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Abstract:

Solving new problems can be made easier if one can build on experiences with other 
problems one has already successfully solved. The ability to exploit earlier problem-solving 
experiences in solving new problems seems to require several cognitive sub-abilities. 
Minimally, one needs to be able to retrieve relevant knowledge of earlier solved problems 
and their solutions (solved-exemplar retrieval), to determine whether or not a retrieved 
problem is sufficient analogous to the problem at hand (analogy derivation), and to infer 
how the solution-method used for the old problem can be used for the new problem 
(candidate inference projection). All three processes have successfully been modeled 
under the framework of Structure-Mapping Theory (SMT). It has long been known that 
analogy derivation under SMT is computationally intractable, meaning that all (exact) 
algorithms implementing this ability run impractically long. In this paper we show that 
the same holds for the other two sub-processes. In sharp contrast to this theoretical 
intractability, empirical research reveals that in certain situations humans can quickly 
retrieve appropriate problem-exemplars and quickly make goal-relevant candidate infer-
ence projections. How can this speed of processing be explained within the framework of 
SMT? We consider several possible explanations, both existing and new, and assess their 
explanatory validity by performing computational-level complexity analyses. Our analyses 
not only reveal that explanations that have been conjectured to date are incomplete but 
also identify a set of complete explanations that can guide future empirical research on 
analogical problem solving.
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1. Introduction

One technique for solving problems, especially if these problems are in a new and poorly 
understood domain, is to use analogies with instances of previously-solved problems 
to suggest solutions for new problems.1  Sometimes, deriving the solution or solution-
method from such an analogy involves the transfer of relatively little information from the 
solved-exemplar. This is the case in the classic problem of destroying a tumor with one or 
more beams of radiation (Duncker, 1945; Gick & Holyoak, 1980), where the required cu-
mulative beam strength to destroy the tumor will also destroy intervening healthy tissue. 
When reminded of the previously solved problem of attacking a fortress reachable only 
by bridges that will collapse under the weight of the full required army (but which can be 
taken by several smaller armies simultaneously converging on the fortress via separate 
bridges), the analogy between the problem-instances (fortress → tumor, size of army → 
radiation dosage, bridge → intervening healthy tissue) fairly directly suggests the solution 
(converging smaller armies → converging lower-dosage beams). Other cases may require 
more transfer of information from the solved-exemplar. An example of this is solving a 
new mathematics or physics problem using similar solved problems (Falkenhainer, 1989; 
Novick & Holyoak, 1991); to solve the new problem, we not only need the initial analogy 
between similar entities and quantities in both the new and solved problem-instances, 
but we also need to transfer a possibly multistep chain of mathematical transformations 
that involve intermediate quantities not present in the original problem-instances and 
may require adaptation of some of these transformations to fit the new problem, e.g., 
projection to the x- rather than the y-axis.

This suggests a general model of analogical problem solving (Gentner, 1989, pp. 
215-217) shown in Figure 1. In this model, each solved problem consists of a problem-
instance P, a solution S, and a solution-method M by which the solution is derived from 
the problem-instance. The processes invoked by this model are:

• 	 Solved-exemplar Retrieval: Given a library L of solved-exemplars and a new 
problem-instance P, retrieve a solved-exemplar X = (XP, XM, XS) from L based on 
analogical similarity between the exemplar problem-instance XP and P

• 	 Analogy Derivation: Given X and P, derive an analogy A between XP and P)

• 	 Solution Adaptation: Given X, P, and A, use A to transfer and if necessary adapt 

1  There are several approaches to using such analogies to solve new problems. For example, analogies 
with previously solved problems can be used to guide the transfer of useful search-control strategies 
to new problems (van Lehn & Jones, 1991) or to build appropriate abstract mathematical models of a 
new domain for solving problems in that domain (Klenk & Forbus, 2009). In this paper, we will focus 
on the classical use of such analogies in problem-solving research, namely, in constructing either so-
lutions or solution-methods for new problems from corresponding solutions or solution-methods in 
previously solved problems.
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either XM or XS from X to create M or S for P.2 Regardless of whether XM or XS is 
transferred, the initial part of this process involves extracting candidate infer-
ences from those portions of XM and XS that are connected to the portion of XP 
mapped to P by A ((Candidate Inference)Projection Derivation).

2  These two styles of analogical problem solving (construct solution or solution-method) are also 
known as problem solving by transformational analogy and derivational analogy, respectively (Car-
bonell, 1986; Schelhorn, Griego, & Schmid, 2006). As our analyses will apply to both, we do not focus 
on this distinction in this paper.

Figure 1. A General Model of Analogical Problem Solving (based on Figure 7.6 in Gentner, 
1989). In this model, a new problem-instance P is screened against a library L of solved-
exemplars to find the exemplar X whose problem-instance XP is most analogically similar to 
P (Box 1: Exemplar Retrieval). Once an appropriate analogy A between P and XP is derived 
(Box 2: Analogy Derivation), this analogy is used to construct either a solution-method 
M or a solution S for P from the solution-method XM or solution XS for X (Box 3: Solution 
Adaptation).
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It is possible that inadequate results may be obtained at any phase above, i.e., an irrel-
evant retrieved solved-exemplar, an insufficiently rich analogy, or a projection whose 
candidate inferences are false relative to the new problem-instance; hence, this model 
may be iterative, in that failure at one phase will cause backtracking and evaluation of 
other alternatives relative to an earlier phase.

Within the framework of Gentner’s SMT of analogy derivation (Gentner, 1983), this 
model was first implemented in Falkenhainer’s PHINEAS system (Falkenhainer, 1989). 
The individual processes in the model have subsequently been implemented using the 
software systems MAC/FAC (Forbus, Gentner, & Law, 1994) (solved-exemplar retrieval) and 
SME (Falkenhainer, Forbus, & Gentner, 1989; Forbus & Oblinger, 1990) (analogy/projection 
derivation). MAC/FAC and SME are both fast, and results produced by these systems are 
consistent with those produced by human subjects in various experiments e.g., (Forbus, 
Gentner, & Law, 1994; Gentner et al., 2009; Gentner, Rattermann, & Forbus, 1993; Gentner 
et al., 1995). Yet, there are aspects of human performance in analogical problem solving 
that are not straightforwardly explained by these systems. In this paper we will focus on 
the following two target explanada:

1. 	The ability of experts to retrieve exemplars with good relationally-based (as 
opposed to merely surface-similarity-based) matches with new problem-
instances (Blanchette & Dunbar, 2001; Novick, 1988) as opposed to the often 
abysmal retrieval abilities of people in general (Gick & Holyoak, 1983; Ross, 
1989a; cf. Dunbar, 2001).

2. 	The general ability of people to quickly select those candidate inferences from 
the solved-exemplar’s solution-method and solution that are most relevant to 
solving a new problem-instance (Spellman & Holyoak, 1996) (see also Gentner, 
1989, pp. 215–217).

The challenge in explaining these abilities lies in the fact that the general computations 
underlying them seem to be computationally intractable when formalized under SMT-
based models of analogical problem solving (we will substantiate this informal claim with 
formal proofs in our paper). How then can we explain that (expert) problem solvers are not 
paralyzed by such apparent intractability? Some informal conjectures have been made 
about what makes sub-processes in analogical processing tractable. For example, some 
researchers have conjectured that the speed of expert-level solved-exemplar retrieval is 
due to the facilitating effect of experts generally having small (abstracted) representations 
of solved-exemplars. Similarly, retrieving the most relevant candidate inference projec-
tion is thought to be fast because the derivation of arbitrary projections from analogies 
is known to be fast.

Although simulation research seems to support such conjectures (Gentner et al., 
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2009), it does not yet constitute a proof that the postulated property (in this case, the 
relatively small size of representations, or the speed of deriving new inferences from 
analogies) is sufficient for making the computations tractable. In other words, as long 
as such explanations retain their conjecture status, they may well be incorrect at worst, 
and incomplete at best. Validation of said conjectures seems all the more important 
given that SMT-based models of analogical problem solving are increasingly finding 
application in real-world domains, such as education (Gentner et al., 2009; Ross, 1989b) 
and the design of AI-systems (Forbus & Hinrichs, 2006), and conjectures of tractability of 
sub-processes in these models are being used to make decisions and recommendations 
in those domains.

In this paper, we will show how computational complexity analysis—in particular, 
parameterized complexity analysis (Downey & Fellows, 1999)—can be used to formally 
validate conjectured explanations of tractability. We will first put forth computational-
level characterizations of both relationally-based solved-exemplar retrieval and maxi-
mally-relevant projection derivation that can be abstracted from existing SMT-inspired 
algorithmic-level theories of these processes. We next use concepts and proof techniques 
from parameterized complexity theory to analyze these computational-level theories to 
determine what combinations of constraints can (and, perhaps more important, cannot) 
make these theories tractable. Our analyses not only reveal that existing conjectures of 
what makes sub-processes of analogical problem solving tractable under SMT-based 
models are incomplete, but also yield new explanations that can be formally proven to be 
complete. When combined with the results of the complexity analysis of analogy deriva-
tion under SMT in van Rooij et al. (2008), the results in this paper give a comprehensive 
overview of which constraints do and do not make analogical problem solving under SMT 
easy enough to be tractable.

1.1. Overview

The remainder of this paper is organized as follows. Section 2 gives an overview of ana-
logical problem solving under SMT and our framework for using complexity analyses to 
investigate conjectures about what makes sub-processes of analogical problem solving 
under SMT tractable. Sections 3 and 4 present computational-level SMT models of the 
relationally-based solved-exemplar retrieval and maximally-relevant projection deriva-
tion sub-processes and our computational complexity results for each. In Section 5, we 
present a more general discussion in which we, among other things, compare our results 
with results previously obtained for a computational-level SMT model of the sub-process 
of analogy derivation. In Section 6, we conclude with take-home messages for theories of 
problem solving in particular, and theories of (domain-general) cognition in general. All 
mathematical definitions and proofs of results are given in the Appendix; this is to allow 
focus in the paper body on model formulations and the discussion of derived results.
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2. Background

2.1. Analogical Processes under SMT

Since its proposal in 1983, SMT has evolved and broadened in scope. This has been moti-
vated by both the results of psychological experiments and the act of implementing SMT 
in and then running simulations using various software systems, e.g., SME (Falkenhainer, 
Forbus, & Gentner, 1989; Forbus & Oblinger, 1990), MAC/FAC (Forbus, Gentner & Law, 1994), 
and SEQL (Kuehne et al., 2000). That being said, there is a common “core” version of SMT 
dating from roughly 1989 as described in Falkenhainer, Forbus, and Gentner (1989). It is 
this version of SMT that we will use to formulate our computational-level models, and 
which will be described in this section.

Analogies are defined over conceptual structures. Conceptual structures are repre-
sented in SMT by predicate-structures composed of entities (e.g., sun, planet) and predi-
cates relating those entities as well as other predicates (e.g., Attracts (sun, planet), Cause 
(Gravity (Mass (sun)), Attracts (sun, planet)). If the order of a predicate’s arguments matter, 
e.g., Greater(5, 3), the predicate is ordered; otherwise, it is unordered, e.g., Equal(x, y). A 
predicate-structure is ordered if all of its internal vertices are ordered; otherwise, if it con-
tains at least one unordered predicate, it is unordered. Most predicate-structures contain 
both kinds of predicates; hence, in the remainder of this paper, unless otherwise stated, 
all predicate-structures will be unordered.

Predicate-structures are naturally represented as vertex-labeled directed acyclic-
graphs in which entities are leaves, predicates are internal vertices, and predicates are 
linked to their arguments by arcs (which are themselves labeled, if the predicates are 
ordered) (Falkenhainer, Forbus, & Gentner, 1989, p. 12). Examples of two such graph-
representations of predicate-structures corresponding to simplified models of the solar 
system and the Rutherford atom are shown in part (a) of Figure 2.

An analogy “T is (like) a B,” where B and T are predicate-structures referred to as the 
base and target, respectively, is a mapping from a portion of B to a portion of T that satis-
fies the following three conditions (Gentner & Markman, 1997, p. 47):

1. 	The mapping is structurally consistent, i.e., it satisfies parallel connectivity (match-
ing relations must have matching arguments) and one-to-one correspondence 
(any element in one predicate-structure matches at most element in the other 
predicate-structure).

2. 	Relational focus: The mapping must involve common predicates but need not 
involve common objects, i.e., matched predicates must have the same name, 
argument, number, and order but matched objects need not have the same name.

3. 	Systematicity: The mapping tends to match interconnected, deeply nested 
predicate-substructures.
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Figure 2. Analogical Mapping in Structure Mapping Theory. (a) Two graph representations 
of predicate-structures encoding simplified descriptions of the solar system (left) and 
the Rutherford model of the atom (right). (b) An analogy between the structures in (a), 
where dotted arrows indicate the mappings between corresponding pairs of predicates 
and objects. (c) A projection based on the analogy in (b) of candidate inferences from the 
richer Rutherford atom predicate-structure to the less rich solar system predicate-structure. 
Note that in this sub-figure, the solid polygons enclose the common analogical structure 
and the dashed polygons enclose the projection.
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The most systematic analogy between a given base and target is also known as an opti-
mal analogy. Such an analogy between two predicate-structures is shown in part (b) of 
Figure 2. Note that SMT does not require single-argument predicates that return numerical 
or enumerated values for the argument-object, e.g., Temperature (sun), Charge (electron), to 
match by name, e.g., Mass (sun) can match Charge (nucleus) (Falkenhainer, Forbus, & Gentner, 
1989).

It is often the case (as in analogy-based problem solving [Falkenhainer, 1989] and 
metaphor interpretation [Bowdle & Gentner, 2005]) that one of the given conceptual 
structures is richer than the other; call this richer structure the base and the other the 
target. It has been shown that the transfer of structure from base to target is guided by an 
analogy (Clement & Gentner, 1991; Markman, 1997). In particular, the transferred structure 
consists of propositions called candidate inferences that are connected to predicates in 
the common analogical structure in the base but are not present in the target, and the 
transfer is called a projection (Falkenhainer, Forbus, & Gentner, 1989; Gentner & Markman, 
1997). Such a projection is shown in part (c) of Figure 2.

Candidate inferences are so-called because they must be subjected to verification 
with respect to the target before they can be accepted as true and proper inferences. Each 
candidate inference consists of (i) a root predicate that is directly or indirectly connected 
to some predicate in the common analogical structure in the base and (ii) the collection of 
predicates and objects that are descendents of this root predicate in the base. Following 
Forbus et al. (1997), those descendents that are part of the common analogical structure 
are the inference’s support and those that are outside are the inference’s extrapolation. 
These concepts are all illustrated in Figure 3.

Various projections are shown in Figures 2, 3, and 4, where the common analogical 
structures are enclosed in solid polygons and the projections are enclosed in dashed 
polygons. In order to assure that each candidate inference in a projection is new and could 
not have been part of the analogy used to create it, we will assume that all projections 
are based on maximal analogies, which are analogies to which no additional pairs of 
predicates or objects in the base and target can be added. Note that all optimal analogies 
are maximal, but a maximal analogy is not necessarily optimal.

Derivation of analogies as described above has been implemented in the Structure-
Mapping Engine (SME) (Falkenhainer, Forbus, & Gentner, 1989). As the original exhaustive-
search version of SME could (depending on the given base and target) run in exponential 
time, SME is typically run in a much faster heuristic mode (Forbus & Oblinger, 1990) that is 
not guaranteed to find optimal analogies. As it can handle much larger and hence more 
realistic predicate-structures, heuristic-mode SME is a core component of many cognitive 
theories of analogy-based processes and their associated software implementations, in-
cluding (as we will see in Section 3) the MAC/FAC system underlying the implementation 
of solved-exemplar retrieval.
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Figure 3. Concepts in Candidate Inference Projection. This figure shows a base predicate-
structure with a common analogical structure (enclosed in a solid polygon) relative to 
some target predicate-structure (not shown) and the maximum-size projection for that 
common structure (enclosed in a dashed polygon) and the characteristics of each candi-
date inference in this projection. Note that {B, C, I } and {A, B, C, I, L} are not valid candidate 
inferences, as predicates I and L only connect to the common analogical structure through 
an object (C).
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2.2. A Methodology for Validating Explanations of Tractability

Recall that our aim in this paper is to assess the validity of conjectured explanations of the 
tractability of certain sub-processes of analogical problem solving. As we are interested in 
the (in)tractability inherent in a sub-process theory itself, and not in particular (potentially 
inefficient) algorithmic implementations of that theory, we will focus our analysis on Marr’s 
computational level (Marr, 1981). That is, our analyses will pertain to the input-output 
mappings postulated to explain the target sub-processes.

To make clear what type of validation we are after, we first explain what we understand 
as a failure to explain the speed of some cognitive process. A computational-level theory 
ψ : I → O is said to fail to explain the speed (minimally, the tractability) of a given (or any) 
cognitive (sub)process if there exists no efficient algorithm for tractably computing the 
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function ψ. For example, algorithms whose running time is super-polynomial in the size 
of the input representations are generally inefficient for all but small input sizes. Such 
algorithms require an amount of time that cannot be upperbounded by any polynomial 
function nc (where n is a measure of the input size and c is some constant). Examples are 
exponential-time algorithms, which require time that can (at best) be upperbounded 
by some exponential function cn. To see that, for instance, exponential-time algorithms 
are impractical for even medium-sized inputs, consider that 2n is already more than the 
number of seconds in a year for n = 25.

As we will show, SMT-based computational-level theories of relationally-based solved-
exemplar retrieval and maximally-relevant projection derivation have the property that 
all algorithms for computing them are super-polynomial (i.e., exponential or worse) in 
the input size (for proofs refer to Sections 3 and 4). Note that in analogical problem solv-
ing, input size cannot generally be assumed to be small, as our knowledge of different 
problems can be quite rich and encoding such knowledge in a predicate-structure may 
lead to quite large representations. This means that these SMT-based computational-level 
theories of solved-exemplar retrieval and maximally-relevant projection derivation cannot 
by themselves explain the tractability of these processes; in fact, the very formulation of 
these theories seems to contradict the tractability of the modeled processes.

The above does not yet mean that the tractability of the modeled processes cannot 
be explained by enriching the theories by some theoretical constraints. To identify such 
constraints, we will use techniques to prove fixed-parameter tractability of a function ψ 
for one or more parameters of inputs in I (see also Downey and Fellows, 1999).

Definition 1 Fixed-parameter (fp-) tractability. Let ψ : I → 0 be an input-output function 
with input parameters k1, k2 , . . . , km. Then ψ is said to be fixed-parameter tractable for 
parameter-set K = {k1, k2, . . . , km} if there exists at least one algorithm that computes ψ for 
any input of size n in time f (k1, k2 , . . . , km)nc, where f (.) is an arbitrary computable function 
and c is a constant. If no such algorithm exists then ψ is said to be fixed-parameter intractable 
for parameter-set K .

In other words, a function is fp-tractable for a parameter-set K if all super-polynomial-time 
complexity inherent in computing the function can be confined to the parameters in K . 
It then follows from the definition of fp-tractability that if an intractable function ψ is fp-
tractable for parameter-set K, then ψ can be efficiently computed even for large inputs, 
provided only that all the parameters in K are small. This means that if ψ is postulated as 
an explanation of the functional form of the input-output mapping computed by a given 
process, then the speed of that process in certain situations can be explained by postulat-
ing that the parameters in K are small exactly in those situations.

Note that in this way of conceptualizing “explanation,” the functional form and the 



The Journal of Problem Solving •

40	 Todd Wareham, Patricia Evans, and Iris van Rooij	

speed of a cognitive process are treated as two distinct and separable target explanada. 
Alternatively, one could claim that it is really the enriched theory ψ' : I' → 0, where I' ⊂ I 
denotes the input domain constrained to inputs have small parameter values for all pa-
rameters in K, that is explaining both the functional form and the speed of the cognitive 
process under study. The latter perspective would be more consistent with the model-
revision approach to tractable explanation advocated by van Rooij (2008) and van Rooij 
and Wareham (2008). Although we believe the latter is conceptually cleaner, in the context 
of this paper we will take the former conceptualization of explanation because we are 
interested particularly in explanations of speed/tractability relative to a given theory of 
the functional form of a cognitive process.

Lastly, we note that the above allows us to distinguish between complete and in-
complete explanations of the tractability of a function ψ.

Observation 1 There exist functions ψ, and parameter-sets K' , K, such that K' ⊂ K and ψ is 
fp-tractable for K but not for K'.

The observation implies that there are input constraints (e.g., all parameters in K' are small) 
that by themselves cannot explain the tractability of a cognitive process modeled by a 
function ψ, yet are part of such an explanation. In such cases we would say the assumption 
that all parameters K' are small for the relevant situation is an incomplete explanation of 
the tractability of the process, whereas replacing K' by K yields a complete explanation.

Before closing this section, we wish to clarify one point. Although our formal analyses 
will work under the assumption that the analyzed models predict the outputs of human 
computations exactly, we conjecture they also apply under the assumption that the ana-
lyzed models predict the outputs of human computations approximately, provided that 
by “approximately” one means that the approximate prediction does not differ from the 
exact prediction by more than some small constant factor. This conjecture is based on 
the observation that many NP-hard functions cannot be efficiently approximated (Arora, 
1998; Ausiello et al., 1999), and almost all are inapproximable if only a constant sized error 
is allowed (Garey & Johnson, 1979; van Rooij, Wright, & Wareham, to appear). We realize 
that this conjecture may be counterintuitive to some cognitive scientists, as it is frequently 
suggested in the cognitive science literature that computationally intractable functions 
can (often or always) be approximately computed efficiently (e.g., Love, 2000; Chater et al., 
2003; Chater, Tenenbaum, & Yuille, 2006). Popular though this belief is, it does not accord 
with the state of the art in computational complexity theory (cf. Kwisthout, Wareham, & 
van Rooij, 2010). For this reason, in our analyses we will not treat approximate computa-
tions explicitly. For ideas on how approximation can be explicitly taken into account in 
fixed-parameter tractability analyses, we refer the reader to Hamilton et al. (2007) and 
Marx (2008).
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3. Relationally-based Solved-Exemplar Retrieval 

When engaging in analogical problem solving, retrieving appropriate exemplars of 
earlier solved problems can be a challenging task. Experimental evidence suggests that 
though humans prefer systematic relation-rich matches between new problem-instances 
and solved-exemplars as being useful for problem solving, in practice, people typically 
retrieve exemplars that are based on surface similarities between the entities involved 
(literal similarity), even though these matches are often less useful or even misleading 
(Gentner, Rattermann, & Forbus, 1993; Gick & Holyoak, 1983; Ross, 1989a; cf. Dunbar, 2001). 
That being said, relationally-based exemplar retrievals do occur, and are much more fre-
quently done by experts (Blanchette & Dunbar, 2001; Novick, 1988) or people in general 
who are able to compare problem-instances prior to retrieval (Gentner et al., 2009). These 
improvements in performance have been attributed to common (re)coding of exemplars 
and probes (Medin & Ross, 1989) and the use of small schema abstractions as both stored 
exemplars and probes (Gentner et al., 2009).

Within the framework of SMT, solved-exemplar retrieval is implemented in the MAC/
FAC system (Forbus, Gentner, & Law, 1994). MAC/FAC was explicitly designed to duplicate 
the observed human behaviors described above. It uses a two-phase search process, in 
which a computationally cheap matching process based on feature-vector similarity 
screens the whole library of exemplars against a specified probe (MAC: “Many Are Called”), 
and a small subset of those exemplars with highest feature-vector similarity to the probe 
is subsequently assessed in parallel against the probe by a computationally expensive 
analogy-based matcher (FAC: “Few Are Chosen”). As all exemplars with good analogies 
with the probe may not be appropriate for solving the problem-instance encoded in the 
probe, the FAC phase returns up to a small number (typically three) of these exemplars. 
In the interests of computational psychological plausibility, MAC/FAC uses the fast greedy 
heuristic version of SME to implement FAC.

Comparisons of MAC/FAC simulations with the results of human experiments have 
shown that MAC/FAC broadly mimics the way human beings typically retrieve exemplars 
(Forbus, Gentner, & Law, 1994; Gentner et al., 1993); moreover, MAC/FAC simulations when 
using schema abstractions as probes and exemplars show similar improvements in retrieval 
performance to those of human beings (Gentner et al., 2009). However, on the basis of 
simulations alone (which do not operate on all possible inputs), it is impossible to show 
for certain that a system like MAC/FAC will always retrieve relationally-based exemplars 
in a psychologically plausible amount of time relative to a particular type of input like 
schema abstractions. Definitive evaluations of such explanations require the analysis of 
a computational-level theory of relationally-based solved-exemplar retrieval, as will be 
done in the remainder of this section.
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3.1. Formulating the Computational-level Theory

The first decision that must be made when formulating a theory of relationally-based 
solved-exemplar retrieval is to decide just how relationally-based these retrieved exemplars 
should be. This has not been explicitly discussed in the literature; however, as analogy 
derivation under SMT prefers the most systematic analogies, solved-exemplar retrieval can 
similarly be construed to prefer those exemplars that have the most systematic analogies 
with the given new problem-instance. Hence, for simplicity, we will consider the retrieval of 
those solved-exemplars from a library L whose optimal analogies with the new problem-
instance probe P have the largest possible systematicity over all optimal analogies of P 
with the members of L.

As there may be several such exemplars for a given L and P, not all of which may be 
appropriate for solving the new problem-instance, we would like to see as many of them as 
possible; however, in the interests of efficiency (and following the operation of MAC/FAC), 
we may want to bound the number returned at any one time. Both of these requirements 
can be accommodated by retrieving an arbitrary subset of these optimal-analogy solved-
exemplars that is the largest possible but also of size at most some specified bound b. For 
example, if b = 3 and there are only two exemplars in L that have the best possible optimal 
analogies over L with P, then both of those exemplars are returned; however, if there are 
five such exemplars, an arbitrary three of those five will be returned.

The above gives the following computational-level theory:

Exemplar Retrieval (ER)
Input: A library L of predicate-structures, a probe predicate-structure P, and an 
integer b.
Output: A largest possible subset L’ ⊆ L of size at most b such that each member 
of L’ has an optimal analogy with P of the largest possible systematicity over all 
optimal analogies between P and members of L.

The formal version of this input-output mapping, including details of all entities therein, 
is given in Appendix Section A.4. Note that this mapping returns those exemplars in L that 
have optimal analogies with P without specifying what these analogies are—hence, it is 
ideal for investigating the process of solved-exemplar retrieval in isolation (as opposed 
to the conflation of retrieval and analogy derivation in MAC/FAC).

3.2. Results and Discussion

We start by stating our main intractability result for the computational-level theory Exemplar 
Retrieval as defined in Section 3.1:
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Table 1. Overview of parameters considered in our fixed-parameter tractability analyses 
of Exemplar Retrieval.

Name 	 Definition
|B|	 Size of largest solved-exemplar in L
|T |	 Size of P
p	 Maximum number of predicates in L and P
o	 Maximum number of objects in L and P
h 	 Maximum order of predicates in L and P
a 	 Maximum number of arguments per predicate in L and P
f	 Maximum frequency of a given predicate in L and P
t	 Maximum number of predicate-types in L and P
|L|	 Number of solved-exemplars in library L
b	 Maximum number of returned solved-exemplars

ER1. Exemplar Retrieval is intractable, in the sense that all algorithms computing this 
input-output function require super-polynomial time.3 

This result establishes that there are no polynomial-time algorithms (including MAC/FAC) 
that can retrieve optimal relationally-based exemplars over all inputs. It also means that 
some strong constraints must be assumed to apply to the input domain of Exemplar Retrieval 
for the theory to be able to explain speedy retrieval of relationally-based solved-exemplars 
by human experts. To investigate which constraints suffice for rendering Exemplar Retrieval 
tractable we performed fp-tractability analyses relative to the parameters in Table 1. This 
table includes parameters relevant for testing the validity of existing explanation of trac-
tability of relationally-based solved-exemplar retrieval under SMT (modeled by Exemplar 
Retrieval) as well as some new explanations that we conjecture ourselves.

Our analyses return the following set of fp-intractability results:

ER2. Exemplar Retrieval is fp-intractable for parameter-set {|B|, h, a, t, |L|, b}.

ER3. Exemplar Retrieval is fp-intractable for parameter-set {|T |, h, a, t, |L|, b}.

ER4. Exemplar Retrieval is fp-intractable for parameter-set {h, a, f, b}.

These results are sobering—they show that constraining many of the considered param-
eters to take relatively small values, whether individually or combined, does not help to 

3  The claim follows from our NP-hardness proof for Exemplar Retrieval (Appendix Section A.4, Lemmas 
4 and 5), plus the widely believed mathematical conjecture that P ≠ NP. In this paper we, like SMT 
theorists (see, e.g., Markman and Gentner, 2000, p. 507), will not question the truth of this conjecture 
(see Fortnow, 2009; Garey & Johnson, 1979 for reasons why not to).
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render relationally-based exemplar retrieval under SMT tractable (this holds true even 
when many of these parameters are restricted to very small constant values; see Appen-
dix Section A.4). Of particular interest are Results ER2 and ER3, which suggest that the 
explanation by Gentner et al. (2009) of fast relationally-based exemplar retrieval purely 
in terms of either exemplars or probes as small schema abstractions (|B|, |T |) is untenable, 
even when the size of the library L and the maximum number of returned exemplars are 
trivial (i.e., in our proofs, |L| = b = 2; see Appendix Section A.4).

This is not to say that no viable explanations of tractability based on schema abstrac-
tions exist; rather, it says that such explanations are as of yet incomplete. Tractability may 
be achieved when additional constraints are introduced, as confirmed by the following 
set of fp-tractability results:

ER5. Exemplar Retrieval is fp-tractable for parameter-set {o}.

ER6. Exemplar Retrieval is fp-tractable for parameter-set {p}.

ER7. Exemplar Retrieval is fp-tractable for parameter-set {f, t}.

ER8. Exemplar Retrieval is fp-tractable for the parameter-sets {|B|, f } and {|T |, f }.

Result ER8 is of particular interest, as it resurrects the schema-abstraction-based explana-
tion, albeit with an additional and unanticipated restriction (viz., that additionally f is small 
for such representations). It seems reasonable to conjecture that f can be small even for 
large predicate-structures and this can be verified both by experiment and by examining 
the values of f in predicate-structures used in SMT-based simulation studies. If we assume 
that the new problem-instances are also small (which may be the case, especially if the 
new problem-instance is incompletely or partially understood), Results ER5 and ER6 al-
low additional abstraction-based explanations (in that both |B| and |T |, and not just |B| or 
|T |, are small when o and p are small); again, such an assumption would require empirical 
verification.

4. Maximally-relevant projection derivation

When an analogy has been drawn between two predicate-structures, there are typically 
so many candidate inferences that may be projected between these structures that it is 
psychologically implausible to assume that all of these inferences are projected. Hence, 
it is typically assumed that projected candidate inferences are selected relative to some 
criterion, e.g., goal relevance (Spellman & Holyoak, 1996), adaptability (Keane, 1996), and 
support and/or extrapolation (Forbus et al., 1997; see also Gentner 2002, p. 107).

As we are interested here in analogical problem solving, we will focus on the goal 
relevance criterion, i.e., derive the projection from B to T that has the most candidate 
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inferences relative to set S, where S is a subset of the predicates in B that are relevant to 
solving the problem-instance encoded in B. We will call any such projection a maximally-
relevant projection. For example, when projecting the solution and solution-method from 
a solved-exemplar to a new instance of a mathematics or physics problem, projections 
that include individual predicates encoding key parts of the solution or solution-method, 
e.g., Yields, Proves, Implies, Causes, would be useful, and those projections that incorporate 
as many such predicates as possible would be most useful (and hence most relevant) to 
the goal of solving the new problem-instance.

Within the framework of SMT, projection derivation is implemented in the SME sys-
tem (Falkenhainer, Forbus, & Gentner, 1989). SME uses a polynomial-time process that 
constructs the maximum-size projection from a given analogy by “growing” that projec-
tion upward from the common analogical structure in the base (Falkenhainer, Forbus, 
& Gentner, 1989). However, neither this algorithm nor the only published algorithm for 
creating relevant projections relative to a specified S (Forbus & Oblinger, 1990) (which also 
runs in polynomial time) has been proven to produce maximally-relevant projections rela-
tive to any set of inputs, let alone those occurring in human analogical problem solving. 
Hence, definitive evaluations of claims that algorithms like those in Falkenhainer, Forbus, 
and Gentner (1989) or Forbus and Oblinger (1990) can explain fast maximally-relevant 
projection derivation require the analysis of a computational-level theory of maximally-
relevant projection derivation, as will be done in the remainder of this section.

4.1. Formulating the Computational-level Theory

At first glance, it would seem that any computational-level theory of maximally-relevant 
projection derivation must be based on the accepted SMT theory of projection deriva-
tion described in Section 2.1. Recall that this theory assumes that a projection is both 
created after the derivation of and based on an optimal analogy between the given base 
B and target T . Both of these assumptions are (and hence the theory is) consistent with 
experimental observations (Clement & Gentner, 1991; Markman, 1997; see also Gentner 
& Colhoun, 2010, pp. 37-38). However, in the context of maximally-relevant projection 
derivation, this theory is inadequate: not only has it been known for more than 20 years 
that all optimal analogies do not necessarily yield maximally-relevant projections (Falken-
hainer, 1989), but, as shown in Figure 4, maximally-relevant projections need not even be 
associated with optimal analogies.

These problems can be resolved in an elegant and simple manner by making the 
following assumptions:

1. 	Given that the maximally-relevant projection in our example in Figure 4 is based 
on a maximal analogy, assume that maximally-relevant projections are based on 
maximal rather than optimal analogies.
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Figure 4. Optimal Analogies Need Not Give Maximally-Relevant Projections. (a) A maximal 
analogy between given base and target predicate-structures. (b) An optimal analogy be-
tween the base and target structures. Relevant predicates in set S are colored gray. Each 
analogy has associated base and target common structures BA and TA and the maximally-
relevant projection relative that analogy P (which may, as in part b, be comprised of two 
disjoint sub-projections). Note that in this figure, the solid polygons enclose the common 
analogical structures and the dashed polygons enclose the projections.

Base Target

BA TA

BA TA

Base Target

a)
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P

P
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2. 	Given that all maximal analogies do not yield maximally-relevant projections 
(as the optimal analogy in part b of Figure 4 is itself maximal), assume that 
maximally-relevant projections are derived at the same time as (rather than 
after) their underlying (maximal) analogies.

Though these assumptions may initially seem to contradict SMT and experimental observa-
tions, they do not—indeed, they are actually consistent with both. That optimal analogies 
are preferable in some contexts does not rule out that maximal analogies are preferable 
in the context of analogical problem solving (and more specifically, the derivation of 
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maximally-relevant projections), and the only experiments suggesting that projections 
are derived after analogies (Clement & Gentner, 1991; Markman, 1997; Gentner & Colhoun, 
2010) were not carried out in the context of analogical problem solving, where projec-
tions and analogies may indeed be derived together. Given the above, we will thus base 
our computational-level theory of maximally-relevant projection derivation on these 
assumptions.

Further constraints on the forms of the projections themselves are suggested by the 
following two modes for projection derivation:

1. 	Derive the projection with the largest number of predicates from the relevant-
predicate set S.

2. 	Derive a projection with the largest number of relevant predicates from S that 
are in a “shell” enclosing the common analogical structure in the base, where 
this shell is specified by a maximum distance d of a predicate from that common 
structure, i.e., the maximum number d of edges on the shortest path from a 
predicate to that common analogical structure (see Figure 3).

The former is more straightforward. However, the latter allows an iterative strategy in 
which predicates that are closer to the common analogical structure in the base are 
derived before predicates that are farther away. In cases where there is reason to believe 
that some candidate inferences in the maximally-relevant projection may be false when 
projected to the new problem-instance, this iterative approach may save both computa-
tion and verification time.

The above gives the following computational-level theory:

Projection Derivation

Input: Two predicate-structures B and T, a subset S of the predicates in B, and 
integers k and d.
Output: A maximal analogy A between B and T and a projection P relative to A and 
B such that A and P include at least k predicates from S and each such predicate 
has distance at most d from the common structure of A in B.

The formal version of this input-output mapping, including details of all entities therein, 
is given in Appendix Section A.5. Note that for appropriate values of k, d, and S, the re-
quested analogy/projection pair may not exist for the given B and T (as signaled by the 
special output ⊥). In these situations, it is assumed that the expectations for a projection 
relative to B, T, and S will be modified in some fashion (by changing the values of k and/or 
d and/or the members of S) until a satisfactory projection is produced.
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Table 2. Overview of parameters considered in our fixed-parameter tractability analyses 
of Projection Derivation.

Name 	 Definition
|B|	 Size of B
|T |	 Size of T
p	 Maximum number of predicates in B and T
o	 Maximum number of objects in B and T
h 	 Maximum order of predicates in B and T
a 	 Maximum number of arguments per predicate in B and T
f	 Maximum frequency of a given predicate in B and T
t	 Maximum number of predicate-types in B and T
|S|	 Size of predicate-set S
k 	 Minimum number of members of S in analogy and projection
d 	 Maximum distance of predicates/objects from base analogy in projection

4.2. Complexity Results and Discussion

We start by stating our main intractability result for the computational-level theory pro-
jection derivation as defined in Section 4.1:

PD1. Projection Derivation is intractable, in the sense that all algorithms computing 
this input-output function require super-polynomial time.4  

Note that this intractability is not due to the complexity of deriving the analogy itself, as 
maximal analogies can be derived in polynomial time.5 Result PD1 establishes that there 
are no polynomial-time algorithms (including the heuristic described in Forbus & Oblinger, 
1990) that can compute maximally-relevant projections over all inputs. It also means 
that some strong constraints must be assumed to apply to the input domain of Projection 
Derivation for the theory to be able to explain speedy computation of maximally-relevant 
projections by human beings. To investigate which constraints suffice for rendering Projec-
tion Derivation tractable, we performed fp-tractability analyses relative to the parameters 
in Table 2. This table includes parameters relevant for testing the validity of explanations 
of tractability of maximally-relevant projection derivation under SMT (modeled by Projec-
tion Derivation) analogous to those proposed in the literature for Exemplar Retrieval as well 
as some new explanations that we conjecture ourselves.

4  The claim follows from our NP-hardness proof for Projection Derivation (Appendix Section A.5, Lemmas 
10 and 11). Again we assume P ≠ NP; see also Footnote 1.
5  A simple algorithm for this is as follows: select an arbitrary mapping between collections of objects 
in B and T of the same size, and the analogy “grown” upward from this object mapping by the algorithm 
underlying the proof of Claim 5 in van Rooij et al. (2008) will be maximal.
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Our analyses return the following set of fp-intractability results:

PD2. Projection Derivation is fp-intractable for parameter-set {|B|, h, a, t, |S|, k, d}.

PD3. Projection Derivation is fp-intractable for parameter-set {|T |, h, a, t, k, d} .

PD4. Projection Derivation is fp-intractable for parameter-set {h, a, f, d}.

These results show that constraining many of the considered parameters to take relatively 
small values, whether individually or combined, does not help to render maximally-relevant 
projection derivation under SMT tractable (this holds true even when many of these 
parameters are restricted to very small constant values; see Appendix Section A.5). Of 
particular interest is Result PD3, which suggests that explaining fast maximally-relevant 
projection derivation purely in terms of small new problem-instances (|T |) (which would 
be possible if such instances are represented as small schema abstractions (Gentner et 
al., 2009; see also Section 3.2) is untenable.

This is not to say that no viable explanations of tractability exist. Tractability may be 
achieved when different constraints are considered, as confirmed by the following set of 
fp-tractability results:

PD5. Projection derivation is fp-tractable for parameter-set {o, |S|}.

PD6. Projection derivation is fp-tractable for parameter-set {p}.

PD7. Projection derivation is fp-tractable for parameter-set {f, t}.

PD8. Projection derivation is fp-tractable for parameter-sets {|B|, f } and {|T |, f }.

As the bases in instances of maximally-relevant projection derivation will be fully solved-
exemplars that include solution-methods and solutions, it is unlikely that |B| will be small, 
and thus Results PD5, PD6, and PD7 and the first parameter-set in Result PD8 are of limited 
interest. However, if new problem-instances and f are small, as conjectured in Section 3.1, 
the second parameter-set in Result PD8 is promising. Hence, though Projection Derivation 
is not tractable in general, there are constraints that make it so.

A final caveat is in order: the utility of the results and discussion above is predicated 
on the correctness of our theory of maximally-relevant projection derivation (or, more 
specifically, the assumptions underlying this theory). This needs to be assessed by em-
pirical research. However, regardless of whether or not our theory is correct, any correct 
theory must address the problems with the currently accepted SMT-based theory pointed 
out in Section 4.1.

The existence of such problems nicely illustrates the more general lesson that, when 
modeling a cognitive process, it is important to consider both the different contexts in 
which that process is called and other processes with which that process interacts. In 
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retrospect, even though SMT from its inception saw projection derivation as important, 
assumptions about the nature of projection and analogy derivation in general were made 
without considering the roles of either in other processes such as solution adaptation. 
Given that analogy is conjectured to be central to many cognitive processes (Gentner, 2003, 
2010; Gentner & Colhoun, 2010), it is critical to model and analyze these other analogy-
based processes to see how valid such assumptions are in a wider cognitive context.

5. General Discussion

Having previously discussed specific implications of our results for relationally-based 
solved-exemplar retrieval and maximally-relevant projection derivation in Sections 3.2 
and 4.2, in this section, we would like to discuss several more general implications of 
these results. Specifically, we will put our results in a broader context by comparing them 
with complexity results for analogy derivation presented in van Rooij et al. (2008) and 
Appendix Section A.3 and then with the model of analogical problem solving described 
in Section 1.

The analogy derivation phase in the model of analogical problem solving described 
in Section 1 has the following computational-level theory under SMT:

Analogy Derivation

Input: Two predicate-structures B and T.
Output: An analogy A between B and T of optimal systematicity.

Consider the following summary of known complexity results for analogy derivation under 
SMT as rephrased in the notation used in this paper:

AD1. (van Rooij et al., 2008, Corollary 2; Veale and Keane, 1997) Analogy Derivation 
is polynomial-time intractable.

AD2. (van Rooij et al., 2008, Claims 4 and 6) Analogy Derivation is fp-intractable 
for parameter-sets {|B|, h, a, t} and {|T |, h, a, t}.6

AD3. (van Rooij et al., 2008, Claim 1) Analogy Derivation is fp-intractable for 
parameter-set {h, a, f, t}.

AD4. (van Rooij et al., 2008, Claim 5) Analogy Derivation is fp-tractable for 
parameter-set {o}.

6   Note that Claim 4 as written in van Rooij et al. (2008) states that Analogy Derivation is fp-intractable 
for parameter-set {|B|, h, a, t, p}, which seems to contradict Result AD5. However, the addition of p to 
this parameter-set was a typo in van Rooij et al. (2008), meaning that Result AD5 is correct.
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AD5. (Appendix Section A.3) Analogy Derivation is fp-tractable for parameter-set  
{p}.

AD6. (Appendix Section A.3) Analogy Derivation is fp-tractable for parameter-set 
{f, t}.

AD7. (Appendix Section A.3) Analogy Derivation is fp-tractable for parameter-sets 
{|B|, f }, and {|T |, f }.

From the summary above, it is evident that (modulo the deletion of parameters specific 
to individual theories), Exemplar Retrieval, Analogy Derivation, and Projection Derivation share 
the same fp-tractability and intractability results. This may initially seem odd, as neither 
relationally-based solved-exemplar retrieval nor maximally-relevant projection derivation 
is explicitly deriving or returning optimal analogies. However, on closer examination of 
the proofs underlying these results, this is not so surprising: all three theories invoke a 
bounded analogy evaluation computation, i.e., is there an analogy between B and T of 
systematicity ≥ k?, which is actually the computation relative to which all intractability 
results in van Rooij et al. (2008) are proven, and all three theories can be implemented 
using algorithms that can examine all possible maximal analogies between a given B and 
T (which the fp-algorithms given here all do).

As these mechanisms seem rather generally applicable, we conjecture that many 
(if not all) analogy-based processes will share the same roster of fixed-parameter results 
relative to the parameters considered here. It seems likely that this unity may shatter and 
the various theories of analogy-based processes will vary in terms of their fp-tractabilities 
and intractabilities when other shared parameters are considered (indeed, the fact that 
Projection Derivation is not currently known to be fp-tractable for parameter-set {o} may be 
the beginning of this differentiation). However, it is also possible that these theories will 
continue to behave complexity-wise in a similar fashion, which would both make future 
analysis easier (in that results for one theory might also be easily adapted to apply to 
the others) and hint at a unity in explanations within the SMT framework of what makes 
analogical problem solving computationally “easy.”

In any case, the complexity results of all three processes above bring home what 
is probably the major take-home messages of this paper with respect to the model of 
analogical problem solving described in Section 1, namely,

1. 	all processes invoked by this model (and hence the model itself ) are intractable 
in general, and

2. 	all of these processes (and hence the model itself ) become tractable under plau-
sible constraints, but not in the ways proposed to date in the literature.
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Here, (1) establishes that explaining the speed of analogical problem solving under certain 
(experimental) conditions can be a real challenge for SMT-based models of the underlying 
processes; whereas (2) establishes that there do exist such explanations but that these 
have not previously been identified in the literature. The latter observation underscores 
the utility of performing rigorous computational-level complexity analyses, as we have 
done in this paper— namely, because such analyses allow definitive statements of which 
theoretical constraints do and do not yield valid explanations of intractability. Although 
simulation results obtained by running specific SMT-inspired algorithms can suggest such 
explanations, one can never rule out that the simulation findings fail to generalize to un-
tested inputs and/or to more efficient algorithmic implementations. Computational-level 
results as we have derived in this paper, on the other hand, apply to all inputs and the best 
possible algorithms. Our results thus establish the (im)possibility of tractable computation 
of modeled sub-processes in a way that no computer simulation can.

Importantly, our claim that the explanations identified by our analyses are “valid” is 
not to suggest that we claim that these explanations are also “veridical.” They are “valid” 
only in the sense that they identify a set of constraints that are provably sufficient for mak-
ing the modeled sub-processes (here, Exemplar Retrieval and Projection Derivation) tractable. 
Evidently, our analyses cannot show that one such particular set of constraints is also nec-
essary for tractability; in fact, this is contradicted by the fact that we have found multiple 
such sufficient explanations, and more sufficient explanations may even be found when 
considering more and different parameters than we have done here. Also, we cannot know 
which of the sufficient constraints are actually exploited by human problem solvers. To 
establish veridicality of our theoretically valid explanations, empirical research is needed. 
One way of providing evidence for or against an explanation of tractability is to system-
atically manipulate the critical parameters in an experimental design, and test whether 
performance indeed deteriorates (in terms of speed and/or accuracy) as predicted by that 
particular explanation. If such a prediction were to be borne out for one of the explana-
tions we have put forth here, this would not only help validate our complexity-theoretic 
methodology, but also provide corroborating evidence that SMT (and, in particular, our 
computational-level version of this theory) correctly characterizes the sub-processes 
underlying human analogical problem solving.

6. Conclusion

In this paper we have shown that theories of the sub-processes underlying analogical 
problem solving, based on SMT, encounter the theoretical obstacle of intractability, i.e., the 
postulated computations consume an unrealistic amount of time unless the input domain 
of such theories is properly constrained. Using a complexity-theoretic methodology we 
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have identified sets of constraints that are provably sufficient for rendering SMT-theories 
of analogical problem solving tractable. This means that, by enriching SMT-theories with 
such sets of constraints, the theories can explain the speed of human analogical problem 
solving under different conditions despite the intractability of the theory for unrestricted 
domains. Which of the possible explanations put forth in this paper accurately captures 
how humans succeed in making their analogical problem-solving processes fast enough 
to be tractable is an interesting open question, which we hope experimental problem-
solving researchers find a way to address.

Although we have focused in this paper on analogical problem solving, we emphasize 
that the applicability of our methodology ranges much wider than that. Many models of 
so-called domain-general cognition—including problem solving, reasoning, and deci-
sion making—typically face the theoretical obstacle of computational intractability, if 
only because it is nontrivial to characterize domain-generality without falling into the 
trap of overgeneralizing the input domain beyond the cognitively relevant. Our com-
plexity-theoretic methodology is a general tool for remedying this problem in cognitive 
theorizing. Based on analyses such as reported in this paper and elsewhere (e.g., Blokpoel 
et al., 2010; Müller, van Rooij, & Wareham, 2009; van Rooij et al., 2008; van Rooij, Stege, 
& Kadlec, 2005; Wareham & van Rooij, to appear), we submit that theories of cognitive 
processes can safely be assumed to be domain-general as long as some minimal input 
constraints can be assumed that suffice for making such processes tractable, at least in 
those modeled situations in which people are also fast. We believe this perspective can 
be seen as an important third alternative to the now standard antagonism between, on 
the one hand, denying the domain-generality of any cognitive process (e.g., by assuming 
a massively modular architecture of mind; Carruthers, 2006) and, on the other hand, the 
stance that domain-general cognition necessarily needs to cut corners in order to be fast 
(e.g., by using frugal heuristics; Gigerenzer, 2008).
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Appendix:

In order to prove tractability and intractability results for the theories of relationally-based 
solved-exemplar retrieval and maximally-relevant projection derivation formulated in 
Sections 3.1 and 4.1, we must formalize the various entities mentioned in these theories. 
Hence, in this appendix, we first review the graph-based formalization of analogy deriva-
tion given in van Rooij et al. (2008) (Section A.1). This is followed by a brief summary of 
techniques for establishing polynomial-time and fixed-parameter intractability (Section 
A.2) and the proofs of the various tractability and intractability results presented in Sec-
tions 5, 3.2, and 4.2 (Sections A.3, A.4, and A.5, respectively).

A.1. Definitions

Predicate-structures are formalized as a restricted type of vertex- and edge-labeled di-
rected acyclic-graph.

Definition 3 A concept-graph is a quadruple (G, λA, λB, λP) for a directed acyclic-graph  
G = (V, A) and functions λA, λB, and λP called labelings such that:
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1. 	λA : A → N .

2. 	λB is 1:1 and onto and defined on the leaves of G.

3. 	λP is defined on the internal vertices of G.

4. 	If v is an internal vertex, then λA either enumerates the arcs leaving v or is constantly 
0 on this set. In the first case, v is ordered, and in the second unordered.

5. 	For internal vertices u, v with λP (u) = λP (v), the following hold:

a) 	Either both u and v are ordered or u and v are unordered; 

b) u and v both have the same number of children in G; and 

c) {(v', λA (v, v' )) | (v, v' ) ∈ A} ≠ {(u' , λA(u, u' )) | (u, u' ) ∈ A}.

A concept-graph is ordered if all of its internal vertices are ordered; otherwise, if it contains 
at least one unordered predicate, it is unordered. Note that in a concept-graph, internal 
vertices correspond to predicates or functions, leaves correspond to objects, and the 
labelings λP, λB, and λA assign predicate-types, object-names, and predicate argument-
order labels, respectively. For later, let us define P to be the range of λP, i.e., P is the set of 
predicate-types in the concept-graph.

Analogies between pairs of concept-graphs are formalized in terms of a restricted 
type of sub-graph isomorphism. Recall that a graph isomorphism between directed graphs 
G = (V, A) and G'  = (V' , A' ) is a 1:1 onto function f : V → V'  such that (u, v) ∈ A if and only if 
(f (u), f (v)) ∈ A' , and a sub-graph isomorphism between directed graphs G and G’ is a graph 
isomorphism f between a sub-graph of G and a sub-graph of G' . Let Gf = (Vf, Af ) be the 
directed graph defined by such a sub-graph isomorphism f (as such, Gf is the domain of 
f, i.e., the sub-graph of G matched by f ; in turn, let G'  denote the image of f, i.e., the sub-
graph of G'  matched by f ).

Definition 4 Given a pair of concept-graphs  = (G = (V, A), λA, λB, λP) and '  = (G'  = (V' , A' ), 
λA' , λB' , λP'), an analogy-morphism of  and ’ is a sub-graph isomorphism f that satisfies 
the following three conditions:

1. 	For all v ∈ Vf , all children of v in G are also in Vf ;

2. 	For all v ∈ Vf ,  λP'(f (v)) =  λP(v); and

3. 	For all (v, w) ∈ Af , λA'((f (v), f (w))) = λA((v, w)).

Note that the various conditions used by Gentner to define an analogy are encoded in 
this definition—in particular, the fact that an analogy-morphism is a 1:1 onto function 
ensures one-to-one correspondence, conditions (1) and (3) ensure parallel connectivity, 
and condition (2) ensures relational focus.
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Systematicity is assessed using the following function on concept-graphs:

Definition 5 Given a concept-graph  = (G = (V, A), λa, λB, λP), a function pval: P →N and 
positive numbers trd, lm ∈ N, the value of  is val() = v∈V val(v) where val(v) = match(v) 
+ (w,v)∈A trd × val(w) such that match(v) is pval(λP(v)) if v is an internal vertex and lm if v is 
a leaf.

Given the above, the value of an analogy-morphism f of two concept-graphs is val(Gf). Note 
that the function val() defined above is essentially that used to evaluate systematicity in 
SME, where pval() is a function assigning match-values to individual predicate-types, trd 
is the trickle-down factor by which the values of parent-predicates are multiplied when 
added to compute a child-predicates score, and lm is the match-value of objects (see 
Forbus & Gentner, 1989, and Forbus et al., 1994, p. 158 for details).

Given the above, we can formalize all definitions and problems given in Sections 3.1, 
4.1, and 5 by substituting concept-graphs for predicate-structures, analogy-morphisms 
for analogies, and maxf ∈F (x,y) val(Gf) for SE(x, y), where F(x,y) is the set of all possible anal-
ogy-morphisms between x and y.

A.2. Proving Intractability

Given some criterion of tractability like polynomial-time or fixed-parameter solvability, 
we can define the class T of all input-output mappings that are tractable relative to that 
criterion. For example, T could be the class P of decision problems (see below) solvable 
in polynomial-time, or FPT, the class of parameterized problems that are fp-tractable. We 
can show that a particular input-output mapping is not in T (and thus that this mapping 
is intractable) by showing that this mapping is at least as hard as the hardest input-output 
mapping in any mapping-class C that properly includes (or is strongly conjectured to 
properly include) T . For example, C could be NP, the class of decision problems whose 
candidate solutions can be verified in polynomial time, or a class of parameterized prob-
lems in the W -hierarchy = {W[1], W[2] , . . . , W[P ] , . . . , XP } (see Garey & Johnson, 1979, and 
Downey & Fellows, 1999 for details).

We will focus here on reducibilities between pairs of decision problems, i.e., input-
output mappings whose answers are either “Yes” or  “No.” The two types of reductions 
used in this paper are as follows.

Definition 6 Given a pair Π, Π'  of decision problems, Π polynomial-time many-one reduces 
to Π if there is a polynomial-time computable function f mapping instances I of  Π to instances 
f (I) of  Π'  such that the answer to I is “Yes” if and only if the answer to f (I) is “Yes.”
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Definition 7 Given a pair Π, Π'  of parameterized decision problems, Π fp-reduces to Π if 
there is a function f mapping instances I = (x, p) of Π to instances I' = (x' , p' ) of Π'  such that (i) 
f is computable in g(p)|x|α time for some function g() and constant α, (ii) p'  = h(p) for some 
function h(), and (iii) the answer to I is “Yes” if and only if the answer to I'  = f (I) is “Yes.”

A reducibility is appropriate for a tractability class T if whenever Π reduces to Π'  and Π'  ∈ T 
then Π ∈ T . We say that a problem Π is C-hard for a class C if every problem in C reduces 
to Π. A C-hard problem is essentially as hard as the hardest problem in C .

Reducibilities become particularly useful in light of the following three easily-provable 
properties:

1. 	If Π reduces to Π’ and Π is C -hard then Π’ is C -hard.

2. 	If Π is C -hard and T ⊂ C then Π ∈ T, i.e., Π is not tractable.

3. 	If Π is C -hard and T ⊆ C then Π ∈ T unless T = C, i.e., Π is not tractable unless  
T = C .

These properties are easily provable for many commonly-used reducibilities, including 
those given in Definitions 6 and 7 above. The first and third of these properties will be used 
to show intractability below relative to tractable T-classes P and FPT and enclosing but 
not provably properly enclosing C-classes NP, W[1], and XP . Note that these intractability 
results hold relative to the conjectures P ≠ NP and FPT ≠ W[1] which, though not proved, 
have strong empirical support and are commonly accepted as true within the Computer 
Science community (see Fortnow, 2009, Garey & Johnson, 1979, and Downey & Fellows, 
1999 for details).

In the remainder of this paper, as we will be using reducibilities that operate on 
decision problems, we will actually be showing results relative to the decision problems 
associated with the input-output mappings Exemplar Retrieval and Projection Derivation 
(see Sections A.4 and A.5 below). This is acceptable for such suitably-defined decision 
problems because if such a problem is intractable, then so is the associated input-output 
mapping (otherwise, any tractable algorithm computing the input-output mapping could 
be used to construct a tractable algorithm for solving the decision problem, which would 
contradict the intractability of the decision problem).

Note also that in subsequent sections, all intractability results state specifically 
whether they hold relative to concept-graphs that are ordered or unordered. This is done 
for formal completeness. However, given the focus in the main text on the more general 
unordered case and the fact that any result relative to ordered concept-graphs implies the 
same result for unordered graphs (namely, add an extra unordered predicate of type not 
previously used in the instance to any concept-graph to make the instance unordered), 
the results cited in the main text do not mention concept-graph order.
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A.3. New fp-Tractability Results for Analogy Derivation

These results are derived relative to the following formal input-output mapping associ-
ated with Analogy Derivation as defined in Section 5:

Analogy Derivation

Input: Two concept-graphs B and T.
Output: An analogy-morphism A between B and T of optimal value.

Result AD5: Unordered and ordered Analogy Derivation are fp-tractable for parameter-set 
{p}.
Proof: The essential idea underlying this proof is that an analogy-morphism can be con-
structed in two phases—first, a partial-analogy-morphism m can be drawn consisting only 
of matching predicates in the given concept-graphs  and ', and second, this partial-
analogy-morphism can be augmented to create an analogy-morphism proper by adding 
an appropriate morphism between the sets of leaf-objects connected to the predicate-sets 
X and X'  linked by the partial analogy-morphism. The key to efficiently computing this 
appropriate morphism is to realize that even though there may be several leaf-objects 
in  with the same predicate-parents in X, any of these can be matched to any of the cor-
responding leaf-objects in '  with the same predicate-parents and predicate-argument 
indices under m to create a -valid analogy-morphism.

Our proof will use the following notations. Given concept-graphs  = (G, λA, λP, λB) 
and '  = (G' , λA' , λP' , λB'), let M (, ' ) be the set of all sub-graph isomorphisms between 
sub-graphs of G and G'  that are composed entirely of internal vertices in these graphs. 
Given m ∈ M (, ' ), recall that Gm is the domain of m, that is, the sub-graph of G matched 
by m, and G'm is the range of m, that is, the sub-graph of G' matched by m. Define a 
pseudo-concept-graph as any sub-graph of a concept-graph consisting entirely of 
internal vertices in the parent graph that satisfies all conditions in the definition of a 
concept-graph except those relating to leaf-objects. Pseudo-concept-graphs are thus 
sub-concept-graphs with the leaf-objects stripped off. Note that some (but not all) m ∈ 
M (, ' ) correspond to morphisms between pseudo-concept-graphs; for such m, let m 
and 'm denote these pseudo-concept-graphs in  and ' , respectively. Finally, given a 
pseudo-concept-graph P of a concept-graph , let Obj(P, ) be the set of all leaf-objects 
in  whose parent-predicates are all in P .

Given the above, consider the algorithm ADp given in Table 3. Observe that if ele-
ments x and y of sets L and L'  are equal, the corresponding leaf-objects ox and oy in  
and '  are functionally identical with respect to m, that is, the leaf-objects have the same 
parent-predicates and serve the same predicate argument-order role for each such parent-
predicate. Moreover, if L = L' , any matching of identical elements in L and L'  comprises 
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a morphism between leaf-objects in  and ' that augments m to make a full analogy-
morphism relative to the pseudo-concept-graphs m and 'm.

All operations on lines 1 and 3-16 of the algorithm can be done in time polynomial 
in the sizes of  and '; moreover, the size of M (, ' ) is

   p                                                                                             p

 choose(p, i ) × choose(p, i) × i!   =   choose(p, i ) × permute(p, i ) 
 i=1                                                                            i=1   

                                                                                                   p

                                                                  ≤    choose(p, i ) × p!
                                                                                    i=1   

                                                                                                              p

                                                                             =  p! ×   choose(p, i )
                                                                                              i=1   

                                                                  =  p! × 2p

                                                                  ≤  pp × 2p

Table 3. The analogy derivation (relative to parameter {p}) (ADp) Algorithm.

Procedure ADp(, ')
  1. best = 0
  2.   for m ∈ M (, ')
  3.     if m and 'm are pseudo-concept-graphs
  4.       L = L' = 0
  5.       for v ∈ Obj(m, )
  6.         par(v) = {(m(x), AA ((x, v)) | (x, v) ∈ A}
  7.           L = L ∪ {par(v)}
  8.       for v' ∈ Obj('m, ')
  9.       par(v') = {(x', λA'  ((x', v')) | (x', v') ∈ A' }
10.         L' = L' ∪ {par(v')}
11.       if L = L' 
12.           Extract from any matching of identical elements of L and L'  
                                    a 1:1 onto function g from Obj(m, ) to Obj('m, ') such that  
                               par(v) = par(h(v)).
13.         Augment m with g to create an analogy-morphism for  and '.
14.         if (best = 0) or (val(Gf) > val(Gbest))
15.           best = f
16. return best
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which is purely a function of p. Hence, the algorithm runs in time that is exponential purely 
in p, completing the proof.	 

Result AD6: Unordered and ordered Analogy Derivation are fp-tractable for parameter-set  
{f, t}.
Proof: Follows from the algorithm in the proof of Result AD5 and the observation that 
p ≤ f × t.	 

Result AD7: Unordered and ordered Analogy Derivation are fp-tractable for parameter-sets 
{|B|, f } and {|T |, f }.
Proof: Follows from the algorithm in Result AD5 and the observations that (i) the 
maximum number of possible alignable predicates in T with respect to B (and hence p)  
≤ |B| × f, and (ii) the maximum number of possible alignable predicates in B with respect 
to T (and hence p) ≤ |T | × f .	 

A.4. Results for Exemplar Retrieval 

These results are derived relative to the following formal decision problem associated 
with Exemplar Retrieval as defined in Section 3.1:

Exemplar Retrieval 
Input: A library L of concept-graphs, a probe concept-graph P, and integers b 
and k.
Question: If L'  is the largest possible subset of L of size ≤ b such that each mem-
ber of L'  has an optimal analogy-morphism with P of value that is the largest 
possible over the values of all optimal analogy-morphisms between P and 
members of L, is L'  of size ≤ k?

Our intractability results will be derived relative to reductions from the following prob-
lems:

Clique

Input: A graph G and an integer k.
Question: Does G contain a Clique with k vertices, that is, is there a sub-graph of 
G that is isomorphic to Kk, the complete graph on k vertices?

3-Dimensional Mapping

Input: A set M ⊆ X × Y × Z, where X, Y, and Z are disjoint sets having the same 
number q of elements.
Question: Is there a subset M' ⊆ M such that M'  is a matching, that is, no two 
elements of M'  agree in any co-ordinate, and |M' | = q?
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These reductions will use the following transformation to create concept-graphs:

• 	 Given an unordered graph G = (V, E), let C(G) be the unordered concept-graph 
consisting of |V | objects and |E| unordered binary predicates of type p in which 
each object corresponds to a unique vertex G and each predicate a corresponds 
to a unique edge e = (u, v) in E such that the arguments of a are the objects cor-
responding to the endpoints u and v of e in G.

• 	 Given a set M ⊆ X ∪ Y ∪ Z for disjoint sets X, Y, and Z with the same number of el-
ements, let CMA(M) be the ordered concept-graph consisting of |X| + |Z| objects 
and |M| ordered binary predicates of distinct predicate-type in which each ob-
ject corresponds to a unique element in X ∪ Z and each predicate a corresponds 
to a unique element m = (x, y, z) of M such that a has unique predicate-type pxyz 
and the first and second arguments of a are the objects corresponding to x and 
z, respectively.

• 	 Given a set M ⊆ X ∪ Y ∪ Z for disjoint sets X, Y, and Z with the same number of 
elements, let CMB(M) be the ordered concept-graph consisting of |Y| + (|X| × |Y|) 
objects and |M| ordered binary predicates of distinct predicate-type in which 
each object corresponds to a unique element of Y ∪ {vxy | there exists an ele-
ment (x, y, z) ∈ M } and each predicate a corresponds to a unique element m = 
(x, y, z) of M such that a has unique predicate-type pxyz and the first and second 
arguments of a are the object corresponding to y and vxy, respectively.

Note that C(G) was originally defined in the Supplementary Materials of van Rooij et al. 
(2008) and CMA(M) and CMB(M) were used but not defined as above in Veale and Keane 
(1997).

Lemma 1: Clique polynomial-time many-one reduces to Unordered Exemplar Retrieval such 
that in the constructed instance of Unordered Exemplar Retrieval , |B| is a function of k from the 
given instance of Clique, h = 1, a = 2, t = 1, |L| = 2, and b = 2.
Proof: Given an instance I = G, k of Clique, construct the following instance I'  = L, P, b, k' 
of Unordered Exemplar Retrieval: let L = {C(Kk), C(Kk−1)}, P = C(G), b = 2, and k' =1. Note that I' 
can be constructed in time polynomial in the size of I; moreover, in I' , |B| = k + k (k−1)/2.

To prove that this construction is a reduction, we must show that the answer to 
the given instance of Clique is “Yes” if and only if the answer to the constructed instance 
of Exemplar Retrieval is “Yes.” We will do this by proving both directions of this implication 
separately: if the answer to the given instance of Clique is “Yes,” there is a k-Clique in G; as 
L'  can only contain concept-graphs that yield optimal analogies to P, L'  will contain one 
element, that is, C(Kk), and the answer to the constructed instance of Exemplar Retrieval will 
be “Yes.” Conversely, if the answer to the constructed instance of Exemplar Retrieval is “Yes,” 
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|L' | = 1, and the sole member of L'  is C(Kk). This can be proved by contradiction: if C(Kk−1) 
was the sole member, this would mean that the largest possible analogy of a member of 
L and P is a (possibly proper) sub-graph of C(Kk−1); however, as any such sub-graph also 
exists within C(Kk), C(Kk) would also yield an optimal analogy to P, which contradicts the 
definition of L'  as the largest possible subset of L having optimal analogies with P. As the 
sole member of L'  is C(Kk), this implies that there is a k-Clique in the graph G, and that the 
answer to the given instance of Clique is “Yes,” completing the proof.	 

Lemma 2: Clique polynomial-time many-one reduces to Unordered Exemplar Retrieval such 
that in the constructed instance of Unordered Exemplar Retrieval , |T | is a function of k from the 
given instance of Clique, h = 1, a = 2, t = 1, |L| = 2, and b = 2.
Proof: Given an instance I = G, k of Clique, construct the following instance I'  = L, P, b, k'  
of Unordered Exemplar Retrieval: let L = {C(G), C(Kk−1)}, P = C(Kk), b =2, and k' =1. The remain-
der of the proof is analogous to that for Lemma 1.	 

Lemma 3: 3-Dimensional Matching polynomial-time many-one reduces to Unordered and 
Ordered Exemplar Retrieval such that in the constructed instance of Exemplar Retrieval , h = 1,  
a = 2, f = 1, and b = 2.
Proof: Consider first the case of Ordered Exemplar Retrieval. Given an instance I = M, X, Y, Z 
of 3-Dimensional Matching, construct the following instance I' = L, P, b, k of Ordered Exemplar 
Retrieval: let L = {CMA(M)} ∪ {CMA(M(w)) | w ∈ X ∪ Y ∪ Z } where M(w) is the subset of M in 
which all triples including w have been removed, P = CMB(M), b = 4, and k =1. Note that 
I'  can be constructed in time polynomial in the size of I.

To prove that this construction is a reduction, we must show that the answer to the 
given instance of 3-Dimensional Matching is “Yes” if and only if the answer to the constructed 
instance of Exemplar Retrieval is “Yes.” We will do this by proving both directions of this im-
plication separately: If the answer to the given instance of 3-Dimensional Matching is “Yes,” 
then by the proof given in Veale and Keane (1997, Section 3), there is a matching M'  of 
size q. Note that M'  induces an optimal analogy between P and CMA(M), and cannot in-
duce an optimal analogy with any other member of L as each such member is missing at 
least one element from X ∪ Y ∪ Z and thus can only have a matching with M of size q'  < q 
(which induces an analogy of value less than that for M' ). As |L' | = 1, the answer to the 
constructed instance of Exemplar Retrieval is “Yes.” If the answer to the constructed instance 
of Exemplar Retrieval is “Yes,” |L' | = 1. As any matching M'  of size smaller than q must leave 
out the elements in at least one triple in M, at least four possible members of L would 
induce optimal analogies (namely, CMA(M) and the three CMA(M(w)) such that w is in 
the excised triple). Hence, if |L' | = 1, the optimal analogy must be between CMA(M) and P, 
which corresponds to a matching of size q in M. Hence, the answer to the given instance 
of 3-Dimensional Matching is also “Yes,” completing the proof.



The Journal of Problem Solving •

66	 Todd Wareham, Patricia Evans, and Iris van Rooij	

As for Unordered Exemplar Retrieval, modify the constructed instance of Exemplar 
Retrieval such that the two members of L and P each contain an additional unordered 
predicate connecting an arbitrary pair of objects in those respective structures that is of 
different predicate-type in each structure. These modified predicate-structures are now 
unordered; moreover, none of these extra predicates can match themselves or any other 
predicate in L and P. Hence, the proof given above still applies in this case.	 

Lemma 4: Unordered Exemplar Retrieval is NP-hard when h = 1, a = 2, t = 1, |L| = 2, and 
b = 2.
Proof: Follows from the NP-hardness of Clique (Garey & Johnson, 1979, Problem GT19) and 
either of the reductions in Lemmas 1 and 2.	 

Lemma 5: Unordered and Ordered Exemplar Retrieval are NP-hard when h = 1, a = 2, f = 1, 
and b = 2.
Proof: Follows from the NP-hardness of 3-Dimensional Matching (Garey & Johnson, 1979, 
Problem SP1) and the reduction in Lemma 3.	 

Result ER1: Unordered and Ordered Exemplar Retrieval are polynomial-time intractable.
Proof: Follows from Lemmas 4 and 5.	 

Result ER2: Unordered and Ordered Exemplar Retrieval are fp-intractable for parameter-set 
{|B|, h, a, t, |L|, b} when h = 1, a = 2, t = 1, and |L| = b = 2.
Proof: The fp-intractability of Unordered Exemplar Retrieval follows from the W [1]-hardness 
of k-Clique (Downey & Fellows, 1999) and the reduction in Lemma 1. As |B| is a function 
of parameter k in the given instance of k-Clique in this reduction, the fp-intractability 
of Ordered Exemplar Retrieval follows by an argument similar to that given in the proof of 
Claim 6 in the Supplementary Materials of van Rooij et al. (2008).	 

Result ER3: Unordered and Ordered Exemplar Retrieval are fp-intractable for parameter-set  
{|T |, h, a, t, |L|, b} when h = 1, a = 2, t = 1, and |L| = b = 2.
Proof: The fp-intractability of Unordered Exemplar Retrieval follows from the W [1]-hardness 
of k-Clique (Downey & Fellows, 1999) and the reduction in Lemma 2. As |T | is a function 
of parameter k in the given instance of k-Clique in this reduction, the fp-intractability of 
Ordered Exemplar Retrieval follows by an argument similar to that given in the proof of 
Claim 6 in the Supplementary Materials of van Rooij et al. (2008).	 

Result ER4: Ordered Exemplar Retrieval is fp-intractable for parameter-set {h, a, f, b} when 
h = 1, a = 2, f = 1, and b = 2.
Proof: Follows from Lemma 5.	 
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Lemma 6: If Unordered and Ordered X-Analogy Derivation is fp-tractable for some parameter 
X, then Unordered and Ordered X-Exemplar Retrieval is also fp-tractable.
Proof: Follows from the observation that any such algorithm for Analogy Derivation can 
be used to compute the optimal analogies of P with each member of L, from which set L’ 

could be constructed accordingly.	 

Result ER5: Unordered and Ordered Exemplar Retrieval are fp-tractable for parameter- 
set {o}.
Proof: Follows from the fp-tractable algorithm for Unordered and Ordered o-Analogy 
Derivation given in van Rooij et al. (2008, Claim 5) and Lemma 6.	 

Results ER6: Unordered and Ordered Exemplar Retrieval are fp-tractable for parameter- 
set {p}.
Proof: Follows from the algorithm in the proof of Result AD5 and Lemma 6.	 

Result ER7: Unordered and Ordered Exemplar Retrieval are fp-tractable for parameter- 
set {f, t}.
Proof: Follows from the algorithm in the proof of Result AD6 and Lemma 6.	 

Result ER8: Unordered and Ordered Exemplar Retrievalare fp-tractable for the parameter- 
sets {|B|, f } and {|T |, f }.
Proof: Follows from the algorithms in the proof of Result AD7 and Lemma 6.	 

A.5. Results for Projection Derivation

These results are derived relative to the following formal decision problem associated 
with Projection Derivation as defined in Section 4.2:

Projection Derivation

Input: Two predicate-structures B and T, a subset S of the predicates in B, and 
integers k and d.
Question: Is there a maximal analogy A between B and T and a projection P rela-
tive to A and B such that A and P include at least k members of S and each can-
didate inference has distance at most d from the base portion of the analogy?

Once again, we will derive hardness results by reductions from the problems Clique and 
3-Dimensional Matching defined in Section A.4. In addition to concept-graph creation 
functions C(G), CMA(M), and CMB(M) defined in Section A.4, these reductions will use the 
following such functions:
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• 	 Given an unordered graph G = (V, E), let CP(G) be the concept-graph based on 
C(G) in which each edge-predicate in C(G) modeling edge e ∈ E has an associat-
ed higher-level binary predicate of a new type p’ that takes as its two arguments 
the edge-predicate and an e-specific object ve that is the argument of no other 
predicate in CP(G). Note CP(G) adds |E| new predicates and |E| new leaf-objects 
to C(G).

• 	 Given a set M ⊆ X ∪ Y ∪ Z for disjoint sets X, Y, and Z with the same number of 
elements, let CMAP(M) be the concept-graph based on CMA(M) in which each 
triple-predicate in CA(M) modeling triple m ∈ M has an associated higher-level 
binary predicate of distinct type that takes as its two arguments the triple-
predicate and an m-specific object vm that is the argument of no other predi-
cate in CMAP(M). Note that CMAP(M) adds |M| new predicates and |M| new 
leaf-objects to CMA(M).

Lemma 7: Clique polynomial-time many-one reduces to Unordered Projection Derivation such 
that in the constructed instance of Projection Derivation, |B| and |S| are functions of k from the 
given instance of Clique, h = a = t = 2, and d = 1.
Proof: Given an instance I = G, k of Clique, construct the following instance I'  = B, T, S, k', d 
of Unordered Projection Derivation: let B = CP(Kk), T = C(G), S be the set of new predicates 
added to C(Kk) in creating CP(Kk), k'  = |S|, and d = 1. Note that I can be constructed in time 
polynomial in the size of I; moreover, in I' , |S| = k(k −1)/2 and |B| = k + 3k(k −1)/2.

To prove that this construction is a reduction, we must show that the answer to 
the given instance of Clique is “Yes” if and only if the answer to the constructed instance 
of Unordered Projection Derivation is “Yes.” We will do this by proving both directions of 
this implication separately: if the answer to the given instance of Clique is “Yes,” there is a 
sub-graph of T that forms an analogy with C(Kk) (and hence the C(Kk)-portion of CP(Kk)) 
such that all of the higher-level edge-specific predicates in CP(Kk) and their associated 
edge-specific leaf-objects can be projected from B to T. As every inference in this projec-
tion has distance 1 from the base analogy, the answer to the constructed instance of 
Projection Derivation is “Yes.” If the answer to the given instance of Projection Derivation is 
“Yes,” all predicates in S must have been projected relative to the analogy between B and 
T; however, as each predicate in S is associated with a single edge-predicate in B, this can 
only happen if the analogy between B and T includes all edge-predicates in B, that is, 
there is a sub-graph of T that is isomorphic to C(Kk). As this can only happen if there is a 
sub-graph of G that is isomorphic to Kk, the answer to the given instance of Clique is “Yes,” 
completing the proof.	 
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Lemma 8: Clique polynomial-time many-one reduces to Unordered Projection Derivation such 
that in the constructed instance of Projection Derivation , |T | is a function of k in the given in-
stance of Clique, h = a = t = 2, and d =1.
Proof: Given an instance I = G, k of Clique, construct the following instance I'  = B, T, S, k', d 
of Unordered Projection Derivation: let B = CP(G), T = C(Kk), S be the set of new predicates 
added to C(G) in creating CP(G), k' = k(k −1)/2, and d = 1. Note that I'  can be constructed 
in time polynomial in the size of I ; moreover, in I' , |T | = k + 3k(k −1)/2. The remainder of 
the proof is analogous for that of Lemma 7.	 

Lemma 9: 3-Dimensional Matching polynomial-time many-one reduces to Ordered Projec-
tion Derivation such that in the constructed instance of Projection Derivation , h = a = 2 and  
f = d = 1.
Proof: Consider first the case of Ordered Projection Derivation. Given an instance e I = 
M, X, Y, Z of 3-dimensional mapping, construct the following instance I'  = B, T, S, k' , d of 
Projection Derivation: let B = CMAP(M), T = CMB(M), S be the set of new predicates added 
to CMA(M) in creating CMAP(M), k'  = q, and d =1. Note that I'  can be constructed in time 
polynomial in the size of I .

To prove that this construction is a reduction, we must show that the answer to the 
given instance of 3-dimensional mapping is “Yes” if and only if the answer to the construct-
ed instance of Ordered Projection Derivation is “Yes.” We will do this by proving both direc-
tions of this implication separately: if the answer to the given instance of 3-dimensional 
mapping is “Yes,” there is a matching M’ of size q and a corresponding optimal analogy of 
B = CMAP(M) with T = CMB(M) (or rather, of the CMA(M)-portion of CMAP(M) with CMB(M)) 
such that q of the higher-level triple-specific predicates in CMAP(M) and their associated 
edge-specific leaf-objects can be projected from B to T . As every candidate inference in this 
projection has distance 1 from the base analogy, the answer to the constructed instance 
of Projection Derivation is “Yes.” If the answer to the given instance of Projection Derivation is 
“Yes,” q predicates in S must have been projected relative to the analogy between B and 
T; however, as each predicate in S is associated with a single triple-predicate in B, this 
can only happen if the analogy between B and T includes q triple-predicates in B, that is, 
there is a matching of M that contains q tuples. Hence, the answer to the given instance 
of 3-dimensional mapping is “Yes,” completing the proof.

As for Unordered Projection Derivation , modify the constructed instance of Projection 
Derivation such that B and T each contain an additional unordered predicate connecting 
an arbitrary pair of objects in those structures that is of different predicate-type in each 
structure. These modified predicate-structures are now unordered; moreover, none of 
these extra predicates can match themselves or any other predicate in B and T. Hence, 
the proof given above still applies in this case.	 
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Lemma 10: Unordered Projection Derivation is NP-hard when h = a = t = 2 and d = 1.
Proof: Follows from the NP-hardness of Clique (Garey & Johnson, 1979, Problem GT19) and 
either of the reductions in Lemmas 7 and 8.	 

Lemma 11: Unordered and Ordered Projection Derivation are NP-hard when h = a = 2 and 
f = d = 1.
Proof: Follows from the NP-hardness of 3-dimensional mapping (Garey & Johnson, 1979, 
Problem SP1) and the reduction in Lemma 9.	 

Result PD1: Unordered and Ordered Projection Derivation are polynomial-time intractable.
Proof: Follows from Lemmas 10 and 11.	 

Result PD2: Unordered and Ordered Projection Derivation are fp-intractable for parameter-set 
{|B|, h, a, t, |S|, k, d} when h = a = t = 2 and d = 1.
Proof: The fp-intractability of Unordered Projection Derivation follows from the W[1]-
hardness of k-Clique (Downey & Fellows, 1999) and the reduction in Lemma 7. As |B| 
is a function of parameter k in the given instance of k-Clique in this reduction, the fp-
intractability of Ordered Projection Derivation follows by an argument similar to that given 
in the proof of Claim 6 in the Supplementary Materials of van Rooij et al. (2008).	 

Result PD3: Unordered and Ordered Projection Derivation are fp-intractable for parameter-set 
{|T |, h, a, t, k, d} when h = a = t = 2 and d = 1.
Proof: The fp-intractability of Unordered Projection Derivation follows from the W[1]-
hardness of k-Clique (Downey & Fellows, 1999) and the reduction in Lemma 8. As |T| 
is a function of parameter k in the given instance of k-Clique in this reduction, the fp-
intractability of Ordered Projection Derivation follows by an argument similar to that given 
in the proof of Claim 6 in the Supplementary Materials of van Rooij et al. (2008).	 

Result PD4: Ordered Projection Derivation is fp-intractable for parameter-set {h, a, f, b} when 
h = a = 2, and f = d = 1.
Proof: Follows from Lemma 11.	 

Result PD5: Unordered and Ordered Projection Derivation are fp-tractable for parameter-set 
{o, |S|}.
Proof: The fp-tractable algorithm for o-analogy derivation in van Rooij et al. (2008, Claim 
5) actually computes the maximal analogies for each possible bijection between the 
objects of B and the objects of T. To evaluate the projection-possibilities for each such 
maximal analogy A, for each subset x of S, determine if each predicate in x is a valid can-
didate projection relative to A and, moreover, if the projection formed by the union of 
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these candidate inferences satisfies the conditions laid out in Projection Derivation. As the 
maximal analogies can be computed in time exponential purely in o and the computa-
tion of each possible projection relative to the subsets of S for each maximal analogy can 
be computed in time exponential purely in |S|, the algorithm as a whole runs in FPT time 
relative to o and |S|, completing the proof.	 

Result PD6: Unordered and Ordered Projection Derivation are fp-tractable for parameter- 
set {p}.
Proof: The algorithm in the proof of Result AD5 actually computes all maximal analogies 
for B and T. To evaluate the projection-possibilities for each such maximal analogy A, use 
the procedure described in the proof of Result PD5. As |S| ≤ p, the algorithm as a whole 
runs in time exponential purely in p, completing the proof.	 

Result PD7: Unordered and Ordered Projection Derivation are fp-tractable for parameter- 
set {f, t}.
Proof: Follows from the algorithm in the proof of Result PD6 and the observation that  
p ≤ f × t.	 

Result PD8: Unordered and Ordered Projection Derivation are fp-tractable for parameter- 
sets {|B|, f } and {|T |, f }.
Proof: Follows from the algorithm in Result PD6 and the observations that (i) the maxi-
mum number of possible alignable predicates in T with respect to B (and hence p) ≤ |B| 
× f, and (ii) the maximum number of possible alignable predicates in B with respect to T 
(and hence p) ≤ |T | × f .	 
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