcritical bifurcation at
the symmetric equilibrium and a secondary saddle-node bifurcation at an interior asym-
metric equilibrium, a feature which suggests that the migration dynamics of entrepreneurs
as trade costs decrease are complex. The saddle-node bifurcation implies that industry
will stay fully dispersed even after trade costs have fallen below the threshold level that
deems a partial agglomeration equilibrium stable. However, if the industry is initially at
a partial agglomeration equilibrium, a temporary rise in trade costs will make industry
permanently disperse across regions.

When trade costs decrease, the transition from dispersion to agglomeration depends on
the global size of inter-regionally immobile (unskilled) labour relative to mobile (skilled)
labour. If it is relatively high (low worker mobility), there is catastrophic agglomeration in
a single region once dispersion loses stability. If it is relatively low (high worker mobility),
there is a discontinuous jump from dispersion to partial agglomeration, and a smooth
transition towards agglomeration thereafter. Finally, for even lower ratios between im-
mobile and mobile labour, dispersion is not possible, and the only possible change as trade
costs fall is a smooth transition from partial agglomeration towards full agglomeration.

3In an equidistant n-region model, there are many other invariant subspaces. For example, any
subspace where k regions have the same size and the other n− k regions are also equally sized. We focus
on the particular case where k = 1.

4This is true for any n ≥ 3 because the dimension of this particular subspace is invariant in the number
of regions. In a 2-region model, there is a single decision.

3



We find that full dispersion yields the worst possible welfare to entrepreneurs. Still,
even if migration increases their average utility, it will not occur if the utility of the
migrant decreases (in that case, dispersion is stable). For unskilled workers it is the
opposite: they attain their highest welfare at full dispersion. For the population as a
whole, we show that agglomeration (partial or full), even when stable, may be socially
inferior to more symmetric distributions. We conclude that the multi-regional QL model
exhibits a tendency towards over-agglomeration for intermediate levels of transport costs.

Extensions of NEG models to multi-regional settings have been made, each with its
own specificities.5 Some considered a “racetrack economy”, that is, regions equally spaced
around a circumference (Krugman, 1993; Fujita et al., 1999; Picard and Tabuchi, 2010;
Castro et al., 2012; Mossay, 2013). In particular, Castro et al. (2012) studied a version of
Krugman’s CP model with 3 or more regions and concluded that additional regions favour
agglomeration and discourage dispersion of economic activity. Akamatsu et al. (2012)
and Ikeda et al. (2012) showed that in a 2n-region CP model decreasing trade costs leads
to spatial period doubling agglomeration, whereby after each bifurcation the number of
regions where firms locate is reduced by half and the spacing between populated regions
doubles. Heterogeneity in location has also been tackled, in several ways, by considering:
different network topologies to explain locational advantages of some regions (Barbero and
Zofío, 2012), equally spaced regions along a line segment (Ago et al., 2006), or hexagonal
configurations in a triangular space (Ikeda et al., 2014). Along different lines, Oyama
(2009) considered an equidistant multi-regional CP model with self-fulfilling expectations
in migration that lead to global stability of a single core region. Tabuchi and Thisse
(2011) have built an NEG model that accounts for the rise of a hierarchical system of
central places in a multi-regional set-up. Recently, Tabuchi (2014) used a multi-regional
version of Krugman’s (1991) CP model to show that it can account for the historical trend
of agglomeration in the capital regions over the past few centuries.6

Tabuchi et al. (2005) also developed a multi-region model with equidistant regions
and quasi-linear utility, but considered quadratic sub-utility, as in Ottaviano et al. (2002),
instead of the logarithm of a CES aggregator, as in Pflüger (2004). They also considered
urban congestion costs (housing and commuting), which act as an additional dispersion
force. Studying the impact of falling transport costs on the size and number of cities

5However, the main conclusions of 2-region NEG models have not been reversed by the consideration
of multiple regions (Bosker et al., 2010). This includes not only the equidistant n-region model by Puga
(1999), but also models with non-equidistant regions.

6Several other works considering multi-regional NEG models could be worth mentioning (e.g., Behrens
et al., 2006; Forslid and Okubo, 2012; Fabinger, 2015; Commendatore et al., 2015a). For an extensive
review of the literature concerning multi-regional models, see Commendatore et al. (2015b).
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(non-empty regions), Tabuchi et al. (2005) found that cities initially grow in size and
then shrink at a later stage, a situation which corresponds to agglomeration followed by
re-dispersion of industry. Their results are driven by the interplay between inter-regional
transport costs and urban congestion costs. In contrast, our results do not hinge on the
existence of urban congestion costs.

The rest of the paper is organized as follows. Section 2 presents the n-region FE model
with quasi-linear log utility and characterizes the short-run equilibrium of the model.
Section 3 analyzes the stability of several types of long-run equilibria: agglomeration,
dispersion, boundary dispersion, and partial agglomeration. Bifurcation patterns are
described and explained in section 4. Section 5 is dedicated to welfare analysis, first
distinguishing between mobile and immobile workers, and then considering the economy
as a whole. Section 6 contains some concluding remarks.

2 The Quasi-linear Log model with n regions

The model is a natural extension of the FE model with QL utility (Pflüger, 2004) to an
economy with a finite number of equidistant regions, N = {1, ..., n}. We omit calculations
that are well known whenever reasonable. There is a mass H of entrepreneurs, who can
move freely among regions (H = H1 +H2 + ...+Hn); and a mass L of unskilled workers,
who are immobile and evenly distributed across all regions (Li = L/n,∀i ∈ N).

2.1 Demand and indirect utility

The preferences of all agents are represented by a quasi-linear upper-tier utility function
with logarithmic sub-utility, as in Pflüger (2004):

U = µ lnM + A, 0 < µ < 1, (1)

where A is the consumption of agricultural products and M is the consumption of a CES
composite of differentiated varieties of manufactures, defined by:

M =

[ˆ
sεS

d(s)
σ−1
σ ds

] σ
σ−1

, (2)

where d(s) is the consumption of variety s ∈ S, S is the mass of existing varieties, and
σ > 1 is the constant elasticity of substitution between varieties.

Let pi(s) and di(s) denote delivered price and demand of variety s in region i. The
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regional price index associated with the composite good (2) in region i ∈ N is:

Pi =

[ˆ
sεS

pi(s)
1−σds

] 1
1−σ

. (3)

A consumer in region i ∈ N maximizes utility subject to the budget constraint:

PiM + A = y,

where y is her income, Pi is given by (3), and the price of the agricultural good is, as
usual, normalized to unity. This yields the following demand:

di(s) = µ
pi(s)

−σ

P 1−σ
i

, M = µP−1
i , A = y − µ. (4)

Notice that individual consumption of the agricultural good is non-negative if and only if
nominal wages (income) of entrepreneurs and unskilled workers, wi and wLi , respectively,
are not lower than µ. In Section 2.2 we check that wLi = 1 > µ, and in Section 2.3 we
make an assumption which implies that wi ≥ µ.

From (1) and (4), we obtain the indirect utility in region i:

Vi = y − µ lnPi + µ(lnµ− 1). (5)

2.2 Supply

The agricultural good is produced using one unskilled worker (farmer) for each unit that
is produced (constant returns to scale), and is freely traded across the n regions. Absence
of trade costs implies that the price of the agricultural good is the same everywhere
(pA1 = pA2 = ... = pAn ), which justifies choosing it as numeraire. Marginal cost pricing
implies that the nominal wage of unskilled workers is the same in all regions and equal to
the price of the agricultural good: wLi = pAi = 1,∀i ∈ N .

Note that we are assuming that the agricultural good is produced in all regions. This
is true if global consumption of agricultural goods exceeds total production in n − 1

regions. Given individual demand in (4), global consumption of agricultural goods is
w̄H + L − (H + L)µ, where w̄ ≡ 1

H

∑n
i=1 Hiwi is the weighted average nominal wage

of entrepreneurs, while total production of agricultural goods in n− 1 regions is at most
L(n−1)/n. We will show (Proposition 1) that w̄ = µ

σ

(
1 + L

H

)
. The non-full-specialization

6



(NFS) condition (Baldwin et al, 2004), which we assume henceforth, is then given by:

λ >
µσ−1

σ
1
n
− µσ−1

σ

,

where λ = L/H is the global unskilled (immobile) to skilled (mobile) labour ratio.
Production of a variety of manufactures requires α units of skilled labour and β units of

unskilled labour for each unit that is produced (Forslid and Ottaviano, 2003). Therefore,
the production cost of a firm in region i is:

Ci(xi) = wiα + βxi. (6)

The iceberg cost parameter τij denotes the number of units that must be produced in
region i for each unit that is delivered at region j ∈ N . We assume that trade costs are the
same between any pair of regions. If i = j, then τij = 1. If i 6= j, then τij = τ ∈ (1,+∞).

A firm producing variety s in region i maximizes the following profit function:

πi(s) =
n∑
j=1

dj(s)

(
Hj +

L

n

)
[pj(s)− τijβ]− αwi, (7)

The first order condition for maximization of (7) yields the following prices:

pi(s) = β
σ

σ − 1
and pj(s) = τβ

σ

σ − 1
, ∀j 6= i. (8)

In any region j ∈ N , all varieties produced in region i are sold at the same delivered price,
pij, and have the same demand, dij.

Using (8), and the fact that the number of varieties manufactured in region i is Si =

Hi/α, the price index of the composite good (3) becomes:

Pi =
βσ

σ − 1

(
1

α

n∑
j=1

φijHj

) 1
1−σ

, (9)

where φij ≡ τ 1−σ
ij ∈ (0, 1] represents the “freeness of trade” between regions i and j. Note

that φij = φ ≡ τ 1−σ whenever i 6= j, while φij = 1 whenever i = j.
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2.3 Short-run equilibrium

Free entry in the manufacturing sector implies zero profit in equilibrium. Operating profits
must thus exactly compensate fixed costs, which are the wages paid to entrepreneurs:

αwi =
n∑
j=1

dij

(
L

n
+Hj

)
(pij − τijβ) ,

which becomes, using (4) and (8):

wi =
µ

ασ

n∑
j=1

p1−σ
ij

P 1−σ
j

(
L

n
+Hj

)
, (10)

Replacing (8) and (9) in (10) we obtain:

wi =
µ

σ

n∑
j=1

φij (L/n+Hj)∑n
m=1 φmjHm

. (11)

We describe the spatial distribution of industry by working with the share of entrepreneurs
residing in each region i, denoted hi ≡ Hi/H. The set of possible spatial distributions is
the (n− 1)-dimensional simplex defined by 4 =

{
h ∈ Rn

+ :
∑n

i=1 hi = 1
}
.

As a function of h, the nominal wage in region i can be expressed as:

wi =
µ

σ

n∑
j=1

φij (λ/n+ hj)

φ+ (1− φ)hj
, (12)

and the price index can be written as:

Pi =
σβ

σ − 1

(
H

α

) 1
1−σ

[φ+ (1− φ)hi]
1

1−σ . (13)

Recall that individual consumption of the agricultural good is positive if and only if the
nominal wage is greater than µ. This is always the case for unskilled workers, because
wLi = 1 > µ. Regarding entrepreneurs, λ ≥ σ/φ − 1 is a sufficient condition for wi ≥ µ,
since, from inspection of (12), wi ≥ µ

σ

∑n
j=1 φij (λ/n+ hj) ≥ µφ

σ
(λ+ 1).

Proposition 1. The weighted average nominal wage paid to entrepreneurs at any spatial
distribution is given by:

w̄ =
µ

σ
(1 + λ). (14)

Proof. See Appendix A.
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The indirect utility of entrepreneurs becomes, after replacing (13) in (5):

Vi = wi +
µ

σ − 1
ln [φ+ (1− φ)hi] + η, (15)

where η ≡ −µ ln
(
σβ
σ−1

)
+ µ

σ−1
ln
(
H
α

)
+ µ (lnµ− 1) is a constant.

Replacing the expression for the nominal wage (12), we obtain:

Vi =
µ

σ

n∑
j=1

φij (λ/n+ hj)

φ+ (1− φ)hj
+

µ

σ − 1
ln [φ+ (1− φ)hi] + η. (16)

3 Long-run equilibria

The replicator dynamics are generally well suited to describe the migration of entrepren-
eurs when they are short-sighted (Baldwin et al., 2004). The rate of change of the share
of entrepreneurs in a region i is assumed to be proportional to the difference between
region i’s indirect utility, Vi, and the weighted average indirect utility across all regions,
V̄ (h) =

∑n
j=1 hjVj(h). We thus consider a dynamical system given by:

ḣi = hi
[
Vi(h)− V̄ (h)

]
, ∀i ∈ N \ {n} , (17)

which, since hn = 1−
∑

i 6=n hi, implies that ḣn = −
∑

i 6=n ḣi = hn
[
Vn(h)− V̄ (h)

]
.

A spatial distribution h ∈ ∆ is said to be an equilibrium if ḣ = 0. The boundaries of
4 are invariant for the dynamics. If a region is initially empty, it will remain so unless
some exogenous migration to that region occurs.7 Moreover, every spatial distribution
h ∈ ∆ such that hi = 1/k in k regions (and hi = 0 in the other) is an equilibrium.

Our first goal is to provide a description of stable configurations of mobile workers in
the economy. This is achieved by studying the local stability of several types of equilibria.
First, we consider full agglomeration in a single region i (hi = 1). Then, we study
symmetric dispersion, where entrepreneurs are evenly distributed among all regions (hi =

1/n,∀i). We also study boundary dispersion, where entrepreneurs are evenly dispersed
among some of the regions (hj = 1/k in k ∈ {2, ..., n− 1} regions and hi = 0 elsewhere).
The last class of equilibria we study are asymmetric interior distributions where one region
has a share of entrepreneurs hi ∈ (0, 1) and the other n− 1 regions are evenly populated
with shares (1−hi)/(n−1). We refer to this spatial distribution as partial agglomeration.

An equilibrium is said to be stable if, after a small perturbation of the equilibrium

7This may seem unreasonable if an empty region has a positive utility differential. However, the
replicator dynamics are generally used to capture the effect of migration driven by imitation, so a possible
interpretation is that entrepreneurs are extremely reluctant to be the first to migrate.
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distribution, the spatial distribution converges to the initial equilibrium distribution.

3.1 Agglomeration

When there is full agglomeration in region i, since all the entrepreneurs reside in region i,
their weighted average utility is V̄ = Vi. Agglomeration is stable if Vj < V̄ , ∀j ∈ N \ {i}.
The following result gives the condition for stability in parameter space.

Proposition 2. Agglomeration is stable if:

(1− φ) [λ− (n+ λ)φ]

nσφ
+

ln(φ)

σ − 1
< 0, (18)

and is unstable if the opposite inequality holds.

Proof. See Appendix B.

Agglomeration is stable if trade costs are sufficiently low. There exists a threshold level φs,
called sustain point, such that agglomeration is stable if φ > φs and unstable if φ < φs.8

The sustain point φs is implicitly defined by:

(1− φs) [λ− (n+ λ)φs]

nσφs
+

ln(φs)

σ − 1
= 0. (19)

We can also observe that agglomeration is stable if the immobile to mobile labour ratio is
sufficiently high. Rewriting (18), we obtain that agglomeration is stable if λ < λs, where:

λs ≡
nφ [(σ − 1)(1− φ)− σ lnφ]

(σ − 1)(1− φ)2
, (20)

and is unstable if λ > λs.

3.2 Symmetric dispersion

The following proposition establishes that full dispersion of entrepreneurs is stable if trade
costs are sufficiently high.

Proposition 3. Dispersion is stable if:

φ < φb ≡
σ(1− λ) + λ

λ+ n− σ (λ+ 2n− 1)
, (21)

8The left-hand side of (18), denoted F (φ), has a single zero in the domain φ ∈ (0, 1). To verify this,
check that limφ→0 F (φ) = +∞, limφ→1 F (φ) = 0, limφ→1 F

′(φ) > 0, and that F ′(φ) has a single zero.
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and is unstable if φ > φb.

Proof. See Appendix B.

The threshold value φb is called break point.9 A common assumption in NEG literature is
that φb > 0, so that stability of symmetric dispersion cannot be precluded. This is called
the no black hole condition and is equivalent to:

λ >
σ

σ − 1
. (22)

Since we require consumption of the agricultural good to be positive at full dispersion, it
follows that λ > max

{
σ − 1, σ

σ−1

}
.10

Rewriting the stability condition in (21), we find that dispersion is stable if:

λ > λb ≡
σ(2nφ+ 1− φ)− nφ

(σ − 1)(1− φ)
, (23)

and unstable if λ < λb. Dispersion is thus stable if labour mobility is sufficiently low.

3.3 Boundary dispersion

At boundary dispersion, entrepreneurs are evenly distributed among k ∈ {2, ..., n− 1}
regions while the other n − k regions are empty, where n ≥ 3. By symmetry, we can
suppose w.l.o.g. that hj = 0 for j = 1, ..., n− k and hj = 1

k
for j = n− k + 1, ..., n.

Theorem 1. Boundary dispersion is always unstable.

Proof. See Appendix B.

Theorem 1 provides analytical confirmation of the numerical evidence presented by Fujita
et al. (1999), Castro et al. (2012), and Gaspar et al. (2013). These authors used Core-
Periphery models with 3 or more regions to provide numerical evidence that boundary
dispersion with k = 2 is always unstable.11

9Substituting n = 2 in (21) we recover the break point of the model of Pflüger (2004).
10If σ > 1

2 (3 +
√

5) the no black hole condition is implied by λ > σ − 1 and thus becomes redundant.
11The first two works considered the original CP model (Krugman, 1991), whereas the latter considered

the FE model proposed by Forslid and Ottaviano (2003).
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3.4 Partial agglomeration

3.4.1 Existence of partial agglomeration equilibria

In an n-region model, there potentially exist several different kinds of asymmetric interior
equilibria. We restrict our analysis to a one-dimensional subspace of4, defined by4inv ≡{
h ∈ 4 : hj = 1−h1

n−1
,∀j 6= 1

}
, which is invariant for the dynamics. This is a particular

subspace in a family of one-dimensional subspaces where k regions have the same share
of entrepreneurs and the other n − k regions also have the same share of entrepreneurs.
We focus on the case where only one region differs from the others in size (k = 1, or
k = n − 1). Note that agglomeration (h1 = 1) and dispersion (h1 = 1

n
) are distributions

in 4inv. The next result is on the maximum number of equilibria in 4inv that are interior
and asymmetric, i.e., such that h1 ∈ (0, 1/n) ∪ (1/n, 1).

Proposition 4. There exist at most two interior asymmetric equilibria in ∆inv: at most
one with h1 ∈ (0, 1/n), whereas at most two with h1 ∈ (1/n, 1). A distribution h ∈ ∆inv

with h1 ∈ (0, 1
n
) ∪ ( 1

n
, 1) is an equilibrium if and only if λ = λ∗(h1), where:

λ∗(h1) ≡ n(σ − 1)(1− φ)φ(h1n− 1)− nσ [h1(1− φ) + φ] [φ(h1 + n− 2)− h1 + 1] ν(h1)

(σ − 1)(1− φ)2(h1n− 1)
, (24)

with ν(h1) ≡ ln
{
φ(h1+n−2)−h1+1
(n−1)[h1(1−φ)+φ]

}
.

Proof. See Appendix B.

Note that h1 ∈ (1/n, 1) means that region 1 has more industry than the other regions and
in this case we refer to region 1 as a partial core.

We illustrate in Figure 1 the possible multiplicity of partial agglomeration equilibria,
drawing λ∗(h1) for n = 3 and σ = 4, for two different values of φ.

When φ is low (picture to the left), there may exist one, two or zero interior asymmetric
equilibria in 4inv. For λA < λ < λB, there is only one equilibrium and it does not have
a partial core. For λB < λ < λC , there are two equilibria and at least one has a partial
core (both have if λ is relatively high). If λ > λC , there are no equilibria. When φ is high
(picture to the right), there is at most one interior asymmetric equilibria in 4inv. If λ is
high, it has a partial core.

3.4.2 Stability of partial agglomeration

At a partial agglomeration equilibrium, two types of migrations can take place. One
migration concerns movements along the invariant space 4inv, i.e., from region 1 to the
evenly populated regions. If n− 1 entrepreneurs leave region 1, each of the other regions

12



Figure 1 – Illustration of λ∗(h1) for n = 3. On the vertical axis we present values
of λ such that h1 ∈ (0, 1) \ {1/3} is an interior equilibrium. To the left, we have
φ = 0.2 and to the right we have φ = 0.65. The equilibria occur at the intersection
of a horizontal line (λ constant) with the lines depicted in each figure.

will get 1 of those entrepreneurs. Since, along the invariant space, regions {2, ..., n}
share the same size, the decisions of these n− 1 entrepreneurs are equivalent. The other
migration concerns that of an entrepreneur who chooses to move exogenously between
two regions other than region 1 (transversally to 4inv). We have the following result.

Theorem 2. Partial agglomeration is stable if h1 ∈ (1/n, 1) and:

δ(h1) ≡ (1− φ)(h1n− 1) [(n− 1)φ+ 1] + Φ(h1)ν(h1) < 0, (25)

where Φ(h1) = h2
1n(1− φ)2− 2h1(1− φ)2 + φ {n [(n− 3)φ+ 2] + 3φ− 4}+ 1 and ν(h1) is

as in (24). It is unstable if either h1 ∈ (0, 1/n) or δ(h1) > 0.

Proof. See Appendix B.

Partial agglomeration can only be stable if the asymmetric region is a partial core. If this
is the case, stability depends solely on the effect of migration on utilities between a partial
core and any of the other regions, i.e., on δ. Notice that ν(h1) < 0 and Φ(h1) > 0 if h1 >

1/n. Therefore, the term Φ(h1)ν(h1) < 0 constitutes the agglomerative force attracting
entrepreneurs towards the partial core, whereas (1− φ)(h1n− 1) [(n− 1)φ+ 1] > 0 is the
dispersive force that drives entrepreneurs away from the partial core to the other evenly
populated regions.

To understand why partial agglomeration is unstable if h1 ∈ (0, 1/n), notice that a
small exogenous migration from region n to region j 6= 1 decreases the cost-of-living in
region j due to the increase of the number of varieties produced locally. This is captured
by differentiating the second term of Vj in (16) and evaluating at partial agglomeration,
which gives:

µ(n− 1)(1− φ)

(σ − 1) [φ(h1 + n− 2)− h1 + 1]
> 0. (26)
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Figure 2 – Regions of stability δn < 0 in (h, φ) space, for n = {3, 5, 10}. The region
below the solid line corresponds to δ3 < 0; below the dashed line we have δ5 < 0; the
dotted line contain δ10 < 0.

On the other hand, the nominal wage in region j decreases:

∂wj
∂hj

(
h1,

1− h1

n− 1

)∣∣∣∣
λ=λ∗(h1)

=
(n− 1)2σ[h1(1− φ) + φ]ν(h1)

(σ − 1)(h1n− 1) [φ(h1 + n− 2)− h1 + 1]
,

which is negative for h1 ∈ (0, 1/n). When h1 ∈ (0, 1/n), the cost-of-living effect always
outweighs the dispersive decrease in nominal wage. The receiving region, having become
the largest after migration, will tend to further develop into an industrialized core. This
explains why it is not possible for industry to spread evenly among n − 1 regions when
the other region is less industrialized.

Stability of partial agglomeration requires a significantly industrialized partial core.
There exists ε > 0 such that partial agglomeration is unstable if h1 ∈ ( 1

n
, 1
n

+ε).12 Stability
of partial agglomeration also requires that trade costs are not too low. There exists ε > 0

such that partial agglomeration is unstable for φ ∈ (1−ε, 1).13 In order to convey a better
picture, we illustrate in Figure 2 the region δ < 0 in (h1, n) space, for n = {3, 5, 10}.
The numerical evidence suggests that, with more regions, partial agglomeration requires
higher barriers to trade (lower φ). With more regions, some partial agglomeration equi-
libria may arise with less industry in the partial core because total dispersion implies a
lower share of entrepreneurs in each region. Finally, Figure 2 shows that partial agglom-
eration with h1 ∈ (1/n, 1) is stable if the freeness of trade, φ, is low enough. The more
industrialized the partial core is, the higher is the range of freeness of trade values for

12This stems from the fact that δ(h1 = 1/n) = 0, ∂δ∂h (h = 1/n) = 0 and ∂2δ
∂h2 (h = 1/n) > 0.

13This is a consequence of δ(φ = 1) = 0, ∂δ∂φ (φ) = 0 and ∂2δ
∂φ2 (φ = 1) > 0.

14



which partial agglomeration is a stable equilibrium.

4 Bifurcations in the n-region model

Most 2-region NEG models under exogenous symmetry undergo pitchfork bifurcations
at the symmetric dispersion when the parameter path concerns smooth changes only in
transportation costs. Pflüger and Südekum (2008a) have shown that changes in the func-
tional form of the utility function produce modifications in the qualitative structure of a
class of footloose-entrepreneur models. However, these changes affect the type of pitch-
fork bifurcation rather than the type of bifurcation itself.14 For instance, the 2-region QL
(Pflüger, 2004) undergoes a supercritical pitchfork bifurcation at symmetric dispersion.
We next show that when more than 2 regions come to interplay, the QL model exhibits
instead a primary transcritical bifurcation at the symmetric equilibrium and a secondary
saddle-node bifurcation that branches from an interior asymmetric equilibrium. A dis-
tinctive feature of these bifurcations is that the qualitative change in spatial distributions
as transport costs decrease here is not reflected symmetrically across all regions, even
though the model is completely symmetric in all respects. This suggests that the role of
transport costs in an equidistant multi-regional model may be more complex than what
is envisaged in most agglomeration models.15

The remainder of the section is dedicated to explaining the details of these bifurc-
ations and their consequences on the qualitative transition towards more agglomerated
distributions as trade integration increases.

4.1 Primary and secondary bifurcations

We have the following results.

Proposition 5. In the n-region (n ≥ 3) QL model symmetric dispersion undergoes a
transcritical bifurcation at the break point.

Proof. See Appendix C.

From this result, symmetric dispersion looses stability as φ rises above φb. A primary
branch of partial agglomeration equilibria crosses symmetric dispersion at the bifurcation

14In the model of Ottaviano et al. (2002), the resulting bifurcation is a borderline case between a
supercritical and subcritical pitchfork.

15Bifurcation in core-periphery models has been addressed by Berliant and Kung (2009) in a different
context. The variety of bifurcations is obtained through the addition of parameters to the original model.
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point φ = φb. For φ < φb, this branch lies in the region h1 ∈ (1/n, 1). For φ > φb, the
branch lies in the region h1 ∈ (0, 1/n). Locally, both before and after the bifurcation
occurs, the partial agglomeration equilibria along the primary branch are unstable in a
neighbourhood of the bifurcation point.16

In order to understand the behaviour of partial agglomeration equilibria on the entire
invariant space ∆inv for h1 ∈ (1/n, 1), we take a further step by verifying the conditions
for a secondary bifurcation along the primary branch that occurs at a fold point, φf .
Because we are looking at the invariant subspace (h1, hj(hi)) = (h1, (1 − h1)/(1 − n)),

the study of bifurcations at the symmetric dispersion equilibrium in this restriction of the
n-region model is reduced to a one dimensional case.

Proposition 6. Along the primary branch for h1 ∈ (1/n, 1), the n-region QL model
undergoes a saddle-node bifurcation as φ decreases from φb.

Proof. See Appendix C.

The existence of a secondary saddle-node bifurcation for h1 ∈ (1/n, 1), together with
the direction of the transcritical bifurcation and stability of its branches, ensures that
φf < φb and φf < φs. As φ increases above φf , two partial agglomeration equilibria
appear. The one with the more industrialized partial core is stable, whereas the other
one is unstable. In other words, the saddle-node bifurcation is characterized by a curve of
partial agglomeration equilibria along a primary branch for h1 ∈ (1/n, 1) that is tangent
to the line φ = φf and lies to its right.17

One important question concerns whether φb < φs or φb > φs. The relative position of
these thresholds determines the smoothness of the progressive industrialization process as
the freeness of trade increases. On the other hand, the qualitative structure of the model
ensures that there always exists a stable spatial distribution with h1 ∈ [1/n, 1], for every
freeness of trade value φ ∈ (0, 1).

We first focus on the case φb < φs, which requires a relatively low λ. Figure 3 depicts
the QL model’s bifurcation diagram in the invariant space 4inv for n = 3. For the
illustrations we set µ = 0.3, σ = 4 and λ = 2.5.18 The interpretation strays from that
of the typical bifurcation diagrams of 2-region models in NEG literature, because we are
restricting ourselves to the invariant subspace 4inv ⊂ 4. Just like the simplex in the

16The branch for h1 ∈ (0, 1/n) is stable (only) along the invariant space. From Theorem 2, however, it
is unstable.

17The details that support these claims about the bifurcations are provided by the derivatives in (T3),
(T4), and (SN3) in Appendix C.

18The parameter values chosen for the simulations ensure that wi, wj > µ at every partial agglomeration
equilibrium, so that entrepreneurs consume both goods at every possible distribution.
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Figure 3 – Bifurcation diagram for the 3-region model. Solid and dashed lines rep-
resent stable and unstable equilibria, respectively. Vertical dashed lines delimit areas
(1) to (4) as follows: (1) stability of symmetric dispersion; (2) stability of both dis-
persion and partial agglomeration; (3) stability of partial agglomeration; (4) stability
of full agglomeration.

2-region model, the subspace is also one dimensional here and migration movements that
affect region 1 will affect all other regions. A migration from (to) region 1 would result
in 2x entrepreneurs leaving (entering) region 1 for x entrepreneurs that enter (leave) each
of the other 2 regions.19

It thus comes as no surprise to see that h1 = 0 corresponds to a qualitatively different
spatial distribution when n = 2 and when n ≥ 3. When n = 2, it corresponds to
agglomeration. When n ≥ 3, it corresponds to border dispersion, which is never stable.

In figure 3 we can see the primary transcritical bifurcation branching from the break
point φb and the secondary saddle-node bifurcation occurring along the primary branch,
whose fold point, φf , is located in the upper part of the invariant subspace. Notice that
an initially partially agglomerated industry will be forced to fully disperse across regions
if there is a decrease in the freeness of trade below φf . If this decrease is temporary, the
industry will remain fully dispersed, so there are permanent effects, which means that the
n-region QL model exhibits locational hysteresis. Formally, this happens because φf < φb.

19In a 3-region model, along the invariant space, region 1 has h1 entrepreneurs and regions 2 and 3
have h2 = h3 = (1− h1) /2.
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Figure 4 – Migration dynamics of entrepreneurs inside the 2-simplex. From left to
right to bottom, φ is increasing, and each picture corresponds to a region in Figure 3
indexed from (1) to (4). In the first picture, only symmetric dispersion is stable. In
the second, both partial agglomeration and symmetric dispersion are stable. In the
third picture only partial agglomeration is stable. In the last picture, agglomeration
is the only stable equilibrium.
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Figure 4 contains the different dynamics of the 3-region model inside the 2-dimensional
simplex, with correspondence to the regions (1)-(4) of Figure 3. We start with low levels
of φ. When the freeness of trade is very low, we have φ < φf < φb < φs, so only dispersion
is stable (upper left picture). However, once φf < φ < φb < φs, two partial agglomeration
equilibria immediately arise on the upper part (for h1 ∈ (1/3, 1)) of the invariant space
4inv of the simplex (upper left picture). The one that lies closer to agglomeration is the
only stable equilibrium. In the bottom left picture, φ has risen just above the break point
but lies just below the sustain point, i.e., φf < φb < φ < φs. At this point there are
still two partial agglomeration equilibria; however, one of them lies in the inferior part
of the invariant space 4inv and is unstable whereas the other is stable. As φ approaches
the sustain point, the stable partial agglomeration equilibrium approaches agglomeration
until it disappears once φ > φs, after which agglomeration becomes the only stable spatial
distribution.

Intuitively, the absence of income effects mitigates agglomeration forces as transport
costs decrease, which justifies the existence of partial agglomeration just as in the 2-
region model. On the other hand, higher market access variability due to the presence
of more regions implies that lower transport costs enhance the relative strength between
centripetal and centrifugal forces, resulting in a spatial distribution where one region is
considerably more industrialized. Further decreases in transport costs then lead to a
progressive and smooth transition towards full agglomeration.

We now focus on the case whereby φb > φs. Note that, in Pflüger’s 2-region QL model,
the existence of a supercritical bifurcation at the break point φb precludes this scenario.
For n ≥ 3, we have the following result.

Proposition 7. There exists a λ ∈ (λb, λs) such that agglomeration and dispersion are
both stable if:

n > nT ≡ −
(1− φ)2

φ(1− φ+ lnφ)
, (27)

Proof. See Appendix C.

The derivatives of λb in (23) and λs in (20) with respect to φ are both positive. Therefore,
a higher freeness of trade increases the range of values of λ for which agglomeration is
stable and decreases the range of values of λ for which dispersion is stable. However,
the difference λs − λb can be shown to be increasing in φ. This implies that a higher
freeness of trade increases the range of values of immobile to mobile labour ratio for
which agglomeration and dispersion are simultaneously stable. Accordingly, nT in (27)
is decreasing in φ, which means that simultaneity of stability requires a lower number of
regions when the freeness of trade is higher.
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Figure 5 – Threshold nT in (27). Agglomeration and dispersion are simultaneously
stable in the graph above the thick line. For n ≥ 3, simultaneity requires higher
transport costs for a higher number of regions.

Figure 5 illustrates nT from (27) in φ space. It shows that simultaneity of stability
of agglomeration and dispersion is not possible in the 2-region model. It also shows that
an (n+ 1)-region model favours simultaneity of agglomeration and dispersion for a wider
range of transport cost values compared to an n-region model.

Corollary 1. For a sufficiently high λ, there exists a range of transport cost values for
which agglomeration and dispersion are both stable.

Proof. If condition (27) holds, then, for some λ, agglomeration and dispersion are simul-
taneously stable. Since stability of both equilibria requires φ > φs and φ < φb, then it fol-
lows that, for some λ, we must forcibly have φb ≥ φs. Moreover, we have d(φb−φs)/dλ > 0,
which means that φb − φs > 0 occurs for a sufficiently high λ.

We now proceed to illustrate the qualitative structure of spatial distributions when φs <
φb. We increase the ratio of immobile to mobile workers compared to the previous simu-
lations, by setting λ = 6. The resulting bifurcation diagram is now presented in Figure
6. Clearly, the main qualitative difference compared to Figure 3 pertains to the region
indexed by (3), where we now have φ ∈ (φs, φb).

Figure 7 portrays the 2-dimensional simplex for φb > φs once φ rises above the sustain
point (corresponding to region (3) in Figure 6).

We can observe that for φs < φ < φb, agglomeration and total dispersion are both
simultaneously stable, while a single unstable partial agglomeration equilibrium for h ∈
(1/3, 1) exists in 4inv between them.

We now sum up the implications of the relative position between the break point and
sustain point. If φb < φs, once symmetric dispersion loses stability, a significant migration
will occur to a partially agglomerated equilibrium. This migration will be followed by a
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Figure 6 – Bifurcation diagram for the 3-region model. Solid and dashed lines repres-
ent stable and unstable equilibria, respectively. Vertical dashed lines delimit areas (1)
to (4) as follows: (1) stability of symmetric dispersion; (2) stability of both dispersion
and partial agglomeration; (3) stability of both dispersion and full agglomeration;
(4) stability of full agglomeration. Parameter values are σ = 5 and λ = 6.

Figure 7 – A 2-simplex portraying for φs < φ < φb. We can see that agglomeration
and symmetric dispersion are both stable. A single unstable partial agglomeration
equilibrium exists in the upper part of 4inv.
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smooth transition towards agglomeration if φ rises further. This scenario is illustrated in
figures 3 and 4. Conversely, if φb > φs, entrepreneurs will immediately agglomerate in
one single region once dispersion becomes unstable. Moreover, if the increase in φ above
φb is due to some temporary policy, agglomeration is permanent. This is depicted in
figure 6. Smoother transitions require a lower immobile to mobile labour ratio λ, whereas
catastrophic agglomeration is more likely under higher values of λ.20

In economic terms, when overall inter-regional mobility is low, dispersion forces are
higher because firms have larger incentives to relocate to less industrialized regions in
order to capture local demand and avoid fiercer competition in more crowded markets.
However, dispersion forces due to existence of immobile workers in other markets are
naturally stronger at more symmetric distributions. The implication is that a lower
global inter-regional mobility encourages symmetric dispersion more than it discourages
full agglomeration. When it is too low, if agglomeration forces exceed dispersion forces
at symmetric dispersion, the spatial distribution then immediately shifts towards full
agglomeration.

4.2 A note on the black hole condition and on the role of inter-

regional mobility

We know that there is a condition on which stability of total dispersion hinges crucially;
the no black hole condition. In early NEG literature, the no black hole condition may
have been a requirement assumed out of necessity or convenience; after all, in a fully
symmetric two region, two industry setting, precluding dispersion would doom geography
to the unlikely prediction of full agglomeration in one region. In our context, the no black
hole condition would seem ad hoc to say the least.

Figure 8 shows a bifurcation diagram where the ratio of inter-regionally immobile
workforce relative to mobile (skilled) labour is lower than unity and, as such, total dis-
persion is precluded. The results concerning bifurcations in the previous section do not
extend to this case since we know that φf < φb. In fact, as the freeness of trade in-
creases, the spatial distribution approaches agglomeration monotonically from an interior
asymmetric equilibrium along the invariant space 4inv.

On account of these findings, we conclude that a higher global inter-regional worker
mobility (lower λ) leads to smoother transitions towards agglomeration as transport costs
steadily decrease.

20Our results can be shown to extend to a fairly general range of values for λ.
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Figure 8 – If the unskilled labour force is relatively low, dispersion is not a stable
outcome, but partial agglomeration is still possible. We have σ = 2.5 and λ = 1.6.

5 Welfare

We have analysed the different possible spatial distributions in the the QL model with
an arbitrary number of equidistant regions. We now analyse the desirability of these
possible distributions. For normative purposes, we adopt a utilitarian criterion similar
to that of Pflüger and Südekum (2008b), thus looking at the average indirect utility of
entrepreneurs, farmers, and then at the whole economy.

5.1 Entrepreneurs

We start by showing how the spatial distribution of entrepreneurs affects their well-being.

Theorem 3. The average utility of entrepreneurs is convex in the spatial distribution of
entrepreneurs h, attaining a global minimum at symmetric dispersion.

Proof. See Appendix D.

Total dispersion is the spatial distribution that yields the worst outcome for the entrepren-
eurs as measured by average utility. To understand why entrepreneurs may be driven to
the situation that minimizes their overall welfare, it is useful to consider an economy with
3 regions whose distribution is initially fully dispersed. Supposing that full dispersion is
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stable, consider a marginal exogenous exodus from region 1 to region 3, which increases
average utility (from Theorem 3). However, since dispersion is stable, entrepreneurs in
region 3 will now observe that V1 > V̄ . Since they are short-sighted and move to the re-
gion with the highest utility, they will return to region 1, restoring symmetric dispersion.
This situation is similar to the standard prisoner’s dilemma. As noticed by Pflüger and
Südekum (2008b), the continuum of stable equilibria with partial agglomeration that the
absence of income effects allows for, as opposed to other NEG models, may contribute
to this result. Adding dispersion forces such as a housing sector (Pflüger and Südekum,
2008b) or commuting costs such as in Ottaviano et al. (2002) and Tabuchi et al. (2005)
would most likely improve the welfare of entrepreneurs at less agglomerated outcomes.

5.2 Farmers

Since the nominal wage of farmers is normalised to 1, all changes in their welfare are
caused by changes in average price indices.21 From (15), their average utility is given by:

V̄ L(h) = 1 +
µ

n(σ − 1)

n∑
j=1

ln [φ+ (1− φ)hj] + η. (28)

In contrast with entrepreneurs, farmers prefer more dispersed distributions.

Theorem 4. Farmers’ average indirect utility is concave in the spatial distribution of
entrepreneurs h, attaining a global maximum at symmetric dispersion.

Proof. See Appendix D.

Farmers attain the highest welfare when all entrepreneurs are evenly dispersed among
all regions. Regional indirect utility of farmers in region i is strictly increasing in the
number of entrepreneurs that reside there, due to the fact that locally produced varieties
are sold at lower prices.22 Therefore, industrialization of a region leads to a progressive
improvement of the welfare of farmers residing in that region. However, on average,
farmers as a whole become relatively poorer.

5.3 Social welfare

The results shown so far evidence a clear trade-off between the welfare of entrepreneurs
and the welfare of farmers. For a given stable equilibrium, the welfare of the economy as

21Recalling Proposition 1, a similar statement applies to the average welfare of entrepreneurs.
22In fact, it is possible to rewrite Pi in a way that it depends only on hi. See proof of Theorem 3.
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a whole thus depends on the global ratio of farmers to entrepreneurs, λ, and the number
of regions n. Let us define social welfare as an average of both average indirect utilities
that depends on the spatial distribution of entrepreneurs:

Ω(h) =
1

λ+ 1

[
V̄ (h) + λV̄ L(h)

]
. (29)

Rewriting (29) using (28) and V̄ we get:

Ω(h) =
1

λ+ 1

{
ε+

µ

(σ − 1)

[
n∑
j=1

ln [φ+ (1− φ)hj]

(
λ

n
+ hj

)]}
, (30)

where ε = λ(1 + η) + w̄ + η is a constant. The next result provides valuable information
concerning the local extrema of Ω(h).

Proposition 8. Social welfare interior extrema are located on one-dimensional invariant
spaces whereby k regions have a share of entrepreneurs hi = h1/k and the other n − k

regions have a share hj = (1− h1)/(n− k).

Proof. See Appendix D.

As we have seen before, one particular invariant space of this kind is ∆inv, which corres-
ponds to the particular case where k = 1 or k = n− 1. From Proposition 5, a Corollary
follows for the 3-region case.

Corollary 2. For n = 3, all social welfare interior extrema are located on ∆inv.

Proof. In the 3-region model, the only invariant spaces that correspond to the ones identi-
fied in Proposition 5 are the three invariant spaces whereby one region has h1 entrepreneurs
and the other two regions have hj = h1/2. This matches the invariant space ∆inv.

From Proposition 5, the study of social welfare interior extrema can be reduced to the
simpler one-dimensional invariant space. Additionally, Corollary 2 ensures that in order
to study welfare in a 3-region model we need only look at the one-dimensional subspace
∆inv in addition to the boundaries.23 Using (30) and n = 3, we find:

Ω (h1) =
1

3(λ+ 1)

[
3ε+

µ

(σ − 1)
ζ

]
, (31)

23For n ≥ 4, there may exist other potential extrema on other invariant spaces (as well as equilibria).
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where:

ζ = (3h1 + λ) ln [h1(1− φ) + φ] + [2h+ 3(1− h1)] ln

[
1− h1

2
(1− φ) + φ

]
.

Figure 9 plots the different possible shapes of social welfare for increasing levels of φ,
for λ = 3 and σ = 5. When φ is low (upper left picture), symmetric dispersion is
the only stable equilibrium and is a global welfare maximum. For a slightly higher φ
(upper right picture), both dispersion and a highly industrialised partial agglomeration
dispersion are stable but the former is still a global welfare maximum. Increasing φ further
(medium left picture) makes dispersion unstable, whereas partial agglomeration is stable
but is socially inferior compared to any less agglomerated spatial distribution. As φ rises
even further (medium right picture) agglomeration becomes stable but is dominated by
another less asymmetric distribution. However, continuous increases in φ steadily improve
the welfare at agglomeration until it eventually becomes a global welfare maximum (lower
pictures). The evidence here shows that the 3-region model exhibits a tendency towards
over-agglomeration for intermediate transport cost levels.

In order to check if this tendency carries over to the general n-region model, we present
the following Theorem.

Theorem 5. From a social point of view: (i) if dispersion is stable, it is a local maximum
and always superior to agglomeration; (ii) there exists φz ∈ (φs, 1) such that agglomeration
is stable for φ ∈ (φs, φz), but is socially inferior to other less asymmetric distributions.

Proof. See Appendix D.

From Theorem 5 we learn that there is a range for the freeness of trade just above the
sustain point for which agglomeration is a stable outcome, but also whereby social welfare
is lower compared to other less industrialized distributions. Therefore, there is a tendency
towards over-agglomeration. This is particularly notorious if φb > φs, because a temporary
increase in the freeness of trade just above φb permanently shifts the spatial distribution
to a socially inferior outcome.24

24On the other hand, it can be shown that a higher worker mobility (lower λ) and a higher trade freeness
increases the likelihood that global welfare will be greater at agglomeration compared to dispersion. This
statement is true if λ > nφ/(1 − φ), which we assume; otherwise agglomeration is always stable (see
equation (18) in Section 3.1).
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Figure 9 – Welfare along the invariant space ∆inv for the 3-region model (with λ = 3
and σ = 5). From left to right to bottom, φ is increasing.
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6 Conclusion

The QL model presents itself as a good candidate for extending the study of NEG to a
higher number of regions. By considering a quasi-linear upper tier utility function, the
absence of income effects on consumers’ demand for manufactures enables one to obtain
simpler analytical expressions for the entrepreneurs’ real wages in each region. In most
other NEG models with different utility functional forms, regional wages feed back on
the entrepreneurs’ incomes in all other regions, which in turn depend on the wages they
get, making it progressively harder to obtain tractable expressions as more regions are
considered.

As we have seen, the QL model allows to study NEG with an arbitrary number of
equidistant regions under exogenous symmetry. Moreover, it accommodates for the pos-
sibility of partial agglomeration equilibria, a feature which is ruled out in many CP models
under exogenous symmetry. This enforces the idea that exogenous asymmetries are not
the only source of asymmetric spatial distributions.

We look at equilibria where at least one region is absent of industry and the remaining
regions are evenly industrialized, and find they are always unstable. To the best of our
knowledge, this is the first analytical confirmation that an evenly distributed industry
among less than the total number of regions is not possible.

We look at partial agglomeration distributions along invariant spaces where all but
one region share the same level of industry. Contrary to the 2-region QL model (Pflüger,
2004), where the only invariant space is the entire set of spatial distributions itself and
any distribution may correspond to a stable equilibrium, with three and more regions,
along the aforementioned invariant space, a partial agglomeration equilibrium can only
be stable if a single region has a relatively larger industry compared to all other regions.
This happens because, when a single region is comparatively smaller, an entrepreneur
who migrates between any two of the evenly distributed regions (which are larger) will
see his utility rise. Thus, if exogenous migration occurs to any such region, it will attract
more and more entrepreneurs until it becomes an industrialized core.

A consequence of the stability analysis of partial agglomeration is that the QL model
distribution patterns with three regions and more cannot be explained by the 2-region
model’s pitchfork bifurcation (Pflüger, 2004). Instead, it undergoes a primary transcrit-
ical bifurcation at the symmetric dispersion equilibrium and a secondary saddle-node
bifurcation occurring at a primary branch along the invariant subspace. The existence
of a saddle-node implies that entrepreneurs, who are initially partially agglomerated, will
become permanently dispersed across all regions if transport costs increase temporarily.
Moreover, it is possible that agglomeration becomes stable before dispersion becomes
unstable, depending on the level of worker mobility. Thus, from a smooth path where
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transport costs decrease, once symmetric dispersion looses stability, there are two pos-
sibilities: (i) if the worker mobility is high, industry converges immediately to partial
agglomeration and then smoothly transits towards a single region agglomeration; (ii) if
mobility is low, industry immediately agglomerates in a single region.

We have shown that the average utility of the entrepreneurs declines from agglomera-
tion until dispersion, where their average utility is at its lowest. The converse happens to
the welfare of farmers. Their average utility is minimal at agglomeration and is highest at
dispersion. This evidences a clear trade-off in spatial distributions between entrepreneurs
and farmers in terms of social desirability. When we look at the society as a whole, the
model exhibits a tendency towards over-agglomeration when transportation costs lie at
intermediate levels. The social desirability of more agglomerated distributions is higher
when the proportion of farmers is lower, and can be improved for all workers by decreasing
the cost of living through lower transportation costs.

Appendix A

This appendix contains the formal proofs pertaining to Section 2 of the paper.

Proof of Proposition 1 The average nominal wage is the weighted sum of nominal
wages in each region, given by (12):

w̄ =
n∑
i=1

hiwi =
µ

σ

n∑
i=1

hi

n∑
j=1

φij (λ/n+ hj)

φ+ (1− φ)hj
=
µ

σ

n∑
j=1

n∑
i=1

hi
φij (λ/n+ hj)

φ+ (1− φ)hj

=
µ

σ

n∑
j=1

λ/n+ hj
φ+ (1− φ)hj

n∑
i=1

hiφij =
µ

σ

n∑
j=1

λ/n+ hj
φ+ (1− φ)hj

[φ+ (1− φ)hj] ,

and the result w̄ = µ
σ
(1 + λ) follows. �

Appendix B

This appendix contains all the proofs concerning both existence and local stability of
equilibria (Section 3).

Proof of Proposition 2 Let i be the core region. We show that Vj < Vi ∀j 6= i. We
have, from (16), that:

Vi =
µ

σ
(1 + λ) + η and Vj =

µ

σnφ

[
λ+ φ2(λ+ n) + λ(n− 2)φ

]
+

µ

σ − 1
lnφ+ η.
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A straightforward simplification of the inequality Vj < Vi yields the desired result. �

Proof of Proposition 3 Local stability of interior equilibria in 4 is given by the
sign of the real part of the eigenvalues of the Jacobian matrix of the system in (17)
at (h1, h2, ..., hn−1) =

(
1
n
, 1
n
, ..., 1

n

)
. At symmetric dispersion, the average utility V̄ is

invariant in the permutation of any two coordinates, due to symmetry. If we inter-
change the distributions between region 1 and region n we then have V̄

(
1
n

+ ε, 1
n
, ..., 1

n

)
=

V̄
(

1
n
− ε, 1

n
, ..., 1

n

)
. But this implies that ∂hiV̄

(
1
n
, 1
n
, ..., 1

n

)
= 0.25 The argument of invari-

ance extends to the indirect utility Vi in the permutation of any two coordinates j 6= i,
which implies that ∂hjVi

(
1
n
, 1
n
, ..., 1

n

)
= 0, ∀j 6= i. Finally, symmetry among regions es-

tablishes that we must have ∂hiVi
(

1
n
, 1
n
, ..., 1

n

)
= ∂hjVj

(
1
n
, 1
n
, ..., 1

n

)
. The Jacobian matrix

of (17) at the symmetric equilibrium is thus given by:

J =



∂Vi
∂hi

0 . . . 0

0
∂Vi
∂hi

. . . 0

...
... . . . ...

0 0 . . .
∂Vi
∂hi


,

which has a repeated real eigenvalue with multiplicity n − 1 given by ∂hiVi
(

1
n
, 1
n
, ..., 1

n

)
,

and total dispersion is stable if ∂hiVi
(

1
n
, ..., 1

n

)
< 0.

Replacing hn = 1 −
∑n−1

j=1 hj in expression (16) and computing the partial derivative
with respect to hi, ∂hiVi

(
1
n
, ..., 1

n

)
, we find that total dispersion is stable if:

∂hiVi
(

1
n
, ..., 1

n

)
≡ µn(1− φ) [(2n− 1)σφ− λ(σ − 1)(1− φ)− nφ+ σ]

(σ − 1)σ [(n− 1)φ+ 1] 2
< 0

⇔ (2n− 1)σφ− nφ+ σ − λ(σ − 1)(1− φ) < 0.

Solving for φ finishes the proof. �

Proof of Theorem 1 Two conditions are necessary for the study of stability of bound-
ary dispersion. The first condition ensures that empty regions remain empty and, ana-
logously to the proof of Proposition 2, demands that Vi|BD − Vj|BD < 0, where hi = 0

and hj = 1/k. The second condition guarantees that along the boundary (hi = 0; i =

25In this formulation, partial derivatives imply that changes in hi are reflected symmetrically in hn.
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1, ..., n − k) the configuration is stable. Similarly to the proof of Proposition 3, this
condition requires that ∂hjVj

∣∣
BD

< 0.

These two conditions yield, respectively:

nσφ [(k − 1)φ+ 1] ln

[
kφ

(k − 1)φ+ 1

]
+ (σ − 1)(1− φ) [λ(1− φ)− nφ] < 0,

k [n(2σ − 1)φ− λ(σ − 1)(1− φ)] + nσ(1− φ) < 0.

Solving for λ, we obtain:

n [k(2σ − 1)φ+ σ(1− φ)]

k(σ − 1)(1− φ)
< λ <

nφ

{
σ [(k − 1)φ+ 1] ln

[
(k − 1)φ+ 1

kφ

]
+ (σ − 1)(1− φ)

}
(σ − 1)(1− φ)2

.

The strict inequalities are incompatible, and thus boundary dispersion is unstable, if:

nφ

{
σ [(k − 1)φ+ 1] ln

[
(k − 1)φ+ 1

kφ

]
+ (σ − 1)(1− φ)

}
(σ − 1)(1− φ)2

− n [k(2σ − 1)φ+ σ(1− φ)]

k(σ − 1)(1− φ)
< 0.

Eliminating common factors of positive sign and rearranging terms to our convenience,
the above inequality becomes:

[(k − 1)φ+ 1]

{
kφ ln

[
(k − 1)φ+ 1

kφ

]
− (1− φ)

}
< 0

⇔ 1− φ
kφ

− ln

(
1 +

1− φ
kφ

)
> 0.

Define g(x) = x− ln(1+x). It is easy to see that g(0) = 0 and that g is strictly increasing.
Hence, g(x) > 0,∀x > 0. Noting that 1−φ

kφ
> 0 finishes the proof. �

Proof of Proposition 4 Configurations in ∆inv satisfy h1 ∈ [0, 1], hj = 1−h1
n−1

for j 6= 1.

By replacing the values in (17) and solving for an equilibrium we obtain λ = λ∗(h1), given
by (24) and reproduced here for convenience:

λ∗(h1) ≡ n(σ − 1)(1− φ)φ(h1n− 1)− nσ [h1(1− φ) + φ] [φ(h1 + n− 2)− h1 + 1] ν

(σ − 1)(1− φ)2(h1n− 1)
,

where ν = ln
{
φ(h1+n−2)−h1+1
(n−1)[h1(1−φ)+φ]

}
. Let h1 ∈ (0, 1/n) ∪ (1/n, 1) to exclude equilibria other

than partial agglomeration. Notice that ν > 0 for h1 ∈ (0, 1/n), while ν > 0 for h1 ∈
(1/n, 1).
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(i). Write λ∗(h1) = (α + βν) /γ, where:

α = n(σ − 1)(1− φ)φ(h1n− 1)

β = −nσ [h1(1− φ) + φ] [φ(h1 + n− 2) + 1− h1]

γ = (σ − 1)(1− φ)2(h1n− 1),

and observe that α/γ > 0, β < 0 and ν/γ < 0 to see that λ∗(h1) > 0.

(ii). Calculating the first and second derivatives of λ∗(h1) we obtain:

∂λ∗(h1)

∂h1

=
α1 + β1ν

(σ − 1)(1− φ)2(h1n− 1)2
,

∂2λ∗(h1)

∂h2
1

=
nσ [(n− 1)φ+ 1]2 (α2 + β2ν)

(σ − 1)(1− φ)2(h1n− 1)3 [h1(1− φ) + φ] [φ(h1 + n− 2)− h1 + 1]
,

where:

α1 = −(1− φ)(1− h1n) [(n− 1)φ+ 1]

β1 = h2
1n(1− φ)2 − 2h1(1− φ)2 + φ {n [(n− 3)φ+ 2] + 3φ− 4}+ 1

α2 = (1− φ)(1− h1n) [(3− 2n)φ− h1(n− 2)(1− φ)− 1]

β2 = −2(n− 1) [h1(1− φ) + φ] [φ(h1 + n− 2)− h1 + 1] .

The sign of the numerator of ∂
2λ∗(h1)

∂h21
is the sign of F (h1) ≡ α2 +β2ν. Computing F ′′(h1),

we find that F (1/n) = 0, F ′(1/n) = 0, and F ′′(1/n) = 0, and that F (h1) is concave for
h1 ∈ (0, 1/n) and convex for h1 ∈ (1/n, 1). This implies that the numerator of ∂2λ∗(h1)

∂h21
is

negative for h1 ∈ (0, 1/n) and positive for h1 ∈ (1/n, 1).
Since the denominator of of ∂2λ∗(h1)

∂h21
is positive for h1 ∈ (0, 1/n) and negative for

h1 ∈ (1/n, 1), we conclude that ∂2
hλ
∗(h1) < 0 which means that λ∗(h1) is strictly concave.

Hence, at most two partial agglomeration equilibria exist.
Calculate the limits of λ∗(h1) and its first derivative as h1 approaches 1/n:

lim
h1→

1
n
±
λ∗(h1) =

σ(2nφ+ 1)− nφ
(σ − 1)(1− φ)

> 0.

lim
h1→

1
n
±

∂λ∗(h1)

∂h1

=
(n− 2)nσ

2(n− 1)(σ − 1)
> 0.

From the first limit we establish the continuity of λ∗(h1). The fact that the second limit
is positive, together with the concavity of λ∗(h1), guarantees that λ∗(h1) is increasing for
h1 ∈ (0, 1/n). Therefore, at most one equilibrium exists for h1 ∈ (0, 1/n). If there are
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two equilibria, both may belong to (1/n, 1). �

Proof of Theorem 2 Analogously to the proof of Proposition 3, the symmetry of the
problem ensures that the Jacobian matrix at the partial agglomeration equilibrium with
coordinates

(
h1,

1−h1
1−n , ...,

1−h1
1−n

)
is of the form:

J =



∂f1

∂h1

0 . . . 0

0
∂fj
∂hj

. . . 0

...
... . . . ...

0 0 . . .
∂fj
∂hj


.

The eigenvalues of J are given by:

∂f1

∂h1

= h

(
∂V1

∂h1

− ∂V̄

∂h1

)
, and

∂fj
∂hj

=
1− h
1− n

∂Vj
∂hj

,

which must both be negative at partial agglomeration for this configuration to be stable.
Using (24) to calculate these derivatives, the stability conditions become, respectively:γ(h1) ≡ (1−φ)(1−h1n)−(n−1)[h1(1−φ)+φ]ν

(1−h1n)
< 0

δ(h1) ≡ (1−φ)(h1n−1)[(n−1)φ+1]+Φν
(h1n−1)

< 0.

We finish the proof by showing that:

(i) When h1 ∈ (0, 1/n) we have γ(h1) > 0, thus partial agglomeration is unstable regard-
less of the sign of δ(h1). To verify this, notice that, for h1 ∈ (0, 1/n), the denominator of
γ(h1) is positive so the sign of γ(h1) is that of the numerator. Call N(h1) this numerator.
Direct calculation shows that:

∂N(h1)

∂h1

< 0 ⇔ − (1− φ)

[
(1− φ)(1− h1n)

φ(h1 + n− 2) + 1− h1

+ (n− 1)ν

]
< 0,

which is always true since ν > 0, that is, the numerator of γ(h1) decreases in h1. We also
have, noticing that ν(1/n) = 0, lim

h→ 1
n
N(h1) = 0. Then, N(h1) > 0 and γ(h1) > 0.

(ii) When h1 ∈ (1/n, 1) we have γ(h1) < 0 so that only δ(h1) < 0 needs to be verified
for stability. To verify this, notice that, for h1 ∈ (1/n, 1), the denominator of γ(h1) is
negative. From proof of Theorem 2, we have lim

h1→
1
n
N(h1) = 0. Also, since ν < 0 for

h1 ∈ (1/n, 1), we find that dN(h1)
dh1

> 0. Therefore, the numerator of γ(h1) is positive for
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h1 ∈ (1/n, 1) and we conclude that γ(h1) < 0 if h1 ∈ (1/n, 1). �

Appendix C

This Appendix contains the formal proofs concerning Section 4. We denote by fi(h) the
right-hand side of equation (17).

Proof of Proposition 5 The conditions required for a transcritical bifurcation (Guck-
enheimer and Holmes, 2002; pp. 149-150) are as follows:

(T1.) For all values of the bifurcation parameter φ, we must have fi( 1
n
, ..., 1

n
;φ) = 0.

This condition is satisfied since total dispersion is always an equilibrium.

(T2.) The Jacobian of fi(h) has a zero eigenvalue at total dispersion. This occurs at the
break point φb given in (21).

(T3.) At total dispersion and at the break point we must have ∂2fi
∂h2i

( 1
n
, ..., 1

n
;φb) 6= 0.

The second derivative of fi with respect to hi at the symmetric equilibrium is given by:

∂2fi
∂h2i

( 1
n , ...,

1
n ) =

µ(n− 2)(1− φ)
{
φ2 [nσ(2λ+ 4n− 3)− 2n(λ+ n) + σ] + σφ [(3− 2λ)n− 2] + 2λnφ+ σ

}
(σ − 1)σ [(n− 1)φ+ 1]

3 .

At φ = φb, we have:
∂2fi
∂h2

i

( 1
n
, ..., 1

n
;φb) =

µ(n− 2)(1− 2σ)2

(λ+ 1)2(σ − 1)3
,

which is positive for n ≥ 3.

(T4.) At total dispersion and at the break point we must have ∂2fi
∂hi∂φ

( 1
n
, ..., 1

n
;φb) 6= 0.

Again, direct computation yields:

∂2fi
∂hi∂φ

( 1
n
, ..., 1

n
;φb) =

µ(2σ − 1) [λ− σ(λ+ 2n) + n+ σ]2

(λ+ 1)2n(σ − 1)3σ
> 0.

Since all conditions are verified, we conclude that the model undergoes a transcritical
bifurcation at the break point φb. �

Proof of Proposition 6 A primary branch satisfies λ∗(h1) in equation (??). We use
the conditions for a saddle-node bifurcation given by Guckenheimer and Holmes (2002,
Theorem 3.4.1). Applied to the QL model, they are as follows:
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(SN1.) At partial agglomeration we must have
df

dh
(h1;λ∗(h1);φf ) = 0.

In this instance, f(hi) is the RHS of (17) and the proof of Theorem 13 gives:

df

dh1

(h1;λ∗(h1);φf ) = 0 ⇔

δ = 0,

where δ is as in (25). We rewrite δ = 0 as:

(1− φf )(1− h1n) [(n− 1)φf + 1]

Φ(h1;φf )
= ν(h1;φf ), (32)

where

Φ(h1, φf ) = h2
1n(1− φf )2 − 2h1(1− φf )2 + φf {n [(n− 3)φf + 2] + 3φf − 4}+ 1,

ν(h1, φf ) = ln

{
φf (h1 + n− 2)− h1 + 1

(n− 1) [h1(1− φf ) + φf ]

}
,

and φf is the level of freeness of trade at which the interior equilibrium changes stability.

(SN2.) At partial agglomeration,
d2f

dh2
(h1;λ∗(h1);φf ) 6= 0.

From (24) and (32), we have:

d2f

dh2
(h1;λ∗(h1);φf ) =

(h1 − 1)h1µ(1− φ)2 [(n− 1)φ+ 1]2 Γ

(σ − 1) [h1(1− φ) + φ]2 [φ(h1 + n− 2)− h1 + 1]2 Φ
,

where Γ(h, φ) = h2
1(n−2)(1−φ)2+2h1(1−φ) [(2n− 3)φ+ 1]−φ {n [(n− 5)φ+ 2] + 5φ− 4}−

1. The term Φ is positive. The term Γ(h1, φ) has only one (meaningful) zero given by:

h1 = h∗1 ≡ −
φ(2n(1− φ) + 3φ− 4)−

√
n− 1(1− φ) [(n− 1)φ+ 1] + 1

(n− 2)(1− φ)2
,

which is not compatible with (SN1). By replacing h1 = h∗1 in (25) we obtain:

df

dh1

(h∗1;λ∗(h1);φf ) = δ(h∗1) ≡ − [(n− 1)φ+ 1] 2

(n− 2)2
Ξ,

where:

Ξ =(n− 2)
[(√

n− 1 + 2
)
n− 2

]
+ (n− 1)

(
n+ 2

√
n− 1

)
ln(n− 1).

Since Ξ > 0, it follows that δ(h∗1) < 0. Thus d2f
dh21

(h1;λ∗(h1);φf ) 6= 0.
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(SN3.) At partial agglomeration,
df

dφ
(h1;λ∗(h1);φf ) 6= 0.

From (24) and (32), we have:

df

dφ
(h1;λ∗(h1);φf ) =

(1− h1)h1µ(h1n− 1)×Θ

(σ − 1)σ [h1(φ− 1)− φ] [φ(h1 + n− 2)− h1 + 1]× Φ
,

where Θ = h2
1n(1−φ)2−h1(1−φ) {(n− 2)σ [(n− 1)φ+ 1]− 2φ+ 2}−σ [(n− 1)φ+ 1] (2nφ−

3φ+1)+φ {n [(n− 3)φ+ 2] + 3φ− 4}+1 < 0. Since the term h1n−1 > 0 for h1 ∈ (1/n, 1),
we can conclude that df/dφ > 0 when evaluated at partial agglomeration and at φf , en-
suring that (SN3) is satisfied. This concludes the proof. �

Proof of Proposition 7 We know that total dispersion is stable if λ > λb, whereas
agglomeration is stable if λ < λs. As a result, both equilibria are simultaneously stable
if (λb, λs) is non-empty. Using (20) and (23), simultaneity of stability then requires
λs − λb > 0 :

nφ [(σ − 1)(1− φ)− σ lnφ]

(σ − 1)(φ− 1)2
− σ(2nφ+ 1− φ)− nφ

(σ − 1)(1− φ)
> 0 ⇔

−(1− φ) [(n− 1)φ+ 1] + nφ log(φ)

(σ − 1)(1− φ)2
> 0 ⇔

− (1− φ)2

φ(1− φ+ lnφ)
< n,

which concludes the proof. �

Appendix D

This Appendix contains the formal proofs concerning Section 5.

Proof of Theorem 3 The weighted average utility of entrepreneurs, obtained from
(15), is given by:

V̄ =
µ

σ
(1 + λ) +

µ

σ − 1

n∑
i=1

hi ln [φ+ (1− φ)hi] + η.

Define f(hi) ≡ hi ln [φ+ (1− φ)hi]. Observe that f : [0, 1] → R is continuous and twice
differentiable, and that:

f ′′(hi) =
2 (1− φ) [φ+ (1− φ)hi]− hi (1− φ)2

[φ+ (1− φ)hi]
2 =

hi (1− φ)2 + 2φ (1− φ)

[φ+ (1− φ)hi]
2 > 0,
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which means that f is strictly convex.
Now define g(h1, ..., hn−1) ≡ f(1 −

∑n−1
i=1 hi). The function g : Rn−1 → R is convex

because it is a composition of a convex function with an affine function.
Therefore,

∑n−1
i=1 f(hi)+g(h) is convex as it is a sum of convex functions. We conclude

that V̄ : Rn−1 → R is a convex function of (h1, ..., hn−1). Since ∂hiV̄
(

1
n
, ..., 1

n

)
= 0 (see

proof of proposition 3) and V̄ is convex, it attains a global minimum at dispersion. �

Proof of Theorem 4 Let f(hi) ≡ ln[φ+ (1− φ)hi]. Then:

f ′′(hi) = − (1− φ)2

[h(1− φ) + φ] 2
< 0,

which means that f(hi) is strictly concave. Therefore,
∑n−1

i=1 ln[φ+ (1− φ)hi] is a strictly
concave function of (h1, ..., hn−1).

Now define g(h1, ..., hn−1) ≡ f(1 −
∑n−1

i=1 hi). The function g : Rn−1 → R is concave
because f is a concave monotonic transformation of a concave function of (h1, ..., hn−1).
This implies that V̄ L, given in (28), is strictly concave.

Each price index Pi in (13) is invariant to the permutation of any two region’s coordin-
ates. Therefore, we can assert that ∂hiV̄ L

(
1
n
, ..., 1

n

)
= 0, ∀i ∈ N .26 Given strict concavity,

V̄ L attains a global maximum at h = (1/n, ..., 1/n), which concludes the proof. �

Proof of Proposition 8 Rewrite the social welfare function Ω(h) in (30) as:

Ω(h) = ε
λ+1

+ µ
(λ+1)(σ−1)

[g(h1) + ...+ g(hn)] , (33)

where g(hi) ≡
(
λ
n

+ hi
)

ln [φ+ (1− φ)hi].
The optimization plan for Ω(h) consists on maximizing

∑
i g(h1) subject to

∑n
j=1 hi =

1. Write the Lagrangian as L = g(h1) + g(h2) + ... + g(hn) + γ(1− h1 − ...− hn), where
γ is the Lagrange multiplier. From the first-order conditions:

g′(h1) = g′(h2) = ... = γ.

We must have g′(h1) = g′(h2) = ... = g′(hn). Each g′(hi) is given by:

g′(hi) =
(1− φ)(λ

n
+ hi)

hi(1− φ) + φ
+ ln [hi(1− φ) + φ] .

26For a more formal reasoning, see Proof of Proposition 3 in Appendix B.

37



The second derivative g′′(hi) is given by:

g′′(hi) = −(1− φ) [λ− hin(1− φ)− φ(λ+ 2n)]

n [hi(1− φ) + φ]2
,

which has either one zero for h ∈ [0, 1] or none. Therefore, g′(hi) has at most one
local extreme. This implies that at most two different values of hi ∈ [0, 1] may satisfy
g′(hi) = γ. The consequence of this is that all potential interior maximizers of Ω(h) are
characterized by a vector h = (h1, h2, ..., hn) such that k of its elements correspond to a
share of entrepreneurs equal to h/k and the remaining n− k elements have a share equal
to (1− h)/(n− k). This concludes the proof. �

Proof of Theorem 5
(i). Define the summation term of Ω(h) in (30) as F (h) = f(h1) + f(h2) + ...+ f(hn−1) +

g(hn), where hn : (h1, h2, ..., hn−1) 7→ 1 − h1 − ... − hn−1. The second derivative of each
f(hi) evaluated at hi = 1/n is given by:

∂2f(hi)

∂2hi

∣∣∣∣
hi=

1
n

=
n(1− φ) [φ(λ+ 2n− 1)− λ+ 1]

[(n− 1)φ+ 1] 2
,

which is negative if and only if:

φ < φw ≡
λ− 1

λ+ 2n− 1
.

Using (21), it is easily verified that φb < φw. If φ < φb < φw, symmetric dispersion is stable
and f(hi) is concave. Given that f : R 7→ R is strictly concave, replicating the reasoning
from the proof of Theorem 3 allows us to conclude that g(hn) = f ◦hn : Rn−1 7→ R is also
strictly concave. Therefore, F (h) is strictly concave for h = (1/n, ..., 1/n) and Ω(h), a
constant term plus F (h), is also strictly concave at symmetric dispersion when the latter
is stable. Since Ω(h) attains a critical value at symmetric dispersion, we conclude that
the latter always attains a local maximum when it is stable.
Evaluating welfare at symmetric dispersion gives us:

Ω

(
1

n
, ...,

1

n

)
=

1

λ+ 1

[
ε+

µ(λ+ 1)

(σ − 1)
ln

(
φ+

1− φ
n

)]
.

At agglomeration, welfare is given by:

Ω(hi = 1) =
1

λ+ 1

[
ε+

µλ(n− 1)

(σ − 1)n
lnφ

]
.
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This implies that agglomeration yields a higher welfare than dispersion dispersion if and
only if:

∆Ω ≡ λ(n− 1)

n
lnφ− (λ+ 1) ln

(
φ+

1− φ
n

)
> 0.

The difference ∆Ω is concave in φ, has a zero for φ ∈ (0, 1) and another at φ = 1, and is
negative at φ = φb. Symmetric dispersion is thus strictly better than agglomeration from
a social point of view when the former is stable.

(ii). It can be shown that Ω′(1) is concave in φ with only one root φz ∈ (0, 1) and another
at φ = 1. Moreover, it is negative when evaluated at the sustain point φs, which implies
that φs < φz. Therefore, there exists a φ ∈ (φs, φz) where agglomeration is stable and
Ω′(1) < 0, meaning that welfare is higher at another less asymmetric distribution. This
concludes the proof. �
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