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“Всі вони кандидати у якісь науки. Що таке "кандидат", ми добре знаємо. Явина мати 

була кандидатом у депутати районної Ради. Її біографія з фотографією висіла на стіні 
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— Щось довго їх не вибирають, — казав Ява. — Мабуть, не дуже вдатні до наук. Як 

ми з тобою.” 

- Всеволод Нестайко  "Тореадори з Васюківки"



 

 

ABSTRACT 

The tumor microenvironment, including immune cells, fibroblasts and vasculature, 

profoundly affects tumor development by initially opposing, but eventually facilitating tumor 

growth, vascularization and spread. Though corrupted by the growing tumor, such cells 

remain non-transformed and thus, with proper cues, are possible to direct toward their 

physiological anti-tumor function. Understanding the mechanisms by which the tumor 

microenvironment is shaped, before and during tumor growth, has been the principal aim of 

this thesis. 

 

In paper I, we demonstrate that the composition of tumor-associated macrophages (TAMs) 

can be modulated by selective proliferation of TAM subsets. We identify SEMA3A as a 

factor potentiating such selective proliferation of anti-tumor TAMs. In paper II we extend 

the study of SEMA3A’s effect on tumor immunity by showing that it can functionally alter 

the phenotype of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC). As a 

consequence of its effects on TAMs and PMN-MDSCs, the tumor microenvironment is 

infiltrated by activated cytotoxic lymphocytes which act to obstruct tumor growth.  

 

In paper III we show that regulation of mRNA translation shapes the phenotype of TAMs 

as they become increasingly pro-tumor during tumor growth. We further show that transcripts 

translationally activated during tumor growth in TAMs were regulated similarly upon M2-

polarization of macrophages in vitro. Selective inhibition of the MNK2/phospho-eIF4E 

pathway, which impinges on mRNA translation, functionally altered in vitro M2-polarized 

macrophages toward a pro-inflammatory phenotype. This suggests that modulation of mRNA 

translation is a potential target in TAM-based anti-tumor therapies.  

 

We further emphasize the importance of mRNA translation in regulating gene expression in 

the microenvironment in paper IV, where we show changes in its efficiency to drive cancer-

associated gene expression alterations in the stroma of patients with chronic obstructive 

pulmonary disease (COPD). Depending on the lung function, two distinct gene expression 

programs were discovered. These were enriched for proteins previously identified in 

fibroblast secretomes that promoted cancer initiation in animal models, highlighting the 

involvement of non-transformed cells in neoplastic transformation. 

 

In paper V, we show that class switch junctions in B cells from patients with BRCA1 

mutations display decreased use of non-homologous end joining pathway in favor of the 

alternative end-joining pathway. This implicates a role for BRCA1 in maintaining genome 

stability and tumor suppression outside of its recognized role in mediating homologous 

recombination during cell division.  
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FOREWORD 

 
“I am not what you would call a civilized man!”  

-Captain Nemo 

 

At some point during the evolution of the eukaryotic cell, it transitioned from life as an 

isolated unit to a communal existence. Giving up self-sufficiency, it opted to share resources 

and responsibilities with its kin who, by virtue of shared genes, were united in the goal of 

passing them on.  So began the era of multicellular organisms and with it, increasing internal 

and external complexity of the cells themselves and the organisms they now built up. Being 

a part of an organized whole enabled the components of specialized tissues and organs to 

become more adept at their respective functions, improving the evolutionary fitness of the 

organism - but it also made each individual component subordinate to the needs of the 

organism as a whole.  A cell’s life cycle thus became carefully measured, with regulatory 

mechanisms set in place to make sure that it expresses appropriate genes at appropriate times, 

divides when needed and dies if signaled to do so.  

 

Cancer represents a mutiny against this order. Through a gradual accumulation of genomic 

and epigenomic alterations, cancer cells acquire several distinct abilities – hallmarks – that 

distinguish them from their non-transformed counterparts [1, 2]. No longer constrained by 

the strict etiquette governing multicellular cooperation, cancer cells produce their own 

growth factors, ignore suppressive signals in their microenvironment, evade hostile immune 

cells, proliferate indefinitely, supply themselves with nutrients and constantly evolve their 

genome to keep abreast of environmental changes during their - now indefinite - lifespan.  

 

The cancer cell is thus a distinct cell type with an agenda clearly at odds to that of the 

organism as a whole.  Indeed, upon histological examination of tissue sections, abnormal 

neoplastic cells are clearly distinguished in the orderly architecture of healthy tissue [3]. Its 

hallmark abilities notwithstanding, the growing tumor mass would be unable to sustain its 

internal infrastructure and weather external pressure without considerate collaboration with 

resident “normal” cells [4]. The scientific community only relatively recently has begun to 

look outside of the transformed cell to understand tumor development, but in doing so, has 

now discovered the involvement of tumor-associated cells behind nearly all the hallmark 

abilities distinguishing cancer [4]. Tumor-associated cells are found accompanying the tumor 

from the very early neoplasm – perhaps even contributing to its initiation [5] – and participate 

throughout tumor growth, eventually promoting its ultimate dissemination and colonization 

[6].  

 

A transformed cell is beyond physiological control. A tumor-associated cell remains attuned 

to the cues of the organism. Understanding the mechanisms driving non-transformed cells to 

promote tumor progression, particularly on the level of gene expression, and the ways by 

which these mechanisms can be targeted to reverse this process, constitute the overarching 

aims of this thesis.  
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1 COMPONENTS OF THE TUMOR MICROENVIRONMENT 

 

“…of the two natures that contended in the field of my consciousness, even if I could rightly be said to be 

either, it was only because I was radically both” 

-Dr. Jekyll 

 

The metazoan immune system has evolved to recognize and neutralize threats to homeostasis. 

A mass of renegade cells unresponsive to regulatory signals is a bona fide threat, and indeed, 

the immune system responds and eliminates many neoplastic cells [7]. The concept of cancer 

immunosurveillance was initially difficult to reconcile with the idea that the immune 

system’s main objective is to eliminate external, not internal, danger. Nonetheless, 

spontaneous tumor regression sometimes seen in humans and tumor-transplantation 

experiments in mice suggested that there is an immunological component preventing tumor 

initiation [8]. The combined weight of studies in animal models and observed cancer 

incidence rates in immunodeficient patients over the years that followed have conclusively 

shown that the immune system can – and does – prevent tumor formation [9].  

 

The inflammatory environment that initiates the removal of potentially transformed cells is 

stressful for the cells that inhabit it. When unresolved, it can, in a positive feedback loop, 

stimulate further oncogenic transformation. It has been suggested that as many as 20% of all 

cancers can be linked to chronic inflammation [10]. Some transformed cells are less 

immunogenic and thus escape immunosurveillance. What follows then is a complex tug of 

war between proliferating cancer cells and resident cells of the tissue. Infiltrating immune 

cells, vascular  and lymphatic endothelial cells, and mesenchymal supporting cells (e.g., 

fibroblasts and pericytes) will be found in varying proportions in all established tumors [4], 

but their phenotype will vary depending on the stage of the tumor [11]. The current 

conceptual model (Figure 1) proposes that in the course of tumor progression, cancer cells 

exert increasingly stronger influence over their microenvironment. As the tumor grows, it 

recruits or reprograms associated cells that dampen immune response, supply growth factors, 

Figure 1 Conceptual model of changes in the tumor microenvironment during tumor progression. The list of cell 

types pictured is meant to be illustrative but not exhaustive.  
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nutrients and oxygen, transport waste products and remodel the extracellular matrix (ECM) 

to further tumor growth and spread.  

 

The concept of duality is recurring in the study of infiltrating tumor-associated immune cells. 

The same – or an ontologically closely related – cells are often found to have both tumor-

promoting and tumor-adverse functions (Figure 1). A macrophage, a neutrophil or a dendritic 

cell in the early stages of tumor development is likely to lyse tumor cells, promote 

inflammation, recruit and/or activate cytotoxic cells and attempt to clear the neoplasm. As 

the tumor develops, these cells instead will secrete immunosuppressive factors.  It is worth 

highlighting that while terms such as “pro-” or “anti-tumor” are useful to differentiate the 

phenotypes these cells adopt, the cells themselves take no stand vis-à-vis tumor progression.  

They perform particular functions in response to environmental cues, functions that, while 

“pro-tumor” in the context of tumor development, are equally “pro-organism” under normal 

physiological conditions. Understanding these cues and how they are hijacked by the tumor 

would provide an inlet to manipulate the composition of the tumor microenvironment and, 

as a consequence, an ability to direct the overall tumor fate.     

 

1.1 TUMOR-ASSOCIATED MACROPHAGES  

1.1.1 Macrophage roles in non-pathological physiology 

 

While the hallmark ability of the macrophages - to phagocytize - makes them integral 

components of innate immunity, the functional significance of these cells extends beyond the 

immune system [12]. Virtually all aspects of an organism’s physiology – from embryogenesis 

to maintenance of homeostasis during adulthood – involve the participation of the 

macrophage. During embryonic development they participate in tissue patterning - both 

physically, by clearing unwanted cells while guiding tissue or vessel out-growth along 

defined paths [13] and chemically, by secreting factors that modulate the ECM [14]. They 

play important roles in angiogenesis and lymphangiogenesis, as they produce angiogenic- 

and lymphangiogenic factors such as Vascular Endothelial Factor (VEGF)-A [15] and 

VEGF-C [16]. They regulate metabolism, helping to maintain insulin sensitivity in healthy 

lean animals but promoting insulin resistance during pathogen invasion to fuel the actions of 

activated immune cells [17] [18].  Finally, they can modulate apoptosis, both inducing and 

protecting cells from programmed cell death [12].  

1.1.1.1 Macrophage ontology 

 

The ontological origin of macrophages is thought to comprise three separate branches, the 

unifying feature between (almost all of the) cells in these branches being the dependence on 

macrophage colony-stimulating factor 1 receptor (CSF1R) for growth, differentiation and 

survival [14]. In mice, the earliest macrophage progenitors appear before embryonic day 8. 

Some of these progenitors will migrate to the brain and establish microglia [19]. Others will 

instead enter the vasculature between the yolk sac and embryo and seed the second wave of 
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hematopoiesis in the fetal liver [20]. Due to a lack of genetic tools to uniquely distinguish 

fetal liver-derived macrophages, the particular contribution of this developmental stage has 

been debated [21] [22]. It is now believed that most tissue-specific macrophages originate as 

progenitors in the yolk sac, develop further in the fetal liver and migrate to the tissues in a 

chemokine-receptor–dependent manner during embryonic development [23] [24]. 

Langerhans cells, the macrophages in the skin, have been shown to have dual origin: with 

some progenitors seeding the tissue directly from the yolk sac, and some maturing via the 

liver [25]. Eventually, hematopoiesis in the liver is replaced by the bone marrow, which will 

give rise to circulating monocytes that differentiate to macrophages upon particular stimuli 

[23] (Figure 2).  

 

In mice, two distinct monocyte subsets have been identified: C-C chemokine receptor type 2 

(CCR2)highLy6C+ extravascular monocytes sometimes labelled as “inflammatory” 

monocytes and CX3C chemokine receptor 1 (CX3CR1)highLy6C- intravascular “patrolling” 

monocytes [26]. The CCR2highLy6C+ subset expresses a number of chemokine receptors, 

making them sensitive to signals of infection. Then, they readily differentiate to dendritic 

cells and macrophages.  They are also short-lived, with a half-life of less than a day [27].  A 

recent study showed that CX3CR1highLy6C- cells could be derived from CCR2highLy6C+ 

monocytes [27], prompting the suggestion that these “patrolling” cells could be a population 

of terminally-differentiated blood macrophages [28].  

 

Macrophages are genetically [29] and epigenetically [30] a highly heterogeneous group of 

cells. At the same time, they remain plastic and are attuned to environmental signals. 

Microglia and peritoneal macrophages were found to have lost their tissue-specific gene 

expression programs when removed from their local environment and cultured in vitro [31]. 

Experiments transferring macrophages from one tissue to another demonstrated the ability of 

the macrophage to adopt the gene expression and epigenetic signature of the host tissue [32]. 

A study by Suzuki et al., has confirmed this functionally, by showing that granulocyte-

Figure 2. Schematic overview of macrophage ontology, depicting main sites of macrophage origin: fetal yolk 

sac, fetal liver and bone marrow, giving rise to both tissue-resident macrophages and monocytes with the 

capacity to differentiate into macrophages.  
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macrophage colony-stimulating factor (GM-CSF) receptor-β-deficient (Csf2rb-/-)  alveolar 

macrophages could be replaced by transfer of wild-type bone marrow-derived macrophages 

(BMDMs) that would then adopt the genetic phenotype and functionality of the alveolar cells 

[33].  

 

It was long believed that macrophages were terminally differentiated and thus would either 

migrate to their target tissue during embryonic development to persist there for life or be   

recruited from the population of circulating monocyte precursors. Isolated examples 

challenged this assumption.  Local proliferation of a particular macrophage type, peritoneal 

macrophage, was described in 1982 [34]. A report published in 2009 was first to describe 

proliferation without the loss of functionality in mature macrophages deficient for the 

transcription factors MafB/c-Maf. These cells could furthermore contribute to in vivo 

macrophage populations when injected in mice [35]. This finding suggested that proliferation 

and terminal differentiation are not mutually exclusive. In 2011, using a model of Th2-driven 

inflammation, Jenkins et al. reported the proliferative expansion of resident tissue 

macrophages in an IL-4-dependent manner [36]. In the years that followed, a number of 

reports have concluded that mature macrophages in various contexts replenish their numbers 

via local proliferation without further differentiation or loss of function [37]  [38]. In this 

respect, we have, in study I, shown a new mechanism to control tumor-associated 

macrophage (TAM) composition, by enhancing the  proliferation of anti-tumor TAMs while 

restricting proliferation of pro-tumor TAMs [39]. 

1.1.1.2 Conceptual framework of M1 and M2 polarization states 

 

Early in vitro experiments [40] [41] using well-defined stimuli such as Interferon (INF)γ and 

lipopolysaccharide (LPS) or interleukin (IL)4-treatment of BMDMs led to the adoption of 

the terms M1 “classically activated” or M2 “alternatively activated” macrophages 

respectively. These are also sometimes referred to as “pro-inflammatory” (M1) and “anti-

inflammatory” (M2) on the basis of their function to either promote or stifle inflammation 

and their expression of cytokines and chemokines characteristic for these processes [42]. 

According to a conceptual model [43] [44] (Figure 3), when sensing tissue damage or 

presence of bacteria, via bacterial LPS or INFγ secreted by other immune cells, Ly6C+ 

inflammatory monocytes – or resident steady-state macrophages - migrate to the affected site, 

adopting a particular functional phenotype that is characterized by a production of a variety 

of inflammatory factors, such as chemokine C-X-C motif ligand (CXCL)9, CXCL10, 

CXCL11, IL-12 [45]. These “pro-inflammatory” M1 macrophages prime anti-bacterial 

mechanisms to clear the threat and attract and activate Th1, granulocytic and tumor 

infiltrating lymphocytes (TILs), i.e. NK, CD4+ helper T and CD8+ T cells to the site.  

 

Once the tissue damage has been resolved or the bacterial threat has been cleared, guided by 

signals such as Transforming Growth Factor (TGF)β and IL-4, the M1-macrophage is skewed 

towards an M2-phenotype [40]. These cells produce anti-inflammatory cytokines such as IL-

10, and factors including ornithine and the catalyst during its synthesis from L-arginine,  
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Arginase 1 [46]. The cumulative effect of this immunosuppressive functional phenotype is 

deactivation of the cytotoxic T cell response and restoration of the extracellular matrix, 

wound healing and immune tolerance. If inflammatory signals are not controlled, 

surrounding tissue is compromised [10], highlighting the physiological importance of the 

entire range of macrophage activation.    

 

While the IFNγ and IL-4 stimuli are clearly antagonistic in vitro, genetic and functional 

profiling of macrophages in vivo have called into question such a dichotomous view of 

macrophage biology under physiological conditions [47] [48] [49]. In tissue, whether healthy 

or cancerous, macrophages are exposed to numerous, often contradictory, signals and they 

respond accordingly, by adopting complex phenotypes whose function is not defined by the 

expression of isolated markers. The concept of M1/M2 macrophage activation in response to 

defined stimuli remains useful as an experimental model intended to simplify and simulate, 

as long as the stringent criteria for reporting experimental conditions as proposed by Murray 

and colleagues [48] are met. Ultimately, what defines a macrophage is not the activation 

stimulus or the genes that become up- or downregulated in response, but its function [49]. 

Thus, the nomenclature adopted to describe the phenotype of the cell should reflect this.  

 

1.1.2 Tumor-Associated Macrophages 

 

Macrophages make up a significant portion of the tumor, in some cancers up to 50% of the 

tumor mass [50]. The TAM population is highly heterogeneous between tumors as well as 

within a single tumor [51] [52] [53]. However, a general skewing towards pro-tumor 

macrophage phenotypes occurs as the tumor develops [54] [55].  

Figure 3 Schematic illustration of the activation of macrophages in an inflammatory context and in the context 

of resolution of inflammation. 
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1.1.2.1 TAM functions 

 

Many of the functions performed by pro-tumor TAMs in the tumor, mirror the functions 

performed by the alternatively activated macrophage (M2) during resolution of inflammation 

and wound repair. For example, M2-like TAMs secrete a number of angiogenic and 

lymphangiogenic factors such as VEGF-A, platelet growth factor (PIGF) and VEGF-C, 

stimulating angiogenesis [56] and lymphangiogenesis [57] respectively. This is important to 

restore tissue integrity after damage, but in the tumor, this has a direct tumor- and metastasis 

promoting effect [58]. In the absence of macrophages, angiogenesis is severely impaired in 

the mouse mammary tumor virus polyoma middle-T (MMTV-PyMT) model, resulting in 

diminished tumor growth [56]. Vegfa deletion specifically in the myeloid tumor-infiltrating 

cells altered the vasculature of the tumor in the same model, presenting less twisted network 

of vessels with increased pericyte coverage characteristic for healthy blood vessels [59]. As 

a consequence, the tumor was more susceptible to chemotherapeutic agents. Another 

important aspect to consider is that unregulated release of angiogenic factors in the tumor 

microenvironment - by TAMs, tumor cells and other components of the stroma - stimulates 

formation of defective “leaky” vessels  that promote tumor spread [60]. Re-programming 

pro-tumoral M2-like TAMs toward an anti-tumoral  M1-like phenotype results in vessel 

normalization and restriction of metastatic dissemination [61], indicating that targeting pro-

tumor TAMs is a valid strategy to modulate tumor vasculature in order to enhance anti-cancer 

drug efficacy and limiting tumor cell dissemination to secondary organs. 

 

Apart from producing VEGF-A directly, M2-like TAMs also secrete metalloproteases 

(MMPs) that, in turn,  increase availability of VEGF-A, by processing it and releasing it from 

the ECM [62].  Metalloproteases - and other factors secreted by M2-like TAMs furthermore 

serve to remodel the ECM to facilitate tumor extravasation from the basement membrane 

[63] [64] and entry to the metastatic niche [65].  They can also stimulate tumor mobility 

directly. Elevated macrophage MMP production was shown to increase invasiveness of 

malignant tumor cell lines in vitro, as measured by migration through an artificial basement 

membrane in a Boyden chamber [66].  Benign cells were not affected. Furthermore, CSF1-

recruited TAMs produce EGF, which, in a chemotactic way through a paracrine signaling 

loop, promotes tumor invasiveness [67]. Confirming this using multiphoton microscopy, 

macrophages were shown to lead tumor cells to blood vessels [68]. Once near the blood 

vessel, macrophage-derived VEGF-A was shown to contribute to transient vessel 

permeability and thus to facilitate tumor cell intravasation [69].  

1.1.2.2 TAMs and the adaptive immunity 

 

The interaction between TAMs and the adaptive immune system and the shift that occurs as 

TAMs adapt a more M2-like phenotype has profound consequences for the development of 

the tumor. As a component of the innate immune system, the macrophage is a professional 

antigen-presenting cell (APC), displaying antigens on the major histocompatibility complex 

II (MHCII) and by doing so activating CD4+ T helper cells and cytotoxic CD8+ T cells [70]. 
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It also possesses a direct tumorolytic ability,  by phagocytosing tumor cells and eliminating 

them in early neoplasms [71]. Pro-inflammatory macrophages secrete chemokines CXCL9-

11 that attract cytotoxic CD8+ T and NK cells, and IL12 that activates them to produce INFγ. 

This, in turn, promotes skewing of macrophages towards and M1-phenotype and also 

stimulates further accumulation of  cytotoxic lymphocytes [72]. M1-like macrophages also 

present co-stimulatory molecules CD80 and CD86 on their cell membranes which are 

necessary for T cell activation [73].  

 

Conversely, in response to signals such as IL-4 and IL-13 produced by Th2 cells in the tumor 

microenvironment [74], TAMs assume an immunosuppressive phenotype, downregulating 

IL12 and upregulating expression of arginase 1  (ARG1) and IL-10 [75]. ARG1 catabolizes 

the non-essential amino acid arginine into L-ornithine and urea [76], depleting arginine from 

the environment and thereby blocking T cell proliferation [77]. Elevated IL-10 levels 

stimulate increased expression of  programmed death ligand 1 (PD-L1) on tumor-infiltrating 

monocytes, dampening the anti-tumoral T cell response [78]. Pro-tumoral TAMs also secrete 

CCL22 and TGF-β that recruit immune-suppressive regulatory T cells [79] [80], further 

attenuating the immune response. We [39] and others [61] [81] have shown that increasing 

the proportion of M1-like pro-inflammatory TAMs in mice models of cancer results in 

impeded tumor growth by stimulating activation and accumulation of cytotoxic lymphocytes. 

Importantly, in human breast cancer, an inverse relationship between macrophage (CD68+ 

cells) and CD8+ T cell infiltration has been documented, with the CD68+CD4highCD8low 

signature being an independent predictor of poor overall survival [82].  

1.1.2.3 TAM ontology and turnover 

 

The ontological origin of TAMs is variable [83]. In many cases, they are recruited as 

monocytes to the site of neoplasm by chemoattractants (C-C motif chemokine ligand (CCL) 

2 [84], VEGF [85] [86], CSF1 [87] CXCL12 [88] ) secreted by the tumor or tumor-associated 

cells.  Alternatively, they can be local resident tissue macrophages corrupted by the 

developing tumor [89] [90]. Adding a further layer of complexity, to persist in the tumor, 

they might need replenishment from their respective precursors, either resident or monocyte-

derived, or they might proliferate independently.  

 

In the MMTV-PyMT spontaneous breast carcinoma model, Franklin et al. showed that 

Ly6C+CCR2+ monocyte progenitors are required to seed the TAM population [91]. However, 

a decrease in circulating CCR2+ monocytes did not affect TAM numbers to the same extent 

as it affected the numbers of mammary tissue macrophages (MTMs), the resident 

macrophage population. Compared to MTMs, the TAM population had higher levels of 5-

ethynyl-2’-deoxyuridine (EdU)-incorporation in the newly synthesized DNA and stronger 

Ki67 (a marker of G1/S/G2 phases of cell cycle [92]) staining, suggesting higher proliferation 

rates to account for a diminished dependency on monocyte replenishment. Interestingly, the 

TAMs in this study did not exhibit an alternative activation phenotype, highlighting the 

heterogeneity and context-dependency of TAM composition in any given tumor. Developing 
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this notion, Tymoszuk et al. identified two distinct TAM populations, both originating from 

circulating monocytes in the MMTV-Neu mouse model for HER2 dependent human breast 

cancer, that they distinguished by differential expression of CD11b (high or low expression) 

and F4/80 markers [93]. Importantly, these populations were found to occupy distinct areas 

of the tumor and demonstrated differential dependency on monocyte contribution. The 

dominant CD11blowF4/80high population, residing in vessel-poor regions of the neoplasm, was 

shown to proliferate actively as measured by Ki67-expression and bromodeoxyuridine 

(BrdU)-DNA incorporation via M-CSFR mediated mechanisms without significant 

monocyte contribution. Contrastingly, the monocyte-replenished CD11bhighF4/80low 

population, instead, was localized near potential sites of monocyte influx and exhibited 

slower proliferation rates. Cumulatively, these two studies highlight monocytic origin of 

TAMs in mouse models of breast cancer, but also suggest that targeting TAM proliferation 

could represent a potential therapeutic strategy.  

1.1.2.4 TAMs in human cancer 

 

Macrophages are poorly characterized in human cancers, where the non-exclusive marker 

CD68 is generally used to define this cell type [94]. There is strong support that accumulation 

of CD68+ TAM is correlated to poor prognosis in many cancers [95] [96]. However, a study 

of Mahmoud and colleagues examining 1322 human breast cancer tumors showed that the 

number of CD68+ cells in a tumor is not an independent prognostic marker when included in 

multivariate model also containing parameters such as tumor grade and size [97]. These 

authors highlight the heterogeneity of the TAM population and point out that CD68 

expression does not discriminate between macrophages having a pro- or anti-tumoral 

phenotype.  Therefore, additional biomarkers that are upregulated in response to IL-4, such 

as scavenger receptor CD163 and mannose receptor CD206, are commonly used to define 

M2-like TAMs [95]. In this respect, a study that used a combination of CD68 and CD163 

concluded that CD163 expression is an independent prognostic marker for shorter overall 

survival in basal-like breast carcinoma [98].  

1.1.3 Tumor-Associated Macrophage-based therapy strategies 

 

Given the long-established role of TAMs in aiding tumor progression, TAMs are a 

recognized target for anti-tumoral therapies, with strategies ranging from conceptual to 

having shown promise in early clinical trials [83]. In general, research is pursued in three 

main directions: 1) limiting TAM recruitment, proliferation and/or survival in the tumor, 2) 

reprogramming of TAMs towards tumor-suppressive phenotypes and 3) interfering with their 

effector functions. Often these approaches are pursued in synergy with other tumor-targeting 

therapies. For example, there is a growing understanding that the TAM composition, outside 

their inherent pro- or anti-tumor properties, may also expert secondary effects by either 

interfering with or, alternatively, superimposing the effect of certain chemotherapies on the 

tumor [99]. Tissue-damage signals arising as a consequence of the action of certain agents, 

(e.g. platinum compounds used in chemotherapy [82]) may provoke increased recruitment of 
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TAMs to the tumor site and their subsequent pro-tumoral polarization. Contrastingly, other 

drugs, such as doxorubicin, instead may stimulate efficient recruitment and differentiation of 

antigen-presenting cells, resulting in efficient adaptive immune response targeting the tumor 

[100] [101]. In connection to the interplay between TAMs and the adaptive immunity, TAM-

derived IL-10 was found to decrease the efficacy of chemotherapy (using paclitaxel and 

carboplatin) by suppressing IL-12 production in intra-tumoral dendritic cells, which, in turn 

suppressed the CD8+ T cell response [102].  

 

Preventing macrophage recruitment to the tumor is not straightforward. Tumors employ a 

diverse array of mediators to attract monocytes into the microenvironment [103], so targeting 

one of these will not preclude macrophage recruitment by other means. Inhibition of the 

CCL2 pathway, disrupting the recruitment of cells expressing the CCR2 receptor (e.g. 

monocytes) has, nonetheless, shown promise in several experimental models [104] [105]. 

Surprisingly, when initially administered but then removed, CCL2 was shown to accelerate 

metastasis and death of animals [106]. Despite this cautionary example, antibodies against 

CCL2 are in phase I and II clinical trials [107] [108].  

 

To target macrophage survival, the CSF1/CSF1R pathway has been pursued in various ways. 

Following treatment with monoclonal antibody emactuzumab (RG7155), Ries and 

colleagues showed that CD163+ M2-like TAMs were depleted in human tumor biopsies, 

however at efficiencies ranging from 40-90% between individual patients [109]. Further 

work identified IL-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF) as 

factors negating the effect of emactuzumab when overexpressed in the tumor 

microenvironment, enabling a selection among patients most likely to benefit from this 

treatment [110].  

 

When an inhibitor against CSF1R was used in a model of mouse proneural GBM model, the 

authors reported regression of tumor growth [111]. Interestingly, this was not due to the 

Figure 4. Overview of main TAM-based therapeutic strategies 

 



 

 11 

depletion of TAMs but, rather, because of a shift toward the M1-like phenotype in TAMs. 

This suggested that reprogramming – not necessarily depletion – of TAMs can achieve the 

desired anti-tumoral effect. Numerous TAM reprogramming strategies have been reported to 

date. As previously discussed, histidine-rich glycoprotein (HRG), was found to skew M2-

like TAMs towards an M1-like phenotype and to normalize intra-tumoral vasculature, 

enhancing the efficacy of chemotherapy [61]. A similar effect was observed using class IIa 

histone deacetylase (HDAC) inhibitor, TMP195, to induce systemic gene expression changes 

in the CD11b+ cell that are recruited to the tumor, resulting in the accumulation of highly 

phagocytic M1-like macrophages that activated T cells and normalized blood vessels [112]. 

Paclitaxel, a common chemotherapeutic agent that acts via inducing cell cycle arrest, was 

also found to reprogram M2- like TAMs toward an M1-phenotype via Toll Like Receptor 4 

(TLR4) in animal models of breast and melanoma tumors [113].  Targeting macrophage 

lysosomes by the anti-malarial drug chloroquine, Chen and colleagues demonstrated that the 

release of Ca2+ that followed chloroquine-induced increase in lysosomal pH could activate 

the p38 and NF-κB pathways, reprogramming TAMs [114].  

 

Common to all these strategies is the fact that an intra-tumoral accumulation of M1-like 

macrophages, apart from being tumorolytic in itself, generates further downstream anti-

tumor effects, as exemplified by the vessel normalization in the HRG [61] and TMP195 [112] 

studies and the activation of T cell-mediated anti-tumor immunity. This serves to reconstruct 

an actively tumoricidal microenvironment and suggests that selective reprogramming, rather 

than depletion of the entire population, is the more efficacious way to target TAMs. 

1.2 MYELOID-DERIVED SUPPRESSOR CELLS 

1.2.1 Ontological origins of MDSCs 

 

Under normal physiological conditions, the myeloid compartment in the bone marrow 

contains progenitors with the potential to generate terminally differentiated cells of 

monocytic (e.g. macrophages or dendritic cells) and granulocytic (e.g. neutrophils, 

eosinophils, basophils) origins [115]. The expansion and activation of these cells usually 

takes place as a consequence of strong signals conveying presence of pathogens via 

pathogen-associated molecular patterns, (PAMPs) or non-infectious damage-associated 

molecular pattern molecules (DAMPs) and results in an inflammatory response [116].  

 

Under pathological conditions, such as chronic inflammation and cancer, the differentiation 

of these progenitors can arrest at an intermediate stage, leading to the accumulation of cells 

with a strong immunosuppressive phenotype [117] [118]. Thus termed myeloid-derived 

suppressor cells (MDSCs) are further subdivided into polymorphonuclear PMN-MDSCs and 

monocytic M-MDSCs to reflect their morphological and phenotypic relation to cells from 

either the granulocytic or monocytic branches of myeloid differentiation [119]. In mice, they 

are characterized on the basis of the expression of granulocyte-differentiation antigen (GR1) 

and its composite epitopes Ly6C and Ly6G [120] [121]. M-MDSC will be defined by high 
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levels of Ly6C as CD11b+Ly6C+ cells and, conversely, PMN-MDSC are CD11b+Ly6G+ cells 

[115].  It should be noted that mature neutrophils will also express these markers and in mice, 

distinction between PMN-MDSCs and neutrophils can only be achieved by functional assays, 

testing the hallmark T cell deactivation ability of putative MDSCs [122]. The situation in 

humans is a bit different. Ficoll gradient centrifugation can be used to distinguish human high 

density neutrophils from low density PMD-MDSCs [123], but, on the other hand, more cell 

surface markers need to be included in the phenotyping panels, compared to mouse MDSCs. 

A current consensus denotes CD11b+CD14-CD15+ or CD11b+CD14-CD66b+ as PMN-

MDSCs and CD11b+CD14+HLA-DR-/lowCD15- as M-MDSCs in humans [124]. Recently, 

expression of lectin-type oxidized LDL receptor LOX-1  has been shown to be a marker of 

bona fide immunosuppressive human PMN-MDSCs [125].    

 

According to a two-step model proposed by the laboratory of Dmitry Gabrilovich, the 

expansion and phenotypic activation of MDSCs relies on two distinct kinds of signals in the 

tumor microenvironment [126]. The first is driven by tumor-derived factors such as those 

activating the STAT3 pathway [127] [128] and involves the inhibition of differentiation 

towards fully mature monocytic or granulocytic cells. The second set of signals derive from 

tumor stroma, are pro-inflammatory, mediated by e.g. STAT1 [129] and NF-κB pathways 

[130] and result in the conversion of immature myeloid cells into bona fide MDSCs. The 

need for dual signals – for expansion and for phenotype acquisition – is reflected in the 

general lack of MDSC accumulation seen under conditions where only one of set of signals 

is provided [126].   

 

The view of MDSCs as immature cells of myeloid origin is prevalent [117], but also contested 

[118]. It cannot, currently, be excluded that mature neutrophils or monocytes possess the 

capacity to assume an immunosuppressive phenotype and thus be classified as MDSCs in 

response to particular signals [118]. Conversion of monocytes to M-MDSCs has been 

demonstrated in sepsis [131] and neutrophils were redirected to a PMN-MDSC phenotype 

by synthetic induction of endoplasmic reticulum (ER) stress [125]. Physiological relevance 

of these isolated examples remains to be established.  

1.2.2 The molecular basis of T cell suppression by MDSCs 

 

The mechanisms by which MDSCs exert their immunosuppressive functions can be grouped 

as 1) depletion of nutrients required for T cell function 2) oxidative stress 3) impaired 

lymphocyte trafficking and 4) expansion of T regulatory cells with further 

immunosuppressive functions [132].  

 

Both M-MDSCs and PMN-MDSCs (as well as alternatively activated macrophages) are 

characterized by elevated expression of arginase 1 (ARG1) [133]. ARG1 catabolizes the non-

essential amino acid arginine into L-ornithine and urea [76].  Arginine is required for T cell 

proliferation [77]; the activity of ARG1 thus depletes it from the pool available to T cells. 

Arginine is also used as a substrate in the production of nitric oxide, catalysed by nitric oxide 
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synthase 2 (NOS2), another factor highly expressed especially by M-MDSCs [121]. The 

combined effect of ARG1 and NOS2 activity is a reduction in arginine levels and, 

consequently, impaired T cell proliferation. A similar mode of action is the sequestering of 

cystine by MDSCs. Cystine the precursor to the amino acid cysteine essential for T cell 

function [134].  

 

PMN-MDSC are further characterized by increased production of reactive oxygen species 

(ROS) [115], including superoxide anion. Nitric oxide and superoxide anion react to form 

peroxynitrite, PNT, which in turn, induces nitration and nitrosylation of several amino acids, 

directly inhibiting T cell function by nitrating is receptors [135].  

 

Apart from these direct effects on T cell viability and activation, MDSC are also known to 

interfere with their recruitment. In one such example, MDSC have been proposed to 

downregulate L-selectin (CD62L) in naïve T cells. L-selectin is a molecule that directs naïve 

lymphocytes to lymph nodes and to inflammatory environments, and upon its cleavage by 

MDSC-derived ADAM17, T cell homing is disrupted [136]. T cell migration is further 

affected by PNT, via nitration of T-cell specific chemokines [137].  

 

Finally, MDCS express T cell inhibitory ligands such as programmed death-ligand (PD-L)1 

and PD-L2 [121] and produce IL-10 and TGF-β [138] stimulating the expansion of regulatory 

T cells (Tregs), which in turn further suppress effector T cells.  

1.2.3 MDSC-based therapeutic approaches 

 

Tumor development is accompanied by the expansion of MDSCs in many mouse models and 

human tumors [139]. Indeed, increased MDSC accumulation is strongly associated with a 

shorter overall survival [140]. Apart from generating an immunosuppressive environment, 

MDSC also promote tumor angiogenesis [141] and metastasis [142] in animal models of 

cancer. Thus, the potential of targeting MDSCs in the context of anti-cancer therapy is 

currently being explored. Similar to the strategies employed to target TAMs, MDSC-based 

therapy strategies aim to impede their recruitment to the site of the tumor, interfere with their 

suppressive functions or selectively deplete them [143].   

 

Much the same chemoattractants – CCL2, CXCL12 - direct the recruitment of M-MDSCs as 

monocyte-derived macrophages to the site of the tumor [144]. Indeed, studies that looked 

into the functional characteristics of Ly6C+-monocytes in the tumor microenvironment 

(TME) showed them to be strongly immunosuppressive, suggesting that monocytic cells in 

the TME are in fact M-MDSCs [129] [121]. Further differentiation of M-MDSCs into TAMs 

have also been described in animal models [87] [145] [146]. This implies that therapeutic 

strategies targeting the CCL2-CCR2 pathway of monocyte-recruitment to the site of the 

tumor described in the context of tumor-associated macrophages would also be effective 

against M-MDSCs. To target both M-MDSCs and PMN-MDSCs, a peptibody (a peptide 

fused to an antibody) likely towards S100A9 was developed and shown to selectively deplete 
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MDSC both from tumors and spleens, with an accompanying reduction of tumor size in 

animal models [147]. In a pre-clinical study, increased expression of tumor necrosis factor 

(TNF)-related apoptosis-induced ligand receptor 2 (TRAIL-R2) was shown to mediate 

apoptosis in MDSCs in tumor-bearing mice, but not immature lymphoid cells from naïve 

mice. Targeting this receptor by an agonistic antibody proved efficient to reduce numbers of 

circulating MDSCs in tumor models [148]. A human monoclonal agonistic antibody 

targeting this receptor, DS-8273a was tested in a phase I clinical trial and also was shown to 

reduce the levels of circulating MDSCs [149]. Upregulation of STAT3 is a prominent feature 

of MDSCs development, as discussed above. Targeting STAT3 specifically in PMN-MDSCs 

in late-stage prostate cancer patients, by STAT3siRNA delivered via the toll-like receptor-9 

(TLR9) expressed in this cell population, neutralized the suppressive effect of these cells on 

CD8+ T cells [150].  

1.3 OTHER COMPONENTS OF TUMOR STROMA 

 

MDSCs share many features with pro-tumoral TAMs. Indeed, the consequences of the 

presence of these respective cell types in a tumor converge on their interaction with 

infiltrating tumor lymphocytes and their involvement in tumor vascularization and 

metastasis. But in a broader context, both MDSCs and TAMs share these features with a 

wider category of cells – tumor-infiltrating myeloid cells (TIMs) [151]. This group includes, 

in addition to MDSCs and TAMs, also tumor-associated neutrophils (TANs) and tumor-

associated dendritic cells (TADCs). Just as TAMs, TANs and TADCs are plastic cells that, 

in their non-tumor-associated state (as dendritic cells or neutrophils), are vital in eliminating 

early neoplasms by engaging both the innate and adaptive arms of the immune system [9]. 

Initial inflammation, associated with neoplasm-driven remodeling of the tissue, guide 

macrophages and also neutrophils to the site. Cytokines and chemokines released by these 

cells, drive the accumulation of TILs, that react to processed tumor-specific antigens 

presented by professional antigen-presenting macrophages and dendritic cells. When the 

tumor adapts to the inflammatory conditions and is no longer eradicated by immune cells, 

equilibrium and eventually tumor escape follow, adapting with it the phenotype of the TIMs 

and TILs to the malign TME, as discussed above.  

 

There is an interconnection between the cells that comprise the TIM population, manifested 

by factors they secrete and respond to. TGF-β or VEGF produced by TAMs or MDSCs or 

TANs recruit more TAMs, MDSCs and TANs to the site of the tumor [151]. This may explain 

why depleting a cell type, as has been done with TAMs, shows limited promise as a 

monotherapy [152] – compensatory mechanisms may prevail. Recently, one such mechanism 

has been proposed by Kumar and colleagues [153]. They could show that CSF1R blockade 

(targeting TAMs) induced PMN-MDSC recruitment to the tumor site, negating the effect of 

this treatment. Interestingly, cancer-associated fibroblasts were implicated in mediating the 

PMN-MDSC recruitment, illustrating complex crosstalk between cells in the TME.  
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The way the TIM phenotype is established also shares many similarities. For example, the 

STAT3 pathway mediates the immunosuppressive properties of MDSCs, as discussed, but 

also TAMs, TADCs and TANs [154] [155]. Consistently, the expression of the downstream 

target of STAT3, Arg1, with the accompanying suppression of CD8+ T cell response, is 

typical for M- and PMN-MDSCs and TAMs, as discussed, and also TANs [156] and TADCs 

[157]. It is possible to envision how this interconnectedness can be exploited therapeutically, 

by identifying common targets to direct the phenotype of these cells towards their original 

tumorolytic role as a group and, as a consequence, amplifying the anti-tumoral response.  

 

The crosstalk between cells in the TME, the way they influence and amplify each other, is 

not limited to infiltrating immune cells. The stroma around a tumor consists of basement 

membrane, fibroblasts, pericytes, ECM, and the vasculature [158]. Immune cells are a 

composite part of this active and adaptive environment.  In analogy to the phenotype shift in 

TIMs, the stroma will be altered in the course of tumor progression and eventually promote 

growth, invasion, and metastasis [159].  

 

One of the key actors in tumor stroma is the fibroblast, which synthesizes, deposits and 

remodels much of the ECM surrounding the tumor [160]. Much like immune cells, fibroblasts 

exhibit pathological cancer-associated activation states - as cancer-associated fibroblasts, 

CAFs - that reflect their function in wound healing and repair under cancer-free conditions 

[161]. Expression of alpha-smooth muscle actin (α-SMA) is characteristic for fibroblasts in 

both these contexts, but, contrary to activated fibroblasts, CAFs do not apoptose [158].  

 

CAFs and immune cells interact with each other. Depleting CAFs in the 4T1 model of breast 

carcinoma polarized the tumor microenvironment toward a pro-inflammatory phenotype 

[162]. The paracrine growth factors secreted by CAFs – for example VEGF, TGF- fuel 

cancer growth [158] but also attract immune cells, as previously discussed. CAF-derived IL6 

and GM-CSF together were shown to promote monocyte differentiation toward pro-tumoral 

TAMs in mice models of colon cancer [163]. In the clinic, co-localization of CAFs and TAMs 

is observed and is associated with aggressive features and high‐risk classification in 

neuroblastoma [164].  

 

Apart from adding to the repertoire of signaling factors of an already established tumor 

microenvironment, fibroblasts can also initiate expression programs of secreted factors that 

favor initial cell transformation. Studies in animal models have shown that senescent 

fibroblasts stimulate pre-malignant and malignant epithelial cell proliferation, in part due to 

factors secreted by the fibroblasts [165]. Loss of tumor-suppressor phosphatase and tensin 

homolog (Pten) in stromal fibroblasts but not in the tumor-initiating cells, was reported to 

promote the malignant transformation of mammary epithelial tumors through remodeling of 

the ECM and increased immune infiltration [166]. In study IV we used chronic obstructive 

pulmonary disease (COPD) as a model of cancer-initiating inflammation to identify 

molecular mechanisms operating in stromal cells promoting lung cancer development.  
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2 FROM GENOTYPE TO PHENOTYPE WITH A FOCUS ON mRNA 

TRANSLATION 

 

The genetic material of a eukaryotic cell - deoxyribonucleic acid, DNA [167] - is ensconced 

in the cell’s nucleus [168]. This aims to safeguard its integrity but, at the same time, it also 

introduces a particular regulatory aspect to the way this information is accessed and utilized. 

While the instructions encoded in the DNA have to remain intact, some of these instructions 

– but not all, and not always - also need to be copied, processed and executed to assemble 

three-dimensional polymers of amino acids – proteins - elsewhere in the cell [169]. The many 

ways by which regulatory aspect is addressed, bestows the different tissue types in an 

organism their particular and distinct functionalities despite identical genomes.  

 

Figure 5. Schematic overview of the main steps in the regulation of gene expression 

 

To become a functional protein, a gene’s position on the DNA polymer - its locus - has to be 

located by the RNA polymerase [170]. For this to occur, the chromatin containing the locus 

has to be in an open conformation [171], the DNA itself unaffected by covalent modifications 

[172] and not bound by repressors [173]. The general  transcription factors [174], Mediator 

[175], and activators [176] have to be present in the nucleus. The resulting RNA molecule - 

the messenger RNA, mRNA - has to be protected from degradation by the addition of 5’ cap 

[177] and 3’ polyA-tail [178], spliced to excise introns [179] and exported to the cytoplasm. 

There it has to avoid RNA degradation [180] and associate with ribosomes, initiating 

translation of the codon message into amino acids [181]. The resulting amino acid sequence 

has to be properly folded [182] and modified to yield a mature, functional protein [183]. 

Finally, it has to be delivered to its cellular or extracellular niche and eventually degraded at 
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an appropriate time point [184]. All of these events constitute tightly regulated events, 

indispensable for the cell to carry out its proper physiological program . Comprehensively, 

this is known as regulation of gene expression (Figure 5). 

2.1 DISCREPANCIES BETWEEN mRNA AND PROTEIN ABUNDANCE 

 

Messenger RNA is a capricious molecule to work with [185]. Chemically unstable and – 

unprotected - the target of many ubiquitously present cleaving enzymes [186], it degrades 

fast in vitro unless stringent preventive measures are taken [187]. Yet, RNA has a particular 

advantage over protein to the researcher studying gene activity – it is straightforward and 

relatively inexpensive to amplify and study even trace amounts of RNA. So while the 

proteome [188] – the expression of all proteins in a cell – arguably is the biologically more 

relevant parameter to understand cellular behaviour, gene expression programs normally are 

studied by assessing the cell’s transcriptome  (see figure 5 for definitions). Consequently, 

when investigating the effects of perturbations on the cell, conclusions are drawn on the basis 

of resulting changes in mRNA levels, with the underlying assumption that this is proxy for 

changes in the proteome [189] [190].   

 

Several pioneering studies, published before the advent of next generation -omics 

technologies, addressed the veracity of this assumption. One of the earliest looked at mRNA 

and protein levels of a selection of genes in S. cerevisiae and detected that for some of the 

mRNA transcripts, or, conversely, proteins, found in similar concentrations in the cell, the 

corresponding protein or mRNA levels could differ manifold [191]. In humans, a study of 76 

lung adenocarcenomas as well as 9 non-transformed tissue samples reported that among the 

approximately hundred genes quantified on mRNA and protein levels, only a fifth showed 

statistically significant correlation between these parameters [192]. Another report, in 

contrast, found a high correlation between 39 out of 40 proteins (and their corresponding 

mRNA) in a set of bladder cancer samples [193]. Arguably, being technically limited to the 

detection of only a fraction of cellular proteins, these and similar studies [194] [195] of the 

time could not provide a comprehensive overview of protein diversity in a cell and its 

relationship to corresponding mRNA levels. They did, however, introduce the notion that 

post-transcriptional may play important regulatory roles in the expression of some – or many 

- proteins.  

 

Recent technological advances in the field of mass spectrometry have enabled genome-wide 

quantification of protein levels and corresponding mRNA levels to be made side-by-side 

[189]. Surprisingly, the discrepancy between these numbers persists. Schwanhäusser et al. 

published a landmark study in 2011, where they reported the first genome-wide 

quantification of mRNA and proteins levels in parallel to measured rates of protein turnover 

[196]. They concluded that only 40% of genome-wide protein level variability in the mouse 

cultured fibroblasts they studied was explained by mRNA levels.  
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The interpretation of these and similar data is a source of contention in the scientific 

community [197]. While the scientists behind the Schwanhäusser study postulate that factors 

downstream of DNA transcription dominate in shaping the proteome of the (mammalian) 

cell, others maintain that correcting for “experimental noise”, transcription levels remain the 

best predictor of protein abundance [198] [199].  Yet others attempt to allay the debate by 

emphasizing the great organism-, tissue- timing- and context dependancy of this question 

[200].  

 

Aiming to quantify the contribution of translation control to cellular protein levels, a recent 

publication  revised the mathematical relationship between mRNA and protein abundances 

[201]. Schwanhäusser et al. originally suggested that translation rates of mRNA, i.e. how 

many proteins are synthesized from a given mRNA per unit time is the driving factor shaping 

the cell’s proteome [196]. Accounting for differential translation rates enables a more 

congruous approximation of protein levels based on mRNA levels. Li et al. [201] argue that 

splitting translation rate into mRNA abundance-dependent and independent components, 

allows for more precise quantification of the contribution of translation, which, they 

maintain, remains limited compared with the contribution of transcription in their model 

organism, C. Serevisae. They further argue that certain features of the mRNA sequence, such 

as length or codon usage, dictate the relative contribution of the abundance-dependent and 

independent components, suggesting why mRNA:protein correlation for certain mRNAs 

would be stronger than others. 

 

The nuances in the relationship between mRNA and protein abundance – as well as the 

nuances in the techniques by which it is studied -  are too many and too varied for this 

relationship to be distilled to a universal number. Cells undergoing pertubation will behave 

differently to those under steady state conditions, pathological cells will differ from healthy, 

single cell organisms have other regulatory mechanisms than cells in multicellular organisms.   

Amidst this wealth of contradictory data, accumulated research converges on that whatever 

its precise numerical contribution in a given system in a given context, regulation of mRNA 

translation is indispensable for proper cellular function. Dysregulation of translation is indeed 

a prominent feature of many malignancies, including cancer [202].    

2.2 METHODS TO STUDY CHANGES IN TRANSLATIONAL EFFICIENCY  

 

The process of mRNA translation comprises four distinct phases: initiation, elongation, 

termination and ribosome recycling [181]. Of these, the initiation phase - i.e. step-wise 

recruitment of the ribosomal subunits while scanning the mRNA for the initiation codon until 

the fully assembled 80S ribosome is ready to synthesize peptide bonds - is considered rate-

limiting. Recent studies have approximated initiation to take place 1-3 times per minute, 

while between 200-600 amino acids can be synthesized during this time [203-206]. It thus 

follows that investment of resources in the form of ribosome complexes recruited to the 

mRNA will reflect the number of protein molecules to be obtained from it, assuming that the 
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elongation rate along the mRNA molecule itself is equal across a pool of mRNAs. Empirical 

kinetic measurements by Ignolia et al., 2011 support this assumption [207].  

 

Regulation of mRNA translation is, in some cases, a binary on-off switch: upon receiving 

particular stimuli, a pool of mRNA shifts from having no ribosomes to multiple ribosomes 

associated with it. mRNAs with the so called “5’ Terminal OligoPyrimidine” (5’ TOP) motif 

are one such example [208]. In other cases, changes in mRNA translation efficiency entails 

a subtle addition of ribosomes to already translating mRNAs [209]. If the ribosome 

occupancy per mRNA were to be plotted for a given mRNA transcript, the resulting 

distribution is approximately normal (providing, of course, this mRNA is translated at all) 

[210]. Importantly, the modes – most frequent numbers – of ribosome occupancy that reflect 

biologically relevant changes in translational efficiency of that population appear to lie on 

either side of 3 ribosomes (Figure 6). Therefore, efficiently translated mRNAs are commonly 

defined as mRNAs that are associated with more than 3 ribosomes in the cytoplasm.  This – 

in general – applies for both on/off and gradual types of translation regulation [210].   

 

Building on this discussion, studies of the translatome – efficiently translated mRNAs – are 

usually performed using either one of two major methods, both correlating translation 

efficiency to ribosome density on an mRNA molecule. 

 

Polysome profiling was the first method to be established and is therefore referred to as either 

the “gold standard of the field” [211] or “an earlier version” [200] of the more recently 

developed ribosome profiling. “Polysomes” – multiple ribosome complexes on an mRNA – 

are “profiled” by stratifiyng total RNA, and any ribosomes bound to it,  in a cell along a linear 

sucrose gradient. Following ultracentrifugation, components of the sample are separated on 

the basis of their sedimentation rate, the heavier the component the faster the rate. Monitoring 

the RNA content of the gradient by its UV-absorbance profile, enables collection of fractions 

containing mRNA bound to the 40S ribosome subunit, 60S, the 80S monosome and the 

mRNA associated with polysomes (Figure 6). 

 

 
Figure 6. A sucrose sedimentation profile of the mRNA content, also displaying shifts in the distribution of 

ribosomes on the mRNA between two hypothetical conditions, A and B and between mRNA displaying small 

and large shifts. Numbers refer to number of ribosomes bound to the mRNA.  
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Addressing the concern that the spread of RNA over multiple fractions dilutes the RNA, 

increases processing times as well as introduces potential sample handling errors, our lab has 

recently optimized the classical protocol [212]. By replacing the linear 5-50% gradient with 

a modified two-step version, efficiently translated mRNA could be contained in a single 

fraction without compromising RNA yield and quality.   

 

Polysome profiling physically separates mRNAs in a sample into defined pools, but it 

preserves the integrity of the molecules in each pool. Herein lies an important distinction 

from ribosome-profiling, which degrades the mRNA leaving only ribosome-protected parts 

for analysis (Figure 7). In practical terms, mRNA is treated with RNAseI [213]. When the 

resulting mixture of fragments is purified and sequenced, only the parts – around 30 

nucleotides long – sterically protected by the presence of a ribosome can generate sequencing 

reads. Following the ribosome “footprint” along an mRNA, translation can be monitored on 

a codon-by-codon basis, giving unmatched resolution and providing insights into such 

aspects as translational dynamics, use of alternative start codons or translation from upstream 

ORFs [214]. On the other hand, translational efficiency is an indirect metric in ribosome 

profiling, inferred rather than measured based on the number of ribosome-protected 

fragments, RPFs (Figure 7). There are inherent analytical challenges piecing together 30 

nucleotide-long snippets to recreate an mRNA.  Adding to the challenge, these fragments 

may originate from n ribosomes in positions 1, 2, … on the same mRNA molecule or one 

ribosome each in position 1, 2… but on n different mRNAs. As these scenarios reflect 

Figure 7: Schematic illustration of the principal methodological difference between poly- and ribosome-

profiling and how it influences the ability of each method to capture differential translation. Note the presence 

of two kinds of mRNA (or same mRNA at two conditions) – blue and green. Also note presence of particular 

defining characteristics in the 5’ UTR region (red or orange areas) that are lost during ribosome-profiling 
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different translational efficiencies they need to be differentiated. Furthermore, technical 

limitations such as sub-optimal sequencing depths may cloud the proportion of mRNAs with 

fewer RPFs among the RPFs from highly expressed and efficiently translated mRNAs, even 

if a translational efficiency shift has occurred in the former population [215].  As a 

consequence of these methodological nuances, when analyzing differential translation 

between several conditions using classical statistical significance thresholds, extremes – 

multiple ribosomes on an mRNA molecule versus very few ribosomes - tend to dominate in 

ribosomal profiling, overshadowing less pronounced but biologically relevant shifts in mean 

ribosome occupation [210] [215]. In addition, because all characteristics of the mRNA not 

protected by the ribosome at the moment of sample preparation are lost, so are important 

regulatory dimensions. If translation took place from an mRNA transcript isoform, this would 

not be apparent unless a ribosome happened to span some identifying characteristic of this 

isoform [216].  

 

While polysome- and ribosome profiling remain the pillars of translatome research, other 

methods exist, addressing specific needs [211]. Recognizing sucrose density centrifugation 

underlying polysome profiling as essentially the separation of proteins on the basis of size, 

Yoshikawaka et al. replaced this time-consuming step with the otherwise widely used in the 

context of protein separation size-exclusion chromatography coupled with ultra high pressure 

liquid chromatography (SEC-uHPLC) [217]. By experimenting with pore sizes, serial 

column arrangements and flow rates, they overcame the initial concern that polysomes are  

too large to be efficiently separated into n-mers, monosomes and the 40S and 60S subunits 

by this method. The authors conclude that the output generated by the thus established Ribo 

Mega-Sec is comparable to polysome-profiling but has further advantages such as a shorter 

processing times.  

 

To study translation in a defined cell type from a mixed population, engineered affinity-

tagged proteins under the control of tissue-specific promoters can be used to “fish out” 

associated ribosomal complexes [218]. Known as translating ribosome affinity purification, 

TRAP, this technique does not discriminate between polysomes and monosomes, so it does 

not provide a fully quantitative view of translational regulation, to the same extent as poly- 

or ribosome-profiling. Its advantage lies in the insights into translation it provides in contexts 

such as rare cell types in the nervous system, insights that would be unattainable by other 

methods. Unfortunately, as it relies on prior genetic engineering it cannot be used to study, 

for example, patient samples.  

2.3 BIOINFORMATICAL METHODS IN TRANSLATOME RESEARCH 

 

In stringent terminology of the (polysome-profiling) translatome field, an increase - or 

decrease - in translational activity of an mRNA is defined as a shift of the ribosome 

occupancy distribution on that mRNA towards heavier – or lighter - polysomal fractions 

between two conditions (Figure 8). As regulatory mechanisms upstream of translation 

initiation – e.g. mRNA stability - affect the availability of mRNA for translation, a change in 
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cytoplasmic mRNA levels would contribute to an increase of mRNAs bound to more than 3 

ribosomes. Translated mRNA in translatome analyses thus needs to be collected and analysed 

in parallel with cytoplasmic mRNA from the same cells and this applies regardless of the 

method chosen to study the translatome.  

 

An intuitive way to analyze changes in a quantity at different conditions is to calculate a ratio 

of this quantity at these conditions. Since logarithms are easier to manipulate mathematically, 

such a ratio is usually log-transformed. In translatome research, the level of an mRNA found 

in the polysomal fraction is compared with the level of this mRNA found in the cytoplasmic 

fraction. The log-ratio between these two quantities is defined as a score of translational 

efficiency (TE) and by looking at changes in TE many studies conclude change in 

translational activity in their setting. However, because of an underlying mathematical 

property of such a ratio known as spurious correlation – as well as empirical observation in 

a range of translational activity datasets – a log ratio of polysomal and cytoplasmic RNA 

levels often correlates with cytoplasmic RNA levels, i.e. the more of a transcript there is in 

the cytoplasm, the higher or lower (the correlation often is negative) the TE without there 

being any biology behind this [219].  

 

Approaching translational activity as a change between two conditions enables the 

differences in polysomal mRNA levels related to differences in cytoplasmic mRNA levels to 

be modelled using a linear regression model [220]. In doing so, the potential for spurious 

correlation is removed.  

 

𝛥𝑃𝑜𝑙𝑦𝑠𝑜𝑚𝑎𝑙 𝑚𝑅𝑁𝐴 ~ 𝛥𝑐𝑦𝑡𝑜𝑝𝑙𝑎𝑠𝑚𝑖𝑐 𝑚𝑅𝑁𝐴 +  𝛥𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦  

Figure 8. A change in polysome association is the change in RNA content between two conditions beyond a 

defined threshold of efficient translation. Illustrated here on a ribosome sedimentation plot but the principle of 

ribosome distribution applies for ribosome profiling as well 
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Polysomal mRNA levels (defined as mRNA levels in a pool of mRNA having a mean 

ribosome occupancy beyond a set threshold, see discussion above) are in this model a sum 

of cytoplasmic mRNA levels plus a factor that describes changes in polysomal mRNA levels 

of a gene that cannot be described by changes in cytoplasmic mRNA levels.  This factor is 

the change in translational efficiency and is the key to understand regulation of gene 

expression at the level of mRNA translation. When there is no change in translational 

efficiency between two conditions, changes in polysomal mRNA levels will be completely 

described by changes in cytoplasmic mRNA levels.  

 

This model constitutes the basis for analysis of translational activity (anota) algorithm 

developed and used in our lab to study changes in transcriptome-wide translational activities 

independent of cytosolic mRNA levels. In practice, anota calculations of differential 

translation can be visualized by plotting the cytosolic and polysomal levels of a given mRNA 

in the conditions studied. A least square linear regression model is then fitted to the data 

points assuming that the slope of the regression line is the same in all conditions. Changes in 

translational efficiency between two conditions are the differences in the y-intercept of the 

regression lines of these two conditions (Figure 9).  

 

Figure 9. Illustration of the principle behind the anota algorithm in two hypothetical scenarios: one where 

mRNA levels change mostly on the level of total, cytoplasmic RNA, with minimal change in translational 

efficiency (A) and one where the change occurs mostly on the level of ribosome-association, while cytoplasmic 

levels remain constant (B). Dashed lines represent linear regression models fitted to have the same slope in 

conditions A and B. The distance between the lines is the change in translational efficiency 

 

This algorithm can also be generalized to quantify differential translation between more than 

two conditions or along continuous variables, as has been done in study III. When the 

number of replicates allows for estimation of parameters for more than one phenotypic 

measurement, interaction terms can also be evaluated, as in study IV. 

 

The anota algorithm was designed to analyze normalized continuous data such as those 

derived from a DNA-microarray. Seeking to extend the scope of the algorithm to cover 

analysis of increasingly popular RNAseq experiments as well as to be able to identify more 
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complex modes of translational regulation, members of our lab have recently developed an 

updated algorithm, anota2seq (Oertlin et al. 2018 bioRxiv doi: 10.1101/106922). It is found 

to consistently outperform other available methods to analyze translational activity in 

RNAseq experiments.    

2.4 CAP-DEPENDENT mRNA TRANSLATION INITIATION 

 

Translational control in a cell may be global – affecting the translation of most mRNAs in a 

cell – or selective, targeting a subset of mRNAs or even single mRNAs [221]. Both the global 

and selective modes of translational regulation often hinge on the availability and 

biochemical modulation of various translation initiation factors, in line with translation 

initiation being the rate limiting step in protein synthesis.  

 

 

 

Figure 10. Schematic overview of the steps leading to cap-dependent translation initiation. For clarity, not all 

participating factors are shown. See text for a full description.  
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The description of translation initiation – as well as the description of its regulation – is 

commonly centered around eukaryotic initiation factor (eIF) 4 (Figure 10). As the limiting 

component  in the translation initiation machinery, found at much lower levels compared to 

the other components it forms a complex with [222] (Figure 10), its stoichiometry alone can 

influence cellular behavior. Indeed, many cancers are characterized by increased expression 

of eIF4E (reviewed in [202]), it is a negative prognostic marker in some cancers [223] [224, 

225] and induced overexpression of eIF4E causes cellular transformation in vitro [226]  and 

in vivo [227]. Interestingly, heterozygous Eif4e+/– mice (homozygocity for Eif4e is lethal), 

while otherwise viable, developmentally normal and fertile, are resistant to oncogenic 

transformation [228].  

 

While eIF4E is also active in the nucleus, facilitating nuclear export of certain mRNAs (some 

of which are involved in the process of translation) [229] [230], its central function is in the 

cytoplasm, where it facilitates the recruitment and assembly of factors guiding the 40S 

ribosomal subunit to the start codon of an mRNA [181]. Together with the scaffold protein 

eIF4G and the DEAD-box RNA helicase eIF4A, it forms the eIF4F complex, which, in turn, 

recruits mRNA via the strong affinity of eF4E to the 7-methylguanosine (m7G) cap [231] 

found on almost all eukaryotic mRNAs [232].  

 

The eIF4F – via its interaction with polyA-binding protein PABP [233] - coordinates the 

positioning of the mRNA in a circular loop formation (see Figure 10) favorable for translation 

[181, 234]. Prior to this, the small ribosomal 40S unit separately assembles with eIF3, eIF1, 

eiF1A, eIF5 and the so called ternary complex (TC), consisting of eIF2-GTP bound to the 

Met-tRNA cognate to the initiation codon, AUG. Once assembled, this is known as the 43S 

pre-initiation complex, PIC. eIF4G then acts as an adaptor protein via its binding to eIF3 

[235] [236] to facilitate the positioning of the 43S PIC along the mRNA.  The PIC initiates 

the process of mRNA scanning, utilizing the helicase eIF4A to resolve any secondary 

structures in the UTR region of the mRNA.  Once the initiation codon is reached, 

complementarity between Met-tRNAi
Met causes hydrolysis of the eIF2-bound GTP and the 

release of the resulting eIF2-GDP. The large ribosomal 60S unit is recruited to the complex, 

the remaining initiation factors are released and the 80S fully assembled ribosome proceeds 

to the elongation phase of translation.  [237] [238] 

 

Because of the key role played by the eIF4E-m7G cap interaction to recruit ribosomal 

subunits to the 5’ UTR of the mRNA, the mechanism outlined above is referred to as cap-

dependent translation initiation and describes the vast majority of translation initiation in 

eukaryotic cells. The use of eIF4E, though prevalent, is not a prerequisite for cap-dependent 

translation initiation. Recently, a cap-dependent, but eIF4E-independent, mechanism of 

translation initiation proceeding via DAP5 has been described [239]. DAP5 is a homolog to 

a member of the scaffold protein eIF4G family, eIF4GII [240] [241]. It lacks the N terminal 

domain found in eIF4GII needed for PAPB and eIF4E binding, but it was found to bind an 

alternative cap-binding protein eIF3d [242] and initiate translation of a number of mRNAs 

involved in for example cell death, survival, proliferation and mobility.   
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Translation can proceed in the absence of eIF4F, i.e. in cap-independent way [243]. Certain 

viruses are known to rely on internal ribosome entry sites (IRESs) when translating their 

uncapped mRNAs in the cytoplasm [244]. Under particular conditions such as cellular stress, 

certain mammalian mRNAs may bypass cap-dependent translation initiation too [245] [246], 

but whether this occurs via an IRES-like mechanism is debated [247] [248].  Recently, the 

concept of cap-independent translational enhancers (CITEs) located in the sequence of 

certain mRNAs, binding components of the translation machinery necessary to initiate 

translation, has been proposed [249].  

2.5 REGULATION OF CAP-DEPENDANT TRANSLATION INITIATION  

 

As the limiting component in the rate-limiting initiation step of translation, eIF4E is found at 

the node of two of the major and most-well characterized pathways regulating translation 

initiation. In one of these pathways, the capacity of eIF4E to bind to eIF4G is modulated by 

the mTORC1 complex. In the second one, eIF4E is the target of direct phosphorylation by 

MNK1/2 kinases (Figure 10). 

2.5.1 Regulation of mRNA translation initiation via mTORC1 

 

Mechanistic target of rapamycin, (mTOR), is a threonine/serine kinase [250] that coordinates 

upstream signals concerning, for example, nutrient availability, growth factor signaling and 

oxygen levels with appropriate downstream responses [251]. It thus serves as a nexus point 

in critical cellular pathways that commonly are deregulated in cancer. It exists in two 

complexes - mTORC1 [252] and mTORC2 [253] – associating with different effector 

proteins and influencing mostly non-overlapping processes in the cell. The involvement of 

mTORC2 in protein synthesis is limited to facilitating proper protein folding of a specific 

target, AKT, by direct association with the ribosome [254]. Indirectly, it can regulate 

mTORC1 – the other mTOR complex regulating cell metabolism, proliferation and growth - 

via phosphorylation of AKT in a signaling chain that culminates in RHEB-GTP activation of 

mTORC1 [255]. Among the many downstream targets of mTORC1, in turn, two central ones 

are eIF4E-Binding Proteins (eIF4E-BPs) [256] and S6 kinases (S6Ks) 1 and 2 [257], both of 

which have prominent roles in regulating translation.  

2.5.1.1 mTORC1-S6Ks 

 

The S6Ks phosphorylate components of the translational machinery, such as ribosomal 

protein S6 [258] and eukaryotic elongation factor (eEF) 2 kinase [259]. eEF2 facilitates 

ribosome translocation to the next codon during elongation. When phosphorylated by eEF2 

kinase, its interaction with the ribosome is impaired [260], providing a well-characterized 

example of translation being regulated at the level of elongation, rather than PIC assembly 

and initiation. Similarly to translation initiation, the regulation of eEF2 kinase has been 

shown to be targeted by oncogenic signaling to facilitate efficient protein synthesis required 

for cancer cell function [261]. In vivo, targeting the mTORC1–S6K–eEF2K–eEF2 pathway 
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in a model of colorectal cancer by rapamycin treatment (which inhibits S6K phosphorylation 

by mTORC1, and, consequently, eEF2K activity), suppressed tumour development [262].  

 

As evidenced by gene deletion studies in mice [263] and in vitro [264], the combined effect 

of S6K activity appears to converge on modulating cell (and organism) size. Via their 

interaction with eIF4B [265] and PDCD4 [266] (which, when unphosphorylated, sequesters 

eIF4A), S6Ks are also indirectly involved in regulating the pre-initation complex.  

2.5.1.2 mTORC1-4E-BPs 

 

The assembly of the eIF4F is a critical point in initiation of translation (Figure 10). In resting 

cells, it is restricted by the binding of repressive eIF4E-BPs to eIF4E, preventing its 

association to the scaffold of the complex, eIF4G. Upon sequential phosphorylation by 

MTORC1, eIF4E-BP lose affinity for eIF4E, freeing it for eIF4G binding and, consequently, 

eIF4F assembly [267]. Studies in 4E-BP DKO mice (lacking all three known 4E-BP proteins) 

have separated the effect of MTORC1-4E-BP signaling from the MTORC1-S6K pathway, 

by showing that MTORC1-4E-BP regulates cellular proliferation but not growth [268]. In 

concordance, 4E-BP have been shown to act as tumor suppressors, by increasing the capacity 

of the cell to resist oncogenic transformation when overexpressed [269] [270] and by being 

inactivated in aggressive breast carcinoma cells [271].  

2.5.1.3 mTOR-sensitive mRNAs 

 

Based on the features of their 5´-UTR, certain mRNAs are particularly sensitive to 

perturbations in mTOR signaling. A subset of these mRNAs, in particular key proteins 

involved in proliferation (for example MYC [272] and cyclin D1 [273]), are sensitive to the 

levels of available eIF4E, mediated by mTORC1-4E-BP signaling. Many of these “eIF4E-

sensitive” mRNAs have long and complex 5’-UTR. eIF4A, the helicase in eIF4F-complex, 

is considerably more active when a part of the complex compared to when it is free [232]. It 

is thus proposed that the efficient translation of these eIF4E-sensitive mRNAs is dependent 

on eIF4E to assemble the eIF4F complex, including eIF4A, which would then facilitate 

5’UTR scanning by unwinding secondary structures [274]. On the other hand, it has recently 

been shown that mRNAs with extremely short 5’-UTR also are eIF4E-, but not eIF4A-

sensitive [171].  

 

Another class of mTOR-sensitive mRNAs are the TOP mRNAs, carrying a so called “TOP”-

motif (a cysteine immediately after the 5’ cap and a string of 4-15 purimidines).  Most of 

these mRNAs encode components of the protein synthesis machinery, e.g. initiation factors 

and PABP [224]. In recent ribosome profiling studies, they were identified as almost 

exclusive targets of mTOR-signaling [275] [276], contradicting the well-known eIF4E 

dependency of non-TOP mRNAs discussed above. It has been argued that the limitations of 

the ribosome profiling method, discussed in section 2.2, led to the loss of non-TOP mRNAs 

displaying less pronounced efficiency shifts in the conditions of these studies [215]. The 

conclusion that the translation of TOP mRNAs proceeds via 4E-BP, is furthermore 
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contradicted by examples showing it not being dependent on 4E-BP, or RAPTOR, the 4E-

BP recruiting unit of mTORC1 [277] [278]. Currently, it is proposed that La-related protein 

1 (LARP1) [279] regulates the translation of TOP mRNAs, possibly via binding to the 5’ cap 

and thus inhibiting eIF4E association [280]. LARP1 itself associates with RAPTOR and is 

phosphorylated by mTORC1 which is thought to modulate its mRNA-binding activity [281]. 

 

Collectively, these examples of mTOR-sensitive translation illuminate the principle of 

selective – in this case, on the basis of specific 5’-UTR characteristics - regulation of mRNA 

translation. Importantly, eIF4A [282] and eIF4G [283] also have a set of associated 

“sensitive” mRNAs.  

2.5.2 Regulation of mRNA translation initiation by MNK1/2-eIF4E phosphorylation 

 

Apart from being regulated on the basis of expression level and capacity to bind to eIF4G, 

eIF4E can also be biochemically modulated by direct phosphorylation at a sole amino acid – 

serine 209 [284]. The only known kinases capable of phosphorylating eIF4E are MNK1 and 

MNK2 [285]. In humans, these exist in two isoforms each: MNK1a and 1b [286], MNK2a 

and b [287]. In mice there is only the “a” isoform [288]. Both MNK1 and MNK2 need to be 

phosphorylated to become active [289]. MNK2 has been shown to possess high basal activity 

[290], via its stable binding to phosphorylated ERK, protecting it against dephosphorylation 

and inactivation [291]. MNK1 activity, on the other hand, is induced as a consequence of 

Erk1/2 and p38 MAPK signaling [292]. When phosphorylated, they bind to eIF4G [293] and, 

in turn, phosphorylate eIF4E.  

 

The role of eIF4E phosphorylation in translation initiation is poorly understood, although 

circumstantial evidence showing its importance are abundant. On one hand, Mnk1 and Mnk2 

double knockout mice (Mnk1/2 DKO) are fully viable and developmentally normal [285] and 

so are mice in which serine at position 209 in eIF4E has been replaced by alanine, which 

cannot be phosphorylated (eIF4Es209a/s209a) [284]. This indicates that phosphorylation of 

eIF4E is not a prerequisite for normal physiological development. On the other hand, it is 

clear that phosphorylated eIF4E has a role in oncogenic transformation and metastasis. The 

ability of mutated non-phosphorylatable eIF4E to transform cells in vitro is substantially 

reduced [294]. eIF4Es209a/s209a mice and MNK DKO are resistant to tumorigenesis in animal 

models of prostate cancer [284] and Pten-deficient lymphoma [295] respectively. Metastasis 

is impaired in MMTV-PyMT eIF4Es209a/s209a model of mammary cancer [296]. In humans, 

increased phosphorylation of eIF4E is seen in many cancers [297] and is associated with poor 

prognosis in non-small cell lung cancer [298] and melanoma [299]. The effect of eIF4E 

phosphorylation on global mRNA translation is context-specific, correlating with increased 

translation in a model of HSV-1 viral infection  [300] but, conversely, constitutively active 

MNK1 and MNK2 were found to decrease cap-dependent translation in HEK293T cells 

[301]. Importantly, there are differences in the subsets of eIF4E and phospho-eIF4E sensitive 

mRNAs, with chemokines being an important class of genes whose translation is affected by 

the absence of eIF4E phosphorylation [284].    
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2.5.3 Regulation of Ternary Complex formation and the Integrated Stress Response 

 

While the mTOR and/or eIF4E-centric pathways of translational regulation are 

demonstratedly important, they are by no means the only means to regulate translation. TC 

formation is a key step in 43S PIC assembly (Figure 11). The binding of Met-tRNAi
Met to the 

P site of the ribosome is accompanied by hydrolysis of GTP bound to eIF2 [302]. eIF2, now 

bound to GDP dissociates from the complex. To participate in the TC association in the next 

round of translation initiation, it requires the guanine nucleotide exchange factor eIF2B to 

facilitate the exchange of GDP to GTP [303] (Figure 11). The levels of available eIF2B in a 

cell are limited, and phosphorylation of eIF2 at the alpha subunit greatly increases the affinity 

of eIF2B towards eIF2 [304], thus sequestering it. As a consequence, Met-tRNAi
Met, which 

has a much higher affinity towards eIF2-GTP [305], is not bound as efficiently and the TC is 

not formed, leading to a global reduction of translation. This mechanism is employed by the 

cell as a part of so called integrated stress response (ISR) to various stresses, such as 

starvation [306], haem-deficiency [307] virus [308] or accumulation of unfolded proteins in 

the endoplasmic reticulum (ER) [309]. For example, the protein unfolding response (UPR) 

proceeds by inducing the activity of the eIF2α kinase PERK [310], impeding global 

translation and promoting preferential translation of particular mRNAs such as mRNAs 

encoding transcriptional stress-response regulators (e.g., ATF4) which are inefficiently 

translated under non-stress conditions. This is followed by recovery of translation, via 

induction of GADD34 [311], a stress‐induced gene that binds to PP1 phosphatase and 

dephosphorylates eIF2α [312] thus reinstating TIC formation.    

 

Recently, a different ISR mechanism has been described, operating under conditions of 

chronic ER stress [313]. While also employing PERK, it entails a consistent, not transient, 

translation of uORF mRNAs concurrent with a partial translational recovery. eIF2B remains 

Figure 11 Illustration of regulation of translational initiation at the level of ternary complex assembly 
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suppressed however, suggesting there exists an alternative way to transport Met-tRNAi
Met to 

translation start site. Translation during chronic ER stress was furthermore found to be 

mediated by eIF3d, the alternative cap-binding protein discussed previously.  

2.5.4 Regulation of mRNA translation by RNA-Binding Proteins 

 

While the discussion until now has focused on the pathways involving translation initiation 

factors, a very significant part of regulation of mRNA translation is mediated by other means. 

Many mRNAs are regulated specifically by the action of particular RNA-binding proteins 

(RPBs) that recognize motifs (so called cis-elements) often in the 3’ UTR of the mRNA and 

direct translation by binding [314]. Relevant to the discussion of translational regulation in 

immune cell function, many key components of signaling pathways in immune cells are 

regulated by RPBs. A classic example of such regulation is the GAIT translational repressor 

complex. In humans, it consists of the aminoacyl-tRNA synthetase EPRS, the RBP NSAP1, 

the ribosomal protein L13a and glycolysis enzyme GAPDH [315]. Its binding to a GAIT 

element (a stem-loop secondary structure with an asymmetric internal bulge) in the 3′ UTR 

of ceruloplasmin mRNA, disrupts its translation, thus abrogating ceruplasmid protein levels, 

while the mRNA levels remain unaffected [316]. Ceruloplasmin is an acute-phase plasma 

protein with bactericidal activity [317] produced by hepatocytes and activated monocytes 

and macrophages in response to IFNγ [318]. It’s timely synthesis but, likewise, inhibition of 

translation, is an example of the importance of swift adaptation to external stimuli in immune 

cells.  Since the discovery of the GAIT element on the 3’ UTR of ceruloplasmin, it was also 

identified on VEGF-A [319] and several chemokine ligands and receptors discussed in this 

text, such as CCL22 and CXCR3 [320].  

 

Transforming growth factor-β-activated kinase 1 (TAK1) has recently been identified as the 

target of translational regulation by two distinct RBP-mediated pathways: via binding of 

heterogeneous nuclear ribonucleoprotein K (hnRNP K) [321] and cytoplasmic-element-

binding (CPEB) protein [322]. TAK1, a mitogen-activated protein kinase kinase kinase 

(MAP3K) participates in a signaling cascade cultimating in the activation of the NF-кB 

pathway  and the subsequent expression of several pro- and anti-inflammatory cytokines 

[323]. Through a genome-wide RNA Immunoprecipitation chip (RIP-Chip) analysis of RAW 

264.7 macrophage cell line and BMDMs with HnRNP K as bait, with or without LPS 

stimulation, several TLR4 signalling candidates were found to co-precipitate with HnRNP K 

in response to the LPS treatment [321]. TAK1 was selected for further analysis, and hnRNP 

K was found to bind a regulatory sequence, containing AU-rich element (ARE) in the TAK1 

mRNA 3′-UTR, suppressing its translation. Upon siRNA-mediated hnRNP K knockdown, 

TAK1 mRNA translation is enhanced (while mRNA levels remained stable), resulting in 

elevated TNF-α, IL-1β, and IL-10 mRNA expression. The authors speculate that upon LPS 

stimulation, hnRNP K may become phosphorylated abrogating its RNA binding capacity and 

thus releasing TAK1 mRNA. Similarly, CPEB, binding a putative cytoplasmic 

polyadenylation element (CPE) in the 3’-UTR of TAK1, was shown to regulate its 

translation, thus controlling the NF-kB-mediated inflammatory response. In its absence, LPS-
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challenged CPEB double knockout mice display hypersensitivity to endotoxic shock but this 

is lost upon TAK1 inhibition [322]. Cumulatively, the presence of regulatory GAIT elements, 

AREs and CPEs in the 3’-UTR of genes related to inflammation, highlight the importance of 

translation regulation in controlling the inflammatory immune response.  

2.5.5 Regulation of mRNA translation by secondary structures in the 3’-UTR 

 

The cis-elements may not need RBPs to regulate translation – secondary structures in the 

mRNA that affect initiation factor binding are one such example [324]. Recently, this was 

illustrated in the translational regulation of MCPIP1 by proinflammatory cytokines IL-1 and 

IL-17 [325]. MCPIP1, also named ZC3H12A or regnase-1, is induced by LPS treatment in 

macrophages and suppresses inflammatory processes by inhibiting inflammatory gene 

expression and NF-κB activation in response to LPS [326]. Its translation is inhibited by 

presence of 5’-uORF but also by the presence of putative stem-loop-forming sequence in its 

3’-UTR, previously associated with rapid degradation of the mRNA [327]. Binding of IL1 

or IL17 to the 3’-UTR stabilized the mRNA and increased its translation.   

2.5.6 Regulation of mRNA translation by microRNA 

 

Micro-RNAs (miRNAs) can also affect protein synthesis [328]. While many miRNA induce 

mRNA degradation of target mRNAs by recruiting deadenylases or decapping enzymes, 

promoting the degradation of these protective structures and the subsequent mRNA 

degradation through the mRNA decay pathways, some repress its translation without 

affecting mRNA levels [329]. Three proposed mechanisms by which they do so are 

promoting PAPB displacement [330], disrupting mRNa circularization, and/or recruitment 

of translational repressors [331] and/or dissociation of eIF4A from eIF4E [332]. Many 

inflammatory processes in innate immune cells are regulated by miRNA repression [333], 

one of the first such miRNAs to be identified was miR-146, whose expression is induced by 

NF-kB signaling and thought to regulate toll-like receptor and cytokine signaling [334].  
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3 THESIS FINDINGS IN CONTEXT 

 

“Let us reflect. Let us reason. Let us – enfin! – employ our little grey cells!”  

-Hercule Poirot 

 

The work presented in this thesis has touched upon the themes of cancer initiation – 

highlighting the importance of DNA repair mechanisms to safeguard against neoplastic 

transformation (Study V) and the contribution of the stromal environment in fueling it 

(Study IV). It has applied a previously implicated biological target – SEMA3A – to shift the 

balance of tumor-associated macrophages in an established tumor (Study I) and to 

phenotypically alter tumor-promoting MDSCs, (Study II), in sum priming immune cells in 

the tumor microenvironment to resist tumor development. Finally, it has extended the search 

for novel such anti-tumor targets to a global scale by looking for clues in the regulation of 

gene expression on the level of mRNA translation in tumor-associated macrophages (Study 

III). Though each individual study in itself is but a snapshot of a bustling research area, 

together they form a continuum highlighting important themes in contemporary cancer 

research.   

3.1 STUDY I  

 

Guidance molecule SEMA3A restricts tumor growth by differentially regulating the 

proliferation of tumor-associated macrophages 

 

Semaphorin3A (SEMA3A) is a signaling protein expressed in most human and mouse 

tissues. It was first identified due to its involvement in directing axon growth but is now 

believed to regulate many physiological and pathological processes, including angiogenesis, 

immune response and tumor development [335] [336]. SEMA3A binds a receptor complex 

consisting of the ligand-binding subunit neuropilin 1 (NP1) and plexin A family (1-4) that 

acts as signal transduction molecules [337]. Gene expression studies in human cancers 

suggest inverse correlation of SEMA3A expression with tumor malignancy in most tumors 

[336]. Indeed, in this study, we show that SEMA3A is downregulated in higher grades of 

ductal breast carcinoma, and, in addition, its expression is positively correlated with the 

expression of M1-like TAMs markers i.e. CD80 and CD86, as well as CD8 T cell and NK 

cell-associated markers, suggesting its elevated expression in tumor microenvironments 

characterized by more activated associated cytotoxic cells [39].  

 

Existing data concerning the role of SEMA3A in tumor immunity is contradictory. On one 

hand, its overexpression in cancer models has been shown to inhibit tumor growth by several 

mechanisms, including impeded tumor angiogenesis [338]. It has also been reported to recruit 

a subset of NP1-expressing monocytes with anti-tumor properties from the bone marrow 

[339]. Other studies suggest, however, that it can also facilitate accumulation of pro-tumor 

macrophages in hypoxic areas of the tumor, thus contributing to tumor progression [340].  



 

 33 

We therefore sought to clarify the functional role of SEMA3A in the tumor 

microenvironment, particularly its involvement in shaping the composition of the TAM 

population. Using lentiviral gene transfer, 4T1 tumor cell line was engineered to overexpress 

SEMA3A and injected in the mammary fat-pad of naïve mice, growing orthotopically (i.e. in 

the anatomically correct site) and thus exposed to breast-specific microenvironment during 

growth.  Consistent with previous reports [338], SEMA3A efficiently hampered tumor 

growth. The SEMA3A-overexpressing tumors displayed an accumulation of M1-like TAMs, 

as characterized by elevated levels of antigen-presenting molecules MHCI and MHCII, T 

cell activating molecules CD80 and CD86, as well as M1-marker CD11c and a decrease of 

M2-marker MRC1 (CD206). On RNA level, we could detect upregulation of T cell recruiting 

and activating chemo- and cytokines. Importantly, SEMA3A-overexpression increased the 

accumulation of CD8+ and NK cells to the tumor site and these cells in SEMA3A-tumors 

expressed higher levels of IFNγ and CD69, suggesting an activated phenotype.  

 

In order to elucidate the role of TAMs in SEMA3A-mediated inhibition of tumor growth, we 

performed a proof-of concept experiment where we depleted TAMs by targeting CSF1 with 

a neutralizing antibody (clone 5A1). Depletion of TAMs revoked the SEMA3A-mediated 

tumor growth reduction and, importantly, TIL accumulation. We then depleted CD8+ T cells 

and NK cells and we observed that in the absence of these cells, SEMA3A-overexpression, 

likewise, failed to reduce tumor growth. We thus conclude that SEMA3A-mediated reduction 

of tumor growth is dependent on the accumulation of anti-tumor TAMs, which, in turn, 

recruit activated cytotoxic T and NK cells to the tumor. Surprisingly, TAM depletion in itself 

did not impede tumor growth. This is in concordance with many similar findings [153] [61] 

[82]. It appears that targeting CSF1 is most effective when used in synergy with other 

treatments, such as chemotherapy [82]  but that the TAM population is too heterogeneous 

and reliance on CSF1 is too stage-specific for this to have an universal detrimental effect on 

tumor development [152].   

 

SEMA3A has previously been proposed to act as an attractant for NP1-expressing 

mononuclear phagocytes, including macrophages [341]. Casazza et al. [340] illustrate an 

example of such chemotactic mechanism, whereby hypoxia-upregulated tumor-derived 

SEMA3A (as well as VEGF-A, also a binding partner of NP1) act as macrophage attractants, 

guiding TAM localization, and subsequent entrapment, in hypoxic areas inside the tumor. 

Hypoxia fine-tunes the pro-tumor phenotype of TAMs [342], and, cumulatively, this 

suppresses tumor immunity and promotes angiogenesis and metastasis. Disrupting this 

chemotaxis via NP1-deletion in macrophages, limits the localization of TAMs to normoxic 

areas, consequently maintaining a more immune-active TAM phenotype and obstructing 

tumor development.   

 

In contrast, when we investigated the effect of SEMA3A overexpression on the circulation 

of inflammatory and patrolling monocytes, we could not detect any statistically significant 

differences in the monocyte-recruitment to SEMA3A-tumors, compared to controls. Neither 

did we detect SEMA3A-induced chemokine expression differences in the tumor cells that 
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would explain increased monocyte recruitment. Finally, SEMA3A had no effect on the 

migration capacity of BMDMs polarized to either M1- or M2 phenotypes. Cumulatively, this 

led us to conclude that the effect of SEMA3A on intratumoral immune cell composition in 

our tumor model does not stem from increased or differential recruitment of monocytes or 

anti-tumor TAMs.  

 

Surprisingly, SEMA3A had no direct effect on BMDM polarization, suggesting that the 

altered composition of the TAM population in SEMA3A tumors is not due to direct 

polarizing or reprogramming effects of SEMA3A. Given recent studies implicating 

proliferation as a mechanism to expand TAM population [91, 93], we investigated if 

proliferation of M1-like and M2-like macrophages was affected by SEMA3A. Indeed, both 

M1-like TAMs and M1-polarized BMDM showed increased incorporation of BrdU, while 

the effect in M2-like TAMs and M2-polarized BMDMs was reversed in SEMA3A-tumors. 

 

While the capacity of macrophages to proliferate has been established prior to our study, the 

concept of differential proliferation between macrophages in different polarization states is 

novel. The expression of NP1 was previously shown to be induced upon M2-polarization, 

and correspondingly, reduced upon M1-polarization in human monocyte-derived 

macrophages [343]. In this report, SEMA3A was furthermore shown to induce apoptosis in 

macrophages resistant to Fas-mediated cell death and the authors speculate that 

downregulation of NP1 could be a mechanism by which M1-macrophages escape SEMA3A-

mediated apoptosis during inflammatory conditions. Consistently, we show significantly 

higher expression of NP1 in M2-polarized BMDMs compared to M1-polarized BMDMs. 

Furthermore, we show that the differential effect of SEMA3A on M1- or M2 macrophage 

proliferation is NP1-dependant; the differential effect of SEMA3A treatment on AKT and 

MAPK phosphorylation in M1- and M2-macrophages in BMDMs lacking NP1 was lost.  

 

 

Figure 12. Schematic summary of key findings of study I. SEMA3A overexpression by tumor cells leads to 

selective proliferation of macrophages with M1-like pro-inflammatory characteristics. These, in turn, recruit 

cytotoxic cells to the site of the tumor, contributing to diminished tumor growth 
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It is thus plausible that, like during its induction of apoptosis in human monocyte-derived 

M2-macrophages, SEMA3A exerts some sort of regulatory “stop signal”-effect downstream 

of its signaling, an effect that M1-macrophages escape due to downregulated NP1-levels. 

Given that NP1, in itself, lacks a signal-transducing cytoplasmic domain, and can thus only 

transmit signals when in complex with members of the plexin A family, it is plausible that 

the differential SEMA3A signaling in M1 and M2-like macrophages may furthermore 

depend on the identity of plexins in the assembled NP1 receptor complex. This would require 

further investigation. In conclusion, our study is the first study to show that the TAM 

composition in the TME of a mammary tumor model can be modulated by differential 

proliferation of particular macrophage subsets. By selectively increasing proliferation of M1-

like macrophages while impeding proliferation of M2-like macrophages we achieved a 

tumor-suppressing microenvironment populated by recruited and activated T and NK cells.   

3.2 STUDY II 

 

Semaphorin3A re-educates myeloid-derived suppressor cells towards a pro-

inflammatory phenotype  

 

Apart from an increase in, and altered composition of, the TAM population, SEMA3A 

overexpression in our 4T1 tumor model also resulted in a decrease in the intratumoral 

CD11b+Ly6G+ population. This was also seen in the spleens of tumor-bearing mice. The 

spleen is an important site of extra-medullary (i.e. occurring outside of the bone marrow) 

myelopoiesis prominent during pathological conditions such as cancer and is a potential site 

of the origin of MDSCs [118]. Importantly, the CD11b+Ly6C+ population was not affected. 

Furthermore, we established that both CD11b+Ly6C+ and CD11b+Ly6G+ cells express the 

NP1 receptor to a similar extent and that SEMA3A treatment in itself did not affect this 

expression. We thus hypothesized that SEMA3A may exert an effect on the intratumoral 

CD11b+Ly6G+ population that is separate from its effect in stimulating the proliferation of 

M1-like TAMs, and, cumulatively, this would result in the observed diminished tumor 

growth in the SEMA3A overexpressing tumors.  

 

The mouse model we chose to use in study I  and study II – the 4T1 model – is particularly 

suitable to assess the role of Ly6G+ cells on the tumor development. In itself, it is a fast-

growing and aggressive tumor model that resembles triple negative breast cancer (TNBC) 

and in later stages recapitulates characteristics of stage IV TNBC [344]. Relevant for this 

study, we observe higher granulocytic infiltration in these tumors compared to other breast 

cancer models we employ.  

 

We choose to refer to the intratumoral CD11b+Ly6G+ population as polymorphonuclear 

myeloid-derived suppressor cells, MDSCs. The choice of terminology is contentious. Under 

normal physiological conditions, CD11b+Ly6G+ cells would be identified as neutrophils and 

their function would be to lyse and phagocytose cells and activate the immune system. Due 
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to the current lack of verified MDSC-specific expression markers in mice, only functional 

tests can distinguish neutrophils and MDSCs [345]. In the tumor, the situation becomes even 

more complex as TANs, much like TAMs, have been proposed to exist along an anti-

tumorigenic (N1) and pro-tumorigenic (N2) functional continuum. Whether N2-like TANs 

and MDSCs are indeed different cells and, if so, what are the defining features of these 

respective cell types is not yet firmly established in the scientific community [346].  

 

By performing a Ly6G-depletion (1A8 clone) experiment, we observe that the control tumors 

without CD11b+Ly6G+ cells display reduced growth at later stages of the growth curve. This 

leads us to conclude that the cells we deplete had a pro-tumor phenotype. Depleting Ly6G+ 

cells in itself did not increase the activation of CD8+ T cells, and only marginally increased 

the activation of CD4+ T and NK cells. This is counterintuitive given the hallmark 

immunosuppressive identity of PMN-MDSC. On the other hand, it has been established that 

M-MDSCs (CD11b+Ly6C+) are more potent immunosuppressors on a per cell basis 

compared with PMN-MDSCs [347] and our depletion strategy would not affect this cell 

population. Additionally, in the TAM-depletion experiments performed in study I, we could 

not detect increased T and NK cell activation as a direct consequence of the anti-CSF1 

treatment, despite the TAMs we depleted in the control group verifiably being skewed toward 

MHCIIlow pro-tumor immune-suppressive phenotype.   

 

Importantly, in the SEMA3A tumors, the CD11b+Ly6G+ population displays an increase in 

the Th1-associated CXCL9-11 and the CCL2 and CCL5, that are associated with a pro-

inflammatory phenotype. This suggests that in the SEMA3A-overexpressing tumors, 

CD11b+Ly6G+ are less immunosuppressive. Indeed, as in Study I, CD8+ T cells and NK 

cells from SEMA3A-tumors express higher levels of INFγ, suggesting higher activation, and 

this effect is less pronounced in the absence of CD11b+Ly6G+ cells. We thus propose that the 

effects of SEMA3A on tumor-infiltrating lymphocytes are mediated both by TAMs but also 

by intratumoral CD11b+Ly6G+ cells. We also observe a downregulation of S100a9 in the 

CD11b+Ly6G+ cells in SEMA3A tumors. This gene has been implicated in MDSC expansion 

[348] and migration [349] to the site of the tumor. This might explain the decreased 

CD11b+Ly6G+ infiltration in the SEMA3A tumors we observe.  

 

Neutrophils, in under physiological conditions, are strongly cytolytic and phagocytic [350]. 

It is possible that, in addition to an indirect anti-tumor effect of SEMA3A, mediated via a 

less immunosuppressive phenotype of the CD11b+Ly6G+ population, the intratumoral 

CD11b+Ly6G+ cells themselves have acquired functional features of neutrophils. This should 

be explored further with cytotoxicity assays. Furthermore, PMD-MDSCs suppress T and NK-

cell mediated immunity via a variety of different mechanisms, as discussed previously. It 

would be interesting to study if SEMA3A affected, for example, the levels of ROSs in the 

CD11b+Ly6G+ cells.  
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Much like the differential effect of SEMA3A on the proliferation of TAMs, the differential 

effect of SEMA3A on CD11b+Ly6G+ cell recruitment, compared with the recruitment of 

CD11b+Ly6C+ cells, despite near-identical extent of NP1-expression needs further 

mechanistic exploration. It is possible that in “re-programming” CD11b+Ly6G+ cells, 

SEMA3A does not act on the cells directly but, rather, disrupts the “two-factor signaling” 

mediated by the tumor and tumor stroma proposed by Gabrilovich as necessary to establish 

the PMN-MDSC phenotype. The observed effect on CD11b+Ly6G+ cells in SEMA3A-

overexpressing tumors would thus not be a direct consequence of SEMA3A-NP1 

downstream signaling in the CD11b+Ly6G+ cells but, rather, reflect altered repertoire of 

signals in the tumor microenvironment. The effect of direct SEMA3A addition to cultures of 

PMN-MDSCs as well as Np1 knockdown studies are required to clarify this point.  

 

In summary, while the results presented in study II (Figure 13) are preliminary and require 

further substantiation, on the basis of study I (Figure 12) and study II (Figure 13), we 

propose that SEMA3A has a cumulative anti-tumorigenic effect, mediated via “reshaping” 

of the tumor microenvironment. These findings motivate further exploration of the 

therapeutic potential of SEMA3A. Study I and II further highlight the plasticity of tumor-

associated immune cells and add to the growing repertoire of targets capable of altering their 

phenotype in an anti-tumor direction. Aiming to extend our knowledge of such targets, we 

initiated study III.  

3.3 STUDY III 
 

Translational control of tumor-associated macrophage phenotype 

 

The discovery of macrophage targets with a potential to bring about an anti-tumor response 

can be serendipitous, but, in general, it is the result of systematic research, based on prior 

knowledge of molecular pathways important for macrophage function. Macrophages are 

plastic cells and their plasticity implies mechanisms set in place to sense environmental 

signals and modulate gene expression accordingly.  Regulation of mRNA translation results 

Figure 13. Schematic summary of key findings of study II. SEMA3A overexpression by tumor cells leads to a 

less immunosuppressive phenotype in the intratumoral CD11b+Ly6G+ population. This, in turn, increases the 

IFNγ production of intra-tumoral lymphocytes.  
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in rapid changes in protein levels as de novo transcription, mRNA processing and nuclear 

export are bypassed.  Given existing data implicating translational control as a mechanism 

modulating many aspects of immune cell function [351], we hypothesized that genes 

important for the anti-tumor-to-pro-tumor progression in TAMs are translationally regulated.  

3.3.1 Translational regulation during TAM progression to a pro-tumor phenotype in 

vivo 

 

To address our hypothesis, we used the MMTV-PyMT model, where the tumor-inducing 

oncogene polyoma middle T (PyMT) is under the control of mammary tumor virus promoter 

(MMTV), restricting the development of the neoplasm exclusively to the mammary 

epithelium. In transgenic mice, this model provides an aggressive, autochthonous (i.e. 

occurring spontaneously) model of luminal B-type mammary carcinoma characterized by 

progression through the four stages of tumor development: hyperplasia, adenoma/mammary 

intra-epithelial neoplasia and early and late carcinoma [352].  Importantly, late-stage 

carcinogenesis and metastasis in this model are regulated by CSF1 and macrophages [353] 

and many seminal TAM studies cited throughout this text applied this model [112] [56] [91]. 

However, multiple tumors arise in the same animal in MMTV-PyMT mice. As the 

macrophage infiltration to any given tumor, would be affected by the tumors in the vicinity, 

we believe this would not reflect TAM development within an isolated tumor as needed to 

address our hypothesis. Instead, we used a cell line derived from the late stages of 

spontaneous MMTV-PyMT tumor and we induced tumors by orthotopic injection of this cell 

line into the mammary fat pad of syngeneic FVB mice. We do not expect the tumors that 

arise to progress through the defined stages of carcinoma development characterizing the 

spontaneous MMTV-PyMT model, as these are driven by the stepwise accumulation of 

genomic alterations which have already taken place before the cell line was derived. We 

believe, however, that this provides a more homogenous model to study TAM development 

during tumor growth.  

 

To verify that the TAM composition shifts during tumor development, we characterized their 

phenotype, using tumor size as a proxy for developmental stage. Using two gating strategies, 

Ly6C+/-MHCIIlow/high as well as CD11+/MRC1+ we confirmed that during tumor growth, the 

TAMs shift towards the CD11b+Ly6G-Ly6ClowMHCIIlow and CD11b+F4/80+MRC1+ pro-

tumor phenotype.  

 

We thus collected and sequenced polysome-associated and total RNA from TAMs from 13 

tumors of different sizes. Using a modified version of the anota algoritm described in section 

2.3, we quantified differential translation, using tumor weight as a continuous variable.  

 

Surprisingly, we found that the number of genes regulated by translation greatly outnumber 

the genes regulated via changes in total mRNA levels, at a ratio of approximately 10:1. We 

next performed Generally Applicable Gene-set Enrichment for Pathway Analysis (GAGE) 

[354] to identify enrichment of cellular functions (represented by GO terms) among genes 
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identified as translationally regulated. Interestingly, we identified proliferation as one 

function enriched in translationally regulated genes. In study I, we investigated differential 

translation of macrophage subsets as a mechanism affecting the intratumor TAM 

composition. By performing flow cytometry analysis in the context of study III, we could 

confirm that M2-like TAMs proliferate to a higher extent than M1-like TAMs (as assessed 

by Ki67 staining), this difference diminishing – but persisting – as the tumor grows larger 

(study III, Supplementary figure S2) This indicates that differential proliferation in TAM 

subsets is a possible mechanism by which the TAM composition is established.   

 

Macrophage activation drives differential metabolism, as the activating signals often intersect 

with metabolic pathways [355]. The role of IL-4-induced ARG1, the classical M2 marker, in 

arginine metabolism has been discussed throughout this text. One of the major differences 

between pro-inflammatory and anti-inflammatory polarization states of macrophages in vitro 

is energy metabolism [356]. While M1-polarized macrophages preferentially produce ATP 

from glycolysis, M2-polarized macrophages do so through oxidative phosphorylation of fatty 

acids and glutamine. Interestingly, INFγ signaling via TRL2 has been shown to result in a 

translatome reprogramming, targeting, in particular, metabolic pathways [357].   

 

Consistent with the notion of a metabolic shift accompanying differential macrophage 

activation states, we found genes involved in various metabolic processes to be 

translationally upregulated in TAMs during tumor growth. For example, human carbonyl 

reductase 1 (CBR1) has been shown to catabolize S-Nitrosoglutathione, as a means to 

degrade NO [358], the elevated levels of which is a typical feature of M1 pro-inflammatory 

macrophage. Cbr1, but also other members of this family such as Cbr2, 3 and 4 were found 

translationally upregulated in TAMs during tumor growth. Similarly, we found genes 

involved in glutathione metabolism (Gclm, Gpx3, Gstm1, Gsto1, Gstp1, Gstp2, Gstt3, Hagh, 

Sod2). Glutathione is an antioxidant that acts by reducing ROS [359], the production of which 

also is a characteristic of M1-phenotype. 

 

We selected three key genes from the categories we believe to be key in macrophage biology: 

proliferation (Cdk4), metabolism (Cbr2) and cytokine production (Grap) [360] and 

confirmed their elevated protein levels in pro-tumor macrophages by both flow cytometry 

and immunofluorescence staining of tumor sections, but also in in vitro macrophages 

polarized to either M1- or M2-phenotypic states. To further consolidate that the TAM 

phenotype shift along the tumor weight axis reflects a progression from an anti-tumor M1-

like phenotype to a pro-tumor M2-like phenotype, we subjected in vitro M1- and M2-

polarized macrophages to polysome profiling. Translational regulation was overall less 

abundant in the in vitro model, perhaps reflecting the stability of these cells compared to 

TAMs exposed to a complex and varied microenvironment. Nonetheless, when we compared 

in vivo translationally regulated genes to the in vitro data set, we found in vivo upregulated 

genes to be enriched among those efficiently translated in the M2-polarized macrophage. 
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Vice versa, in vivo downregulated genes were enriched among those efficiently translated in 

M1-polarized macrophages.  

 

In summary, we conclude that changes in translational efficiencies occurring in the TAM 

population during tumor growth reflect, at least partially, a shift from an overall M1-like to 

an overall M2-like phenotype. 

3.3.2 MNK2-mediated effect on M2-phenotype in vitro  

 

We started looking for translation factors whose activity could explain observed changes in 

translation during M1-to-M2-progression.  We found that phosphorylation of eIEF4 is 

strongly induced in in vitro M2-polarized macrophages (IL-4) compared to M1-macrophages 

(IFNγ). We hypothesized that the M2-phenotype in vitro is established by selective mRNA 

translation mediated by phosphorylation of eIF4E. Surprisingly, upon inhibition of MNK 

activity by the MNK-inhibitor cercosporamide, the phenotype of the M2-polarized 

macrophages underwent a drastic change. We found elevated transcription of Th1-associated 

chemokines Cxcl9-11, as well as T cell activating Il-12 and Il-1 in treated cells. These cells, 

furthermore, increased cell surface expression of co-stimulatory CD86 and antigen-

presenting MHCII, and decreased protein levels of the M2-associated marker MRC1. Most 

importantly, cercosporamide-treated M2-polarized macrophages induced IFNγ production in 

T cells at levels comparable to M1-polarized macrophages (Figure 14). Upon shRNA-

mediated MNK2 knockdown, this effect was lost. Importantly, the MNK inhibition decreased 

protein levels of CDK4 and GRAP (described earlier) but not their mRNA levels.  

 

Cercosporamide inhibits MNK function, with a stronger affinity toward MNK2 [361]. 

However, cercosporamide also inhibits JAK3 [361]. JAK3 lies immediately downstream of 

the IL-4 receptor (IL-4R) and phosphorylates STAT6 [362], the well-recognized mediator of 

the IL-4-polarized M2 gene expression signature. Phosphorylated STAT6 translocates to the 

nucleus and initiates the transcription of many typical M2-signature genes such as Arg1, 

chitinase 3–like protein 3 (Ym1), resistin-like alpha (Fizz-1) [363] [364]. It has also been 

shown to inhibit the NF-Kβ pathway important for M1 phenotypic activation via activation 

of and cooperation with Krüppel-like factor 4 (KLF4) [365].  As we use IL-4 to induce an 

M2-phenotype in vitro, we compared the consequences of JAK3 inhibition by a selective 

JAK inhibitor CP690550 [366] in M2-polarized macrophages to that of cercosporamide 

treatment. Importantly, neither the elevated Th1 cytokine expression by cercosporamide nor 

the ability of cercosporamide-treated M2 macrophages to stimulate IFNγ production of CD8+ 
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T cells was mirrored by CP690550. To verify that the MNK-driven pro-tumor effect we 

observe is general and not IL-4 specific, it would be interesting to study its inhibition in IL-

10-polarized M2 macrophages. IL-10 signals via the STAT3 pathway, mediating the 

transcription of a different set of genes, aimed at attenuating the inflammatory response [367] 

[368]. STAT3 and STAT6 synergize in amplifying the expression of certain genes (such as 

Arg1) [369] and in increasing cathepsin secretion by TAMs needed for tumor progression 

[370]. Importantly, in the complex in vivo microenvironment, TAMs are likely to be exposed 

to both IL-4, IL-10 as well as IL-13 (signaling via STAT6 and IL4-R) and IL-6 (signaling 

via STAT3), suggesting the need to confirm the MNK effect we observe under all these 

contexts [44] [362].  

 

MNK1 and MNK2 are the only kinases known to phosphorylate eIF4E [285], but the 

MNK1/2 proteins themselves have other biological targets. For example, MNK have been 

found to regulate the translation of TNFα, the proinflammatory cytokine produced by 

classically activated macrophages. It does so by phosphorylating heterogeneous nuclear 

ribonucleoprotein (hnRNP) A1 [371]. This leads to hnRNP A1’s de-association from ARE 

in the 3’ UTR of TNFα mRNA and the subsequent translation of TNFα. Later, a different 

protein, polypyrimidine tract-binding protein (PTB)3-associated splicing factor (PSF) 

Figure 14 Summary of key findings of study III. TAM phenotype during tumor growth is regulated by 

differential mRNA translation. Importantly, the mRNAs that are upregulated in TAMs at later stages of tumor 

growth also are upregulated in M2-polarized in vitro BMDMs. Upon in vitro inhibition of MNK2 by 

cercosporamide, M2-BMDMs increase their capacity to activate CD8+ T cells, indicating a shift towards a pro-

inflammatory phenotype. 
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together with p54nrb, was identified as an MNK-target [372]. Its binding to ARE in the 3’ 

UTR of TNFα mRNA was enhanced by MNK-mediated phosphorylation. Since PSF is  

nuclear protein [373], the authors speculate that its binding to TNFα mRNA may be involved 

in its nuclear export  [372]. Sprouty2, a negative regulator of the MAP kinase ERK1/2 

pathways [374], has been shown to be a direct target of both MNK1 [375] and MNK2 [376]. 

Finally, phosphorylation of eIF4E by MNKs also affects its function in mediating nuclear 

export of certain mRNAs [294]. Collectively, this suggests that the functional consequences 

of MNK activity could potentially be mediated by mechanisms other than phosphorylated 

eIF4E regulating the translation initiation of specific mRNAs. Our shMNK2-results make an 

indirect connection between eIF4E phosphorylation status and functional phenotype of the 

M2-polarized macrophages, by showing that comparable phospho-eIF4E levels mirror 

similar macrophage phenotypes in the shMNK2 experiment. This is, however, only 

correlation at this moment.  

 

Interestingly, MNK1 and MNK2 have been suggested to possess different substrate 

specificities. For example, PSF discussed earlier is preferentially phosphorylated by MNK2 

at one of its residues [372]. Furthermore, in a muscle cell line, only MNK2 and not MNK1 

selectively inhibited proteins involved in the translational machinery i.e. eIF4G and mTOR 

[377]. The phosphorylation of eIF4G at Ser1108 is associated with protein synthesis [378]. In 

the absence of inhibitory MNK2, this phosphorylation was increased. In the same study, 

MNK2 was also shown to inhibit mTOR-target p70S6K through a mechanism that was 

unrelated to its function as a kinase, by interacting with mTORC1. In sum, these examples 

highlight that MNK can act independently of eIF4E phosphorylation.   

 

We chose to pursue MNK2 in our shRNA knockdown experiments, because of the higher 

affinity of cercosporamide towards MNK2 compared to MNK1 [361], and we could show 

that the effect of cercosporamide is indeed mediated by MNK2. It would be valuable to 

investigate the effect of MNK1 knockdown and the cumulative effect of MNK1 and MNK2 

deficiency. It is possible that a stoichiometrical relationship exists between levels of MNK1 

and MNK2, influencing the downstream effect of their activity in the cell. It is also possible 

that, as indicated by the differences in their activity, with MNK1 being induced upon 

p38/ERK signaling and MNK2 possessing high basal activity, they are active at different 

times during macrophage polarization.  

 

To expand our understanding of the mechanisms by which MNK reprograms M2-

macrophages, we need to understand the identity and function of the genes that are affected. 

For instance,  a recent study has suggested that MNKs regulate the translation of mRNAs 

with both a 5’ cap and a 5’ hairpin structure [379]. This study was performed using a different 

MNK-inhibitor, CGP57380, using a cell-free translation system and is thus somewhat 

artificial. We therefore plan to perform translatome profiling on shMNK2-macrophages, 

which, we believe, would provide a more comprehensive identification of mRNAs whose 

translation is regulated by MNK2 activity in M2-polarized macrophages.  
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However, one should keep in mind that our experiments showing functional reprogramming 

of M2-macrophages were performed on in vitro macrophages with an established M2-

phenotype, as we added the inhibitor 24h after we added the polarization stimulus (IL-4). 

These experiments do not allow us to draw conclusions of the role of MNK activity during 

the process of M2-polarization and its role in establishing macrophage phenotype in a 

complex in vivo milieu. In a tumor, there will be a continuous flux of recruited monocytes. 

There would also be macrophages that are not yet skewed toward a pro-tumor phenotype and 

macrophages performing functions not necessarily related to immune suppression. Bone 

marrow transplantation of MNK-deficient macrophage progenitors in animal models is one 

possible way to study the effect of MNK activity on TAM-polarization, but it is not the most 

clinically relevant. It would be interesting to study the effect of inducible macrophage-

specific MNK-knock down, to determine the temporal dependency of MNK activity/eIF4E 

phosphorylation on the establishment of the TAM phenotype.  

 

The finding that MNK2, possibly via phosphorylating eIF4E, drives the M2-phenotype has 

potential therapeutic implications. MNK1/2 activity, as well as eIF4E phosphorylation, are 

dispensable for normal physiological development [284, 285]. This implies that targeting 

eIF4E phosphorylation would not impair physiological function of non-transformed cells. 

Furthermore, increased eIF4E phosphorylation is implicated in promoting malignancy of 

tumor cells, selectively stimulating translation of mRNAs involved in invasion and 

metastasis [295] [296]. In a recent study, disruption of eIF4E phosphorylation in cells of the 

TME – not tumor - was found to decrease metastasis, which was linked to reduced survival 

of pro-metastatic neutrophils [380].  Cumulatively, the association of eIF4E phosphorylation 

to malignancy, both in transformed cells and in tumor-associated cells, highlight the clinical 

potential of our finding and motivates further investigation of MNK activity during TAM 

polarization.  

3.4 STUDY IV 

 

Distinct cancer-promoting stromal gene expression depending on lung function 

 

Chronic obstructive pulmonary disease (COPD) is a general term encompassing several 

progressing pathological states such as chronic bronchitis, emphysema (destruction of the 

alveoli) and refractory (non-responsive to medication) asthma [381]. Smoking is a common 

cause of COPD, and consequently, many COPD patients later develop lung cancer [382]. 

Importantly, COPD diagnosis in itself, independently of smoking, is a risk factor of lung 

cancer [383].  

 

Presence of emphysema entails a microenvironment characterized by chronic inflammation 

[384]. The link between inflammation and cancer development has been discussed 

throughout this thesis and indeed, in lung cancer, the tumor tends to arise near areas of severe 

emphysema [385]. This suggests that damaged lung stroma plays a role in lung cancer 

initiation, but the molecular mechanisms by which it does so are not established.  We thus 
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sought to investigate the relationship between COPD and cancer initiation, by characterizing 

the lung stroma on the mRNA-, translatome- and proteome levels across a spectrum of COPD 

severity in patients with and without cancer. 

 

To quantify COPD severity, we used forced expiratory volume at one second (FEV1), which 

is a diagnostic measure of lung function and a correlate for COPD state. We used samples 

from patients graded on the GOLD scale [386], which scores lung function based on 

percentage of predicted FEV1 (FEV1pp), e.g. a GOLD0/1 score is assigned when FEV1 is 

≥80% of a healthy individual, the score 2 reflects FEV1pp 50-80%, and 3/4 - FEV1pp <50%, 

this being the most severe COPD status.  

 

After performing iTRAQ-based mass spectroscopy [387] on material from COPD patients 

and controls with or without lung cancer, changes in the proteome were analyzed using 

Analysis of Covariance (ANCOVA) looking for protein expression patterns common to 

cancer/non cancer patients and patients based on FEV1pp score concurrently in our model: 

 

Ex = γage + γcancer + γfev1pp + ε 

 

where Ex is the expression (protein, and in later analyses also total mRNA or quantified 

western blots), γage is the linear relationship to age, γcancer is the difference between cancer 

and non-cancer samples, γfev1pp is the linear relationship between expression and FEV1pp, 

and ε is the error.  

 

We could not detect any cancer-specific protein expression. However, when we added an 

interaction term for interaction between cancer status and FEV1pp (cancer status-FEV1pp 

interaction, CFI), i.e. 

 

Ex = γage + γcancer + γfev1pp + ε + γcancer * γ fev1pp 

 

where γcancer * γ fev1pp the interaction between cancer status and FEV1pp, we detected 

differential protein expression between cancer and non-cancer patients depending on their 

FEV1pp (i.e. lung function). This implies that lung stromal protein expression depends on an 

interaction between cancer status and lung function.  

 

Polysome-prolifing revealed this relationship to be mediated by changes in translational 

efficiency of the implicated mRNA targets and not changes in their steady mRNA levels, 

suggesting differential translational efficiency mediating changes in protein levels during 

COPD progression.  

 

When relating differentially expressed genes accounting for CFI to the FEV1pp status of the 

patients, we found that certain genes increased their expression in cancer patients with mild 

COPD and certain genes, on the other hand, decreased. Furthermore, there was a converse 

relationship in the non-cancer group, with an intersection between the expression relationship 
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in the cancer and non-cancer group at an intermediate Fev1pp. This suggests that two 

different gene expression programs are operating in cancer patients based on COPD severity.  

 

Looking at the genes within these distinct expression patterns, we found mRNAs whose 

translation was previously shown to be sensitive to mTOR-activity [388] as translationally 

activated in the stroma of cancer patients with high FEV1pp. Correspondingly, mRNAs 

previously shown to exhibit more efficient translation in fibroblasts in response to fibrotic 

ECM [389] were more efficiently translated in the stroma of cancer patients with low 

FEV1pp. Thus, depending on COPD severity, mTOR- or ECM-derived signals appear to 

differentially coordinate cancer-associated translatomes. We hypothesized that the stroma of 

COPD patients may promote tumor formation by secreting tumor-initiating factors. We 

further hypothesized that the two discrete gene expression programs we identified on the 

basis of COPD severity would contain such cancer-initiating factors. To address our 

hypothesis, we applied data from published secretomes derived from fibroblasts in the 

absence of cancer (PTEN null [390] and senescent fibroblasts [391]) and from CAFs [392] 

[393] onto the gene expression profiles we identified. We did not detect selective regulation 

in the CAF secretomes, but PTEN null and senescent fibroblasts displayed opposing 

regulation dependent on COPD status, with PTEN null secretome being more efficiently 

translated in advanced COPD and the senescence secretome, conversely, tending to more 

efficient translation in patients with low COPD.  

 

To confirm the cellular origin of the genetic targets implicated by these secretomes, we 

performed immunofluorescence stainings of key candidate genes in patient-derived lung 

Figure 15 Summary of key findings of study IV. Depending on COPD status, tumor stroma initiates different 

gene expression programs, resulting in different secreted factors,  both favoring tumor initiation.  
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stroma. We could verify that activated myofibroblasts (α-SMA positive cells) expressed these 

proteins in human lung tissue.  

 

On the basis of these data, we propose that the FEV1 status (indicating COPD severity) of a 

patient drives the lung microenvironment to carry out two distinct secretory programs 

beneficial for tumor initiation (Figure 15). These secretory programs, in turn, are regulated 

mostly – with the exception of secretome of the senescent fibroblasts, where the largest 

regulation occurred on total mRNA level – on the level of translational efficiency.  

3.5 STUDY V 

 

Aberrant recombination and repair during immunoglobulin class switching in BRCA1-

deficient human B cells 

 

At its core, cancer is a genetic disease developing as a consequence of genomic alterations. 

The immune system plays a role in eliminating occurring neoplasms, as discussed, but the 

toxic inflammatory environment with accompanying increased levels of ROS and free 

radicals can contribute to further damage to the DNA. Ionizing radiation, exposure to 

chemicals or mistakes during cell division by the efficient, but not fool-proof, DNA 

replication machinery add to the repertoire of factors that compromise the integrity of the 

genetic material.  

 

DNA damage can also be intentional, with a defined role in normal physiology. The response 

of the immune system – to neoplasms, bacteria or parasites – relies on the versatility of the 

cells of the adaptive immunity. This versatility is generated by the “shuffling” of the genes 

coding for B and T cell receptors during the maturation of these cell types. The shuffling 

process involves the infliction – and repair – of double strand breaks in the DNA molecule. 

Indeed, the concept of immunosurveillance of cancer was substantiated by studies in 

immunocompromised mice, lacking recombination activating gene 1 or 2 (RAG1/2) 

necessary for the infliction of double strand breaks in the immunoglobulin heavy chain (IGH) 

locus and co-ordination of their repair. As a consequence, these mice lacked the B and T cells 

required for mounting an efficient immune response and developed cancer at higher 

frequencies compared to control mice [394] [395] [396].  

 

The cell has evolved sophisticated machinery set in place to sense and repair intended and 

accidental DNA damage. The main pathways regulating the repair of double strand breaks 

are homologous recombination (HR) [397] and non-homologous end joining (NHEJ) [398]. 

These differ in the requirement of a DNA template to repair the damage and thus in the 

fidelity to the original DNA sequence [399]. HR makes use of the complementary chromatid 

available during G2/S phase of the cell cycle to repair the damaged strand and thus is the 

most accurate of the pathways. NHEJ joins the two DNA strands without using a template 

and is thus the prevalent pathway throughout the cell cycle. When components required for 

NHEJ are deficient, alternative end joining (A-EJ) is activated [274]. A-EJ employs so called 
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microhomology in the sequence on each side of the break but it has also been proposed to 

add insertions. The variability that is introduced by NHEJ during two key processes in B cell 

maturation, namely VDJ recombination, which generates the variable region of the B (and 

also T cell) cell receptor, and immunoglobulin class-switching (CSR), contributes to a diverse 

and versatile repertoire of B cells.  

 

A B cell that has not yet encountered an antigen will contain an immunoglobulin heavy chain 

of the so-called IgM and IgD class (also called isotype) as a part of the membrane-bound B 

cell receptor [70]. As a step in the B cell maturation process, the heavy chain portion of the 

secreted part of the B cell receptor, the antibody, undergoes a switch to IgG, IgE or IgA class. 

This increases the versatility of the antibody, as different antibody classes perform different 

immune functions in different physiological locations. The switching happens on a genetic 

level, via NHEJ of the IgM to IgG, IgE or IgA coding parts on the IGH locus in the DNA. 

The resulting junctions are called switch junctions and are designated Sµ-Sε, -Sα or -Sγ. For 

a simplified representation, see Figure 16.  

 

Many cancers, including lymphomas, present mutations in the genes coding for the 

components of the DNA repair machinery [400]. BRCA1 is instrumental during homologous 

recombination [401] and the consequences of its impaired function are well-established in 

breast and ovarian cancer [402] [403]. We hypothesized that it is also involved in NHEJ, a 

connection that was not well-explored. To address out hypothesis, we used patient material 

from patients with mutations in different functional domains of BRCA1, as well as mutations 

Figure 16 Illustration of the Immunoglobulin Heavy Locus (IGH) on chromosome 14 in humans and its 

rearrangement during class switching. For clarity, not all genes, processes and aspects of the antibody molecule 

are shown. Upon class switching from IgM to IgA, switch junctions Sµ-Sα are brought into proximity by a 

circularization-deletion process, the grey shaded part is excised and (after further modification) the VDJ region 

and the constant α region are translated and assembled to a secreted IgA protein.   
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its partners BRCA2, BRIP1, CtIP and RNF168, and we analyzed class switch junctions in 

the B cells of these patients. Compared to previous in vitro studies of the role of BRCA1 

during NHEJ [404] [405], we believe class-switched B cells serve as a physiologically 

relevant in vivo representation of the functions of BRCA1 during the NHEJ pathway. 

 

In practical terms, CSR fragments from switched B-cells were amplified by a nested-

polymerase chain reaction (PCR) described previously [406] [407] and sequenced.  The CSR 

junctions were subsequently analysed by alignment to reference Sµ-Sα and -Sγ sequences. If 

the two switch regions were joined directly, the repair pattern was called direct end-joining. 

Other repair patterns included added nucleotide(s) at the junction, not matching either S 

region, which we call insertions, and stretches of nucleotides at the recombined junctions, 

perfectly matching both S regions. These were characterized as MHs. Furthermore, intra-

switch recombination and sequential switching events, as well as inversions can be found by 

sequencing the CSR-junctions. 

 

In total, 227 Sµ-Sα junctions from B cells of BRCA1-deficient patients were sequenced. We 

could observe change in the repair pattern that occurred in this group, compared to age-

matched controls. Instead of displaying direct end-joining and short MHs (1-3bp) as seen in 

controls, we observed longer MHs (>6bp). This indicated a shift from NHEJ to A-EJ. We 

then grouped the mutations, based on their effect on the functional domain of the BRCA1 

protein and its interacting partners, BRIP1 and CtIP. These also presented increased usage of 

longer MHs. Both CtIP [408] and BRIP1 [409] have previously been implicated in the 

process of resection, that is to say removal of nucleotides from the complementary strand so 

that it can align with the sister chromatide for “refilling” the nucleotides during HR or reveal 

microhomology used during A-EJ. We speculate that the function of BRCA1 in NHEJ is to 

inhibit resection of DNA ends, favoring NHEJ instead of A-EJ.  

 

Overall, the CSR-junctions from BRCA1-deficient cells presented higher frequencies of 

intra-switch deletions (ISDs) and very unusual insertions containing inverted S region 

sequences, compared to controls. These were also found at elevated frequency in BRCA2-

deficient cells. We thus propose that BRCA1 and BRCA2 could be involved in preventing 

inversions.  

 

Given the known tumor suppression functions of BRCA1 in several cancers, including breast 

but also, for example, colorectal cancer [410], we wondered if defects in BRCA1 could 

confer an increased risk of lymphoma. In animal models, mice with truncated BRCA1 and 

additional p53-deficiency developed lymphoma earlier than they did sarcomas or carcinomas 

[411]. In humans, previously published data found an increased risk of hematological cancers 

in carriers of mutations within the BRCA1/2 pathways [412]. Consistently, we found a 

number of somatic and germline mutations in BRCA1 in exome sequencing data from 31 

diffuse large B cell lymphoma patients [413].  
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Cumulatively, we propose that BRCA1 and its interacting proteins maintain genome stability 

by performing key functions both during HR and NHEJ and thus serve to prevent 

tumorigenesis in mature B lymphocytes.  

  

Figure 17. Summary of key finding of study V. In BRCA1-deficient patients, alternative end joining, with 

increased microhomologies (shaded green-pink in figure) predominates during repair of double strand breaks 

between switch junctions. Proposed mechanisms are discussed in the text but not shown. 
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4 PERSPECTIVES AND CONCLUDING REMARKS 

 

“From this point forth, we shall be leaving the firm foundation of fact and journeying together […] into 

thickets of wildest guesswork” 

-Albus Dumbledore 

 

The recognition of the immune system as the determinant of tumor fate reached its apex with 

the announcement of 2018 Nobel prize in physiology or medicine. While T cells get the credit 

in this context, discussion throughout this text has highlighted the close crosstalk between all 

cells in the tumor microenvironment, a crosstalk that can amplify or attenuate the T cell 

response. Indeed, several experimental models have shown improved efficiencies when 

checkpoint inhibitors and TAMs are targeted in combination [112] [414]. To fully engage 

the immune system against the tumor – the anti-cancer potential of which is now so well 

illustrated – we need to understand the finer nuances of this crosstalk. 

 

To this end, we also need a better understanding of the many-layered mechanisms shaping 

the behavior of the individual cell. Two of the studies presented in this thesis highlighted the 

discrepancy between what we think a cell does, based on its transcriptome, to what is more 

likely that a cell actually does, based on its translatome. Many of the approximately 1000 

genes we identified as changing on the level of translational efficiency in TAMs during tumor 

growth in study III, would not have been picked up as important for macrophage function 

on the basis of transcriptome data alone. While this adds to the known complexity governing 

cell behavior, this also opens new possibilities for its manipulation, as we proceed to show.  

 

The work presented in this thesis – much like the cell types it describes – is heterogeneous, 

shifting focus between cells, techniques and pathways. What is lost in detailed understanding 

of one cell type or one pathway, is gained in increased awareness of the interconnectedness 

between the cells in the tumor microenvironment. Study I and study II exemplified how one 

molecule – SEMA3A - affected two different cell types in the tumor microenvironment in 

different ways but with the combined outcome of impeded tumor growth. It is possible that 

the effects of SEMA3A on the cells we studied build upon each other. For example, altered 

tumor microenvironment as a consequence of increased anti-tumor TAM proliferation 

generated a milieu that prevented recruitment, expansion and/or activation of PMN-MDSCs, 

which in turn amplified the tumor cytotoxicity of recruited T cells. Based on the discussion 

of the reciprocity of tumor-infiltrating myeloid cells, it is furthermore plausible that the 

insights into TAMs we gained by studying regulation of gene expression on the level of 

translation in study III are applicable across the broader range of TIMs. 

 

Existence as a multicellular organism entails cooperation between constituent cells. Cancer 

manipulates this cooperation, but it remains dependent on it nonetheless. The work presented 

in this thesis has built upon, but also extended, existing knowledge of how this dependency 

can be targeted to obstruct tumor growth.   
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