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ABSTRACT 

he hypothalamus is a small, evolutionarily conserved brain region, necessary 

for our survival as individuals and as a species. It collects various sensory 

inputs, process them to maintain homeostasis and to overcome stressors, 

and generates outputs that affect the autonomic nervous system, the endocrine system 

and somatomotor behaviors. Energy metabolism, fluid balance, thermoregulation, 

sleep, aggression and reproduction are examples of functions under direct and indirect 

hypothalamic control. 

The neurochemical basis for these regulations involve different neurotransmitters and 

neuromodulators. The catecholamine dopamine is highly associated with various 

hypothalamic functions and behaviors, and has early on been shown to be present in 

intrinsic hypothalamic populations as well as incoming axon terminals. It acts on two 

types of receptors, excitatory D1-type and inhibitory D2-type, of which both have been 

reported to be expressed in the hypothalamus. 

To increase our understanding of these circuitries, this thesis aims to investigate the 

dopamine system in the hypothalamus, and the structures closely related to its inputs 

and outputs, namely the circumventricular organs and the pituitary.  

Immunohistochemical methods were used to generate a comprehensive distribution 

map of dopamine’s two main receptors, D1 and D2, and the neurochemical identity of 

these dopamine-receptor expressing cells were characterized. While the D2 receptor was 

widely expressed, D1 expression was found to be sparse. The suprachiasmatic nucleus, 

however, showed the contrary expression pattern. The D2 receptor could be localized to 

parvocellular neurons as well as endocrine cells of the pituitary. Little evidence for 

dopamine receptor expression on the magnocellular neurons could, however, be 

observed. Evidence for D1 receptor expression was also found in the subcommissural 

organ and a sub-cluster of ependymal cells in the third ventricle. 

Tuberoinfundibular dopamine (TIDA) neurons, which release dopamine in the portal 

vessels and thereby inhibit lactotrophs and prolactin release, were investigated in 

greater detail with regards to modulatory input, and morphological features. Anatomical 

substrate for innervation by serotonin and hypocretin/orexin on TIDA cell body and 

dendrites was identified together with electrophysiological evidence for excitation and 

suppression by hypocretin/orexin and serotonin or selective serotonin reuptake 

inhibitors, respectively. 

Morphological studies of male mice and rat TIDA neurons were done on tissue section 

and marker filled neurons by means of immunohistochemistry. TIDA neurons were 

T 



found to preferentially extend dendrites towards the third ventricle, possibly even into 

the ventricle. Axon terminals were found in the median eminence, but collateral 

branches oriented laterally could also be detected. An intermingling subcellular 

distribution of inhibitory and excitatory synapses, on somatic and dendritic level, was 

also identified. No significant differences could be observed in most morphological 

properties of mouse and rat TIDA neurons. However, rats exhibited a higher total 

number of TIDA neurons and a lower spine density than mice.  

Finally, the expression of three different calcium binding proteins, i.e. calbindin-D28k, 

calretinin and parvalbumin, were investigated within the arcuate nucleus. While both 

calbindin-D28k and calretinin could be detected in the arcuate nucleus, little evidence 

for parvalbumin expression was observed. None of the proteins were expressed in TIDA 

neurons or other investigated populations, except for proopiomelanocortin neurons that 

expressed both calbindin-D28k and calretinin. These neurons showed a rostrocaudal 

segregation of the two calcium binding proteins that resulted in two separate 

subpopulations. 

Overall, the studies presented in this thesis reveal a previously unappreciated 

abundance of dopaminergic involvement in the hypothalamic circuitries which will 

increase our understanding of mammalian homeostatic and endocrine control. 
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CHAPTER 1  
INTRODUCTION 

he human brain is a marvelous machinery that has been estimated to harbor 

more than 80 billion neurons and more or less equal number of other cell 

types. The earliest known record that mentions the human brain dates back 

to the 17th century B.C. Egypt, where the word “brain” written on papyrus in hieroglyphs 

(see Figure 1), was used to describe the symptoms, diagnosis, and prognosis of traumatic 

injuries of the head (Gross, 1987). Aristotle suggested the brain to be a cooling 

mechanism for the blood. Galen, however, concluded that it controls muscles and 

sensory processing. Although, not far from the truth, these conclusions were based on 

completely false assumptions of density differences between cerebrum and cerebellum. 

 

The modern view of the brain, where the neuron is seen as the functional unit, did not 

take shape until Camillo Golgi managed to stain neurons in the late 19th century (Golgi, 

1873), and thereby provided the foundation that could be used by Santiago Ramón y 

Cajal to formulate the neuron doctrine (De Carlos and Borrell, 2007). Since then, our 

understanding of the brain and how it “really” functions has increased exponentially. 

Yet remarkably numerous aspects of the brain, even at the most basic levels, remain 

unknown. In the same spirit as Golgi and Cajal, the studies included in this thesis, 

mainly focus on basic building blocks, i.e. neurons, neurotransmitters, neuromodulators 

and their receptors, in one of the evolutionarily oldest parts of the brain, the 

hypothalamus, and use anatomy and cytoarchitechtonics to explore functions and 

pathways and, thereby, to increase our understanding of this organ.  

T 

Figure 1. The hieroglyph for “brain” from 17th century B.C. 
ancient Egypt. Adapted from the work of Riccardo Metere as 
presented on Wikipedia. Licensed under the creative commons 
attribution-share alike 4.0 international license. 
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1.1 THE HYPOTHALAMUS 
The hypothalamus is a relatively small but evolutionarily old part of the brain, which, as 

the name suggests, is located just below the thalamus. In an adult human brain, it is 

roughly the size of a walnut and constitutes less than one percent of the total brain 

weight (see Saper and Lowell, 2014). Anatomically, the hypothalamus is divided into a 

number of scattered smaller nuclei, and thus presents an – at first glance – unstructured 

organization relative to many other brain regions. The two hemispheres of the 

hypothalamus are separated in the midline by the third ventricle (3V) and rostro-

caudally, it is usually subdivided into three parts. 

 

The rostral part, known as the preoptic area, is located dorsal to the optic chiasm and 

includes the different preoptic areas and nuclei and the suprachiasmatic nucleus. In the 

mid part, known as the tuberal hypothalamus, the pituitary stalk (a.k.a. the 

infundibulum) that connects the hypothalamus and the posterior pituitary, emerges 

from the ventral surface. The anterior and lateral hypothalamic areas but also the 

dorsomedial, ventromedial, paraventricular, supraoptic, and arcuate nuclei are included 

in this part. Finally, in the caudal aspect, the posterior hypothalamus contains the 

mammillary bodies nuclei and areas dorsal to them, like the posterior hypothalamic 

nuclei (see Saper, 2012). 

Despite its modest size, the hypothalamus is essential for the survival of the individual 

as well as the species as a whole, as it contains highly conserved neuronal circuitries that 

control basic functions. Energy metabolism, fluid balance, thermoregulation, sleep, 

aggression and reproduction are some examples of functions under direct and indirect 

hypothalamic control. The hypothalamus has an integrative role, where intero- and 

exteroceptive sensory inputs are collected and processed for activation of responses that 

maintain homeostasis and help the organism to overcome stressors and capitalize on 

opportunities for survival. These outputs are mediated through three major pathways: 

behavior through the somatomotor system, the autonomic nervous system and the 

endocrine system (see Swanson, 2000). 

Figure 2. Drawing of neurons, by Camillo Golgi. From "Sulla fina anatomia degli organi centrali del sistema 
nervoso", 1885. Original copy available at The Hagströmer Medico-Historical Library, Solna, Sweden. 
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1.1.1 Behavioral outputs from the hypothalamus 

As stimulation of different hypothalamic nuclei can rapidly result in fully formed 

somatomotoric behaviors, whilst lesion in the same area would inhibit the same 

behavior, it was initially thought that the hypothalamus contained different behavioral 

centers, e.g. for feeding (Anand and Brobeck, 1951a), drinking (Andersson et al., 1975) 

or attacking (Wasman and Flynn, 1962). This dual center hypothesis, as proposed by 

Eliot Stellar (1954), explained behavioral outputs from the hypothalamus as 

motivational states that direct the attention of an organism towards completing specific 

goals. Thus, early experiments identified e.g. the lateral hypothalamus as hunger center 

and ventromedial hypothalamus as a satiety center (Anand and Brobeck, 1951a, 1951b). 

Current thought suggests, however, that behaviors arise through an interplay of 

different brain regions and cannot be pinpointed to a discrete nucleus. The 

hypothalamus directs a certain behavior by increasing the likelihood to engage it (see 

Plata-Salamán, 1998), rather than activating a set of motor functions. Hunger and 

wakefulness can for instance increase the organism’s likelihood to eat, and more 

complex behaviors can be driven by e.g. sense of pleasure or disgust towards a certain 

odor or taste (see Saper and Lowell, 2014). 

Furthermore, different hypothalamic nuclei have been identified to be involved in a 

multitude of functions. For instance, in addition to promoting satiety, it was found that 

electrical stimulation of the ventromedial hypothalamus, in addition to its role in 

feeding, also could elicit aggression (Siegel and Skog, 1970; Kruk et al., 1979; also see 

Hashikawa et al., 2017), and more recent investigations have identified the ventral 

premammillary nucleus to be involved in both leptin mediated onset of puberty (Donato 

et al., 2011; Ratra and Elias, 2014) and intermale aggression (Stagkourakis et al., 

2018b).  

1.1.2 Autonomic outputs from the hypothalamus 

In the autonomic nervous system, preganglionic neurons of both sympathetic and 

parasympathetic pathways are directly and indirectly innervated by hypothalamic 

neurons located in the paraventricular nucleus, the lateral hypothalamic area and the 

arcuate nucleus (see Saper, 2002). Interestingly, endocrine glands in the periphery are 

also innervated, and hypothalamic neurons exert their regulation on e.g. insulin and 

glucagon by autonomic innervation of pancreas (Porte et al., 1975).  

1.1.3 Endocrine outputs from the hypothalamus 

The endocrine outputs of the hypothalamus are mainly subdivided into two routes. In 

the first route, magnocellular neurons (from Latin magnus, meaning “great” or “large”) 

that exhibit large cell bodies, are located in the supraoptic and paraventricular nuclei 

and extend axons through the pituitary stalk to the blood vessels in the posterior 

pituitary, where they secrete the hormones vasopressin (Vigneaud et al., 1953a) or 
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oxytocin (Vigneaud et al., 1953b) directly into the general circulation (see Flament-

Durand, 1980).  

In the second route, parvocellular neurons (from Latin parvus, meaning “small”), which 

exhibit smaller cell bodies than magnocellular neurons, extend axons that terminate on 

the first portal capillary blood vessels in the median eminence and release messenger 

molecules in the portal capillary system. These so called factors are subsequently 

transported to the second portal capillary bed in the anterior pituitary where they either 

excite or inhibit endocrine cells (see Flament-Durand, 1980). Parvocellular neurons are 

located in close proximity to the third ventricle from the preoptic area towards the 

infundibulum and can mainly be found in the medial preoptic area and the 

paraventricular, periventricular and arcuate nuclei. As magno- and parvocellular 

neurons secrete directly into the bloodstream, they are also known as neuroendocrine 

neurons. This thesis focuses particularly on the parvocellular system, which is further 

described in the section below. 

1.1.4 The parvocellular system 

The view of hypothalamus controlling the release of pituitary hormones has, not always 

been a dogma. In the 1930s it was generally believed that blood would flow from the 

pituitary to the hypothalamus, and that it was the pituitary that would control the 

hypothalamus (see Watts, 2011). The contemporary view of the parvocellular system 

could be established thanks to pioneering studies conducted by Geoffrey Harris (1948), 

who could demonstrate the correct blood flow direction with compelling evidence, and 

suggest hypothalamus as the controlling body, and subsequent identification of 

Figure 3. Schematic presentation of parvocellular neurons. Parvocellular neurons of the hypothalamus 
terminate in the median eminence, where they secrete factors into first capillary blood vessels. These factors 
are transported by the blood to the anterior pituitary and either excite (+) or inhibit (-) endocrine cells that 
release hormones into the systemic blood. See list for abbreviations. 

GHRH SST

GH TSH PRL LH/FSH ACTH

TRH DA GnRH CRH

Somatotrophs

Hypothalamus

Anterior Pituitary

ME

Blood

LactotrophsThyrotrophs Gonadotrophs Corticotrophs
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releasing factors in 1968 by Roger Guillemin (Burgus et al., 1969) and Andrew V. Schally 

(Bøler et al., 1969). 

The parvocellular system includes five axes defined by their target endocrine cell in the 

pituitary. These are the thyro-, cortico-, gonado-, somato-, and lactotrophic axes. Each 

axis is mainly associated with a distinct cell population in the hypothalamus with specific 

releasing and inhibiting factors, although cross-talk has been suggested to occur. For 

example, in addition to its powerful effects on the thyrotrophic axis, thyrotropin-

releasing hormone also stimulate the release of prolactin in the lactotrophic axis 

(Bowers et al., 1971; Lamberts and Macleod, 1990). The lactotrophic axis, which is the 

main circuitry controlling the secretion of prolactin, has been investigated in several of 

the studies in this thesis and will be discussed further in the following section. 

1.1.5 The lactotrophic axis 

In the lactotrophic axis, the release of the polypeptide hormone prolactin, is controlled. 

Prolactin, which was first discovered in animals (Stricker and Grueter, 1928; Riddle et 

al., 1933), and much later confirmed to exist in humans (Friesen et al., 1970), is best 

known for initiating lactation in female mammals (see Freeman et al., 2000; also see 

Grattan, 2015). Investigations have however identified prolactin as a pleotropic 

hormone that is involved in several hundreds of different process, in both humans and 

other vertebrates, e.g. stimulation of paternal behavior in birds (Buntin et al., 1991) or 

promotion of gonadal activity (Rubin et al., 1976; Buntin and Tesch, 1985; Gunasekar 

et al., 1988). Its receptor is widely expressed throughout the body of both sexes, and it 

is difficult to find a tissue that does not express prolactin receptor (see Bole-Feysot et al., 

1998). 

Many early interrogations of the lactotrophic axis failed to identify a “prolactin releasing 

factor” similar to what is found in the other parvocellular axes. These initial failures 

turned out to be due to two reasons. First, lactotrophs are primarily controlled by 

inhibition, rather than stimulation. This is illustrated in pituitary stalk transection 

experiments causing a general drop in serum pituitary hormone levels, with the 

exception of prolactin, which rises (Gust et al., 1987), and in the anterior pituitary grafts 

transplantations under the kidney capsule, which results in an increase of prolactin, but 

not other pituitary hormones (Everett, 1954; Nikitovitch-Winer and Everett, 1958, 

1959). 

Second, the lactotrophic axis utilizes a biogenic amine rather than a neuropeptide as a 

hypothalamic inhibiting factor. Thus, it was found that parvocellular tuberoinfundibular 

dopamine (TIDA) neurons, located in the hypothalamic arcuate nucleus (Fuxe, 1964; 

Hökfelt, 1967; Björklund et al., 1973), provide inhibition by releasing dopamine into the 

portal vessels. Released dopamine is, as described previously, transported to the 

anterior pituitary where it acts on inhibitory D2-type receptors on the lactotrophs 
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(compare section 1.2.3), to inhibit Ca2+-dependent exocytosis of prolactin (see Ben-

Jonathan and Hnasko, 2001). 

Dopamine-mediated inhibition on lactotrophs results in a powerful suppression of 

prolactin release, so that lactation only occurs in nursing females. The strength of this 

dopamine inhibition is illustrated by the potency of dopamine agonists in the treatment 

of hyperprolactinemia and prolactinomas (Molitch et al., 1985) which also lead to 

common sexual side effects like reduced libido and menstrual cycle abnormalities 

(Ghadirian et al., 1982) or less common side effects like galactorrhea, in antipsychotic 

drug treatments with dopamine antagonists (Polishuk and Kulcsar, 1956; Clemens et 

al., 1974).  

1.1.6 Tuberoinfundibular dopamine neurons 

More than half a century ago, TIDA neurons were first identified with Falck-Hillarp 

visualization (see section 1.2.2), and were subsequently investigated by their 

immunoreactivity for tyrosine hydroxylase (TH, see section 1.2.1), and their 

morphological features (Chan-Palay et al., 1984; van den Pol et al., 1984) and projection 

to the median eminence was described (Lichtensteiger and Langemann, 1965; Fuxe and 

Hökfelt, 1966; Björklund et al., 1970, 1973). 

More recent ex vivo studies, first by Lyons et al. (2010), on the electrophysiological 

cellular and network properties of TIDA neurons have revealed a peculiar membrane 

potential oscillation (see also e.g. Brown et al., 2012; Yang et al., 2012; Romanò et al., 

2013; Zhang and van den Pol, 2015; Stagkourakis et al., 2018a), where the cells 

rhythmically alternate between periods of quiescence (DOWN state) and phasic (UP 

state) firing (see Figure 4). In rats, these states are synchronized through a mechanism 

involving gap junctions, which provide a strong electrical coupling between TIDA 

neurons (Stagkourakis et al., 2018a); mouse TIDA neurons, on the other hand, are not 

synchronized and show complete lack of gap junctions. 

 

Since prolactin has been found to provide feedback and exert direct effects on TIDA 

neurons (Lyons et al., 2012), it is likely that the central regulation of serum prolactin 

Figure 4. Electrophysiological properties of rat TIDA neurons. Current clamp whole-cell recording of a 
TIDA neuron from a juvenile male rat show a rhythmic oscillation that alternates between up () and down 
() states.  




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resides within the TIDA neurons themselves, which makes these cells particularly 

interesting to study in conditions where the systemic prolactin level is altered. Sexual 

side effects, including amenorrhea, infertility, anorgasmia, impotence, and impaired 

libido, are common in patients under antidepressant selective serotonin reuptake 

inhibitor (SSRI) treatments (Clayton et al., 2002) and are likely caused by systematic 

elevation of prolactin (Safarinejad, 2008; Madhusoodanan et al., 2010). As such, the 

effects of serotonin and SSRIs on TIDA neurons were investigated in study III. 

Prolactin secretion is also variable over the day, with plasma levels in rats (Clark and 

Baker, 1964; Dunn et al., 1980), as well as humans (Nokin et al., 1972; Sassin et al., 

1972) increasing during sleep. Based on these observations, the effects of two molecules 

that regulate the sleep-wake cycles, i.e. the wakefulness promoting hypothalamic 

peptide, hypocretin/orexin (see de Lecea et al., 1998; Sakurai et al., 1998; Martin-

Fardon et al., 2018), and the sleep-regulating pineal hormone, melatonin (Johnston and 

Skene, 2015), were investigated in study IV. 

In addition to the modulators mentioned above, several other messenger molecules have 

been identified in other studies (e.g. Lyons et al., 2010; Briffaud et al., 2015; 

Stagkourakis et al., 2016) to affect TIDA electrophysiology. These findings together raise 

a number of questions regarding the morphological and neurochemical properties of 

these cells, which have been addressed by histochemical techniques in the second study 

of this thesis. 

1.2 DOPAMINE AND DOPAMINE RECEPTORS 

Dihydroxyphenethylamine, more commonly known as dopamine, is an organic 

compound belonging to the catecholamine family. It was first synthesized in 1910 

(according to Hornykiewicz, 2002) and identified in the human brain as a precursor to 

noradrenaline in the 1950s (Carlsson et al., 1957, 1958; Montagu, 1957). Subsequently, 

in 1958, Arvid Carlsson and Nils-Åke Hillarp identified it to act as a neurotransmitter in 

its own right (see Björklund and Dunnett, 2007); a discovery that resulted in the 2000 

Nobel Prize in Physiology and Medicine being awarded to Dr. Carlsson. 

Additionally, dopamine has also been found to be an active compound in many plants, 

where the fruit pulp of bananas contain the highest concentrations observed (Kulma and 

Szopa, 2007). The underlying neuronal circuitries involving dopamine actions in 

bananas have, however, not been established yet. Contrary to its precursor L-3,4-

dihydroxyphenylalanine (L-DOPA, a.k.a. levodopa), dopamine cannot cross the blood-

brain barrier, and therefore cannot act on the brain when consumed orally (Bertler et 

al., 1966). 

1.2.1 Catecholamine biosynthesis 

In the brain, dopamine is mainly synthesized from L-DOPA by the enzyme DOPA 

decarboxylase (DDC; a.k.a. aromatic amino acid decarboxylase, AADC). L-DOPA is 
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converted from the non-essential amino acid L-tyrosine by the enzyme tyrosine 

hydroxylase (see Figure 5). Dopamine by itself is a precursor to other catecholamines 

(see Figure 6), as it can be converted to the neurotransmitter norepinephrine (a.k.a. 

noradrenaline) by presence of the enzyme dopamine β-hydroxylase, which can be 

further processed by the enzyme phenylethanolamine N-methyltransferase (a.k.a. 

phenylalanine hydroxylase) to form epinephrine, a.k.a. adrenalin (see Daubner et al., 

2011). 

 

Tyrosine hydroxylase, is the rate limiting enzyme of the biosynthesis of these 

catecholamines (Nagatsu et al., 1964). It has four different serine residues, and the 

enzyme activity can be regulated through phosphorylation and dephosphorylation of 

these serine sites by kinases and phosphatases (see Daubner et al., 2011). The enzyme 

is further regulated by a phosphorylation dependent feedback mechanism, where the 

catecholamines themselves (Daubner et al., 1992) can compete with the cofactor 

tetrahydrobiopterin and inhibit the enzyme activity. 

 

1.2.2 Dopamine expression in the brain 

In the early 1960s, Bengt Falck and Nils-Åke Hillarp introduced a method that enabled 

fluorescence detection of catecholamines (Falck, 1962; Falck and Torp, 1962; Falck et 

al., 1982). This Falck-Hillarp visualization technique was used by Annica Dahlström and 

Kjell Fuxe (Dahlström and Fuxe, 1964) to present the first mapping of catecholamine 

expressing neurons in the brain. As these cell populations did not always adhere to 

classical neuroanatomical boundaries, an alphanumerical classification of the 

catecholamine expressing neurons was introduced. Thus, dopamine and 

norepinephrine expressing neurons were categorized in the A-groups, and serotonin 

Figure 5. Dopamine biosynthesis. Dopamine is synthesized from L-tyrosine in two enzymatically catalyzed 
steps. The first reaction, where tyrosine hydroxylase catalyzes the production of L-DOPA is the rate limiting 
step. BH4, tetrahydrobiopterin; BH2, dihydrobiopterin; TH, tyrosine hydroxylase; L-DOPA, L-3,4-
dihydroxyphenylalanine; DDC, DOPA decarboxylase. 

Figure 6. Norepinephrine and epinephrine biosynthesis. Cells that lack DBH cannot produce 
norepinephrine or epinephrine as these molecules are synthesized from dopamine. Vit C, vitamin C; DHA, 
dehydroascorbic acid; SAM, S-adenosyl methionine HCY, homocysteine; DBH, dopamine β-hydroxylase; 
PNMT, phenylethanolamine N-methyltransferase. 
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and adrenaline expressing neurons were categorized in B- and C-groups respectively 

and numbered sequentially according to their rostro-caudal distribution from medulla 

oblongata to the diencephalon. 

The initial mapping was, however, mostly focused on the midbrain, and did not cover 

the entire hypothalamus. The remaining dopamine producing neurons in the brain were 

later described by their immunoreactivity for tyrosine hydroxylase (Pickel et al., 1975; 

Hökfelt et al., 1976; Chan-Palay et al., 1984; van den Pol et al., 1984) and their axonal 

projections were investigated subsequently with the retrograde tracer horseradish 

peroxidase (Ljungdahl et al., 1975). 

There are three different midbrain dopamine cell populations: the cells in the 

retrorubral field (A8), the cells in the substantia nigra (A9) and the cells in the ventral 

tegmental area (A10). These cells have undergone substantial anatomical (e.g. German 

and Manaye, 1993) and physiological investigations and found to play vital roles in the 

regulation of voluntary movement (Iversen and Koob, 1977), emotion (Nestler and 

Carlezon, 2006) and reward (see Tzschentke and Schmidt, 2000). For instance, loss of 

dopamine neurons in the substantia nigra pars compacta is the main pathological 

characteristic of Parkinson’s disease (see e.g. Björklund and Dunnett, 2007; Lees et al., 

2009; Sveinbjornsdottir, 2016). 

In the hypothalamus, there are five major dopaminergic cell populations (A11-A15), 

where the parvocellular neuroendocrine TIDA neurons (compare 1.1.6) belong to the 

A12 group. It should be emphasized that not all hypothalamic tyrosine hydroxylase 

expressing neurons are dopaminergic, as immunohistochemical investigations of the 

ventral A12 cells in the arcuate nucleus for instance, has revealed a lack of the enzyme 

AADC (Meister et al., 1988). Another dopaminergic cell group can also be found in the 

olfactory bulb (A16). 

1.2.3 Dopamine receptors 

Dopamine acts on two major types of G-protein coupled receptors: the excitatory D1-

like, constituting of the D1 and D5 subtypes, and the inhibitory D2-like, constituting of 

D2, D3 and D4 subtypes (Spano et al., 1978; Kebabian and Calne, 1979). The D2 

receptor has also been identified to exist in two different isoforms; a long (D2L) that is 

most abundant in the brain, and a short (D2S) that is predominant in the brainstem 

(Montmayeur et al., 1991). Dopamine receptors exert their effect on the cell by either 

increasing (D1-like) or decreasing (D2-like) the formation of the second messenger 

cyclic adenosine monophosphate (cAMP) through adenylyl cyclase mediated 

mechanisms. 

Dopamine receptors are expressed throughout the brain, with the D1 and the D2 

subtypes being the most abundant, and both these receptors have been identified to be 

expressed within the hypothalamus (Mansour et al., 1990). Although, most studied for 

their involvement in the mesolimbic (e.g. Sawaguchi and Goldman-Rakic, 1991; Tran et 
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al., 2005) and nigrostriatal pathways (see Korchounov et al., 2010), dopamine receptors 

have been identified in a variety of hypothalamically mediated functions and behaviors. 

These include for instance food intake (Parada et al., 1988; Caulliez et al., 1996; Chen et 

al., 2014; Mirmohammadsadeghi et al., 2018), circadian rhythm (Yamada and Martin-

Iverson, 1991; Viswanathan et al., 1994; Duffield et al., 1998), pituitary hormone 

secretion (Bluet-Pajot et al., 1990; Crowley et al., 1991; Borowsky and Kuhn, 1992), as 

well as defensive (Filibeck et al., 1988) and reproductive (Fabre-Nys et al., 2003) 

behaviors. The broad role of dopamine in the hypothalamus is further illustrated by the 

observed side effects like tachycardia and hypotension in patients undergoing dopamine 

agonist based treatments (Rosell et al., 2015). 

 

These studies suggest a broader role for dopamine in homeostatic and endocrine 

functions in the hypothalamus and implies the existence of several other dopamine 

dependent circuitries in addition to the lactotrophic axis. The dopaminergic influences 

in the hypothalamus can be explained by the distribution of its receptor among different 

hypothalamic cell populations. Yet, the expression of these two receptors in the 

hypothalamus has previously not been investigated in greater detail. Two of the studies 

included in this thesis (studies V and VI), address this lack of information and provide a 

thorough map of cells expressing D1 or D2 receptors within the hypothalamus and the 

structures that are closely related to it; namely the pituitary and the circumventricular 

organs. 

1.3 CALCIUM BINDING PROTEINS 

In addition to TIDA neurons that have been discussed in the previous sections and 

studied in this thesis, several other neuronal populations occupy the arcuate nucleus. 

This includes for instance agouti-related protein/neuropeptide tyrosine (AgRP/NPY) 

and proopiomelanocortin/cocaine- and amphetamine-regulated transcript 

(POMC/CART) -expressing neurons involved in metabolic regulation (Broberger et al., 

Figure 7. Dopamine actions are mediated through two types of G-protein coupled receptors. When 
dopamine binds to one of its receptors, it induces a conformational change that allows the receptor to act 
with G-proteins to either activate (D1) or inhibit (D2) adenylyl cyclase, which catalyzes the creation of the 
second messenger cAMP. ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate. 

Dopamine

D1R

ATP

D2R

adenylyl cyclase

post-synaptic neuron

Gs Gi
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1998), somatostatin (SST) and growth hormone-releasing hormone (GHRH) expressing 

neurons involved in the somatotrophic axis and kisspeptin (KSP) expressing neurons 

involved in the gonadotrophic axis (see Jameson and Harrison, 2013 p.17). As these 

neurons are involved in distinct hypothalamic circuitries and exhibit different 

neurochemical, physiological (e.g. Spanswick et al., 1997; Cowley et al., 2001, 2003; 

Ohkura et al., 2009) and morphological properties, knowledge about these cells’ 

molecular repertoires and the differences among them can provide valuable insight on 

how several properties of the cells, e.g. the membrane properties are regulated.  

The neuronal signal transduction machinery relies on an action potential mediated 

calcium rise, and utilizes several proteins that allow vesicles to fuse to the membrane 

and release neurotransmitters (see Brini et al., 2014). Calcium, which acts as a second 

messenger, binds to one of the key components, synaptotagmin-1, and induces the 

neurotransmitter release (Geppert et al., 1994); a discovery for which Thomas C Südhof 

shared the Nobel Prize in Physiology or Medicine in 2013. Consequently, the 

intracellular calcium levels in neurons are tightly regulated by various kinds of calcium 

pumps/channels and binding proteins (see Kramer, 2016). Although these calcium 

binding proteins have been classified as either sensors, which facilitate signal 

transduction, or buffers, which maintain a stable calcium level in the cytosol (Dalgarno 

et al., 1984; Heizmann, 1993; Burgoyne, 2007), it is becoming apparent that several of 

these proteins are involved in both functions, and pure calcium buffers are less common 

(Schwaller, 2009).  

In the mammalian brain, several different calcium binding proteins are expressed and 

they have been used as a histochemical tool to identify and classify different neuronal 

populations (Baimbridge et al., 1992). Three different calcium binding proteins, 

belonging to the “EF-hand” family (Moncrief et al., 1990; Lee et al., 1991; Nakayama et 

al., 1992), namely calbindin D-28k (Taylor and Wasserman, 1967; Jande et al., 1981; 

also see Schmidt, 2012), calretinin (Rogers, 1987; see Schwaller, 2014) and 

parvalbumin (Henrotte, 1952; Celio and Heizmann, 1981) have been used in the first 

study of this thesis to investigate different neuronal populations in the arcuate nucleus. 

Of these three proteins, parvalbumin is the only that has not been identified to have 

additional calcium sensor functions, and is possibly the only pure calcium buffer 

(Schwaller, 2009). 

1.4 THE PITUITARY 

The pituitary gland, classically known as the hypophysis, is usually referred to as the 

master endocrine organ and is present, albeit with some structural variabilities, in all 

vertebrates. In humans it is roughly about the size of a pea and weighs about 0.5 grams. 

It is positioned ventral to the hypothalamus and is directly connected to the brain 

through the pituitary stalk. The pituitary is divided into two main lobes, the anterior and 

the posterior. In some species like mice, rats and fish in general, a third intermediate 
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lobe located in-between the anterior and the posterior lobe, is also present. This lobe is 

absent in birds and rudimentary in humans (see e.g. Melmed, 2011). To examine the 

possible role of dopamine in the pituitary, the expression of the D1 and D2 receptors has 

been investigated in study IV and V included in this thesis. 

1.4.1 The anterior pituitary 

The anterior pituitary, also known as adenohypophysis, is the glandular part of the 

pituitary and harbors several different types of endocrine cells (see Strand, 1999) that 

are regulated centrally by neurotrophic factors originating from parvocellular 

neuroendocrine neurons of the hypothalamus (see section 1.1.4). 

1.4.2 The intermediate lobe 

In mice and rats, and to some degree in humans, although less developed and often 

considered part of the anterior pituitary, the intermediate lobe mostly constitutes of 

melanotrophs, which process the precursor molecule POMC, and releases α-melanocyte 

stimulating hormone (α-MSH) and β-endorphin (Mains and Eipper, 1979; Jackson and 

Lowry, 1983; Chang and Loh, 1984). This processing is different than what is found in 

the anterior lobe where the main released hormones are adrenocorticotrophic hormone 

(ACTH) and β-endorphin (Strand, 1999).  

The melanotrophs of the intermediate lobe are directly innervated by a subpopulation 

of A14 dopamine neurons located in the periventricular nucleus of the hypothalamus 

(Goudreau et al., 1992, 1995; Demaria et al., 2000). It should, however, be mentioned 

that a review of older literature reveals some ambiguity about the nomenclature and 

anatomical location of these neurons (Björklund et al., 1973; also see Saland, 2001).  

In amphibians, reptiles and fishes (Hogben and Slome, 1931; Kawauchi et al., 1983), 

α-MSH is involved in pigmentation of the skin. Although the exact function of the 

intermediate lobe melanotrophs in humans has not been fully elucidated, α-MSH has 

been suggested to be involved in pigmentation (Krude et al., 2003) as well as in pivotal 

control of the hypothalamic-pituitary axes (see Saland, 2001). 

1.4.3 The posterior pituitary 

The posterior pituitary (see Flament-Durand, 1980), classically known as 

neurohypophysis, does not synthesize any hormones by itself, but mainly contains axon 

terminals from magnocellular neuroendocrine neurons, which release the hormones 

oxytocin and vasopressin directly into the bloodstream (see section 1.1.3). 

1.5 CIRCUMVENTRICULAR ORGANS 

In 1958, the term “circumventricular organs” was proposed by the Austrian anatomist 

Helmut Hofer to describe the structures around the ventricular system of the brain 

(Hofer, 1958). Circumventricular organs are in contact with both the blood and the 
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cerebrospinal fluid and are not restricted by the blood brain barrier, thus constituting 

an interface between the brain and the rest of the body (see Gross, 1992).  

Circumventricular organs can be either sensory, and provide a windows through which 

the endocrine or autonomic nervous system receives systemic feedback, or secretory, 

and act as a site of hormonal release. While median eminence, the neurohypophysis, the 

intermediate lobe of the pituitary gland, the pineal gland and the subcommisural organ 

are considered to belong to secretory, the subfornical organ, the organum vasculosum 

of the lamina terminalis and area postrema are considered to belong to sensory 

circumventricular organs (see Fry and Ferguson, 2007). 

Circumventricular organs are partly composed by ependymal cells, a type of neuroglia, 

which line the ventricle walls. A specific type of ependymal cells, known as tanycytes, are 

found in the third ventricle. These cells exhibit long processes extending into the arcuate 

nucleus and have recently been identified to gate leptin into the brain (Balland et al., 

2014). The close proximity to, and direct interaction with, the hypothalamus makes 

circumventricular organs an integral part of hypothalamic circuitries. 
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CHAPTER 2  
MAIN OBJECTIVES 

ased on the surge of new discoveries on different cellular, physiological and 

network properties of hypothalamic neurons, and the lack of fundamental 

understanding for the molecular basis of these discoveries, this thesis aims to 

investigate the dopamine system in the hypothalamus, the pituitary and the 

circumventricular organs, from a molecular and histochemical perspective, with specific 

focus on dopamine D1 and D2 receptors and the tuberoinfundibular dopamine (TIDA) 

neurons, in the arcuate nucleus.  

The specific aims were to: 

 define the expression pattern of three major calcium-binding proteins, namely 

calbindin-D28k, calretinin and parvalbumin, in the arcuate nucleus (study I) 

 describe the morphological features of TIDA neurons in male rodents and identify 

potential species differences (study II) 

 determine the serotonergic innervation pattern of TIDA neurons (study III) 

 determine the hypocretin-/orexinergic innervation pattern of TIDA neurons (study 

IV) 

 provide a comprehensive distribution map and neurochemical characterization of 

D1 (study VI) and D2 (study V) receptor expressing cells in the hypothalamus, the 

pituitary and certain circumventricular organs 

B 
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CHAPTER 3  
ASPECTS OF METHODOLOGY 

etailed descriptions of materials and methods used in the studies included in 

this thesis have been presented in the corresponding section of each paper 

(see studies I-VI). The following sections provide an overview of these 

methods and consider the specific choice, and their strengths and limitations. 

3.1 ANIMAL MODELS 

These studies aim to investigate the hypothalamic dopamine system in the mammalian 

brain. Mice and rats are two extensively studied models that have been frequently used 

in research and have a well characterized brain anatomy (Paxinos and Franklin, 2001; 

Paxinos and Watson, 2007). As the hypothalamus also is evolutionally well preserved 

compared to other brain regions and exhibit conserved anatomy across vertebrates (see 

Xie and Dorsky, 2017), these two species constitute good models for the aims of our 

investigations. Additionally, the relatively short gestation time is beneficial when 

studying animals through the life cycle and when breeding is required (e.g. in genetically 

modified animals; see below). 

It should be noted that early on, Baker et al. (1983) could identify variations in number 

of dopamine neurons in the hypothalamus of two different mouse strains (BALB/c and 

CBA). The functional implications of this difference remains, however, unknown. As our 

aim is to investigate the dopamine systems in the hypothalamus, rather than quantify 

strain differences, we have adhered, throughout our studies, to a single strain from each 

species; i.e. C57BL/6 for mice and Sprague Dawley (SD) for rats.  

For obvious reasons, explainable by the nature of each study, several different transgenic 

mouse lines (see following sections below) had to be used. These strains are all derived 

from C57BL/6 mice. For rats, on the other hand, only wild type animals were used. The 

somehow restricted repertoire of animal strains provide a reduction of unwanted 

variables across studies, which makes it easier to understand the dopaminergic system 

in the hypothalamus, and is highly desirable at this level of basic interrogation. This 

reduced biological diversity might, however, overlook important factors that could have 

D 
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crucial impact in for instance drug development. Future studies should therefore further 

investigate to what extend these data can actually be extrapolated to either other strains 

or species (e.g. humans). 

3.1.1 Transgenic reporter animals 

Certain receptors and membrane proteins can be expressed at lower levels compared to 

other cell proteins, such as neuropeptides, that are constantly secreted. The mRNA 

expression level can also vary greatly among different cell populations (compare Paper 

V). These features make it challenging to identify, map and characterize these cells only 

by the means of in situ hybridization (ISH) techniques. As neurotransmitter and 

neuropeptide receptors are mainly localized at the synapse on the cell membrane, they 

are also difficult to target with conventional immunohistochemistry (IHC) techniques 

with a satisfactory resolution (also compare sections 3.3 and 3.4). It is therefore not 

possible to reach the aims of this thesis exclusively by means of ISH and/or IHC 

techniques on wild type animals, and it is so necessary to use bioengineered tools.  

Transgenic animals (Jaenisch and Mintz, 1974) expressing a reporter gene under the 

control of a certain promoter, i.e. a receptor promoter, provide a good opportunity to 

identify those cells that specifically express the protein of interest (see Spergel et al., 

2001). Using transgenic animals for this purpose is, however, not a straightforward 

procedure as there is a risk for both false positive (i.e. cells that express the reporter but 

not the receptor gene) caused by the influence of endogenous upstream promoters (see 

Conlon, 2011), and false negative expression (i.e. cells that express the receptor but not 

the reporter gene; compare A15 dopamine cells in study V). Furthermore, the random 

integration of the insert into the genome may affect the neighboring genes or interrupt 

the function of endogenous genes (see Babinet et al., 1989), which could lead to 

undesirable changes in phenotype. To minimize the negative side effects of such event, 

hemizygous animals, that carry the transgene only in one chromosome, are used. As the 

transcriptional profile of different neuronal populations are variable, correct expression 

in one brain region does not necessarily extrapolate to other brain regions, and to be 

able to draw valid conclusions, the expression of the reporter gene must be properly 

validated. 

3.1.2 Drd1/Drd2-EGFP BAC transgenic mice 

To investigate the distribution of D1 and D2 receptor expressing cells in the 

hypothalamus, circumventricular organs and the pituitary gland, two transgenic mouse 

lines expressing enhanced green fluorescence protein (EGFP) under either Drd1 or 

Drd2 promoter, within a bacterial artificial chromosome (BAC), were used. Both of these 

lines were developed by the Gene Expression Nervous System Atlas (GENSAT; 

www.gensat.org) program at Rockefeller University (Gong et al., 2003) and maintained 

in our own breeding facility. These transgenic animals will be referred to as Drd1- and 

Drd2-EGFP mice. 
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A BAC has the ability to carry a DNA fragment of several hundred kilobases and can thus 

be used to insert a large portion of a gene’s promoter and upstream regulatory elements 

into a transgene (see Heintz, 2001). Thus, it is possible to rapidly create transgenic 

animals without any a priori knowledge of the exact fragment and function of the 

regulatory elements. This lack of information is not completely unproblematic as the 

insert could carry regulatory elements that affect gene expression independently of the 

transgene itself and lead to altered cellular phenotype. Such issues have been reported 

by Kramer et al. (2011), who observed altered physiology and behavior in the Swiss 

Webster (SW) Drd2-EGFP BAC transgenic mice. Later studies suggested, however, that 

these abnormal phenotypes were likely raised, because that specific transgene, was 

backcrossed on the outbred SW strain and were homozygous for the Drd2-EGFP BAC 

(Chan et al., 2012). The same study could not identify any abnormalities in the inbred 

C57BL/6 hemizygous transgene. 

It should be noted that both Drd1- and Drd2-EGFP transgenic mice used in the studies 

included in this thesis have been backcrossed for at least three generations in the inbred 

C57BL/6 mouse before use. These strains have been maintained for almost a decade and 

no abnormal behaviors have been observed. The behavior and neurochemical 

phenotype of both strains have also been validated in the basal ganglia in other studies 

(Bonito-Oliva et al., 2016), and in current studies included in this thesis, the strains have 

been further validated by the means of multiplex ISH. These transgenic animals have 

thereby undergone the extensive characterization that is the prerequisite for obtaining 

reliable data with transgenic animals. It should however be noted that this obtained 

confidence in these two strains, cannot automatically be extrapolated to other 

transgenes. 

3.1.3 DAT-tdTomato knock-in mice 

To identify neurons expressing the dopamine transporter (DAT) in the arcuate nucleus, 

DAT-cre knock-in mice were crossed with a tdTomato floxed reporter mice to create the 

DAT-tdTomato strain. Contrary to the strains used to identify dopamine receptors, the 

DAT-cre strain was generated with a knock-in strategy with a fully identified insert 

(Zhuang et al., 2005), an therefore does not present concerns with regulatory elements 

as it is the case with BAC transgenic animals. 

As this strain was not used for a mapping study, but only to identify a discrete cell 

population, a full validation and characterization of the transgene was not considered 

necessary. Nevertheless, it should be noted that the specific strain has been validated in 

other studies and extensively used to identify non-hypothalamic dopaminergic cells 

(Zhuang et al., 2005; Ekstrand et al., 2007; Turiault et al., 2007) as well as TIDA neurons 

(Stagkourakis et al., 2018a). 

Following the reporter expression validation in the arcuate nucleus, these animals also 

made it possible to visualize and directly identify TIDA neurons in electrophysiological 
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experiments by fluorescence, which tremendously increased the success rate of the 

experiments, and enabled much faster data collection (see study II). 

3.1.4 EGFP and tdTomato reporters 

Together with transgenic animals, two different reporter proteins, namely EGFP and 

tdTomato, have been used to visualize the cells of interest. Both of these reporter 

proteins are fluorescent, but each of them have certain unique properties and structural 

differences that can affect the way they can be used in experiments. 

Ever since the first isolation of GFP from the jelly fish Aequorea Victoria by Shimomura 

et al. (1962), the protein and its variants have been extensively used as reporters for 

visualization of various cell types, including mammalian neurons (e.g. Cowley et al., 

2001; van den Pol et al., 2009). Numerous variants have also been engineered, there 

among EGFP, which contains chromophore mutations that makes the protein 35 times 

brighter than the wild type and is codon optimized for higher expression in mammalian 

cells (Zhang et al., 1996). Nevertheless, initial pilot experiments (data not included) 

showed that endogenous EGFP fluorescence was greatly reduced in tissues treated with 

conventional formaldehyde based fixatives. This is most likely caused by the creation of 

cross-links (see section 3.2.2) between the fixative and the EGFP, which nullifies the 

protein’s fluorescence ability (Becker et al., 2012). To counter this limitation, 

immunofluorescence was used to visualize the EGFP. This enabled a robust and reliable 

recovery of the signal, and with the addition of the TSA protocol (see section 3.4.3), the 

signal could be substantially amplified. 

The red fluorescent protein (DsRed) from Discosoma sp. (Dietrich and Maiss, 2002) is 

another extensively used reporter protein. Similar to EGFP, it has undergone several 

enhancements. By introduction of four point mutations (V22M, Q66M, V105L and 

F124M), the “dead-end” green component has been substantially reduced. A dimer has 

been constructed for faster and more complete maturation with greater fluorescent 

brightness, and the fusion of two of these dimers into a tandem dimer (td) has resulted 

in a non-aggregating tag. This enhanced version of DsRed has been denoted tdTomato 

(Shaner et al., 2004). 

Contrary to EGFP, the endogenous fluorescence activity of tdTomato is not lost by tissue 

fixation. However, the fluorescence intensity is greatly reduced when conventional 2.5% 

DABCO in 100% glycerol is used as mounting medium. Introduction of ProLong® Gold 

as mounting medium resulted in virtually full recovery of fluorescence intensity and 

added the benefit of increased resistivity against photobleaching (see section 3.6.2).  

3.2 TISSUE PREPARATION 

Successful ISH and IHC assays rely intensely on proper tissue preparation. Fresh frozen 

tissues are appropriate for ISH (Dagerlind et al., 1992), and could potentially also be 

used in IHC. However, to be able to draw accurate spatial conclusions, it is necessary 
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that antigens in the tissue are immobilized. Many antibodies are also raised to recognize 

the covalently bound fixative-protein epitope. Therefore, the majority of immuno-

histochemical experiments are conducted on fixed tissues. 

In the studies included in this thesis, fresh frozen tissues have exclusively been used for 

ISH experiments, whereas all IHC experiments have been conducted on fixed tissues. It 

should be noted that a single fixation protocol does not suit all antibodies, and for 

optimal visualization of the targets, different protocols had to be used. The differences 

in these protocols and their implications are discussed in the following sections. 

3.2.1 Fresh frozen tissues 

For the process of any kind of postmortem tissue conservation, it should be noted that 

enzymatic activities and cellular processes will continue, even after blood circulation has 

ceased. This includes, ribonuclease (Kunitz, 1939) activity, which breaks down poly 

ribonucleotides (Findlay et al., 1961; see also Cuchillo et al., 2011), i.e. the target mRNA 

in ISH experiments. Therefore, it is important that tissue is frozen (a process that 

abolishes enzymatic activity) as soon as possible after euthanasia. 

Tools that come in direct contact with the brain should also be free from ribonuclease. 

This is easily achieved by cleaning them in bleach or other commercially available 

nuclease decontamination reagents like RNase AWAY™ or RNaseZAP®. To minimize 

enzymatic activity prior to freezing, the brain can also be dissected into ice-cold saline 

containing ribonuclease inhibitors. By these precautions, up to four brains can been 

dissected sequentially and frozen together without any apparent loss of ISH signal, in 

our experience. 

Theoretically, any rapid freezing techniques could be used. However, most techniques 

are less practical. For instance, dry ice in isopropanol provides rapid freezing but 

submerging a brain into a liquid makes subsequent mounting, embedding and storage 

challenging, carbon dioxide gas is difficult to manage in animal facilities and extremely 

fast freezing with liquid nitrogen often cause the brains to crack. The brains are best 

frozen mounted on aluminum foil, directly on dry ice. To make the freezing process more 

rapid, dry ice can also be crushed into fine powder and poured over the brain. 

3.2.2 Fixed tissues 

Cross-linking and coagulating fixatives are two types of fixatives extensively used in 

histology. Coagulating fixatives are not used in the studies included in this thesis and 

therefore the following section only focuses on cross-linking based fixation protocols. 

These fixatives are based on chemical reagents that react with the tissue and 

consequently polymerizes. They create, as the name suggests, cross-links and thereby 

preserve antigen positions and prevent their degradation. These cross-links also makes 

the tissue more rigid and easier to handle during subsequent staining protocols (see 

Ramos-Vara, 2005). 
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To obtain high quality immunostainings, it is crucial that the amount of cross-link is 

optimal. If the cross-link density is too high, antigens will be compromised and antibody 

penetration will be hindered. On the contrary, if the cross-link density is too low, 

antigens might not be preserved well and could even be washed away when processed 

for immunostaining. As mentioned earlier, many antibodies are raised to recognize a 

part of the protein that is cross-linked with the fixative. Therefore the choice of the 

chemical reagent that constitute the fixative is also important, as the wrong chemical 

would fail to give raise to the specific epitope recognizable by that specific antibody.  

The cross-link density created by the fixative is determined by the fixative’s composition 

and the fixation time. Aldehyde-based fixatives, in particular formaldehyde, is the most 

commonly used and the majority of the experiments in this thesis were performed on 

tissues from animals that were transcardially perfused with a 4% formalin and 0.2% 

picric acid-based fixative diluted in phosphate buffer according to Zamboni and 

Demartino (1967). This fixative worked very well with most of the antibodies used in 

these studies. It is, however, not appropriate for preserving smaller peptides like i.e. the 

neuropeptide thyrotropin-releasing hormone (TRH) which only consists of three amino 

acids.  

To successfully stain for TRH in mouse brains, a final concentration of 0.05% 

glutaraldehyde had to be included in the fixative, similar to what was used by Horjales-

Araujo et al. (2014) in rat brains. Contrary to formaldehyde, glutaraldehyde side chains 

will also polymerize and thereby create a denser cross-link, which prevents smaller 

peptides from being washed out. Unfortunately this fixation will also leave behind a 

much higher degree of free aldehyde (-CHO) groups, bound to the tissue. These free 

aldehyde groups can react with the tissue and give rise to green auto-fluorescence and 

radically reduce the signal-to-noise ratio. Free untreated aldehydes can also bind 

antibodies during subsequent antisera incubations and substantially reduce the quality 

of the immunostaining. To prevent this, tissues fixed with glutaraldehyde must be 

blocked with for instance 0.1% sodium borohydride (Clancy and Cauller, 1998) before 

freezing. 

For even smaller molecules, like amino acid neurotransmitters, addition of 0.05% 

glutaraldehyde does not suffice. To obtain successful immunostainings against 

serotonin (compare Paper II) and γ-aminobutyric acid (GABA; compare Paper III) a 

cacodylate-based fixative containing 5% glutaraldehyde was used according to Yamada 

et al. (2007). Tissue was subsequently treated with 1% sodium borohydride. The high 

density cross-links created by this fixation protocol also affected antisera penetration 

substantially and much longer incubation times had to be applied. 

Spine analysis of TIDA neurons conducted in the second study of this thesis, posed a 

different kind of challenge. In this case, ultrastructural preservation of the cell was the 

most crucial. By adding sucrose and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
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acid (HEPES) to the standard 4% formalin based fixative, as suggested by Fasoli et al. 

(2017), the spine morphology of the neurons could be properly preserved.  

3.2.3 Colchicine pre-treatment 

Neurochemical characterization of cell populations by IHC largely relies on visualization 

of target peptides in the cell body. Certain neuropeptides (and their precursors), 

however, are rapidly transported to the axon terminal in order to be released, and 

therefore cannot be visualized in the cell body in naïve animals. This axonal 

transportation can be inhibited by some neuronal toxins. Colchicine is one such toxin, 

which results in accumulation of neuropeptides in the soma enhancing its visualization 

by IHC (Hökfelt and Dahlström, 1971). It is derived from the plant Colchicum 

autumnale, and was first isolated by Pelletier and Caventou (1820) and purified and 

named by Geiger (1833). Colchicine inhibits the polymerization of tubulin into 

microtubules (Eigsti, 1938), which form the cytoskeleton of axons, and thereby 

suppresses microtubules-dependent axonal transportation. 

As colchicine disrupts the cytoskeleton, the cell morphology is also altered (Eigsti, 1938) 

and detectability of axons and dendrites are reduced. Different neuronal populations 

have also shown different susceptibilities to colchicine (Goldschmidt and Steward, 

1982) and both increased and decreased transcription levels have been observed in 

certain neuronal populations (Cortés et al., 1990). Thus, data collected from colchicine-

treated animals should be interpreted with caution. The neuronal populations identified 

under colchicine treatment which are included in the studies in this thesis, have been 

validated in other studies. Thus, these undesirable side effects were taken into account 

in order to validate the conclusions in this thesis. 

3.3 IN SITU HYBRIDIZATION 

Expressed mRNA can be detected directly on tissue sections, using labeled nucleotide 

probes complementary to the mRNA of interest (Pardue and Gall, 1969). Classically, 

this in situ hybridization (ISH) technique has been performed with several different 

strategies in regards to probe design and detection methods, where each method has its 

own benefits and drawbacks (Jin and Lloyd, 1997). However, relative to quite recent 

development of the RNAScope platform (Wang et al., 2012), ISH has been a difficult 

method with long and tedious procedures that require optimization for individual 

probes. 

Because of this, ISH targeting mRNA is rarely used in clinical settings, despite the 

technique’s ability to detect pathological biomarkers (Warford, 2016). However, the 

strength of the technique is clearly apparent in initiatives like the Allen Brain Institute 

where ISH is used to create a full expression map of different transcripts in the mouse 

brain. In research settings ISH can serve as a substitute to immunohistochemistry (see 

section 3.4), whenever there is a lack of specific antibody, or if the target has a subcellular 

location that makes it difficult to identify.  
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Additionally, ISH is sometimes also used to confirm that a specific antisera used in 

immunohistochemistry (see section 3.4) is targeting the right cell population. It should 

however be emphasized that these two techniques are inherently different; while ISH is 

targeting a transcripted mRNA, IHC is (usually) targeting a translated protein. The 

correlation of the transcriptome and the proteome depend on a series of regulatory 

processes, including mRNA stability (Salton et al., 1988) and degradation (Casey et al., 

1988), and a cell’s transcriptome and proteome is not always coupled.  

In the studies included in this thesis, two different ISH methods, i.e. radioactive oligo 

probes and RNAScope®, have been used as a complement to validate observations made 

by immunofluorescence. These two methods are discussed in the following sections. 

3.3.1 Radioactive oligo probe in situ hybridization ISH 

This method identifies the target mRNA with several complementary DNA oligo probes. 

Each oligo probe consist of around 50 bases of complementary DNA and a 10-15 base 

long 35S-labeled poly-A tail at the 3’-end (Dagerlind et al., 1992; Wilcox, 1993). 

Following hybridization, the radioactive beta particles originating from the probe, is 

detected by exposure to a nuclear track plate emulsion, which after development 

generates silver grains (Buongiorno-Nardelli and Amaldi, 1970). Exposure can last from 

a couple of days to a couple of weeks (Woodruff, 1998). Although silver grains are visible 

in bright field microscopy at high magnifications, they are usually investigated at lower 

magnification powers with dark field microscopy (see section 3.6.1). As this provides a 

wider field of view, anatomical orientation is easier.  

By increasing the number of oligo probes, signal intensity can be enhanced linearly 

(Young et al., 2016). It should, however, be noted that the poly-A tail creates a steric 

hindrance and oligo probes cannot target sequences that are overlapping or positioned 

too close to each other. Great consideration must also be taken into the design of the 

oligo probe in regards to its sequence and GC-content, to minimize the risk of 

hybridization of the probe to untargeted sequences. Signal intensity can also be 

enhanced by increased exposure time. This, however, has a negative impact on the 

background noise caused by cosmic radiation and poorly hybridized probes. The method 

is difficult to multiplex. 

More recently, radioactive ISH has become less popular due to several reasons. It is a 

long process and involves many steps, where a single poor condition in one step 

jeopardizes the entire experiment. There are several mid-process control assays, like 

counting radioactivity of the labeled probe or confirming hybridization with 

phosphoimaging. Although quite valuable check-points, these controls only provide 

limited validation and true success of the experiment can only be established at the very 

end, under the microscope. 

The use of radioactive materials is also regulated and the method is only allowed to be 

executed by trained personnel, in designated certified areas. Furthermore, the vast 
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increase of antisera availability has led to a decreased demand for ISH techniques in 

general, which in turn has led to substantially increase of material and equipment costs 

and availability. The bankruptcy of Kodak in 2012, the company that provided two of 

the key components, i.e. the NTB emulsion and the D-19 developer, was the final nail in 

the coffin for radioactive oligo probe ISH.  

Nevertheless, radioactive oligo probe ISH was successfully used in study I to confirm 

expression of calcium binding proteins in the arcuate nucleus and address discrepancies 

observed among different parvalbumin antisera. 

3.3.2 RNAScope® 

RNAScope® is a proprietary platform, owned by ACD Bio Techne, and quite a recent 

addition to the ISH repertoire. The technique uses oligo probes to target mRNA and 

utilizes several intermediate DNA amplifier fragments to generate a highly amplified 

signal. The platform is provided as kits, that are available in both chromogenic and 

fluorescence. The entire process can be done in one or two days, and fluorescence kits 

are easily multiplexed. Probes are also proprietary. As of 2018, the company provides 

over 10,000 unique probes targeting several species including human, bovine, dog, 

monkey, mouse, pig, rabbit, rat and zebrafish. Custom probes are designed and made 

available for an additional charge. 

Overall, RNAScope has addressed many of the issues previously associated with ISH 

(see above). The amplification steps render very favorable signal-to-noise ratios, 

fluorescence multiplexing is straight-forward and results are acquired within a day or 

two. The cost, however, remains a major drawback which greatly limits how much it can 

be used. From a cost-benefit point of view, mapping and neurochemical characterization 

of larger brain regions, like hypothalamus, cannot currently be justified with this 

method.  

The fact that all the components, including the probes, are proprietary can also lead to 

concerns as the researcher has a very limited knowledge and control over the assay. This 

has truly been an issue in several assays, where a specific probe has failed to identify the 

target. Yet, RNAScope has a promising future and the potential to become a standard 

method in many laboratories. 

As mentioned earlier, it is necessary to validate the EGFP expression in the BAC 

transgenic animal models, and due the lack of reliable antibodies (which is one of the 

reasons why transgenic animals are used in the first place), this had to be done through 

ISH. Unfortunately, endogenous EGFP fluorescence is lost when tissue is processed for 

ISH, and multiplex targeting is therefore necessary. RNAScope has provided the means 

to properly conduct these validations.  
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3.3.3 Other multiplex in situ hybridization techniques 

It should be mentioned here that before the introduction of RNAScope, which is a 

method that only became available lately, many efforts were spent seeking a successful 

multiplex fluorescence ISH procedure to validate the BAC transgenic animals. First, 

multiplex oligo probe ISH, where one probe (targeting Drd2) labeled with biotin and the 

other probe (targeting Egfp) labeled with digoxigenin, or vice versa, and subsequently 

detected with fluorescent labeled streptavidin and antisera against digoxigenin, was 

evaluated. Enzymatic amplification steps by introduction of horseradish peroxidase and 

alkaline phosphatase conjugates were also assessed. 

Each probe, by itself, yielded satisfactory results, but would fail in multiplex. Multiplex 

hybridization followed by sequential detection also failed to detect both targets 

simultaneously. Next, sequential IHC/ISH, where EGFP was detected by the means of 

IHC and Drd2 was detected by the means of ISH, was evaluated with no success, 

regardless if the sequence started with IHC or ISH. Finally, usage of riboprobes 

spanning around 500 bases of the target gene was evaluated, also with no success. 

The fact that Drd2 has a relatively low expression level in the hypothalamus (compare 

Paper V) has a crucial role in these failures as detection is not possible with suboptimal 

conditions and there is little margin for methodological compromises. It was therefore 

concluded that it is not possible to combine the material and methods of the two 

detection methods evaluated in such a way that detectable signal intensity for both 

targets are preserved. Although the above mentioned approaches might pose a viable 

strategy for multiple detection of other target pairs that are expressed at higher levels 

and are less sensitive to suboptimal conditions, RNAScope nowadays provides an easier 

and more straightforward approach, and therefore renders these strategies obsolete.  

3.4 IMMUNOHISTOCHEMISTRY 

Labeled antibodies can be used to target specific antigens on tissue for visualization 

(Coons et al., 1941; Coons and Kaplan, 1950). This is known as direct 

immunohistochemistry. As this direct detection method involves labeling of antibodies, 

a process that result in loss of rare and precious immunoglobulins, it is rarely used. Most 

commonly, an indirect detection method that utilizes labeled secondary antibodies that 

recognize the primary antigen-complementary antibody, is used (see Ramos-Vara, 

2005). Signal intensity can be amplified by conjugating an enzyme to the secondary 

antibody, which synthetizes a detectable precipitate or fluorophore. When detection is 

done with fluorescent dyes, the technique can also be referred to as 

immunofluorescence. In the studies included in this thesis, immunofluorescence 

techniques have been used to identify and profile cells, map neuronal populations and 

investigate neuronal connectivity. 
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3.4.1 Monoclonal and polyclonal primary antibodies 

Primary antibodies are raised by immunizing a host animal with a specific antigen. The 

host is subsequently bled and the sera, which contain the antibody of interest, as well as 

other antibodies, is separated. To minimize background noise and reduce unspecific 

binding, the immunizing antigen can be used to purify and concentrate the antibody of 

interest from the sera. When immunizing an animal with i.e. a peptide, the host will most 

likely produce antibodies against several different regions of it, and purification will 

yield a mixture of several antibody clones, i.e. a polyclonal mixture, where different 

clones recognize the same target antigen, but not necessarily the same epitope (see 

Ramos-Vara, 2005).  

Polyclonal antisera have two major disadvantages. First, since the mixture of antibodies 

in the sera is unknown, using different bleeding will result in different antibody 

mixtures, and unwanted variability is inevitably introduced in the experiment. Second, 

some assays, i.e. when targeting a specific phosphorylation site of a protein, require a 

single antibody that only recognizes a specific region of the protein. In such case, 

detection would not be possible with a polyclonal mix. 

To circumvent these issues, the process of creating monoclonal antibodies has been 

developed, where antibody producing B-cells from the spleen of the immunized host is 

fused to myeloma cells to create hybridomas (Schwaber and Cohen, 1973; Köhler and 

Milstein, 1975). The hybridomas are then separated and a single clone that produces the 

antibody of interest is selected. A hybridoma clone will only produce a single type of 

immunoglobulin against a single epitope. When the abundance of the target is low, it is 

more favorable to use polyclonal antibodies that recognize multiple sites of the target 

and thereby yield a stronger signal (see Ramos-Vara, 2005). Monoclonal antibodies, on 

the other hand, can be produced in larger quantities and have less batch-to-batch 

variability. 

3.4.2 Secondary antibodies 

As primary antibodies originate from a specific species, secondary antibodies are raised 

to recognize the species specific constant region of primary antibodies. Purified 

secondary antisera against different species, conjugated to a variety of enzymes or 

fluorescent dyes are widely available. By using primary antibodies from different 

species, it is possible to multiplex an immunofluorescence assay and detect multiple 

targets on the same tissue at the same time. Caution must, however, be taken against 

species cross-reactivity (see Ramos-Vara, 2005). 

3.4.3 Tyramide Signal Amplification 

Following oxidation/radicalization, tyramine can chemically bind to solid substrates 

(Gross and Sizer, 1959) and since this reaction is short-lived, tyramine will stay in close 

proximity to the site of reaction (Hayat, 2002). This process was adapted to histology by 

Adams (1992) who used biotinylated tyramide together with horseradish peroxidase 
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conjugated antisera to create biotinylated epitopes on the tissue. Biotinylated epitopes 

were subsequently visualized with labeled avidin, yielding a highly amplified signal. 

A less complex variation, where fluorescein (rather than biotin) is conjugated to 

tyramide, is used in the studies in this thesis. Test assays (data not included) have 

showed that this more direct tyramide signal amplification (TSA) approach generates 

about ten-fold stronger signal than conventional indirect fluorescence detection 

methods and the use of biotinylated tyramide does not improve this further. On the 

contrary, using biotinylated tyramide sometimes yielded a less intense signal, most 

likely since the size of the avidin-HRP caused steric hindrance and prevented further 

amplification.  

 

With TSA, it is possible to use antisera at ca. ten time lower concentration, without losing 

signal intensity. The use of lower concentration also leads to decreased background 

caused by unspecific binding. This makes it beneficial to combine TSA with unpurified 

polyclonal antisera, as lower antisera concentration result in a better signal-to-noise 

ratio. TSA is also particularly well suited for detecting low abundant targets, where 

stronger signal cannot be generated with higher immunoglobulin concentrations.  

Due to the nature of the method, the resolution of the staining is, however, reduced. This 

is not visible at lower magnifications, but at higher magnifications, staining can appear 

“granular” and TSA is therefore less suitable for investigating finer structures of the cell. 

It has also been less successful when combined with primary antisera targeting the 

extracellular portion of membrane proteins as the staining appears diffuse. Compared 

to the cytosol, the extracellular matrix probably presents fewer reactive sites for the 

reactive tyramide to bind to, which causes a longer trace and gives rise to the diffuse 

staining pattern. 

Figure 8. Basic principle for tyramide signal amplification. Horseradish peroxidase catalyzes the 
reaction to create reactive tyramide that can covalently bind to the tissue. This leads to deposition of a large 
number of fluorescent molecules in close vicinity of the target antigen, greatly amplifying the signal. HRP, 
horseradish peroxidase; GFP, green fluorescence protein; F, fluorescein isothiocyanate.  
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3.5 ELECTROPHYSIOLOGY 

The different ion concentration between the inside and outside of a cell, produced 

mainly by actions of the Na+/K+-ATPase pump, generates a voltage difference across the 

membrane. The driving force thus created is particularly important in cells with 

excitable membranes, such as neurons, and can be used to produce action potentials, as 

described by Hodgkin and Huxley (1952), which in turn allow for the electrical 

triggering of chemical neurotransmission between neurons. In addition to a cell’s 

morphology and transcriptional profile, knowledge of its active and passive membrane 

properties and electrophysiological behavior is thus necessary for understanding how 

ensemble of neurons work in networks to ultimately control the organism. 

The electrophysiology of hypothalamic neurons is not the main focus of this thesis. 

Nevertheless, electrophysiological methods and properties are complementary to the 

molecular biological methods and properties. They provided data necessary for the 

overall understanding of the cell and how it respond to neurotransmitters and/or 

neuromodulators. Electrophysiology was also an integral part of some of the 

experimental procedures, as a mean to identify and fill TIDA neurons with markers for 

subsequent histochemical visualization of the cell (see below). These methods are briefly 

discussed in the following sections. 

3.5.1 Whole-cell patch clamp recording 

The electrophysiology of individual cells can be monitored by whole-cell patch clamp 

recordings where a glass micropipette with an electrode is used, to record the cell’s active 

and passive membrane properties and how they change in response to messenger 

molecules (Neher and Sakmann, 1976; Hamill et al., 1981). In these experiments, the 

pipette, drawn to a fine open tip, is brought into direct contact with the cell membrane 

so that a so-called giga-seal is establish. The seal is then ruptured using suction, which 

gives the pipette direct access to the cell’s interior. This is known as the whole-cell 

configuration. 

In this configuration, electrical events across the membrane can be studied. By clamping 

the voltage, the current crossing the cell membrane can be recorded (Cole and Moore, 

1960). Alternatively, the current can be clamped, and the voltage is consequently 

recorded. In the whole-cell configuration, it is important that the internal solution of the 

patch pipette has the right composition in regards to ions, pH and osmolality, and that 

it is as similar as possible to the cell’s cytosol. Otherwise, the risk of dialysis is imminent, 

which can lead to electrical artefacts and cell death. 

3.5.2 Filling patched neurons  

Molecules added to a patch pipette’s internal solution can be transferred into a cell 

during whole-cell patch clamp recordings. This process has been used to fill recorded 

cells with markers for subsequent IHC and visualization of the recorded cell, which 
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enables identification of both the intrinsic electrical properties and neurochemical 

identity of the same cell. After successful recording, the patch pipette from a filled cell 

must be removed in such a way that the cell body is not damaged. 

To be able to completely fill and recover a patched neuron, in regard to its axon and 

dendritic tree, several parameters must be optimized. A patched cell can be filled with 

several different kinds of markers. It is important that the marker of choice does not 

pose any toxic effects to the cell and leaves the electrical recordings unaffected. 

Fluorescence dyes like Lucifer Yellow or different versions of Alexa dyes are useful for 

direct visualization, but are not suited if the slice is to be fixed for immunohistochemical 

investigation. Biotin-derivatives that can be detected with avidin are, on the other hand, 

well suited for this purpose. In the studies included in this thesis, neurobiotin has largely 

been used. Biocytin has also been investigated. No apparent differences could be 

observed between these two markers. 

Other factors that affect the staining quality is the concentration of neurobiotin in the 

patch pipette (neurobiotin concentration), the time the pipette is allowed to fill the 

neuron by passive diffusion (fill time) and the time the slice is allowed to recover before 

fixation (relaxation time). For best visualization of TIDA neurons, the neurobiotin 

concentration was optimized to 0.2%, fill time to 60 min, and relaxation time to 15 

minutes. It should be mentioned that these parameters are not necessarily optimal for 

investigating other neurons with different cell morphology. 

3.5.3 Staining filled neurons 

After a cell is filled, it has to be fixed, stained and processed for IHC. As 

electrophysiological slices (ca. 250 µm in these studies) are substantially thicker than 

conventional sections used for histology (ca. 14 µm), several procedural steps must be 

reconsidered for obtaining adequate results. A thick slice will result in considerably 

higher levels of fixative induced fluorescence and will make immunoglobulin 

penetration more difficult. Therefore, the slice should not be fixed for longer than 18 

hours. All incubation and wash times must also be increased to ascertain adequate tissue 

penetration. 

In the studies included in this paper, recorded cells have been successfully stained with 

both fluorescence and chromogen dyes. The latter utilized HRP conjugated streptavidin 

with 3,3-diaminobenzidine (DAB) and nickel as substrate. Chromogen detection has the 

benefit of being prone to photobleaching (see section 3.6.2), but cannot be used with 

confocal microscopy (compare section 3.6.3), nor with multiplex immunostaining. It 

was initially theorized that resistance to photo bleaching, would be more favorable and 

make it easier to maintain and identify finer structures like axons and spines. This, 

however, turned out to be false, mainly due to the complexity of the structures and the 

thickness of the slice. Nevertheless, data from DAB-Ni stained TIDA neurons showed 

that photobleaching did not have a negative impact on the reconstructions of the 
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dendritic trees of TIDA neurons (compare section 3.7.2). It should, however, be noted 

that it is likely that photobleaching will impact reconstructions of neurons possessing 

more complex dendritic trees negatively. 

3.6 MICROSCOPY 

The majority of experiments included in this thesis heavily rely on light microscopy, and 

several different microscopy techniques have been used to address different questions. 

These different microscopy techniques are discussed in the following sections. 

3.6.1 Bright field and dark field microscopy 

Although it has undergone major technological improvements in regards to both 

construction and optics, the basic principle of bright field microscopy has remained the 

same since its first description by Antonie van Leeuwenhoek in the 1600s (see 

Houtzager, 1983). In the studies in this thesis, it has been used at low power to 

investigate non-fluorescent tissues and to determine Bregma levels of tissue sections, 

counter-stained with toluidine blue, an acidophilic thiazine metachromatic dye (Augulis 

and Sepinwall, 1969; see also Sridharan and Shankar, 2012). At higher power, it has 

been used to investigate the morphology of filled TIDA neurons, which have been 

stained with DAB-Ni. The technique is rather straight-forward, although, it should be 

emphasized that correct Köhler illumination (Köhler, 1893) greatly improve image 

quality. 

 

In dark field microscopy (see e.g. Edmunds, 1877), a method used by Fritz Schaudinn 

and Erich Hoffmann in 1905 to identify the syphilis’ causing bacterium, Treponema 

pallidum (Schaudinn and Hoffmann, 1905), the light that hits the specimen is aligned 

and angled in a way so that the amount of transmitted light is minimized. Only scattered 

light is collected (see Figure 9). This technique can improve image contrast dramatically 

and is therefore commonly used to visualize transparent specimen. Dark field 

microscopy is also used when investigating radioactive ISH experiments, as sparsely 

positioned, small sized, silver grains are difficult to detect in bright field, but will scatter 

Figure 9. Basic concept of bright field and dark field microscopy. In dark field microscopy, the majority 
of the transmitted light is filtered out, and only scattered light is collected. Adapted from a drawing from the 
internet with unknown author. 

Dark Field Bright Field 
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light very well. Although this technique makes the silver grains readily detectable, it is 

very sensitive to impurities, as dust on the cover glass, which also scatters light, will 

cause interference. 

3.6.2 Fluorescence microscopy 

Investigation of fluorescent dyes is usually done with epifluorescence microscopy, where 

the specimen is illuminated from above. This technique utilizes the fact that fluorescent 

molecules, when illuminated, will emit light of lower frequency than those they absorb. 

As the excitation and emission lights are different, they can be filtered, so that only the 

emitted light is collected, and thereby, only the structure of interest, which has been 

labeled with the fluorescence dye, is visualized. Using different fluorescent dyes with 

separated excitation/emission wavelengths, it is possible to stain different structures, 

visualize them individually and superpose them to create a multiplex image. 

Although recent technical developments have made it possible to use single wavelength 

light sources produced from light-emitting diodes, the majority of microscopes, 

including the ones used in the studies in this thesis, uses a broad spectrum light source 

and rely on filter sets for light separation. Correct dye/filter set matching is crucial for 

successful image acquisition. If there is a mismatch in the excitation wavelength, the dye 

is not excited and little light is emitted, and if there is a mismatch in the emission 

wavelength, emitted light is not collected. 

Unless intentional, which is the case when utilizing double filters for simultaneous 

observation of different dyes in the oculars, filter sets that fail to separate the light from 

different dyes, can have a more serious outcome. This phenomenon, known as “bleed-

through”, will cause fluorescence signal to be attributed to the wrong structure, and 

thereby lead to false conclusions. Additional knowledge about the spatial distribution of 

the stained structures can provide necessary information to handle this. For instance, 

while neurobiotin will fill the entire cell, tyrosine hydroxylase (TH) is mostly void from 

the nucleus. TH signal in the nucleus can therefore alert the observer that the image is 

suffering from bleed through.  

Lack of optical control in the z-axis leads to another type of concern in fluorescence 

microscopy. When the light hits the specimen, all fluorescent molecules absorbing the 

specific wavelength will get excited, regardless if they are in the focal plane or not. As the 

reflected light originates from both in-focus and out-of-focus structures, the image is 

rendered blurry. This interference can also causes fluorescence signal from two distinct 

structures, which are superposed in the plane of depth, to appear as a single structure. 

Together, these caveats make conventional florescence microscopy less suitable for co-

localization studies. 
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3.6.3 Laser scanning confocal microscopy 

Laser scanning confocal microscopy was patented by Marvin Minsky (1957) as a 

microscopy apparatus providing the “means for producing a point source of light” and 

an “optical system capable of rejecting all scattered light except the emanating from 

the central focal point”, i.e. an apparatus that made it possible to optically slice a 

specimen. This is done by introduction of a spatial pinhole that blocks out the light that 

is out focus. As a large portion of the light from the sample is blocked, a sensitive 

detector, usually a photomultiplier, is used to transform the light to electrical signal 

which can be handled by a computer. 

To acquire a multidimensional image, the point beam has to scan across the sample. If 

the sample is scanned both laterally, and horizontally, the data can be put together into 

a 3D image. When multiple fluorophores are used, they can either be excited 

simultaneously or sequentially, depending on the setup of the microscope. Simultaneous 

excitation substantially reduces the scan time. This strategy can, however, generate 

bleed-through (see section 3.6.2) and should be avoided. Slower scan speeds also 

provide better signal-to-noise, but in multidimensional acquisitions can lead to 

bleaching. It can also become time-consuming to an extent that makes the acquisition 

unfeasible (compare Figure 10). 

By the means of optical slicing and separation of the fluorescence signal through 

sequential scanning and filtering, confocal microscopy provides the necessary criteria to 

reliably separate multiple structures in space. Co-localization should therefore only be 

established with this technique.  

3.6.4 Airyscan super resolution microscopy 

In recent years, several microscopy techniques, like stimulated emission depletion 

microscopy (Hell and Wichmann, 1994), stochastic optical reconstruction microscopy 

(Rust et al., 2006) or photoactivated localization microscopy (Betzig et al., 2006), have 

been developed which makes it possible to visualize structures with a higher resolution 

than is imposed by the diffraction limit (about 250 nm for green light), as proposed by 

Abbe (1873). The Airyscan detector from ZEISS (Huff, 2015) is another recently 

developed technique, which has been used in the second study included in this thesis. 

Airyscan utilizes a detector for confocal microscopy, consisting of an array of 32 

photomultiplier tubes, where each detector element work as a single pinhole. By 

combining knowledge about the beam path and the spatial distribution of the detectors, 

improved signal-to-noise ratio and super-resolution is acquired (see Figure 10). Other 

advantages of the Airyscan system is that it does not require any changes to the staining 

protocols, the acquisition time is not increased and specimen is not bleached more than 

what is the case with conventional confocal microscopy. 

A major disadvantage is that the image files generated by the acquisitions are 32-times 

larger, and that these images need to be post-processed to generate the final super 
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resolution image. Processing thicker stacks is CPU-consuming and pushes most desktop 

computers to their limits. Both acquisition and processing of larger regions of interest 

by the means of tiling require workstation-class computers. Computer power is today a 

limiting factor that will likely become obsolete in a near future. 

 

3.6.5 Photobleaching of fluorescence samples 

Photo-bleaching, or fading, caused by a reaction between the excited fluorophore and 

molecules in the environment, like oxygen, is a major concern when working with 

fluorescence samples. This is minimized by limiting the exposure to light and reducing 

its intensity, which unfortunately, also reduces the specimen visibility. Usage of anti-

fading mounting medium can also significantly minimize photo-bleaching (Ono et al., 

2001). Stained samples should be stored at -20°C, as lower temperatures will slow down 

the reactions and preserve the samples for longer period of time. Many samples included 

in this thesis have retained their fluorescence after several years of storage at this 

temperature.  

3.7 ANALYSIS 

In this section, certain aspects of analytical methods used have been discussed. 

3.7.1 Close apposition and co-localization 

Although confocal microscopy provides the criteria necessary to differentiate 

multidimensional structures (see section 3.6.3), this differentiation can be completely 

nullified by incorrect data handling and presentation. As we lack the true ability to 

present data in 3D, it is projected in 2D. Maximum intensity projections are commonly 

utilized to visualize stacks of confocal micrographs. These micrographs must be used 

Figure 10. Increased resolution with Airyscan confocal microscopy. High power maximum intensity 
projection confocal micrographs of neurobiotin filled (green) TIDA neuron, immunostained for tyrosine 
hydroxylase (red), visualizing a putative synapse from the ventrolateral aspect of the arcuate nucleus and 
provide anatomical substrate for TIDA neurons innervating other dopamine neurons (n = 1). Image acquired 
with a ZEISS Airyscan LSM 700 microscope with a 63x oil objective at 9x zoom. To achieve optimal signal-
to-noise ratio, a pixel time of 0.11 ms was utilized. Compared to confocal (left), the Airyscan processed 
image (middle) is smoother, with less noise and with higher resolution. After deconvolution (right), the 
subcellular distribution of neurobiotin and tyrosine hydroxylase can be identified. Although these settings 
are optimal for image quality, they are not practical as it would be too time consuming to scan a 30 µm 
portion of a dendrite in 3D (which was used for spine analysis in study II). Grid size = 1 µm. 

Confocal Airyscan Airyscan + Deconvolution 
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with extreme caution, as two structures separated in space, in the plane of depth, can 

appear as a single object, similar to what is observed in the oculars. Likewise, depending 

on the angle, objects that are far away in the plane of depth, can appear closer than they 

really are. This must be taken into consideration during data analysis, and close 

appositions and co-localizations must always be confirmed in a single optical slice and 

in all three planes. 

3.7.2 Reconstruction of neurons in Neurolucida 

Camera Lucida, which was patented by William Hyde Wollaston in 1806 (see Marien, 

2014 p.7), provides the means to manually draw and create a proportionally accurate 

record from a live image. This has been a major advantage in neuroscience as image 

acquisition that covers the entire axonal and dendritic tree of neurons has not been 

technically possible. Thus, camera lucida drawings have for decades been a major 

technique for histologists to record and present their microscopy data. The computer 

software MBF® Neurolucida (Glaser and Glaser, 1990), is essentially a computer aided 

version of camera lucida, and provides the means to trace neurons from a live 

microscope image. This live image tracing does, however, have certain disadvantages, 

especially, on fluorescent specimens. 

Photo-bleaching, as described previously (see section 3.6.5) is a major issue, particularly 

at high power magnifications. This basically means the examiner only has “a single shot” 

to trace a neuron, and optimization and future confirmation of a trace is thereby not 

possible. Photo-bleaching can also make tracing challenging when multiple neurites are 

in the same field of view, as all neurites are bleached when one neurite is being traced. 

This has been less of an issue for TIDA neurons due to their less complex dendritic tree. 

The thickness and volume of the dendrites can also be integrated when tracing neurons 

with Neurolucida. These estimates depend highly on proper light and camera settings. 

If the signal from the process that is being traced is saturated, the thickness and the 

volume will be overestimated, and if the signal is too weak, they will be underestimated. 

This, together with the continuous bleaching of the tissue can make it difficult to 

maintain a uniform tracing, and a certain level of error is introduced in the data. In less 

complex structures, however, this error is not particularly significant. 

It should be mentioned that recent developments in tissue clearing, like CLARITY 

(Chung et al., 2013) or iDISCO (Renier et al., 2014), and light sheet microscopy (see 

Elisa et al., 2018), have enabled acquisition of entire mouse and rat brains, albeit at 

lower resolutions. Given the computer power that is available at the time when this 

thesis is being written, handling these huge datasets is problematic. Development, in 

regard to computer power as well as light sheet microscopy resolution, should however 

make it possible to trace entire neurons from acquired micrographs, which should 

resolve many of the live image tracing issues. 
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3.7.3 Spine analysis in Imaris 

The spine analysis that is part of the second study of this thesis has been conducted in 

BitPlane® Imaris. This computer software provides a fully automatic pipeline, which 

rarely generates realistic results, most likely because the algorithms lack the 

sophistication that is necessary to detect complex and highly variable structures like 

spines. Also, the company has mainly used medium spiny neurons from the striatum to 

develop their algorithms. As TIDA neurons exhibit extensions that does not always 

adhere to classical definitions (compare study II), it is plausible that the parameters used 

by the algorithms are not optimal for spine detection in the hypothalamus. 

Using a semi-automatic pipeline, where several steps heavily rely on manually defined 

thresholds, satisfactory results can, however, be generated. As it is not possible to use 

equivalent thresholds across samples and maintain adequate reconstruction of the 

spines at the same time, the analysis can introduce unwanted variability in the results. 

Given the power of the data and observed differences between groups, these variabilities 

are, however, not of a size that would affect the study’s conclusions. 

It should be mentioned that BitPlane® is continuously developing their computer 

software and future versions might provide faster and more accurate solutions. 

However, as Imaris is a proprietary software, certain aspects of the functions, 

parameters and algorithms used in the program will remain unknown. 

 

 

 

 

 

 

 



 

 37 

CHAPTER 4  
RESULTS AND DISCUSSION 

he following sections provide an overview of the results from the studies 

included in this thesis, and discuss the overall implications of them. For a 

complete insight in the results, and comprehensive discussion of the 

individual studies, the reader is referred to the respective communications.  

4.1  TUBEROINFUNDIBULAR DOPAMINE NEURONS 

The anatomical features of male mouse and rat TIDA neurons, at the level of population 

as well as individual cells, including axonal and dendritic arborization, somatic 

parameters and spines, were interrogated in study II, by the means of conventional 

immunofluorescence on brain sections, as well as by the visualization of patch clamp 

recorded neurons filled with marker-molecules. Multiplex immunofluorescence was 

also used to investigate subcellular distribution of glutamatergic and GABAergic 

synapses on TIDA neurons. Together, these strategies enabled us to describe TIDA 

neurons with higher resolution and certainty than what had been done previously. 

Histochemical techniques, in combination with electrophysiology, were also used in 

studies III and IV to investigate if, and how, TIDA neurons are externally modulated by 

various different modulators. In study III, the anatomical substrate for serotonergic 

innervation of TIDA neurons was examined and the electrophysiological changes 

induced by serotonin and selective serotonin reuptake inhibitors (SSRIs) were 

investigated. Similarly, in study IV, a possible mechanism underlying the circadian 

rhythmicity of circulating prolactin was examined, by investigating the effects of 

hypocretin/orexin (H/O) and melatonin on TIDA neurons. 

4.1.1 TIDA neurons are modulated by serotonin, SSRI’s and H/O, but not melatonin 

Studies III and IV present both anatomical and electrophysiological evidence for direct 

effects of serotonin and SSRIs as well as H/O, but not melatonin, on TIDA neurons. 

Other modulatory molecules like TRH (Lyons et al., 2010), prolactin (Lyons et al., 2012), 

oxytocin (Briffaud et al., 2015), and even dopamine (Stagkourakis et al., 2016) have also 

in other studies been identified to modify the electrophysiology of TIDA neurons, in 

T 
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different ways (see Figure 11). For a more detailed description on how the different 

modulators affect the electrophysiology of the TIDA neurons, the reader is referred to 

the respective publication. Together these data show that the central dopaminergic 

control of prolactin secretion is highly susceptible to both physiological and iatrogenic 

modulations.  

4.1.2 Oscillations might protect TIDA neurons from calcium overload 

Ever since the oscillatory firing pattern of TIDA neurons were first identified and 

described (Lyons et al., 2010), the underlying functional explanation for this pattern has 

been under investigation. As adequate suppression of prolactin requires a constant tone 

of dopamine, TIDA neurons must remain active, and release dopamine, over long 

periods of time. During sustained high frequency discharge, excessive calcium influx can 

have damaging effects (Scharfman and Schwartzkroin, 1989; Sloviter, 1989; Iacopino et 

al., 1992), which the cell can counter with calcium binding proteins. This correlation has 

been observed in fast spiking neurons of both hippocampus and cortex (Kawaguchi et 

al., 1987; Kawaguchi and Kubota, 1993).  

Figure 11. Different modulator’s effect on the electrophysiology of TIDA neurons. Schematic drawings 
of in vitro current clamp recordings from TIDA neurons during bath application of different modulators. See 
list for abbreviations. 
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Briffaud et al., 2015 
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Although TIDA neurons does not discharge in the same high rate as fast spiking neurons, 

they sustain a high level of activity over longer periods of time, and one would therefore 

expect presence of buffers that protect the cell from excessive calcium influx. Yet, our 

investigations in study I could not identify neither calbindin-D28k, calretinin nor 

parvalbumin in rat TIDA neurons. Other studies have identified two members of the 

nucleobindin family, i.e. nucleobindin-1 and nucleobindin-2, to be expressed in TIDA 

neurons (Foo et al., 2008; Tulke et al., 2016). These two proteins are homologous 

multidomain calcium and DNA binding proteins, and were initially identified as 

transcription factors, since they bind DNA fragments in vitro (Miura et al., 1992). Due 

to their expression of the calcium binding EF-hand motif, they could potentially buffer 

calcium as well. 

However, nucleobindin-1 is a pan neuronal marker associated with the Golgi apparatus 

(Tulke et al., 2016) and has been identified to bind G-proteins and function in signal 

transduction (Kapoor et al., 2010). Likewise nucleobindin-2, is many times associated 

with its DNA binding functions and identified by other names like calnuc (e.g. Lin et al., 

2000). It has also been proposed that nucleobindin-2 is cleaved and secreted (Oh-I et 

al., 2006; Stengel et al., 2009a), although it remains controversial if cleavage and 

exocytosis occurs endogenously (Foo et al., 2008, 2010; Stengel et al., 2009b). 

Furthermore, it has been shown that nucleobindin-2 is virtually absent in axon 

terminals (Foo et al., 2008). Thus, these observations provide little evidence for 

nucleobindin proteins to buffer calcium in TIDA axon terminals. 

Although the proteins mentioned above do not account for all calcium binding proteins, 

the data do suggest that TIDA neurons might be able to sustain firing by utilizing an 

alternative mechanism, independent of calcium binding proteins. The quiescence period 

following phasic firing could be the necessary component that gives the cell time to 

handle excessive intracellular calcium, and make it possible for TIDA neurons to sustain 

a constant dopamine inhibition on lactotrophs.  

4.1.3 Morphological properties of mouse and rat TIDA neurons are largely similar 

The morphological features investigated in the second study revealed that mouse and 

rat TIDA neurons exhibit similar properties in regard to their distribution, cell body size 

and axonal and dendritic arborization. Thus, if this finding is generalizable across other 

CNS regions, the larger brain volume in rats is a consequence of higher number of 

neurons, rather than larger cells.  

TIDA neurons of both species showed a preference to extend dendrites towards, and in 

some cases probably into, the third ventricle (see Figure 12). This finding raised the 

question if TIDA neurons are able to circumvent the blood-brain-barrier to access 

different kinds of molecules, like ions or hormones, directly from the cerebrospinal fluid. 

Non-canonical neuronal structural features like somatic spines (e.g. Campbell et al., 

2005) and extension of axons from dendrites rather than from soma (e.g. Herde and 
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Herbison, 2015) were also identified in both mouse and rat TIDA neurons. The 

functional implications of these observations remain, however, to be investigated. 

 

4.1.4 TIDA neurons are more spiny in mice than in rats  

Spine analysis on mouse and rat TIDA neurons revealed species differences. Mouse 

TIDA neurons commonly exhibited a higher density of dendritic spines, compared to rat 

dendrites (compare Table 1). Interestingly, previous investigations have identified 

mouse and rat TIDA neurons to be governed by different network mechanisms. While 

rat TIDA neurons exhibit gap junctions and are electrically coupled, mouse TIDA 

neurons lack gap junctions and fire asynchronously (Stagkourakis et al., 2018a). The 

higher prevalence of spines in mouse TIDA neurons could be related to these other 

observations. See study II for more details about spines on TIDA neurons and their 

differences between mice and rats. 

 

4.2 DOPAMINE RECEPTORS IN THE HYPOTHALAMUS 

In studies V and VI included in this thesis, two transgenic mouse lines were used to 

generate a comprehensive map of cells expressing D1 and D2 receptors in the 

hypothalamus, the pituitary and select circumventricular organs. The neurochemical 

identity of these cells was also investigated. Our data confirm previous reports (e.g. 

Meador-Woodruff et al., 1989, 1991; Mansour et al., 1990; Brouwer et al., 1992; 

Mengod et al., 1992; Yokoyama et al., 1994), and add substantial details. 

Figure 12. Reconstruction of neurobiotin filled rat TIDA neurons. Virtual reconstruction (A) as well as 
polar histograms (B) of the dendritic trees of TIDA neurons illustrates the preference towards the ventricle 
side. See list for abbreviations. Scale bar in (A) = 25 µm. 

Arc 

3V 

Table 1. Comparison of mouse and rat TIDA neurons 

MICE RATS 

Asynchronous firing1 Synchronous firing1 

No gap junctions1 Gap junctions1 

High spine density Low spine density 

1 Original data presented by Stagkourakis et al. (2018a).  
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The expression patterns of D1 and D2 receptors showed a striking contrast. While the 

D2 receptor was widely expressed in the hypothalamus and could be found in many 

hypothalamic nuclei, the D1 receptor expression was sparse and restricted to a few 

areas, suggesting that the dopaminergic control that is exerted on the hypothalamus is 

mainly inhibitory. The suprachiasmatic nucleus, however, constitutes a clear exception, 

as this area contained many D1 receptor expressing neurons, but was completely void 

of D2. 

These dopaminergic inputs (compare section 1.2.2) could proceed from local 

hypothalamic neurons (i.e. A11-A15), or originate from either the mesencephalon (i.e. 

A8-A10) or the olfactory bulb (i.e. A16). The local hypothalamic circuitries could also 

involve auto-receptors. However, the dopamine source providing innervation to the 

hypothalamus was not addressed in these studies, and needs to be evaluated in future 

studies. 

4.2.1 Dopamine receptors on dopaminergic neurons 

The alphanumerical classification of catecholamine neuron, which includes A11-15 in 

the hypothalamus was used to identify dopamine neurons (see section 1.2.2). D2 

receptor was found to be expressed in subpopulations of all these groups. Although 

Drd2-EGFP immunofluorescence could not be found in the A13 dopamine neurons of 

zona incerta, closer examination by the mean of multiplex in situ hybridization could 

identify Drd2 mRNA in this population as well, confirming previous D2 receptor ligand 

binding autoradiography studies (Yokoyama et al., 1994). The lack of 

immunofluorescence in A13 dopamine cells is thus most likely a transgenic artefact (see 

section 3.1.1). As detailed information about the included regulatory elements in the 

BAC construct is lacking, the exact cause of this artefact cannot be identified. 

D1 receptor expressing neurons were also found in subpopulations of A12-A14 

dopamine neurons, but in fewer numbers. Although controversial, previous 

immunohistochemical investigations have identified co-expression of D1 and D2 

receptors in the same cells of striatal neurons (Aizman et al., 2000) as well as avian 

hypothalamic neurons (Chaiseha et al., 2003). Our current results from these two 

studies raise the question if such co-expression also occurs in the mouse hypothalamus. 

Nevertheless, our current data clearly indicate that hypothalamic dopamine control in 

both A12 and A14 dopamine neurons is mainly mediated by the D2 receptor. 

4.2.2 Magnocellular neurons lack dopamine D1 and D2 receptors 

Our data provide little evidence for direct dopaminergic modulation of the 

magnocellular system, as no significant co-expression could be observed with either D1 

or D2, on the magnocellular neurons in the supraoptic or the paraventricular nuclei. 

Surprisingly, EGFP signal resembling axon terminals could, however, be observed in the 

posterior pituitary of Drd1-EGFP mice, but the neurochemical identity of these 

terminals is currently not determined. It should be mentioned that a single vasopressin 



 

42 

expressing neuron (i.e. one neuron in one section), was occasionally observed in the 

supraoptic nucleus, but the density of the fibers in the posterior pituitary was too high 

to originate from a single neuron. 

4.2.3 Dopamine receptors are involved in the majority of the hypothalamic-pituitary 
axes 

Dopamine can control endocrine release at hypothalamic and/or pituitary levels. D1 

receptor was only observed in dopaminergic parvocellular neurons (see section 4.2.1), 

and the anterior pituitary was void of D1 receptor. In the hypothalamus, D2 receptor 

was expressed in a subpopulation of both somatostatin and TRH expressing neurons 

whereas in the pituitary lacto-, thyro- and gonadotroph cells expressed D2 receptor. No 

conclusions could be drawn regarding growth hormone-releasing hormone (GHRH) 

expressing neurons in the hypothalamus due to the lack of specific antisera.  

These data indicate a broad role for the D2 receptor in the hypothalamic endocrine 

output, and could provide a neuroanatomical explanation to various conditions, for 

instance side effects observed in patients under pharmacological treatments, such as 

antipsychotics, that target the D2 receptor. It also illustrates the caveats of delivering 

drugs at systemic level and thereby highlights the importance of direct targeting. These 

new insights could thus be the foundation of new D2 mediated therapeutic strategies for 

treating hormonal disorders and/or pituitary adenomas that give rise to e.g. 

hyperprolactinemia, hyperthyroidism (see Singh and Hershman, 2017) or acromegaly, 

but likely not for instance Cushing’s disease (see Störmann and Schopohl, 2018); a 

condition caused by dysregulations in corticotropin-releasing hormone expressing 

neurons or corticotrophs, where no D2 receptor could be identified (see study V). 

 

Figure 13. Schematic presentation of dopamine D2 receptor expression in parvocellular neurons of 
hypothalamus and endocrine cells of anterior pituitary. Cells that express D2 receptor have been 
marked with (Y), and cells that doesn’t express D2 receptor have been faded. See list for abbreviations. 
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4.2.4 Involvement of D2 receptor in acromegaly 

Acromegaly is a hormonal disorder, caused by excessive growth hormone release during 

adulthood, which causes bones and body extremities to grow abnormally (see Melmed, 

2009). It is usually caused by pituitary adenomas and is treated with surgery, 

somatostatin analogs or D2 agonists (see Zahr and Fleseriu, 2018). By studying the 

dopamine receptors in the hypothalamus and the pituitary, we found D2 receptor 

expression in a subpopulation of somatostatin expressing neurons in the hypothalamus, 

but not in the somatotropic cells of the pituitary. 

Activation of D2 receptors in the hypothalamus would be predicted to impair the 

inhibitory effects of somatostatin on somatotrophs, and thus lead to increased growth 

hormone release, which makes our data, at an initial glance, difficult to reconcile with 

clinical observations. However, investigations of pituitary adenomas, have revealed 

expression of D2 receptors on somatotropinomas from acromegaly patients (Neto et al., 

2009), which would provide an explanation why patients respond to D2 agonist 

treatments. Notably, the literature also reports D2 receptor expression on normal 

somatotrophs (e.g. see Ben-Shlomo et al., 2017). This however, does not seem to be 

supported by the original data provided by Neto et al. (2009), which did not distinguish 

somatotrophs from the rest of the endocrine cells in the pituitary. 

It should be mentioned that bromocriptine treatments, in line with our results, does not 

always suppress growth hormone secretion in acromegaly patients, and the opposite 

where the treatment leads to increase secretion has also been reported (Arihara et al., 

2014). This illustrates why understanding of the entire system is necessary to be able to 

provide effective treatments for different patients. Finally, it should be noted that our 

data currently lack information about dopamine receptor involvement on GHRH 

expressing neurons which could have implications on the somatotrophic axis. 

4.2.5 D1 receptors are expressed in ependymal cells 

Possible D1 receptor expression was observed in a subpopulation of the ependymal cells 

of the third ventricle, lining the wall of the arcuate nucleus. This is a curious finding since 

previous records of these cells in the literature are absent. These results demand further 

investigation and confirmation. Considering the methodology in use, the signal could 

have three different explanations. The first explanation is that these cell do in fact 

express D1 receptors, which could be confirmed by in situ hybridization experiments. 

The second explanation is that observed signal is a transgenic artefact (see section 3.1.2). 

In such case, the strong expression of EGFP can, nevertheless, be used to target these 

highly underappreciated cells for further anatomical and electrophysiological 

interrogations.  

A third possibility is gap junction mediated EGFP translocation, from D1 receptor 

expressing neurons to the ependymal cells. As EGFP is too large to passively diffuse 

through a gap junction pore (see Alexander and Goldberg, 2003), this translocation 
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would utilize a different mechanism. Three different gap junction dependent 

mechanisms, have been described in the literature, which are through internalization 

(Jordan et al., 2001), cytoplasmic bridges (Bukauskas et al., 1992) or tunneling 

nanotubes (Wang et al., 2010). This would constitute a novel circuitry involving 

ependymal cells, and provide hypothalamic neurons access to larger proteins in the 

blood and the cerebrospinal fluid. 

4.3 CALCIUM BINDING PROTEINS IN THE ARCUATE NUCLEUS 

In the first study included in this thesis, the expression pattern and neurochemical 

identity of three calcium binding proteins, i.e. calbindin-D28k, calretinin and 

parvalbumin, in the arcuate nucleus have been investigated. Both mRNA and 

immunoreactivity were detected for calbindin-D28k and calretinin. Results from one 

parvalbumin antiserum was, however, ambiguous as it, contrary to in situ hybridization 

experiments and other parvalbumin antiserum, showed immunoreactivity in the 

arcuate nucleus. The exact reason for this discrepancy could not be elucidated from the 

study. It should be mentioned that the majority of the data from study I, together with 

data from other studies (Celio, 1990; Fortin and Parent, 1997), provide evidence against 

expression of parvalbumin in the arcuate nucleus of juvenile male rats. 

4.3.1 Possible antisera cross-reactivity 

As all three calcium binding proteins investigated in study I belong to the EF-hand 

family, and thereby exhibit similar motifs in their 3D structure, it is plausible that some 

(but not necessarily all) immunoglobulins in the polyclonal parvalbumin antisera fail to 

distinguish these structures in fixed tissues. Closer examination of multiplex 

immunostainings did show overlap between the two antisera targeting calbindin-D28k 

and parvalbumin to some extent. 

The co-expression is, however, not absolute, which is usually expected when antisera 

cross-react. By staining the two targets separately, cross-reactivity at the level of 

secondary antisera was ruled out. The fact that parvalbumin was targeted with a 

polyclonal antiserum could, however, provide an explanation. If only a subpopulation of 

the immunoglobulins cross-react, the antisera, that has been titrated to be used when 

all immunoglobulins are active, will be less potent and mainly detect areas with a high 

calbindin-D28k concentrations. This diminished signal was exactly what was observed 

in the experiments where antisera PV-25 was used. 

4.3.2 The functional role of calcium binding proteins in the arcuate 

Many calcium binding proteins, including calbindin-D28k and calretinin, have been 

identified to function in signal transduction, in addition to calcium buffering (compare 

section 1.3). To our best knowledge, parvalbumin, has so far not been identified to be 

involved in signal transduction, and is considered to be a “pure” calcium buffer. 

Although the functional role of these calcium binding proteins were not elucidated in 
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this study, it is interesting that the calcium binding protein that is known to only act as 

buffer, was absent. Future studies should investigate if the role of calcium binding 

proteins in the arcuate nucleus is limited or not to signal transduction. 

4.3.3 Calcium binding proteins are expressed in POMC neurons 

Of all the neuronal populations in the arcuate nucleus that were investigated, POMC 

neurons were the only ones that expressed calcium binding proteins. Interestingly, the 

expression was not uniform in the population, but both a rostro-caudal and a medial-

lateral differentiation could be observed. 

Diversity in arcuate POMC neurons has previously been identified in regards to 

projection patterns (Swanson and Kuypers, 1980; Baker and Herkenham, 1995; Elias et 

al., 1998, 1999), sensitivity to metabolic hormones (Williams et al., 2010) and amino 

acid transmitter phenotype (Collin et al., 2003; Meister, 2007; Hentges et al., 2009; 

Jarvie and Hentges, 2012; Wittmann et al., 2013). The data from all these studies 

together with current findings presented in study I can be summarized as follows: The 

rostral POMC neurons express calretinin, respond to insulin and project caudally to the 

autonomic areas. The caudal POMC neurons express calbindin-D28k, project within the 

hypothalamus and respond to leptin. It should be emphasized that the correlation of 

these data is not confirmed yet and remains to be determined in the future. 
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CHAPTER 5  
CONCLUDING REMARKS 

n the studies presented in this thesis, we have investigated the dopamine 

system in the hypothalamus with a particular focus on the TIDA neurons. We 

have identified an anatomical substrate for innervation by serotonin and 

hypocretin/orexin and showed that these modulators do alter the electrophysiological 

behavior of the cells. We have also provided a comprehensive map of D1 and D2 

expressing cells in the hypothalamus, the pituitary and some of the circumventricular 

organs. We identified cell populations that express either D1 or D2 receptors. Finally we 

provided evidence that both calbindin and calretinin are expressed in the arcuate 

nucleus, particularly in POMC neurons, which are subdivided into two groups based on 

the expression of these two calcium binding proteins.  

These data provide evidence to understand the underlying circuitries that enable the 

hypothalamus to work, in order to maintain homeostasis and drive motivated behaviors, 

which for instance can be used to explain physiological features in hormonal control, 

predict pharmaceutical agents’ actions and adverse effects. This understanding also 

provide a solid basis for future development of treatments in diverse areas of medicine. 

 

I 
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CHAPTER 8  
NEUROART 

cquiring all the micrographs that has been used as a basic foundation for the 

studies included in this thesis, required countless of hours in the dark room 

and in the basement, where I had to either look in the oculars to investigate 

the results, or stare at the computer screen to optimize acquisition settings. Had it not 

been for the beautiful world visualized in the microscope, the workload had not been 

endurable. As a way to share the marvelous world of neuroscience and fluorescence 

microscopy, and to raise interest in the general public, I used some of the data in a more 

artistic way in my Christmas greetings every year. 

Some of these greetings have been included in this sections. These Christmas cards are 

a manifestation to how fun science can be, but also demonstrate technical as well as my 

personal developments in the last decade, as the resolution of the micrographs I have 

acquired has throughout the years increased tremendously. 

 

 

 This was the very first NeuroCard I made. It is an immunofluorescence visualization of 
parvalbumin neurons (see study I), not in the hypothalamus, but in cortex. The underlying 

micrograph originates from the very first immunostaining I have done on brain sections.  

A 

2010 
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A cortical neuron identified by fluorescence microscopy, is shining up the sky and guiding 
the three wise men to baby Jesus. A neuron is the functional unit of the brain and the very 

basic building block that give rise to our rational and intelligence. This greeting was my way to proclaim that 
rational is the only path to transcendence, and that it is lighten up by science. 

 

 

The tree, the star and the decorations are all different kind of neurons from cortex as well as 
from hypothalamus, which has been visualized and used in real experiments. A fully 

decorated tree and a merry life is only possible, if they are all present, in the right place, and interconnected 
correctly.  

2011 

2012 
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The arborization of axon and dendrites of cortical neurons can be quite complex. To generate 
a full reconstruction of a complex neurons through manual tracing in Neurolucida (see 

section 3.7.2) can take a couple of days of work. Fortunately, the studies in this thesis focused on TIDA 
neurons, which are far less complex. Nonetheless, I have traced quite a few cortical neurons as well. The 
Christmas decoration on this greeting is a reflection of the amount of hard work that lays behind a merry 
celebration.  

 

 

Inspired by the Nobel prizes in Chemistry as well as Physiology or Medicine in 2014, the 
motives on the card originate from cortical neurons, dendrites and dendritic spines and are 

acquired with super resolution STED microscopy. The dendritic spines are pseudo colored.  

 

2013 

2014 



 

70 

 

Inspired by the vast number of in situ hybridization experiments I have done for the past 
years. The stars are actually experimental data, i.e. visualization of fluorescent mRNA of 

dopamine receptor D2 in the hypothalamus (see study V), magnified about 1000x. To better understand the 
role of dopamine in hypothalamus may aid us identify new therapeutic targets as well as understand the 
mechanism (and side effects) of existing therapeutic agents. 

 

 

Inspired by recent development in microscopy resolution and real research data, dendritic 
spines are lighting up the path to baby Jesus, sheltered under a neuron tree. The stars are 

also background staining from the brain, magnified more than a thousand times. Seemingly countless and 
insignificant in the sky, each dot in fact harbors an entire world. Our ability to investigate the brain in such 
detail enables us to better understand how individual physiological changes through life are in fact linked 
with changes in our brains. 

2016 

2017 
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