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POINTWISE CONVERGENCE TOPOLOGY AND FUNCTION

SPACES IN FUZZY ANALYSIS

D. R. JARDÓN AND M. SANCHIS

Abstract. We study the space of all continuous fuzzy-valued functions from a

space X into the space of fuzzy numbers (E1, d∞) endowed with the pointwise

convergence topology. Our results generalize the classical ones for continuous
real-valued functions. The field of applications of this approach seems to be

large, since the classical case allows many known devices to be fitted to general

topology, functional analysis, coding theory, Boolean rings, etc.

1. Introduction and preliminaries

Fuzzy Analysis has developed a growing interest in the last decades. It embraces
a wide variety not only of theoretical aspects, but also of significant applications
in fuzzy optimization, fuzzy decision making, etc. Among the literature devoted
to this topic we can cite, for instance, [7, 8, 12, 20, 22, 25, 26, 27]. Fuzzy analysis
is based on the notion of fuzzy number. The underlying idea is the following. Let
F (R) denote the family of all fuzzy subsets on the reals. For u ∈ F (R) and λ ∈ [0, 1],
the λ-level set of u is defined by

[u]λ := {x ∈ R : u(x) ≥ λ} , λ ∈ ]0, 1], [u]0 := clR {x ∈ R : u(x) > 0} .
Let E1 be the set of elements u of F (R) satisfying the following properties:

(1) u is normal, i.e., there exists x ∈ R with u(x) = 1;
(2) u is convex, i.e., for all x, y ∈ R, u(z) ≥ min {u(x), u(y)} for all x ≤ z ≤ y;
(3) u is upper-semicontinuous;
(4) [u]0 is a compact set in R.

Notice that if u ∈ E1, then the λ-level set [u]λ of u is a compact interval for each
λ ∈ [0, 1]. We also denote [u]λ by [u−(λ), u+(λ)]. Notice that each real number
r ∈ R can be regarded as an element of E1 since r can be identified with the element
of E1 r̃ defined as

r̃(t) :=

{
1 if t = r,

0 if t 6= r.

E1 is the so-called set of the fuzzy numbers, which were introduced by Dubois
and Prade ([10]) to provide formalized tools to deal with non-precise quantities.

Notice that we could consider E1 as a set endowed with a family of representable
interval orders indexed in ]0, 1]. Indeed, for any λ ∈ ]0, 1], the element u ∈ E1 is
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represented by the interval [u−(λ), u+(λ)]. Then the binary relation ≺ defined on
E1 by declaring u ≺ v if and only if u+(λ) < v−(λ) is a representable interval order
for any λ ∈ ]0, 1]. (See e.g. Ch. 6 in [5], or [4] for details).

Goetschel and Voxman proposed an equivalent representation of such numbers
in a topological vector space setting, which eased the development of the theory
and applications of fuzzy numbers (see [15]).

Theorem 1.1. Let u ∈ E1 and [u]λ = [u−(λ), u+(λ)], λ ∈ [0, 1]. Then the pair of
functions u−(λ) and u+(λ) has the following properties:

(i) u−(λ) is a bounded left-continuous non-decreasing function on ]0, 1];
(ii) u+(λ) is a bounded left-continuous non-increasing function on ]0, 1];
(iii) u−(λ) and u+(λ) are right-continuous at λ = 0;
(iv) u−(1) ≤ u+(1).

Conversely, if a pair of functions α(λ) and β(λ) from [0, 1] into R satisfy the above
conditions (i)-(iv), then there exists a unique u ∈ E1 such that [u]λ = [α(λ), β(λ)]
for each λ ∈ [0, 1].

The previous result allows us to consider different topologies on E1 defined by
means of different types of convergence on families of functions. From now on, we
endow E1 with the topology of the uniform convergence, that is, a net (uα)α∈I ⊂
E1 converges to u ∈ E1 if the net (u−α )α∈I converges uniformly to u− and the
net (u+

α )α∈I converges uniformly to u+. Equivalently, the topology of uniform
convergence is induced by the supremum metric d∞ defined by using the Hausdorff
distance on the hyperspace of all nonempty compact intervals ([9, 15]), that is, if
u, v ∈ E1, then

d∞(u, v) = sup
λ∈[0,1]

max
{
|u−(λ)− v−(λ)|, |u+(λ)− v+(λ)|

}
.

It is a well-known fact that (E1, d∞) is a nonseparable, complete metric space.
It is worth noting that the set of real numbers equipped with its usual topology
induced by the Euclidean metric de is a closed subspace of (E1, d∞). Moreover,
since the cardinal of the set of all monotone real-valued functions on [0, 1] is the
continuum, a consequence of Goetschel–Voxman’s theorem is that the cardinality
of E1 is the continuum. As usual, Br(x) denotes the ball of center x and radius r
of (E1, d∞).

In this paper we deal with Cp–theory in the setting of fuzzy analysis. In the clas-
sical case, the pointwise topology is a powerful tool in itself and in its applications
to general topology, functional analysis, coding theory, Boolean rings, etc. (see for
instance, [2, 3, 6, 18, 23, 24]). Our aim is to make the starting point of a similar
theory for fuzziness. Throughout all spaces are assumed to be Tychonoff, that is,
completely regular and Hausdorff. Given two spaces X and Y , Cp(X,Y ) stands
for the space of all continuous functions from X to Y endowed with the pointwise
convergence topology which is generated by the sets of the form

[x1, . . . , xn;U1, . . . , Un] = {f ∈ Cp(X,Y ) : f(xk) ∈ Uk, k = 1, 2, . . . , n}
where xk ∈ X and Uk is an open set of Y (k = 1, 2, . . . , n). In other words, the
topology of Cp(X,Y ) is the one induced by the product topology on Y X . When
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Y = (E1, d∞) (respectively, Y = (R, de)) we write simply Cp(X,E1) (respectively,
Cp(X)). Notice that a neighborhood base of a function f for the topology of
Cp(X,E1) is the family of all the sets of the form

〈f ;x1, . . . , xn; ε〉 =
{
g ∈ Cp(X,E1) : d∞(f(xk), g(xk)) < ε

}
k = 1, 2, . . . , n

for all ε > 0 and x1, x2, . . . , xn ∈ X for all n ∈ N. Closedness of (R, de) in (E1, d∞)
implies that Cp(X) is a closed subspace of Cp(X,E1).

The paper is organized as follows. In Section 2 we introduce some basic properties
of the space (E1, d∞) including the fact that the addition and multiplication are
continuous. Section 3 is devoted to the properties of the space Cp(X,E1). In
Section 4 we deal with several properties related to compactness in Cp(X,E1). In
particular, a version of the celebrated Grothendieck’s theorem on compactness of
countably compact subsets of Cp(X) is achieved.

Although our notation and terminology is standard, some comments are in order.
A cardinal function is a function Γ assigning to every topological space X a cardinal
number Γ(X) such that Γ(X) = Γ(Y ) for any pair X, Y of homeomorphic spaces.
For a subset A of a space X, we denote by A the closure of A in X. The cardinality
of a set X is denoted by |X|. As usual, the continuum is denoted by c. N stands for
the natural numbers and ℵ0 for the cardinality of N. The smallest cardinal number
m ≥ ℵ0 such that every family of pairwise disjoint nonempty open sets of X has
cardinality ≤ m is called the Souslin number (or cellularity) of the space X and it is
denoted by c(X). If c(X) = ℵ0, we say that the space X has the Souslin property.

Given a space X, the smallest cardinality of a base for the topology of X (re-
spectively, of a dense subset of X) is called the weight (respectively, the density)
of X and it is denoted by w(X) (respectively, by d(X)). The character of a point
x in X is defined as the smallest cardinal number of a neighborhood base for X at
the point x; this cardinal number is denoted by χ(x,X). The character χ(X) of a
topological space X is defined as the supremum of all numbers χ(x,X) for x ∈ X.

For a given space X, a family N of subsets of X is called a network of X if
for any open set U of X there is M ⊂ N such that

⋃
M = U . The cardinal

nw(X) = min{|N | : N is a network of X} is called the network weight of X.
Recall that a function f : X → Y is called a condensation if it is a continuous bi-

jection. Let iw(X) = min {|κ| : there is a condensation of X onto a space of weight
≤ κ}. The cardinal iw(X) is called the i-weight of X. The tightness t(X) of a space
X is the smallest cardinal such that for each set A ⊂ X and any point x in the
closure of A there is a set B ⊂ A for which |B| ≤ t(X) and x belongs to the closure
of B. We refer the reader to [11] for further information on these topics.

2. The Space (E1, d∞)

Given two fuzzy numbers u and v, we define its addition u + v and its multi-
plication uv by means of the typical interval operations. To be precise, for each
λ ∈ [0, 1], the λ-level of u + v and uv are defined, respectively, by the rules (see
[10])

(u+ v)(λ) = [u−(λ) + v−(λ), u+(λ) + v+(λ)]
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and

(uv)(λ) =

[min{u−(λ)v−(λ), u−(λ)v+(λ), u+(λ)v−(λ), u+(λ)v+(λ)},
max{u−(λ)v−(λ), u−(λ)v+(λ), u+(λ)v−(λ), u+(λ)v+(λ)}].

The following result is probably known but we were not aware of any suitable
reference.

Proposition 2.1. If u, v, w ∈ E1 and k ∈ R, then

(i) d∞(u, v) = d∞(u+ w, v + w);
(ii) d∞(ku, kv) = |k|d∞(u, v);

(iii) d∞(wu,wv) ≤ max{|w−(0)|, |w+(0)|}d∞(u, v);
(iv) uv = 0 if and only if u = 0 or v = 0;
(v) the equation u+ x = 0 has solution if and only if u ∈ R.

Proof. Notice that claims (i) and (ii) hold true by the definition of the metric d∞.
(iii) Let r denote max{|w−(0)|, |(w)+(0)|}. For any t ∈ [0, 1], we have −r ≤

w−(t) ≤ w+(t) ≤ w+(0) ≤ r so that |w−(t)| ≤ r and |w+(t)| ≤ r. Thus, for any
t ∈ [0, 1], the following inequalities hold
|w−(t)u−(t)− w−(t)v−(t)| ≤ r|u−(t)− v−(t)|,
|w+(t)u−(t)− w+(t)v−(t)| ≤ r|u−(t)− v−(t)|,
|w−(t)u+(t)− w−(t)v+(t)| ≤ r|u+(t)− v+(t)|,
|w+(t)u+(t)− w+(t)v+(t)| ≤ r|u+(t)− v+(t)|.

Therefore

|(wu)−(t)− (wv)−(t)| ≤ rmax{|u−(t)− v−(t)|, |u+(t)− v+(t)|},
|(wu)+(t)− (wv)+(t)| ≤ rmax{|u−(t)− v−(t)|, |u+(t)− v+(t)|},
max{|(wu)−(t)− (wv)−(t)|, |(wu)+(t)− (wv)+(t)|} ≤

≤ rmax{|u−(t)− v−(t)|, |u+(t)− v+(t)|},
for any t ∈ [0, 1]. We have just shown that

d∞(wu,wv) ≤ max{|w−(0)|, |w+(0)|}d∞(u, v).

(iv) Assume, without loss of generality, that both u and v are different from zero.
Take distinct λ1, λ2 ∈ [0, 1] such that

(1) either u−(λ1) 6= 0 or u+(λ1) 6= 0 , and
(2) either v−(λ2) 6= 0 or v+(λ2) 6= 0.

It follows from (1) (respectively, from (2)) that v−(λ1) = 0 and v+(λ1) = 0
(respectively, u−(λ2) = 0 and u+(λ2) = 0). This leads us to a contradiction
because u− is not decreasing and v+ is not increasing. Thus, the proof is complete.
(v) Let u = [u−(λ), u+(λ)] and x = [x−(λ), x+(λ)]. Since for any λ ∈ [0, 1] u−(λ) +
x−(λ) = 0 and u+(λ) + v+(λ) = 0 , we have x−(λ) = −u−(λ) and x+(λ) =
−u+(λ) (λ ∈ [0, 1]). Being the functions u− and x− = −u− non-decreasing and the
functions u+ and v+ = −u+ non-increasing, we obtain that u−, u+, x− and x+ are
constant in [0, 1] so that u− = u+. Therefore u = [u−(λ), u+(λ)] ∈ R. �
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We finish this section with several useful properties of (E1, d∞).

Proposition 2.2. The Souslin number of (E1, d∞) is c.

Proof. For each a ∈ (0, 1] define the fuzzy number ua = [u−a , u
+
a ], where u−a (λ) = 0

and

u+
a (λ) =

{
1 if λ ∈ [0, a],

0 if λ ∈ (a, 1],

for any λ ∈ [0, 1]. It is easy to see that B1/2(ua)∩B1/2(ub) = ∅ for any a, b ∈ (0, 1],
a 6= b. Hence {B1/2(ua) : a ∈ (0, 1]} is a pairwise disjoint family of nonempty open

sets of (E1, d∞). Since the cardinality of (E1, d∞) is c, so is the Souslin number of
(E1, d∞). �

Proposition 2.3. The space (E1, d∞) is not locally compact at any fuzzy number
u ∈ E1.

Proof. It is easy to see that the sequence {vn : n ∈ N} ⊂ (E1, d∞) where v−n (λ) = 0
and v+

n (λ) = (1− λ)n for any λ ∈ [0, 1] does not have any convergent subsequence.
Fix u ∈ E1. For a given number ε > 0, define the sequence of fuzzy numbers

{wn : n ∈ N} by the rule w−n (λ) = u−(λ) and w+
n (λ) = u+(λ) + ε(1 − λ)n for

any λ ∈ [0, 1]. Notice that {wn : n ∈ N} has no convergent subsequences and it is
contained in Bε(u). Therefore u does not have any compact neighborhood. This
completes the proof. �

The interested reader is referred to [13] for a characterization of compact sets in
(E1, d∞).

Recall that a space X is called cofinally Čech-complete if there exists a locally
compact space Z and an embedding e : X → Z of X into Z satisfying χ(e(X), Z) ≤
ℵ0. Among other reasons, cofinally Čech complete spaces are interesting because
a metrizable space admits a cofinally complete metric if and only if it is cofinally
Čech complete (see [21]).

Corollary 2.4. The space (E1, d∞) is not cofinally Čech-complete.

Proof. It follows from Proposition 2.3 that the set of points of (E1, d∞) that have
no compact neighborhood is not compact. By [14, 19], (E1, d∞) is not cofinally
Čech-complete. �

A space X is hemicompact if in the family of all compact subspaces of X ordered
by inclusion there exists a countable cofinal subfamily. The completion of E1 with
the pointwise uniformity is a hemicompact space (see [12] for details). However,
since any hemicompact first countable space is locally compact ([1]), we have

Proposition 2.5. The space (E1, d∞) is not hemicompact.

3. The Space Cp(X,E1)

From now on, if no confusion is possible, we will denote the metric space (E1, d∞)
by E1. We begin by showing a basic but helpful property of the fuzzy-valued
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functions. As usual, given two functions f, g from a space X into E1, by f + g
(respectively, fg) it is understood the pointwise addition (respectively, the pointwise
multiplication).

Proposition 3.1. Let X be a space. If f, g : X → E1 are two continuous functions,
then f + g and fg are continuous.

Proof. Take a point x0 ∈ X and ε > 0. We can choose open sets U1, U2 containing
x0 such that f(U1) ⊂ Bε/2(f(x0)) and f(U2) ⊂ Bε/2(f(x0)). Consider the open set
U = U1 ∩ U2. If y ∈ U , then

d∞(f(y) + g(y), f(x0) + g(x0)) ≤ d∞(f(y) + g(y), f(y) + g(x0))+

+d∞(g(y), g(x0)) + d∞(f(y), f(x0)) < ε
2 + ε

2 = ε.

Hence f + g is continuous at x0.
Now we prove that fg is continuous. For this, take as above a point x0 ∈ X and

choose an open set W1 such that x0 ∈W1 and f(W1) ⊂ B1(f(x0)). If y ∈W1, then
d∞(f(y), f(x0)) < 1. Hence, for any λ ∈ [0, 1],

max{|(f(y))−(λ)− (f(x0))−(λ)|, |(f(y))+(λ)− (f(x0))+(λ)|} < 1.

Thus, for any λ ∈ [0, 1], we have

|(f(y))−(λ)| ≤ 1 + |(f(y))−(x0)|, |(f(y))+(λ)| ≤ 1 + |(f(y))+(x0)|
and

max{|(f(y))−(0)|, |(f(y))+(0)|} ≤ 1 + max{|(f(x0))−(0)|, |(f(x0))+(0)|}.
Let r (respectively, s) denote max{|(f(x0))−(0)|, |(f(x0))+(0)|} (respectively,
max{|(g(x0))−(0)|, |(g(x0))+(0)|}).

Choose open sets W2 and W3 in X containing x0 such that f(W2) ⊂ Bε1(f(x0))

and f(W3) ⊂ Bε1(g(x0)) with ε1 =
ε

1 + r + s
.

Consider the open set W = W1 ∩W2 ∩W3. It is clear that x0 ∈ W . Now, if
y ∈W , then

d(f(y)g(y), f(x0)g(x0)) ≤ d(f(y)g(y), f(y)g(x0)) + d(f(y)g(x0), f(x0)g(x0))

< (1 + r)
ε

1 + r + s
+

sε

1 + r + s
=

(1 + r + s)ε

1 + r + s
= ε.

Therefore fg is continuous at the point x0. �

We look now at three properties which are interesting in themselves and for
future applications.

Proposition 3.2. Let X be a space. If x1, x2, . . . , xn are different points of X and
u1, u2, . . . , un ∈ E1, then there exists a continuous function f : X → E1 such that
f(xi) = ui for any i = 1, 2, . . . , n.

Proof. Since X is Tychonoff, there exists,for all i = 1, 2, . . . , n, a continuous func-
tion fi : X → R such that fi(xi) = 1 and fi(xj) = 0 whenever i 6= j . The function
f : X → E1 defined by the rule f(x) = f1(x)u1 + f2(x)u2 + · · · + fn(x)un is well
defined and continuous by Proposition 3.1. Notice that
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f(xi) = f1(xi)u1 + f2(xi)u2 + · · ·+ fi(xi)ui + · · ·+ fn(xi)un

which implies that f(xi) = ui (i = 1, 2, . . . , n). �

From now on, (E1)X stands for the product space
∏
x∈X(E1)x where each (E1)x

coincides with E1. In other words, (E1)X is the space of all functions from X into
E1 equipped with the pointwise topology.

Proposition 3.3. For any space X, the function space Cp(X,E1) is dense in
(E1)X .

Proof. Take an arbitrary function f ∈ (E1)X and the open set in (E1)X defined
as U = 〈f ;x1, x2, . . . , xn; ε〉 with ε > 0. The previous Proposition 3.2 tells us that
there exists a function g ∈ Cp(X,E1) such that g(xi) = f(xi) for any i = 1, 2, . . . , n.
It is evident that g ∈ U . This proves that Cp(X,E1) is a dense subset of (E1)X . �

Another interesting property of the space Cp(X,E1) is

Proposition 3.4. For any space X, the space Cp(X,E1) is homeomorphic to
Cp(X,B1(0)).

Proof. Consider the homeomorphism α = 2 arctan
π : R → (−1, 1). Now, if f ∈

Cp(X,E1), let ϕ(f) : Cp(X,E1) → Cp(X,B1(0)) be the function defined by the
rule ϕ(f)(x) = [α(f(x)−), α(f(x)+)] for all x ∈ X. Since α is non-decreasing and
f(x)−(λ) ≤ f(x)+(λ), we have that α(f(x)−(λ)) ≤ α(f(x)+(λ)). Moreover, since
the functions f(x)− and α are non-decreasing so is α(f(x))−. In a similar way, we
have that the function α(f(x))+ is non-increasing. It follows from the continuity
of α and the properties of f(x)− and f(x)+ that ϕ(f)(x) ∈ B1(0). Take now
f ∈ Cp(X,E1) and an open set W = 〈h;x1, . . . , xn; ε〉 (in Cp(X,B1(0))) containing
h = ϕ(f).

Now, since the function α is uniformly continuous, there exists δ > 0 such that
|α(z1) − α(z2)| < ε

2 whenever |z1 − z2| < δ. Define now U = 〈f ;x1, . . . , xn; δ〉
and take g ∈ U . For all λ ∈ [0, 1], it follows from d∞(f(xk), g(xk)) < δ that
|f(xk)−(λ)− g(xk)−(λ)| < δ and |f(xk)+(λ)− g(xk)+(λ)| < δ for any k = 1, . . . , n.
Thus,

|α(f(xk)−(λ))− α(g(xk)−(λ))| < ε

2
and |α(f(xk)+(λ))− α(g(xk)+(λ))| < ε

2

for all λ ∈ [0, 1]. Then d∞(ϕ(f)(xk), ϕ(g)(xk)) ≤ ε
2 < ε (k = 1, 2, . . . , n) which

implies that ϕ(g) ∈W . We have just proved that the function ϕ is continuous.
We now prove that ϕ is a bijection. Injectivity is an easy consequence of the fact

of being α injective. Moreover, if f ∈ Cp(X,B1(0)), then, for any x ∈ X, define

h(x) = [π tan(f(x)−)
2 , π tan(f(x)+)

2 ]. It is easy to see that h ∈ Cp(X,E1) and ϕ(h) = f .
Thus, ϕ is surjective.

We will finish the proof by showing that ϕ−1 is continuous. We will use the
fact that, for any 0 < r < 1, the function β(x) = πtanx

2 is a uniformly continuous
function from the real interval [−r, r] into R. Take f ∈ Cp(X,B1(0)) and V =
〈ϕ−1(f);x1, . . . , xn; ε〉. If k ∈ {1, . . . , n}, then −1 < f(xk)−(0) ≤ f(xk)−(λ) ≤
f(xk)+(λ) ≤ f(xk)+(0) < 1 for all λ ∈ [0, 1]. Now choose r ∈ R and δ > 0 such that
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−1 < −r < f(xk)−(0) ≤ f(xk)+(0) < r < 1, −r < f(xk)−(0) − δ ≤ f(xk)+(0) <
f(xk)+(0) + δ < r and |β(z1) − β(z2)| < ε

2 for z1, z2 ∈ [−r, r] with |z1 − z2| < δ.
Define Z = 〈f ;x1, . . . , xn; δ〉. If g ∈ Z and k ∈ {1, . . . , n}, then |g(xk)−(λ) −
f(xk)−(λ)| < δ and |g(xk)+(λ)− f(xk)+(λ)| < δ for all λ ∈ [0, 1]. It is easy to see
that g(xk)−(λ), g(xk)+(λ), f(xk)−(λ), f(xk)+(λ) ∈ [−r, r] for all λ ∈ [0, 1]. Hence
|β(g(xk)−(λ))− β(f(xk)−(λ))| < ε

2 and |β(g(xk)+(λ))− β(f(xk)+(λ))| < ε
2 for all

λ ∈ [0, 1] which implies that d∞(ϕ−1(f), ϕ−1(g)) ≤ ε
2 < ε. Therefore ϕ−1(Z) ⊂

V and, consequently, ϕ−1 is continuous. Hence Cp(X,E1) and Cp(X,B1(0)) are
homeomorphic. �

A helpful property is

Proposition 3.5. Let A be a closed susbet of a space X. If x1, x2, . . . , xn ∈ X \A
and u1, u2, . . . , un ∈ E1, then there exists a continuous function g : X → E1 such
that g|A = f and g(xi) = ui for any i = 1, 2, . . . , n.

Proof. For any i = 1, 2, . . . , n there exists a continuous function gi : X → R such
that gi(A ∪ {x1, x2, . . . , xn} \ {xi}) = {0} and gi(xi) = 1. Consider now a function
h : X → R such that h(A) = {1} and h({x1, x2, . . . , xn}) = {0} and let g be the
function from X into E1 defined as g(x) = h(x)f(x) + Σni=1uigi(x). If a ∈ A, then

g(a) = h(a)f(a) + Σni=1uigi(a) = f(a) + 0 = f(a).

Observe that, for 1 ≤ k ≤ n, we have

g(xk) = h(xk)f(xk) + Σni=1uigi(xk) = ukgk(xk) = uk.

Therefore the function g satisfies all the desired properties. �

Two functions which play an important role in Cp–theory are the so-called res-
triction function and dual function.

Definition 3.6. Let Y be a subset of a space X. The function πY : Cp(X,E1) →
Cp(Y,E1) defined by πY (f) = f |Y is called the restriction function.

The following proposition follows from Propositions 3.2, 3.3 and 3.5. Recall that
a function f : X → Z is called open if f(V ) is an open set of Z whenever V is open
in X.

Proposition 3.7. If Y is a subset of a space X, then the restriction function πY
on Y enjoys the following properties:

(i) πY is a continuous function and πY (Cp(X,E1)) = Cp(Y,E1);
(ii) πY is injective if and only if Y is dense in X;

(iii) if the function π|Y is a homeomorphism, then Y = X;
(iv) if Y is closed in X, then π|Y is an open function.

Definition 3.8. Let ϕ : X → Y be a continuous function. The function

ϕ∗ : Cp(Y,E1)→ Cp(X,E1)

defined by the rule ϕ∗(f) = f ◦ ϕ for all f ∈ Cp(Y,E1) is called the dual function
of ϕ.
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The following result follows from Propositions 3.2, 3.3, 3.5 and 3.7. A function
ϕ : X → Y is said to be a closed function if ϕ(A) is closed in Y whenever A is a
closed set of X.

Proposition 3.9. If ϕ : X → Y is a continuous function, then the following con-
ditions hold:

(i) The dual function ϕ∗ is continuous;
(ii) if ϕ(X) is surjective, then ϕ∗ : Cp(Y,E1) → ϕ∗(Cp(Y,E1) ⊂ Cp(X,E1) is a

homeomorphism;
(iii) if ϕ(X) is surjective, then ϕ∗(Cp(Y,E1) is dense in Cp(X,E1) if and only if

ϕ is a condensation;
(iv) if ϕ(X) is surjective and ϕ is a closed function, then ϕ∗(Cp(Y,E1) is closed

in Cp(X,E1).

The following result establishes an important difference between Cp(X) and
Cp(X,E1). It is well known that for any f ∈ Cp(X) the function ϕf : Cp(X) →
Cp(X) defined by ϕf (g) = f + g is a homeomorphism. However, we have

Proposition 3.10. If f ∈ Cp(X,E1), then the function ϕf : Cp(X,E1)→ Cp(X,E1)
is continuous and injective. Moreover, the following assertions hold:

(i) If f ∈ Cp(X), then ϕf is a homeomorphism;
(ii) if f ∈ Cp(X,E1) \ Cp(X), then ϕf is not surjective.

Proof. Take g0 ∈ Cp(X,E1) and an open set W = 〈f + g0;x1, . . . , xn; ε〉. Consider
the open set U = 〈g0;x1, . . . , xn; ε〉 and choose h ∈ U . It follows from Proposi-
tion 2.1 that d∞(f(xk) + h(xk), f(xk) + g0(xk)) = d∞(h(xk), g0(xk)) < ε for any
k = 1, . . . , n. Then ϕf (U) ⊂ W which implies that ϕf is continuous. Now, if
g, h ∈ Cp(X,E1) with f 6= g, choose a point x0 ∈ X for which g(x0) 6= h(x0). Since
d∞(f(x0) + g(x0), f(x0) + h(x0)) = d∞(g(x0), h(x0)) 6= 0, we have (f + g)(x0) 6=
(f + h)(x0). Hence ϕf is injective.

Suppose now that f ∈ Cp(X,R) and take g ∈ Cp(X,E1). The function f has an
opposite with respect to addition h = −f ∈ Cp(X,R). Hence ϕf (g+h) = f+g+h =
g. Thus, ϕf is surjective. Moreover, the function ϕh : Cp(X,E1) → Cp(X,E1) is

continuous and ϕ−1
f = ϕh because ϕh(ϕf (g)) = ϕh(f+g) = f+g+h = f . Therefore

ϕf is a homeomorphism. This shows (i).
To conclude the proof, let f ∈ Cp(X,E1)\Cp(X) and choose a point x0 ∈ X such

that f(x0) ∈ E1 \ R. If g ∈ Cp(X,E1), then the equation f(x0) + g(x0) = 0 does
not have a solution in E1. This fact shows that ϕf is not surjective: indeed, there
is no function g ∈ Cp(X,E1) such that ϕf (g) = f + g = 0. This proves (ii). �

A subset A of E1 is called support bounded if there exists a positive real number
L such that max {|u−(0)|, |u+(0)|} ≤ L for all u ∈ A. By using the metric d∞, this
is equivalent to saying that there is a ball Br(0) containing A. It is a well-known
fact that every compact subset of E1 is support bounded.

We will prove two properties of Cp(X,E1) which imply that X is countable.
These results are motivated by the well-known fact that Cp(X,Y ) is metrizable if
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and only if X is countable and Y is metrizable. Note that this result implies that
Cp(X,E1) is metrizable if and only if X is countable.

Proposition 3.11. If there exists a compact subspace K ⊂ Cp(X,E1) such that
χ(K,Cp(X,E1)) ≤ ω, then X is countable.

Proof. Let B = {Wn : n ∈ N} be a countable base of K in Cp(X,E1). Given
a natural number n ∈ N, choose, for any f ∈ K, an open neighborhood Unf =

〈f ;xf1 , . . . , x
f
kf

; εf 〉 such that Unf ⊂Wn. The family {Unf : f ∈ K} is an open cover

of K. Take a finite subcover {Unf1 , . . . , U
n
fm
} of K and consider the finite set

An = {xf11 , . . . , x
f1
kf1
, . . . , xfm1 , . . . , xfmkfm

}.

Now define the countable set A =
⋃
{An : n ∈ N}. We will prove that A = X.

To proceed by contradiction, suppose that there exists x ∈ X \A and consider the
function ex : Cp(X,E1) → E1 defined by ex(f) = f(x). Since the set ex(K) ⊂ E1

is compact, there exists a real number rx such that ex(K) ⊂ Brx(0). It is easy to
see that K ⊂ 〈0;x; rx〉 = [x;Brx(0)] and, consequently, there exists Wn ∈ B such
that K ⊂ Wn ⊂ 〈0;x; rx〉. Then K ⊂

⋃
{Unfi : i = 1, . . . ,m} ⊂ 〈0;x; rx〉. Thus,

Unf1 = 〈f1;xf11 , . . . , x
f1
kf1

; εf1〉 ⊂ 〈0;x; rx〉. It follows from Proposition 3.2 that there

is h ∈ Cp(X,E1) such that h(xf1i ) = f(xf1i ) for any i = 1, . . . , kf1 and h(x) = rx+1.
Hence h ∈ Unf1 and h /∈ 〈0;x; rx〉 which is a contradiction because Unf1 ⊂ 〈0;x; rx〉.
Therefore X = A and X is countable. �

A space X is called Čech-complete if the remainder βX \ X is the union of
countably many closed sets of βX where, as usual, βX denotes the Stone-Čech
compactification of X.

Proposition 3.12. The space Cp(X,E1) contains a dense Čech-complete subspace
if and only if X is countable and discrete.

Proof. Let Z ⊂ Cp(X,E1) be a dense and Čech-complete subset. Suppose that X
is not discrete and choose a non-open singleton subset A of X. Consider now the
function f ∈ RX \Cp(X,R) defined by the rule f(A) = 0 and f(X \A) = 1. Since f
has an opposite with respect to addition in (E1)X , it follows from Proposition 3.10
that the function ϕf : (E1)X → (E1)X defined as ϕf (g) = f+g is a homeomorphism.

Then the space f+Z = {f+g : g ∈ Z} is a dense Čech-complete subspace of (E1)X

and f +Z ⊂ (E1)X \Cp(X,E1). Consequently, Z ∩ (f +Z) = ∅. This fact leads us

to a contradiction because the intersection of two dense Čech-complete subspaces
of a Tychonoff space cannot be empty. Therefore X is discrete.

Moreover, since Z is Čech-complete, we can find a compact set K ⊂ Z with
χ(K,Z) ≤ ω. Being Z dense in Cp(X,E1), we have χ(K,Cp(X,E1)) = χ(K,Z) ≤
ω. By Proposition 3.11, X is countable.

To see the converse, assume that X is countable and discrete. Then Cp(X,E1) =

(E1)ω and the result follows from the fact that (E1)ω is a Čech-complete space
(because it is a complete metric space). �



Pointwise Convergence Topology and Function Spaces in Fuzzy Analysis 11

An interesting question in Cp–theory is under what conditions the algebraic
and/or topological structure of Cp(X,E1) determines the space X. We turn now
to the study of this problem. A function ϕ : Cp(X,E1) → E1 is said to be an
additive functional if ϕ(f + g) = ϕ(f) + ϕ(g). Notice that if ϕ is an additive
functional, then ϕ(0) = 0. Indeed, ϕ(0) = ϕ(0 + 0) = ϕ(0) + ϕ(0) so that, for all
λ ∈ [0, 1], ϕ(0)−(λ1) = (ϕ(0)+ϕ(0))−(λ) = ϕ(0)−(λ1)+ϕ(0)−(λ1) and ϕ(0)+(λ1) =
(ϕ(0)+ϕ(0))+(λ) = ϕ(0)+(λ1)+ϕ(0)+(λ1). Thus, ϕ(0) = 0. Our first result states
an important property of additive functionals on Cp(X,E1).

Proposition 3.13. If ϕ : Cp(X,E1)→ E1 is an additive functional, then ϕ(Cp(X))
is a subset of R.

Proof. By (v) of Proposition 2.1, a function f ∈ Cp(X,E1) has an opposite with
respect to addition if and only if f ∈ Cp(X). Thus, if f ∈ Cp(X) and g = −f , then
ϕ(f + g) = ϕ(f) + ϕ(g) = 0 which implies ϕ(f) ∈ R. �

An additive functional ϕ : Cp(X,E1)→ E1 is called a linear functional if ϕ(uf) =
uϕ(f) for all f ∈ Cp(X,E1) and all u ∈ E1, and it is said to be a linear multiplicative
functional if ϕ(uv) = ϕ(u)ϕ(v) for all u, v ∈ E1. It is easy to prove that ϕ(1) = 1
whenever ϕ is a linear multiplicative functional. Note that every linear multiplica-
tive functional is a linear functional. A homeomorphism ξ : Cp(X,E1)→ Cp(Y,E1)
is called a topological isomorphism if ξ(f + g) = ξ(f) + ξ(f) and ξ(fg) = ξ(f)ξ(g)
for all f, g ∈ Cp(X,E1). In this case, we say that Cp(X,E1) and Cp(Y,E1) are
topologically isomorphic. The corresponding definitions for Cp(X) and Cp(Y ) are
self-explanatory.

Proposition 3.14. Given two spaces X and Y , the following conditions are equi-
valent:

(i) Cp(X,E1) and Cp(Y,E1) are topologically isomorphic,
(ii) Cp(X) and Cp(Y ) are topologically isomorphic,

(iii) X and Y are homeomorphic.

Proof. (i)=⇒(ii) Suppose that ξ is a topological isomorphism from Cp(X,E1) into
Cp(Y,E1). Let f0 ∈ Cp(X,E1) denote the constant function f0(x) = 0 for any x ∈
X. Since ξ(f0) = ξ(f0+f0) = ξ(f0)+ξ(f0), we have that ξ(f0) = h0 where h0(y) = 0
for any y ∈ Y . Thus, if f ∈ Cp(X,R) and g = −f ∈ Cp(X,R), then ξ(f)+ξ(g) = h0.
Consequently, if y ∈ Y , then the equation ξ(f)(y) + ξ(g)(y) = h0(y) = 0 has a
solution if and only if ξ(f)(y) ∈ R. Hence ξ(f) ∈ Cp(Y,R). In a similar way we
can show that ξ−1(Cp(Y,R) ⊂ Cp(X,R) so that ξ|Cp(X,R) : Cp(X,R)→ Cp(Y,R) is
a topological isomorphism.
(ii)=⇒(iii) It suffices to apply Nagata’s theorem ([16]).
(iii)=⇒(i) If r : X → Y is a homeomorphism, then Proposition 3.9 tells us that
r∗ : Cp(Y,E1) → r∗(Cp(Y,E1)) ⊂ Cp(X,E1) is a homeomorphism. Now, for any
f ∈ Cp(X,E1), consider the function g = f ◦ r−1. Notice that r∗(g) = g ◦
r = f ◦ r−1 ◦ r = f which implies that r∗(Cp(Y,E1)) = Cp(X,E1). Therefore
Cp(X,E1) and Cp(Y,E1) are homeomorphic. If f, g ∈ Cp(Y,E1), then r∗(f +
g)(x) = (f + g) ◦ r(x) = f(r(x)) + g(r(x)) = r∗(f)(x) + r∗(g)(x) and r∗(fg)(x) =
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(fg) ◦ r(x) = [f(r(x))][g(r(x))] = [r∗(f)(x)][r∗(g)(x)] for any x ∈ X. Hence
r∗(f + g) = r∗(f) + r∗(g), r∗(fg) = r∗(f)r∗(g) and r∗ is an isomorphism. Thus,
Cp(X,E1) and Cp(Y,E1) are topologically isomorphic. �

Let L(X) denote the set of all continuous linear functionals on the function space
Cp(Cp(X,E1),E1).

Proposition 3.15. Let X be a space. The set L(X) is closed in Cp(Cp(X,E1),E1).

Proof. Take ϕ ∈ L(X), f, g ∈ Cp(X,E1) and u ∈ E1. First we prove that ϕ(f+g) =
ϕ(f) + ϕ(g). To do so, let ε > 0 and choose ψ ∈ 〈ϕ; f, g, f + g; ε3 〉 ∩ L(X). Since
d∞(ψ(f), ϕ(f)) < ε

3 , d∞(ψ(g), ϕ(g)) < ε
3 and d∞(ψ(f + g), ϕ(f + g)) < ε

3 , we have

d∞(ϕ(f + g), ϕ(f) + ϕ(g)) ≤ d∞(ϕ(f + g), ψ(f + g))

+ d∞(ψ(f + g), ϕ(f) + ϕ(g))

<
ε

3
+ d∞(ψ(f) + ψ(g), ϕ(f) + ϕ(g)).

Notice that

d∞(ψ(f) + ψ(g), ϕ(f) + ϕ(g)) ≤ d∞(ψ(f) + ψ(g), ψ(f) + ϕ(g))

+ d∞(ψ(f) + ϕ(g), ϕ(f) + ϕ(g))

= d∞(ψ(g), ϕ(g)) + d∞(ψ(f), ϕ(f))

<
ε

3
+
ε

3
=

2ε

3

and, consequently, d∞(ϕ(f + g), ϕ(f) + ϕ(g)) < ε
3 + 2ε

3 = ε. Thus, d∞(ϕ(f +
g), ϕ(f) + ϕ(g)) = 0. We have just shown that ϕ(f + g) = ϕ(f) + ϕ(g).

Now we prove that ϕ(uf) = uϕ(f). Let r denote max{|u−(0)|, |u+(0)|}. Given
ε > 0 and a continuous linear functional ρ ∈ 〈ϕ; f, uf ; ε

r+1 〉 ∩ L(X), we have

d∞(ϕ(f), ρ(f)) <
ε

r + 1
, d∞(ϕ(uf), ρ(uf)) <

ε

r + 1
,

and
d∞(ϕ(uf), uϕ(f)) ≤ d∞(ϕ(uf), ρ(uf)) + d∞(ρ(uf), uϕ(f)).

Since d∞(ϕ(uf), uϕ(f)) < ε
r+1 + d∞(uρ(f), uϕ(f)) ≤ ε

r+1 + rε
r+1 = ε, we have

ϕ(uf) = uϕ(f). Therefore ϕ ∈ L(X) and, consequently, L(X) is a closed subspace
of the function space Cp(Cp(X,E1),E1). �

Let A be a subset of Cp(X,E1). For each x ∈ X define the function eAx : A→ E1

by eAx (f) = f(x) for all f ∈ A. The function eAx belongs to Cp(A,E1) because it is
the restriction to A of the projection of (E1)X onto the x-coordinate. The function
eA : X → Cp(A,E1) defined by the rule eA(x) = eAx is called the evaluation function.
We now take a look at some properties involving the evaluation function.

Let X, Y be two spaces. A family of functions A ⊂ Cp(X,Y ) is said to separate
points and closed sets of X if for every x ∈ X and every closed set G of X such
that x /∈ G there exists f ∈ A for which f(x) /∈ f(G). The family A separates the
points of X if f(x) 6= f(y) whenever x 6= y for all x, y ∈ X.

Proposition 3.16. For each space X, the following properties hold:
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(i) The evaluation function eA : X → Cp(A,E1) is continuous;
(ii) the evaluation function eA : X → Cp(A,E1) is injective if and only if A sepa-

rates the points of X;
(iii) the evaluation function eA : X → eA(X) ⊂ Cp(A,E1) is a homeomorphism if

and only if the family UA = {f−1(U) : f ∈ A and U is an open set of E1} is
a subbase of X;

(iv) if A separates points and closed sets of X, then the evaluation function

eA : X → eA(X) ⊂ Cp(A,E1)

is a homeomorphism.

Proof. (i) For a given x ∈ X take an open set U = 〈eA(x); f1, . . . , fn; ε〉 of Cp(A,E1).

For k = 1, . . . , n, the set Vk = f−1
k (Bε(e

A
x (fk))) = f−1

k (Bε(fk(x))) is an open set
containing x and, consequently, x belongs to the open set V = ∩{Vk : k = 1, . . . , n}.
It is easy to see that eA(V ) ⊂ U and hence eA is continuous at the point x. Being
x an arbitrary point of X, we have proved that eA is continuous on X.
(ii) If eA is injective, then for any pair of different points x, y ∈ X we have that
eA(x) 6= eA(y). Hence there exists f ∈ A such that f(x) = eAx (f) 6= eAy (f) = f(y).
Conversely, if A separates the points of X, given x, y ∈ X with x 6= y there exists
f ∈ A such that f(x) 6= f(y). Thus, eAx (f) 6= eAy (f) and eA is injective.

(iii) Assume that eA is a homeomorphism. Since D = {[f ;U ] ∩ eA(X) : f ∈
A and U is an open set of E1} is a subbase of eA(X) ⊂ Cp(A,E1) with [f ;U ] ={
ϕ ∈ Cp(A,E1) : ϕ(f) ∈ U

}
, the family B = {(eA)−1(W ) : W ∈ D} is a subbase of

the topology of X. Now, if W ∈ D, it is easy to see that (eA)−1(W ) = f−1(U) and
hence B = {f−1(U) : f ∈ A and U is an open set of E1}.

To see the converse, choose two different points x, y ∈ X and assume that E =
{f−1(U) : f ∈ A and U is an open set of E1} is a subbase of the topology of X.
Then there exist n ∈ N and f−1

1 (U1), . . . , f−1
n (Un) ∈ E such that x ∈

⋂
{f−1
i (Ui) :

i = 1, . . . , n} and y /∈
⋂
{f−1
i (Ui) : i = 1, . . . , n}. It is easy to see that there is i

for which y /∈ f−1
i (Ui). This implies that E separates the points of X. Moreover, it

follows from (i) and (ii) that eA is continuous and injective.
Next take a function f ∈ eA(X) and a basic open set (of X) W containing

(eA)−1(f). Then there exists f−1
1 (U1), . . . , f−1

n (Un) ∈ E such that (eA)−1(f) ∈⋂
{f−1
i (Ui) : i = 1, . . . , n} ⊂ W . Consider now the set Z =

⋂
{[fi;Ui] ∩ eA(X) :

i = 1, . . . , n}. Z is an open set of eA(X) containing f and it is easy to see that
(eA)−1(Z) ⊂ W . This proves the continuity of (eA)−1. Therefore eA is a homeo-
morphism from X into eA(X).

(iv) Suppose that A separates points and closed sets of X. Take a point x ∈ X
and an open set (of X) U such that x ∈ U . There exists f ∈ A such that f(x) /∈
f(X \ U) and hence the set E1 \ f(X \ U) is open and contains f(x). Therefore

x ∈ f−1(E1 \ f(X \ U)) which implies that

UA = {f−1(U) : f ∈ A and U is an open set of E1}

is a subbase of the topology of X. It follows from (iii) that eA : X → eA(X) is a
homeomorphism. �
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Proposition 3.17. Let X be an arbitrary space. If e : X → Cp(Cp(X,E1),E1) is
the evaluation function, then e : X → e(X) ⊂ Cp(Cp(X,E1),E1) is a homeomor-
phism.

Proof. For any x ∈ X and any closed set G of X with x /∈ G, there exists a
continuous function f : X → E1 such that f(x) = 1 and f(G) = 0. Observe

that f(x) /∈ f(G), hence Cp(X,E1) separates points and closed sets of X. Thus,
Proposition 3.16 (iv) applies. �

We now turn to some results related to cardinal functions. In our first result we
use the well-known fact that |X| = χ(Cp(X)).

Proposition 3.18. Given a space X, the equality

w(Cp(X,E1)) = |X|c = χ(Cp(X,E1))c
holds.

Proof. It is easy to see that w(Cp(X,E1)) ≤ |X|c. On the other hand,

|X| = χ(Cp(X)) ≤ χ(Cp(X,E1)).

Then

w(Cp(X,E1)) ≤ |X|c ≤ χ(Cp(X,E1))c ≤ w(Cp(X,E1))c.

Since w(Cp(X,E1)) ≥ c for any space X, we have

w(Cp(X,E1)) = χ(Cp(X,E1))c = |X|c.
�

Corollary 3.19. Let X be a space. If |X| ≥ c, then w(Cp(X,E1)) = |X|.

Proposition 3.20. Given a space X, the equality nw(Cp(X,E1)) = nw(X)c holds.

Proof. It is easy to see that nw(Cp(X,E1)) ≥ c for any space X. Then, since
nw(X) = nw(Cp(X)) for any space X (see, for example, [23, S.172]), we have

nw(X) = nw(Cp(X)) ≤ nw(Cp(X,E1)) ≤ nw(X)c

which implies

nw(Cp(X,E1)) = nw(Cp(X,E1))c = nw(X)c.
�

Proposition 3.21. Given a space X, the following assertions hold:

(i) d(X) ≤ iw(Cp(X,E1)) ≤ d(X)c;
(ii) d(Cp(X,E1)) ≤ iw(X)c;

(iii) iw(X)c = d(Cp(X,E1))c.

Proof. (i) d(X) = iw(Cp(X)) ≤ iw(Cp(X,E1)). Take a dense subset Y ⊂ X
such that |Y | = d(X). Since the function π|Y : Cp(X,E1) → π|Y (Cp(X,E1)) ⊂
Cp(Y,E1) is a condensation, it follows from Proposition 3.18 that

w(π|Y (Cp(X,E1))) ≤ w(Cp(Y,E1)) = |Y |c = d(X)c.

Hence iw(Cp(X,E1)) ≤ d(X)c.
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(ii) If ϕ : X → Y is a condensation, then Proposition 3.9 implies that ϕ∗ :
Cp(Y,E1)→ ϕ∗(Cp(Y,E1)) ⊂ Cp(X,E1) is a homeomorphism and ϕ∗(Cp(Y,E1)) is
a dense subset of Cp(X,E1). Then

d(ϕ∗(Cp(Y,E1))) ≤ nw(ϕ∗(Cp(Y,E1))) = nw(Cp(Y,E1)) = nw(Y )c ≤ w(Y )c

so that d(Cp(X,E1)) ≤ d(ϕ∗(Cp(Y,E1))) ≤ iw(X)c.

(iii) It follows from Proposition 3.17 and (i) that iw(X) ≤ iw(Cp(Cp(X,E1),E1))
and iw(Cp(Cp(X,E1),E1)) ≤ d(Cp(X,E1))c. Moreover, (ii) tells us that

d(Cp(X,E1))c ≤ iw(X)c

which implies that iw(X)c = d(Cp(X,E1))c. �

Proposition 3.22. If X is a Lindelöf space and X ⊂ Cp(Y,E1) for some space Y ,
then w(K) ≤ |Y |.

Proof. For any y ∈ Y consider the set Ky = πy(K) ⊂ E1 where πy is the projection
function onto the y-coordinate. Note that Ky is a Lindelöf metrizable space for any
y ∈ Y . Thus, the weight of each Ky is countable and, consequently, so is the weight
of
∏
y∈Y Ky is ≤ |Y |. The inclusion K ⊂

∏
y∈Y Ky implies that w(K) ≤ |Y |. �

Proposition 3.23. The space Xn is Lindelöf for any n ∈ N if and only if the
tightness of Cp(X,E1) is countable.

Proof. Choose f ∈ Cp(X,E1) and A ⊂ Cp(X,E1) such that f ∈ A. Select gz ∈
A ∩ 〈f ;x1, . . . , xn; 1

n 〉 for each n ∈ N and z = (x1, . . . , xn) ∈ Xn . Then, for any

i = 1, . . . , n, we have d∞(gz(xi), f(xi)) <
1
n , and there exists an open set Uzi of X

such that xi ∈ Uzi with d∞(gz(x), f(x)) < 1
n for any x ∈ Uzi .

Next, for any z ∈ Xn, take the open set Uz1 × · · · ×Uzn and consider a countable
subcover Wn of the cover Un = {Uz1 × · · · ×Uzn : z ∈ Xn} of Xn. Define Bn = {gz :
Uz1 × · · · × Uzn ∈ Wn} and consider the countable subset B of A defined as B =⋃
{Bn : n ∈ N}. Now take an open set 〈f ; r1, . . . , rn; ε〉 with 0 < ε < 1

n and choose

z ∈ Xn such that z = (r1, . . . , rn) ∈ Uz1 ×· · ·×Uzn. Then d∞(gz(ri), f(ri)) <
1
n < ε

for any i = 1, . . . , n. Hence gz ∈ B ∩ 〈f ; r1, . . . , rn; ε〉 which implies that f ∈ B.
Therefore the tightness of Cp(X,E1) is countable.

To see the converse, it suffices to observe that Cp(X) ⊂ Cp(X,E1) which implies
that t(Cp(X)) = ω. Therefore the space Xn is Lindelöf for any n ∈ N (see [23,
S.149]). �

For a given space X, we say that A ⊂ X is support-bounded if for any f ∈
Cp(X,E1) there exists r ∈ R such that f(A) ⊂ Br(0). A Baire space is a topological
space in which the intersection of every countable collection of dense open sets is
an open set. Complete metric spaces and locally compact Hausdorff spaces are
examples of Baire spaces according to the well-known Baire category theorem.
Baire spaces have many important applications in several branches of functional
analysis, topological algebra, etc. By the way of illustration, we can comment that
Fréchet spaces are Baire spaces and the Baire category theorem can be applied
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to obtain the Banach-Steinhaus theorem and the open-mapping theorem (see, for
example, [17]).

Proposition 3.24. If Cp(X,E1) is a Baire space, then any support-bounded subset
of X is finite.

Proof. If A ⊂ X is an infinite support-bounded set, then for each n ∈ N the
set Dn = {f ∈ Cp(X,E1) : there exists x ∈ A with f(x)+(0) > n} is open and
dense in Cp(X,E1). Take now an open set 〈g;x1, . . . , xn; ε〉 and a point x0 ∈
A \ {x1, . . . , xn}. It follows from Proposition 3.2 that there is a function f ∈
Cp(X,E1) such that f(x0) = n + 1 and f(xk) = g(xk) for any k = 1, . . . , n. Since
f(x0)+(0) = n+ 1 , we have f ∈ Dn ∩ 〈g;x1, . . . , xn; ε〉.

Given f ∈ Dn, find z ∈ A such that f(z)+(0) > n and define δ = f(z)+(0) −
n > 0. The set 〈f ; z; δ〉 is open and is contained in Dn. If h ∈ 〈f ; z; δ〉, then
|h(z)+(0) − f(z)+(0)| ≤ d∞(h(z), f(z)) < δ which implies that h(z)+(0) > n and
that 〈f ; z; δ〉 ⊂ Dn. Therefore Dn is open and dense in Cp(X,E1) for any n ∈ N.
We will finish the proof by showing that

⋂
{Dn : n ∈ N} = ∅ which contradicts that

Cp(X,E1) is a Baire space. To proceed by contradiction, assume that there exists
f ∈

⋂
{Dn : n ∈ N}. Then, for any n ∈ N, there is xn ∈ A such that f(xn)+(0) > n

so that f(xn) /∈ Bn(0) because d∞(f(xn), 0) ≥ f(xn)+(0) > n. Hence f(A) is not
support-bounded. This contradiction concludes the proof. �

4. Compactness and Cp(X,E1)-theory

In real analysis, compactness of subsets of Cp(X) plays an important role in
functional analysis, general topology and its applications. In this framework, one
of the most celebrated results is Grothendieck’s theorem which states that if X is
a countably compact space and A ⊂ Cp(X) is a countably compact set in Cp(X)
(i.e., for any infinite set B ⊂ A, the space Cp(X) contains a limit point of B),
then the closure of A in Cp(X) is compact. For Cp(X,E1) we have the following
version of Grothendieck’s theorem. It may be worth reminding the reader that a
space X is said to be pseudocompact if every real-valued continuous function on X
is bounded.

Proposition 4.1. If X is a countably compact space and Y is a closed pseudocom-
pact subspace of Cp(X,E1), then Y is compact.

Proof. For any x ∈ X we know that the evaluation function ex : Cp(X,E1) → E1

defined by ex(f) = f(x) for all f ∈ Cp(X,E1) is continuous. Consequently, for
any x ∈ X, the set Kx = ex(Y ) ⊂ E1 is compact because it is pseudocompact and
metrizable. Thus, Y is a subset of the compact space

∏
x∈X Kx ⊂ (E1)X . Suppose,

to derive a contradiction, that Y is not compact. Since Y is closed in Cp(X,E1),

there exists a discontinuous function f with f ∈ Y \ Cp(X,E1) ⊂ (E1)X . Thus,

there is a ∈ X and A ⊂ X such that a ∈ A and f(a) /∈ f(A). Hence we can find
open sets U, V ⊂ E1 such that f(a) ∈ U , f(A) ⊂ V and U ∩ V = ∅.

By induction on n we now define sequences {fn : n ∈ N} ⊂ Y , {Un : n ∈ N},
where Un is open in X and a ∈ Un for all n ∈ N, and {an : n ∈ N} ⊂ A with the
properties
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(i) Un+1 ⊂ Un and an ∈ Un for any n ∈ N,

(ii) fn(Un) ⊂ U for any n ∈ N,

(iii) fn+1(ai) ∈ V for any n ∈ N and i ≤ n.

To do so, notice that there exists f0 ∈ Y such that f0(a) ∈ U because f ∈ Y .
Since the function f0 is continuous, there is an open set (of X) U0 such that a ∈ U0

and f(U0) ⊂ U . The point a belongs to the closure of A and, consequently, there
exists a0 ∈ A ∩ U0. It is straightforward to see that the triple (f0, U0, a0) satisfies
the properties (i), (ii) and (iii).

Suppose that fi, Ui, ai are defined satisfying properties (i)-(iii) for any i ≤ n. It
is evident that f(ai) ∈ V for any i ≤ n. The set Y ∩ [a, a0, . . . , an;U, V, . . . , V ] is
nonempty because f ∈ [a, a0, . . . , an;U, V, . . . , V ] and f ∈ Y . Hence there exists
fn+1 ∈ Y ⊂ Cp(X,E1) for which fn+1(a) ∈ U and fn+1(ai) ∈ V for any i ≤ n.

Then there exists an open set Un+1 in X such that a ∈ Un+1, Un+1 ⊂ Un and
fn+1(Un+1) ⊂ U . Take any point an+1 ∈ A ∩ Un+1. Then {ai, fi, Ui : i ≤ n + 1}
satisfies (i)-(iii). This completes the induction step.

Take now a cluster point b of the sequence S = {an : n ∈ N}. It is easy to
see that b ∈

⋂
{Un : n ∈ N} =

⋂
{Un : n ∈ N} because, for a given n ∈ N,

we have xi ∈ Un for any i > n. Notice that fn(b) ∈ fn(Un) ⊂ U . Define the
countable set D = {y} ∪ {an : n ∈ N} ant take the restriction function π|D :
Cp(X,E1) → Cp(D,E1). The function π|D sends Y to a pseudocompact subspace
of the metrizable space Cp(D,E1). Since the closure in Cp(D,E1) of {gn = π|D(fn) :
n ∈ N} is a metrizable compact space, we can consider that gn converges to some
g ∈ π|D(Y ). Moreover, 〈g; b; ε〉 ∩ {gn : n ∈ N} 6= ∅ for any ε > 0 and g(b) ∈
{gn(b) : n ∈ N} = {fn(b) : n ∈ N}. For any n ∈ N we have fn(b) ∈ fn(

⋂
{Uk : k ∈

N}) ⊂ fn(Un) ⊂ U which implies that g(b) ∈ U . If follows from continuity of g that

g(b) ∈ {g(an) : n ∈ N}. If n ∈ N, then fk(an) ∈ V for any k > n. Hence g(an) ∈ V
for any n ∈ N which implies that g(b) ∈ V . Thus, g(b) ∈ U ∩ V , which leads us to
a contradiction. Therefore Y is a compact space. �

As a corollary we obtain a version of Grothendiek’s theorem in the realm of fuzzy
analysis.

Corollary 4.2. Let X be a countably compact space. If A is a countably compact
set in Cp(X), then the closure of Cp(X) is compact.

Recall that a space X is said to be σ-compact if it is the union of countably
many compact sets.

Proposition 4.3. If X is a σ-compact space, then there exists a compact space K
such that Cp(X,E1) is homeomorphic to a subspace of Cp(K,E1).

Proof. Suppose that X =
⋃
{Xn : n ∈ N} where each Xn is compact and put Y =

Cp(X,E1). The evaluation function eY : X → Cp(Y,E1) sends homeomorphically
X to Z = e(X) ⊂ Cp(Y,E1). Observe that Z is σ-compact and that the family
UA = {ϕ−1(U) : ϕ ∈ Z and U is an open set of E1} is a subbase of Y because for
any x ∈ X and any open set U ⊂ E1 we have ϕ−1

x (U) = e−1
x (U) = {h ∈ Y =
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Cp(X,E1) : h(x) ∈ U} = [x;U ]. Then it follows from Proposition 3.4 that there
exists a homeomorphism ϕ : Cp(Y,E1) → Cp(Y,B1(0)). Therefore, if Z =

⋃
{Zn :

n ∈ N} where each Zn is compact, then for any n ∈ N the space An = ϕ(Zn) ⊂
Cp(Y,B1(0)) is also compact. Consider now, for each n ∈ N, the compact space

Kn = { fn : f ∈ An} and define K =
⋃
{Kn : n ∈ N} ∪ {h} where h : Y → B1(0)

is the constant function h ≡ 0. Let U be an open cover of A by open sets of
Cp(Y,B1(0)). Then there is W ∈ U such that h ∈ W . We can assume that
W = 〈h; y1, . . . , yn; ε〉 for some {y1, . . . , yn} ⊂ Y and ε > 0. If we choose m ∈ N
with 1

m < ε, then it is easy to see that Kn ⊂ W for any n ≥ m (notice that
Kq ⊂ B 1

q
(0) for any q ∈ N). Hence there exists a finite subcover U covering K.

We have just proved that K is compact. It is straightforward to show that K
separates points and closed sets of Y and, consequently, the evaluation function
eK : Y → Cp(K,E1) sends Y homeomorphically to a subspace of Cp(K,E1). This
completes the proof. �

A space X is said to be scattered if every nonempty subset A ⊆ X has an
isolated point relative to A. Recall that a space X is called Fréchet-Urysohn if for
every A ⊂ X and every x ∈ A there exists a sequence from A converging to x.
For compact spaces, we have the following relationship between both properties in
Cp–theory.

Proposition 4.4. If X is a compact space, then Cp(X,E1) is Fréchet-Urysohn if
and only if X is scattered.

Proof. Suppose that X is scattered. Choose f ∈ Cp(X,E1) and A ⊂ Cp(X,E1)

such that f ∈ A where the closure is taking in Cp(X,E1). Proposition 3.23 tells us

that there exists a countable set B ⊂ A such that f ∈ B. Let eB be the evaluation
function eB : X → Cp(B,E1) and Y = eB(X) ⊂ Cp(B,E1). The product space
(E1)B is metrizable; hence Cp(B,E1) is also metrizable, which implies that Y is
a scattered compact with a countable base. Thus, Y is countable. Take now
the dual function eB

∗
: Cp(Y,E1) → Cp(X,E1). By Proposition 3.9 we have that

eB
∗

: Cp(Y,E1) → eB
∗
(Cp(Y,E1)) is a homeomorphism. Since eB is a closed

function, Proposition 3.9 tells us that eB
∗
(Cp(Y,E1)) is a closed set of Cp(X,E1).

It is easy to see that B ⊂ eB
∗
(Cp(Y,E1)) and, consequently, B ⊂ eB

∗
(Cp(Y,E1))

which implies that B is a metrizable compact space. Thus, there exists a sequence
{fn : n ∈ N} ⊂ B ⊂ A such that limn→∞fn = f . Therefore Cp(X,E1) is Fréchet-Urysohn.

To see the converse, notice that if Cp(X,E1) is Fréchet-Urysohn, then Cp(X) ⊂
Cp(X,E1) is also Fréchet-Urysohn. Therefore X is scattered. �

A space X is called ω-monolithic if, for every Y ⊂ X with |Y | ≤ ℵ0, we have
nm(Y ) ≤ ℵ0. In the spirit of the previous result, we can prove the following

Proposition 4.5. If K and X are compact spaces with X ⊂ Cp(K,E1), then X is
Fréchet-Urysohn and ω-monolithic.

Proof. Take a countable set A ⊂ X ⊂ Cp(K,E1) and consider the evaluation func-
tion eA : K → Cp(A,E1). Notice that Cp(A,E1) is a subspace of a countable
product of metrizable spaces so that it is metrizable as well.
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Then compactness of K implies that the space Y = eA(K) ⊂ Cp(A,E1) is compact
and metrizable. Observe that (eA)∗ : Cp(Y,E1) → (eA)∗(Cp(Y,E1)) ⊂ Cp(K,E1)
is a homeomorphism. Thus, (eA)∗(Cp(Y,E1)) is a closed subspace of Cp(K,E1)

with A ⊂ (eA)∗(Cp(Y,E1)). Therefore A is homeomorphic to a compact subspace
of Cp(Y,E1). Now let Z be a dense countable subset of Y . Since the function
π|Z : Cp(Y,E1)→ Cp(Z,E1) is injective and the space Cp(Z,E1) is metrizable, we
have that A condenses onto the metrizable compact space π|Z(A). Therefore A
is metrizable and compact. Thus, nw(A) = w(A) = ℵ0 which implies that X is
ω-monolithic.

To see that X is Fréchet-Urysohn, choose x ∈ X and let B ⊂ X such that x ∈ B.
Proposition 3.23 tells us that the tightness of Cp(K,E1) is countable. Hence the
tightness of X is countable. Take now a sequence S = {xn : n ∈ N} ⊂ B such
that x ∈ S. Since S is ω-monolithic, it is metrizable and compact. Therefore there
exists a sequence {yn : n ∈ N} ⊂ S ⊂ B which converges to x. This completes the
proof. �

5. Conclusion

We establish the basic properties of the space Cp(X,E1) of all continuous fuzzy-
valued functions on a space X endowed with the pointwise topology. The restric-
tion, dual and evaluation function (useful tools in the theory) are also studied. We
introduce several relationships between the notion of compactness and Cp(X,E1).
In our research we state some properties of the space of fuzzy numbers equipped
with the topology induced by the metric d∞.

This paper was conceived as an introduction to Cp-theory in fuzzy analysis. As
far as the authors know it is the first attempt to set the foundations of this theory.
As in the case of the pointwise topology in the realm of real analysis, it can be used
for further development of the theory of function spaces in fuzzy analysis and its
applications.
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[2] A. V. Arkhangel’skǐı, Topological Function Spaces, Translated from the Russian by R. A. M.

Hoksbergen, Mathematics and its Applications (Soviet Series), 78, Kluwer Academic Publi-

shers Group, Dordrecht, 1992.
[3] T. Berger and L. D. Davisson, Advances in Source Coding, International Centre for Me-

chanical Sciences (CISM) Courses and Lectures, No. 166, Springer-Verlag, Vienna-New York,

1975.



20 D. R. Jardón and M. Sanchis
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