
Conceptualização e desenvolvimento de
uma framework de clustering

RICARDO FILIPE FERNANDES TABOADA
Junho de 2017

CONCEPTUALIZATION AND DEVELOPMENT OF A

CLUSTERING FRAMEWORK

Ricardo Filipe Fernandes Taboada

Dissertation to obtain the Master’s Degree in Informatics Engineering,
specialization in Computer Systems

Advisor: Dr. Paulo Gandra de Sousa

Jury:

Chairman:

Vowels:

Porto, Junho 2017

ii

iii

Dedicatory

This thesis is dedicated to my fiancée, Paula, who always supported and motivated me along
this journey.

iv

v

Resumo

Com a proliferação de todo o tipo de serviços baseados em plataformas digitais, como por
exemplo, o e-commerce o home banking ou mesmo as redes sociais, o conceito de sistemas
distribuídos ganhou um novo folgo, e com ele, surgiram novas necessidades de se atingir altos
níveis de disponibilidade para determinados sistemas de software. Este cenário obriga a que
as infraestruturas tecnológicas atuais incluam várias réplicas desses mesmos sistemas, de
forma a manter o serviço sempre disponível ainda que ocorra uma falha num ou noutro
sistema. A maior parte dos sistemas atuais incluem duas camadas distintas, a camada
aplicacional, onde corre a lógica de negócio, e a camada de persistência onde os dados são
guardados de forma não volátil. Embora, normalmente, de forma simples se consigam replicar
os aplicacionais desses sistemas, replicar as camadas de persistência revela-se a maior parte
das vezes um desafio bem mais complexo.

Esta dissertação apresenta um problema concreto de uma necessidade de aplicar replicação
de dados num sistema distribuído que se encontra atualmente em ambiente de produção, de
forma a poder garantir-se a disponibilidade do mesmo. Do estudo realizado sobre os
principais conceitos de replicação de dados, assim como algumas frameworks de replicação a
nível de middleware, e o problema em questão, foi possível conceptualizar e desenvolver uma
nova framework de clustering ao nível do middleware que pode ser aplicada em sistemas aos
quais se queira adicionar capacidade de clustering, independentemente do tipo de
persistência com os quais os mesmos interagem.

Palavras-chave: Clustering, Replicação otimística de dados, Alta disponibilidade, Consistência

Eventual, Código aberto

vi

vii

Abstract

With the proliferation of all kinds of services based on digital platforms, as for example, the e-
commerce, the home banking or even the social networks, the concept of distributed systems
gained a new breadth, and with it, appeared new necessities to achieve higher levels of high
availability in some specific software systems. This scenario forces the need of the actual
technological infrastructures to include several replicas of those systems, in order to ensure
the service availability, even in an advent of a failure in one or more systems. The majority of
the actual systems include two distinct layers, the application layer, where the business logic
runs, and the persistence layer, where the data is stored in a non-volatile way. Although,
usually, is simple to apply replication to the application layer of those systems, applying
replication on the persistence layers reveals itself most of the times a much more complex
challenge.

This master thesis presents a concrete problem of the necessity to apply data replication to a
distributed system that is currently in a production environment, in order to ensure its
availability. Through study performed both on the main concepts of data replication, as on
some middleware based replication frameworks, and taking into the account the problem in
hand, it was possible to conceptualize and develop a new middleware clustering framework
that can be applied to systems to which is wanted to add clustering capabilities, regardless of
the persistence type they interact with.

Keywords: Clustering, Optimistic data replication, High Availability, Eventual consistency,

Open source

viii

ix

Acknowledgements

I would like to thank my employer, Porto Tech Center for the opportunity to develop this work
in such a challenging subject.

I would also like to thank my advisors, Dr. Paulo Gandra de Sousa and Eng. Hugo Conceição for
the help and support through the development of this work.

x

xi

Table of Contents

1 Introduction ... 1

1.1 Background .. 1

1.2 Thesis Subject and Motivation ... 2

1.3 Main goals .. 2

1.4 Scope ... 3

1.5 Success Criteria ... 3

1.6 Evaluation ... 4
1.6.1 What will be evaluated.. 4
1.6.2 Which metrics will be used ... 5
1.6.3 Hypothesis ... 5

1.7 Value Analysis ... 6

1.8 Expected Contributions ... 12

1.9 Document Structure ... 12

2 Context .. 15

2.1 Current Scenario .. 15
2.1.1 Functional Requirements ... 20
2.1.2 Non Functional Requirements .. 20

3 State of the Art .. 23

3.1 Background Concepts .. 23
3.1.1 High Availability .. 23
3.1.2 Database Consistency.. 24
3.1.3 Database Replication .. 28

3.2 Existing Frameworks ... 31
3.2.1 C-JDBC ... 31
3.2.2 Ganymed ... 34
3.2.3 Tashkent ... 36
3.2.4 Neo4j High Availability .. 38
3.2.5 Conclusion ... 39

4 Proposed Solution ... 41

4.1 Introducing Replic8 .. 41

4.2 Replic8 High Level Transaction Replication Flow ... 41

4.3 High level Architecture Overview ... 42
4.3.1 Transaction Module .. 42
4.3.2 Recovery Logger Module .. 44
4.3.3 Cluster Module .. 44
4.3.4 Health Module .. 45

xii

4.4 Design Approaches and Decisions .. 46

5 Development .. 49

5.1 Design Patterns ... 49
5.1.1 Creational Design Patterns ... 49
5.1.2 Structural Design Patterns .. 49
5.1.3 Behavioral Design Patterns ... 50

5.2 Unit and Integration Testing ... 50

5.3 Replic8 Tech Stack ... 50
5.3.1 Why Erlang for communication? ... 51

5.4 Replic8 Modules Breakdown .. 52
5.4.1 The Transaction Interceptor ... 53
5.4.2 Transaction Broadcaster .. 56
5.4.3 Remote Transaction Processor ... 59
5.4.4 Persistence Version Service .. 61
5.4.5 Transaction Recovery Logger ... 61
5.4.6 Cluster Registry ... 62
5.4.7 Cluster Context ... 65
5.4.8 Master Failover ... 65
5.4.9 Health Check .. 66
5.4.10 Persistence Version Convergence ... 66
5.4.11 Senders and Receivers ... 67

5.5 Replic8 Properties .. 69
5.5.1 Recovery Log properties .. 69
5.5.2 Cluster properties .. 69

5.6 Limitations ... 70

6 Validation .. 73

6.1 Validation infrastructure .. 73
6.1.1 Network Topology .. 73
6.1.2 Hardware specifications... 73

6.2 Validation scenarios .. 74
6.2.1 A1: Write throughput Replic8 impact ... 74
6.2.2 A2: Write throughput slave instance increase impact 75
6.2.3 B1: Evaluation of the final state of all the database instances 78
6.2.4 B2: Slave persistence convergence time ... 79
6.2.5 C1: Cluster behavior when a slave instance goes offline.................................. 83
6.2.6 C2: Cluster behavior when the master instance goes offline............................. 84

6.3 Conclusion ... 85

7 Conclusions .. 87

7.1 Open Issues and Future Work... 88

xiii

List of Figures

Figure 1 - System PC Technological Stack .. 16

Figure 2 – Logistics Support System High Level Architecture .. 17

Figure 3 - Create Node Sequence Diagram .. 18

Figure 4 - Transaction Deadlock UML sequence diagram (Liu & Zsu, 2009) 25

Figure 5 - C-JDBC component architecture (Cecchet et al., 2004) ... 33

Figure 6 - Ganymed component architecture (Plattner & Alonso, 2004) 35

Figure 7 - Tashkent-MW component architecture (Elnikety et al., 2006) 37

Figure 8 - Tashkent transaction certification flow (Elnikety et al., 2006) 38

Figure 9 - Neo4J-HA component architecture (Montag, 2013) ... 39

Figure 10 - High level transaction replication flow UML activity diagram 41

Figure 11 - Replic8 High level UML component diagram ... 42

Figure 12 - Transaction Module UML component diagram ... 43

Figure 13 - Recovery Logger module UML component diagram ... 44

Figure 14 - Cluster Module UML component diagram .. 45

Figure 15 - Health Module UML component diagram ... 46

Figure 16 - Replic8 as a Neo4J wrapper UML component diagram ... 46

Figure 17 - Replic8 typical positioning in the application UML component diagram 47

Figure 18 - Replic8 Technology stack ... 51

Figure 19 - Replic8 high level component overview .. 52

Figure 20 - Transaction Interception with Replic8 ... 53

Figure 21 - AspectJ weaving overview ... 54

Figure 22 - Transaction Interceptor UML class diagram .. 54

Figure 23 - Transaction Interceptor flow UML activity diagram .. 55

Figure 24 - Transaction Interception involved classes UML class diagram 56

Figure 25 - Observer Registration Flow UML activity diagram .. 57

Figure 26 - Transaction Broadcaster UML class diagram ... 58

Figure 27 - Transaction Broadcast flow UML activity diagram .. 59

Figure 28 - Remote Transaction Processor flow UML activity diagram 60

Figure 29 - Remote Transaction Processor UML class diagram ... 60

Figure 30 - Persistence version convergence flow UML activity diagram 61

Figure 31 - Transaction Recovery Logger UML class diagram .. 62

Figure 32 - Replic8 initialization as Master UML sequence diagram ... 64

Figure 33 - Cluster context configuration file example .. 65

Figure 34 - Persistence version convergence UML sequence diagram 67

Figure 35 - Replic8 senders UML class diagram ... 68

Figure 36 - Replic8 receivers UML class diagram ... 68

Figure 37 - Replic8 properties file .. 69

Figure 38 - Replic8 validation infrastructure setup .. 73

Figure 39 - Slave disconnection from the cluster... 84

Figure 40 - Master Failover to next in hierarchy slave ... 85

xiv

Figure 41 - Canvas Model ... 93

xv

List of Tables

Table 1 - Availability Categories (Gray & Siewiorek, 1991) .. 23

Table 2 - Infrastructure hardware specifications ... 73

Table 3 - Parametric T test between measured mean throughput slowdown and 𝐻0 value ... 75

Table 4 - T test between the measured mean throughput slowdown with two slaves and 𝐻0

value ... 77

Table 5- T test between the measured mean transaction slowdown with three slaves and 𝐻0

value ... 78

Table 6 - Slave One convergence times against 𝐻0 limit value for a two slave cluster 80

Table 7 - Slave Two convergence times against 𝐻0 limit value for a two slave cluster 80

Table 8 - Slave One convergence times against 𝐻0 limit value for a three slave cluster 82

Table 9 - Slave Two convergence times against 𝐻0 limit value e for a three slave cluster 82

Table 10 - Slave Three convergence times against 𝐻0 limit value e for a three slave cluster .. 83

Table 11 - A/B test throughput for SystemPC w/o and with Replic8 ... 94

Table 12 - A/B test throughput for Replic8 with one and two slaves .. 95

Table 13 - A/B test throughput for Replic8 with two and three slaves 96

Table 14 - Persistence convergence verification results .. 97

Table 15 - Persistence convergence times for a two slave cluster .. 98

Table 16 - Persistence convergence times for a three slave cluster .. 99

xvi

xvii

Acronyms and Nomenclature

Acronyms list

1SR One-Copy Serializability

2PC Two-Phase Commit

ACID Atomicity, Consistency, Isolation and Durability

AJC AspectJ Compiler

AOP Aspect Oriented Programming

API Application Interface

AWS Amazon Web Services

ARDS Amazon Relational Database Service

BASE Basically Available, Soft state Eventual Consistency

C-JDBC Clustered JDBC

CAP Consistency, Availability and Partition tolerance

CCC Cluster Context Component

CMDVC Conceptual Model for Decomposing the Value for the Customer

CPV Current Persistence Version

CR Cluster Registry

CUD Create Update and Delete

DDBS Distributed Database System

DSS Decision Support System

HA High Availability

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

ISEP Instituto Superior de Engenharia do PortoJDBC Java DataBase Connectivity

JDK Java Development Kit

xviii

JMS Java Message Service

JMX Java Management Extension

JVM Java Virtual Machine

LAN Local Area Network

LN Logistics Network

MFC Master Failover Component

MVC Model View Controller

MVCC Multi Version Concurrency Control

NoSQL Non Structured Query Language

OLTP On-Line Transaction Processing

OOP Object Oriented Programming

POJO Plain Old Java Object

PV Persistence Version

PVS Persistence Version Service

PVCC Persistence Version Convergence Component

RAID Redundant Array of Inexpensive Disks

RAIDb Redundant Array of Inexpensive Databases

RDBMS Relational Database Management System

REST Representational State Transfer

RMI Remote Method Invocation

RSI-PC Replicated Snapshot Isolation with Primary Copy

RTP Remote Transaction Processor

SI Snapshot Isolation

SPOF Single Point Of Failure

SOAP Simple Object Access Protocol

SQL Structured Query Language

xix

TI Transaction Interceptor

TB Transaction Broadcaster

TPC Transaction Processing Performance Council

TRL Transaction Recovery Logger

UML Unified Modeling Language

VC Value for the Customer

VNA Value Network Analysis

WAN Wide Area Network

Symbols list

α alpha

Δ delta

xx

1

1 Introduction

1.1 Background

Nowadays due to the appearance of new technologies and the need for more software
modularity, Distributed Systems aim to leave the traditional monolithic approach. Instead,
processing is delegated to several application services that compose the whole system
(Coulouris et al., 2005; Tanenbaum & Van Steen, 2002).

As the number of requests to each of these services increases, it grows the need to scale them
either vertically or horizontally. This need is derived from the necessity of achieve not only
increased performance but also having redundant fault tolerable systems that are always
available to the end users, even in the advent of a failure on one of the system component,
and therefore providing High Availability (HA) (Fox & Brewer, 1999).

With vertical scaling or Scale-up (Brebner & Gosper, 2003; Michael et al., 2007) the machine
resources where one of the system services is running, can be continually increased until the
desired performance is achieved. Although vertical scaling can be a short term solution, the
system will become bottlenecked for example in terms of networking capacity, and induce
very high costs to obtain a little performance increase. Also with vertical scaling, although
application redundancy can be achieved having several application instances running in one
machine, if the machine fails, all instances will go down, which depending on the business
type and/or requirements, may be simply not acceptable.

Horizontal scaling or Scale-out (Brebner & Gosper, 2003; Michael et al., 2007) on the other
hand provides a good level of redundancy and decreased costs to scale compared to vertical
scaling. In horizontal scaling one or more services are replicated, through several instances of
that service. Each instance of the service runs on its own machine. Theoretically as the need
for more processing power increases, more instances can be added to the system cluster, and
therefore there’s not really a limitation for the number of instances that can be added.

For many applications, horizontal scaling seems a good fit, but it does not come without its
drawbacks. One of the bigger problems with horizontal scaling is data persistence.

2

When the service does not persist any kind of data, it just processes some data and gives a
response back. The requesting client does not know which instance processed the data, and it
really does not need to know it, as long as it receives a response. Other instances of the called
service also don’t need to know that one of them got called.

The biggest problem arises when the replicated services perform data persistence. If there are
two or more instances of a service with its own persistence instance, any create, update or
delete (CUD) operation on one instance must be replicated to the others. Depending on the
business needs, it could be needed to enforce Strong Consistency (Fox & Brewer, 1999), which
means that if data updated in one instance fails to update on another instance, the operation
has to be atomically reverted. Two-phase commit protocol or other type of synchronous
replication, like distributed transactions can be used to enforce an “all or nothing” approach
and rollback the whole transaction in case of an update failure in one node, ending up with
old data. Sometimes this is simply not acceptable as it does not conform to the business
requirements, not to talk that distribution transactions should only be used in very
constrained scope as they simply do not scale (Gray et al., 1996; Helland, 2007).

1.2 Thesis Subject and Motivation

This master thesis aims to solve the need to add database clustering to a real world
application developed In Porto Tech Center which is backed up by Neo4J (Neo4J, n.d.), a non-
relational graph database. Although Neo4J offers an Enterprise Edition, which addresses this
need, as of now the cost involved for the upgrade are too high for the short term benefits.

If by one side, replication for relational databases like PostgreSQL (PostgreSQL, n.d.) has been
subject for many studies over the years, non-relational database are quite newer, and as such
it didn’t get as much attention. The work described in this document also tries to address data
replication problems for HA Distributed Systems, researching what has been done before in
this field and offering an alternative middleware clustering solution that is not only applicable
to Neo4J backed applications, but also to other types of both non-relational and relational
databases.

1.3 Main goals

The work developed in this master thesis has the objective of implementing a framework to
enable clustering characteristics to a service or application with data persistence.

One of the main goals to achieve is data consistency across replicated systems, while trying to
keep them as up to date as possible in terms of persisted data.

The goals of this work are:

 Perform a theoretical study on data replication;

 Identify the main data replication techniques in use on both open source and
commercial systems;

3

 Research on what has been already done in the data replication field, and its relation
with the problem presented;

 Define and draft specifications for a new data replication library/component, whose
responsibility is to articulate persistence access for a number ‘n’ of database instances.

 Develop and implement a prototype library/component which complies with the
defined specifications;

 Perform a technical validation of the prototype.

1.4 Scope

The scope of this work is to build a viable data replication solution and therefore this
document focuses on this area. Upon development of the solution, a simulated scenario with
a non-relational database will be setup.

Related issues like, for example, load balancing will be addressed, but not included in this
document.

1.5 Success Criteria

The success criteria is directly linked to the objectives defined in 1.3, as such for each
objective, a success criteria is defined:

 Perform a theoretical study on data replication:

Before starting developing and implementing a solution, it is important to
acquire essential knowledge about data replication, its advantages, and
pitfalls. Therefore the success criteria will be measured through the number,
relevance, and age of the bibliographic references used.

 Identify the main data replication techniques in use on both open source and
commercial systems:

Identification of the several data replication techniques is essential to identify
which one will be the most adequate for the exposed problem. Therefore, up-
to-date information on existing techniques and its characteristics should be
conveniently documented.

 Research on what has been already done in the data replication field, and its relation
with the problem presented:

Several studies and solutions had already been proposed over the years. A
study should be carefully taken on data replication middleware services,
either proposed and/or in production and its applicability to the problem
exposed.

4

 Define and draft specifications for a new data replication library/component, that can
address both relation and non-relational databases:

Before building a new data replication system, a series of specifications
should be carefully defined. The quality and the detail of the specifications
will ensure the correctness of the developed software. Therefore, the
specifications presented should be detailed and concise.

 Develop and implement a prototype library/component which complies with the
defined specifications:

After specifications are written, a prototype must be developed. The success
of the prototype will be dependent on the fulfillment of each specification,
and its applicability to the problem.

 Perform a technical validation of the prototype:

Technical validations should be performed to ensure both data consistency
and performance across replication systems. More details on the specific
validations to be performed can be read in chapter 1.6 Evaluation.

1.6 Evaluation

The proposed solution will be evaluated according to three main axis, performance,
consistency and availability.

Porto Tech Center’s System PC will be the targeted system to which the proposed solution will
be applied. As stated earlier this system uses a Neo4J, a non-relational database to persist
data.

The main entities of System PC are Nodes and Relationships. Those are the two types of
entities that will be persisted in System PC database and therefore will be targeted for
clustering. For confidentially reasons, the structure of those two entities will not be exposed.

1.6.1 What will be evaluated

 A1: Write Throughput: The rate at which write operations are performed on the
system. It is important to verify the system behavior regarding write operations when
replication coordination is being applied. This will use an A/B type test, where the
subject application SystemPC will be tested both before implementing the Replic8
framework and after in order to evaluate the performance impact.

 A2: Write Throughput: Evaluate the degradation in write throughput between a
cluster with one, two or three slave instances. Testing clusters with different sizes is
important to identify possible bottlenecks.

 B1: Data Consistency: Evaluation of the final state of all the database instances. At the
final of the closed loop, all database instances should be consistent between each

5

other. The time it takes for consistency convergence can vary from slave to slave.
Nevertheless they all should eventually converge to the same state.

 B2: Data Consistency: How long does it takes to a slave instance to be consistent with
the master instance?

 C1: Service Availability: Randomly shut down one or more slave instances and verify
that the system continues to successfully replicate transactions to the remaining
instances.

 C2: Service Availability: Shut down the master instance and verify that the failover is
successfully handled by the cluster. Another slave should assume the master role and
as such the cluster should continue to accept write requests.

1.6.2 Which metrics will be used

 A1; A2: Write throughput will be evaluated using continuous data in the form of
requests per second (req/s).

 B1: Data Consistency will be evaluated with binomial data (true/false). At the end of
each test sample, either there is data consistency or not.

 B2: Data Consistency convergence acceptable time will be evaluated using both
continuous data measuring the persistence convergence time and binomial data
(true/false). At the end of each test sample, for each slave, either data convergence
was performed within the predefined accepted time threshold or not.

 C1; C2: Service Availability will be evaluated with binomial data (true/false). During
each test, findings will be recorded asserting if the behavior is correct.

1.6.3 Hypothesis

Taking evaluation points from chapter 1.6.1, a series of hypotheses are formulated to assert
the correct functioning of the framework. First, a hypothesis called the ‘null’ hypothesis (𝐻0) is
formulated asserting the unwanted behavior, then an alternative hypothesis (𝐻𝑎) is
developed stating the opposite, asserting the expected behavior.

1.6.3.1 A1

 𝐻0 – The write throughput of the application is slowed down more than 25% when
Replic8 is configured to handle transaction replication.

 𝐻𝑎 – The write throughput of the application is not slowed down by more than 25%
by the Replic8 clustering framework.

6

1.6.3.2 A2

 𝐻0 – The write throughput is slowed down by more than 10% when an instance is
added to the cluster.

 𝐻𝑎 - The write throughput should not be slowed down by more than 10% for each
instance added to the cluster.

1.6.3.3 B1

 𝐻0 – Data inconsistency is spotted in one or more instances after the test run.

 𝐻𝑎 – After a test run, all instances will be consistent with each other regarding the
persisted data.

1.6.3.4 B2

 𝐻0 – Data convergence for at least one instance is not achieved within a time frame
representing 25% of total test run time.

 𝐻𝑎 – After a test run, all instances should converge to a consistent state with the
master instance within a time frame representing 25% of total test run time.

1.6.3.5 C1

 𝐻0 – After shutting down one or more slave instances, the cluster behavior is affected
or not able to perform transaction replication at all.

 𝐻𝑎 – When one or more slave instances are shutdown, the cluster continues behave
the same way and handling transaction replication successfully.

1.6.3.6 C2

 𝐻0 – When the master instance is shut down, the failover is not successful and the
cluster no longer accepts writes.

 𝐻𝑎 – After shutting down the master instance, the failover is successfully performed
and another instance immediately assumes the master role, ensuring the cluster
remain available and accepting writes.

1.7 Value Analysis

The value analysis serves the purpose of overviewing the benefits of a product, being it
tangible or not. More specifically “The primary objective of value analysis is assess how to

7

increase the value of an item or service at the lowest cost without sacrificing quality” (Nicola,
2015).

The value proposition of this master thesis is to enable High Availability capabilities for
distributed systems with data persistence. Therefore the objective is to achieve a uniquely
broader spectrum, offering a clustering framework that not only works for applications
backed by non- relational databases as Neo4J database but also with other types of databases,
being either relational or not. As such the deliverables in this master thesis should represent
added value to anyone who wants to enable add High Availability to their software backend
applications.

This project appears from a necessity from Porto Tech Center for a specific technical solution.
One can easily relate how the opportunity to develop this project appeared with the New
Concept for Development Model (NCD), which is used to expose the key components of the
Front End innovation, by providing a common language and their definition (Koen et al., 2001).

The opportunity identification appeared from the technical need of a clustering solution
which was both technically and financially viable. An opportunity analysis was performed,
stating that, although there are already several solutions to address clustering in the market,
they neither fit the technology nor budget constraints of Porto Tech Center for its specific
needs. According to (Koen et al., 2002), methods usually used both in opportunity
identification and analysis are “[…] roadmapping, technology trend analysis and forecast,
competitive intelligence analysis, customer trend analysis, market research and scenario
planning”. Roadmapping, as such as technology trend and analysis were the main methods
used in this specific case.

The Idea Generation and Enrichment started to be developed when it was stated the
opportunity to address the need of Porto Tech Center could be theme for this master thesis.
From the methods and techniques enumerated by (Koen et al., 2002), market and business
needs, identify new technology solutions and an organizational culture that promotes and
allows ideas and concept testing were the most used during this process.

Idea Selection was performed by evaluating the technology stack currently in use by Porto
Tech Center for the product that will be targeted by the clustering framework. Regarding the
methods and techniques for the idea selection, portfolio methodologies based on multiple
factors, formal idea selection providing feedback to all idea submitters and the use of the
options theory for projects evaluation, are three of the best known techniques (Koen et al.,
2002).

The phase of Concept Definition as perceived form NCD model, in this case, is justified by the
perfectly identified internal need of a clustering framework that can be applied to our current
technologic stack. Some effective techniques to support concept definition are, the quick
evaluation of the innovation potential, involving the costumer in an early stage of product
testing, establish partnerships with other entities that could better support processes out of
the main areas of the competence of the company amongst others (Koen et al., 2002).

As with every business, if fresh innovative ideas are presented in the form of products or
processes, they should be transmitted to both existing and potential customers. Therefore it is
essential that the benefits of the offered solutions are clear to customers. With this in mind, it

8

becomes clear the importance of defining a value proposition that clearly targets the market
segment that the product wants to reach.

The value proposition can be seen as “an overall view of a company's bundle of products and
services that are of value to the customer.” (Osterwalder, 2004). There are two key aspects in
the previous statement about value proposition, value, and perceived value, the last one
representing the value for the customer. Value can be defined in different forms as states
(Nicola et al., 2012) “Value has been defined in different theoretical contexts as need, desire,
interest, standard/criteria, beliefs, attitudes, and preferences”.

Value, as the business defines it, is important, “the creation of value is key to any business,
and any business activity is about exchanging some tangible and/or intangible good or service
and having its value accepted and rewarded by customers or clients, either inside the
enterprise or collaborative network or outside.” (Nicola et al., 2012), nevertheless, the
perceived value is also another key point for the success of a product or a service. This is the
value as the customer sees it and is what defines the desirability of a product or service to a
customer, hence “perceived value is the consumer’s overall assessment of the utility of a
product based on perceptions of what is received and what is given” (Zeithaml, 1988).

In the case of this master thesis, its aim is to offer a solution to help software developers to
better build highly available scalable systems supported by any database technology as long
as they can cope with eventual consistency. The final solution to develop is the result of a
negotiation between the proponent entity (Porto Tech Center), Instituto Superior de
Engenharia do Porto (ISEP) and the authors of this work. As stated by (Filzmoser & Vetschera,
2008), “Negotiations are dynamic processes in which the parties involved communicate to
exchange offers, make concessions, raise threats, or otherwise influence each other in order
to reach an agreement”. There are several models / scenarios of negotiation:

 Win-Win: In this scenario all involved parties win, benefiting from the final outcome of
the negotiation. The involved parties reach an agreement point that will benefit all
actors, and no one is at loss (Carnevale & Pruitt, 1992);

 Win-Lose: This negotiation model implies that after negotiations, the final agreement
does not totally satisfy one side;

 Lose-Lose: The outcome of the negotiations in this scenario is that both parties
remain unsatisfied after the process;

 Triple-Win: This negotiation scenario is comprised by three parties, the customer, the
provider and a neutral management program that acts as a mediator. It is the
responsibility of the management program to achieve a win situation for both parties.
(Lieberman et al., 1997).

In the specific case of this work, a Win-Win scenario was used, and the outcome satisfied all
the involved parties. First the proponent entity (Porto Tech Center) will benefit from the
outcome of this project, as the needs for a replication solution for their products are
addressed. Secondly, ISEP, also benefits from the value added by adding another scientific
work to their internal scientific library. Last but not least, the authors of this work will gain
from the enormous knowledge derived from its execution.

9

In Annex A, is attached the possible canvas model for this project. Analyzing the model the
key partners identified represent the software vendors that maintain and develop the
programing languages and frameworks used in this work:

 Oracle: Maintainer of the Java Programming language;

 Pivotal: Maintainer of Spring Framework;

 Open source Community: Everything around Java is mainly related with open source
in mind.

The key activities involved in the execution of this project:

 Research: A research has been performed to study several approaches and existing
solutions. This activity represents the documentation contained in the State of the Art
chapter of this document;

 Software Architecture & Design: This activity refers to the process involved in
designing the solution to address the exposed problem;

 Software Development: All the activities related to the development of the solution
presented in this work;

 Software Testing: Test the developed software is a key activity when making quality
software;

 Support: Customer support is one of the activities that justify the paid version versus
the free version.

The key resources identified are as follow:

 Software Developers: The people responsible for programing the solution;

 Workstations: The computers used by the software developers;

 Software: The software needed to support the development activity, as operating
system, programs to design Unified Modeling Language (UML) diagrams, office
programs, Integrated Development Environment (IDE) programs, and so on;

 Installations: Space to be use by developers when writing the software. It must
provide the essential commodities as electricity, water, internet connection and so on.

The Value propositions this work tries to address are:

 Increase Availability: Opportunity to increase availability with a solution that can
manage replicated services;

 Increase Performance: With more service replicas, read performance is increased as
the load is distributed between them;

10

 Database Agnostic: The proposed solution aims to be implemented at the middleware
level, abstracted from the database technology used;

 No change to the existing DB schemas: No need to change current DB schemas.

The customer relationships are provided via the following channels:

 Self Service: The official site for the project will be available to everyone looking for
information on the project, submit suggestions and also download the
framework/component;

 Software development community: Plays a major role in spread new technologies;

 Improvements requests: Customers/Users can provide opinions and ideas on how to
improve the software;

 Support: When there is a problem covered by the paid version contract.

The channels through which the project can be obtained are:

 Project Web Site: Can redirect to GitHub or Maven Central;

 GitHub: Where developers can get the source code;

 Maven Central: Main repository for developers looking for the project dependency;

 Forked Software: Some third party software that used or forked the software
developed in this project;

The targeted customer Segments are:

 Software Developers;

 Software Development Companies;

The Structure costs are mainly the follow:

 Research & Development: Costs with development and research time;

 Installations: Costs with the installations;

At an initial phase, before the project reaches a predefined maturity level, it can be freely
distributed, nevertheless as the product evolves it can be turned into a commercial product
deriving it from the free version with more enterprise oriented features. As such the revenue
streams are:

 Free version: Can be seen as the initial product, or a more mature product with strip
down features;

 Paid version: Can be the fully featured product, derived from the free product, but
with more enterprise oriented features, and with technical support.

11

Measuring added value for customers is not a straight forward task, nevertheless some
techniques can be used. These techniques can rely on quantitative methods and/or
conceptual models like Value Network Analysis (VNA) (Allee, 2008) or Decomposing the Value
for the Customer (CMDVC) (Nicola et al., 2014).

The VNA gives a high level overview of the company, its key partners in the value chain, its
relations and the customer. One of the key features of the model is to represent the tangibles
and intangibles to the customer (Nicola et al., 2014).

According to Woodall, “Value for the customer (VC) is any demand-side, personal perception
of advantage arising out of a customer’s association with an organization’s offering, and can
occur as reduction in sacrifice; presence of benefit (perceived as either attributes or
outcomes); the resultant of any weighed combination of sacrifice and benefit; or an
aggregation, over time, of any or all these” (Woodall, 2003). Woodall also defined five forms
of VC (Woodall, 2003):

 Net VC: This is the perceived value for the customer as a balance of benefits and
sacrifices. This balancing will translate in more or less VC;

 Marketing VC: The customer perception of a product or service attributes;

 Sale VC: VC Perhaps the most easily identifiable VC by the customer. Sale VC is directly
related to the product price;

 Rational VC: This VC takes a combination of factors, first the customer establishes
what interval of prices it will accept to pay for a product, then, it relates this price
interval with his perception of the product value based on the perceived attributes;

 Derived VC: Customer perception of value based on other customers experiences
with the same product.

Woodall also identified that VC could be distinguished in four temporal positions (Woodall,
2003):

 Ex Ante VC: Pre-purchase, is related to desired and expected values before the
purchase;

 Transaction VC: This phase happens at the point of trade. This represents the
perceived value for the customer of the value acquired during the transaction;

 Ex Post VC: Happens after the purchase, and is the perception of the received value
by the customer;

 Disposition VC: This is the phase when the user intends to dispose or sale the product.

The CMDVC uses Woodall’s forms of value and temporal positions, along with the concept of
value network for identification of both tangible and intangible assets. These properties are
then combined in a quantitative model using techniques derived from operations research like
Multi-Criteria Decision Making (Nicola et al., 2014). The CMDVC is modeled following a
sequence of three steps, before reaching the enterprise Value Proposition. In the first step a

12

VNA is performed to identify both tangible and intangible deliverables, and also endogenous
and exogenous assets. Each of these deliverables is then related to Woodall’s forms of value.

At the first step is possible to obtain an idea on how internal people perceive the identified
assets relevance and also their relations with perceived benefits and sacrifices (Nicola et al.,
2014).

The second step uses Woodall’s temporal positions to obtain information from the enterprise
and customer for a specific time position regarding the perception of benefits and sacrifices.
The importance of this step relies on selecting the most relevant assets to use as the base on
how the customer perceives the Value Proposition of the enterprise (Nicola et al., 2014).

The last step for the construction of the CMDVC model is to combine both the enterprise and
customer perspectives from the previous steps to support the assessment of the Value
Proposition.

1.8 Expected Contributions

The scope of this work is to specify and develop a new data replication middleware clustering
framework/component, evaluate its performance and efficiency and compare it with other
solutions.

The following should be considered the expected contributions within this work:

 Up to date state of the art overview providing useful information and guidelines to
help conceptualizing and developing a clustering framework.

 Compiled information about other replication frameworks, their advantages and
disadvantages;

 A set of specifications, functional, and non-functional requirements written to guide
the development of a reliable middleware clustering framework;

 A prototype software complying with both the requirements and specifications,
following the defined architecture, offering a solution that can both work with
applications backed by relational and non-relational databases.

 Documentation on how to use the software;

 Documented performance and data consistency with the prototype clustering
framework applied to the target system.

1.9 Document Structure

The contents of this master thesis are structured as follows:

13

The first chapter introduces the problem and the work to be done. It contains the introduction
to this work, the objectives, the scope and success criteria’s and, the validation scenarios to
technically validate the proposed solution and the expected contributions. A value analysis is
also described in this chapter.

The contextualization and background information that served as the basis of this master
thesis is exposed in the second chapter.

The third chapter covers the state of the art and introduces some previous work done in the
field to address the same or similar problems. It will empathize primarily in replication
middleware solutions.

In chapter four is presented a high level overview of the proposed solution, both with
descriptive information and graphical representations of the overall architecture and its
components.

Chapter five describes the development phase of the prototype application developed in the
context of this master thesis.

The technical validation of the solution is described in chapter six, taking the evaluation
scenarios described in chapter one, and asserting the test results.

Finally, final considerations, conclusions and future work are all addressed in chapter seven.

Bibliography and references used in this document are placed after chapter seven.

Annexes can be found at the end of the document.

14

15

2 Context

2.1 Current Scenario

The scenario that drives the motivation for this master thesis is presented in the following
paragraphs. Although the subsystem described in the next pages is part of a larger
infrastructure, the surrounding context is not relevant for the description and discussion of
the problem.

In the area of logistics there are many interesting problems to solve when developing a
decision support system (DSS). Specifically, route planning and optimization is a problem that
should be addressed carefully as it is the main activity for a logistic company, and as such, bad
planning choices can become very costly.

Around route planning there are two main entities, Warehouses and Connections.
Warehouses can have many properties, like cold or inflammable storage, capacity and so on.
Connections can also share some of those Warehouse properties but also have specific
routing properties like transportation method, travel duration, cost, etc. The group of
Warehouses and Connections forms the Logistics Network (LN).

A Route is composed by several Connections and defines the path a package is going to travel
between one or more Warehouse before reaching the customer. There are several constraints
that can be enforced to get the best path, like cost or maximum arrival time. These constraints
are calculated from the aggregation of all Connection level constraints for each path
combination.

To help route planning, two systems have been built. The first, identified by System LNC
(Logistics Network Creator), is responsible to provide the network manager of the logistics
company in each country, the tools needed to create, update and delete entities related with
the network, namely Warehouses and Connections. System PC (Path Calculator) is responsible
for calculating paths given a group of constraints.

The technological stack for System LNC is composed by a FrontEnd (WebApp) written in
AngularJS (Google, n.d.), a BackEnd written in Java with Spring Framework (Pivotal Software,
n.d.) and backed by PostgreSQL (PostgreSQL, n.d.) as its Relational Database Management
System (RDBMS). System PC is a BackEnd software written in Java with Spring Framework and
has an embedded database called Neo4J, added as a dependency. Since System PC is the
targeted system to be replicated, a more detailed technology stack for it is presented in the
next figure.

16

Figure 1 - System PC Technological Stack

Neo4J is a non-relational graph oriented database written in Java, and works around two main
concepts, nodes and relationships. In the presented scenario, a Node represents a Warehouse,
and a Relationship represents a Connection. Nodes and relationships represent the main
entities managed by System PC. Each relationship must connect at least two nodes, otherwise
it can’t be created. For now on, ‘nodes’ and ‘relationships’ will be used while describing the
system behavior overview. Figure 2 – Logistics Support System High Level Architecture shows
the high level architecture for the whole system.

17

Figure 2 – Logistics Support System High Level Architecture

The network infrastructure is mutable, hence, it undergoes some changes over the time, like
adding, changing or removing nodes or relationships. These actions are performed in System
LNC by a logistics network administrator, or another user who has an equivalent access to the
system. The network administrator interacts with System LNC via its frontend, built in
AngularJS. The frontend communicates with the backend via Representational State Transfer
(REST) compliant Hypertext Transfer Protocol (HTTP) endpoints.

When the network administrator creates a new Node, System LNC verifies if the business
related constraints are correctly fulfilled and persists the new node on the master PostgreSQL
database. There is a backup standby replica of the database which is in fact a slave, but this
replication is managed by Amazon Relational Database Services (ARDS) (Amazon, n.d.) as the
infrastructure is deployed on Amazon WebServices (AWS) (Amazon, n.d.). Replication being
managed by ARDS not only incurs in additional costs as it is a payed service, but also implies
not having full access the machine where the database is running.

As a change on the network is performed, when the change is persisted on the database of
System LNC, that information must be propagated on the network for other interested
systems. Particularly, in this case, System PC is interested in those changes, as it must have
up-to-date network information to be able to provide fresh knowledge about the best Paths
for a package to travel.

18

The communication between systems is performed via message queueing using RabbitMQ
(Pivotal Software, n.d.) Message Broker. As such System LNC publishes a message for each
change in the network where it happened. Interested systems can register a queue in
RabbitMQ from where they want to listen for messages. The messages are multiplied by the
number of queues subscribing them.

As described earlier, System PC is interested in being notified about changes in the network,
hence it registers a queue in RabbitMQ infrastructure, where it will listen for those changes.
When System PC receives a message, it performs the required validation and persists it on the
Neo4J Graph database, providing new Path requests with up-to-date information about the
logistics network infrastructure.

The diagram in Figure 2 – Logistics Support System High Level Architecture shows several
replicated instances of System PC, namely PC_ONE, PC_TWO, PC_THREE and PC_FOUR. Each
instance registers a listening queue on RabbitMQ infrastructure, which means, as the diagram
shows, that when a message 'M1' is generated by a network change in System LNC, when it
arrives to RabbitMQ message broker, it is multiplied by the four listening replicas of System PC.

The following Unified Modeling Language (UML) sequence diagram can ease the
understanding of this flow.

Figure 3 - Create Node Sequence Diagram

As this diagram helps to demonstrate, both System ‘PC_*’ are likely to receive a copy of the
Create Node Message. However this is not guaranteed. As such, there is a considerable
probability of ending up with the two instances unsynced.

System PC_ONE and PC_TWO are queried by clients for Paths calculation. These queries come
in form of a GET HTTP request and in some cases, depending on the current topology of the
logistics network and the required constraints, can be very work intensive operations. For this
reason requests addressed to Systems PC are load balanced via HAProxy (HAProxy, n.d.).
PC_TRHEE AND PC_FOUR Systems are backup standby replicas that can be swapped by
PC_ONE or PC_TWO in case of failure. Client request queries are only of the read type, and at

19

the moment, they are about one thousand per hour but those number are likely to escalate as
new countries adhere to the system.

System LNC is the owner of the information, as such changes on the network are always
performed on System LNC, the main problem is that the Systems PC are relying on RabbitMQ
for their replication, which does not guarantee that they are synced with each other. It is
acceptable by the business that at some point of time they can be momentarily out of sync
between them, but for instance if a problem or error consuming a message happens on
PC_TWO, this system will be permanently out of sync both with PC_ONE and System LNC
which is the truth owner. As of now, there is no way for PC_TWO to automatically recover and
sync itself with other PC_ONE.

Overviewing the overall architecture, it is clear that there could be some issues with data
consistency between systems. Not only between replicated PC systems but also between
System LNC and Systems PC. It is worth noting that System PC only uses a subset of Node and
Relationship entities information that is created on System LNC. In fact System LNC uses a
relational database and it’s data model is much more complex, containing other entities than
the ones described here. Also as budget is a concern, this is a multi-tenant system, which
means that the networks representing each country are not spread across specific instances
per network, but instead they are all in each of System PC instances. This is true for both LNC
and PC systems.

Entities created in System LNC are not guaranteed to be equally persisted on both System
PC_ONE and System PC_TWO. As they are exactly two equal instances, none of them has the
responsibility to coordinate the data with each other. Therefore if data difference is spotted
between them there is no easy way to tell which one is not synced with System LNC. The
resulting scenario is a manual debugging execution. For the current throughput this has been
handled quickly by the DevOps team, but as new country networks are added, and the
throughput rises, the debugging time will rise exponentially and any downtime will affect not
one but the calculations for Paths on many country networks.

Also as the Logistics network grows, more replicas will be needed to be added to the
infrastructure in order to distribute the request load coming from clients. It is important that
consistency between those replicas can be maintained by a replication system. It is however
not required by the business, that this replication should be performed atomically using
distributed transactions. In fact, as can be stated by the current architecture, it is already
following an Eventual Consistency approach, although the consistency convergence is not
guaranteed right now.

The motivation for this work arises from the necessity to enable clustering capabilities at
medium/long term to System PC, without resorting to any commercial solution in order to
provide High Availability to the aforementioned system. The described system is a multi-
tenant application that serves the logistics networks for 13 countries and is being periodically
rolled out to new ones. As a new country is rolled out, more client applications need to be
integrated. Currently the system is serving about 1000 request per hour, but with the current
frequency of country additions to the system, this number is expected to double. Right now,
the only way to provide High Availability for System PC is using Neo4J own Neo4J-HA solution,
which imposes a prohibitive license fee for our current business strategy.

20

In order to solve this problem, the following pages will present an overview on database
consistency and replication concepts. To conform to the current technological stack and
following the company directions, the main restriction for the work presented in this
document, is that it must use Java as its main programming language.

2.1.1 Functional Requirements

Requirement A:

Provide a way to enable clustering on Path Calculator System without resorting to commercial

Solutions.

A.1 - The system should remain usable if one of the System PC instances goes down;

A.2 - Failover between instances should be completely transparent to end users when one or
more instance fails;

A.3 - There should be no lost transactions. Exception is only if the master instance fails and
shuts down before broadcasting them.

Requirement B:

The framework should be flexible enough to be applied on applications backed by other
database technologies.

Requirement C:

It must be developed in Java to follow the company established technology stack.

2.1.2 Non Functional Requirements

 As System PC is very much geared towards read operations, a Master-Slave
replication scheme should be used;

 There should not be distributed transactions within the cluster nor any type of
distributed transaction locks;

 There should not exist any difference between the Master and Slave instances, apart
from the current role they play in the cluster;

 Every service instance can assume the role of the Master in case of failure of the
Master instance.

 Read load is balanced by an external load balancer and can be addressed to any
replica.

21

 If one of the clustered instances fails, when it comes up, it should be synchronized
with the remainder cluster.

 It is acceptable, if within the next 10 minutes after a transaction is committed on the
Master instance, divergent data is observed on some slave instances.

22

23

3 State of the Art

3.1 Background Concepts

3.1.1 High Availability

High Availability is a term used to quantify the availability of a system, which specifies that
mission critical systems should have at least 99.999% availability (Gray & Siewiorek, 1991).
The ‘Availability’ term by itself represents the time that a system is working properly (Marcus
& Stern, 2003), and can be measured by the following equation that takes into account the
Mean time to failure (MTTF) and Mean time to repair (MTTR) (Cecchet et al., 2008; Liu & Zsu,
2009; Marcus & Stern, 2003; Ozsu, 2007; Tanenbaum & Van Steen, 2002):

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
 (1)

The result of the equation is usually expressed as a percentage which in the end, translates
into downtime in minutes. To achieve higher availability, systems have to be more resilient to
failures and lower their downtimes. The following table is used to classify the different
degrees of a system availability (Gray & Siewiorek, 1991; Marcus & Stern, 2003):

Table 1 - Availability Categories (Gray & Siewiorek, 1991)

Category Availability Downtime per year Downtime per week

Managed 99% 3 days 15 hours and
36 minutes

1 hour and 41
minutes

Well-Managed 99.9% 8 hours and 45
minutes

10 minutes and 5
seconds

Fault-Tolerant 99.99% 52 minutes and 30
seconds

1 minute

High-Availability 99.999% 5 minutes and 15
seconds

6 seconds

To achieve High Availability, single points of failure (SPOF) must be eliminated (Cecchet et al.,
2008). One way to achieve this is to use Clustering and Replication (Tanenbaum & Van Steen,
2002). Replication can be easily achieved with stateless applications. Several copies of an
application can be deployed, forming an application cluster. By replicating applications, both
scalability and availability are increased. Scalability can be increased by load balancing
requests between application instances, and if one instance goes offline, other instances
ensure that the system remain available. However, when data persistence is involved,
replication is not as simple as deploy several instances of the application, replicating

24

databases is a challenging task and has been subject of many studies (Daudjee & Salem, 2006;
Gray et al., 1996; Helland, 2007; Saito & Shapiro, 2005).

As replication is a key concept to achieve high availability, and the applications in the context
of this master thesis rely on database systems for data persistence, the following chapters will
overview important database concepts which will serve to support the replication strategies
chosen.

3.1.2 Database Consistency

Data consistency has always been a concern when working with databases. Even within a
single database instance, concurrent transactions could lead to data inconsistency if they
access the same data. The problems arising from data inconsistency on concurrent
transactions were defined by ANSI SQL-92 standard as phenomena (ANSI X3.135-1992, 1992;
Berenson et al., 1995). To solve phenomena, ANSI specified transaction Isolation levels. Both
phenomena and Isolation levels have been widely studied and are well documented
(Berenson et al., 1995; Liu & Zsu, 2009; Ozsu, 2007). There were three main phenomena
identified by ANSI SQL-92:

 P1 – Dirty Read: A Dirty Read happens when a transaction T2 reads a value that was
modified by a not yet committed or rolled back transaction T1. If T1 performs a
rollback, T2 will hold a value that physically never existed in the database.

 P2 – Non-repeatable read: This phenomena represents the case when a data item is
read two times in a transaction T1, and between the two T1 reads, a transaction T2
modifies that data item. T1 will end up working with different values for the same
data item.

 P3 – Phantom: If a transaction T1 executes two times a predicate that returns a set of
rows, and between these two executions a transaction T2 inserts, modify or delete
data that satisfy the predicate used in T1, then T1 will end up with two different data
set for the same predicate. This phenomena, is similar to P2, but instead of referring a
single data item, it refers to a data set.

To address these three phenomena, four transaction Isolation levels have been initially
specified by ANSI SQL-92:

 L1 – Read Uncommitted: Transactions with this isolation level are prone to be
affected by the three phenomena identified. In this isolation level, a transaction can
successfully read and work with uncommitted data insertions, modifications and
deletions made by other transactions.

 L2 – Read Committed: In this transaction isolation level dirty reads (P1) are not
allowed, but non-repeatable reads (P2) and phantoms (P3) are still possible. A
transaction T1 can only read committed data. Nevertheless if it reads a data item two
times at separate moments, and between them, a transaction T2 modifies the same
data item and commit, T1 will end up having two values for the same data item. The
same is verified for phantoms (P3).

25

 L3 – Repeatable Read: With this isolation level, only phantoms (P3) are allowed. The
idea is to ensure that transaction executions are serializable. This can be achieved by
applying locks on both read and writes at a row level.

 L4 – Serializable: None of the referenced phenomena are allowed in this isolation
level. To achieve this, transactions should be fully serializable.

Although ANSI SQL-92 defined L4 as Serializable, a fully Serializable Isolation level should
enforce a fully serial execution between transactions, hence L4 isolation level is sometimes
called “Anomaly Serializable” instead of the less granular, more broad term “Serializable”
(Berenson et al., 1995; Ozsu, 2007).

3.1.2.1 One-copy Serializability (1SR)

1SR was the original de-facto standard of correctness criteria for data replication and
consistency. 1SR states that the effect produced by running global scoped distributed
transactions between several database instances, should be equivalent to executing the same
transactions serially on only one database instance (Cecchet et al., 2008; Liu & Zsu, 2009; Ozsu,
2007).

Although 1SR was a very strong correctness criteria, it induced severe performance penalties
as it prevents concurrent accesses to the same data items using locks. Not only transactions
have to wait for each other to finish when accessing the same data, but also, deadlocks can
occur. For instance, given two transactions, transaction T1 wants to access data X and then
access data Y, while the other transaction T2 wants to access data Y and then data X,
something like the following scenario can happen:

Figure 4 - Transaction Deadlock UML sequence diagram (Liu & Zsu, 2009)

This scenario ended up with a deadlock because the modified data only becomes unlocked
when the correspondent transaction commits, but neither one will commit until they update
all the data items in the execution plan. These drawbacks lead to the appearance of weaker
transaction isolation levels like Snapshot Isolation (SI).

26

3.1.2.2 Snapshot Isolation

Proposed by (Berenson et al., 1995), Snapshot Isolation is a type if Multi Version Concurrency
Control (MVCC) and aims to provide a more relaxed transaction isolation level to avoid the
performance penalties present in 1SR (Gray et al., 1996).

In SI, each transaction T(n) reads a snapshot of the most up to date data committed in the
database at the timestamp the transaction started (TS). When started, a transaction T1 will
never be blocked from reading, even if other transaction, T2, is dirtying the data items T1 is
reading. Each T(n) runs with their snapshot of data, and therefor T1 will never see the changes
of T2 as long as T2 has a superior TS. Also updates, inserts and deletes within T1 will be
reflected in T1 snapshot, this way T1 can work with its updated fields if it accesses them again.
When T1 is about to commit, it gets a Commit Timestamp (CT). If no other transaction has
committed data that T1 updated, in T1’s [TS –TC] time interval, then T1 commits, otherwise it
rollbacks. (Berenson et al., 1995; Ozsu, 2007).

3.1.2.3 Atomicity, Consistency, Isolation and Durability (ACID)

ACID (Haerder & Reuter, 1983) is an acronym for what Gray defined as the basilar properties
for a reliable and consistent transaction management system (Gray, 1978). The four
properties are defined as follow:

 Atomicity: Atomicity aims to ensure that all actions performed within a transaction
context should be treated as a unique action and either all will commit, or rollback in
an ‘all or nothing’ approach. For example, if in the same transaction two ‘updates’ and
a ‘create’ are performed, if one of them fails, the others are reverted. A transaction
only successfully commits if all actions are performed successfully (Gray, 1978;
Haerder & Reuter, 1983; Ozsu, 2007, pp.344-45).

 Consistency: This property ensures that a transaction does not commit invalid data,
either by reading or writing dirty (uncommitted) data belonging to other transaction.
If a transaction sees dirty data from other transactions, this can lead to an
inconsistent state, if for example the transaction from which the uncommitted data
belong rollbacks (Gray et al., 1976; Gray, 1978; Haerder & Reuter, 1983; Ozsu, 2007).
Consistency is tightly related with the next property, Isolation.

 Isolation: Isolation defines that a transaction T should see only the consistent state of
the database within its execution context. That means that the transaction T should
not see uncommitted data from other transactions and also other transactions should
not see uncommitted data from transaction T (Gray, 1978; Haerder & Reuter, 1983;
Ozsu, 2007). As seen previously, this property is essential to ensure Consistency.

 Durability: Durability ensures that any changes made to a database after a transaction
is committed, should be permanently persisted, even in an advent of a system
malfunction or error (Haerder & Reuter, 1983; Ozsu, 2007).

27

3.1.2.4 Consistency, Availability and Partition Tolerance (CAP)

The CAP theorem (Fox & Brewer, 1999) states that distributed system with shared data can
only guarantee two of the following properties:

 Consistency (C): Meaning having a single up to date copy of data (Brewer, 2012);

 Availability (A): Redundancy of data availability, meaning that the required data is
always available and provided by one of the available replicas to the requesting client
(Fox & Brewer, 1999);

 Partition Tolerance (P): A partition happens when for some reason there is a
communication failure between two networked services. Being partition tolerant
means that a system can continue to operate normally in an advent of a network
node failure between replicas (Fox & Brewer, 1999).

(Fox & Brewer, 1999) Also states that “The stronger the guarantees made about any two of
strong consistency, high availability, or resilience to partitions, the weaker the guarantees that
can be made about the third”.

The importance of the CAP theorem grows as the need to scale a system increases. For
instance if the system runs in one unique system with low access rates, it’s almost guaranteed
that all CAP properties can be achieved, as there is only one database, which is accessed by
the backend which is on the same machine. Once the transaction rates increase and the
system is horizontally scaled, CAP theorem becomes clearer. Horizontal scaling has its
foundations on data partition, therefore, as P is already implied, tradeoffs must be made
between C and A (Pritchett, 2008).

3.1.2.5 Basically Available, Soft state, Eventual Consistency (BASE)

Basically Available, Soft state Eventual consistency (BASE) (Fox et al., 1997) principle is as an
alternative to ACID, when Consistency is traded off by Availability. As BASE is a more relaxed
principle that ACID concerning Consistency, higher availability is easier achievable, providing
much higher levels of scalability than with ACID (Pritchett, 2008).

 Basically Available: Ensures that the system continues to respond when solicited,
even if not with its full feature set. One case is when a system is composed by
databases functioning in sharding. Sharding is a technique to distribute database
records by several database instances. In this context, Basically Available could mean
that if one of the databases instances is down, the system can continue to respond,
although not with its full data (Fox et al., 1997; Pritchett, 2008).

 Soft state: Soft sate means that the state of the system data can change over time
regardless of user’s inputs or actions. For example using a message queue system,
data can be enriched by actions coming from one or more systems. If data is only
partially complete, and the message broker goes down, the system ends up with
incomplete data that will eventually be updated as soon as the message broker is
online again. Stale or outdated data can be included in this scenario too. If a database
is replicated by several instances, soft state allows that not all instances get updated

28

at the same time, and as a result ending up with stale data for some time until the
update is executed (Fox et al., 1997; Pritchett, 2008).

 Eventual Consistency: Eventual Consistency is somewhat described by the last
example on Soft State. It allows temporary inconsistency regarding data within the
whole system, as long that the data eventually become consistent across the system
after an acceptable period of time (Fox et al., 1997).

3.1.3 Database Replication

Database replication is a technique used to copy and maintain data within a database to other
database instances, either in local and/or remote locations, obtaining what is often called a
Distributed Database Systems (DDBS). The main motivations for building a DDBS are usually
two, performance and availability improvement (Cecchet et al., 2008). Depending on the
application, there are techniques that can be used to improve Read performance, or Write
performance.

There are a bunch of different architectures for achieving database replication, Master-Slave
also known as Single-Master, or Master-Master also known as Multi-Master are the most
widely used (Cecchet et al., 2008; Liu & Zsu, 2009; Gray et al., 1996). For the sake of
consistency, from now on in this document only Master-Slave and Master-Master terms will
be used.

3.1.3.1 Master-Slave Architecture

In this type of DDBS all the CUD operations are centralized at a single database instance,
called the Master. It is then the responsibility of the Master to ensure the proper propagation
of the CUD actions to the other database instances, called Slaves. This kind of architecture is
easier to implement, as there is only one instance with the data ‘ownership’.

Advantages (Cecchet et al., 2008; Liu & Zsu, 2009; Gray et al., 1996):

 As CUD operations are always performed in the same database instance, there is no
need to manage possible conflicts, regarding different states for the same dataset on
distinct database instances.

 Read operations can be redirected to Slaves to avoid overloading the Master;

 Horizontal scalability for Reads. Just add more Slaves when needed;

 There are no locks on the Slave database instances when Master database instance is
being updated. (Only true when using Lazy replication);

 Slaves can be subtracted or added as needed with none-to-little impact on the Master;

Disadvantages (Cecchet et al., 2008; Liu & Zsu, 2009; Gray et al., 1996):

29

 All the writes are centralized at a single database instance, and as a result, for
application with heavy CUD loads this can be a bottleneck;

 Possible downtime when the Master goes down;

 Need to manage “Master role” promotion to other instance in case of a Master failure;

 While “Master role” is being transferred to other instance, there is a possibility for
data loss.

3.1.3.2 Master-Master Architecture

With Master-Master architecture, all database instances are equal amongst them. Meaning
that, every instance is capable of processing both Write and Reads. In theory Master-Master
can scale horizontally both Writes and Reads operations, but in practice implementation of
Master-Master architectures had proven both complex and poorly scalable.

Advantages (Cecchet et al., 2008; Liu & Zsu, 2009; Gray et al., 1996):

 CUD operations can be addressed by any of the available database instances;

 Reads can be distributed by all instances;

 If one instance fails, the CUD request can be redirected to any of the other instances.

Disadvantages (Cecchet et al., 2008; Liu & Zsu, 2009; Gray et al., 1996):

 If the same data is updated in more than one instance, they must agree in the order of
the transactions to be committed on each of them.

 As the volume of CUD operations grows, the more transactions will be needed to be
dealt with by each one of the instances. Each instance will need to process every
update, either if they are the initially targeted instance or not, as all transactions are
propagated to the remaining instances. This will led to scalability problems, to the
point that adding more instances will not bring more throughput (Cecchet et al., 2008).

 More complex implementation than Master-Slave architecture;

 Prone to transaction conflicts between database instances.

Disregarding the type of architecture used, the way to propagate a CUD operation through
several database instances has also a big impact on the overall performance.

Traditionally, when building DDBS there has been an effort to maintain a unique consistency
copy, meaning that for any given time, all database instances would be 100% synchronized
(Saito & Shapiro, 2005). This kind of technique is called Pessimistic/Eager Replication (Gray et
al., 1996; Ozsu, 2007).

30

3.1.3.3 Pessimistic Replication

When using this replication technique, all CUD operations received by the Master instance
must be synchronously propagated (multicast) to the available database instances in a single
transaction context to ensure atomicity. After the operation is multicasted, it must be
successfully accepted on all the replicas to be effectively committed, otherwise it gets rolled
back, meaning that it will end up with locking all database instances records or respective
tables until the Global (Distributed) Transaction is committed. To achieve this, protocols like
Two-Phase Commit (2PC) (Gray, 1978) are used to achieve atomicity within the distributed
transaction. Using 2PC involves two phases, since the transaction is started until it ends. The
first stage is the ‘prepare phase’, where the instance responsible for the initiating transaction
gathers the commitment of the other instances on either commit or roll back the transaction.
If they all agree on commit, the second phase is initiated. This step is where the commit is
performed, this is called ‘commit phase’. In ‘commit phase’, the originating instance
coordinates with the remaining instances to effectively perform the commit. If the commit
happens to be not possible, all instances are instructed to roll back (Bernstein et al., 1987;
Ozsu, 2007).

This technique can work well on local networked environments, but within Wide Area
Networks (WAN), where higher latencies, and not always connected systems are present,
pessimistic replications leads to serious performance problems and deadlocks (Gray et al.,
1996) (Saito & Shapiro, 2005).

Advantages (Gray et al., 1996; Liu & Zsu, 2009; Ozsu, 2007):

 Ensures data consistency across all instances, as replication between instances is
synchronous. Uses a Global Distributed Transaction to either commit to all instances
or perform an rollback on all instances;

 Maintains One-copy serializability (1SR).

Disadvantages (Gray et al., 1996; Liu & Zsu, 2009; Ozsu, 2007):

 Performance degradation increases with the added number of instances as the global
transaction size grows;

 As the number of instances increases, also increases the deadlock probability;

 If any of the database instances is disconnected, the transaction fails.

Another technique is Optimistic/Lazy Replication (Gray et al., 1996; Liu & Zsu, 2009; Ozsu,
2007; Saito & Shapiro, 2005). This replication technique defines that it is acceptable, if for
some short period of time divergent data is observed on some database instances.

3.1.3.4 Optimistic Replication

When using optimistic replication, the Master replica processes de CUD operation in a local
scoped transaction, then it propagates the operation to the other database instances. Each
database instance processes the operation in its own local transaction.

31

As CUD operations are propagated asynchronously, there are no “global locks to records or
tables” amongst all database instances as in pessimistic replication, hence improving
availability. However, this technique does not fully ensure all the ACID principles, more
precisely Atomicity and Consistency.

Optimistic replication does not try to enforce full consistent data across database instance at
all times, treating the synchronization asynchronously in the background and therefore, it is
acceptable if for some short period of time, divergent data is observed between some
instances.

Advantages (Liu & Zsu, 2009; Saito & Shapiro, 2005):

 No access block to database instances other than the one where the update is being
performed. As there is no synchronized CUD propagation within a single global
distributed transaction between instances, even if some instances are still performing
their local transactions, others, either updated or not, are still accessible, hence
improving availability;

 If a database instance is offline, it can be updated at a later time, when it comes up;

 Good horizontal scalability as there is no synchronous CUD propagation between
database instances.

Disadvantages (Gray et al., 1996):

 CUD operations are not atomically executed in all database instances;

 Some inconsistent data can be observed between database instances within a short
time period;

 Transaction conflicts when using Master-Master can be very complex to solve.

3.2 Existing Frameworks

Database replication is not always performed at the database layer. Actually, it is becoming
more common to have middleware software taking care of those tasks. This section serves the
purpose of studying what has been done in the field of replication at the Middleware layer. To
narrow the scope to better suit the current needs, this chapter will focus only on solutions
that were written in Java.

3.2.1 C-JDBC

Clustered JDBC (C-JBDC) (Cecchet et al., 2004) is an open source middleware based
replication framework that allows heterogenic relational database clustering.

C-JBDC acts as a proxy between the application clients and the replicated databases. The
client applications that are built around JDBC only need to replace the JDBC driver with the C-

32

JDBC driver that exposes the same interface. Client applications access to a virtual database as
they were accessing to a single database.

The acronyms for the types of replication supported by C-JDBC are borrowed from Redundant
Array of Inexpensive Disks (RAID). The C-JDBC team borrowed the RAID acronym and coined
the Redundant Array of Inexpensive Database (RAIDb) term. As with conventional RAID, with
RAIDb there are also several configurations. Each RAIDb configuration represents a database
replication strategy or policy. The following replication strategies can be used with C-JDBC:

 RAIDb-0 Table Partitioning: Database tables are distributed along the several
database instances. In this mode, it is required at least two database backends.
Although it offers a small increase in performance, this mode does not ensure fault
tolerance, as if one database fails, integrity is lost.

 RAIDb-1 Full Replication: This mode fully replicates the database schema and data
across all database backends. It offers the most efficient fault tolerance level of the
supported replication models. However, as Write operations must be broadcasted to
all databases, the final outcome takes longer and therefore performance takes a hit.

 RAIDb-2 Mixed replication: This mode merges RAIDb-0 and RAIDb-1, meaning that it
provides a hybrid replication. The main characteristic in this mode is that all database
tables must be replicated at least in two database backends.

It is important to note that C-JDBC does not use 2PC protocols and distributed transactions to
ensure consistency between the databases, instead transactions are run in parallel; each
database backend gets its own transaction. If one transaction fails, the respective database
backend is taken offline, rebuilt and synced with the Master. When it is again consistent with
the cluster, it is reintegrated. Also worth point out, is that distributed joins are not supported,
which means that all the data needed for a query must be present in the same instance. This
will limit a great number of applications to use RAIDb-1.

When a client application makes a database call, the C-JDBC driver then calls a component
named C-JDBC Controller that is responsible to act as a proxy between the C-JDBC driver and
the database instances. Figure 5 - C-JDBC component architecture illustrates the overall
component architecture.

33

Figure 5 - C-JDBC component architecture (Cecchet et al., 2004)

C-JDBC controller itself is composed of several components, being the central one the Request
Manager. The Request manager is always composed by a scheduler and a load balancer. The
Recovery Log and Query Result Cache components are optional.

The Scheduler is responsible to distribute the transactions among the several databases. Read
transactions are redirected to a single backend whereas updates are sent to one or more
databases, depending on the replication policy. After a Write is issued, the response to the
clients is always synchronous, and by default is only sent after all databases have responded
to the transaction. However C-JDBC has an “Early Response” option, which means that in the
case of a Write operation, the client application will get the response as soon as the first
database returns an answer.

The Query Result Cache is used to return data for repeated queries. By default the cache is
invalidated for data that has been updated on the database. Nevertheless the user can
customize this setting opting to weaken cache invalidation. Obviously, weakening cache
invalidation would present some inconsistency problems.

An important component in C-JDBC Controller is the Load Balancer. The Load Balancer is
reached if the cache has not been hit for a previous executed query. The load balancer
behavior and performance depends on the replication policy defined. If a RAIDb-1 type
replication is used, then the load balancer can redirect the query to any database backend. If
however, RAIDb-0 or RAIDb-2 is used, additional computation is required, as the load balancer
needs to know the database schema present at each database backend to fulfil the query, and
possibly orchestrate the query targeting at more than one database backend.

34

The recovery log, contains entries for every SQL action and the respective transaction
identification. The recovery log can be used, for example, to recover database backends that
have been put offline due to transaction failures or a Checkpoint (more on that below).

C-JDBC also provides a checkpoint feature. The checkpoint takes a snapshot from a database
backend for latter recovery. During the checkpoint process the targeted backend is taken
offline and the snapshot begins. The Recovery log, logs the start and the end of the
checkpoint process. When the process is complete, the database backend is taken back online
and the transactions registered on the recovery log during the checkpoint processing time, are
replicated to the database backend. This process uses a somewhat Extraction Transform and
Load (ETL) approach.

Another feature contained in C-JDBC is Java Management Extension (JMX) support. The JMX
support allows for runtime monitoring and configuration using an administration console like
JConsole bundled with the Java Development Kit (JDK).

To sum up, in the paper C-JDBC is a highly capable clustering framework. It offers support to
vertical and horizontal scalability and even a mix in between the two. It uses Lazy replication
(Optimistic) as the main replication technique, which improves both availability and
performance, at the cost of some temporal consistence. Distributed Joins are not supported,
so other replication schemes than RAIDB-1 will impose a big constraint on the types of queries
supported. Unfortunately C-JDBC only works with relational databases, which makes it
impracticable to use with Non Structured Query Language (NoSQL) databases like MongoDB
and Neo4J.

3.2.2 Ganymed

Ganymed (Plattner & Alonso, 2004) is a middleware replication system written in Java that
provides lazy replication across a set of replicated databases. Its base principle is to clearly
separate update from read transactions, using a scheduling algorithm called Replicated
Snapshot Isolation with Primary Copy (RSI-PC), that works on a set of databases configured for
Snapshot Isolation. Unlike C-JDBC, Ganymed works only with fully replicated databases. Below
is the generic architecture when integrating applications with Ganyemed.

35

Figure 6 - Ganymed component architecture (Plattner & Alonso, 2004)

One of the main components for Ganymed is the Scheduler. The Scheduled uses the
aforementioned RSI-PC algorithm to route queries between database instances. Client
applications use a Customized JDBC driver to connect to the scheduler. In fact, this is the only
change needed in the client side to integrate client applications with Ganymed. Only one
working scheduler is supported, nevertheless a second scheduler can be configured for
backup, and it will automatically replace the working scheduler in case of failure.

As already stated, the scheduler uses the RSI-PC scheduling algorithm. This is a lightweight
algorithm which has the primary role of schedule transactions for a set of database instances.
Queries go for separated instances whether they are read-only or CUD. Currently RSI-PC only
supports databases using Snapshot Isolation, as Oracle or Postgres. In fact as far as database
support goes, only those two RDBMS are currently supported.

RSI-PC imposes some constraints on isolation levels when executing a transaction in one of
the supported databases. Read-only queries must be run in Serializable isolation level. CUD
queries can run both in Serializable or Read Committed isolation levels. The isolation level at
which each transaction must run is communicated to the RDBMS by the Ganymed Scheduler.

When the Scheduler performs a CUD transaction, it takes notice of the order of the commits
within the transaction that has been performed on the master replica. It then replicates the
write set, to each database replica, ensuring that the order of commits is exactly the same as
it was in the master database. Also, with each transaction, is generated a global database
version number. This global version number is used by the Scheduler to know which of the
replicas had already been updated when choosing a database replica to fulfill a read-only
query.

When using Ganymed, there are two types of roles a database replica can assume, Main, or
Read-Only. At any time there can be only a main replica while there can be several read-only

36

replicas. RSI-PC always routes update queries to a master replica database instance, while
reads are handled by the other replicas instances (Read-Only replicas).

Another important component within Ganymed architecture is the Manager. The Manager
component is used by systems administrator not only for adding or removing replicas, but also
to perform reconfigurations to the whole system, and to configure the policy for the scheduler
substitution when a failure occurs.

Wrapping up, Ganymed is a replication middleware that does not provide the same level of
flexibility as C-JDBC, but still, it can be an option to be used with Oracle and PostgreSQL
backed systems. Apart from limiting to two relational database vendors, non-relational
databases are also not supported.

3.2.3 Tashkent

Tashkent (Elnikety et al., 2006) is a prototype solution built with the purpose of demonstrating
that, the separation between transaction commits ordering, and their physically persistence
to the disk imposes a significant bottleneck in scalability. In this context two different
approaches were taken, one where durability is transferred from the database to the
middleware layer, and another where global commit order is moved from the middleware to
the database. The implementation for the first approach is called Tashkent-MW whereas the
implementation of the second approach originated Tashkent-API. As this document is focused
primarily in replication middleware, only Tashkent-MW is covered.

Tashkent-MW uses a multi-master approach. All database replicas are capable of performing
both read-only and CUD operations. However unlike other multi-master architectures,
Tashkent-MW does not rely on 2PC protocol to reach an agreement on the commit order of
the transactions. Instead it relies on a core component called Certifier to mediate transaction
commit order between database replicas.

There are three central groups of components in the Tashkent-MW architecture. The
Database replicas, the Proxies and the Certifiers. The Certifiers play a central role in this
architecture, as they not only act as intermediators for communication between the database
replicas, but also certify and order the transaction commits between them. Client applications
connect to the Proxy which is written in Java and exposes a JDBC interface. Internally it uses
the correspondent JDBC driver for each database it connects.

Database replicas communicate with the exterior through their Proxy. Each database replica
has their own proxy, and there is no direct communication between proxies. The Certifier is
the component responsible to orchestrate all the information that is sent to the replicas.

The following figure illustrates the high level architecture of Tashkent-MW.

37

Figure 7 - Tashkent-MW component architecture (Elnikety et al., 2006)

As stated before, the Certifier is the component responsible to mediate transaction commits
between the database replicas and is written in C. The main job of this component is to
receive update request from the database replica proxies. The certifier maintains a global
system version. Each successfully certified transaction increments the global system version
and is written to a log. The log update is composed by the transaction write set, and the
commit version, which is the same as the newly incremented global system version.

Update requests from proxies received at the Certifier consist of a series of transacted write
sets, each one containing a start version. This start version is the global system version
(provided by the certifier) that the correspondent replica was when it began the transaction.
The Certifier then searches in the log for possible conflicting transactions that have a commit
version higher than the start version of the transaction being certified. If there is no conflict,
the global system version is incremented and the log updated. The Certifier then sends the
‘commit’ decision to the database replica, along with the commit version. The commit version
is the same as the global system version that was incremented when the Certifier successfully
approved the transaction. If a conflict is detected, the transaction is not certified and the
decision to abort the transaction is sent to the database replica. Along with this decision, the
Certifier also sends write sets committed by other database replicas (remote write sets) which
have commit versions higher than the start version of the transaction requested for
certification. The certification flow is illustrated in Figure 8 - Tashkent transaction certification
flow

The Certifier component is replicated to provide availability. In this scheme, there is always a
leader certifier responsible to receive and processes all the certification requests coming from
the database replicas. The leader certifier then sends the new write sets approved to the
remainder certifiers. The backup certifiers then process the changes and acknowledge them
to the leader.

38

Figure 8 - Tashkent transaction certification flow (Elnikety et al., 2006)

The Proxy, is a component written in Java that acts as a transparent proxy to client
applications, providing a familiar JDBC interface. On the database end, the Proxy uses the
specific database driver for the database vendor.

Upon receiving a transaction from client applications, the Proxy first evaluates if it is a Read-
Only transaction, and if it is not, it extracts the write sets and sends them to the Certifier
where the flow described earlier is performed. If it is a Read-Only transaction the transaction
is directly forward to the database.

Summarizing, Tashkent is a capable replication Middleware that combines transaction
ordering and durability in the Middleware layer in one action. Groups of ordered transactions
are written in blocks. This is similar to what happens in a single database system, avoiding
having one disk write for each transaction. Although it is a viable option for relational
databases, Tashkent do not support non-relational ones.

3.2.4 Neo4j High Availability

As stated earlier, one database technology that is used in the current technology stack is
Neo4J, a Graph based NoSQL database. Neo4J offers a High Availability solution in its
Enterprise edition (Neo4j-HA). Unfortunately there is a license fee associated.

From the client point of view Neo4J-HA may be seen as a multi-master solution. Write
operations can be addressed to any database instance. However there is only one master. If a
write operation is received by a slave instance, it coordinates this operation closely with the

39

master instance in the background. For this reason, it is always faster to address write
operations directly to the master instance.

Each Neo4J instance includes a Cluster Management component. This component is
responsible to keep track of every instance that join or leaves the cluster, electing a new
master instance when necessary.

Figure 9 - Neo4J-HA component architecture (Montag, 2013)

The master is responsible to handle write operations. However for the master to accept such
operation, more than half of the cluster instances should be available. In a scenario when only
three or four of eight cluster instances are available, only read operations will be fulfilled.

Neo4j-HA does not support sharding, meaning that all instances should have the capacity to
store the full replicated dataset. Although this may impose a performance penalty when
restructuring indexes, read performance, can be increased adding more instances. However
increasing the number of instances will only bring performance gains on multiple client access
scenarios, and eventually every single instance performance will degrade as the data increases.
Nevertheless Neo4J-HA uses the concept of ‘Cache-based Sharding’ meaning that client
requests are always sent to the same database instance. This has the advantage of populating
the cache with the graph surroundings of the requests from that client.

Wrapping up, Neo4J-HA is a good option when using Neo4J graph database, and would be a
good viable option if not for its costly annual license fee.

3.2.5 Conclusion

This chapter reviewed some of the available clustering frameworks in the market, and while C-
JDBC, Ganymed and Tashkent seem all pretty competent and complete solutions, they don’t
offer the flexibility to be applied to applications backed by non-relational persistence
databases. Neo4J High Availability would suit the needs for replicating System PC, however it
also does not support other databases than Neo4J, and its licensing price is too high. As such,
a custom solution needs to be developed to fulfill both the Functional Requirements and Non
Functional Requirements described in the Context chapter.

40

41

4 Proposed Solution

4.1 Introducing Replic8

Replic8 (R8) is a Java framework that can be added to any Java project as a library dependency,
to enable data replication in an application cluster. As seen earlier, the target system to
replicate, the System PC, is composed by an embedded NoSQL database written in Java. As
such there is no remote communications between the middleware and the persistence layer.
This architecture disables the possibility to use the same approaches in this framework, as the
ones seen in State of the Art chapter, where the connection to the database containing the
SQL commands, or datasets are intercepted by a custom database connector that acts as a
transparent proxy and redirects them to the replication framework.

4.2 Replic8 High Level Transaction Replication Flow

In order to replicate transactions, all the application instances that form the cluster should be
configured with Replic8. For each running instance, Replic8 should be either configured as
master (only one), or as slave. Figure 10 shows an UML activity diagram representing the high
level overview of the flow to replicate a transaction to a slave instance when a write operation
in received on the master instance.

Figure 10 - High level transaction replication flow UML activity diagram

42

Replic8 is designed to intercept transactions in the middleware, targeting classes that
orchestrate transacted persistence operations, like service or model classes.

When one of those classes is called, Replic8 intercepts its method call and evaluates the
outcome. If the outcome is a commit, then Replic8 sends the transaction to the slave(s)
instance(s). When slave instances receive a remote transaction (sent by Replic8 master
instance), they check if the version of the remote transaction matches the next version in the
local transaction version sequence, and apply the transaction locally. If there is a version
mismatch, the slave informs the master, which in turn will respond with the missing
transactions.

4.3 High level Architecture Overview

Replic8 is built around four core modules. The Cluster module is responsible to manage the
cluster composition and assure persistence convergence within the cluster. Transaction
module handles the main operations regarding transactions, such as transaction broadcast.
Health Module plays a central role in actively monitoring each cluster instance state and
maintains the cluster availability. The Recovery Logger module is responsible to maintain a
history of each transaction that has occurred in each cluster instance.

Figure 11 - Replic8 High level UML component diagram

4.3.1 Transaction Module

As stated earlier, the Transaction Module, is the module responsible to handle the processing
regarding the transactions themselves. This module performs distinct actions depending on
which role R8 is configured to. If R8 is configured as master, this module is responsible to
handle transaction interception in the master instance of an application, and to broadcast it to
slave instances. If R8 is configured as slave, this module is responsible to receive transactions

43

broadcasted by the master R8 instance and process them locally. Figure 12 shows a high level
overview of the subcomponents contained in the Transaction Module.

Figure 12 - Transaction Module UML component diagram

The Transaction Interceptor (TI) component works closely with application classes that
employ the Service pattern or equivalent. Actually, the framework logic can be applied to
lower level classes as the ones implementing the Data Access Object (DAO) pattern. However
as DAO persistence actions can be rolled back if one or more DAO’s in the same transaction
context fail, this is not a reliable option. Choosing to intercept at the Service level seems the
logic choice, as the result on these classes usually represent the result of the whole
transaction. The TI component will be responsible to evaluate the return of each call to the
aforementioned ‘Service’ classes methods and act accordingly. If the result of the called
method translates in a transaction commit, then the component calls the Transaction
Recovery Logger (TRL) component followed by the Transaction Broadcaster (TB). If not, it
means that a rollback or persistence error has happened. As such, there is nothing to replicate,
and the flow ends.

Transaction Broadcaster (TB) is the component is responsible to handle the transaction
context broadcast between the master system and the slave replicas. As stated earlier, all
successfully committed transactions are sent to the other slave replicas in the cluster, along
with the PV generated. Transaction Broadcaster implements an Observer Patter, which means
that each slave instance in the cluster registers itself as an observer for transactions. When a
transaction is successful, TB broadcasts it to all the registered observers. TB assumes a sender
role in the master instance, and a receiver role in the slave instances.

The Remote Transaction Processor (RTP) handles all the incoming remote transactions
received by the TB when in slave mode, and applies them in the slave instance. Before

44

applying the remote transaction locally, it works in conjunction with the PVS to check if the
updated PV version will match the one received with the remote transaction.

4.3.2 Recovery Logger Module

This module is responsible to maintain an ordered transaction history in each of the cluster
instances. The log history persisted in the master instance is used to provide transaction
information to out of sync slaves, being them long time running slaves, or a new slave
machine just added to the cluster. The following figure shows an overview of the components
that compose this module.

Figure 13 - Recovery Logger module UML component diagram

A database transaction log is maintained by the Transaction Recovery Logger (TRL) component.
This component is responsible to log all the committed transactions both in the master system
and in the slaves. This log can be used in an advent of a failure in the master system or in any
of the replicas, to rebuild any instance that become out of sync.

Working closely with the TRL is the Persistence Version Service (PVS) component. For every
committed and logged transaction, a new database Persistence Version (PV) is assigned. The
version assigned for each transaction is incremented from the previous version following the
𝑛𝑣 = 𝑝𝑣 + 1 equation, where nv is the new version, and pv is the previous version. This
component is responsible to manage the persistence version for the transaction and
communicate it to the TRL in order to maintain an ordered transaction history.

The PV is sent to the remote slave replicas along with the transaction context itself. This will
ensure that the targeted slave replicas should converge to the same persistence version as the
master replica. When applying a remote transaction, slave replicas will check if the internally
generated PV matches with the one received along with the remote transaction. If not, they
will respond back with a sync request to the master system, along with the last PV they have.
The master will then, in turn, respond with the correspondent transactions for the sync
requested PV onwards.

4.3.3 Cluster Module

The main responsibility of Cluster Module is to manage the cluster, registering slaves, and
assuring persistence convergence within the cluster.

45

Figure 14 - Cluster Module UML component diagram

Cluster Registry (CR) is the component responsible to handle slave registrations in the master
instance. Only registered instances will receive a copy of the transactions broadcasted by the
TB. Slave registrations can happen both when the master starts for the first time and there are
already passive slaves running (more on passive and active slaves in the next chapter), when a
new active slave joins the cluster, or when a new master is elected.

The Cluster Context (CC) component maintains a catalog of network addresses for the cluster
master and slave systems. The network address catalog is updated manually by the system
administrator directly in the master system. Although only the master instance makes use of
the full catalog of the network addresses for replication purposes, it also synchronizes this
info with the remainder instances. This is helpful in an advent of a master failure, where
another instance assumes the master role. Therefore, as all slaves receive the network
addresses catalog of the full cluster, the new master instance do not need to be reconfigured
by the system administrator with all the cluster network addresses.

The Persistence Version Convergence component (PVCC) ensures that all slaves eventually
converge to the same version as the master. Every time a slave receives a broadcasted
transaction, this component checks if the slave is currently at the immediately previous
persistence version. If not the slave informs the master that it needs additional transactions.

4.3.4 Health Module

The main role of the health module is to employ the ‘Basic Available’ part of the BASE
acronym. This module is responsible to send and receive periodic checks from all instances in
order to check their availability, and handle the failover in case of a master instance failure.

46

Figure 15 - Health Module UML component diagram

Master Failover component (MFC) is responsible to handle the transition of the master role
from one instance to another, when the current master fails. The master transition hierarchy
is defined in CC for each cluster instance by the administrator. As soon as the master role
transitions to a slave instance, the previous master will be placed last in the hierarchy as soon
as its instance rejoins the cluster.

Health Check component (HCC) periodically checks for the health of all instances in the cluster.
As master, this component will check if all the instances are up and running. Instances that
become offline are removed from TB observer list. When in slave mode, this component
checks if the master is up. If not, the slave delegates further actions to the MFC component.

4.4 Design Approaches and Decisions

The most similar approach to the ones presented in State of the Art chapter would be
constructing a wrapper around the Neo4J API that would intercept persistence operations and
broadcast them to another instances.

Figure 16 - Replic8 as a Neo4J wrapper UML component diagram

47

Although possible, and advantageous in some regards, that approach would impose some
heavy drawbacks. An advantage would certainly be the transparency for application
developers applying the framework, also, this approach would move processing time on slave
instances to the persistence layer. On the drawbacks side, Replic8 would become highly
coupled to a single database implementation, enforcing constant maintenance and update for
each new version of Neo4J in order to maintain compatibility.

These limitations led the move of the transaction interception on Replic8 to a much higher
level layer on the application. The idea is to intercept transactions much earlier, in the
services/model layer of the application.

Figure 17 - Replic8 typical positioning in the application UML component diagram

This approach has some drawbacks, but also some big benefits. On the drawbacks side, there
is the additional processing effort each instance has to perform, as each instance will process
the transaction from an earlier processing point in the application. Another drawback is the
loss of transparency for application developers when applying the framework. With Replic8,
some slight additions have to be performed in the targeted application when it acts as master.
Nevertheless these modifications are not very intrusive, as they basically consist in adding
annotations to some service methods and extending an AspectJ abstract class.

On the advantages side, moving transaction interception to a higher layer allows persistence
abstraction. Replic8 can be successfully applied to any java application backend regardless of
the persistence technology it may use, and not be bound to Neo4J backed applications only.
Also, with this approach, is possible to choose only a subset of the domain entities to be
replicated, which can be useful to apply replication between heterogeneous systems.

48

49

5 Development

Early during the development of this project, performing an analysis on the state of the art of
replication frameworks and techniques was a major advantage in order to see the big picture
before starting the development. Perhaps the more significant technical decision was to go
the BASE route. Optimistic replication along with Eventual Consistency was chosen to achieve
a compromise between performance and availability. This decision was supported by the fact
that the current business needs does not demand 100% synchronized data every time across
instances. As such, instead of incurring in all drawbacks and performance penalties imposed
by a Pessimistic Replication approach, the natural choice was to go with the more relaxed
Optimistic Replication.

In the next paragraphs it will be overviewed some key aspects of the Replic8 framework.
Some important technical details and operation flows will be overviewed, along with its usage
of some best practices in software development.

5.1 Design Patterns

Design patterns, in software development, are ways to structure and arrange objects to solve
common design problems (Gamma, 1995). During Replic8 specification/development several
design patterns were identified and used.

5.1.1 Creational Design Patterns

The Factory pattern was heavily used in Replic8. Nearly every object instantiation in Replic8
framework is handled by a factory. What a factory basically does is to encapsulate object
instantiation and abstract it from the client code.

Complex object instantiation either inside or outside Factories are handled with the aid of
Builders, following the Builder pattern. Builders are inner classes that aid in object instance
creation using chained ‘with…(Object someObject)’ methods.

Singleton pattern was used in some limited specific cases. Although this pattern makes it
harder to test, sometimes there is the need to use it. A singleton, is a class that is only
instantiated once during the lifecycle of an application. In Replic8, singletons are used to hold
application runtime properties and are Enum based, which avoids the expensive usage of a
synchronized ‘getInstance()’ method usually implemented to protect multiple instantiation
from distinct threads.

5.1.2 Structural Design Patterns

The Decorator pattern is usually used to add functionality to an object without changing it.
Decorator classes extend the class they are decorating, adding behavior to them. In Replic8

50

this pattern was used to decorate the base framework ValidationResponse class used to
validate the entry object in the several communication entry points (Receivers) of the
application. Currently there is an ErlangValidationResponse decorator class that adapts the
response to the structure expected by the specific Erlang implementation of Replic8 senders
and receivers.

5.1.3 Behavioral Design Patterns

Strategy pattern defines that an algorithm behavior can be selected dynamically at Runtime.
Replic8 uses this pattern when persisting transaction recovery logger entries. The
OutgoingTransactionProcessor class is composed by the TransactionRecoveryLogger, an
interface. The concrete implementation is not known by OutgoingTransactionProcessor, and
depending on the configuration it can be a ‘FileTransactionRecoveryLogger’ or a
‘DatabaseTransactionRecoveryLogger’. Therefore, depending on the implementation set at
Runtime, which is configured in a properties file (detailed in Replic8 Properties chapter), when
OutgoingTransactionProcessor calls the ‘transactionRecoveryLogger.logTransction(…)’ method,
the transaction is either logged in a file, or in a database.

The observer patter is used by Replic8 when slave instances register into the cluster through
the master instance. The subject of observation is the Transaction Broadcaster. The
Transaction Broadcaster keeps a set of interested observers (the ones that have registered),
until the slave instance goes down. Then, for each transaction to broadcast, the Transaction
Broadcaster iterates and notifies all observers with the transaction context.

5.2 Unit and Integration Testing

Unit and Integration testing plays an important role in software development. Not only they
assure the correct functionality of the currently implemented features, but also prevents
functionality/behavior break during further developments. As such, an early goal was set to
achieve high test coverage in Replic8.

Replic8 source code is covered by both unit tests, that cover almost all the source code of the
framework, but also by some integration tests, in order to test some key functionalities flows.

Currently, Replic8 has about 81% Line Coverage and 65% Branch Coverage. Line Coverage is
the overall coverage of all lines of code on the application, while Branch Coverage focus on
divergent code paths like if-else or switch statements.

Those measurements were obtained with the Cobertura Maven plugin.

5.3 Replic8 Tech Stack

As stated in Requirement C, the framework should be developed in Java programming
language. As such its design and development was largely based on Java technology.

51

Figure 18 - Replic8 Technology stack

Replic8 makes extensive use of Java 8 features like lambda expressions or Streams, taking
advantage of its lazy loading nature when handling collections.

AspectJ is a technology used in Java to handle cross cutting concerns. One of the trivial
examples of AspectJ use is on application logging. With AspectJ is easy to apply simple context
logging to all classes. AspectJ uses a concept called weaving, which adds the functionality
declared in an AspectJ class to the target classes, creating a modified version of those classes
embedding the AspectJ code. Replic8 uses AspectJ to implement its Transaction Interceptor.

Replic8 uses Erlang to handle communications between instances. Erlang is a language used in
telecom industry, created by Ericsson. It was designed to handle heavy concurrency, and uses
the actor model for passing messages between Erlang processes.

There was a strong emphasis on unit testing in the framework. Almost every source code class
has a correspondent unit test class. As stated, unit test code coverage is 81% for line and 65%
for branch (conditionals). For unit testing the framework relies on Junit to support basic test
assertions, on Mockito to Mock simple plain old java object (Pojo) classes, and PowerMock to
mock Singletons, enums, protected and private methods.

5.3.1 Why Erlang for communication?

Remote communications in Java is a mature theme and there is no shortage of options. Java
ecosystem has all kinds of libraries and plugins to handle remote communications, ranging
from Simple Object Access Protocol (SOAP) to Java Remote Method Invocation (RMI), passing
through integrations with message brokers like ActiveMQ, RabbitMQ (actually written in
Erlang) or Java own Java Message Service (JMS) which is backed by the likes of IBM
WebSphere or Oracle Weblogic application servers for the broker infrastructure.

With all these options, why was Erlang chosen? Erlang may not be the best language for math
calculations, or heady data processing like images and video processing, but among other

52

things it excels on concurrency, as its uses pure message passing between processes resulting
in absolutely no shared memory between them. Also, message ordering is ensured by Erlang
Runtime as long as it is delivered to the destination process. These two properties alone are a
big plus for Replic8 framework, as the master instance will be constantly broadcasting
messages to slave instances.

Another essential feature provided by Erlang, that is extremely useful for Replic8 framework is
process linking. With process linking two processes can be linked, and if one of them dies, the
other receives a notification. This is especially important to the Health module, where health
check processes for each slave instance are linked to the one on the master. If one end of the
link goes down, the other is notified.

To summarize, Erlang was chosen to handle communications because of its powerful
concurrent nature and its asynchronous message passing between processes. Providing
message ordering and process linkage is also a major plus.

5.4 Replic8 Modules Breakdown

Replic8 four modules are composed of several components. In the next pages those
components will be further detailed. The following image provides a high level overview of
those components, and their relation with both roles (master/slave) that Replic8 can assume
on a transaction flow.

Figure 19 - Replic8 high level component overview

53

5.4.1 The Transaction Interceptor

Intercepting transactions is the most important single feature on any replication framework.
Before broadcast to other instances, the framework has to be able to capture the transaction
context, and the transacted data. Unlike other frameworks, Replic8 captures the transaction
at the middleware level instead of database driver level. This solution solves the problem of
capturing transactions on an embedded database, at the same time that provides much more
flexibility as the framework is not dependent on the database technology.

Replic8 usually is set to intercept the transaction at the service layer of an application. In a
Model View Controller (MVC) application, the service layer usually sits between the controller
and the models. The service layer is often used to orchestrate calls between one or more
models within a transaction.

Figure 20 - Transaction Interception with Replic8

Replic8 framework uses Aspect Oriented Programming (AOP) a programming paradigm for
handling cross cutting concerns as logging and authorizations. The term AOP was coined in
Xerox Palo Alto Research Center in 1996 and one of the first implementations to see the light
of the day was AspectJ, an implementation of AOP for the Java programming language
(Laddad, 2003).

What AspectJ does is add functionality on top of already existing source code classes, without
having to modify them. An Aspect can be seen as some kind of decorator that executes some
additional logic around already existing logic in some class, or group of classes. AspectJ uses
the AspectJ Compiler (AJC), a superset of the Java compiler to perform an action called
“weaving”. Weaving is the process of merging both the source code and the logic contained in
an Aspect class into one new class.

54

Figure 21 - AspectJ weaving overview

Replic8 provides its Transaction Interceptor in the form of an abstract AspectJ class. To make
use of Replic8, client applications must extend this class in order to define which classes will
be targeted by Replic8 for transaction interception.

Figure 22 - Transaction Interceptor UML class diagram

The AbstractTransactionInterceptor class is the core class of the framework. It is composed by
two abstract methods that client applications should implement. The first,
‘transactionInterceptionPointCut()’ represents an AspectJ pointcut definition. A pointcut
definition is basically an empty method that is annotated with the pattern needed to match
the classes and methods to be weaved by AspectJ. The targeted classes for this pointcut,
should be the ones at the service level layer or equivalent. Methods that should be handled by
the Transaction Interceptor should be annotated with the @ClusteredTransaction Java
annotation provided by Replic8 framework.

The second method ‘boolean evaluateMethodResult(Object)’, should be implemented by
client applications, containing the verification logic for the method result. It is expected that

55

the returning objects for the targeted classes in ‘transactionInterceptionPointCut()’,
unequivocally represent an transaction failure or success.

The AbstractTransactionInterceptor contains the remaining logic to act accordingly with the
outcome of the ‘boolean evaluateMethodResult(Object)’. If the evaluation succeeds, the
transaction is propagated to the slave instances. If the transaction is not succeeded, the
process exits.

Figure 23 - Transaction Interceptor flow UML activity diagram

The full class diagram for the main entities involved in broadcast the transaction to the
remote observers can be seen in the next figure.

56

Figure 24 - Transaction Interception involved classes UML class diagram

5.4.2 Transaction Broadcaster

The Transaction Broadcaster is the component responsible to broadcast transactions
intercepted, and evaluated as committed by the Transaction Interceptor. This component
employs the observer pattern and is responsible to maintain a set of interested observers.
Each observer represents a Replic8 slave instance that has been previously registered in the
cluster. When a slave instance becomes unavailable, the observer is unregistered.

57

Figure 25 - Observer Registration Flow UML activity diagram

After receiving a valid registration request, an Observer Factory creates the observer using the
registration request parameters and passing the Transaction Broadcaster instance reference.
Upon instantiation, the Observer registers itself on the Transaction Broadcaster. The
Transaction Broadcaster then adds the Observer to the collection of registered Observers. A
Java Set is used to maintain the list of Observers in the Transaction Broadcaster meaning that
no duplicate observers will be registered.

The following class diagram details the implementation of the observer patter on Replic8 for
the Transaction Broadcaster (the subject) and the Transaction Observers.

58

Figure 26 - Transaction Broadcaster UML class diagram

From the above class diagram, it can be seen that The Transaction Broadcaster ‘has a’ set of
Transaction Observers. ErlangTransactionObserver class is a concrete implementation of the
TransactionObserver Interface and is composed by one TransactionBroadcaster.

When a transaction arrives at the Transaction Broadcaster, the observer set is iterated and
the transaction context is sent to each one of the registered observers. Each observer
instantiates a new Transaction sender that will be responsible to handle the communication
between the master instance, and the correspondent slave.

59

Figure 27 - Transaction Broadcast flow UML activity diagram

5.4.3 Remote Transaction Processor

Slave instances receive transaction contexts through Transaction Receivers. These are specific
classes for receiving communications from the master instance about a broadcasted
transaction. After validating the received transaction context, the receiver invokes the
Remote Transaction Processor, who is responsible to verify if the transaction is suitable for
processing on the local slave instance.

The transaction context received by slave instances are, in fact, recovery log entries generated
at the master instance. When the master processes a new transaction, it also persists a new
entry on its local recovery logger along with the correspondent persistence version. This entry
is represented by a RecoveryLogEntry object that contains all the information that slave
instances need to apply the transaction locally.

Before processing the transaction, the RTP first verifies if the persistence version that comes
with the received RecoveryLogEntry, matches the next to be generated local persistence
version. If the persistence versions do not match, the RTP instructs the request of newer
transactions than the current local persistence version to the master. If the persistence
versions match, then the RTP applies the transaction locally, and commands an update to the
local transaction recovery logger. These two last operations are within a local transaction
scope.

60

Figure 28 - Remote Transaction Processor flow UML activity diagram

The RTP component uses reflection to apply the transactions locally. Within each
RecoveryLogEntry, comes information about the service class, the method and the entry
object that originated the transaction on the master instance. RTP then uses those three
values to reflectively invoke exactly the same call on the slave side.

Figure 29 - Remote Transaction Processor UML class diagram

RTP makes use of a TransactionReflectionService class to reflectively apply the transaction
locally. This abstract class exposes an abstract method called ‘getFrameworkBean(Class class)’
which is meant to be implemented by client applications that use dependency injection
frameworks like JavaEE (Enterprise Java Beans) or Spring Framework (Spring Beans) in order
to retrieve an already instantiated bean within the framework lifecycle.

61

5.4.4 Persistence Version Service

The Persistence Version Service is actively used by both the master and slave instances. This is
a small component that is responsible to handle persistence version related operations. Its
main responsibility is to generate the next local persistence version, and also, if in master
mode, to handle persistence version convergence requests from slaves. To achieve
persistence version convergence, the PVS reads all the local transactions in the master with a
persistence version higher than the slave one, and orders their broadcast through the
Transaction Sender.

The next diagram explains how persistence version convergence between a slave and the
master instance is handled.

Figure 30 - Persistence version convergence flow UML activity diagram

As a simple example, if the master instance broadcasts transaction 55 to a slave who’s the last
local transaction persistence version is 53, then the slave will send persistence version 53 to
the master. The master will then broadcast transactions with versions 54 and 55 (again) to the
slave. If the slave in the meantime receives a transaction with version 56, it requests the same
version (53) to master. When it receives the transactions with versions 54 and 55 from the
first request, the slave processes them, and only processes the transaction version 56 when it
receives the three from the last request (versions 54, 55 and 56), as the first two were already
processed.

5.4.5 Transaction Recovery Logger

The Transaction Recovery Logger is the component responsible to maintain the history of the
locally persisted transactions. This component plays a crucial role both on master and slave
instances.

As stated, TRL is responsible to persist an ordered history of the locally processed transactions.
It also assists the Persistence Version Service, providing methods for retrieving the current
persistence version and the last logged transaction. It also helps to return the logged
transactions newer than a specific persistence version. This last method is used by the PVS

62

when in master mode to broadcast newer transaction to slaves that reported being on an
older version.

The TRL persists transaction history in each instance in a csv file format. However it is
designed to easily be implemented for other types of persistence as the classes that use the
TRL do not know its implementation until Runtime.

Figure 31 - Transaction Recovery Logger UML class diagram

Components that use the TRL obtain an instance using the TransactionRecoveryLoggerFactory
class. This class instantiates the type of TransactionRecoveryLogger (CSV or other) depending
on the configuration present on Replic8 properties.

The recovery log itself is composed of several log entries that map to an object called
RecoveryLogEntry. Each one of those entries contains the local time at which the transaction
occurred, the names of the class and method of the service class where the transaction first
began, the serialized object data sent to the service class, the operation type (Create, Update,
Delete), and finally, the correspondent persistence version.

When the master broadcasts a transaction to slave instances, in reality it sends a serialized
representation of the generated RecoveryLogEntry for that same transaction.

5.4.6 Cluster Registry

Cluster registry handles the process of registering slave instances within the cluster. Slave
instances can be configured either in passive or active modes. When in active mode, the slave

63

instance is configured with the address of the cluster’s master instance. In this case as soon as
the slave application is up, Replic8 sends a registration request to the master.

Slaves can also be configured in passive mode. This mode is used when the master is not yet
initialized and therefore no master address is configured in the slave. As soon as the master
starts, it connects to each configured slave, and sends it the cluster context. Passive slaves will
then send a registration request to the master instance that is referenced in the cluster
context they received.

5.4.6.1 Replic8 Initialization as Master

When the application instance starts, Replic8 will also start with the configured role. If the
instance role is master, then Replic8 upon startup loads a configuration xml file that contains
information about itself and about the slave instances that should be part of the Cluster.
Information for each instance includes the role, the instance network address and a
description.

After loading instance configurations, Replic8 will iterate through all configured slave
instances, and send to each of them information about itself (master instance) and the other
slave instances in the cluster. By enabling slave instances to be aware about other players in
the cluster, they will have all the information required in the case they need to assume the
master role in the advent of a master failure.

After sending the cluster composition information to slave instances, the master itself waits
for every slave instance to register in the cluster. When a transaction is committed on master,
every registered slave receives the correspondent RecoveryLogEntry for the transaction
context. Slaves that did not yet registered will receive transactions from the point they
register within the cluster. It is expected that the late joining slaves will be out of sync in terms
of persistence version, and as such, slaves in such situations will eventually converge as seen
in Remote Transaction Processor chapter.

64

Figure 32 - Replic8 initialization as Master UML sequence diagram

5.4.6.2 Replic8 Initialization as Slave

Replic8 can be initialized as slave with two different options, either in passive or active mode.
When in passive mode, slave instances will always wait for the master to send the cluster
configurations before they register in the cluster. Passive slaves can take the master role as
they know the initial cluster composition; however they need to be started before the master.
When in active mode, the slave will be the one to contact the master first to request
registration. Active slaves can be started any time after the master, however they cannot
promote themselves to master because they do not know the entire cluster composition. Also,
if the master fails and one of the passive slaves takes the role, active instances will not receive
transactions until restarted. This is a limitation in the current version of the framework that
will be addressed in future versions.

5.4.6.3 Slave Registration Request

When a slave instance issues a registration request to master, it also sends the local
persistence version (LPV). This version represents the last transaction that the instance has
record of. As such, when receiving a registration request from a slave instance, the master will
check its own LPV and compare it to the one sent by the slave. If the LPV of the slave is lower

65

than the master sends to the slave instance all the newer transactions that occurred since the
slave LPV.

5.4.7 Cluster Context

The cluster context represents the information about every single instance that is part of the
Replic8 cluster. This information includes descriptions, roles and network addresses for all
instances, including the master.

Upon initialization the master instance broadcasts this information to all the passive slaves
that were already started. Providing this information to the slaves is essential to perform a
master failover in case of a failure of the master instance.

The information regarding the cluster context is configured in the master in the form of a XML
configuration file.

Figure 33 - Cluster context configuration file example

In the configuration file, an entry is added for each instance that composes the cluster. Each
instance entry identifies the instance role, and contains information about its description, the
remote address and the position it occupies in the cluster hierarchy, which is used for master
failover.

5.4.8 Master Failover

Master Failover is the process of instance replacement when the master instance goes offline.
As stated in Health Check chapter, the next slave instance in the hierarchy (master candidate)
sends periodically health checks to the master instance.

66

When a series of health checks result in a timeout, the slave instance assumes control of the
cluster, and re-sends the transaction context to all the remaining slave instances. The next in
succession instance also changes to the slave instance that has the closest higher
‘failoverHierarchy’ value.

If the master instance, suddenly fails after committing a local transaction and before
broadcasting it to the remainder cluster, all the other instances, including the new master will
be one transaction behind the original master. If the original master becomes online again, it
will be out of sync with cluster. As there is no way for Replic8 to know if a failing master
broadcasted all its transactions before failing, its database should be restored to the initial
state before it can join the cluster again. By initial state, it’s either a fresh empty database, if
Replic8 was setup on a new system, or a database dump from the time were Replic8 was
integrated in the system. In this specific scenario, the transaction that was not broadcasted by
the original master is lost.

5.4.9 Health Check

Replic8 periodically send health checks to each instance of the Cluster. Master sends health
checks for each slave, and the slave that is the next master in the hierarchy sends health
checks to the master. Other regular slaves, can also send health checks to master, when they
receive a transaction with a persistence version that do not match their next local persistence
version.

Health checks coming from the master instance do not contain any data. When a slave
receives a health check, it replies with an OK and with its current local persistence version.

Health checks coming from the slave, contains the local persistence version of the Slave.
When the master receives the health check from a slave, it checks the slave’s local persistence
version and executes the Persistence Version Convergence process as stated in both
Persistence Version Service and Persistence Version Convergence chapters.

5.4.10 Persistence Version Convergence

Persistence Version Convergence is performed at several stages. When a slave requests a
registration in the cluster, when a slave receives a new transaction, and when a health check
is sent from the slave to master.

PVC in Replic8 is handled as an iterative process, convergence can be achieved with one
simple iteration or several. Taking the example from Persistence Version Service chapter, the
next diagram provides a sequence overview of the aforementioned example.

67

Figure 34 - Persistence version convergence UML sequence diagram

5.4.11 Senders and Receivers

Replic8 is composed by a series of sender and receivers in order to coordinate all cluster
operations. For example, transactions are broadcasted by the master instance using a
transaction sender and received by the slaves with a transaction receiver. In Replic8 there is a
pair of sender/receive for each transmitted message type within the cluster.

68

Figure 35 - Replic8 senders UML class diagram

Each sender implements a specific interface that defines the basic sender contract. As stated
before, the default remoting technology adopted for Replic8 is Erlang OTP, as such Replic8
provides the correspondent Erlang concrete senders for each sender interface.

In this case, all the concrete implementations extend the abstract class ErlangSender which
aggregates all the communication logic shared between all the concrete Erlang senders, only
delegating to them, sender specific operations.

As Replic8 follows the object oriented programming design principle ‘program to an interface,
not implementations’ Client classes that interact with the senders are not bound to a specific
implementation, and do not know until runtime, which one is used.

On the receiver’s side, the pattern is the same as seen with the senders.

Figure 36 - Replic8 receivers UML class diagram

As stated in before, the use of specific senders and receivers depends on which role Replic8 is
playing in each instance. The senders TransactionSender, ClusterContextSender and

69

HealthCheckSender are the only used by Replic8 when performing the master role, while
when in slave role only RegistrationSender and HealthCheckSender are used.

On the receivers side, when in master role Replic8 uses the RegistrationReceiver and
HealthCheckReceiver. When configured to slave role Replic8 uses the ClusterContextReceiver,
TransactionReceiver and HealthCheckReceiver.

5.5 Replic8 Properties

In order to configure Replic8 either with a master or slave role, a set of properties must be
configured. Figure 37 presents the available properties to be configured for a master or slave
role.

Figure 37 - Replic8 properties file

5.5.1 Recovery Log properties

The first two properties are related to the Replic8 recovery logger. As previously seen, the
recovery log file holds a history of each transaction handled both by master and slave Replic8
instances. The ‘replic8.recovery.log.type’ property is used to select the type of recovery log
file to use. As the current Replic8 prototype only has support for *.csv file type, ‘csv’ must be
chosen. The property ‘replic8.recovery.log.path’ is used to instruct where to store the
recovery log file.

5.5.2 Cluster properties

The following properties are all related to the cluster behavior. The first one,
‘replic8.cluster.instance.definitions.path’ is used to point out which file Replic8 should look to
load the cluster definitions. Only the master instance loads these definitions in order start the
cluster for the first time. Nevertheless, as stated earlier in chapter 5.4.7 Cluster Context, slave
instances use the specified file to store cluster definitions send by the master, so they can be
aware of the remaining cluster in order to assume the master role in case of a master failure.

70

The second property ‘replic8.cluster.master.name’ is only used by slaves when started in
active mode (see chapter 5.4.6.2 Replic8 Initialization as Slave), so they can proactively
connect to the master instance to join the cluster. This property is not used when Replic8 is
started as master or as a passive slave.

The property ‘replic8.cluster.instance.name’ is used to define the name of the Replic8
instance. The names configured in this property for all instances are the ones that must be
also present in the cluster context configuration file. Property number four,
‘replic8.cluster.is.master’ is used to select whether the instance should be started with a
master role (true) or with a slave role (false).

The fifth property ‘replic8.cluster.remote.tech’ is used to select the type of remote technology
to be used between Replic8 instances. Currently, in its current prototype state, Replic8 only
supports Erlang, but other remoting technologies can be easily added.

The last property ‘replic8.cluster.reply.timeout’ specifies the amount of time each instance
sending a message should wait for an acknowledgement from the other side.

5.6 Limitations

The proposed solution, as an early prototype version, has some limitations. This chapter
exposes and describes some of those limitations.

Being a pure middleware based solution, for each database replica, there must be an
application instance configured with Replic8. This is true not only for applications with
embedded databases like System PC, but also for applications backed by other type of
databases. Although the need for more application instances can rise hosting and
maintenance costs, in the specific case of System PC, the Neo4J HA solution would impose the
same drawback, while also adding its licensing fee costs.

When using Replic8, information managed by scoped entities, like Session or Request scoped
Java Beans on the master instance, are not transmitted to the slave instances. System PC does
not maintain such states, and as such is not impacted by this limitation. Nevertheless
applications that needs to access these type of beans on service or model classes will not be
able to use the current version of Replic8.

As already stated, Replic8 is entirely written in Java, and it uses AspectJ which recompiles
source Java code with added functionalities. As such, its usage is limited to Java applications.
Although such limitation is not really a disadvantage when comparing with the frameworks
studied in the Existing Frameworks sub-chapter of the State of the Art, it narrows the possible
applications of Replic8 framework.

Replic8’s transaction recovery logger stores each transaction information in the log file,
including the serialized representation of the business object. This serialization is handled by
Java own ObjectOutputStream class that serializes the object representation as a sequence of
bytes. For this to work, every business object and all its inner objects should implement the
java Serializable interface. Although Java serialization allows us some degree of modification
in those business objects without breaking the deserialization, special care must be taken
when deploying the changes. For example, if new fields are added to the business object, the

71

slave instances should be updated first. If fields are removed from the business object, then,
master instance should be updated first.

Currently, as already stated, active slave instances do not receive the cluster context, and
therefore cannot assume the master role. This limitation was based on an early premise that
an active slave would be configured in some limited situations, to easily replace a faulty
passive slave, or to temporarily improve cluster throughput and/or availability. However,
sometimes, temporary solutions tend to become long term solutions. As such, client
applications and their administrators would clearly benefit if active slaves could also receive
the cluster context information, and be able to promote themselves to master if needed. This
is an easy improvement and will be certainly developed and included in the next versions of
Replic8.

Although a useful feature, currently there is no support for any type of sharding in Replic8.

72

73

6 Validation

This chapter documents the results of the validations performed according to the evaluation
points described in Evaluation sub-chapter of the Introduction.

6.1 Validation infrastructure

In order to test the developed solution, a cluster for System PC with four machines was set up.
The cluster is composed by three laptop machines and one desktop pc running within a Local
Area Network (LAN).

6.1.1 Network Topology

Figure 38 - Replic8 validation infrastructure setup

All machines were connected through a network router with gigabit ports.

6.1.2 Hardware specifications

Table 2 - Infrastructure hardware specifications

 Operating
System

CPU Memory Disk

Master Ubuntu Linux
14.04 LTS

Intel Core i7-
4600M @2.9Ghz
x 2

16GB Intel SSD Pro
2500 Series
240GB

74

Slave One Linux Mint 18 Intel Core i5-
2500K @3.3Ghz
x4

8GB Intel SSD 330
Series 120GB

Slave Two Ubuntu Linux
14.04 LTS

Intel Core i7-
4500U @1.8Ghz
x 2

8GB Samsung SSD
PM851 256GB

Slave Three Linux Mint 17.3 Intel Core i5-
3317U @1.7Ghz
x2

4GB Samsung SSD
840 Evo 250GB

6.2 Validation scenarios

6.2.1 A1: Write throughput Replic8 impact

This scenario intended to confirm the following hypotheses: 𝐻𝑎 – The write throughput of the
application is not slowed down by more than 25% by the Replic8 clustering framework.

For this test, a data set containing 5000 nodes were persisted on the master instance, both
with and without Replic8 activated. For this test, when Replic8 is active the cluster is
composed by the Master and Slave One instances.

In order to perform this validation, an A/B scenario was performed. Throughput (req/s)
measurements were taken both with Replic8 activated (A) in System PC, and with Replic8
deactivated (B) in System PC. The throughput for each scenario repetition was measured with
the following formula:

𝑇 =
𝑇𝑁𝑁 ∗ 1000

𝑀𝑆

(2)

Breaking down the above formula, T is the measured throughput, TNN is the number of
transacted nodes and MS is the measure time in milliseconds for the test repetition.

Each scenario was repeated thirty times. The difference in % between average throughput
measurements was obtained using the following formula:

∆% =

∑ 𝑇𝑌
𝑅𝑁 × 100

∑ 𝑇𝑋
𝑅𝑁

− 100
(3)

Where ∆% is the percentage difference, ∑ 𝑇𝑋 is the sum of the measured throughput for
each repeated result in req/s with Replic8 activated, ∑ 𝑇𝑌 is the sum of the measured
throughput for each repeated result in req/s with Replic8 deactivated. RN is the number of
repetitions for each test.

75

The Annex B shows the time SystemPC took to persist 5000 (TNN) nodes and the
correspondent throughput with both Replic8 deactivated and activated for RN=30.

Taking the above formula, and replacing it by the obtained values, one can find that the mean
slowdown % of the application when Replic8 is applied is ~3%, which is much lower than 25%.

∆% =
31,999 × 100

31,102
− 100 = 2,884%

(4)

To support the confidence in the result, and, as the two data sets are sufficient large, a
Student T-test for independent samples was performed comparing the mean throughput
differences for each A/B scenario from Annex B, against the 𝐻0 25% throughput slowdown.
The 25% percentage value (8 req/s) was calculated from the mean throughput for cluster
configuration with one slave instance (959,974 / 30 = 31,999 (req/s)). The test was performed
with an alpha (α) value of 0,05.

Table 3 - Parametric T test between measured mean throughput slowdown and 𝐻0 value

T Test: Two Independent Samples

SUMMARY Hyp Mean Diff 0

Groups Count Mean Variance Cohen d

Throughput

difference 30 0,897 0,098927

Maximum allowed

slowdown 30 8,000 0

Pooled 0,049464 31,9358

T TEST: Equal Variances Alpha 0,05

 std err t-stat df p-value t-crit lower upper sig effect r

One Tail 0,057425 123,6868 58 2,85E-72 1,671553 yes 0,99811

Two Tail 0,057425 123,6868 58 5,7E-72 2,001717 -7,21761 -6,98771 yes 0,99811

T TEST: Unequal Variances Alpha 0,05

 std err t-stat df p-value t-crit lower upper sig effect r

One Tail 0,057425 123,6868 29 2,41E-41 1,699127 yes 0,999054

Two Tail 0,057425 123,6868 29 4,82E-41 2,04523 -7,22011 -6,98522 yes 0,999054

As the p-values obtained are nearly zero, 𝐻0 can be rejected. This test successfully accepts the
claim 𝐻𝑎 that states that the write throughput of the application is not slowed down by more
than 25% by the Replic8 clustering framework for an alpha (α) of 0,05.

6.2.2 A2: Write throughput slave instance increase impact

This scenario intends to confirm the following hypotheses: 𝐻𝑎 – The write throughput should
not be slowed down by more than 10% for each instance added to the cluster. Due to
resources limitation the number of slave instances will be constrained to three.

76

For this test, a data set containing 5000 nodes were persisted on the master instance.

In order to perform this validation, two A/B tests were performed. Throughput (req/s)
measurements were taken with cluster composition of Master and one, two and three slave
instances. The first test compares the performance between a cluster composed with one
slave instance (A), and with two slave instances (B). The second test compares the
performance between a cluster composed with two slave instances (A) and a with three slave
instances (B). The throughput for each scenario repetition was measured with the following
formula:

𝑇 =
𝑇𝑁𝑁 ∗ 1000

𝑀𝑆

(5)

As in the previous test scenario, T is the measured throughput, TNN is the number of
transacted nodes and MS is the measure time in milliseconds for the test repetition.

The difference in % was obtained using the following formula:

∆% =

∑ 𝑇𝑌
𝑅𝑁 × 100

∑ 𝑇𝑋
𝑅𝑁

− 100
(6)

Where ∆% is the percentage difference, ∑ 𝑇𝑌 is the sum of the measured throughput for
each repeated result in req/s with the cluster configured with one master and one slave, ∑ 𝑇𝑋
is the sum of the measured throughput for each repeated result in req/s for each one of the
other two cluster configurations. RN is the number of repetitions for each test.

Annex C shows the results of persisting 5000 nodes on System PC both with one and two slave
instances on the cluster for a test repetition number of 30.

Using the formula with the values from Annex C results in an slowdown percentage of 0,39%
when a second instance is added to the cluster:

∆% =
31,102 × 100

30,981
− 100 = 0,39%

(7)

In order to rule out hypotheses 𝐻0, a Student T-test for independent samples was performed
comparing the mean throughput differences for each A/B scenario from Annex C against the
𝐻0 10% slowdown claim. The 10% percentage value (3,110 (req/s)) was calculated from the
mean throughput for cluster configuration with one slave instance (933,054/ 30 = 3,110
(req/s)). The test was performed with an alpha (α) value of 0,05.

77

Table 4 - T test between the measured mean throughput slowdown with two slaves and 𝐻0 value

T Test: Two Independent Samples

SUMMARY Hyp Mean Diff 0

Groups Count Mean Variance Cohen d

Throughput

difference 30 0,121207 0,137596466

Maximum

allowed

slowdown 30 3,110 0

Pooled 0,068798233 11,39481369

T TEST: Equal Variances Alpha 0,05

 std err t-stat df p-value t-crit lower upper sig effect r

One Tail 0,067724 44,13192 58 1,2521E-46 1,671553 yes 0,985435

Two Tail 0,067724 44,13192 58 2,50421E-46 2,001717 -3,12436 -2,85323 yes 0,985435

T TEST: Unequal Variances Alpha 0,05

 std err t-stat df p-value t-crit lower upper sig effect r

One Tail 0,067724 44,13192 29 1,91793E-28 1,699127 yes 0,992637

Two Tail 0,067724 44,13192 29 3,83586E-28 2,04523 -3,1273 -2,85028 yes 0,992637

As stated in the test, the p-value is nearly zero, which rules out 𝐻0. As such 𝐻𝑎, which states
that, the write throughput should not be slowed down by more than 10% for each instance
added to the cluster, can be accepted for an alpha (α) value of 0,05 when a second slave
instance is added to the cluster.

In Annex D are the results of persisting 5000 nodes on System PC both with two and three
slave instances on the cluster for a test repetition number of 30.

Using the formula with the documented values in Annex D results in an slowdown percentage
of 1,75% when a third instance is added to the cluster:

∆% =
30,981 × 100

30,448
− 100 = 1,75%

(8)

Once again to support the confidence in the result and rule out 𝐻0, a Student T-test for
independent samples was performed comparing the mean throughput differences for each
A/B scenario from Annex D against the 𝐻0 10% slowdown claim. The 10% percentage value
(3,110 (req/s)) as stated in the previous test, represents 10% of the mean time for a single
transaction with the cluster configured with one instance The test was performed with an
alpha (α) value of 0,05.

78

Table 5- T test between the measured mean transaction slowdown with three slaves and 𝐻0 value

T Test: Two Independent Samples

SUMMARY Hyp Mean Diff 0

Groups Count Mean Variance Cohen d

Throughput

difference 30 0,532 0,084385

Maximum

allowed

slowdown 30 3,110 0

Pooled 0,042193 12,54855

T TEST: Equal Variances Alpha 0,05

 std err t-stat df p-value t-crit lower upper sig effect r

One Tail 0,053036 48,60034 58 5,39E-49 1,671553 yes 0,987944

Two Tail 0,053036 48,60034 58 1,08E-48 2,001717 -2,68374 -2,47142 yes 0,987944

T TEST: Unequal Variances Alpha 0,05

 std err t-stat df p-value t-crit lower upper sig effect r

One Tail 0,053036 48,60034 29 1,21E-29 1,699127 yes 0,993917

Two Tail 0,053036 48,60034 29 2,43E-29 2,04523 -2,68605 -2,46911 yes 0,993917

As the p-value is nearly zero, 𝐻0 can be rejected for an alpha value of 0,05. As such 𝐻𝑎, which
states that, the write throughput should not be slowed down by more than 10% for each
instance added to the cluster, can be accepted for an alpha (α) value of 0,05 when a third
slave instance is added to the cluster.

6.2.3 B1: Evaluation of the final state of all the database instances

In this test scenario, the objective is to confirm 𝐻𝑎 which claims that after a test run, all
instances will be consistent with each other regarding the persisted data.

The verification for this test scenario was performed when measurements for scenario A2
were taken. For each cluster instance, including the master, notes were taken at the end of
each test repetition in order to both get the final persisted version (PV) recorder by Replic8
and the number of nodes persisted in Neo4J database. Annex E shows the final results for
each test run when the cluster was running with three slave instances.

From the gathered results, it can be verified that every slave instances become consistent
with the master, both regarding the reported Replic8 local persistence version and also on
Neo4J database. Therefore 𝐻0 can be rejected with some confidence and therefore 𝐻𝑎 which
states that ‘After a test run, all instances will be consistent with each other regarding the
persisted data’ can be confirmed.

79

6.2.4 B2: Slave persistence convergence time

This scenario intends to confirm hypothesis 𝐻𝑎 which states that, after a test run, all instances
should converge to a consistent state with the master instance within a time frame
representing 25% of total test run time.

As with scenario B1, the data needed to verify this scenario were collected when measuring
the performance for scenario A2. Measurements were made for cluster configurations
containing two and three slave instances where a data set of 5000 nodes was persisted on the
master instance.

This validation was performed using two A/B tests. Convergence time (mm:ss) measurements
were taken with cluster composition of a Master, two and three slave instances. The first test
compares the global transaction time on the master instance (A) with the convergence time
for each slave instance for a cluster composed with two slaves instances (B). The second test
compares the global transaction time on the master instance (A) with the convergence time
for each slave instance for a cluster composed with three slaves instances (B).

The difference in % was obtained using the following formula:

∆% =

∑ 𝐶𝑇𝑌
𝑅𝑁 × 100

∑ 𝑂𝑇𝑋
𝑅𝑁

− 100
(9)

Where ∆% is the percentage difference, ∑ 𝐶𝑇𝑌 is the sum of the measured convergence time
for each slave repeated result in ms, ∑ 𝑂𝑇𝑋 is the sum of the measured global operation time
for each repeated result in ms for the master instance. RN is the number of repetitions for
each test.

Annex F shows repeated test scenario times for master operation time and Slave One and
Slave Two convergence times, both in hh:mm:ss format and milliseconds.

Taking the formula with the gathered values for the Slave One results in a convergence time
difference against the master instance of 1,76%.

∆% =
164239,200 × 100

161400,693
− 100 = 1,76%

(10)

Applying the same formula for the values gathered for the Slave Two, the time difference to
the master instance is 0,93%

∆% =
162897,767 × 100

161400,693
− 100 = 0,93%

(11)

To support the confidence in the results, and, as once again the two data sets are sufficient
large, a Student T-test for independent samples was performed comparing the convergence
time differences for each A/B scenario from Annex F against the 𝐻0 25% convergence time.
The 25% percentage value (40350,173 ms) was calculated from the mean operation time in
ms for the master instance (4842020.800 / 30 = 161400,693 (ms)). The test was performed
with an alpha (α) value of 0,05.

80

Table 6 - Slave One convergence times against 𝐻0 limit value for a two slave cluster

T Test: Two Independent Samples

SUMMARY Hyp Mean Diff 0

Groups Count Mean Variance Cohen d

Time

difference 30 2838,507 30874587

Maximum

Time 30 40350,173 0

Pooled 15437294 9,547305

T TEST: Equal Variances Alpha 0,05

 std err t-stat df p-value t-crit lower upper sig effect r

One Tail 1014,472 36,9765516 58 2,53E-42 1,671553 yes 0,979442

Two Tail 1014,472 36,9765516 58 5,05E-42 2,001717 -39542,4 -35481 yes 0,979442

T TEST: Unequal Variances Alpha 0,05

 std err t-stat df p-value t-crit lower upper sig effect r

One Tail 1014,472 36,9765516 29 2,97E-26 1,699127 yes 0,989561

Two Tail 1014,472 36,9765516 29 5,94E-26 2,04523 -39586,5 -35436,8 yes 0,989561

Table 7 - Slave Two convergence times against 𝐻0 limit value for a two slave cluster

T Test: Two Independent Samples

SUMMARY Hyp Mean Diff 0

Groups Count Mean Variance Cohen d

Time

difference 30 1497,073 25718352

Maximum Time

difference 30 40350,173 0

Pooled 12859176 10,83476

T TEST: Equal Variances Alpha 0,05

 std err t-stat df p-value t-crit lower upper sig effect r

One Tail 925,8933 41,9628265 58 2,13E-45 1,671553 yes 0,983927

Two Tail 925,8933 41,9628265 58 4,27E-45 2,001717 -40706,5 -36999,7 yes 0,983927

T TEST: Unequal Variances Alpha 0,05

 std err t-stat df p-value t-crit lower upper sig effect r

One Tail 925,8933 41,9628265 29 8,09E-28 1,699127 yes 0,991866

Two Tail 925,8933 41,9628265 29 1,62E-27 2,04523 -40746,8 -36959,4 yes 0,991866

As both Table 6 and Table 7 shows the p-value is nearly zero for each case. 𝐻0 can be rejected
for an alpha value of 0,05. As such 𝐻𝑎, can be accepted for an alpha (α) value of 0,05 for a
cluster configuration with a Master and two slaves.

81

The Annex G shows the convergence times for slave instances in a cluster composed of a
master instance and three slave instances.

Using the formula with measured values for the Slave One, results in a convergence time
difference against the master instance of 10,53%.

∆% =
178406,767 × 100

161400,693
− 100 = 10,53%

(12)

Applying the same formula for the values gathered for the Slave Two, the time difference to
the master instance is 8,61%

∆% =
175301,733 × 100

161400,693
− 100 = 8,61%

(13)

Using again the above formula for the values gathered for the Slave Three, results in a time
difference to the master instance of 9,16%

% =
176183,067 × 100

161400,693
− 100 = 9,16%

(14)

As with the previous tests, in order support the confidence in the results, a Student T-test for
independent samples was performed comparing the convergence time differences for each
A/B scenario from Annex G against the 𝐻0 25% maximum convergence time. As stated before,
the 25% percentage value (40350,173 ms) was calculated from the mean operation time in ms
for the master instance. As the previous tests, each test was performed with an alpha (α)
value of 0,05.

82

Table 8 - Slave One convergence times against 𝐻0 limit value for a three slave cluster

T Test: Two Independent Samples

SUMMARY Hyp Mean Diff 0

Groups Count Mean Variance Cohen d

Time 30 17006,073 83192919

Maximum Time

difference 30 40350,173 0

Pooled 41596460 3,619503

T TEST: Equal Variances Alpha 0,05

 std err t-stat df p-value t-crit lower upper sig effect r

One Tail 1665,3 14,0182752 58 1,4E-20 1,671553 yes 0,8787

Two Tail 1665,3 14,0182752 58 2,79E-20 2,001717 -26677,5 -20010,7 yes 0,8787

T TEST: Unequal Variances Alpha 0,05

 std err t-stat df p-value t-crit lower upper sig effect r

One Tail 1665,3 14,0182752 29 9,5E-15 1,699127 yes 0,93349

Two Tail 1665,3 14,0182752 29 1,9E-14 2,04523 -26749,9 -19938,3 yes 0,93349

Table 9 - Slave Two convergence times against 𝐻0 limit value e for a three slave cluster

T Test: Two Independent Samples

SUMMARY Hyp Mean Diff 0

Groups Count Mean Variance Cohen d

Time

difference 30 13901,040 83071603

Maximum Time

difference 30 40350,173 0

Pooled 41535802 4,103932

T TEST: Equal Variances Alpha 0,05

 std err t-stat df p-value t-crit lower upper sig effect r

One Tail 1664 15,89446 58 4,21E-23 1,671553 yes 0,901823

Two Tail 1664 15,89446 58 8,43E-23 2,001717 -29780,1 -23118,2 yes 0,901823

T TEST: Unequal Variances Alpha 0,05

 std err t-stat df p-value t-crit lower upper sig effect r

One Tail 1664 15,89446 29 3,74E-16 1,699127 yes 0,947116

Two Tail 1664 15,89446 29 7,47E-16 2,04523 -29852,5 -23045,8 yes 0,947116

83

Table 10 - Slave Three convergence times against 𝐻0 limit value e for a three slave cluster

T Test: Two Independent Samples

SUMMARY Hyp Mean Diff 0

Groups Count Mean Variance Cohen d

Time

difference 30 13901,040 83071603

Maximum Time

difference 30 40350,173 0

Pooled 41535802 4,103932

T TEST: Equal Variances Alpha 0,05

 std err t-stat df p-value t-crit lower upper sig effect r

One Tail 1664 15,89446 58 4,21E-23 1,671553 yes 0,901823

Two Tail 1664 15,89446 58 8,43E-23 2,001717 -29780,1 -23118,2 yes 0,901823

T TEST: Unequal Variances Alpha 0,05

 std err t-stat df p-value t-crit lower upper sig effect r

One Tail 1664 15,89446 29 3,74E-16 1,699127 yes 0,947116

Two Tail 1664 15,89446 29 7,47E-16 2,04523 -29852,5 -23045,8 yes 0,947116

As the three Student T tests show, for an alpha (α) value of 0,05, 𝐻0 can be rejected as the p
values are close to zero. Therefore, 𝐻𝑎 can be accepted for an alpha (α) value of 0,05 for a
cluster configuration with a Master and two three slaves.

Although, a cluster configuration with 4 slaves would probably short the gap to the 25%
convergence time threshold, for the time being there are no plans on having more than 3
slave instances of System PC running at the same time. Also Replic8, is on a prototype state
and not fully optimized yet which can justify the performance hit with the 3 slave
configuration.

6.2.5 C1: Cluster behavior when a slave instance goes offline

This scenario aims to verify the claim 𝐻𝑎 which states that when one or more slave instances
are shutdown, the cluster continues behave the same way, handling transaction replication
successfully. All the remaining online instances should continue to receive and process
transactions. Also, when the failing slave comes back online again, it should re-sync with the
master instance in order to achieve persistence convergence.

For this scenario, three tests were performed, one disconnecting one slave, another
disconnecting two slaves, and the last one disconnecting all the three slaves. For all the tests,
the slave is brought back online in active mode in order to register itself within the cluster and
request the missing transactions.

84

Figure 39 - Slave disconnection from the cluster

During each test it was observed that the cluster remained unaffected when one or more
slaves were disconnected. As can be seen in Figure 39, the transaction broadcast flow
continued as usual for the remaining online slaves. Also, each slave that went offline
successfully registered itself within the cluster and its persistence version converged with the
master instance after being brought back online.

From these results, it can be seen that the master instance continued to work properly, the
remaining online slaves also continued to receive transactions. As such 𝐻0 can be rejected
with confidence, and 𝐻𝑎 can be confirmed.

6.2.6 C2: Cluster behavior when the master instance goes offline

The objective of this scenario is to verify that the claim 𝐻𝑎 which states that after shutting
down the master instance, the failover is successfully performed and another instance
immediately assumes the master role, ensuring the cluster remain available and accepting
writes. To test this scenario, the master instance was shut down, and it was verified if the
failover to the next slave in the hierarchy was processed successfully. This test was repeated
three times.

85

Figure 40 - Master Failover to next in hierarchy slave

The test performed successfully confirms that the failover was successfully executed to the
next slave in the hierarchy when the master instance goes offline. It was also verified that the
new master informed the remaining slave instances about the new cluster composition.

These results show that the master failover was successfully handled by the next in the
hierarchy slave instance. As such, 𝐻0 can be rejected with confidence, and 𝐻𝑎 can be
confirmed.

6.3 Conclusion

The test scenarios and the results gathered in this chapter played a very important role, both
to assert the functionality and the quality attributes of the framework. During this phase some
minor coding problems were identified and corrected.

The results obtained for each scenario, shows that Replic8 is compliant with the prerequisites
established both in Evaluation and Functional Requirements chapters.

86

87

7 Conclusions

This master thesis, and the work described in it, aimed to address a real world problem,
adding cluster capabilities to an application that is already in production, serving thousands of
requests per day, without resorting to any kind of commercial solution.

In order to solve the problem in hand, a thoughtfully study both on the major database
replication concepts, its advantages and pitfalls, and the state of the art regarding existing
replication frameworks has been performed, evaluating their ability to solve the exposed
problem. The knowledge and information gathered allowed the development of Replic8, a
replication framework flexible enough to be applied in any java backend application
regardless its persistence type, while addressing all the requirements that led to its
development.

Replic8 was developed following the more relaxed BASE principle, gearing it towards the
Availability and Partition Tolerant ends of the CAP theorem in trade for consistency. The work
presented, not only addresses the original problem, but can also serve as a good base to be
further developed, and used by others, as it is implementation is not bound in any way to the
application that led to its development.

The development of this master thesis not only resulted in the contribution of a new
replication framework, but also played an important role providing very useful knowledge on
key replication concepts that will be more and more important in the future with the
proliferation of distributed cloud based infrastructures.

Through this work, a clear identification of the goals and quality attributes for the replication
framework to be developed were written. These goals assured that the developed framework
would successfully address the problem in hand, and were later validated when Replic8 was
put to test.

The study performed on existing replication frameworks was very helpful, not only to evaluate
the ability of those frameworks to solve the exposed problem, but also to learn how these
frameworks addressed common replication problems.

The design and development of Replic8 posed a considerable technical challenge that in the
end was successfully overcome. The biggest challenge was to design a solution that would
work for any type of database the application interacts with. Although the objective was
achieved, it imposed some tradeoffs.

The validation of the framework was performed following a set of pre-established scenarios
derived from the identified goals and quality attributes. Replic8 successfully passed in all
scenarios, which assures the compliance with its functional requirements. Nevertheless,
during this process, some limitations and technical improvements were identified, and should
be addressed in future developments.

88

7.1 Open Issues and Future Work

Although the main objectives for the proposed solution in this document were successfully
achieved, there are certainly some improvements left to be done. Chapter 5.6 (Limitations),
already identifies and exposes some of those issues. The following paragraphs add some
considerations about a few identified technical improvements that would improve Replic8
performance and usability.

Currently there is no rotation policy for the recovery logger file. This means that this file will
grow over time, deteriorating both read and write times. A possible approach is to create a
new file each N number of transactions. This way both reads and writes would be redirected
to a much smaller file, improving the correspondent operation performance.

Add support to include statefull java beans context along with the transaction itself is an
important task as it would wide up the possible applications for Replic8.

Currently, the major open issue in Replic8 is how to recover from a master instance failure
that has successfully committed a transaction to the database and gone offline before writing
it to the recovery log file and send it to the remainder cluster instances. The resolution for this
issue may involve including the writing to the recovery log file and broadcasting the
transaction at least to the next in line slave instance inside the same transaction as the
commit to the database.

As future work, in order to help managing the cluster and monitoring its health, Replic8 would
benefit from having a Front End application to carry on such tasks. This application would
provide tools for cluster instances configuration, cluster health monitoring and also some
statistic metrics about the cluster activity.

A proper software licensing will also be studied and applied in the future in order to better
manage the distribution of the Replic8 clustering framework.

89

References

Allee, V., 2008. Value network analysis and value conversion of tangible and intangible assets.

Journal of Intellectual Capital, 9(1), pp.5-24. Available at:

http://dx.doi.org/10.1108/14691930810845777 .

Amazon, n.d. Amazon Web Services - Cloud Computing Services. [Online] Available at:

https://aws.amazon.com/ [Accessed 13 February 2016].

Amazon, n.d. AWS | Amazon Relational Database Service. [Online] Available at:

https://aws.amazon.com/rds/ [Accessed 13 February 2016].

ANSI X3.135-1992, 1992. American National Standard for Information Systems -- Database

Language -- SQL.

Armstrong, J., Virding, R., Wikstr & Williams, M., 1993. Concurrent programming in ERLANG.

Berenson, H. et al., 1995. A Critique of ANSI SQL Isolation Levels. In Proceedings of the 1995

ACM SIGMOD International Conference on Management of Data. New York, NY, USA, 1995.

ACM.

Bernstein, P.A., Hadzilacos, V. & Goodman, N., 1987. Concurrency control and recovery in

database systems. Addison-wesley New York.

Brebner, P. & Gosper, J., 2003. How Scalable is J2EE Technology? SIGSOFT Softw. Eng. Notes,

28(3), pp.4-4. Available at: http://doi.acm.org/10.1145/773126.773139.

Brewer, E.A., 2000. Towards robust distributed systems. In PODC., 2000.

Brewer, E., 2012. CAP twelve years later: How the" rules" have changed. Computer, 45(2),

pp.23-29.

Carnevale, P.J. & Pruitt, D.G., 1992. Negotiation and mediation. Annual review of psychology,

43(1), pp.531-82.

Cecchet, E., Candea, G. & Ailamaki, A., 2008. Middleware-based Database Replication: The

Gaps Between Theory and Practice. In Proceedings of the 2008 ACM SIGMOD International

Conference on Management of Data. New York, NY, USA, 2008. ACM.

Cecchet, E., Marguerite, J. & Zwaenepole, W., 2004. C-JDBC: Flexible Database Clustering

Middleware. In Proceedings of the Annual Conference on USENIX Annual Technical Conference.

Berkeley, CA, USA, 2004. USENIX Association.

Chen, S. et al., 2011. TPC-E vs. TPC-C: Characterizing the New TPC-E Benchmark via an I/O

Comparison Study. SIGMOD Rec., 39(3), pp.5-10. Available at:

http://doi.acm.org/10.1145/1942776.1942778.

90

Coulouris, G.F., Dollimore, J. & Kindberg, T., 2005. Distributed systems: concepts and design.

pearson education.

Daudjee, K. & Salem, K., 2006. Lazy database replication with snapshot isolation. In

Proceedings of the 32nd international conference on Very large data bases., 2006.

Elnikety, S., Dropsho, S. & Pedone, F., 2006. Tashkent: uniting durability with transaction

ordering for high-performance scalable database replication. In ACM SIGOPS Operating

Systems Review., 2006.

Filzmoser, M. & Vetschera, R., 2008. A classification of bargaining steps and their impact on

negotiation outcomes. Group Decision and Negotiation, 17(5), pp.421-43.

Fox, A. & Brewer, E.A., 1999. Harvest, yield, and scalable tolerant systems. In Hot Topics in

Operating Systems, 1999. Proceedings of the Seventh Workshop on., 1999.

Fox, A. et al., 1997. Cluster-Based Scalable Network Services. ACM.

Gamma, E., 1995. Design patterns: elements of reusable object-oriented software. Pearson

Education India.

Gilbert, S. & Lynch, N., 2002. Brewer's conjecture and the feasibility of consistent, available,

partition-tolerant web services. ACM SIGACT News, 33(2), pp.51-59.

Gilbert, S. & Lynch, N.A., 2012. Perspectives on the CAP Theorem., 2012.

Google, n.d. AngularJS - Superheroic JavaScript MVW Framework. [Online] Available at:

https://angularjs.org/ [Accessed 12 February 2016].

Gray, J., 1978. Notes on Data Base Operating Systems. In Operating Systems, An Advanced

Course. London, UK, UK, 1978. Springer-Verlag.

Gray, J., Helland, P., O'Neil, P. & Shasha, D., 1996. The Dangers of Replication and a Solution.

SIGMOD Rec., 25(2), pp.173-82. Available at: http://doi.acm.org/10.1145/235968.233330.

Gray, J.N., Lorie, R.A., Putzolu, G.R. & Traiger, I.L., 1976. Granularity of locks and degrees of

consistency in a shared data base. In IFIP Working Conference on Modelling in Data Base

Management Systems., 1976.

Gray, J. & Siewiorek, D.P., 1991. High-availability computer systems. Computer, 24(9), pp.39-

48.

Haerder, T. & Reuter, A., 1983. Principles of Transaction-oriented Database Recovery. ACM

Comput. Surv., 15(4), pp.287-317. Available at: http://doi.acm.org/10.1145/289.291.

HAProxy, n.d. HAProxy - The Reliable, High Performance TCP/HTTP Load Balancer. [Online]

Available at: http://www.haproxy.org/ [Accessed 13 February 2016].

Helland, P., 2007. Life beyond Distributed Transactions: an Apostate's Opinion. In CIDR., 2007.

91

Koen, P.A. et al., 2002. Fuzzy front end: effective methods, tools, and techniques. Wiley, New

York, NY.

Koen, P. et al., 2001. Providing clarity and a common language to the “fuzzy front end”.

Research-Technology Management, 44(2), pp.46-55.

Laddad, R., 2003. AspectJ in action: practical aspect-oriented programming. Dreamtech Press.

Lieberman, H.J. et al., 1997. Negotiating barriers to intensive case management: The triple win

model. Administration and Policy in Mental Health and Mental Health Services Research, 24(3),

pp.251-56.

Liu, L. & Zsu, M.T., 2009. Encyclopedia of Database Systems. 1st ed. Springer Publishing

Company, Incorporated.

Management Study Guide, n.d. Models of Negotiation. [Online] Available at:

http://www.managementstudyguide.com/models-of-negotiation.htm [Accessed 14 February

2016].

Marcus, E. & Stern, H., 2003. Blueprints for high availability. John Wiley \& Sons.

Michael, M., Moreira, J.E., Shiloach, D. & Wisniewski, R.W., 2007. Scale-up x scale-out: A case

study using nutch/lucene. In Parallel and Distributed Processing Symposium, 2007. IPDPS 2007.

IEEE International., 2007.

Montag, D., 2013. Understanding neo4j scalability. White Paper, Neotechnology.

Neo4J, n.d. Neo4j Graph Database. [Online] Available at: http://neo4j.com/product/

[Accessed 12 February 2016].

Nicola, S., 2015. [Online] Available at:

https://moodle.isep.ipp.pt/pluginfile.php/91647/mod_resource/content/2/An%C3%A1lise_Va

lor_Aula1.pdf [Accessed 12 February 2016].

Nicola, S., Ferreira, E.P. & Ferreira, J.J.P., 2012. A novel framework for modeling value for the

customer, an essay on negotiation. International Journal of Information Technology & Decision

Making; Vol. 11, Issue 3, 11(03), pp.661-703.

Nicola, S., Ferreira, E.P. & Ferreira, J.J.P., 2014. A Quantitative Model for Decomposing &

Assessing the Value for the Customer. Journal of Innovation Management, 2(1), pp.104-38.

Osterwalder, A., 2004. The business model ontology: A proposition in a design science

approach.

Ozsu, M.T., 2007. Principles of Distributed Database Systems. 3rd ed. Upper Saddle River, NJ,

USA: Prentice Hall Press.

92

Pivotal Software, n.d. RabbitMQ - Messaging that just works. [Online] Available at:

https://www.rabbitmq.com/ [Accessed 13 February 2016].

Pivotal Software, n.d. Spring Framework. [Online] Available at:

https://projects.spring.io/spring-framework/ [Accessed 12 February 2016].

Plattner, C. & Alonso, G., 2004. Ganymed: Scalable replication for transactional web

applications. In Proceedings of the 5th ACM/IFIP/USENIX international conference on

Middleware., 2004.

Poess, M. & Floyd, C., 2000. New TPC Benchmarks for Decision Support and Web Commerce.

SIGMOD Rec., 29(4), pp.64-71. Available at: http://doi.acm.org/10.1145/369275.369291.

PostgreSQL, n.d. The world's most advanced open source database. [Online] Available at:

www.postgresql.org [Accessed 12 February 2016].

Pritchett, D., 2008. Base: An acid alternative. Queue, 6(3), pp.48-55.

Saito, Y. & Shapiro, M., 2005. Optimistic Replication. ACM Comput. Surv., 37(1), pp.42-81.

Available at: http://doi.acm.org/10.1145/1057977.1057980.

Tanenbaum, A.S. & Van Steen, M., 2002. Distributed systems: principles and paradigms.

Prentice hall Englewood Cliffs.

TIOBE Software BV, n.d. TIOBE - TIOBE Index. [Online] Available at:

http://www.tiobe.com/tiobe-index/ [Accessed 28 December 2016].

Woodall, T., 2003. Conceptualising'value for the customer': an attributional, structural and

dispositional analysis. Academy of marketing science review, 2003, p.1.

Zeithaml, V.A., 1988. Consumer perceptions of price, quality, and value: a means-end model

and synthesis of evidence. The Journal of marketing, pp.2-22.

93

Annex A – Canvas Model

 The following figure represents the Canvas Model described in Value Analysis.

Figure 41 - Canvas Model

94

Annex B - A/B test throughput for
SystemPC w/o and with Replic8

Table 11 - A/B test throughput for SystemPC w/o and with Replic8

Repetition Time W/O Replic8 Time with Replic8

 Throughput w/o

R8 (req/s)

Throughput with

R8 (req/s)

1 00:02:37,320 00:02:39,352 31,782 31,377

2 00:02:37,802 00:02:41,702 31,685 30,921

3 00:02:36,638 00:02:43,658 31,921 30,552

4 00:02:34,550 00:02:38,260 32,352 31,594

5 00:02:35,464 00:02:40,986 32,162 31,059

6 00:02:36,738 00:02:40,886 31,900 31,078

7 00:02:37,213 00:02:40,666 31,804 31,120

8 00:02:36,395 00:02:41,366 31,970 30,985

9 00:02:37,118 00:02:41,799 31,823 30,903

10 00:02:35,719 00:02:39,012 32,109 31,444

11 00:02:36,108 00:02:43,281 32,029 30,622

12 00:02:36,731 00:02:40,101 31,902 31,230

13 00:02:36,399 00:02:40,096 31,970 31,231

14 00:02:35,029 00:02:41,285 32,252 31,001

15 00:02:35,925 00:02:41,309 32,067 30,996

16 00:02:35,519 00:02:42,099 32,150 30,845

17 00:02:34,997 00:02:39,348 32,259 31,378

18 00:02:34,596 00:02:41,369 32,342 30,985

19 00:02:35,283 00:02:40,101 32,199 31,230

20 00:02:35,109 00:02:39,547 32,235 31,339

21 00:02:37,455 00:02:41,090 31,755 31,056

22 00:02:37,386 00:02:38,491 31,769 31,548

23 00:02:37,277 00:02:40,429 31,791 31,166

24 00:02:37,797 00:02:42,362 31,686 30,795

25 00:02:35,024 00:02:42,373 32,253 30,793

26 00:02:35,712 00:02:41,010 32,111 31,056

27 00:02:36,144 00:02:39,253 32,022 31,397

28 00:02:37,021 00:02:40,807 31,843 31,093

29 00:02:35,659 00:02:41,571 32,121 30,946

30 00:02:37,688 00:02:39,679 31,708 31,313

95

Annex C - A/B test throughput for Replic8
with one and two slaves

Table 12 - A/B test throughput for Replic8 with one and two slaves

Repetition

Time W/O

Replic8

Time with

Replic8

 Throughput with

one slave (req/s)

 Throughput with

two slaves (req/s)

1 00:02:39,352 00:02:41,138 31,377 31,029

2 00:02:41,702 00:02:43,429 30,921 30,594

3 00:02:43,658 00:02:41,295 30,552 30,999

4 00:02:38,260 00:02:41,495 31,594 30,961

5 00:02:40,986 00:02:40,558 31,059 31,141

6 00:02:40,886 00:02:41,543 31,078 30,952

7 00:02:40,666 00:02:40,743 31,120 31,106

8 00:02:41,366 00:02:42,027 30,985 30,859

9 00:02:41,799 00:02:41,513 30,903 30,957

10 00:02:39,012 00:02:39,794 31,444 31,290

11 00:02:43,281 00:02:41,856 30,622 30,892

12 00:02:40,101 00:02:42,303 31,230 30,807

13 00:02:40,096 00:02:41,684 31,231 30,925

14 00:02:41,285 00:02:42,139 31,001 30,838

15 00:02:41,309 00:02:40,39 30,996 31,250

16 00:02:42,099 00:02:40,787 30,845 31,097

17 00:02:39,348 00:02:44,276 31,378 30,437

18 00:02:41,369 00:02:41,875 30,985 30,888

19 00:02:40,101 00:02:39,81 31,230 31,446

20 00:02:39,547 00:02:40,412 31,339 31,170

21 00:02:41,09 00:02:43,692 31,056 30,545

22 00:02:38,491 00:02:42,086 31,548 30,848

23 00:02:40,429 00:02:39,867 31,166 31,276

24 00:02:42,362 00:02:40,6 30,795 31,250

25 00:02:42,373 00:02:39,973 30,793 31,255

26 00:02:41,01 00:02:41,167 31,056 31,024

27 00:02:39,253 00:02:42,928 31,397 30,688

28 00:02:40,807 00:02:40,448 31,093 31,163

29 00:02:41,571 00:02:41,152 30,946 31,027

30 00:02:39,679 00:02:42,839 31,313 30,705

96

Annex D - A/B test throughput for
Replic8 with two and three slaves

Table 13 - A/B test throughput for Replic8 with two and three slaves

Repetition

Time with two

slaves

Time with three

slaves

 Throughput

with two slaves

(req/s)

 Throughput with

three slaves

(req/s)

1 00:02:41,138 00:02:45,122 31,029 30,281

2 00:02:43,429 00:02:44,829 30,594 30,334

3 00:02:41,295 00:02:42,694 30,999 30,733

4 00:02:41,495 00:02:43,557 30,961 30,570

5 00:02:40,558 00:02:45,200 31,141 30,302

6 00:02:41,543 00:02:45,444 30,952 30,222

7 00:02:40,743 00:02:44,886 31,106 30,324

8 00:02:42,027 00:02:45,611 30,859 30,191

9 00:02:41,513 00:02:42,896 30,957 30,694

10 00:02:39,794 00:02:43,790 31,290 30,675

11 00:02:41,856 00:02:45,763 30,892 30,164

12 00:02:42,303 00:02:44,814 30,807 30,337

13 00:02:41,684 00:02:44,214 30,925 30,448

14 00:02:42,139 00:02:44,555 30,838 30,385

15 00:02:40,390 00:02:43,831 31,250 30,519

16 00:02:40,787 00:02:43,842 31,097 30,517

17 00:02:44,276 00:02:43,362 30,437 30,607

18 00:02:41,875 00:02:45,213 30,888 30,264

19 00:02:39,810 00:02:44,726 31,446 30,353

20 00:02:40,412 00:02:42,583 31,170 30,754

21 00:02:43,692 00:02:45,387 30,545 30,232

22 00:02:42,086 00:02:43,550 30,848 30,675

23 00:02:39,867 00:02:44,200 31,276 30,487

24 00:02:40,600 00:02:44,781 31,250 30,343

25 00:02:39,973 00:02:46,048 31,255 30,112

26 00:02:41,167 00:02:42,882 31,024 30,697

27 00:02:42,928 00:02:45,812 30,688 30,155

28 00:02:40,448 00:02:42,740 31,163 30,864

29 00:02:41,152 00:02:42,330 31,027 30,864

30 00:02:42,839 00:02:44,789 30,705 30,342

97

Annex E - Persistence convergence
verification results

Table 14 - Persistence convergence verification results

Repetition

Master PV /

Persisted Nodes

Slave One PV /

Persisted Nodes

Slave TwoPV /

Persisted Nodes

Slave Three PV /

Persisted Nodes Result

1 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

2 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

3 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

4 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

5 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

6 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

7 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

8 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

9 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

10 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

11 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

12 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

13 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

14 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

15 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

16 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

17 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

18 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

19 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

20 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

21 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

22 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

23 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

24 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

25 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

26 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

27 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

28 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

29 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

30 5000 / 5000 5000 / 5000 5000 / 5000 5000 / 5000 OK

98

Annex F - Persistence convergence times
for a two slave cluster

Table 15 - Persistence convergence times for a two slave cluster

Repetition

Master

operation time

Slave One

convergence

time

Slave Two

convergence

time

Master

operation

time (ms)

Slave One

convergence

time (ms)

Slave Two

convergence

time (ms)

1 00:02:41,138 00:02:44,957 00:02:37,494 161138 164957 157494

2 00:02:43,429 00:02:36,462 00:02:46,998 163429 156462 166998

3 00:02:41,295 00:02:43,164 00:02:49,138 161295 163164 169138

4 00:02:41,495 00:02:34,703 00:02:37,937 161495 154703 157937

5 00:02:40,558 00:02:39,654 00:02:47,530 160558 159654 167530

6 00:02:41,543 00:02:37,488 00:02:37,811 161543 157488 157811

7 00:02:40,743 00:02:48,144 00:02:44,471 160743 168144 164471

8 00:02:42,027 00:02:50,389 00:02:47,024 162027 170389 167024

9 00:02:41,513 00:02:50,449 00:02:47,609 161513 170449 167609

10 00:02:39,794 00:02:48,456 00:02:36,159 159794 168456 156159

11 00:02:41,856 00:02:38,927 00:02:40,171 161856 158927 160171

12 00:02:42,303 00:02:41,251 00:02:44,318 162303 161251 164318

13 00:02:41,684 00:02:37,399 00:02:35,838 161684 157399 155838

14 00:02:42,139 00:02:49,528 00:02:41,581 162139 169528 161581

15 00:02:40,390 00:02:50,964 00:02:38,149 160000 170964 158149

16 00:02:40,787 00:02:43,381 00:02:49,784 160787 163381 169784

17 00:02:44,276 00:02:45,856 00:02:38,990 164276 165856 158990

18 00:02:41,875 00:02:46,156 00:02:41,489 161875 166156 161489

19 00:02:39,810 00:02:49,350 00:02:36,512 159001 169350 156512

20 00:02:40,412 00:02:33,539 00:02:33,456 160412 153539 153456

21 00:02:43,692 00:02:41,179 00:02:50,214 163692 161179 170214

22 00:02:42,086 00:02:44,956 00:02:50,623 162086 164956 170623

23 00:02:39,867 00:02:47,071 00:02:49,920 159867 167071 169920

24 00:02:40,600 00:02:37,315 00:02:44,158 160001 157315 164158

25 00:02:39,973 00:02:44,658 00:02:40,736 159973 164658 160736

26 00:02:41,167 00:02:49,645 00:02:48,382 161167 169645 168382

27 00:02:42,928 00:02:46,276 00:02:48,081 162928 166276 168081

28 00:02:40,448 00:02:45,504 00:02:37,097 160448 165504 157097

29 00:02:41,152 00:02:50,850 00:02:38,068 161152 170850 158068

30 00:02:42,839 00:02:49,505 00:02:47,195 162839 169505 167195

99

Annex G - Persistence convergence times
for a three slave cluster

Table 16 - Persistence convergence times for a three slave cluster

Repetition

Master

operation

time

Slave One

convergence

time

Slave Two

convergence

time

Slave Three

convergence

time

Master

operation

time (ms)

Slave One

convergenc

e time (ms)

Slave Two

convergence

time (ms)

Slave Three

convergence

time (ms)

1 00:02:41,138 00:02:48,600 00:02:52,218 00:02:40,966 161138 168600 172218 160966

2 00:02:43,429 00:03:00,441 00:03:01,485 00:03:12,839 163429 180441 181485 192839

3 00:02:41,295 00:03:13,419 00:02:43,711 00:02:50,687 161295 193419 163711 170687

4 00:02:41,495 00:02:59,125 00:02:41,324 00:02:48,642 161495 179125 161324 168642

5 00:02:40,558 00:02:46,377 00:02:50,383 00:03:07,053 160558 166377 170383 187053

6 00:02:41,543 00:02:41,163 00:03:06,064 00:03:02,722 161543 161163 186064 182722

7 00:02:40,743 00:03:07,900 00:02:42,048 00:02:49,715 160743 187900 162048 169715

8 00:02:42,027 00:03:08,240 00:03:08,919 00:03:02,501 162027 188240 188919 182501

9 00:02:41,513 00:02:58,939 00:03:12,348 00:03:00,256 161513 178939 192348 180256

10 00:02:39,794 00:02:52,037 00:02:57,887 00:02:57,395 159794 172037 177887 177395

11 00:02:41,856 00:02:55,698 00:02:48,889 00:02:48,652 161856 175698 168889 168652

12 00:02:42,303 00:02:50,676 00:02:51,289 00:03:02,830 162303 170676 171289 182830

13 00:02:41,684 00:02:54,352 00:02:54,133 00:02:56,405 161684 174352 174133 176405

14 00:02:42,139 00:03:11,639 00:02:54,269 00:02:49,027 162139 191639 174269 169027

15 00:02:40,390 00:03:04,933 00:03:04,693 00:02:59,173 160000 184933 184693 179173

16 00:02:40,787 00:03:00,248 00:03:08,844 00:03:02,617 160787 180248 188844 182617

17 00:02:44,276 00:03:06,404 00:02:50,318 00:02:53,710 164276 186404 170318 173710

18 00:02:41,875 00:02:53,054 00:02:50,007 00:02:58,089 161875 173054 170007 178089

19 00:02:39,810 00:02:53,121 00:02:58,301 00:03:04,657 159001 173121 178301 184657

20 00:02:40,412 00:02:51,648 00:03:05,630 00:03:09,993 160412 171648 185630 189993

21 00:02:43,692 00:02:41,009 00:02:57,113 00:02:50,155 163692 161009 177113 170155

22 00:02:42,086 00:02:45,620 00:02:41,340 00:03:10,692 162086 165620 161340 190692

23 00:02:39,867 00:03:01,734 00:02:55,334 00:02:46,866 159867 181734 175334 166866

24 00:02:40,600 00:03:09,971 00:02:43,790 00:02:52,279 160001 189971 163790 172279

25 00:02:39,973 00:03:09,179 00:03:04,349 00:02:49,849 159973 189179 184349 169849

26 00:02:41,167 00:03:05,323 00:02:57,954 00:03:01,552 161167 185323 177954 181552

27 00:02:42,928 00:03:00,797 00:02:50,274 00:02:47,288 162928 180797 170274 167288

28 00:02:40,448 00:02:53,603 00:02:47,115 00:02:50,592 160448 173603 167115 170592

29 00:02:41,152 00:03:00,646 00:03:05,306 00:02:55,544 161152 180646 185306 175544

30 00:02:42,839 00:03:06,307 00:02:53,717 00:02:42,746 162839 186307 173717 162746

